Hierarchical Width-Based
Planning and Learning

Miquel Junyent, Viceng GOmez, Anders Jonsson

Universitat Pompeu Fabra, Barcelona, Spain

Universitat

upf Pompeu Fabra ICAPS
Barcelona August 2021




IW( W) (Lipovetzky and Geffner 2012)

e Original algorithm: Breadth-first search (BrFS) method

e Requires states to be factored into features ¢(s)

e Prunes states that are not novel for width w

o A state is novel if it has a feature tuple of size w that is new in the search
o« Complexity exponential in w, but independent of |S|

e Most classical planning benchmarks present a low width when the
goal is a single atom.

# Domains # Inst. Inst. IW(1) Inst. IW(2)
37 37,921 37.0% 88.2%

Summary of Table 1 (Lipovetzky and Geffner 2012)




IW( W) (Lipovetzky and Geffner 2012)

e Original algorithm: Breadth-first search (BrFS) method

e Requires states to be factored into features ¢(s)

e Prunes states that are not novel for width w

o A state is novel if it has a feature tuple of size w that is new in the search
o« Complexity exponential in w, but independent of |S|

e Most classical planning benchmarks present a low width when the
goal is a single atom.

e In practice:
o Problems have higher width (no single-atom goal tasks)
o IW(w) is mostly used with w=1 due to computational constraints



Complexity of IW(w)

e Let N(n,d,w)denote the maximum amount of novel nodes that IW(w)
generates in a problem with n = |F| features of domain size d = | D|

e Ourresultis based on two basic premises:
o A feature has one value at a time
o A feature value appears in several tuples simultaneously

e Recursive formula



Complexity of IW(w)

e Let N(n,d,w)denote the maximum amount of novel nodes that [W(w)
generates in a problem with n = |F| features of domain size d = | D|

e Ourresultis based on two basic premises:
o A feature has one value at a time
o A feature appears in several tuples simultaneously

e Recursive formula
N(n, d, O) = 1, —| Only the initial state is novel

I

w =10




Complexity of IW(w)

e Let N(n,d,w)denote the maximum amount of novel nodes that [W(w)
generates in a problem with n = |F| features of domain size d = | D|

e Ourresultis based on two basic premises:
o A feature has one value at a time
o A feature appears in several tuples simultaneously

e Recursive formula
N(n,d,0) =1,
N(n, d7 n) — dn7 — | All states are novel

n=uw




Complexity of IW(w)

e Let N(n,d,w)denote the maximum amount of novel nodes that [W(w)
generates in a problem with n = |F| features of domain size d = | D|

e Ourresultis based on two basic premises:
o A feature has one value at a time
o A feature appears in several tuples simultaneously

e Recursive formula

N(n,d,0) =1,
N(n,d,n)=d",
N(n,d,w)=(d—-1)N(n—1,d,w—1)+ N(n—1,d,w).

Y Y

States novel due
States novel due

to other features
to one feature f

different than f




Complexity of IW(w)

e Let N(n,d,w)denote the maximum amount of novel nodes that IW(w)
generates in a problem with n = |F| features of domain size d = | D|

e Ourresultis based on two basic premises:
o A feature has one value at a time
o A feature appears in several tuples simultaneously

e General formula, for 0 < w < n;

N(n,d,w) = Y Kn_l_k>dk(d—1)w_k].

w— k
k=0



A hierarchical approach to blind search

e Blind search methods require two components:

o Successor function: given a state and an action, returns a successor
state (e.qg., simulator)

o Stopping condition: tells us when to stop the search (e.g., goal is met)

Example BrFs:

Q = Queue(root)
While Q not empty:
s = PopFirst(Q)
For each action a:
X =

GenerateSuccessor(s,a)
Append(Q, x)

If |ShouldStop(x)}:
return




A hierarchical approach to blind search

o Our hierarchical approach:

o Considers two sefs of features I}, and Fy

A state is represented by
its feature vector ¢y(s)

O



A hierarchical approach to blind search

e Our hierarchical approach: [” Sy —— high_levej

o Considers two sets of features Fh and Fg ?;ogfdrreer%ﬁ;%%dﬁ;)he

O




A hierarchical approach to blind search

o Our hierarchical approach: Each high-level state contains
o Considers two sets of features Fj, and Fy 9 U EE. L6, WIS STEEs
share the same ¢p,(s)
o Modifies:

= High-level successor function: each call to J{R
this function triggers a low-level search




