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Abstract
In Haskell and many other functional languages, graphics libraries,
animation frameworks, game engines, and the like usually have to
choose between providing either state-of-the-art functionality or
a purely functional API. In this paper, we will show that we can
layer a purely functional interface on top of an object-oriented,
imperative one in an e�cient manner. We do so by computing the
di�erence between the input and output values of purely functional
transformation functions, and then, applying that di�erence to
a mutable object graph. We will make good use of Haskell’s by-
default lazy evaluation in realising this scheme.

To demonstrate the feasibility of this approach, we implemented
a Haskell binding to the SpriteKit animation system and game
engine. We describe its interface, how to use it, and the methods
underlying its implementation.
ACM Reference format:
Manuel M T Chakravarty and Gabriele Keller. DRAFT. Haskell SpriteKit. In
Proceedings of DRAFT, DRAFT, DRAFT, 13 pages.
DOI: DRAFT

1 Introduction
Graphics libraries, animation frameworks, game engines, and the
like face a dilemma in Haskell and many other functional languages.
�ey can either build on an existing state-of-the-art framework
(typically implemented in C++) and expose its imperative, object-
oriented API by way of the language’s foreign function interface [8].
Or, alternatively, they can be implemented from scratch with an
elegant purely functional interface [13, 19], but generally rather
limited functionality and visual appeal. �at is not because we
wouldn’t be able to implement a fully-�edged framework in Haskell,
but because doing so requires considerable e�ort, which we usu-
ally cannot expend, and specialised expertise, which is rare. �is
naturally raises the question of whether we can �nd a compromise.
Can we build on an existing framework with an object-oriented,
imperative API and endow it with a purely functional interface?

In this paper, we will answer this question in the a�rmative.
We will provide a constructive proof of our assertion by describing
a purely functional interface for the Objective-C API of Apple’s
SpriteKit animation system, physics engine, and game engine [2].
More importantly, we will show how to e�ciently translate between
the imperative object-oriented and the functional API.

�e core idea —illustrated in Figure 1— is the following: we re-
place mutating methods used to update the underlying object graph
of the object-oriented framework with pure Haskell transformation
functions that receive the original graph (or a portion thereof) as
an argument and return a new, derived graph (or a portion thereof)

DRAFT, DRAFT
DRAFT. DRAFT. . . $15.00
DOI: DRAFT

as a result. Our transcription layer compares these two versions of
the object graph and computes their di�erence. �en, it mutates
the underlying object graph of the object-oriented framework ac-
cording to the set of di�erences derived from the pure variant. A
major challenge is to preserve hidden state in mutable objects and
to achieve the computation of the di�erence in an e�cient manner,
especially when the transformation function only touches a small
part of the object graph. We use Haskell’s lazy evaluation semantics
in combination with some low-level runtime system functionality
to achieve this e�ciency goal. More precisely, our approach en-
sures that the number of graph nodes touched by the transcription
layer is asymptotically linear in the number of nodes touched by
the user-provided pure transformation function.

In summary, this paper makes the following contributions:

• We provide a purely functional alternative to an object-
oriented, imperative game engine API (Section 3).

• We demonstrate the utility of lazy evaluation for lazy mar-
shalling of object graphs (Section 4).

• We show that lazy marshalling together with some low-level
runtime functionality and object caching enables the asymp-
totically e�cient calculation of the di�erence between a
lazily marshalled version and its transformed variant (Sec-
tion 4).

�e Haskell SpriteKit source code is available as open source so�-
ware from h�ps://github.com/mchakravarty/HaskellSpriteKit.

Transcription Layer

data Scene sd nd 
  = Scene 
    { sceneName             :: Maybe String 
    , sceneChildren         :: [Node nd] 
    , sceneData             :: sd 
    , sceneBackgroundColor  :: Color 
    , sceneUpdate           :: Maybe (SceneUpdate sd nd) 
    ⋮ 
    } 
type SceneUpdate sd nd  
  = Scene sd nd -> TimeInterval -> Scene sd nd

functional

imperative 
object-oriented

Figure 1. Architecture
1
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1.1 Related work
Our approach to layering a functional on top of an imperative
object-oriented interface is related to treatment of the browser
DOM by the Javascript framework React [11]. In particular, React
also favours the use of pure transformation functions and uses
di�ng to compute a change set that gets applied to the rendered
object tree (the browser DOM). However, in React we have a less
clear separation between the imperative and functional world and
the lack of statically enforced purity requires more discipline on
the side of the application developer.

We are not aware of any other work that uses a similar approach
in a Haskell or any other typed functional language. However, there
exists a range of work on graphics and games programming. �e
most important work that aims to provide a functional interface is
summarised in the following.

Gloss [5] provides a functional interface to a fragment of the
2D functionality of OpenGL. It was originally aimed at animations,
but can also be used for simple games. It has a purely functional
interface that is suitable for learners. However, its functionality is
limited to the basics. All animations need to be hand-coded and
there is no physics engine.

�ere exists a broad spectrum of work on the use of functional
reactive programming (FRP) for animations and games in Haskell,
from Ellio�’s seminal work [10] to the FRP libraries Yampa [9] and
Reactive Banana [12] used in conjunction with several di�erent
graphics libraries including OpenGL and SDL. FRP provides a func-
tional way to specify animations and reactive behaviour. However,
much of the functionality that has been realised with FRP in previ-
ous work is already included ready-made in SpriteKit’s animation
system and physics engine (e.g., animate movement over time or
a path, physical behaviour, collision detection). Hence, the same
game functionality is signi�cantly less code with SpriteKit and
doesn’t require an understanding of FRP.

Haskell graphics library wrappers, such wXHaskell [14] and
Gtk2Hs [18], support basic game development, but require the use
of similar programming idioms as the imperative object-oriented
languages that the original libraries are based on.

2 �e State of the Art
Animations and video games are o�en organised in scenes, com-
prising a collection of objects that represent both the visual as well
as non-visual aspects of a portion of the animation or game. In the
object-oriented, imperative languages commonly used to realise
animation and games frameworks, a scene’s objects are organised
as a mutable object graph. Visual and non-visual properties as well
as the graph structure itself change in-place as the game or anima-
tion progresses. Providing a functional representation of a scene
graph and its change over time is the main challenge addressed in
this paper.

