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ABSTRACT: This paper describes the appli cation of local regresson trees to an environmental regresgon task. This
task was part of the 3" Internation ERUDIT Competition. The technique described in this paper was announced as one
of the threerunner-up methods by the jury of the cmpetition. We briefly describe RT, a system that is able to generate
local regresson trees. We anphasi se the multi-strategy features of RT that we daim as being one of the causes for the
obtained performance We described the pre-processng steps that were taken in order to apply RT to the competition
data, highlighting the weighed schema that was used to combine the predictions of the best RT variants. We conclude
by reinforcing the idea that the combination of features of different data analysis tedhniques can be useful to obtain
higher predictive accuracy.
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INTRODUCTION

This paper describes an appli cation of local regresson trees (Torgo, 1997a, 1997, 1999 to an environmental data
analysis task. This application was caried out in the @ntext of the 3" International Competition organised by ERUDIT
in conjunction with the new Computational Intelligence and Leaning Cluster. This cluster isacooperation between
four EC-funded Networks of Excdlence: ERUDIT, EvoNet, MLnet and NEuroNet. This paper describes the use of
system RT (Torgo, 199) in the mntext of this competition. RT isa emputer program that is able to oltain local
regresson trees. In this paper we briefly describe the main ideas behind local regresson trees, and then focus on the
steps taken to okiain a solution to this data analysis task.

The data analysis task concerns the environmental probem of determining the state of rivers and streams by monitoring
and analysing certain measurable dhemical concentrations with the goal of inferring the biological state of theriver,
namely the density of algae communities. This gudy is motivated by the increasing concern with the impact human
activiti es are having on the environment. Identifying the key chemicd control variables that influencethe biol ogical
processasciated with these algae has become a crucial task in order to reduce the impact of man activities. The data
used in this 3 ERUDIT international competition comes from such a study. Water quality samples were @lleded from
various European rivers during one year. These samples were analysed for various chemical substances including:
nitrogen in the form of nitrates, nitrites and ammonia, phosphate, pH, oxygen and chloride. At the sametime, algae
samples were @ll eded to determine the distributions of the algae populations. The dynamics of algae @mmunitiesis
strongly influenced by the external chemical environment. Determining which chemical factors are influencing more
this dynamicsisimportant knowledge that can be used to control these populations. At the sametimethereisan
economical factor motivating even more thisanalysis. In effect, the chemical analysisis cheg and easily automated.
On the mntrary, the biological part involves microscopic examination, requires trained manpower and istherefore bath
expensive and dow. The mmpetiti on task consisted of predicting the frequency distribution of seven different algae on
the basis of eight measured concentrations of chemical substances plus some additional information characterising the
environment from which the sample was taken (season, river size and flow velocity).

RT isaregresson analysistod that can be seen asakind o multi-strategy data analysis system. We will seethat this
characterigtic is a consequence of the theory behindlocal regresson trees. In effect, these models integrate regresson
trees (e.g. Breiman et al.,1984) with local moddling (e.g. Cleveland and Loader, 1995). The integration schema used in



RT allows several variantsto be tried out in a given data set. Dueto thisflexihility, RT can cope with probems having
different characteristics due toits abil ity of emulating techniques with different approximation biases. In this

competiti on we have taken advantage of this facet of RT. We have treated the prediction of each of the seven dgae
frequencies as a different regresson task. For each of the seven regresson problems we have arried out asdedion
processwith the dam of estimating which RT variant provided the best accuracy.

The foll owing sedion provides a brief description of local regresson trees. We describe the main components
integrating these hybrid regresson models and refer the method that was used to integrate them within RT. We them
focus on the technicd details concerning the appli cation of RT to the task of predicting the densty of algae
communiti es.

