
Hierarchical Width-Based
Planning and Learning

Miquel Junyent, Vicenç Gómez, Anders Jonsson
Universitat Pompeu Fabra, Barcelona, Spain

ICAPS
August 2021

Summary of Table 1 (Lipovetzky and Geffner 2012)

● Original algorithm: Breadth-first search (BrFS) method

● Requires states to be factored into features

● Prunes states that are not novel for width w

● A state is novel if it has a feature tuple of size w that is new in the search

● Complexity exponential in w, but independent of

● Most classical planning benchmarks present a low width when the
goal is a single atom.

IW(w) (Lipovetzky and Geffner 2012)

● Original algorithm: Breadth-first search (BrFS) method

● Requires states to be factored into features

● Prunes states that are not novel for width w

● A state is novel if it has a feature tuple of size w that is new in the search

● Complexity exponential in w, but independent of

● Most classical planning benchmarks present a low width when the
goal is a single atom.

● In practice:
○ Problems have higher width (no single-atom goal tasks)
○ IW(w) is mostly used with w=1 due to computational constraints

IW(w) (Lipovetzky and Geffner 2012)

Complexity of IW(w)

● Let denote the maximum amount of novel nodes that
generates in a problem with features of domain size

● Our result is based on two basic premises:
○ A feature has one value at a time
○ A feature value appears in several tuples simultaneously

● Recursive formula

Complexity of IW(w)

● Let denote the maximum amount of novel nodes that
generates in a problem with features of domain size

● Our result is based on two basic premises:
○ A feature has one value at a time
○ A feature appears in several tuples simultaneously

● Recursive formula
Only the initial state is novel

Complexity of IW(w)

● Let denote the maximum amount of novel nodes that
generates in a problem with features of domain size

● Our result is based on two basic premises:
○ A feature has one value at a time
○ A feature appears in several tuples simultaneously

● Recursive formula

All states are novel

Complexity of IW(w)

● Let denote the maximum amount of novel nodes that
generates in a problem with features of domain size

● Our result is based on two basic premises:
○ A feature has one value at a time
○ A feature appears in several tuples simultaneously

● Recursive formula

States novel due
to one feature

States novel due
to other features
different than

Complexity of IW(w)

● Let denote the maximum amount of novel nodes that
generates in a problem with features of domain size

● Our result is based on two basic premises:
○ A feature has one value at a time
○ A feature appears in several tuples simultaneously

● General formula, for :

A hierarchical approach to blind search
● Blind search methods require two components:

○ Successor function: given a state and an action, returns a successor
state (e.g., simulator)

○ Stopping condition: tells us when to stop the search (e.g., goal is met)

Example BrFS:
Q = Queue(root)
While Q not empty:

s = PopFirst(Q)
For each action a:

x = GenerateSuccessor(s,a)
Append(Q, x)
If ShouldStop(x):

return

A state is represented by
its feature vector

A hierarchical approach to blind search
● Our hierarchical approach:

○ Considers two sets of features and

A hierarchical approach to blind search
● Our hierarchical approach:

○ Considers two sets of features and
It also belongs to a high-level
state, represented by the
feature mapping

A hierarchical approach to blind search
Each high-level state contains
a low-level tree, where states
share the same

● Our hierarchical approach:
○ Considers two sets of features and

○ Modifies:

■ High-level successor function: each call to

this function triggers a low-level search

A hierarchical approach to blind search
When a state maps to a
different , the low-level
search is stopped and a new
high-level node is created

● Our hierarchical approach:
○ Considers two sets of features and

○ Modifies:

■ High-level successor function: each call to

this function triggers a low-level search

■ Low-level stopping condition: stops the

low-level search when a state s that maps

to a different is found

A hierarchical approach to blind search
● Our hierarchical approach:

○ Considers two sets of features and

○ Modifies:

■ High-level successor function: each call to

this function triggers a low-level search

■ Low-level stopping condition: stops the

low-level search when a state s that maps

to a different is found

○ We can pause and resume low-level searches
○ Allows for many levels of abstraction
○ Accepts different planners at each level

Hierarchical IW

● We can use IW(w) at the different levels

● For instance:
○ IW(2) at high-level

○ IW(1) at low-level

IW(1) IW(1)

IW(1)

IW(2)

HIW(2, 1)

Hierarchical IW

● We can use IW(w) at the different levels

● For instance:
○ IW(2) at high-level

○ IW(1) at low-level

● In general:

● HIW can solve problems of width

HIW(2, 1)

IW(1) IW(1)

IW(1)

IW(2)

