/* * ATRAC3+ compatible decoder * * Copyright (c) 2010-2013 Maxim Poliakovski * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Bitstream parser for ATRAC3+ decoder. */ #include "libavutil/avassert.h" #include "avcodec.h" #include "get_bits.h" #include "atrac3plus.h" #include "atrac3plus_data.h" static VLCElem tables_data[154276]; static VLC wl_vlc_tabs[4]; static VLC sf_vlc_tabs[8]; static VLC ct_vlc_tabs[4]; static VLC spec_vlc_tabs[112]; static VLC gain_vlc_tabs[11]; static VLC tone_vlc_tabs[7]; /** * Generate canonical VLC table from given descriptor. * * @param[in] cb ptr to codebook descriptor * @param[in,out] xlat ptr to ptr to translation table * @param[in,out] tab_offset starting offset to the generated vlc table * @param[out] out_vlc ptr to vlc table to be generated */ static av_cold void build_canonical_huff(const uint8_t *cb, const uint8_t **xlat, int *tab_offset, VLC *out_vlc) { int i, max_len; uint8_t bits[256]; int index = 0; for (int b = 1; b <= 12; b++) { for (i = *cb++; i > 0; i--) { av_assert0(index < 256); bits[index] = b; index++; } } max_len = bits[index - 1]; out_vlc->table = &tables_data[*tab_offset]; out_vlc->table_allocated = 1 << max_len; ff_vlc_init_from_lengths(out_vlc, max_len, index, bits, 1, *xlat, 1, 1, 0, VLC_INIT_USE_STATIC, NULL); *tab_offset += 1 << max_len; *xlat += index; } av_cold void ff_atrac3p_init_vlcs(void) { int i, tab_offset = 0; const uint8_t *xlats; xlats = atrac3p_wl_ct_xlats; for (int i = 0; i < 4; i++) { build_canonical_huff(atrac3p_wl_cbs[i], &xlats, &tab_offset, &wl_vlc_tabs[i]); build_canonical_huff(atrac3p_ct_cbs[i], &xlats, &tab_offset, &ct_vlc_tabs[i]); } xlats = atrac3p_sf_xlats; for (int i = 0; i < 8; i++) build_canonical_huff(atrac3p_sf_cbs[i], &xlats, &tab_offset, &sf_vlc_tabs[i]); /* build huffman tables for spectrum decoding */ xlats = atrac3p_spectra_xlats; for (i = 0; i < 112; i++) { if (atrac3p_spectra_cbs[i][0] >= 0) build_canonical_huff(atrac3p_spectra_cbs[i], &xlats, &tab_offset, &spec_vlc_tabs[i]); else /* Reuse already initialized VLC table */ spec_vlc_tabs[i] = spec_vlc_tabs[-atrac3p_spectra_cbs[i][0]]; } /* build huffman tables for gain data decoding */ xlats = atrac3p_gain_xlats; for (i = 0; i < 11; i++) build_canonical_huff(atrac3p_gain_cbs[i], &xlats, &tab_offset, &gain_vlc_tabs[i]); /* build huffman tables for tone decoding */ xlats = atrac3p_tone_xlats; for (i = 0; i < 7; i++) build_canonical_huff(atrac3p_tone_cbs[i], &xlats, &tab_offset, &tone_vlc_tabs[i]); } /** * Decode number of coded quantization units. * * @param[in] gb the GetBit context * @param[in,out] chan ptr to the channel parameters * @param[in,out] ctx ptr to the channel unit context * @param[in] avctx ptr to the AVCodecContext * @return result code: 0 = OK, otherwise - error code */ static int num_coded_units(GetBitContext *gb, Atrac3pChanParams *chan, Atrac3pChanUnitCtx *ctx, AVCodecContext *avctx) { chan->fill_mode = get_bits(gb, 2); if (!chan->fill_mode) { chan->num_coded_vals = ctx->num_quant_units; } else { chan->num_coded_vals = get_bits(gb, 5); if (chan->num_coded_vals > ctx->num_quant_units) { av_log(avctx, AV_LOG_ERROR, "Invalid number of transmitted units!\n"); return AVERROR_INVALIDDATA; } if (chan->fill_mode == 3) chan->split_point = get_bits(gb, 2) + (chan->ch_num << 1) + 1; } return 0; } /** * Add weighting coefficients to the decoded word-length information. * * @param[in,out] ctx ptr to the channel unit context * @param[in,out] chan ptr to the channel parameters * @param[in] wtab_idx index of the table of weights * @param[in] avctx ptr to the AVCodecContext * @return result code: 0 = OK, otherwise - error code */ static int add_wordlen_weights(Atrac3pChanUnitCtx *ctx, Atrac3pChanParams *chan, int wtab_idx, AVCodecContext *avctx) { int i; const int8_t *weights_tab = &atrac3p_wl_weights[chan->ch_num * 3 + wtab_idx - 1][0]; for (i = 0; i < ctx->num_quant_units; i++) { chan->qu_wordlen[i] += weights_tab[i]; if (chan->qu_wordlen[i] < 0 || chan->qu_wordlen[i] > 7) { av_log(avctx, AV_LOG_ERROR, "WL index out of range: pos=%d, val=%d!\n", i, chan->qu_wordlen[i]); return AVERROR_INVALIDDATA; } } return 0; } /** * Subtract weighting coefficients from decoded scalefactors. * * @param[in,out] ctx ptr to the channel unit context * @param[in,out] chan ptr to the channel parameters * @param[in] wtab_idx index of table of weights * @param[in] avctx ptr to the AVCodecContext * @return result code: 0 = OK, otherwise - error code */ static int subtract_sf_weights(Atrac3pChanUnitCtx *ctx, Atrac3pChanParams *chan, int wtab_idx, AVCodecContext *avctx) { int i; const int8_t *weights_tab = &atrac3p_sf_weights[wtab_idx - 1][0]; for (i = 0; i < ctx->used_quant_units; i++) { chan->qu_sf_idx[i] -= weights_tab[i]; if (chan->qu_sf_idx[i] < 0 || chan->qu_sf_idx[i] > 63) { av_log(avctx, AV_LOG_ERROR, "SF index out of range: pos=%d, val=%d!\n", i, chan->qu_sf_idx[i]); return AVERROR_INVALIDDATA; } } return 0; } /** * Unpack vector quantization tables. * * @param[in] start_val start value for the unpacked table * @param[in] shape_vec ptr to table to unpack * @param[out] dst ptr to output array * @param[in] num_values number of values to unpack */ static inline void unpack_vq_shape(int start_val, const int8_t *shape_vec, int *dst, int num_values) { int i; if (num_values) { dst[0] = dst[1] = dst[2] = start_val; for (i = 3; i < num_values; i++) dst[i] = start_val - shape_vec[atrac3p_qu_num_to_seg[i] - 1]; } } #define UNPACK_SF_VQ_SHAPE(gb, dst, num_vals) \ start_val = get_bits((gb), 6); \ unpack_vq_shape(start_val, &atrac3p_sf_shapes[get_bits((gb), 6)][0], \ (dst), (num_vals)) /** * Decode word length for each quantization unit of a channel. * * @param[in] gb the GetBit context * @param[in,out] ctx ptr to the channel unit context * @param[in] ch_num channel to process * @param[in] avctx ptr to the AVCodecContext * @return result code: 0 = OK, otherwise - error code */ static int decode_channel_wordlen(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, int ch_num, AVCodecContext *avctx) { int i, weight_idx = 0, delta, diff, pos, delta_bits, min_val, flag, ret, start_val; VLC *vlc_tab; Atrac3pChanParams *chan = &ctx->channels[ch_num]; Atrac3pChanParams *ref_chan = &ctx->channels[0]; chan->fill_mode = 0; switch (get_bits(gb, 2)) { /* switch according to coding mode */ case 0: /* coded using constant number of bits */ for (i = 0; i < ctx->num_quant_units; i++) chan->qu_wordlen[i] = get_bits(gb, 3); break; case 1: if (ch_num) { if ((ret = num_coded_units(gb, chan, ctx, avctx)) < 0) return ret; if (chan->num_coded_vals) { vlc_tab = &wl_vlc_tabs[get_bits(gb, 2)]; for (i = 0; i < chan->num_coded_vals; i++) { delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1); chan->qu_wordlen[i] = (ref_chan->qu_wordlen[i] + delta) & 7; } } } else { weight_idx = get_bits(gb, 2); if ((ret = num_coded_units(gb, chan, ctx, avctx)) < 0) return ret; if (chan->num_coded_vals) { pos = get_bits(gb, 5); if (pos > chan->num_coded_vals) { av_log(avctx, AV_LOG_ERROR, "WL mode 1: invalid position!