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ABSTRACT:

This paper describes a rather novel method for the supervised training of regression systems that can be
an alternative to feedforward Artificial édiral Networks (ANNS) trained with the &8kRopagation
algorithm. The proposed methodology is a hybrid structure based on supervised clustering with genetic
algorithms and local learning. Supervisedal®d Fegression_(Listering with (@netic Agorithms
(SSRCGA) offers certain advantages related to robustness, generalization performance, feature
selection, explanative behavior, and the additional flexibility of defining the fitness function and the
regularization constraints. Computational results of SSRCGA are compared with backpropagation
trained ANNs on a real-life environmental multivariate regression task.
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INTRODUCTION

This paper describes a model for a regression analysis tool that can be seen as a kind of multi-strategy data analysis
system and therefore can be used as an alternative to feedforward Artiéiaral INetworks (ANNSs). 8pervised

Scaled Rgression_(Tistering with _@netic Agorithms (SSRCGA) is a hybrid model based on a GA semi-
supervised clustering algorithm [1] augmented with local learning. The local learning in this method is supervised in
the sense that the prediction quality is incorporated as a penalty term added to the fithess function of the Genetic
Algorithm (GA). SSRCGA offers certain advantages related to robustness, generalization performance, feature
selection, explanative behavior, and the additional flexibility of defining the fitness function with or without
regularization constraints. This paper introduces the SSRCGA methodology by discussing in succession: (i) local
learning, (ii) clustering with GAs for a variable number of clusters and (iii) scaled supervised regression clustering.
The data analysis task concerns the environmental problem of determining the state of rivers and streams by
monitoring and analyzing certain measurable chemical concentrations with the goal of inferring the biological state
of the river, namely the density of algae communities. Typical of such real-life problems (prediction of seven
different algae frequency distributions), the particular data set contains a mixture of qualitative (river size and its
velocity), linguistic (season when the sample was taken) and numerical measurements values (chemical
concentrations), with much of the data being incomplete. This paper demonstrates that the SSRCGA method
compares favorably with ANNSs trained with the Baakpagation (BP) algorithm [2] for this River Pollution Data

set [3].

LOCAL LEARNING

Local learning [4] [5] belongs to a data analytic methodology whose basic idea lies behind obtaining the prediction
for a case i (with vector coordinate$ by fitting a parametric function in its neighborhood. This means that these
methods are ‘locally parametric’ as opposed to, for instance, least squares linear regression. Moreover, these
methods do not produce a ‘visible’ model of the data. Instead they make predictions based on local models
generated on a query point basis. In spite of being considered a non-parametric regression technique, local learning
does have several ‘parameters’ that must be tuned in order to obtain good predictive results. One of the most
important is the notion of neighborhood. Given a query point g, we need to decide which training cases will be used
to fit a local polynomial around the query point. This involves defining a distance metric over the multidimensional
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space defined by the input variables. With this metric, we can specify a distance function that allows finding the
nearest training cases of any query point. Still, many issues remain open. Namely, weighting of the variables within
the distance calculation can be crucial in domains with less relevant variables. Moreover, we need to specify how
many training cases (L) will enter the local fit (usually known as the bandwidth selection problem, generally chosen
as 3 or 5). Even after having a bandwidth size specification, we need to weight the contribution of the training cases
within the bandwidth. Nearer points should contribute more into the local fit. This is usually accomplished through a
weighting function (distance weighting factor d) that takes the distance to the query point into account (known as the
kernel function). The outcome;dor a case i (with vector coordinate¥ can now be estimated by local learning

from the target outcomes of its L nearest neighbgradtording to:

The first factor in the denominator of the expression above allows incorporating a distance-weighting scheme.
Introducing the distance weighting factor (d) can control the specifics. For the traditional least squares error
measure, the total regression error becomes the familiar

N
~ 2
Mg = z (Oi - ti)
1=1
The correct tuning of all these modelling ‘parameters’ can be crucial for successful use of local learning.

GA-DRIVEN CLUSTERING WITH A VARIABLE CLUSTER NUMBER

Clustering is a classic machine learning problem. The most popular clustering method is the well-known K-means
algorithm [6]. However, there are a number of good reasons to consider other clustering methods as well [7].

One alternative to the K-means clustering algorithm is to consider a genetic algorithm based clustering method
where the GA determines the cluster centers in order to reduce the classical cluster dispersion measure (or any other
measure related to cluster performance for that matter). A collection of N cases is partitioned into K groups

according to:
K K MN - ~ >0
0=y 3= D ax-ul

where J is the cluster dispersion measure (to be minimized),
N is the number of cases,
K is the number of clusters,
Ok is 1 when case i belongs to cluster k, 0 otherwise,
X; are the vector coordinates for case i,
cx are the vector coordinates for cluster center k (to be determined).