LOCAL REGRESSON TREES

Local Regresson Trees (Torgo, 1997a, 1997b, 1999) explore the posshility of improving the accuracy of regresson
trees by using smoather models at the treeleaves. These modd s can be regarded as a hybrid approach to multivariate
regresson integrating dfferent solutionsto this data analysis problem. Local regresson (e.g. Cleveland and Loader,
1995 isanon-parametric gatistical methodol ogy that provides smooth modelling by not assuming any particular global
form of the unknown regresson function. On the contrary these modd s fit a functiona form within the neighbourhood
of the query paints. These models are known to provide highly accurate predictions over a wide range of problems due
to the absence of a “pre-defined” functional form. However, local regresson techniques are dso known by their
computational cost, low interpretabil ity and storage requirements. Regresson trees (e.g. Breiman et al.,1984), on the
other hand, obtain model s through areaursive partitioning algorithm that insures high computational efficiency.
Moreover, theresulting models are usually considered highly interpretable. By integrating regresson trees with local
modelling, not only we improve the accuracy of the trees, but also increase the cmmputationa efficiency and
comprehensibility of local models.

In this dion we provide a brief description of local regresson trees. We start by describing bah “standard” regresson
trees and local modelling. We then addresstheisaue of how these two methodologies are integrated in our RT
regresson tod.

“STANDARD” REGRESSON TREES

A regresson tree ca be seen asakind of additive modd (Hastie & Tibshirani, 1990) of the form

m(x)zzkixl(XDDi) D
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where,
ki are mnstants;
I(.) isan indicator function returning 1if its argument istrue axd O atherwise;

| |
and D; are disjoint partitions of thetraining dataD such that | JD; = D and [\D; =¢.
i=1 i=1l

Models of this type are sometimes called piecewise constant regression models as they partition the predictor spacel X
in aset of mutualy exclusive “regions’ and fit a constant value within each region. Animportant asped of treebased
regresson models isthat they provide a propositional logic representation of these regionsin the form of atree Each
path from the roct of the treeto aleaf corresponds to such aregion. Each inner node? of the treeisalogical test on a
predictor variable3. In the particular case of hinary trees there ae two possble outcomes of thetest, true or false. This
means that associated to each partition D; we have apath P; consisting of a conjunction of logical tests on the predictor

1 The multidimensional spaceformed by all input (or predictor) variables of a multivariate regresson problem.

2 All nodes except the leaves.

3 Although work exists on multivariate tests (e.g. Breiman et. al. 1984; Murthy et. al., 199; Broadley & Utgoff, 1995
Gama, 1997).



variables. This symboali c representation of the regresson surfaceis an important issue when one wantsto have a better
understanding o the problem under consideration.

For ingtance, consider the foll owing small example of aregresson treeohtained by applying RT to the competition data
to oltain amode for one of the algae:

Pl = Ch7 <438 s with kl =39.8
. P,=Ch,>438[1Ch;<7.16 ,withk,=50.1

T .
‘ P;=Ch,>43.8 [1Ch;>7.16 [IChg<5L1 ,withks=129
39.8+59
o259 @ P,=Ch,>438 [Ich;>7.16 [ICh;>51.1 ,withk,=3.85

Figure 1. An Example of a Regresson Tree

Asthere ae four distinct paths from the roat node to the leaves, thistreedivides theinpu spacein four different
regions. The mnjunction of the testsin each path can beregarded asalogical description of such regions, as siown
above. Thistree ca be used bath to make predictions of the density of thisalga for future water samples. Moreover, it
provides information on which variables influence more this density.

Regresgon trees are onstructed using areaursive partitioning (RP) algorithm. Thisalgorithm buil ds a treeby
rearsvey splitting the training sample into small e subsets. We give be ow a high level description of the algorithm.

The RP agorithm recéves asinput a set of n data points, D, = {(xi Y )}:‘;1 and if certain termination criteria ae not
met it generates atest node t, whose branches are obtained by applying the same a gorithm with two subsets of the input
data points. These subsets consist of the @sesthat logically entail thetest in thenode, D, = {(xi Y ) ODy X — s*},
and theremaining cases, D; = {(xi Vi ) D, : % 4 s*}. At each node the best split test is chosen acoording to some
local criterion, which meansthat thisis a greedy hill-climbing algorithm.