2.1 SpriteKit
To keep the discussion concrete, we will focus on one particular an-
imation framework and game engine as well as on a simple sample
game for the majority of this paper. Speci�cally, we discuss Apple’s
SpriteKit framework [2], a popular, fully featured, easy-to-set-up 2D
game engine including a state-of-the-art animation subsystem and
physics engine. Nevertheless, the concepts explained in this paper
transcend this speci�c technology and are generally applicable.

Figure 2. Shades — our running example

2.2 Shades
As a running example, we will use a Haskell clone of the mobile
game Shades (see Figure 2). It is su�ciently simple to explain in
a paper, while covering all the mechanisms of SpriteKit that are
crucial to the methods explained here.

In Shades, the player moves a falling block, coloured in one of
�ve random shades of a given colour, to the le� or right. Blocks
of di�erent colours stack up on top of each other as they reach
the bo�om of the play area. If a block comes to rest on a block of
the same shade, it merges with that blocks and turns into the next
darker shade, possibly triggering a chain reaction with the next
block below it. If the colour of the two blocks is already the darkest
shade, they do not merge and instead stack on top of each other.
Whenever the player manages to �ll a row with blocks of the same
shade, all blocks in that row disappear. Once all blocks come to
rest, a new block to be placed by the player is spawned at the top
of the play area. �e game is over once a block lands in the top row
of the playing �eld.

In the reminder of this section, we shall discuss the three main
problems that we need to overcome to provide a purely functional
interface to SpriteKit and similar frameworks. �ey are: (1) sub-
classing; (2) mutable node properties in the scene graph; and (3)
in-place mutation of the structure of the scene graph.

�e source code for Shades is available at h�ps://github.com/
gckeller/shades

2.3 Problem #1: subclassing
Figure 3 contains the scene graph corresponding to the scene ren-
dered in the screenshot of Figure 2. �e scene graph is always
rooted in a scene object, with node objects representing the various
scene elements, as children. �ese nodes have varying visual repre-
sentations, depending on their type, and can have further nodes as
children.

Moreover, nodes can optionally have actions a�ached to them,
which can change a node’s properties and behaviours over time
and are o�en used to implement animations. Nodes can also have

2
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walls blocks

25

rightleft bottom

⋯

— node without visuals

— attached actions

— attached physics body

Figure 3. Scene graph of Shades

SKLabelNode

SKScene

SKNode

SKSpriteNode
SKEffectNode

SKShapeNode
SKLightNode

…

 class SKNode: NSResponder { 
  var  frame:     CGRect 
  func calculatedFrame() -> CGRect 
  var  position:  CGPoint 
  var  zRotation: CGFloat 
  var  xScale:    CGFloat 
          ⋮ 
 }

NSResponderAppKit (Cocoa)
SpriteKit

Figure 4. SpriteKit class hierarchy

a physics body a�ached, in which case they partake in the physics
simulation implemented by the physics engine — that is, they may
be a�ected by gravity, collisions, force �elds, and so forth.

In our case, the scene has three children (from le� to right): (1)
a node grouping the three walls (which are represented by edge-
based physics bodies to keep the blocks inside the scene); (2) a
node grouping the blocks; and (3) a label node for the current score.
�ere are a variable number of blocks in the scene, indicated by the
three dots next to the rightmost block in the scene graph.

Although, we have drawn the scene graph as a tree (which is
how a SpriteKit API user usually thinks about it), the underlying
Objective-C heap structure is actually a graph as all nodes contain
back edges to reach their parent node and the scene node at the
root.

2.3.1 �e class hierarchy
�e SpriteKit class hierarchy is displayed in Figure 4. All objects
occurring in a SpriteKit scene are of type SKNode or one of its
subclasses, where node objects of type SKNode itself contain no
visuals, but are useful to group other nodes — in Figure 3, these are
the white boxes with a do�ed outline. �e root in Figure 3 (and
any SpriteKit scene) is of type SKScene, the blocks in the middle
(blue in colour version) are of type SKSpriteNode, and the score
text is of type SKLabelNode.

All nodes inherit common properties (such as position) and
methods (such as calculatedFrame()) from SKNode — the excerpt
of its class de�nition, given in Figure 4, is rendered in Swi� [4].1

�ere is one oddity in the SpriteKit class hierarchy. SKScene is
used rather di�erently from all other types of nodes and arguably
ought to have been separate.

2.3.2 Event handling
Figure 4 also includes SKNode’s superclass, NSResponder. �is class
is not part of SpriteKit, but of AppKit, which is the application and
GUI toolkit of Apple’s collection of application frameworks for
macOS, called Cocoa.2 �e purpose of NSResponder is to enable
subclasses to intercept input events, such as mouse clicks, keyboard
key presses, and so forth. Hence, Objective-C (and Swi�) program-
mers typically subclass SKScene and other SKNode subclasses to
receive input events.

Haskell does not directly support class-based inheritance in
a manner that aligns with Objective-C. Hence, we will need to
�nd alternative means to provide that functionality in the Haskell
SpriteKit interface.

2.4 Problem #2: mutable scene graph properties
During most of the gameplay of the sample game Shades, only one
block is active — that is, the one falling in from the top. �e player
can move the active block le� and right with key presses; in other
words, in response to those key presses, the active block needs to
change its position abruptly. As indicated in Figure 3, blocks in
Shades are sprites represented by objects of type SKSpriteNode. As
a subclass of SKNode, they inherit the position property displayed
in the class declaration excerpt in Figure 4. Put di�erently, when-
ever the user presses a movement key while a block is falling, the
event handler mutates the position property of the SKSpriteNode
representing the falling block.

In-place mutating the scene description on each key press is
not a particular functional approach. �e SpriteKit API has several
occurrences of methods of node classes and similar that are invoked
at speci�c times by SpriteKit (they are essentially callbacks) and
which can mutate properties in the scene graph in an entirely
unstructured manner. �e most prominent of these methods is the
update(_:) method of SKScene:

class SKScene: SKEffectNode {

var backgroundColor: NSColor

func update(_ currentTime: TimeInterval)
...

