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Abstract

Conventional reinforcement learning (RL) methods can suc-
cessfully solve a wide range of sequential decision problems.
However, learning policies that can generalize predictably
across multiple tasks in a setting with non-Markovian reward
specifications is a challenging problem. We propose to use suc-
cessor features to learn a policy basis so that each (sub)policy
in it solves a well-defined subproblem. In a task described
by a finite state automaton (FSA) that involves the same set
of subproblems, the combination of these (sub)policies can
then be used to generate an optimal solution without addi-
tional learning. In contrast to other methods that combine
(sub)policies via planning, our method asymptotically attains
global optimality, even in stochastic environments.

Introduction
Autonomous agents that interact with an environment usually
face tasks that comprise complex, entangled behaviors over
long horizons. Conventional reinforcement learning (RL)
methods have successfully addressed this. However, in cases
when the agent is meant to perform several tasks across simi-
lar environments, training a policy for every task separately
can be time-consuming and requires a lot of data. In such
cases, the agent can utilize a method that has built-in general-
ization capabilities. One such method relies on the assump-
tion that reward functions of these tasks can be decomposed
into a linear combination of successor features (Barreto et al.
2017). When a new task is presented, it is possible to com-
bine previously learned policies and their successor features
to solve a new task. While combining such policies is guar-
anteed to be an improvement over any previously learned
policy, it may not necessarily be optimal. However, as shown
by Alegre, Bazzan, and Da Silva (2022), one can leverage
recent advancements in multi-objective RL to learn a set of
policies that constitutes a policy basis to retrieve an optimal
policy for any linear combination of successor features.

While traditional RL methods rely on Markovian reward
functions, defining a task using such a function can be chal-
lenging and sometimes impossible (Whitehead and Lin 1995).
In scenarios where expressing the reward function in Marko-
vian terms is not feasible, there has been a growing inter-
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est in alternative methods for task specification in recent
years (Toro Icarte et al. 2018a; Camacho et al. 2019). In our
work we focus on developing a method that utilizes gener-
alization capabilities of successor features in a settings with
non-Markovian reward functions.

Prior techniques for such settings have been proposed
in contexts where a set of propositional symbols enables
the definition of high-level tasks using logic (Vaezipoor
et al. 2021; Toro Icarte et al. 2019) or finite state automata
(FSA) (Toro Icarte et al. 2018a). Like in hierarchical RL,
they are often based on decomposing tasks into sub-tasks and
solving each sub-task independently (Dietterich 2000; Sut-
ton, Precup, and Singh 1999). However, combining optimal
solutions for sub-tasks may potentially result in a suboptimal
overall policy. This is referred to as recursive optimality (Di-
etterich 2000) or myopic policy (Vaezipoor et al. 2021).

To alleviate this issue, one can consider methods that con-
dition the policy or the value function on the specification of
the whole task (Schaul et al. 2015) and such approaches were
recently also proposed for tasks with non-Markovian reward
functions (Vaezipoor et al. 2021). However, the methods that
specify the whole task usually rely on a blackbox neural net-
work for planning when determining which sub-goal to reach
next. This makes it hard to interpret the plan to solve the task
and although they show promising results in practice, it is
unclear whether and when these approaches will generalize
to a new task.

Instead, our work aims to use task decomposition without
sacrificing global optimality to achieve predictable general-
ization. The method we propose learns a set of local policies
in sub-tasks such that their combination forms a globally
optimal policy for a large collection of problems described
with FSAs. A new policy that solves any new task can then be
created, without additional learning, by planning on a given
FSA task description. Our contributions are:

• We propose to use successor features to learn a policy
basis that is suitable for planning in stochastic domains.

• We develop a planning framework that uses such policy
bases for zero-shot generalization to complex temporal
tasks described by an arbitrary FSA.

• We prove that if the policies in this basis are optimal, our
framework produces a globally optimal solution even in
stochastic domains.
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Background and Notation
Given a finite set X , let ∆(X ) = {p ∈ RX :

∑
x p(x) = 1,

p(x) ≥ 0 (∀x)} denote the probability simplex on X . Given
a probability distribution q ∈ ∆(X ), let supp(q) = {x ∈ X :
q(x) > 0} ⊆ X denote the support of q. We abuse notation
and let ∆(d) to represent the (standard) simplex in Rd.

Reinforcement Learning
Reinforcement learning problems commonly assume an un-
derlying Markov Decision Process (MDP). We define an
MDP as the tupleM = ⟨S, E ,A,R,P0,P, γ⟩ where S is the
set of states, E is the set of exit states, A is the action space,
R : S×A×S → R is the reward function, P0 ∈ ∆(S) is the
probability distribution of initial states, P : S ×A → ∆(S)
is the transition probability function and 0 ≤ γ < 1 is the dis-
count factor. The set of exit states E induces a set of terminal
transitions T = (S \ E)×A× E .