A hierarchical approach to blind search

When a state maps to a
different ¢;(s), the low-level
search is stopped and a new
high-level node is created

o Our hierarchical approach:

o Considers two sefs of features I}, and Fy

o Modifies:
= High-level successor function: each call to
this function triggers a low-level search d{%
= Low-level stopping condition: stops the é//

low-level search when a state s that maps

to a different ¢,(s) is found




A hierarchical approach to blind search

o Our hierarchical approach:
o Considers two sefs of features I}, and Fy
o Modifies:
= High-level successor function: each call to

this function triggers a low-level search

= Low-level stopping condition: stops the

low-level search when a state s that maps g{%
to a different ¢,(s) is found

o We can pause and resume low-level searches
o Allows for many levels of abstraction

o Accepts different planners at each level




Hierarchical IW

e We can use IW(w) at the different levels

e Forinstance:
o IW(2) at high-level

o IW(1) at low-level

} HIW (2, 1)

IW(2)

Ix%

IW(1) :




Hierarchical IW

We can use IW(w) at the different levels

For instance:
o IW(2) at high-level
HIW (2, 1)
o IW(1) at low-level
In general: HIW (wy,, wy)

HIW can solve problems of width wy, + wy

(1)
I oo
I =
T

Features:
e 1-D position
e Having the key

IW(2)

Ig%

IW(1) :




Hierarchical IW

We can use IW(w) at the different levels

For instance:
o IW(2) at high-level
o IW(1) at low-level

In general: HIW (wy,,

} HIW (2, 1)

wy)

HIW can solve problems of width wy, + wy

(l)
Il ‘ool
I r"\‘v\!\

Features:
e 1-D position (low level)
e Having the key (high level)

[T

his problem has width 2,
but it can be solved by
HIW(1,1)

}

IW(2)

Ig%

IW(1) :




Incremental HIW

o Hypothesis: features that only change once
in a branch before being pruned are good
candidates

S0 S1 82 S3 54

Goal




Incremental HIW

o Hypothesis: features that only change once
in a branch before being pruned are good
candidates

e Incremental HIW(1,1):
o lIteratively run HIW(1,1)
o Add one feature to Fj at each iteration
o Discover new features when necessary

o Reuse the search free among iterafions

S0 S1 82 S3 54

Goal




Results in classical planning

Single goal instances A
Budget of 10K nodes

We report:

o Solved instances (%)
o Avg. nodes (solved)
o Avg. time (solved)

[ }
% over total

IHIW > IW(1) in 31/36 domains
IHIW 2> IW(2) in 24/36 domains

Instances

IHIW(1,1) < IW(2)
IHIW(1,1) = IW(2)
B Hiw(,1) > 1w(2)




Results in classical planning

e Single goal instances \
Budget of 10K nodes

o We report:
o Solved instances (%)
o Avg. nodes (solved)
o Avg. time (solved)

% over total

IHIW > IW(1) in all but 5 domains

IHIW 2 IW(2) in 24/36 domains

o Uses less nodesin 12/24 IHIW(1,1) < IW(2)
IHIW(1,1) = IW(2)
B Hiw(,1) > 1w(2)

Nodes Instances




Results in classical planning

e Single goal instances \

e Budget of 10K nodes

o We report:
o Solved instances (%)
o Avg. nodes (solved)
o Avg. time (solved)

IHIW > IW(1) in all but 5 domains

IHIW 2 IW(2) in 24/36 domains
o Uses less nodesin 12/24 IHIW(1,1) < IW(2)
o Solves it fasterin 18/24 IHIW(1,1) = IW(2)

B Hiw(,1) > 1w(2)

% over total

Nodes Instances Time




m-HIW

e Integrating HIW with a policy learning scheme

Planning Action Learning
[ step ] E> [execu’rion] E> [ step ]

Q /)




m-HIW

e Integrating HIW with a policy learning scheme

o High-level planner: Count-Based Rollout IW
= Selects high-level nodes according to p oc exp (1/7(c+ 1))
= Prunes nodes using a mapping from novel tuples to unpruned nodes

Planning Action Learning
[ step J E> [execu’rion} E> [ step ]

Q /)




m-HIW

e Integrating HIW with a policy learning scheme

o High-level planner: Count-Based Rollout IW
= Selects high-level nodes according to p oc exp (1/7(c+ 1))
= Prunes nodes using a mapping from novel tuples to unpruned nodes

o Low-level planner: w-IW modified
= [ree counts for fie-breaking (when the reward is sparse)
= Value function

Planning Action Learning
step E> execution E> step

Q 2




Results in gridworld

e Sparse reward tasks. The episode terminates:
o when the agent @l picks the key ll and reaches the door [@ (r=+1)
o when hitting awall (r=-1)
o after 200 / 500 steps (r = 0)

_L__.'