}

�e update(_:) method,3 by way of self, has access to the entire
scene graph and may mutate any and all mutable properties (which
are most of them) of all nodes. In the Haskell SpriteKit interface,

1Almost all Objective-C declarations can be directly translated into Swi�, which
typically makes them more readable, unless you are �uent in Objective-C. Hence,
we chose to present SpriteKit interface code in Swi�, although it is an Objective-C
framework.
2�e iOS variant of Cocoa, called Cocoa Touch, replaces AppKit by UIKit, which is a
somewhat simpli�ed and modernised variant. In UIKit, the superclass of SKNode is
UIResponder, but it serves the same general purpose as NSResponder.
3Function arguments in Swi� (and Objective-C) are labelled; i.e., update( :) is a unary
function whose single argument is named currentTime and is of type TimeInterval.
�e absence of an explicit return type implies that the return type is (); in Haskell
terms essentially IO ().

3
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we need to �nd a way to avoid this unstructured in-place mutation
entirely.

2.5 Problem #3: in-place scene graph edits
In addition to changing visual and physical properties of individual
nodes, the scene graph is even more deeply a�ected by changes to
the structure of the graph. For example, whenever a block falling
in from the top hits another block, Shades determines whether any
blocks need to be deleted due to matching colours. Once the system
comes to a rest —i.e., when all reshu�ing triggered by deleted
blocks has ceased— the game spawns a new active block falling in
from the top.

Both deleting and spawning blocks a�ects the graph structure
and, in Swi� or Objective-C, is accomplished by a number of meth-
ods which all node classes inherit from SKNode. Here are a few of
them:

class SKNode: NSResponder {

var children: [SKNode] { get }

var parent: SKNode? { get }

func addChild(_ node: SKNode)

func removeChildren(in nodes: [SKNode])
...

}

�e properties children and parent4 are mutable (as indicated
by the keyword var), but they can only be mutated from code
inside the class as they are marked as get only. �e methods
addChild(_:) and removeChildren(in:) will alter these proper-
ties to perform graph edits. Just like with directly mutable proper-
ties, we need to �nd a functional way to represent these actions in
Haskell SpriteKit.

3 A Purely Functional Interface
To provide a purely functional interface for SpriteKit and similar
frameworks, we need to address the three issues introduced in the
previous section: (1) we need to resolve the need for subclassing;
(2) we need to deal with changes of scene graph properties; and (3)
we need to handle edits to the structure of the scene graph itself.

3.1 Algebraic datatypes and pure functions
For the functional API, we intentionally refrain from using ad-
vanced language features and extensions. Instead, we stick to func-
tional programming fundamentals, namely algebraic datatypes and
pure functions. Among other things, visual applications tend to
be of appeal to beginners (both of programming, in general, and
of functional programming, in particular). A simple interface is a
prerequisite for e�ective use in teaching.

3.2 Scenes and nodes
We begin by modelling SpriteKit scenes and nodes as Haskell
datatypes, addressing Problem #1 from Section 2.3. We can simply
ignore the fact that the Objective-C SKScene class is a subclass
of SKEffectNode, as this subclass relationship isn’t particularly
meaningful anyway (as already noted in Section 2.3). �is leaves us
with SKNode and its direct subclasses, which is the object-oriented
4�e syntax SKNode? is equivalent to Maybe SKNode in Haskell.

1 data Node u

2 = Node

3 { nodeName :: Maybe String

4 , nodePosition :: Point

5 , nodeChildren :: [Node u]

6 , nodeActionDirectives :: [Directive (Node u)]

7 , nodePhysicsBody :: Maybe PhysicsBody

8 , nodeUserData :: u

9 , . . .

10 }

11 | Label

12 { . . . −− repeats all �elds of the ‘Node’ constructor
13 , labelText :: String

14 , labelFontColor :: Color

15 , labelFontName :: Maybe String

16 , . . .

17 }

18 | Shape

19 { . . . −− repeats all �elds of the ‘Node’ constructor
20 , shapePath :: Path

21 , shapeFillColor :: Color

22 , . . .

23 }

24 | Sprite

25 { . . . −− repeats all �elds of the ‘Node’ constructor
26 , spriteSize :: Size

27 , spriteAnchorPoint :: Point

28 , spriteTexture :: Maybe Texture

29 , . . .

30 }

Figure 5. Haskell de�nition of scene nodes

equivalent of trying to model a sum type, while simultaneously
sharing the �elds of SKNode with all variants of this sum.

In Haskell, we render this direc�ly as a sum with named record
�elds with a plain Node alternative (representing SKNode) and one
further alternative for each direct subclass (here the Label, Shape
and Sprite alternatives) as shown in Figure 5. SpriteKit does
include a few more node variants, however our Haskell bindings
currently only supports a subset of them. �e missing variants can
be added in much the same way; it is just a ma�er of implementing
the binding.

Most importantly, all �elds of the node constructor (nodeName,
nodePosition, and so forth) are repeated in every single alterna-
tive. �is enables us to use the corresponding projection functions
uniformly on all values of type Node, partially replicating the func-
tionality provided by subclassing in the Objective-C API.

Moreover, the Node datatype in Figure 5 includes a type param-
eter u to type the nodeUserData �eld (Line 8) included in each
variant of Node. �is type parameter allows users to equip nodes
with application speci�c information. In Objective-C or Swi�, this
would typically be achieved by providing application-speci�c sub-
classes of the assorted node variants.