The learning agent interacts in an episodic manner with
the environment following a policy π : S → ∆(A). At each
timestep, the agent observes a state st, chooses the action
at ∼ π(st), transitions to a new state st+1 ∼ P(·|st, at) and
receives a reward R(st, at, st+1). The episode ends when
the agent observes a terminal transition (st, at, st+1) ∈ T
and a new episode starts with initial state s0 ∼ P0(·).

The goal of the agent is to find an optimal policy π∗ that
maximizes the expected discounted return, for any state-
action pair (s, a) ∈ S ×A,

Qπ(s, a) = Eπ

[ ∞∑
i=t

γi−tRi

∣∣∣∣∣ St = s,At = a

]
, (1)

whereRi = R(Si, Ai, Si+1). Hence, an optimal policy is

π∗ ∈ argmax
π

Qπ(s, a) ∀(s, a) ∈ S ×A

with ties broken arbitrarily. The action value function defined
in Equation (1) satisfies the recursive Bellman equation

Qπ(s, a) = Es′∼P(·|s,a)

[
R(s, a, s′) + γV π(s′)

]
, (2)

for any (s, a) ∈ S × A. The state value function is ob-
tained by averaging the action value function over the actions,
V π(s) = Ea∼π(s) [Q

π(s, a)] ∀s ∈ S. Throughout the pa-
per we use Q∗ and V ∗ to refer to the optimal, respectively,
action and state value functions.

Successor Features
Successor features (SFs) (Dayan 1993; Barreto et al. 2017)
is a widely used RL representation framework that assumes
the reward function is linearly expressible with respect to a
feature vector,

Rw(s, a, s′) = w⊺ϕ(s, a, s′). (3)

Here, ϕ : S × A × S → Rd maps transitions to feature
vectors and w ∈ Rd is a weight vector. Every weight vec-
tor w induces a different reward function and, thus, a task.
The SF vector of a state-action pair (s, a) ∈ S × A under

a policy π is the expected discounted sum of future feature
vectors:

ψπ(s, a) = Eπ

[ ∞∑
i=t

γi−tϕi

∣∣∣∣∣ St = s,At = a

]
, (4)

where ϕi = ϕ(Si, Ai, Si+1). The action value function for a
state-action pair (s, a) under policy π can be efficiently repre-
sented using the SF vector. Due to the linearity of the reward
function, the weight vector can be decoupled from the Bell-
man recursion. Following the definition of Equations (1) and
(3), the action value function in the SF framework can be
rewritten as

Qπ
w(s, a) = Eπ

[ ∞∑
i=t

γi−tw⊺ϕi

∣∣∣∣∣ St = s,At = a

]

= w⊺Eπ

[ ∞∑
i=t

γi−tϕi

∣∣∣∣∣ St = s,At = a

]
= w⊺ψπ(s, a). (5)

The SF representation leads to generalized policy evalu-
ation (GPE) over multiple tasks (Barreto et al. 2020), and
similarly, to generalized policy improvement (GPI) to obtain
new better policies (Barreto et al. 2017).

A family of MDPs is defined as the set of MDPs that share
all the components, except the reward function. This set is
formally defined as

Mϕ ≡ {⟨S, E ,A,Rw,P0,P, γ⟩|Rw = w⊺ϕ,∀w ∈ Rd}.
Transfer learning on families of MDPs is possible thanks

to GPI. Given a set of policies Π, learned on the same fam-
ilyMϕ, for which their respective SF representations have
been computed, and a new task w′ ∈ Rd, a GPI policy πGPI
for any s ∈ S is derived as

πGPI(s) ∈ argmax
a∈A

max
π∈Π

Qπ
w′(s, a). (6)

However, there is no guarantee of optimality for w′. A
fundamental question to solve the so-called optimal policy
transfer learning problem is which policies should be in-
cluded in the set of policies Π so an optimal policy for any
weight vector w ∈ Rd can be obtained with GPI.

Convex Coverage Set of Policies
The recent work of Alegre, Bazzan, and Da Silva (2022)
solves the optimal policy transfer learning problem. They
draw the connection between the SF transfer learning prob-
lem and multi-objective RL (MORL). The pivotal fact is that
the SF representation in Equation (4) can be interpreted as
a multidimensional value function and the construction of
the aforementioned set of policies Π can be cast as a multi-
objective optimization problem.