The Recursive Partitioning A gorithm

Input : Aset of ndatapoints, { <xi, yi>} i =1...,n
Quitput : Aregression tree

IF termnation criterion THEN
Geate Leaf Node and assign it a Gonstant Val ue
Return Leaf Node

BSE
Fnd Best Solitting Test s*
Qeate Node t wth s*
Left branch(t) = RegressionPartitioningA gortihnf{ <xi , vi>: Xxi - s* })
R ght _branch(t) = RegressionPartitioningA gortihnf{ << , vi>: x L s*})
Return Node t

BNDF

The dgorithm has threemain components:

A waytosded agplit test (the splitting rule).

e Aruleto determine when atreenode istermina (termination criterion).
e Arulefor assgning avalue to each termina node.



The answer to these threeproblems isrelated to the error criterion that is sleded to guide the growth of thetree The
most common chaiceis the minimisation of the mean squared error (MSE). Using this criterion the cnstant that should
be used in the leaves of the trees (terminal nodes) isthe average goal variable value of the cases that “fall” in each leaf.
Moreover, this criterion leads to the foll owing rule for determining the best split of each test node (Torgo, 1999):

The best split s isthe split that maximises the expresson,

S S

n n
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where, S, :;yi and SR:;yi :
L tR

Thisruleleadsto fast incremental updating algorithmsthat all ow efficient seach for the best test of each node (Torgo,
1999. Finally, the termination criterion isrelated to theissue of reliable aror estimation. Methodologies like regresson
trees that have a “rich” hypothesis (modd) language, incur the danger of overfitting the training data. Thisin turn leads
to unnecessarily large models that usually have poor generali sation performance (i.e. lower predictive accuracy on new
samples of the same problem). Overfitting avoidancein regresson trees is usuall y achieved through a processof
pruning unrdiable branches of an overly largetree(e.g. Breiman et al.,1984). Many pruning techniques exist (see
Torgo, 199 for an overview), most of them relying on reliable estimation of predictive eror of thetrees (Torgo, 1998.

Regresson trees achieve competiti ve predictive accuracy in awide range of applications. Moreover, their
computational efficiency all ows dealing with problems with hundreds of variables and hundreds of thousands of cases.

Still, regresson trees provide a highly non-smoath function approximation with strong discontinuities?.

LOCAL MODELLING

Local modelling® (Fan, 1995) belongs to a data anal ytic methodol ogy whose basic idea behind consists of obtaining the
prediction for a data point x by fitting a parametric function in the neighbourhood of x. This meansthat these methods
are “locally parametric” as opposed to, for instance least squares linea regresson. Moreover, these methods do not
produce a Yisible’ model of the data. Instead they make predictions based on local models generated on a query point
basis.

According to Cleveland and Loader (199%5) local regresson traces back to the 19" century. These authors provide a
historical survey of the work done sincethen. The modern work on local modelling startsin the 1950 s with the kernel
methods introduced within the probabilit y density estimation setting (Rosenblatt,1956; Parzen,1962) and within the
regresson setting (Nadaraya, 1964 Watson,1964). Local polynomial regression (Stone, 1977; Cleveland,1979;
Katkovnik,1979) is ageneralisation of this ealy work on kernel regresson. In effed, kernel regresson amountsto
fitting a polynomial of degreezero (a constant) in aneighbourhood. Summarising, we can state the general goal of local
regresson astrying to fit a polynomial of degreep arounda query point (or test case) g using the training datain its
neighbourhood. Thisincludesthe various available settings like kernel regresson (p=0), local linea regresson (p=1),
etcS.

Most studies on local modelling are done for the @se of one univariate problems. Still, the framework is appli cable to
the multivariate case ad has been used with successin some domains (Atkeson et al.,1997; Moore et al.,1997).