Features:
● 1-D position
● Having the key

Hierarchical IW

● We can use IW(w) at the different levels

● For instance:
○ IW(2) at high-level

○ IW(1) at low-level

● In general:

● HIW can solve problems of width

HIW(2, 1)

Features:
● 1-D position (low level)
● Having the key (high level)

This problem has width 2,
but it can be solved by

HIW(1,1)

IW(1) IW(1)

IW(1)

IW(2)

Incremental HIW

● Hypothesis: features that only change once
in a branch before being pruned are good
candidates

pruned

Goal

Incremental HIW

● Hypothesis: features that only change once
in a branch before being pruned are good
candidates

● Incremental HIW(1,1):

○ Iteratively run HIW(1,1)

○ Add one feature to at each iteration

○ Discover new features when necessary

○ Reuse the search tree among iterations pruned

Goal

Results in classical planning

● Single goal instances

● Budget of 10K nodes

● We report:
○ Solved instances (%)
○ Avg. nodes (solved)
○ Avg. time (solved)

● IHIW > IW(1) in 31/36 domains

● IHIW ≥ IW(2) in 24/36 domains

Best overall
#Nodes / Time (s) > IW(2)

Instances

IHIW(1,1) < IW(2)
IHIW(1,1) = IW(2)

IHIW(1,1) > IW(2)

%
 o

ve
r t

ot
al

Results in classical planning

● Single goal instances

● Budget of 10K nodes

● We report:
○ Solved instances (%)
○ Avg. nodes (solved)
○ Avg. time (solved)

● IHIW > IW(1) in all but 5 domains

● IHIW ≥ IW(2) in 24/36 domains
○ Uses less nodes in 12/24

Best overall
#Nodes / Time (s) > IW(2)

InstancesNodes

IHIW(1,1) < IW(2)
IHIW(1,1) = IW(2)

IHIW(1,1) > IW(2)

%
 o

ve
r t

ot
al

Results in classical planning

● Single goal instances

● Budget of 10K nodes

● We report:
○ Solved instances (%)
○ Avg. nodes (solved)
○ Avg. time (solved)

● IHIW > IW(1) in all but 5 domains

● IHIW ≥ IW(2) in 24/36 domains
○ Uses less nodes in 12/24
○ Solves it faster in 18/24

Best overall
#Nodes / Time (s) > IW(2)

Instances TimeNodes

IHIW(1,1) < IW(2)
IHIW(1,1) = IW(2)

IHIW(1,1) > IW(2)

%
 o

ve
r t

ot
al

π-HIW

● Integrating HIW with a policy learning scheme

Planning
step

Action
execution

Learning
step

π-HIW

● Integrating HIW with a policy learning scheme
○ High-level planner: Count-Based Rollout IW

■ Selects high-level nodes according to
■ Prunes nodes using a mapping from novel tuples to unpruned nodes

Planning
step

Action
execution

Learning
step

π-HIW

● Integrating HIW with a policy learning scheme
○ High-level planner: Count-Based Rollout IW

■ Selects high-level nodes according to
■ Prunes nodes using a mapping from novel tuples to unpruned nodes

○ Low-level planner: π-IW modified
■ Tree counts for tie-breaking (when the reward is sparse)
■ Value function

Planning
step

Action
execution

Learning
step

Results in gridworld

● Sparse reward tasks. The episode terminates:
○ when the agent picks the key and reaches the door (r = +1)

○ when hitting a wall (r = -1)

○ after 200 / 500 steps (r = 0)

Results in gridworld

● Sparse reward tasks. The episode terminates:
○ when the agent picks the key and reaches the door (r = +1)

○ when hitting a wall (r = -1)

○ after 200 / 500 steps (r = 0)

● Features:
○ Neural network activations (low level)

○ Downsampling (high level)

Example: 2x2 tiles

Results in gridworld

neural network activationsFeatures:

Results in gridworld

neural network activationsFeatures:

Results in gridworld

neural network activations (low level)
downsampling (high level)

Features:

Results in gridworld

neural network activations (low level)
downsampling (high level)

Features:

Results in Atari games

Results in Atari games

Results in Atari games

Results in Atari games

Conclusions

● Tighter bound for IW(w)
● Simple method for hierarchical blind search
● Hierarchical IW:

○ Can solve problems of width
○ Incremental HIW: discovering high-level features
○ Experiments: IHIW > IW(2) in 24/36 domains (> instances, < nodes, < time)

● π-HIW:
○ Count-based Rollout IW (high-level planner)
○ Improvements to π-IW (low-level planner):

■ Value
■ Counts

○ Experiments: gridworld and Atari games

Thanks!
https://github.com/aig-upf/hierarchical-IW