It is straightforward to implement a genetic algorithm for “guessing” the cluster centers in order to minimize the
objective function J. A genetic algorithm was implemented as a floating point GA with arithmetic cross-over and
uniform mutation following Michalewicz [8]. The chromosomes of the GA represent the coordinates of the cluster
centers. If the dimensionality of the data is D, and there are K cluster centers, there will be D*K chromosomes.
While the selection of mutation and crossover rates is important for the performance of the GA, it was found that the
GA is fairly robust with regard to the particular implementation details such as operator selection and reproduction
schemes.

Note that so far the number of clusters was pre-determined. It is now possible to extend GA driven clustering to
allow for a varying number of clusters [7]. Rather than following Bezdek’s suggestions, we had good success by
starting out with a relatively large predescribed number of clusters and letting the number of clusters vary by adding
a regularization term (i.e., in this case a penalty/bonus term for empty clusters) to the cluster dispersion, leading to
the following fithess function:

Fitness_Function =8y Ng
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In the expression abovg,is a “dummy cluster” penalty/bonus factor ang isl the number of empty clusters. A

cluster is empty when it has no members. Such empty or “dummy clusters” do not effectively contribute to the
cluster dispersion anymore. It depends on the particular application whether a penalty or bonus approach is more
efficient. The choice of the penalty factgris determined by trial and error. We found generally acceptable
performance when the contribution of regularization term to the cost function is of the same order of magnitude as
the cluster dispersion measure.

SUPERVISED SCALED REGRESSION CLUSTERING

So far, a GA was introduced as an alternative to traditional clustering. The introduction of a dummy cluster
regularization term offers an elegant way to vary the number of clusters and brings a significant advantage over
traditional clustering methods. Up to this point, there is no supervised action going on. Combining the two former
methods, we get a powerful prediction method. In a first step, the whole data set will be clustered and in each cluster
the local learning method will be applied to calculate the outcome. Furthermore, the clustering itself will be
influenced by the result of the local learning method. All that is needed in this case is to add an additional penalty
term, related to the error measure, to the fitness function, according to:

Fitness_Function =8y Ng+ a Mg

The later term in the expression above represents a penalty factor proportional to the total regressiay). érhar (M
proper choice for the regularization parametgrig¢ problem dependent and needs to be specified by theouszn.

be determined by trial and error. It was found that the particular choice for the regularization parameters is not
crucial as long as each of the three terms in the cost function remains significant.

The GA driven regression clustering algorithm presented so far is now an alternative to a traditional feedforward
ANN. One useful feature can still be added to regression clustelimgnsion scalingin the case that the data

space has a very high dimensionality, it is generally desirable to reduce the dimensionality by selecting the most
relevant features. Rather than combining the GA based regression clustering method with a traditional method for
feature selection (e.g., by selecting the most correlated features with the outcomes), we propose to introduce
adaptive scaling factors for each dimension. An easy way to implement this scheme is to add a number of
chromosomes to the gene corresponding to the dimensionality (D). In order to discourage irrelevant features or
dimensions, each dimension is multiplied by its corresponding scaling factor. The sum of the scaling factors is
normalized to unity to avoid a trivial solution. The GA automatically adjusts appropriate scaling factors and the
most relevant features for a particular application are the ones with the larger scaling factors. It is also possible to
generalize this feature selection scheme further by assigning a different set of scaling factors to each cluster.

Supervised Scaled Regression Clustering with Genetic Algorithms (SSRCGA) has advantages and disadvantages
compared to traditional neural network approaches. The advantages of SSRCGA relate to: (i) the simplicity of the
idea; (ii) the flexibility of its implementation by allowing the user to modify the cost function and the penalty terms
(e.g., the misclassification error measure); (iii) the possibility for a physical interpretation of what is going on; (iv) a
straightforward methodology for feature selection via scaling; and (v) a good general performance, even for high-
dimensional data. Disadvantages of the SSRCGA compared to ANNs relate to (i) possible excessive demands on
computing time and memory; (ii) poor scaling of the speed of the algorithm with the number of data points; and (iii)
the ad-hoc problem choice for problem dependent regularization parameters (i.e., penalty factors).

COMPUTATIONAL RESULTS FOR SSRCGA

In order to evaluate the performance of SSRCGA, two well-known problems were solved with SSRCGA and their
results were compared with a traditional BP trained ANN [1]. These problems relate to the IRIS and the Wisconsin
breast cancer data. The benchmark problems addressed in this paper are strictly speaking classification problems
(rather than regression problems). In these comparative studies, the SSRCGA showed a better performance. In a
challenging regression problem, a pilot version (GAdC) of SSRCGA [9] won the competition amongst 21
international entries.
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In order to get a ‘fair’ comparison, the results (sum of the squared errors) are compared on the River Pollution Data
set. For both methods, the missing values were replaced by the mean value. Comparing the results in this way makes
it possible to set up a simple and clear regression benchmark comparison on a data set that everyone can access.