4
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1 data Scene sceneData nodeData

2 = Scene

3 { sceneName :: Maybe String

4 , sceneChildren :: [Node nodeData]

5 , sceneActionDirectives :: [SDirective (Scene sceneData nodeData) (Node nodeData)]

6 , sceneData :: sceneData

7 , sceneUpdate :: Maybe (SceneUpdate sceneData nodeData)

8 , scenePhysicsWorld :: PhysicsWorld sceneData nodeData

9 , sceneHandleEvent :: Maybe (EventHandler sceneData)

10 , . . . −−more �elds
11 }

12

13 type SceneUpdate sceneData nodeData = Scene sceneData nodeData → TimeInterval → Scene sceneData nodeData

14

15 type EventHandler userData = Event → userData → Maybe userData

16

17 data PhysicsWorld sceneData nodeData

18 = PhysicsWorld

19 { worldGravity :: Vector

20 , worldSpeed :: GFloat

21 , worldContactDidBegin :: Maybe (PhysicsContactHandler sceneData nodeData)

22 , worldContactDidEnd :: Maybe (PhysicsContactHandler sceneData nodeData)

23 }

24

25 type PhysicsContactHandler sceneData nodeData

26 = sceneData → PhysicsContact nodeData → (Maybe sceneData, Maybe (Node nodeData), Maybe (Node nodeData))

27

28 data PhysicsContact nodeData = PhysicsContact{ contactBodyA :: Node nodeData, contactBodyB :: Node nodeData, . . . }

Figure 6. Haskell de�nition of scenes

As we are ignoring SKScene’s subclass relationship with SKNode
by way of SKEffectNode, we simply represent it in a datatype
Scene of its own, as outlined in Figure 6. �is is perfectly �ne as
a scene node always and only occurs in the form of the root node
of a scene. �e Scene datatype includes a list of children, which
are Nodes, in addition to a range of scene-wide properties. It is
parameterised with two types, represented by the type variables
sceneData and nodeData. �e la�er is used to parameterise the
scene’s child nodes and the former to add application-speci�c state
to the scene itself (Figure 6, Line 6), again obviating the need for
subclassing.

3.3 Game state in Shades
In Shades, we use the types NodeState and SceneState (Figure 7,
Lines 1 & 7) to de�ne ShadesNode and ShadesScene by instantiat-
ing Node and Scene, respectively (Lines 16 & 17). �is enables us to
keep track of the colour of each block (by way of the NodeState).

Shades can be in one of three basic GameStates, as illustrated in
Figure 8:

1. Running: an active block is currently falling down and can
be moved to the le� or right by the player;

2. Landed: the active block made contact with the ground or
another block. If this happens in the topmost row of the
�eld, the game is over. If it �lls a row of blocks of the same

colour, or merges with other blocks, blocks are removed or
change colour, and the score is updated. �e player can’t
interact with the game in this state. Once none of the blocks
move anymore, a new block is spawned and the game is
back in Running mode.

3. GameOver: one column of blocks reaches the top of the play
area.

�e current state is maintained as one �eld of SceneState (Figure 7,
Line 12), together with the current score, �ags signalling whether
the key to move le� or right has been pressed, an optional value
indicating the score increase during the last frame, and randomInts,
which contains a stream of pseudo random numbers used to pick
the shade of newly spawned blocks.

�e remaining code in Figure 7 (from Line 19 onwards) initialises
a Shades scene at the start of the game, where the scene has three
children: a subtree containing the walls, a subtree for blocks, and a
node for the score. In the initial scene, we have no blocks yet. �e
function node :: [Node u] → Node u constructs a new group
node from a list of child nodes and initialises it with the SpriteKit
node defaults.

3.4 Physics
As a game progresses, its scene graph changes continuously. Part of
these changes are due to the simulation of the physical behaviour

5
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1 data NodeState = NoState −− for non-block nodes
2 | NodeCol NodeColour −− for block nodes
3 deriving (Eq, Show)

4

5 data GameState = Running | Landed | GameOver

6

7 data SceneState = SceneState

8 { sceneScore :: Int

9 , leftPressed :: Bool

10 , rightPressed :: Bool

11 , bumpScore :: Maybe Int

12 , gameState :: GameState

13 , randomInts :: [Int]

14 }

15

16 type ShadesNode = Node NodeState

17 type ShadesScene = Scene SceneState NodeState

18

19 initialShadesScene :: ShadesScene

20 initialShadesScene

21 = (sceneWithSize (Size width height))

22 {sceneChildren = [blocks, walls, score], . . . }

23

24 blocks :: ShadesNode

25 blocks = (node []){ nodeUserData = NoState

26 , nodeName = Just "Blocks"

27 }

28

29 walls :: ShadesNode

30 walls = (node [left, bottom, right])

31 {nodeUserData = NoState}

32

33 left :: ShadesNode

34 left = . . .

Figure 7. Scene and node type for the Shades game

Landed GameOver

left pressed right pressed

block contact

scene at rest

block contact

block in top row

Running

Figure 8. Game states and transitions

of the nodes. �ese changes don’t require the programmer to ac-
tively update the scene graph, as they are declaratively speci�ed
by values of type PhysicsBody, which speci�es properties such as
mass, restitution, friction, which categories of objects it interacts
with, and so on. Each node may optionally be associated with a
physics body by way of the nodePhysicsBody �eld (Figure 5, Line

7). Similarly, scenes may be associated with a PhysicsWorld (Fig-
ure 6, Line 27), specifying the gravity of the scene, the simulation
speed, and so on by way of scenePhysicsWorld (Figure 6, Line 8).

SpriteKit takes care that property changes by the physics engine
are properly sequenced with the execution of user code that can
observe these properties — anything else would result in a concur-
rency control nightmare. Hence, Haskell code will never get into
a situation where properties change behind the scenes, while that
Haskell code is running. �is is not just a lucky break provided by
SpriteKit, but generally how similar frameworks are designed to
avoid costly locking on a property by property basis.

Shades uses the physics engine only lightly; to simulate gravity
a�ecting blocks, boxing the blocks into the scene, and handling
collisions between blocks. �is automatically ensures that gaps are
�lled when blocks disappear. Hence, we associate physics bodies
with blocks and the (invisible) walls. In contrast, the score node
doesn’t interact with other nodes in a physical manner, and hence,
is not associated with a physics body.

3.5 Transformation instead of mutation
Changes to the scene graph are, of course, not restricted to the mere
physical simulation of objects. We also have: (1) reaction to external
events, such as mouse or keyboard events; (2) the e�ect of collisions
which go beyond a purely physical collision behaviour; and (3) the
continuously evolving game state as the game progresses.