\n"); return AVERROR_INVALIDDATA; } delta_bits = get_bits(gb, 2); min_val = get_bits(gb, 3); for (i = 0; i < pos; i++) chan->qu_wordlen[i] = get_bits(gb, 3); for (i = pos; i < chan->num_coded_vals; i++) chan->qu_wordlen[i] = (min_val + get_bitsz(gb, delta_bits)) & 7; } } break; case 2: if ((ret = num_coded_units(gb, chan, ctx, avctx)) < 0) return ret; if (ch_num && chan->num_coded_vals) { vlc_tab = &wl_vlc_tabs[get_bits(gb, 2)]; delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1); chan->qu_wordlen[0] = (ref_chan->qu_wordlen[0] + delta) & 7; for (i = 1; i < chan->num_coded_vals; i++) { diff = ref_chan->qu_wordlen[i] - ref_chan->qu_wordlen[i - 1]; delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1); chan->qu_wordlen[i] = (chan->qu_wordlen[i - 1] + diff + delta) & 7; } } else if (chan->num_coded_vals) { flag = get_bits(gb, 1); vlc_tab = &wl_vlc_tabs[get_bits(gb, 1)]; start_val = get_bits(gb, 3); unpack_vq_shape(start_val, &atrac3p_wl_shapes[start_val][get_bits(gb, 4)][0], chan->qu_wordlen, chan->num_coded_vals); if (!flag) { for (i = 0; i < chan->num_coded_vals; i++) { delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1); chan->qu_wordlen[i] = (chan->qu_wordlen[i] + delta) & 7; } } else { for (i = 0; i < (chan->num_coded_vals & - 2); i += 2) if (!get_bits1(gb)) { chan->qu_wordlen[i] = (chan->qu_wordlen[i] + get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1)) & 7; chan->qu_wordlen[i + 1] = (chan->qu_wordlen[i + 1] + get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1)) & 7; } if (chan->num_coded_vals & 1) chan->qu_wordlen[i] = (chan->qu_wordlen[i] + get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1)) & 7; } } break; case 3: weight_idx = get_bits(gb, 2); if ((ret = num_coded_units(gb, chan, ctx, avctx)) < 0) return ret; if (chan->num_coded_vals) { vlc_tab = &wl_vlc_tabs[get_bits(gb, 2)]; /* first coefficient is coded directly */ chan->qu_wordlen[0] = get_bits(gb, 3); for (i = 1; i < chan->num_coded_vals; i++) { delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1); chan->qu_wordlen[i] = (chan->qu_wordlen[i - 1] + delta) & 7; } } break; } if (chan->fill_mode == 2) { for (i = chan->num_coded_vals; i < ctx->num_quant_units; i++) chan->qu_wordlen[i] = ch_num ? get_bits1(gb) : 1; } else if (chan->fill_mode == 3) { pos = ch_num ? chan->num_coded_vals + chan->split_point : ctx->num_quant_units - chan->split_point; if (pos > FF_ARRAY_ELEMS(chan->qu_wordlen)) { av_log(avctx, AV_LOG_ERROR, "Split point beyond array\n"); pos = FF_ARRAY_ELEMS(chan->qu_wordlen); } for (i = chan->num_coded_vals; i < pos; i++) chan->qu_wordlen[i] = 1; } if (weight_idx) return add_wordlen_weights(ctx, chan, weight_idx, avctx); return 0; } /** * Decode scale factor indexes for each quant unit of a channel. * * @param[in] gb the GetBit context * @param[in,out] ctx ptr to the channel unit context * @param[in] ch_num channel to process * @param[in] avctx ptr to the AVCodecContext * @return result code: 0 = OK, otherwise - error code */ static int decode_channel_sf_idx(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, int ch_num, AVCodecContext *avctx) { int i, weight_idx = 0, delta, diff, num_long_vals, delta_bits, min_val, vlc_sel, start_val; VLC *vlc_tab; Atrac3pChanParams *chan = &ctx->channels[ch_num]; Atrac3pChanParams *ref_chan = &ctx->channels[0]; switch (get_bits(gb, 2)) { /* switch according to coding mode */ case 0: /* coded using constant number of bits */ for (i = 0; i < ctx->used_quant_units; i++) chan->qu_sf_idx[i] = get_bits(gb, 6); break; case 1: if (ch_num) { vlc_tab = &sf_vlc_tabs[get_bits(gb, 2)]; for (i = 0; i < ctx->used_quant_units; i++) { delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1); chan->qu_sf_idx[i] = (ref_chan->qu_sf_idx[i] + delta) & 0x3F; } } else { weight_idx = get_bits(gb, 2); if (weight_idx == 3) { UNPACK_SF_VQ_SHAPE(gb, chan->qu_sf_idx, ctx->used_quant_units); num_long_vals = get_bits(gb, 5); delta_bits = get_bits(gb, 2); min_val = get_bits(gb, 4) - 7; for (i = 0; i < num_long_vals; i++) chan->qu_sf_idx[i] = (chan->qu_sf_idx[i] + get_bits(gb, 4) - 7) & 0x3F; /* all others are: min_val + delta */ for (i = num_long_vals; i < ctx->used_quant_units; i++) chan->qu_sf_idx[i] = (chan->qu_sf_idx[i] + min_val + get_bitsz(gb, delta_bits)) & 0x3F; } else { num_long_vals = get_bits(gb, 5); delta_bits = get_bits(gb, 3); min_val = get_bits(gb, 6); if (num_long_vals > ctx->used_quant_units || delta_bits == 7) { av_log(avctx, AV_LOG_ERROR, "SF mode 1: invalid parameters!