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Summary of Table 1 (Lipovetzky and Geffner 2012)

● Original algorithm: Breadth-first search (BrFS) method

● Requires states to be factored into features

● Prunes states that are not novel for width w

● A state is novel if it has a feature tuple of size w that is new in the search

● Complexity exponential in w, but independent of 

● Most classical planning benchmarks present a low width when the 
goal is a single atom.

IW(w) (Lipovetzky and Geffner 2012)



● Original algorithm: Breadth-first search (BrFS) method

● Requires states to be factored into features

● Prunes states that are not novel for width w

● A state is novel if it has a feature tuple of size w that is new in the search

● Complexity exponential in w, but independent of 

● Most classical planning benchmarks present a low width when the 
goal is a single atom.

● In practice:
○ Problems have higher width (no single-atom goal tasks)
○ IW(w) is mostly used with w=1 due to computational constraints

IW(w) (Lipovetzky and Geffner 2012)



Complexity of IW(w)

● Let                  denote the maximum amount of novel nodes that            
generates in a problem with              features of domain size 

● Our result is based on two basic premises:
○ A feature has one value at a time
○ A feature value appears in several tuples simultaneously

● Recursive formula
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Complexity of IW(w)

● Let                  denote the maximum amount of novel nodes that            
generates in a problem with              features of domain size 

● Our result is based on two basic premises:
○ A feature has one value at a time
○ A feature appears in several tuples simultaneously

● Recursive formula

States novel due 
to one feature  

States novel due 
to other features 
different than 



Complexity of IW(w)

● Let                  denote the maximum amount of novel nodes that            
generates in a problem with              features of domain size 

● Our result is based on two basic premises:
○ A feature has one value at a time
○ A feature appears in several tuples simultaneously

● General formula, for                     :



A hierarchical approach to blind search
● Blind search methods require two components:

○ Successor function: given a state and an action, returns a successor 
state (e.g., simulator)

○ Stopping condition: tells us when to stop the search (e.g., goal is met)

Example BrFS:
Q = Queue(root)
While Q not empty:

s = PopFirst(Q)
For each action a:

x = GenerateSuccessor(s,a)
Append(Q, x)
If ShouldStop(x):

return



A state is represented by 
its feature vector   

A hierarchical approach to blind search
● Our hierarchical approach:

○ Considers two sets of features       and



A hierarchical approach to blind search
● Our hierarchical approach:

○ Considers two sets of features       and
It also belongs to a high-level 
state, represented by the 
feature mapping 



A hierarchical approach to blind search
Each high-level state contains 
a low-level tree, where states 
share the same 

● Our hierarchical approach:
○ Considers two sets of features       and

○ Modifies:

■ High-level successor function: each call to 

this function triggers a low-level search



A hierarchical approach to blind search
When a state maps to a 
different          , the low-level 
search is stopped and a new 
high-level node is created

● Our hierarchical approach:
○ Considers two sets of features       and

○ Modifies:

■ High-level successor function: each call to 

this function triggers a low-level search

■ Low-level stopping condition: stops the 

low-level search when a state s that maps 

to a different          is found



A hierarchical approach to blind search
● Our hierarchical approach:

○ Considers two sets of features       and

○ Modifies:

■ High-level successor function: each call to 

this function triggers a low-level search

■ Low-level stopping condition: stops the 

low-level search when a state s that maps 

to a different          is found

○ We can pause and resume low-level searches
○ Allows for many levels of abstraction
○ Accepts different planners at each level



Hierarchical IW

● We can use IW(w) at the different levels

● For instance:
○ IW(2) at high-level

○ IW(1) at low-level

IW(1) IW(1)

IW(1)
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HIW(2, 1)



Hierarchical IW

● We can use IW(w) at the different levels

● For instance:
○ IW(2) at high-level

○ IW(1) at low-level

● In general: 

● HIW can solve problems of width 

HIW(2, 1)

IW(1) IW(1)

IW(1)

IW(2)

Features:
● 1-D position
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Hierarchical IW

● We can use IW(w) at the different levels

● For instance:
○ IW(2) at high-level

○ IW(1) at low-level

● In general: 

● HIW can solve problems of width 

HIW(2, 1)

Features:
● 1-D position (low level)
● Having the key (high level)

This problem has width 2,
but it can be solved by 

HIW(1,1)

IW(1) IW(1)

IW(1)

IW(2)



Incremental HIW

● Hypothesis: features that only change once 
in a branch before being pruned are good 
candidates

pruned

Goal



Incremental HIW

● Hypothesis: features that only change once 
in a branch before being pruned are good 
candidates

● Incremental HIW(1,1):

○ Iteratively run HIW(1,1)

○ Add one feature to      at each iteration

○ Discover new features when necessary

○ Reuse the search tree among iterations pruned

Goal



Results in classical planning

● Single goal instances

● Budget of 10K nodes

● We report:
○ Solved instances (%)
○ Avg. nodes (solved)
○ Avg. time (solved)

● IHIW > IW(1) in 31/36 domains

● IHIW ≥ IW(2) in 24/36 domains

Best overall
#Nodes / Time (s) > IW(2)

Instances

IHIW(1,1) < IW(2)
IHIW(1,1) = IW(2)

IHIW(1,1) > IW(2)
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Results in classical planning

● Single goal instances

● Budget of 10K nodes

● We report:
○ Solved instances (%)
○ Avg. nodes (solved)
○ Avg. time (solved)

● IHIW > IW(1) in all but 5 domains

● IHIW ≥ IW(2) in 24/36 domains
○ Uses less nodes in 12/24
○ Solves it faster in 18/24

Best overall
#Nodes / Time (s) > IW(2)

Instances TimeNodes

IHIW(1,1) < IW(2)
IHIW(1,1) = IW(2)

IHIW(1,1) > IW(2)
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π-HIW

● Integrating HIW with a policy learning scheme
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○ High-level planner: Count-Based Rollout IW

■ Selects high-level nodes according to
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π-HIW

● Integrating HIW with a policy learning scheme
○ High-level planner: Count-Based Rollout IW

■ Selects high-level nodes according to
■ Prunes nodes using a mapping from novel tuples to unpruned nodes

○ Low-level planner: π-IW modified
■ Tree counts for tie-breaking (when the reward is sparse)
■ Value function

Planning 
step 

Action 
execution

Learning 
step



Results in gridworld

● Sparse reward tasks. The episode terminates:
○ when the agent     picks the key     and reaches the door      (r = +1)

○ when hitting a wall (r = -1)

○ after 200 / 500 steps (r = 0)



Results in gridworld

● Sparse reward tasks. The episode terminates:
○ when the agent     picks the key     and reaches the door      (r = +1)

○ when hitting a wall (r = -1)

○ after 200 / 500 steps (r = 0)

● Features:
○ Neural network activations (low level)

○ Downsampling (high level)

Example: 2x2 tiles



Results in gridworld

neural network activationsFeatures:
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Results in gridworld

neural network activations (low level)
downsampling (high level)

Features:



Results in gridworld

neural network activations (low level)
downsampling (high level)

Features:



Results in Atari games
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Conclusions

● Tighter bound for IW(w)
● Simple method for hierarchical blind search
● Hierarchical IW:

○ Can solve problems of width 
○ Incremental HIW: discovering high-level features
○ Experiments: IHIW > IW(2) in 24/36 domains (> instances, < nodes, < time)

● π-HIW:
○ Count-based Rollout IW (high-level planner)
○ Improvements to π-IW (low-level planner):

■ Value
■ Counts

○ Experiments: gridworld and Atari games



Thanks!
https://github.com/aig-upf/hierarchical-IW