�ese changes are the root cause for Problem #2 (Section 2.4),
where the properties of individual nodes get updated, and Prob-
lem #3 (Section 2.5), where the structure of the scene graph changes.
To preserve a functional interface, all these changes are expressed
in terms of purely functional transformations in Haskell, regardless
of whether individual nodes or the entire scene gets transformed.

3.6 Transformation by animation
Let us �rst focus on Problem #2, where we change the properties of
individual nodes. One way of doing so is by explicitly using record
updates to change �elds of a Node value. For example, we can move
a Sprite node by changing its position �eld:

moveLeftUpd :: ShadesNode → ShadesNode

moveLeftUpd sprite@Sprite{nodePosition = Point x y} =

let x' = (blockWidth / 2) `max` (x - blockWidth)

in sprite{ nodePosition = Point x' y }

Alternatively, we use the nodeActionDirectives �eld of the node
(Figure 5, Line 6) to add an animation action. SpriteKit provides a
variety of smart constructors for SAction values, such as moving,
resizing, fading, colour changes, playing sound �les, animating a
node with a sequence of textures, and more:

moveTo :: Point → SAction node children

scaleTo :: GFloat → SAction node children

fadeOut :: SAction node children

. . . −− there are several more such functions in SpriteKit

In contrast to simple �eld updates, these actions can be animated
over a user-speci�ed duration — for example, this is how we imple-
ment the melting away of blocks with matching colours in Shades.

�e function:

runAction :: SAction node children

→ SDirective node children

6
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converts a SAction into a SDirective, so that we can use it on a
node:

moveLeft :: ShadesNode → ShadesNode

moveLeft sprite@Sprite{nodePosition = Point x y}

= sprite{ nodeActionDirectives =

[runAction $ moveTo $

Point ((blockWidth/2) `max`

(x - blockWidth)) y]

}

Actions are more versatile than just simple updates of node
properties. Not only because most properties can be animated over
a duration, some properties, such as playing a sound �le, have
no corresponding node record �eld. Multiple actions can also be
combined sequentially or in parallel:

sequenceActions −− sequential composition of actions
:: [SAction node children] → SAction node children

groupActions −− parallel composition of actions
:: [SAction node children] → SAction node children

or applied repeatedly:

repeatActionCount

:: SAction node children → Int

→ SAction node children

repeatActionForever

:: SAction node children → SAction node children

We can specify the duration over which a change gets animated by
se�ing an action’s actionDuration �eld.

In fact, by way of custom actions, we can turn any Haskell
function on a node into an action:

type TimedUpdate node = node → GFloat → node

customAction

:: TimedUpdate node → SAction node children

moveLeftAction =

customAction (const (flip moveLeftUpd))

In Shades, whenever a block contacts with another block of the
same colour, we �rst change the colour of both blocks to the next
darker shade; then, we let the lower block slowly disappear by
scaling its height to zero over one second (using an action with an
actionDuration of one second), which provides the visual e�ect
of the top block melting into the lower one as it continues to fall
down the screen. Finally, when the node is invisible, we use the
removeFromParent action to detach the node from its parent node.

meltBlock node

= node{nodeActionDirectives

= [runAction $ sequenceActions

[ customAction darkenBlock

, (scaleYTo 0){actionDuration = 1}

, removeFromParent

] ]}

3.7 Transformative callbacks
�e application of node transformations, such as those described
previously, are in response to events which trigger callback handlers
— such events arise, for example, from keyboard or mouse input,
node collisions, or the start of a new animation frame. We realise
all these callback handlers as pure transformation functions.

Handling physics contacts. Two examples of such handlers are
worldContactDidBegin/End �elds in PhysicsWorld (Figure 6, Line
21 and 22). �ey are invoked whenever the physics engine detects
the start or end of contact (i.e., overlap) between two physics bodies,
and are used to implement contact behaviours beyond the bodies
physically bouncing o� each other.

In Shades, we use worldContactDidBegin to check whether a
block landed on a block of the same colour. Whenever that hap-
pens, the contact handler transforms the scene state to increment
the score and the contacting nodes by darkening both blocks and
“melting” the lowermost block.

contact :: SceneState

→ PhysicsContact NodeState

→ (Maybe SceneState,

Maybe ShadesNode,

Maybe ShadesNode)

contact state@SceneState{..} PhysicsContact{..}

| (sameColour contactBodyA contactBodyB) &&

(sameColumn contactBodyA contactBodyB)

= if (above contactBodyA contactBodyB)

then (Just $ incScore state,

Just $ darkenBlock contactBodyA,

Just $ meltBlock contactBodyB)

else (Just $ incScore state,

Just $ meltBlock contactBodyA ,

Just $ darkenBlock contactBodyB)

. . .

| otherwise

= (Nothing, Nothing, Nothing)

Handling input events. Another important callback handler is
sceneHandleEvent (Figure 6, Line 9), which SpriteKit invokes for
every input event (from a keyboard, mouse, touch screen, etc.). �e
event handler may transform the scene state or, if it is not prepared
to handle the event, may just return Nothing — in which case the
event gets propagated up Cocoa’s responder chain [1].

In Shades, the event handler simply checks whether the event in-
dicates a le� or right arrow keypress. If so, it sets the corresponding
�ag in the SceneState.

handleEvent :: Event

→ SceneState

→ Maybe SceneState

handleEvent KeyEvent{ keyEventType = KeyDown

, keyEventKeyCode = code } state

| code == leftArrowKey

= Just state { leftPressed = True }

| code == rightArrowKey

= Just state { rightPressed = True }

handleEvent _ _ = Nothing

7
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Handling the start of ananimation frame. In the handleEvent
code, we see that it does not directly move the active block le� or
right, but only sets a �ag. �e actual transformation of the block
position is le� to the scene’s main update handler determined by
the sceneUpdate �eld of a Scene (Figure 6, Line 7). It is invoked
each frame before the animation system and physics engine are
allowed to change the scene state.

In Shades, we use the function update from Figure 9. In the
�rst alternative of the case expression dispatching on the current
game state, the game reacts to a le� arrow press �agged by the
event handler, by running a custom action on the active block that
moves it to the le�. Together with the contact and event handlers,
the update function implements the state transition diagram from
Figure 8.