\n"); return AVERROR_INVALIDDATA; } /* read full-precision SF indexes */ for (i = 0; i < num_long_vals; i++) chan->qu_sf_idx[i] = get_bits(gb, 6); /* all others are: min_val + delta */ for (i = num_long_vals; i < ctx->used_quant_units; i++) chan->qu_sf_idx[i] = (min_val + get_bitsz(gb, delta_bits)) & 0x3F; } } break; case 2: if (ch_num) { vlc_tab = &sf_vlc_tabs[get_bits(gb, 2)]; delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1); chan->qu_sf_idx[0] = (ref_chan->qu_sf_idx[0] + delta) & 0x3F; for (i = 1; i < ctx->used_quant_units; i++) { diff = ref_chan->qu_sf_idx[i] - ref_chan->qu_sf_idx[i - 1]; delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1); chan->qu_sf_idx[i] = (chan->qu_sf_idx[i - 1] + diff + delta) & 0x3F; } } else { vlc_tab = &sf_vlc_tabs[get_bits(gb, 2) + 4]; UNPACK_SF_VQ_SHAPE(gb, chan->qu_sf_idx, ctx->used_quant_units); for (i = 0; i < ctx->used_quant_units; i++) { delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1); chan->qu_sf_idx[i] = (chan->qu_sf_idx[i] + sign_extend(delta, 4)) & 0x3F; } } break; case 3: if (ch_num) { /* copy coefficients from reference channel */ for (i = 0; i < ctx->used_quant_units; i++) chan->qu_sf_idx[i] = ref_chan->qu_sf_idx[i]; } else { weight_idx = get_bits(gb, 2); vlc_sel = get_bits(gb, 2); vlc_tab = &sf_vlc_tabs[vlc_sel]; if (weight_idx == 3) { vlc_tab = &sf_vlc_tabs[vlc_sel + 4]; UNPACK_SF_VQ_SHAPE(gb, chan->qu_sf_idx, ctx->used_quant_units); diff = (get_bits(gb, 4) + 56) & 0x3F; chan->qu_sf_idx[0] = (chan->qu_sf_idx[0] + diff) & 0x3F; for (i = 1; i < ctx->used_quant_units; i++) { delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1); diff = (diff + sign_extend(delta, 4)) & 0x3F; chan->qu_sf_idx[i] = (diff + chan->qu_sf_idx[i]) & 0x3F; } } else { /* 1st coefficient is coded directly */ chan->qu_sf_idx[0] = get_bits(gb, 6); for (i = 1; i < ctx->used_quant_units; i++) { delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1); chan->qu_sf_idx[i] = (chan->qu_sf_idx[i - 1] + delta) & 0x3F; } } } break; } if (weight_idx && weight_idx < 3) return subtract_sf_weights(ctx, chan, weight_idx, avctx); return 0; } /** * Decode word length information for each channel. * * @param[in] gb the GetBit context * @param[in,out] ctx ptr to the channel unit context * @param[in] num_channels number of channels to process * @param[in] avctx ptr to the AVCodecContext * @return result code: 0 = OK, otherwise - error code */ static int decode_quant_wordlen(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, int num_channels, AVCodecContext *avctx) { int ch_num, i, ret; for (ch_num = 0; ch_num < num_channels; ch_num++) { memset(ctx->channels[ch_num].qu_wordlen, 0, sizeof(ctx->channels[ch_num].qu_wordlen)); if ((ret = decode_channel_wordlen(gb, ctx, ch_num, avctx)) < 0) return ret; } /* scan for last non-zero coeff in both channels and * set number of quant units having coded spectrum */ for (i = ctx->num_quant_units - 1; i >= 0; i--) if (ctx->channels[0].qu_wordlen[i] || (num_channels == 2 && ctx->channels[1].qu_wordlen[i])) break; ctx->used_quant_units = i + 1; return 0; } /** * Decode scale factor indexes for each channel. * * @param[in] gb the GetBit context * @param[in,out] ctx ptr to the channel unit context * @param[in] num_channels number of channels to process * @param[in] avctx ptr to the AVCodecContext * @return result code: 0 = OK, otherwise - error code */ static int decode_scale_factors(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, int num_channels, AVCodecContext *avctx) { int ch_num, ret; if (!ctx->used_quant_units) return 0; for (ch_num = 0; ch_num < num_channels; ch_num++) { memset(ctx->channels[ch_num].qu_sf_idx, 0, sizeof(ctx->channels[ch_num].qu_sf_idx)); if ((ret = decode_channel_sf_idx(gb, ctx, ch_num, avctx)) < 0) return ret; } return 0; } /** * Decode number of code table values. * * @param[in] gb the GetBit context * @param[in,out] ctx ptr to the channel unit context * @param[in] avctx ptr to the AVCodecContext * @return result code: 0 = OK, otherwise - error code */ static int get_num_ct_values(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, AVCodecContext *avctx) { int num_coded_vals; if (get_bits1(gb)) { num_coded_vals = get_bits(gb, 5); if (num_coded_vals > ctx->used_quant_units) { av_log(avctx, AV_LOG_ERROR, "Invalid number of code table indexes: %d!\n", num_coded_vals); return AVERROR_INVALIDDATA; } return num_coded_vals; } else return ctx->used_quant_units; } #define DEC_CT_IDX_COMMON(OP) \ num_vals = get_num_ct_values(gb, ctx, avctx); \ if (num_vals < 0) \ return num_vals; \ \ for (i = 0; i < num_vals; i++) { \ if (chan->qu_wordlen[i]) { \ chan->qu_tab_idx[i] = OP; \ } else if (ch_num && ref_chan->qu_wordlen[i]) \ /* get clone master flag */ \ chan->qu_tab_idx[i] = get_bits1(gb); \ } #define CODING_DIRECT get_bits(gb, num_bits) #define CODING_VLC get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1) #define CODING_VLC_DELTA \ (!i) ? CODING_VLC \ : (pred + get_vlc2(gb, delta_vlc->table, \ delta_vlc->bits, 1)) & mask; \ pred = chan->qu_tab_idx[i] #define CODING_VLC_DIFF \ (ref_chan->qu_tab_idx[i] + \ get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1)) & mask /** * Decode code table indexes for each quant unit of a channel. * * @param[in] gb the GetBit context * @param[in,out] ctx ptr to the channel unit context * @param[in] ch_num channel to process * @param[in] avctx ptr to the AVCodecContext * @return result code: 0 = OK, otherwise - error code */ static int decode_channel_code_tab(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, int ch_num, AVCodecContext *avctx) { int i, num_vals, num_bits, pred; int mask = ctx->use_full_table ? 7 : 3; /* mask for modular arithmetic */ VLC *vlc_tab, *delta_vlc; Atrac3pChanParams *chan = &ctx->channels[ch_num]; Atrac3pChanParams *ref_chan = &ctx->channels[0]; chan->table_type = get_bits1(gb); switch (get_bits(gb, 2)) { /* switch according to coding mode */ case 0: /* directly coded */ num_bits = ctx->use_full_table + 2; DEC_CT_IDX_COMMON(CODING_DIRECT); break; case 1: /* entropy-coded */ vlc_tab = ctx->use_full_table ? &ct_vlc_tabs[1] : ct_vlc_tabs; DEC_CT_IDX_COMMON(CODING_VLC); break; case 2: /* entropy-coded delta */ if (ctx->use_full_table) { vlc_tab = &ct_vlc_tabs[1]; delta_vlc = &ct_vlc_tabs[2]; } else { vlc_tab = ct_vlc_tabs; delta_vlc = ct_vlc_tabs; } pred = 0; DEC_CT_IDX_COMMON(CODING_VLC_DELTA); break; case 3: /* entropy-coded difference to master */ if (ch_num) { vlc_tab = ctx->use_full_table ? &ct_vlc_tabs[3] : ct_vlc_tabs; DEC_CT_IDX_COMMON(CODING_VLC_DIFF); } break; } return 0; } /** * Decode code table indexes for each channel. * * @param[in] gb the GetBit context * @param[in,out] ctx ptr to the channel unit context * @param[in] num_channels number of channels to process * @param[in] avctx ptr to the AVCodecContext * @return result code: 0 = OK, otherwise - error code */ static int decode_code_table_indexes(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, int num_channels, AVCodecContext *avctx) { int ch_num, ret; if (!ctx->used_quant_units) return 0; ctx->use_full_table = get_bits1(gb); for (ch_num = 0; ch_num < num_channels; ch_num++) { memset(ctx->channels[ch_num].qu_tab_idx, 0, sizeof(ctx->channels[ch_num].qu_tab_idx)); if ((ret = decode_channel_code_tab(gb, ctx, ch_num, avctx)) < 0) return ret; } return 0; } /** * Decode huffman-coded spectral lines for a given quant unit. * * This is a generalized version for all known coding modes. * Its speed can be improved by creating separate functions for each mode. * * @param[in] gb the GetBit context * @param[in] tab code table telling how to decode spectral lines * @param[in] vlc_tab ptr to the huffman table associated with the code table * @param[out] out pointer to buffer where decoded data should be stored * @param[in] num_specs number of spectral lines to decode */ static void decode_qu_spectra(GetBitContext *gb, const Atrac3pSpecCodeTab *tab, VLC *vlc_tab, int16_t *out, const int num_specs) { int i, j, pos, cf; int group_size = tab->group_size; int num_coeffs = tab->num_coeffs; int bits = tab->bits; int is_signed = tab->is_signed; unsigned val; for (pos = 0; pos < num_specs;) { if (group_size == 1 || get_bits1(gb)) { for (j = 0; j < group_size; j++) { val = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1); for (i = 0; i < num_coeffs; i++) { cf = av_mod_uintp2(val, bits); if (is_signed) cf = sign_extend(cf, bits); else if (cf && get_bits1(gb)) cf = -cf; out[pos++] = cf; val >>= bits; } } } else /* group skipped */ pos += group_size * num_coeffs; } } /** * Decode huffman-coded IMDCT spectrum for all channels. * * @param[in] gb the GetBit context * @param[in,out] ctx ptr to the channel unit context * @param[in] num_channels number of channels to process * @param[in] avctx ptr to the AVCodecContext */ static void decode_spectrum(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, int num_channels, AVCodecContext *avctx) { int i, ch_num, qu, wordlen, codetab, tab_index, num_specs; const Atrac3pSpecCodeTab *tab; Atrac3pChanParams *chan; for (ch_num = 0; ch_num < num_channels; ch_num++) { chan = &ctx->channels[ch_num]; memset(chan->spectrum, 0, sizeof(chan->spectrum)); /* set power compensation level to disabled */ memset(chan->power_levs, ATRAC3P_POWER_COMP_OFF, sizeof(chan->power_levs)); for (qu = 0; qu < ctx->used_quant_units; qu++) { num_specs = ff_atrac3p_qu_to_spec_pos[qu + 1] - ff_atrac3p_qu_to_spec_pos[qu]; wordlen = chan->qu_wordlen[qu]; codetab = chan->qu_tab_idx[qu]; if (wordlen) { if (!ctx->use_full_table) codetab = atrac3p_ct_restricted_to_full[chan->table_type][wordlen - 1][codetab]; tab_index = (chan->table_type * 8 + codetab) * 7 + wordlen - 1; tab = &atrac3p_spectra_tabs[tab_index]; decode_qu_spectra(gb, tab, &spec_vlc_tabs[tab_index], &chan->spectrum[ff_atrac3p_qu_to_spec_pos[qu]], num_specs); } else if (ch_num && ctx->channels[0].qu_wordlen[qu] && !codetab) { /* copy coefficients from master */ memcpy(&chan->spectrum[ff_atrac3p_qu_to_spec_pos[qu]], &ctx->channels[0].spectrum[ff_atrac3p_qu_to_spec_pos[qu]], num_specs * sizeof(chan->spectrum[ff_atrac3p_qu_to_spec_pos[qu]])); chan->qu_wordlen[qu] = ctx->channels[0].qu_wordlen[qu]; } } /* Power compensation levels only present in the bitstream * if there are more than 2 quant units. The lowest two units * correspond to the frequencies 0...351 Hz, whose shouldn't * be affected by the power compensation. */ if (ctx->used_quant_units > 2) { num_specs = atrac3p_subband_to_num_powgrps[ctx->num_coded_subbands - 1]; for (i = 0; i < num_specs; i++) chan->power_levs[i] = get_bits(gb, 4); } } } /** * Retrieve specified amount of flag bits from the input bitstream. * The data can be shortened in the case of the following two common conditions: * if all bits are zero then only one signal bit = 0 will be stored, * if all bits are ones then two signal bits = 1,0 will be stored. * Otherwise, all necessary bits will be directly stored * prefixed by two signal bits = 1,1. * * @param[in] gb ptr to the GetBitContext * @param[out] out where to place decoded flags * @param[in] num_flags number of flags to process * @return: 0 = all flag bits are zero, 1 = there is at least one non-zero flag bit */ static int get_subband_flags(GetBitContext *gb, uint8_t *out, int num_flags) { int i, result; memset(out, 0, num_flags); result = get_bits1(gb); if (result) { if (get_bits1(gb)) for (i = 0; i < num_flags; i++) out[i] = get_bits1(gb); else memset(out, 1, num_flags); } return result; } /** * Decode mdct window shape flags for all channels. * * @param[in] gb the GetBit context * @param[in,out] ctx ptr to the channel unit context * @param[in] num_channels number of channels to process */ static void decode_window_shape(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, int num_channels) { int ch_num; for (ch_num = 0; ch_num < num_channels; ch_num++) get_subband_flags(gb, ctx->channels[ch_num].wnd_shape, ctx->num_subbands); } /** * Decode number of gain control points. * * @param[in] gb the GetBit context * @param[in,out] ctx ptr to the channel unit context * @param[in] ch_num channel to process * @param[in] coded_subbands number of subbands to process * @return result code: 0 = OK, otherwise - error code */ static int decode_gainc_npoints(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, int ch_num, int coded_subbands) { int i, delta, delta_bits, min_val; Atrac3pChanParams *chan = &ctx->channels[ch_num]; Atrac3pChanParams *ref_chan = &ctx->channels[0]; switch (get_bits(gb, 2)) { /* switch according to coding mode */ case 0: /* fixed-length coding */ for (i = 0; i < coded_subbands; i++) chan->gain_data[i].num_points = get_bits(gb, 3); break; case 1: /* variable-length coding */ for (i = 0; i < coded_subbands; i++) chan->gain_data[i].num_points = get_vlc2(gb, gain_vlc_tabs[0].table, gain_vlc_tabs[0].bits, 1); break; case 2: if (ch_num) { /* VLC modulo delta to master channel */ for (i = 0; i < coded_subbands; i++) { delta = get_vlc2(gb, gain_vlc_tabs[1].table, gain_vlc_tabs[1].bits, 1); chan->gain_data[i].num_points = (ref_chan->gain_data[i].num_points + delta) & 7; } } else { /* VLC modulo delta to previous */ chan->gain_data[0].num_points = get_vlc2(gb, gain_vlc_tabs[0].table, gain_vlc_tabs[0].bits, 1); for (i = 1; i < coded_subbands; i++) { delta = get_vlc2(gb, gain_vlc_tabs[1].table, gain_vlc_tabs[1].bits, 1); chan->gain_data[i].num_points = (chan->gain_data[i - 1].num_points + delta) & 7; } } break; case 3: if (ch_num) { /* copy data from master channel */ for (i = 0; i < coded_subbands; i++) chan->gain_data[i].num_points = ref_chan->gain_data[i].num_points; } else { /* shorter delta to min */ delta_bits = get_bits(gb, 2); min_val = get_bits(gb, 3); for (i = 0; i < coded_subbands; i++) { chan->gain_data[i].num_points = min_val + get_bitsz(gb, delta_bits); if (chan->gain_data[i].num_points > 7) return AVERROR_INVALIDDATA; } } } return 0; } /** * Implements coding mode 3 (slave) for gain compensation levels. * * @param[out] dst ptr to the output array * @param[in] ref ptr to the reference channel */ static inline void gainc_level_mode3s(AtracGainInfo *dst, AtracGainInfo *ref) { int i; for (i = 0; i < dst->num_points; i++) dst->lev_code[i] = (i >= ref->num_points) ? 7 : ref->lev_code[i]; } /** * Implements coding mode 1 (master) for gain compensation levels. * * @param[in] gb the GetBit context * @param[in] ctx ptr to the channel unit context * @param[out] dst ptr to the output array */ static inline void gainc_level_mode1m(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, AtracGainInfo *dst) { int i, delta; if (dst->num_points > 0) dst->lev_code[0] = get_vlc2(gb, gain_vlc_tabs[2].table, gain_vlc_tabs[2].bits, 1); for (i = 1; i < dst->num_points; i++) { delta = get_vlc2(gb, gain_vlc_tabs[3].table, gain_vlc_tabs[3].bits, 1); dst->lev_code[i] = (dst->lev_code[i - 1] + delta) & 0xF; } } /** * Decode level code for each gain control point. * * @param[in] gb the GetBit context * @param[in,out] ctx ptr to the channel unit context * @param[in] ch_num channel to process * @param[in] coded_subbands number of subbands to process * @return result code: 0 = OK, otherwise - error code */ static int decode_gainc_levels(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, int ch_num, int coded_subbands) { int sb, i, delta, delta_bits, min_val, pred; Atrac3pChanParams *chan = &ctx->channels[ch_num]; Atrac3pChanParams *ref_chan = &ctx->channels[0]; switch (get_bits(gb, 2)) { /* switch according to coding mode */ case 0: /* fixed-length coding */ for (sb = 0; sb < coded_subbands; sb++) for (i = 0; i < chan->gain_data[sb].num_points; i++) chan->gain_data[sb].lev_code[i] = get_bits(gb, 4); break; case 1: if (ch_num) { /* VLC modulo delta to master channel */ for (sb = 0; sb < coded_subbands; sb++) for (i = 0; i < chan->gain_data[sb].num_points; i++) { delta = get_vlc2(gb, gain_vlc_tabs[5].table, gain_vlc_tabs[5].bits, 1); pred = (i >= ref_chan->gain_data[sb].num_points) ? 7 : ref_chan->gain_data[sb].lev_code[i]; chan->gain_data[sb].lev_code[i] = (pred + delta) & 0xF; } } else { /* VLC modulo delta to previous */ for (sb = 0; sb < coded_subbands; sb++) gainc_level_mode1m(gb, ctx, &chan->gain_data[sb]); } break; case 2: if (ch_num) { /* VLC modulo delta to previous or clone master */ for (sb = 0; sb < coded_subbands; sb++) if (chan->gain_data[sb].num_points > 0) { if (get_bits1(gb)) gainc_level_mode1m(gb, ctx, &chan->gain_data[sb]); else gainc_level_mode3s(&chan->gain_data[sb], &ref_chan->gain_data[sb]); } } else { /* VLC modulo delta to lev_codes of previous subband */ if (chan->gain_data[0].num_points > 0) gainc_level_mode1m(gb, ctx, &chan->gain_data[0]); for (sb = 1; sb < coded_subbands; sb++) for (i = 0; i < chan->gain_data[sb].num_points; i++) { delta = get_vlc2(gb, gain_vlc_tabs[4].table, gain_vlc_tabs[4].bits, 1); pred = (i >= chan->gain_data[sb - 1].num_points) ? 7 : chan->gain_data[sb - 1].lev_code[i]; chan->gain_data[sb].lev_code[i] = (pred + delta) & 0xF; } } break; case 3: if (ch_num) { /* clone master */ for (sb = 0; sb < coded_subbands; sb++) gainc_level_mode3s(&chan->gain_data[sb], &ref_chan->gain_data[sb]); } else { /* shorter delta to min */ delta_bits = get_bits(gb, 2); min_val = get_bits(gb, 4); for (sb = 0; sb < coded_subbands; sb++) for (i = 0; i < chan->gain_data[sb].num_points; i++) { chan->gain_data[sb].lev_code[i] = min_val + get_bitsz(gb, delta_bits); if (chan->gain_data[sb].lev_code[i] > 15) return AVERROR_INVALIDDATA; } } break; } return 0; } /** * Implements coding mode 0 for gain compensation locations. * * @param[in] gb the GetBit context * @param[in] ctx ptr to the channel unit context * @param[out] dst ptr to the output array * @param[in] pos position of the value to be processed */ static inline void gainc_loc_mode0(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, AtracGainInfo *dst, int pos) { int delta_bits; if (!pos || dst->loc_code[pos - 1] < 15) dst->loc_code[pos] = get_bits(gb, 5); else if (dst->loc_code[pos - 1] >= 30) dst->loc_code[pos] = 31; else { delta_bits = av_log2(30 - dst->loc_code[pos - 1]) + 1; dst->loc_code[pos] = dst->loc_code[pos - 1] + get_bits(gb, delta_bits) + 1; } } /** * Implements coding mode 1 for gain compensation locations. * * @param[in] gb the GetBit context * @param[in] ctx ptr to the channel unit context * @param[out] dst ptr to the output array */ static inline void gainc_loc_mode1(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, AtracGainInfo *dst) { int i; VLC *tab; if (dst->num_points > 0) { /* 1st coefficient is stored directly */ dst->loc_code[0] = get_bits(gb, 5); for (i = 1; i < dst->num_points; i++) { /* switch VLC according to the curve direction * (ascending/descending) */ tab = (dst->lev_code[i] <= dst->lev_code[i - 1]) ? &gain_vlc_tabs[7] : &gain_vlc_tabs[9]; dst->loc_code[i] = dst->loc_code[i - 1] + get_vlc2(gb, tab->table, tab->bits, 1); } } } /** * Decode location code for each gain control point. * * @param[in] gb the GetBit context * @param[in,out] ctx ptr to the channel unit context * @param[in] ch_num channel to process * @param[in] coded_subbands number of subbands to process * @param[in] avctx ptr to the AVCodecContext * @return result code: 0 = OK, otherwise - error code */ static int decode_gainc_loc_codes(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, int ch_num, int coded_subbands, AVCodecContext *avctx) { int