However, severa authorsalert for the “danger” of applying these methods in higher input space dimensions’ (Hardle,
199Q Hastie & Tibshirani,1990. The problem isthat with high number of variables the training cases are so sparse that
the notion of local neighbourhoad can hardly be seen aslocal. Another drawback of local moddlingisthe cmplete
lack of interpretability of the models. No interpretable model of the training datais obtained. With some simulation
work one may ohtain a graphicd picture of the gproximation provided by local regresson modds, but thisis only
possble with low number of inpu variables.

4 This|ater characteristics can bath be seen as advantageous or disadvantageous, depending on the appli cation.
S Also known as non-parametric smocthing and local regresson.

6 A further generalisation of this set-up consists of using polynomial mixing (Cleveland & Loader,1995), where p can
take non-integer values.

7 The so called “curse of dimensionality” (Bellman, 1961).



In spite of being considered anon-parametric regresson technique, local modelling does have several “ parameters’ that
must be tuned in order to oltain good predictiveresults. One of the most important is the notion of neighbourhood.
Given aquery point g we need to dedde which training cases will be used to fit alocal polynomial around the query
point. Thisinvolves defining a distance metric over the multidimensional space defined by theinput variables. With this
metric we @n spedfy adistance function that allows finding the neaest training cases of any query point. Still, many
open issuesremain unspedfied. Namely, weighing o the variables within the distance céculation can be aucia in
domains with lessrelevant variables. Moreover, we neel to spedfy how many training cases will enter the local fit
(usually known as the bandwidth seledion problem). Even after having a bandwidth size spedfication, we need to
weigh the cntributions of the training cases within the bandwidth. Neaer points $ould contribute more into the local
fit. Thisisusualy accompli shed through a weighing function that takes the distanceto the query point into account
(known asthe kernd function). The corred tuning o all these modelling “parameters’ can be aucia for a successul
use of local modelling.

Local modelling provides snooth function approximation with wide goplicability through corred tuning of the distance
function parameters. Still, thisisa computational intensive method that does not produce a comprehensible model of the
data. Moreover, these methods have difficulties in dealing with domains with strong discontinuities in the function

being approximated.

INTEGRATING REGRESSON TREESWITH LOCAL MODELLING

In this dion we describe how we propose to overcome some of the limitations of bath regresson trees and local
modelling through an integration of both methods that result in what we refer to aslocal regresson trees. The main
goals of thisintegration can be stated as foll ows:

e Improve standard regresson trees snoathness lealing to superior predictive accuracy.
e Improve local modelling in the foll owing aspeds:

e Computational efficiency.

e Generation of models that are mmprehensible to human users.

e Capability to deal with domains with strong discontinuities.

In our study of local regresson trees we have @mnsidered the integration of the foll owing local moddlling techniques:

e Kerne models (Watson, 1964; Nadaraya, 1964).
These models amount to fitting a polynomial of degreezero (i.e. a onstant) in the local neighbourhood.

e Local linea polynomia (Stone,1977; Cleveland,1979; Katkownik,1979).
Wherewefit alinea polynomial within the neighbourhood.

e Semi-parametric models or partia linea modd s (Spiegelman, 1976; Hardle, 1990.
Consisting of fitting a standard least squares linea model on all data plus a kernd model component on the
residuals of the linea polynomial that actsasalocal “corredion” of the global lineaity assumption of the
polynomial.

The main dedsions concerning the integration of local models with regresson trees are how, and when to perform it.
Threemain aternatives exist:

e Asamethe use of local models in the leaves during all treeinduction (i.e. growth and pruning phases).
e Grow astandard regresson tree ad wselocal modd s only during the pruning stage.
e Grow and prune astandard regresson tree Use local models only in prediction tasks.