3.8 Editing trees
As we saw in Figure 7, from Line 29 onwards, the initial scene for
Shades only consist of nodes for the walls, the score, and a blocks
node with no children yet. During game play, we need to add new
nodes to the scene graph (whenever we spawn a new block) and
delete nodes (whenever a node melts into another or when a row
of blocks of the same colour disappears).

As we saw in Section 2.5, the Objective-C API of SpriteKit treats
adding and removing children of nodes di�erently to changing
other properties. In contrast, in Haskell, the nodeChildren �eld
of Node (Figure 5, Line 5) is just a normal list. �is keeps scene
tree edits, just like other property changes, straight forward in the
Haskell interface. As an example, consider the following code that
spawns a new active block that falls in from the top:

spawnNewBlock :: ShadesScene → ShadesScene

spawnNewBlock scene0 =

scene

{ sceneActionDirectives

= [runCustomActionOn "Blocks" addBlock]

, sceneData = sceneState { gameState = Running } }

where

addBlock node{ nodeChildren = children } _ =

node{ nodeChildren = block col : children }

(scene@Scene{sceneData = sceneState}, col) =

randomColour scene0

block :: NodeColour → ShadesNode

block colour = (spriteWithTexture texture)

{ nodeUserData = NodeCol colour, . . . }

Finally, Shades uses a function resting that is invoked when
all physical activity has come to a rest a�er a block landed on the
ground or on other blocks. It checks whether there is a row of blocks
of the same colour. If that is the case, that row gets deleted; if not,
it invokes the spawnNewBlock function, which we just discussed,
to start new activity.

In the second alternative of the case expression, we see how
resting deletes a row of blocks. Speci�cally, it sets the new list of
blocks, determined by removeColouredRow, via a helper function
setNodeChildren and a custom action:

resting :: Int → ShadesScene → ShadesScene

resting row scene{..}

| maxRow scene > blocksInCol

= scene{ sceneData = sceneData{ gameState = GameOver}}

| otherwise

= case removeColouredRow scene of

Nothing → spawnNewblock scene

Just blocks →

scene { sceneData = incRowScore sceneData

, sceneActionDirectives =

[ runCustomActionOn "Blocks"

(setNodeChildren blocks) ] }

where

−− Return top most row number with block in it
maxRow :: ShadesScene → Int

−− Return Nothing if no row of same colour can be found.
−−Otherwise, return list of blocks without that row.
removeColouredRow :: ShadesScene

→ Maybe [ShadesNode]

setNodeChildren :: [ShadesNode] → ShadesNode

→ TimeInterval → ShadesNode

setNodeChildren newKids node _ =

node{ nodeChildren = newKids }

Once again, this is a pure function, mapping the current scene to
the follow up scene.

4 Behind the Scenes
Now that we have se�led on a purely functional interface for
SpriteKit, we need to look at implementing it correctly and ef-
�ciently. To understand the challenges, let us look in some more
detail at the process of invoking the update handler passed in a
Scene’s sceneUpdate function. Figure 10 illustrates what happens
in this process if we implement it naı̈vely, for the situation where
we spawn a single new block in our Shades example program. �e
naı̈ve method performs the following steps:

1. Marshal the Objective-C scene graph to a value of the
Haskell datatype Scene.

2. Apply the sceneUpdate transformation function to this
Haskell value, which will result in a new Scene value.

3. Marshal the updated Scene value from Haskell back to
Objective-C.

�e new scene includes one new Node, namely the newly spawned
block, but all the other nodes will be the same.

�is is obviously wasteful. Most nodes are needlessly mar-
shalled back and forth between Objective-C and Haskell without
any change. Moreover, replacing nodes in the scene graph by mar-
shalled copies is o�en incorrect. Many nodes can have hidden
state; i.e., information that is not part of their public interface and
hence not represented in the Haskell rendering of a node. As a
consequence, that state is not reconstructed when such a node is
marshalled back from Haskell to its Objective-C representation. A
common example of hidden state are long running actions a�ached
to a node. �is can, for example, be a movement action which is
not instantaneous, but rather proceeds more slowly over several
frames of animation, or a sound that plays for a short while.
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1 update :: ShadesScene → TimeInterval → ShadesScene

2 update scene@Scene{ sceneData = sceneState@SceneState{..} } _dt

3 = case gameState of

4 Running | leftPressed → scene

5 { sceneActionDirectives = [runCustomActionOn "Block" (const moveLeft)]}

6 , sceneData = sceneState{ leftPressed = False}

7 }

8 | rightPressed → scene{. . .much like above. . .}
9 | Just n ← bumpScore → incScore n scene

10 | otherwise → scene

11 Landed → if sceneResting scene then resting scene else scene

12 GameOver → gameOver scene

Figure 9. �e main update handler of Shades

walls blocks

25

rightleft bottom

⋯

sceneUpdate

Objective-C -> Haskell

Haskell -> Objective-C

walls blocks

25

rightleft bottom

⋯

spawned block

Figure 10. Naı̈ve marshalling for sceneUpdate, for the process of spawning a single new block.

If we marshal a node with a currently a�ached long-running
action to Haskell and back to Objective-C, the action will be lost—
i.e., the animation will stop before it has completed, or the sound
stops playing before it is �nished. Hence, it is crucial for e�ciency
as well as for correctness that we re-use existing Objective-C node
representations when marshalling back and forth between the two
languages. Moreover, we want to avoid marshalling nodes that are
not used during a particular invocation of sceneUpdate — more
precisely, our aim is to ensure that marshalling will only impose a
linear overhead in sceneUpdate and similar callbacks, independent
of the size of the scene graph. �ese requirements lead us to the
following approach, which is illustrated in Figure 11:

1. Lazily marshal the Objective-C scene graph to a value of
the Haskell datatype Scene.

2. Apply the sceneUpdate transformation function to this
Haskell value, which will result in a new Scene value.

3. Compute the di�erence between the old and new value, cor-
responding to the changes e�ected by the transformation
function sceneUpdate.