sb, i, delta, delta_bits, min_val, pred, more_than_ref; AtracGainInfo *dst, *ref; VLC *tab; Atrac3pChanParams *chan = &ctx->channels[ch_num]; Atrac3pChanParams *ref_chan = &ctx->channels[0]; switch (get_bits(gb, 2)) { /* switch according to coding mode */ case 0: /* sequence of numbers in ascending order */ for (sb = 0; sb < coded_subbands; sb++) for (i = 0; i < chan->gain_data[sb].num_points; i++) gainc_loc_mode0(gb, ctx, &chan->gain_data[sb], i); break; case 1: if (ch_num) { for (sb = 0; sb < coded_subbands; sb++) { if (chan->gain_data[sb].num_points <= 0) continue; dst = &chan->gain_data[sb]; ref = &ref_chan->gain_data[sb]; /* 1st value is vlc-coded modulo delta to master */ delta = get_vlc2(gb, gain_vlc_tabs[10].table, gain_vlc_tabs[10].bits, 1); pred = ref->num_points > 0 ? ref->loc_code[0] : 0; dst->loc_code[0] = (pred + delta) & 0x1F; for (i = 1; i < dst->num_points; i++) { more_than_ref = i >= ref->num_points; if (dst->lev_code[i] > dst->lev_code[i - 1]) { /* ascending curve */ if (more_than_ref) { delta = get_vlc2(gb, gain_vlc_tabs[9].table, gain_vlc_tabs[9].bits, 1); dst->loc_code[i] = dst->loc_code[i - 1] + delta; } else { if (get_bits1(gb)) gainc_loc_mode0(gb, ctx, dst, i); // direct coding else dst->loc_code[i] = ref->loc_code[i]; // clone master } } else { /* descending curve */ tab = more_than_ref ? &gain_vlc_tabs[7] : &gain_vlc_tabs[10]; delta = get_vlc2(gb, tab->table, tab->bits, 1); if (more_than_ref) dst->loc_code[i] = dst->loc_code[i - 1] + delta; else dst->loc_code[i] = (ref->loc_code[i] + delta) & 0x1F; } } } } else /* VLC delta to previous */ for (sb = 0; sb < coded_subbands; sb++) gainc_loc_mode1(gb, ctx, &chan->gain_data[sb]); break; case 2: if (ch_num) { for (sb = 0; sb < coded_subbands; sb++) { if (chan->gain_data[sb].num_points <= 0) continue; dst = &chan->gain_data[sb]; ref = &ref_chan->gain_data[sb]; if (dst->num_points > ref->num_points || get_bits1(gb)) gainc_loc_mode1(gb, ctx, dst); else /* clone master for the whole subband */ for (i = 0; i < chan->gain_data[sb].num_points; i++) dst->loc_code[i] = ref->loc_code[i]; } } else { /* data for the first subband is coded directly */ for (i = 0; i < chan->gain_data[0].num_points; i++) gainc_loc_mode0(gb, ctx, &chan->gain_data[0], i); for (sb = 1; sb < coded_subbands; sb++) { if (chan->gain_data[sb].num_points <= 0) continue; dst = &chan->gain_data[sb]; /* 1st value is vlc-coded modulo delta to the corresponding * value of the previous subband if any or zero */ delta = get_vlc2(gb, gain_vlc_tabs[6].table, gain_vlc_tabs[6].bits, 1); pred = dst[-1].num_points > 0 ? dst[-1].loc_code[0] : 0; dst->loc_code[0] = (pred + delta) & 0x1F; for (i = 1; i < dst->num_points; i++) { more_than_ref = i >= dst[-1].num_points; /* Select VLC table according to curve direction and * presence of prediction. */ tab = &gain_vlc_tabs[(dst->lev_code[i] > dst->lev_code[i - 1]) * 2 + more_than_ref + 6]; delta = get_vlc2(gb, tab->table, tab->bits, 1); if (more_than_ref) dst->loc_code[i] = dst->loc_code[i - 1] + delta; else dst->loc_code[i] = (dst[-1].loc_code[i] + delta) & 0x1F; } } } break; case 3: if (ch_num) { /* clone master or direct or direct coding */ for (sb = 0; sb < coded_subbands; sb++) for (i = 0; i < chan->gain_data[sb].num_points; i++) { if (i >= ref_chan->gain_data[sb].num_points) gainc_loc_mode0(gb, ctx, &chan->gain_data[sb], i); else chan->gain_data[sb].loc_code[i] = ref_chan->gain_data[sb].loc_code[i]; } } else { /* shorter delta to min */ delta_bits = get_bits(gb, 2) + 1; min_val = get_bits(gb, 5); for (sb = 0; sb < coded_subbands; sb++) for (i = 0; i < chan->gain_data[sb].num_points; i++) chan->gain_data[sb].loc_code[i] = min_val + i + get_bits(gb, delta_bits); } break; } /* Validate decoded information */ for (sb = 0; sb < coded_subbands; sb++) { dst = &chan->gain_data[sb]; for (i = 0; i < chan->gain_data[sb].num_points; i++) { if (dst->loc_code[i] < 0 || dst->loc_code[i] > 31 || (i && dst->loc_code[i] <= dst->loc_code[i - 1])) { av_log(avctx, AV_LOG_ERROR, "Invalid gain location: ch=%d, sb=%d, pos=%d, val=%d\n", ch_num, sb, i, dst->loc_code[i]); return AVERROR_INVALIDDATA; } } } return 0; } /** * Decode gain control data for all channels. * * @param[in] gb the GetBit context * @param[in,out] ctx ptr to the channel unit context * @param[in] num_channels number of channels to process * @param[in] avctx ptr to the AVCodecContext * @return result code: 0 = OK, otherwise - error code */ static int decode_gainc_data(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, int num_channels, AVCodecContext *avctx) { int ch_num, coded_subbands, sb, ret; for (ch_num = 0; ch_num < num_channels; ch_num++) { memset(ctx->channels[ch_num].gain_data, 0, sizeof(*ctx->channels[ch_num].gain_data) * ATRAC3P_SUBBANDS); if (get_bits1(gb)) { /* gain control data present? */ coded_subbands = get_bits(gb, 4) + 1; if (get_bits1(gb)) /* is high band gain data replication on? */ ctx->channels[ch_num].num_gain_subbands = get_bits(gb, 4) + 1; else ctx->channels[ch_num].num_gain_subbands = coded_subbands; if ((ret = decode_gainc_npoints(gb, ctx, ch_num, coded_subbands)) < 0 || (ret = decode_gainc_levels(gb, ctx, ch_num, coded_subbands)) < 0 || (ret = decode_gainc_loc_codes(gb, ctx, ch_num, coded_subbands, avctx)) < 0) return ret; if (coded_subbands > 0) { /* propagate gain data if requested */ for (sb = coded_subbands; sb < ctx->channels[ch_num].num_gain_subbands; sb++) ctx->channels[ch_num].gain_data[sb] = ctx->channels[ch_num].gain_data[sb - 1]; } } else { ctx->channels[ch_num].num_gain_subbands = 0; } } return 0; } /** * Decode envelope for all tones of a channel. * * @param[in] gb the GetBit context * @param[in,out] ctx ptr to the channel unit context * @param[in] ch_num channel to process * @param[in] band_has_tones ptr to an array of per-band-flags: * 1 - tone data present */ static void decode_tones_envelope(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, int ch_num, int band_has_tones[]) { int sb; Atrac3pWavesData *dst = ctx->channels[ch_num].tones_info; Atrac3pWavesData *ref = ctx->channels[0].tones_info; if (!ch_num || !get_bits1(gb)) { /* mode 0: fixed-length coding */ for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) { if (!band_has_tones[sb]) continue; dst[sb].pend_env.has_start_point = get_bits1(gb); dst[sb].pend_env.start_pos = dst[sb].pend_env.has_start_point ? get_bits(gb, 5) : -1; dst[sb].pend_env.has_stop_point = get_bits1(gb); dst[sb].pend_env.stop_pos = dst[sb].pend_env.has_stop_point ? get_bits(gb, 5) : 32; } } else { /* mode 1(slave only): copy master */ for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) { if (!band_has_tones[sb]) continue; dst[sb].pend_env.has_start_point = ref[sb].pend_env.has_start_point; dst[sb].pend_env.has_stop_point = ref[sb].pend_env.has_stop_point; dst[sb].pend_env.start_pos = ref[sb].pend_env.start_pos; dst[sb].pend_env.stop_pos = ref[sb].pend_env.stop_pos; } } } /** * Decode number of tones for each subband of a channel. * * @param[in] gb the GetBit context * @param[in,out] ctx ptr to the channel unit context * @param[in] ch_num channel to process * @param[in] band_has_tones ptr to an array of per-band-flags: * 1 - tone data present * @param[in] avctx ptr to the AVCodecContext * @return result code: 0 = OK, otherwise - error code */ static int decode_band_numwavs(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, int ch_num, int band_has_tones[], AVCodecContext *avctx) { int mode, sb, delta; Atrac3pWavesData *dst = ctx->channels[ch_num].tones_info; Atrac3pWavesData *ref = ctx->channels[0].tones_info; mode = get_bits(gb, ch_num + 1); switch (mode) { case 0: /** fixed-length coding */ for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) if (band_has_tones[sb]) dst[sb].num_wavs = get_bits(gb, 4); break; case 1: /** variable-length coding */ for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) if (band_has_tones[sb]) dst[sb].num_wavs = get_vlc2(gb, tone_vlc_tabs[1].table, tone_vlc_tabs[1].bits, 1); break; case 2: /** VLC modulo delta to master (slave only) */ for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) if (band_has_tones[sb]) { delta = get_vlc2(gb, tone_vlc_tabs[2].table, tone_vlc_tabs[2].bits, 1); delta = sign_extend(delta, 3); dst[sb].num_wavs = (ref[sb].num_wavs + delta) & 0xF; } break; case 3: /** copy master (slave only) */ for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) if (band_has_tones[sb]) dst[sb].num_wavs = ref[sb].num_wavs; break; } /** initialize start tone index for each subband */ for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) if (band_has_tones[sb]) { if (ctx->waves_info->tones_index + dst[sb].num_wavs > 48) { av_log(avctx, AV_LOG_ERROR, "Too many tones: %d (max. 48), frame: %"PRId64"!\n", ctx->waves_info->tones_index + dst[sb].num_wavs, avctx->frame_num); return AVERROR_INVALIDDATA; } dst[sb].start_index = ctx->waves_info->tones_index; ctx->waves_info->tones_index += dst[sb].num_wavs; } return 0; } /** * Decode frequency information for each subband of a channel. * * @param[in] gb the GetBit context * @param[in,out] ctx ptr to the channel unit context * @param[in] ch_num channel to process * @param[in] band_has_tones ptr to an array of per-band-flags: * 1 - tone data present */ static void decode_tones_frequency(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, int ch_num, int band_has_tones[]) { int sb, i, direction, nbits, pred, delta; Atrac3pWaveParam *iwav, *owav; Atrac3pWavesData *dst = ctx->channels[ch_num].tones_info; Atrac3pWavesData *ref = ctx->channels[0].tones_info; if (!ch_num || !get_bits1(gb)) { /* mode 0: fixed-length coding */ for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) { if (!band_has_tones[sb] || !dst[sb].num_wavs) continue; iwav = &ctx->waves_info->waves[dst[sb].start_index]; direction = (dst[sb].num_wavs > 1) ? get_bits1(gb) : 0; if (direction) { /** packed numbers in descending order */ if (dst[sb].num_wavs) iwav[dst[sb].num_wavs - 1].freq_index = get_bits(gb, 10); for (i = dst[sb].num_wavs - 2; i >= 0 ; i--) { nbits = av_log2(iwav[i+1].freq_index) + 1; iwav[i].freq_index = get_bits(gb, nbits); } } else { /** packed numbers in ascending order */ for (i = 0; i < dst[sb].num_wavs; i++) { if (!i || iwav[i - 1].freq_index < 512) iwav[i].freq_index = get_bits(gb, 10); else { nbits = av_log2(1023 - iwav[i - 1].freq_index) + 1; iwav[i].freq_index = get_bits(gb, nbits) + 1024 - (1 << nbits); } } } } } else { /* mode 1: VLC modulo delta to master (slave only) */ for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) { if (!band_has_tones[sb] || !dst[sb].num_wavs) continue; iwav = &ctx->waves_info->waves[ref[sb].start_index]; owav = &ctx->waves_info->waves[dst[sb].start_index]; for (i = 0; i < dst[sb].num_wavs; i++) { delta = get_vlc2(gb, tone_vlc_tabs[6].table, tone_vlc_tabs[6].bits, 1); delta = sign_extend(delta, 8); pred = (i < ref[sb].num_wavs) ? iwav[i].freq_index : (ref[sb].num_wavs ? iwav[ref[sb].num_wavs - 1].freq_index : 0); owav[i].freq_index = (pred + delta) & 0x3FF; } } } } /** * Decode amplitude information for each subband of a channel. * * @param[in] gb the GetBit context * @param[in,out] ctx ptr to the channel unit context * @param[in] ch_num channel to process * @param[in] band_has_tones ptr to an array of per-band-flags: * 1 - tone data present */ static void decode_tones_amplitude(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, int ch_num, int band_has_tones[]) { int mode, sb, j, i, diff, maxdiff, fi, delta, pred; Atrac3pWaveParam *wsrc, *wref; int refwaves[48] = { 0 }; Atrac3pWavesData *dst = ctx->channels[ch_num].tones_info; Atrac3pWavesData *ref = ctx->channels[0].tones_info; if (ch_num) { for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) { if (!band_has_tones[sb] || !dst[sb].num_wavs) continue; wsrc = &ctx->waves_info->waves[dst[sb].start_index]; wref = &ctx->waves_info->waves[ref[sb].start_index]; for (j = 0; j < dst[sb].num_wavs; j++) { for (i = 0, fi = 0, maxdiff = 1024; i < ref[sb].num_wavs; i++) { diff = FFABS(wsrc[j].freq_index - wref[i].freq_index); if (diff < maxdiff) { maxdiff = diff; fi = i; } } if (maxdiff < 8) refwaves[dst[sb].start_index + j] = fi + ref[sb].start_index; else if (j < ref[sb].num_wavs) refwaves[dst[sb].start_index + j] = j + ref[sb].start_index; else refwaves[dst[sb].start_index + j] = -1; } } } mode = get_bits(gb, ch_num + 1); switch (mode) { case 0: /** fixed-length coding */ for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) { if (!band_has_tones[sb] || !dst[sb].num_wavs) continue; if (ctx->waves_info->amplitude_mode) for (i = 0; i < dst[sb].num_wavs; i++) ctx->waves_info->waves[dst[sb].start_index + i].amp_sf = get_bits(gb, 6); else ctx->waves_info->waves[dst[sb].start_index].amp_sf = get_bits(gb, 6); } break; case 1: /** min + VLC delta */ for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) { if (!band_has_tones[sb] || !dst[sb].num_wavs) continue; if (ctx->waves_info->amplitude_mode) for (i = 0; i < dst[sb].num_wavs; i++) ctx->waves_info->waves[dst[sb].start_index + i].amp_sf = get_vlc2(gb, tone_vlc_tabs[3].table, tone_vlc_tabs[3].bits, 1) + 20; else ctx->waves_info->waves[dst[sb].start_index].amp_sf = get_vlc2(gb, tone_vlc_tabs[4].table, tone_vlc_tabs[4].bits, 1) + 24; } break; case 2: /** VLC modulo delta to master (slave only) */ for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) { if (!band_has_tones[sb] || !dst[sb].num_wavs) continue; for (i = 0; i < dst[sb].num_wavs; i++) { delta = get_vlc2(gb, tone_vlc_tabs[5].table, tone_vlc_tabs[5].bits, 1); delta = sign_extend(delta, 5); pred = refwaves[dst[sb].start_index + i] >= 0 ? ctx->waves_info->waves[refwaves[dst[sb].start_index + i]].amp_sf : 34; ctx->waves_info->waves[dst[sb].start_index + i].amp_sf = (pred + delta) & 0x3F; } } break; case 3: /** clone master (slave only) */ for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) { if (!band_has_tones[sb]) continue; for (i = 0; i < dst[sb].num_wavs; i++) ctx->waves_info->waves[dst[sb].start_index + i].amp_sf = refwaves[dst[sb].start_index + i] >= 0 ? ctx->waves_info->waves[refwaves[dst[sb].start_index + i]].amp_sf : 32; } break; } } /** * Decode phase information for each subband of a channel. * * @param[in] gb the GetBit context * @param[in,out] ctx ptr to the channel unit context * @param[in] ch_num channel to process * @param[in] band_has_tones ptr to an array of per-band-flags: * 1 - tone data present */ static void decode_tones_phase(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, int ch_num, int band_has_tones[]) { int sb, i; Atrac3pWaveParam *wparam; Atrac3pWavesData *dst = ctx->channels[ch_num].tones_info; for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) { if (!band_has_tones[sb]) continue; wparam = &ctx->waves_info->waves[dst[sb].start_index]; for (i = 0; i < dst[sb].num_wavs; i++) wparam[i].phase_index = get_bits(gb, 5); } } /** * Decode tones info for all channels. * * @param[in] gb the GetBit context * @param[in,out] ctx ptr to the channel unit context * @param[in] num_channels number of channels to process * @param[in] avctx ptr to the AVCodecContext * @return result code: 0 = OK, otherwise - error code */ static int decode_tones_info(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, int num_channels, AVCodecContext *avctx) { int ch_num, i, ret; int band_has_tones[16]; for (ch_num = 0; ch_num < num_channels; ch_num++) memset(ctx->channels[ch_num].tones_info, 0, sizeof(*ctx->channels[ch_num].tones_info) * ATRAC3P_SUBBANDS); ctx->waves_info->tones_present = get_bits1(gb); if (!ctx->waves_info->tones_present) return 0; memset(ctx->waves_info->waves, 0, sizeof(ctx->waves_info->waves)); ctx->waves_info->amplitude_mode = get_bits1(gb); if (!ctx->waves_info->amplitude_mode) { avpriv_report_missing_feature(avctx, "GHA amplitude mode 0"); return AVERROR_PATCHWELCOME; } ctx->waves_info->num_tone_bands = get_vlc2(gb, tone_vlc_tabs[0].table, tone_vlc_tabs[0].bits, 1) + 1; if (num_channels == 2) { get_subband_flags(gb, ctx->waves_info->tone_sharing, ctx->waves_info->num_tone_bands); get_subband_flags(gb, ctx->waves_info->tone_master, ctx->waves_info->num_tone_bands); get_subband_flags(gb, ctx->waves_info->invert_phase, ctx->waves_info->num_tone_bands); } ctx->waves_info->tones_index = 0; for (ch_num = 0; ch_num < num_channels; ch_num++) { for (i = 0; i < ctx->waves_info->num_tone_bands; i++) band_has_tones[i] = !ch_num ? 1 : !ctx->waves_info->tone_sharing[i]; decode_tones_envelope(gb, ctx, ch_num, band_has_tones); if ((ret = decode_band_numwavs(gb, ctx, ch_num, band_has_tones, avctx)) < 0) return ret; decode_tones_frequency(gb, ctx, ch_num, band_has_tones); decode_tones_amplitude(gb, ctx, ch_num, band_has_tones); decode_tones_phase(gb, ctx, ch_num, band_has_tones); } if (num_channels == 2) { for (i = 0; i < ctx->waves_info->num_tone_bands; i++) { if (ctx->waves_info->tone_sharing[i]) ctx->channels[1].tones_info[i] = ctx->channels[0].tones_info[i]; if (ctx->waves_info->tone_master[i]) FFSWAP(Atrac3pWavesData, ctx->channels[0].tones_info[i], ctx->channels[1].tones_info[i]); } } return 0; } int ff_atrac3p_decode_channel_unit(GetBitContext *gb, Atrac3pChanUnitCtx *ctx, int num_channels, AVCodecContext *avctx) { int ret; /* parse sound header */ ctx->num_quant_units = get_bits(gb, 5) + 1; if (ctx->num_quant_units > 28 && ctx->num_quant_units < 32) { av_log(avctx, AV_LOG_ERROR, "Invalid number of quantization units: %d!\n", ctx->num_quant_units); return AVERROR_INVALIDDATA; } ctx->mute_flag = get_bits1(gb); /* decode various sound parameters */ if ((ret = decode_quant_wordlen(gb, ctx, num_channels, avctx)) < 0) return ret; ctx->num_subbands = atrac3p_qu_to_subband[ctx->num_quant_units - 1] + 1; ctx->num_coded_subbands = ctx->used_quant_units ? atrac3p_qu_to_subband[ctx->used_quant_units - 1] + 1 : 0; if ((ret = decode_scale_factors(gb, ctx, num_channels, avctx)) < 0) return ret; if ((ret = decode_code_table_indexes(gb, ctx, num_channels, avctx)) < 0) return ret; decode_spectrum(gb, ctx, num_channels, avctx); if (num_channels == 2) { get_subband_flags(gb, ctx->swap_channels, ctx->num_coded_subbands); get_subband_flags(gb, ctx->negate_coeffs, ctx->num_coded_subbands); } decode_window_shape(gb, ctx, num_channels); if ((ret = decode_gainc_data(gb, ctx, num_channels, avctx)) < 0) return ret; if ((ret = decode_tones_info(gb, ctx, num_channels, avctx)) < 0) return ret; /* decode global noise info */ ctx->noise_present = get_bits1(gb); if (ctx->noise_present) { ctx->noise_level_index = get_bits(gb, 4); ctx->noise_table_index = get_bits(gb, 4); } return 0; }