Thefirg of these alternatives is more consistent from a theoretical point of view as the choice of the best split depends
on the moddl s a the leaves. Thisisthe approach followed in RETIS (Karalic, 1992), which integrates glohal |east
squares linear polynomials in the treeleaves. However, ohtaining such models is a computationally demanding task. For
each trial split the left and right chil d models need to be obtained and their error cdculated. Even with asimple model
like the average, without an efficient incremental algorithm the evaluation of all candidate splitsistoo heavy. This
meansthat if more omplex modd s areto be used, like linear polynomials, thistask is practically unfeasible for large

domains3. The experiments described by Karalic (199) used data sets with few hundred cases. The author does not
provide ay results concerningthe omputation penalty of using linea modelsinstead of averages. Still, we daim that

8 particularly with large number of continuous variables.



when using more cmplex models like kernel regresson this approach isnot feasible if we want to achieve areasonable
computation time.

The send aternative isto introducethe more cmplex model s only during the pruning stage. Thetreeis grown (i.e.
the splits are chosen) asauming averagesin the leaves. Only during the pruning stage we mnsider that the leaves will
contain more complex models, which entail s oltaining them for each node of the grown tree Noticethat thisis much
more dficient than the first aternative mentioned before which involved dbtaining the models for each trial split
considered during thetreegrowth. Thisisthe gproach followed in M5 (Quinlan, 1992. This system also uses global
least squares linea polynomialsin the treeleaves but these models are only added during the pruning stage. We have

accessto a version of M59 and we have @nfirmed that thisis a @mputationally feasible solution even for large
problems.

In our integration of regresson trees with local moddlling we have foll owed the third aternative. In this approach the
leaning processis sparated from prediction tasks. We generate the regresson trees using the “standard” methodol ogy
described previoudly. If we want to use the learned treeto make predictions for a set of unseen test cases, we @an choose
which modd should be used in the treeleaves. These can include mmplex models like kernds or local linea
polynomials. Using this approach we only have to fit as many models asthere ae leavesin thefinal pruned tree The
main advantage of this approach isits computationa efficiency. However, it also allows trying several alternative
models without having to re-lean the tree Using this approach theinitial tree ca be regarded asakind of rough
approximation of the regresson surface which is comprehensible to the human user. On top of this rough surfacewe
may fit smoather models for each data partition generated in the leaves of the regresson treeso asto increase the
predictive accuracy.

In Torgo (199) alarge experimental evaluation of local regresson trees over a widerange of problems was carried out.
Thislarge set of experimental comparisons confirmed that |ocal regresson trees are significantly more accurate than the
“standard” regresson trees. However, these new regresson models are mmputationally more demanding and less
comprehensible than standard regresson trees. We have dso doserved that local regresson trees could overcome some
of thelimitations of local modelling techniques, particularly their lack of comprehensibility and rather high processng
time These experiments have shown that local regresson trees are significantly faster than local modelling techniques.
Moreover, through the integration within a treebased structure we obtain a cmprehensible insight of the
approximation of these models. Findly, we have also olserved that the modelling hias resulting from combining local
models and partition-based approaches improves the accuracy of local modd s in domains where there ae strong
discontinuities in the regresson surface

PREDICTING THE DENSITY OF ALGAE COMUNITIES

In this ®dion we describe the steps foll owed in the @plication of RT in the context of the 3¢ International ERUDIT
Compstiti on. As we have mentioned this competition consisted of a data analysis task concerning the environmental
problem of determining the state of rivers and streams by monitoring and analysing certain measurable chemicd
concentrations. The goal of the task was to oliain amodd that should allow making predictions concerning the
frequency distribution of seven algae. With this purpose the organisers have deli vered two data fil es to each competitor.
Thefirgt contained the training data wnsisting of 200 samples described by 11 input variable plus the observed algae
frequency distributions. Thistraining fil e was presented as a matrix with 200 rows and 18 (11+7) columns. From the 11
input variables (labelled as A,...,K) threewere ctegorical, namdy the season, theriver size and the fluid velocity. All
remaining input variables were numeric. Several river samples contained unknown input variable values (signalled by
“XXXX ™). The competitors were also given a second file antaining the test data consisting o another 140 river
samples. The mmpetitors were only given the values of the 11 input variables of these test samples. There were also
unknown variable valuesin the test cases. Thusthe test data set corresponded to amatrix of 140rows and 11 columns
of values. The goal of the competition was to huild amodel based on the training data that could provide predictions of
the frequency distributions of the 7 algae (labelled as a,...,g) for the 140 test samples, whose true val ues were only
known to the organisers. The cmpetitors diould present their results asa 140x7 matrix of predictions. The solutions
proposed by the competitors were evaluated by the sum of thetotal squared errors between their predictions and the true
values.