4. Apply those changes to the original Objective-C scene graph.

In other words, we do not create a new scene graph from the
Haskell scene description returned by sceneUpdate. Instead, we
directly apply the changes derived from the di�erence between the
old and new scene value and in-place mutate the existing scene —
that is, based on the information derived from the output of the
pure transformation function, the adaptation layer replicates the
in-place mutation that an Objective-C program would have directly
performed on the object graph representing the scene. In contrast
to the purely functional API o�ered to a user of Haskell SpriteKit,
the implementation of the adaptation layer will have to resort to
unsafe low-level programming techniques — a�er all, all magic has
its price. In the following, we describe the three main techniques
to realise this scheme in more detail.

4.1 Lazy marshalling
A scene description is a tree in its Haskell representation. On in-
voking sceneUpdate, we only marshal the root of that tree from
its Objective-C representation to its Haskell representation; the

9
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walls blocks

25
rightleft bottom

⋯

 data Scene sc nd = Scene { … }  — Haskell record 
 type SceneUpdate sc nd  
   = Scene sc nd -> TimeInterval -> Scene sc nd

once per frame

Scene sc nd
➊ lazy marshalling

➋ SceneUpdate sc nd

Scene sc nd

➌ compute 
diff

➍ apply 
changes

Figure 11. E�cient implementation of sceneUpdate, as a transcription of pure transformations into direct graph edits.

marshalling of all subtrees and, indeed, the marshalling of all the in-
dividual properties of the Scene record are deferred. Conveniently,
Haskell, by being a lazy language, already comes with all the facili-
ties that we need to realise this scheme. All that is le� for us to do
is to ensure that all �elds of the Scene constructor are initialised
with thunks, and that these thunks perform the marshalling of the
scene properties and subtrees only when demanded.

However, FFI marshalling typically involves functions in the
IO monad, such as the methods of the Storable class. Hence,
to perform marshalling for a pure result, we need to resort to
unsafePerformIO. �is is not unusual when implementing a Haskell
binding for a foreign library. However, typically, we only use one
occurrence of unsafePerformIO to perform the entire marshalling
of a foreign structure or object, following the below pa�ern:

data Struct = Struct {field1 :: T1, . . ., fieldn :: Tn}

marshalStruct :: Ptr Struct → Struct

marshalStruct ptr = unsafePerformIO $ do

field1 ← <get first field>
...

fieldn ← <get nth field>

return Struct{..}

�is code marshals the entire structure eagerly. To marshal lazily,
we push the use of unsafePerformIO into the leaves — i.e., into
the marshalling of the individual �elds. Hence, we arrive get:

marshalStruct :: Ptr Struct → Struct

marshalStruct ptr = Struct{..}

where

field1 = unsafePerformIO <get first field>
...

fieldn = unsafePerformIO <get nth field>

Here we return the outermost structure right away and defer mar-
shalling of the components until they are demanded. �is is exactly
the approach that we take in Haskell SpriteKit. In fact, the mar-
shalling of scenes is achieved as follows:

marshalSKScene :: SKScene → Scene sd nd

marshalSKScene skScene

= Scene

{ sceneName = unsafePerformIO $(objc . . . )

, sceneChildren =

unsafePerformIO $ do

{ nodes ← $(objc . . . )

; unsafeInterleaveNSArrayToListOfNode nodes

}

. . . }

Here we use the package language-c-inline for the actual mar-
shalling of values, which includes facilities for using Objective-C in-
line in Haskell by way of quasi-quotation in Template Haskell [7, 15,
17]. �e splices of inline Objective-C are denoted by $(objc · · · )
above. Here, SKScene is the type of a reference to an Objective-C
SpriteKit scene node; a newtype wrapping of a foreign pointer [6].

�e function unsafeInterleaveNSArrayToListOfNode builds
a list of thunks that marshal subtrees, so that descending into one
subtree does not cause sibling subtrees to be marshalled. We use
the same approach with the various �avours of SpriteKit nodes,
regardless of whether they appear as subtrees to a scene (as above)
or whether they are directly passed to callbacks, such as contact
handlers or custom actions.

4.2 Change detection
Once the sceneUpdate transformation function yields a trans-
formed scene (of type Scene), we need to compare that trans-
formed scene to the original scene value passed as an argument
to sceneUpdate to determine the di�erence. Again, we need to be

10
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careful. If we compare both trees by a conventional tree walk, we
will perform work in the order of the size of the scene graph, even
if only one property changed. Moreover, we will undo the bene�ts
of lazy marshalling, as the comparison will demand all marshalling
to be performed.

In order to avoid the later, we need to be able to determine
whether a value has changed without demanding the thunk that
may encapsulate the marshalling of that value. �ere is no precise
method to check that property, but we can approximate. �e GHC
primitive reallyUnsafePtrEquality#, determines whether the
pointers to the heap node representing the two arguments are the
same pointer (i.e., the heap nodes are located at the same address
in the Haskell heap). If that is the case, we de�nitely know that
the two arguments are the same thing, whether evaluated or not.
Hence, the arguments represent equal values.

Conversely, if reallyUnsafePtrEquality# �ags the two point-
ers as not equal, we haven’t learnt anything useful. A�er all, two
di�erent pointers can still point to two Haskell structures that are
equivalent. However, for our use of reallyUnsafePtrEquality#
that is not an issue. In the worst case, if we update a property in
the scene graph with a value that it already contained, we have
performed super�uous work, but we haven’t changed the semantics
of the computation.

In other words, whenever reallyUnsafePtrEquality# deems
the values of a �eld in the Scene or Node type to be represented by
the same pointer in both the original and the transformed version,
we know that this �eld was not changed and we don’t need to
update it in the Objective-C version of the scene graph. However,
if reallyUnsafePtrEquality# �nds the pointers to be di�erent,
we update the corresponding property in the scene graph with the
value projected from the transformed Scene or Node value. �at
update may be super�uous, but it is never wrong.

�e following code excerpt illustrates the idea:

marshalScene :: Scene sd nd −− original scene
→ Scene sd nd −− updated scene
→ IO SKScene

marshalScene originalScene Scene{..} =

do

{ . . .