River Pollution Data

During the research study water quality samples were taken from sites on different European rivers of a period of
approximately one year. This study is motivated by the increasing concern with the impact human activities are
having on the environment. Identifying the key chemical control variables that influence the biological process
associated with these algae has become a crucial task in order to reduce the impact of man activities. The samples
were analyzed for various chemical substances. In parallel algae samples were collected to determine the algae
population distributions. While the chemical analysis is cheap and easily automated, the biological part involves
microscopic examination, requires trained manpower and is therefore both expensive and slow. The relationship
between the chemical and biological descriptors is complex and can be expected to need the application of advanced
techniques. Typical of such real-life problems, the particular data set for the problem contains a mixture of
gualitative, linguistic and numerical measurement values, with much of the data being incomplete. The data analysis
task consisted of prediction the algae frequency distribution on the basis of the measured concentrations of the
chemical substances and the global information concerning the season when the sample was taken, the river size and
its velocity. The two last variables are given as linguistic variables.

A very important step in solving this multivariate regression task is the data preprocessing. A disadvantage is that
preprocessing in a certain way depends on the method that will be used later. For this reason a general method
(because we want to compare SSRCGA and NN) is used to replace the missing values and all data were scaled
(necessary for NN). This explains why the results obtained now are worse than those mentioned with GAdC in [9].
The river pollution data set [3] for this study consisted of 198 cases (after weeding out 2 cases, with most of the
variables as missing data, from the original data set) used for training. Another set of 140 cases was used as blind
set. There were 18 descriptors. The first descriptor (season) was not used in this study. The remaining 17 descriptors
used. The last 7 descriptors of each data set are the distribution of different kinds of algae (AG1, AG2, ... AG7) and
represent the outputs to be predicted. The descriptors used to build a model are the river size, the fluid velocity (both
categorical), and 8 chemical concentrations being nitrogen in the form of nitrates, nitrites and ammonia, phosphate,
oxygen and others. The values of the categorical descriptors river size (small; medium; large) and fluid velocity
(low; medium; high) were replaced by numerical values (0.0; 0.5; 1.0). The remaining missing values were replaced
by the mean of the responding descriptor. All data was scaled (remember that normally the SSRCGA algorithm
doesn’t need a scaled data set). Four hidden layers were used for the neural network study rather than the traditional
one or two hidden layer structure to improve robustness. The neural network has a 10-8-8-8-5-1 neuron structure
and was halted when the error fell below a threshold value. Four hidden layers rather than just one or two hidden
layers were selected for the network in order to improve generalization and robustness. Seven different networks
were built one for each outcome. A second neural network structure was built with nearly the same neuron structure.
The difference is that this network has seven outputs, this means only one network is needed. The SSRCGA method
started out with 6 clusters and used local learning by averring between the 5 nearest neighbors within that cluster. In
the case that there were less than 5 neighbors within the cluster, all the available training samples for that cluster
were used. The penalty factor for misclassification was set to 30 and the bonus factor for empty clusters was set to 5
(for outcomes 1, 2 and 3) and to 3 (for outcomes 4, 5, 6 and 7). These values were determined based on the general
guideline that each penalty factor has to be significant in the cost function. The population size was set to 100 and
the GA ran for 500 generations. The mutation and crossover probabilities were 0.03 and 0.8 respectively. A simple
roulette selection procedure was followed for reproduction. Looking at the results (see Table 1) obtained for each of
the algae and the overall mean squared error leads to the conclusion that our method tends to outperform the ANN.

Method AG1 AG2 AG3 AG4 AG5 AG6 AG7 global
GAdC 186 104 29 8 72 173 21 84.7
SSRCGA 263 134 34 11 81 207 22 107.4
NN(10-8-8-8-5-1) | 267 235 94 24 104 349 62 162.1
NN(10-8-8-8-5-7) | 454 251 52 24 136 358 61 190.8

Table 1: The mean squared error
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It is quite clear that building a neural network for each output descriptor is better than building one network for the
whole problem. A scatterplot for the results of AG3, with on horizontal axis the desired response and on the vertical
axis the actual, gives an indication about the region where our method performs better than the neural network
method. Typical for the neural networks are the zero values even at higher values and some high values where low
values are expected.
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Fig. 1 The desired response AG3 versus the actual response AG3 for each method

CONCLUSIONS

This paper introduces the SSRCGA algorithm by gradually building on the idea of clustering with genetic
algorithms and shows that SSRCGA is a viable alternative to traditional ANNs with both advantages and
disadvantages. Preliminary computational studies show that the SSRCGA methodology can compare favorably with
ANNSs in regard to their forecasting performance.
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