9Vversion 5.1



PROBLEM SOLUTION USING RT
This sedion briefly describes the steps taken to produceamatrix of predictions based on models obtained with RT.

Thefirst step that we @rried out wasto dvide the given training data into seven different training files. Thedivision
was done for each of the 7 dfferent algae. This meansthat we dealt with this problem as sven different regresson
tasks. For each of these seven training setsall input variabl e values were the same, and only the target variables

changed.

The seand step of our proposed solution consisted of fill ing-in the unknown variable values. For each training case
with an unknown variable value we have searched for the 10 most similar cases. This similarity was asserted using an
Euclidean distancemetric. The median value of the variable of these 10 cases was used to fill in the unknown variable
value.

The methodology used in RT to integrate local models with regresson trees enables this gystem to emulate alarge
number of regressgon techniques through simple parameter settings. In effect, as the predictions of the local model s used
in the leaves are ohtained compl etely independently of the treegrowth phase we can very easily try different variants of
local regresson. Moreover, we can even use these models on all training data that would correspond to the original

local modds. This later alternative is easily accomplished by pruning too much theinitia treeuntil asingle leaf is
reached. Thismeansthat RT can emulate several regresson techniques like standard regresson trees, local regresson
trees and local modelling techniques. Moreover, several of the implemented local modelling techniques can be used to
emulate other regresson modds. For instance, alocal linea polynomial can behave like a standard least squares linear

regresson model through appropriate parameter tuningl0. In resume, RT hybrid character can be used to obain the
foll owing types of models:

e Standard least squares (LS) regresson trees.

e Least absolute deviation (LAD) regresson trees.

 Regressontrees (LS or LAD) with least squares linea polynomialsin the leaves.

* Regressontrees (LS or LAD) with kernel modelsin the leaves.

* Regressontrees (LS or LAD) with k neaest neighbarsin the leaves.

* Regressontrees (LS or LAD) with least squareslocal linear polynomialsin the leaves.

 Regressontrees (LS or LAD) with least squares partial linear polynomials (models that integrate bath parametric
and non-parametric components) in the leaves.

e Least squareslinea polynomials (with or without backward elimination to simplify the moddls).

* Kernel models.

e Kneaest neighbars.

e Local linea polynomias

e Partial linea polynomials.

Having so many variantsin RT the next step of our analysis was to try to find out which were the most promising
techniques for each of the seven regresson tasks. With this purpose we have caried aut the foll owing experiment. We
have seleded alarge set of candidate variants of RT. For each of the seven training sets we have arried out the

foll owing experiment with the goal of estimating the predictive accuracy (measured by the Mean Squared Error) of each
variant. The M SE was estimated using a 10-fold CrossVali dation experiment. Each training set was randomly divided
into 10 approximately equally sized folds. For each fold, a model was built with the remaining nine andits prediction
error calculated in the fold. This processwas repeded for the 10 dfferent folds and the prediction errors were averaged.
This 10-fold CrossValidation processwas repeaed 10 times with 10 different random permutations of each training
set. Thefinal score of each variant was obtained by averaging over these 10 repetitions. For each of the seven algae the
most promising variants of RT were coll eded together with their estimated prediction error. Thismodel seledion stage
immediately reveal ed that the seven regresgon tasks posed quite different challenges. In effed, there was alarge
diversity of techniquesthat were estimated as the most promising depending o the algain consideration.