L~




Results in gridworld

e Sparse reward tasks. The episode terminates:
o when the agent @l picks the key ll and reaches the door [@ (r=+1)
o when hitting awall (r=-1)
o after 200 / 500 steps (r = 0)
e Features:
o Neural network activations (low level)

o Downsampling (high level)

Example: 2x2 tiles



Results in gridworld

ool _ﬁwm/%
0.0 0.2 0.4 0.6 0.8 1.0
Environment interactions le6

— W

0.0 0.2 0.4 0.6 0.8 1.0
Environment interactions le6

Features: neural network activations



Results in gridworld

1.0 1
0.8 A
© 0.6 1
©
=
& 0.4
N M
0.0 A
0.0 0.2 0.4 0.6 0.8 1.0
Environment interactions le6
1.01 — mw W+
0.8 A
- 0.6
©
2
& 0.4 -
0.2
0.0 " =
0.0 0.2 0.4 0.6 0.8 1.0
Environment interactions le6

Features: neural network activations



Results in gridworld

0?0 0?2 0?4 0.'6 0?8 170
Environment interactions le6
— T-IW — T-HIW 2x2 — n-HIW 3x3
m-IW+
e g
0?0 0.'2 0?4 0.'6 0?8 1T0
Environment interactions le6
Features: neural network activations (low level)

downsampling (high level)




Results in gridworld

f ~ J i
A
[ 3 <
o
0.0 0.2 0.4 0.6 0.8 1.0
Environment interactions le6
— T-IW — T-HIW 2x2 — n-HIW 4x4
m-IW+ —— T-HIW 3x3  —— m-HIW 5x5
W
0.0 0.2 0.4 0.6 0.8 1.0
Environment interactions le6

Features: neural network activations (low level)
downsampling (high level)




00 00
-IIIIII/

e _
0 086420
5 .I.

Results in Atari games

100 A

JusWaAoIdWI BAIRRIRY



Atari games

IN

Results

00 00
IIIIIII/

(T

Montezuma's revenge

— -IW

m-IW+
— m-HIW

1.00 1.25 1.50 1.75 2.00
Environment interactions

0.75

0.50

0.25

0.00

7000 A

100 A

T
o
wn

\\
A\ T T T
o «© o <
—

JusWaAoIdWI BAIRRIRY

6000 -

5000 A

4000 A
3000 A

piemay

2000 A
1000 +

le7



(T

N
& S
K
RN
®
1.25

T
N
Montezuma's revenge

IR
®+‘:°e>°
N
0.50 0.75 1.00
Environment interactions

T
&

S
N
SEN

i games

| |
m-IW+
— m-HIW
0.25

L 9
% %%

— -IW

0.00

T
*@‘
el(‘
)
&

5
&

S
7000 A
6000 -
5000 A
4000 A
3000 A
2000 A
1000 +

Atar

0O
%% piemay

IN

.
© © © ¥ N O N A
-

Results

T
o
wn

100 A

JusWaAoIdWI BAIRRIRY



(T

.
&
2

RN

?.\ o\’b‘ Q,Q ’b\:

Q 3
Y

Montezuma's revenge

T
1.00 1.25
Environment interactions

0.75

o
R4
0.50

T
&

S
N
SEN

i games

| |
m-IW+
— m-HIW
0.25

L 9
% %%

— -IW

0.00

T
&""
0(‘
)
&

5
<

S
7000 A
6000 -
5000 A
4000 A
3000 A
2000 A
1000 +

Atar

0O
%% piemay

IN

A\

T T T
—w © © < o o o~ meV‘
—

Results

T
o
wn

100 A

JusWaAoIdWI BAIRRIRY



Conclusions

Tighter bound for IW(w)
Simple method for hierarchical blind search

Hierarchical IW:
o Can solve problems of width wy, + wy
o Incremental HIW: discovering high-level features
o Experiments: IHIW > IW(2) in 24/36 domains (> instances, < nodes, < time)
m-HIW:
o Count-based Rollout IW (high-level planner)
o Improvements to m-IW (low-level planner):
= Value
« Counts
o Experiments: gridworld and Atari games



Thanks!

https://github.com/aig-upf/hierarchical-IW



