#' --- #' title: "Introduction to partially observed Markov processes" #' subtitle: 'ICTP Workshop on Mathematical Models of Climate Variability, Environmental Change and Infectious Diseases' #' author: "Aaron A. King" #' output: #' html_document: #' toc: yes #' toc_depth: 4 #' bibliography: ../course.bib #' csl: ../ecology.csl #' nocite: | #' @King2008, @Romero-Severson2015, @He2010, #' @Laneri2010, @King2015 #' --- #' #' \newcommand\prob[1]{\mathbb{P}\left[{#1}\right]} #' \newcommand\expect[1]{\mathbb{E}\left[{#1}\right]} #' \newcommand\var[1]{\mathrm{Var}\left[{#1}\right]} #' \newcommand\cov[1]{\mathrm{Cov}\left[{#1}\right]} #' \newcommand\dist[2]{\mathrm{#1}\left(#2\right)} #' \newcommand\dlta[1]{{\Delta}{#1}} #' \newcommand{\dd}[1]{\mathrm{d}{#1}} #' \newcommand{\transpose}{\mathrm{T}} #' \newcommand\lik{\mathcal{L}} #' \newcommand\loglik{\ell} #' \newcommand{\scinot}[2]{#1{\times}10^{#2}} #' \newcommand{\pd}[3][]{\frac{\partial^{#1}{#2}}{\partial{#3}^{#1}}} #' \newcommand{\deriv}[3][]{\frac{\mathrm{d}^{#1}{#2}}{\mathrm{d}{#3}^{#1}}} #' #' [Licensed under the Creative Commons Attribution-NonCommercial license](http://creativecommons.org/licenses/by-nc/4.0/). #' Please share and remix noncommercially, mentioning its origin. #' ![CC-BY_NC](../graphics/cc-by-nc.png) #' This document has its origins in the [SISMID short course on Simulation-based Inference](http://kingaa.github.io/sbied/intro/intro.html) given by Aaron King and Edward Ionides. #' #' Produced in **R** version `r getRversion()` using **pomp** version `r packageVersion("pomp")`. #' #' #' #'
#' **Important Note:** #' These materials have been updated for use with version `r packageVersion("pomp")`. #' As of version 2, **pomp** syntax has changed substantially. #' These changes [are documented](http://kingaa.github.io/pomp/vignettes/upgrade_guide.html) on the **pomp** website. #'
#' ## ----opts,include=FALSE,cache=FALSE------------------------------------------- options(stringsAsFactors=FALSE) library(ggplot2) theme_set(theme_bw()) set.seed(2028866059L) #' #' ## Introduction: ecological and epidemiological dynamics #' #' - Ecological systems are complex, open, nonlinear, and nonstationary. #' - It is useful to model them as stochastic systems. #' - "Laws of Nature" are unavailable except in the most general form. #' - For any observable phenomenon, multiple competing explanations are possible. #' - Central scientific goals: #' - Which explanations are most favored by the data? #' - Which kinds of data are most informative? #' - Central applied goals: #' - How to design ecological or epidemiological intervention? #' - How to make accurate forecasts? #' - Time series are particularly useful sources of data. #' #' #' ### Noisy clockwork: Time series analysis of population fluctuations in animals #' #' ##### Six problems of @Bjornstad2001 #' #' Obstacles for **ecological** modeling and inference via nonlinear mechanistic models: #' #' 1. Combining measurement noise and process noise. #' 2. Including covariates in mechanistically plausible ways. #' 3. Using continuous-time models. #' 4. Modeling and estimating interactions in coupled systems. #' 5. Dealing with unobserved variables. #' 6. Modeling spatial-temporal dynamics. #' #' The same issues arise for **epidemiological** modeling and inference via nonlinear mechanistic models. #' #' ## Objectives #' #' 1. To show how stochastic dynamical systems models can be used as scientific instruments. #' 1. To give students the ability to formulate models of their own. #' 1. To teach efficient approaches for performing scientific inference using POMP models. #' 1. To familiarize students with the **pomp** package. #' 1. To give students opportunities to work with such inference methods. #' 1. To provide documented examples for student re-use. #' #' #' ### Questions and answers #' #' 1. [What roles are played by asymptomatic infection and waning immunity in cholera epidemics?](http://dx.doi.org/10.1038/nature07084) #' 7. [Do subclinical infections of pertussis play an important epidemiological role?](http://dx.doi.org/10.1371/journal.pone.0072086) #' 3. [What explains the seasonality of measles?](http://dx.doi.org/10.1098/rsif.2009.0151) #' 2. [What is the contribution to the HIV epidemic of dynamic variation in sexual behavior of an individual over time? How does this compare to the role of heterogeneity between individuals?](http://dx.doi.org/10.1093/aje/kwv044) #' 5. [What explains the interannual variability of malaria?](http://dx.doi.org/10.1371/journal.pcbi.1000898) #' 6. [What will happen next in an Ebola outbreak?](http://dx.doi.org/10.1098/rspb.2015.0347) #' #' ------------------------------- #' #' ## Partially observed Markov process (POMP) models #' #' * Data $y^*_1,\dots,y^*_N$ collected at times $t_1<\dots