For each of the seven algae training sets we have used the respedive most promising RT variants to oltain amodel.
These models were them appli ed in the given 140 test cases and their predictions coll eaed. The final predictions that

10 |n this example it is enough to use an infinite bandwidth (meaning that al training points contribute to okain the
model) and a uniform weighing function (which gives equal weightsto al training points).



were submitted as our solutions were oltained by a weighed average of these predictions. To better illustrate this
weighing schema, imagine that for alga a the most promising RT variants and their estimated predictive acauracy were:

M., ErrMa; My, Err,\,Ib Mg, ErrMc My, Err,\,Id
Thefinal prediction for atest case x; would be @lculated as

_ M) Erry+ M ()< Erng, + M X Erry,_+ My (x Jx Ermy,
- Erry, +Erry, +Ermy_+Ermy,

where,

X; isatest case;

y; isthe prediction for case x; ;

and M;(xi) isthe prediction of model M, for case Xx; .
DISCUSSON

The sol ution obtained through the processdescribed before was dedared by the jury of the ERUDIT competition as one
of thethreerunner-ups winners. After the announcement of theresults the organisation provided the true values of the
test samples and this enabled usto analyse in more detail the performance of our proposed data analysis technique.
Thetotal sum of squared error of our solution was 85279.97, which correspondsto a MSE of 87.020. At thetime of
writing the scores of the other competitors are not known soitis abit hard to interpret the value of these numbers. Still,
we have @lleded other statisticsthat could provide further indgghts on the quaity of the solution. We have alculated
the mean absol ute deviation (MAD) of the predictions of RT1L. The foll owing graph shows the minimun MAD,
maximum MAD and an interval (represented by a box) between MAD+Standard Error, for all seven algae.
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Figure 2: The Scores of our Solution in term of Absolute Error.

From thisfigureit is clea that the best results are oltained for predicting the frequency of algae ¢, d and g, while the
worst predictions occur with algae a and f. Still, the overall Mean Absolute Error is 5.365 which isareatively low

vauel?2

11 Thisgtatistic is more meaningful asit isin the same scale as the goal variable.
12 The values of the dgae distributions range from 0 to 100 (although the maximum value in the training samples was
89.8 for dgaa).



With the true goal variable values we were able to confirm that the ranking of RT variants obtained through repeated
10-fold CrossValidation was most of the times corred.

We have dso carried out some initial experimentsto try to identify the main causes for the good performance of our
solution. These experiments clealy show that the availability of different variants was highly benefict because worse
results are obtained when trying the same variant over the seven regresson tasks. As an example, whil e our multi-
strategy weighed solution achieved an overall MSE of 87.020 on all seven tasks, using the best RT variant (Torgo,
1999, which consists of using local regresson trees with partia linea models in the leaves, we obtained a M SE of
93.184. Moreover, the weighing schema does also kring some accuracy gains when compared to the alternative of

aways sleding the prediction of the best estimated variant for each task13, We think that using more sophisticated
model combination methodol ogies like boosting (Freund, 1995 or bagging (Breiman,1996 should provide even more
interesting accuracy results.

CONCLUSIONS

We have described the appli cation of aregresson anaysistod named RT to an environmental data used in the 3
International ERUDIT Competition. RT implements a new regresson methodology call ed local regresson trees. This
technique can beregarded as a combination of two existing methodologies, regresson trees and local modelling. We
have described the integration schema used in RT to oltain local regresson trees. We have shown how this chemais
important in obtaining atod that is able to approximate quite different regresson surfaces. Theresults obtained by RT
in the competition provide further confidence on the mrrednessof our integration schema.

The methodology used to obtain a solution for the competiti on was based on the assumption that using different variants
of RT on each of the seven regresson tasks of the mmpetition provided better results than always using the same
regresson methodology. Our experiments and the results of the competition confirmed this hypothesis. Moreover,
averaging over the best variants did also improve the acauracy of theresulting predictions. This appli cation provides
further evidencetowards the advantages of systems incorporating multiple data anaysis techniques, and also towards
the acauracy advantages of combining predictions of different models.
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