; case reallyUnsafePtrEquality#

originalName sceneName of

1# → return ()

_ → $(objc . . .) −− update scene graph
; updateChildren skNode

originalChildren sceneChildren
...

}

While, in principle, several operations of the runtime system,
such as garbage collection, and of heap manipulations of the gener-
ated code, such as a record updates, may introduce new pointers
to identical structures, this rarely happens in practice. A�er all,
both the compiler generated code and the runtime system are quite
careful not to unnecessarily demand thunks or copy structures as
this carries the risk of non-termination or at least increased re-
source consumption. As we only use reallyUnsafePtrEquality#
to avoid super�uous work, and not to make decisions a�ecting

semantics, we are on the safe side and generally achieve our per-
formance goal.

Moreover, SpriteKit callbacks, such as sceneUpdate, are nec-
essarily short running. �ey are executed o�en —in the case of
sceneUpdate, once per frame— and if they are long running, ani-
mation performance will be compromised anyway.

It would be interesting to investigate whether the use of GHC’s
StableNames might be helpful in this context. �e runtime system
is more careful about duplicating pointers that have been used to
create a StableName and StableNames can be compared for equal-
ity. However, StableNames in turn also carry a runtime cost and
SpriteKit would need to allocate quite a few StableNames to mar-
shal and di� one node. As unnecessarily updating one or multiple
scalar values in a node, once in a while, is not going carry a signi�-
cant performance penalty, it doesn’t seem worthwhile to generally
use StableNames. However, unnecessarily updating an entire sub-
tree in a large scene might potentially be su�ciently costly to
lead to the occasional dropped frame. If that is the case, using
StableNames exclusively to improve the accuracy of the change
detection for subtree pointers might be worthwhile.

4.3 Object caching
To avoid re-creating SpriteKit nodes in an Objective-C to Haskell
to Objective-C roundtrip —and, as we have discussed earlier, lose
vital hidden state in the process— we need to keep track of the
association between Objective-C nodes and their representations
in Haskell. �is allows us to identify the Objective-C node which
needs to be updated when we marshal a Haskell node back to
Objective-C.

Unfortunately, it is di�cult to maintain this association between
Haskell nodes and the Objective-C nodes they originate from in
a manner that is completely transparent to a user of the Haskell
SpriteKit API. A�er all, when the user code updates a node in a
transformation function, it will ultimately allocate a new copy of
that node and we cannot keep track of that relationship from the
outside. We address this issue by including a �eld nodeForeign in
every variant of the Node datatype:

data Node u

= Node

{ nodeName :: Maybe String

, nodePosition :: Point
...

, nodeForeign :: Maybe SKNode

}

| Label

{ nodeName :: Maybe String

, nodePosition :: Point
...

, nodeForeign :: Maybe SKNode

, labelText :: String
...

}
...

11
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Figure 12. Lazy Lambda — a Haskell clone of Flappy Bird

On marshalling an Objective-C node to Haskell, a foreign pointer
to the original Objective-C node is placed into the nodeForeign
�eld. In contrast, nodes which have been newly created from the
Haskell side, will have no such foreign pointer.

When marshalling the Haskell representation back to Objective-
C, the presence of a foreign pointer in nodeForeign indicates that
we ought to update the existing Objective-C node. Conversely, if
nodeForeign is Nothing, we must create a new Objective-C node
from scratch.

�e pitfall in this scheme is that duplicating a node with an
associated foreign pointer in Haskell land and marshalling both of
these nodes back into Objective-C creates an ambiguity. Only one
of the two Haskell nodes can be marshalled back to Objective-C by
reusing the existing Objective-C node, and Haskell SpriteKit has
no means to determine which one it ought to be. Note that this
choice determines which version of the Haskell node inherits the
hidden state in the original Objective-C node, and thus the choice
may lead to a behavioural di�erence. Hence, when duplicating
nodes in Haskell code, deterministic behaviour requires se�ing the
nodeForeign �eld of all but one node to Nothing. �is is a rare
situation, but there is no way to check for it statically.

5 Conclusions
We demonstrated how we can put a purely functional interface on
imperative, object-oriented frameworks based on a mutable scene
graph at the example of SpriteKit. Although our Haskell interface
does not currently expose all functionality supported by the native
SpriteKit library, it covers all core functionality and is su�cient to
implement interesting games. We used Shades as a simple example
and have also implemented a Haskell clone of Flappy Bird [16] (see
Figure 12).

Most of the functionality of the native SpriteKit library that is
currently not supported —such as positional audio, light sources,
particle e�ects, and inverse kinematics— can be easily added by
following the exact same approach presented in this paper; it is
simply the size of the API, not the di�culty of the task, that makes
this a signi�cant amount of work.

Future work. In addition to extending Haskell SpriteKit to cover
the complete set of functionality of the native library, the most
interesting topic for future work would be to investigate avenues
to automate the implementation of lazy marshalling and change
detection, possibly by way of Template Haskell or another generic
programming mechanism. Most of the code to lazily marshal indi-
vidual record �elds and to detect changes is both (a) low-level, and
(b) repetitive. Hence, it seems like an ideal target for automation.

It remains to be explored how some aspects of SpriteKit can be
provided nicely from Haskell. For example, SKEffectNode enables
the application of image �lters onto parts (or all) of a scene. In
order to use these, another Cocoa subsystem, CoreImage [3], would
need to be supported as well. Moreover, we have ignored the fact
that SpriteKit scene graphs contain back edges. In principle we
could introduce cycles into the Haskell representation as well, but
this seems unwieldy. Alternatively, we could provide query func-
tions to determine the parent node and enclosing scene of a given
Node value. �is is certainly su�cient for inspection, but becomes
trickier if we want to transform these nodes as well. However,
our experience with SpriteKit suggests that it is usually su�cient
to add actions to transform the user data of these nodes, which
again seems perfectly feasible within the approach outlined in this
paper. Finally, SpriteKit contains node query functions and related
functionality that poses similar issues to back edges.

It would be interesting to benchmark using StableNames to
improve change detection as discussed at the end of Section 4.2.
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