Consequently, the optimistic linear support (OLS) algo-
rithm is extended with successor features in order to learn
a set of policies that constitutes a convex coverage set
(CCS) (Roijers, Whiteson, and Oliehoek 2015). Their main
result is the SFOLS algorithm (see Supplementary Material1

1Supplementary Material at https://arxiv.org/abs/2403.15301
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Figure 1: Depiction of the Office (a) and Delivery (b) environments, FSA task specification of the composite task in the
Office domain and the FSA task specificiation of the sequential task in the Delivery domain (b). In (a) P = {K,B, o} and
E = {K1,K2,B1,B2, o1, o2}. In (b), E = P = {A,B,C,H}.

for a full, technical description) in which a set ΠCCS is built
incrementally by adding (new) policies to such a set, un-
til convergence. The set ΠCCS contains all non-dominated
policies in terms of their multi-objective value functions,
where the dominance relation is defined over scalarized val-
ues V π

w = ES0∼P0
[V π

w(S0)], and is characterized as

ΠCCS = {π | ∃w s.t. ∀ψπ′
, w⊺ψπ ≥ w⊺ψπ′

}

= {π | ∃w s.t. ∀π′, V π
w ≥ V π′

w }. (7)

In every iteration k, SFOLS proposes a new weight vector
wk ∈ ∆(d) for which an optimal policy (and its correspond-
ing SF representation) is learned and added to ΠCCS since it is
sufficient to consider weights in ∆(d) to learn the full ΠCCS.
The output of SFOLS is both ΠCCS and the SF representation
ψπ for every π ∈ ΠCCS.

Intuitively, all policies in ΠCCS are optimal in at least one
task w ∈ ∆(d). The set ΠCCS is combined with GPI, see
Equation (6), and upon convergence, for any (new) given
task w′ ∈ Rd, an optimal policy can be identified (Alegre,
Bazzan, and Da Silva 2022, cf. Theorem 2).

Propositional Logic
We assume that environments are endowed with a set of high-
level, boolean-valued propositional symbols P and that they
are associated with the set of exit states E of a low-level
MDPM. Every transition ∈ S ×A×S induces some propo-
sitional valuation (assignment of truth values) 2P . Such a
valuation depends on the new state and occurs under a map-
ping O : S → 2P that is known to the agent. Nonetheless,
only exit states ε ∈ E make propositions true under O. We
assume that that propositional symbols are mutually exclu-
sive, and the agent cannot observe two symbols in the same
transition. We say that a valuation Γ satisfies a propositional
symbol p, formally Γ ⊨ p, if p is true in Γ.

Finite State Automaton
Task instructions can be specified via a finite state automaton.
These are tuples F = ⟨U , u0, T , L, δ⟩ where U is the finite
set of states, u0 ∈ U is the initial state, T is the set of

terminal states with U ∩ T = ∅, L : U × (U ∪ T ) → 2P

is a labeling function that maps FSA states transitions to
truth values for the propositions and δ : U → {0, 1} is
a high-level reward function. Each transition among FSA
states (u, u′) defines a subgoal. The agent has to observe
some propositional valuation L(u, u′) in order to achieve it
and FSA states can only be connected by a subgoal. E.g.,
in Figure 2a, the FSA state u0 has two outgoing subgoals:
getting mail (labeled as B) and getting coffee (labeled as K).
Non-existing transitions (u, u′) get mapped to L(u, u′) = ⊥.
The reward function δ gives a reward larger than 0 only to
terminal states. In other words, such a reward function is
δ(u) = 0 ∀u ∈ U and δ(t) = 1 ∀t ∈ T .

u0

start

u1 u2

uT

K B

o o

(a)
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u1 u2

u3

uT

K B

B K

o

(b)

Figure 2: Disjunction (a) and composite (b) FSA task specifi-
cations for the Office domain.

Using Successor Features to Solve
non-Markovian Reward Specifications

We focus on the setting in which a low-level MDP is equipped
with a reward structure like in Equation (3). We let the low-
level be represented by a family of MDPsMϕ, where each
weight vector w ∈ Rd specifies a low-level task. The agent re-
ceives high-level task specifications in the more flexible form



of an FSA which permits the specification of non-Markovian
reward structures. The combination of a low-level family
of MDPs and a high-level FSA gives rise to a product MDP
M′ = F×Mϕ that satisfies the Markov property, and where
the state space is augmented to be U × S.

A product MDP M′ is a well-defined MDP. The agent
now follows a policy µ : U × S → ∆(A), that depends
both on the FSA state and the underlying MDP state. M′

can be solved with conventional RL methods such as Q-
learning (Watkins and Dayan 1992) by finding an optimal
policy µ∗ that maximizes

Qµ(u, s, a) = Eµ

[ ∞∑
i=t

γi−tRi

∣∣∣∣∣ Ut = u, St = s,At = a

]
.

This is, however, impractical since policies should be re-
trained every time a new high-level task is specified. Exploit-
ing the problem structure is essential for tractable learning,
where components can be reused for new task specifications.
The special reward structure of the low-level MDPs and our
particular choice of feature vectors, later introduced, allow
us to define an algorithm able to achieve a solution by simply
planning in the space of augmented exit states U × E . This
inherently makes obtaining an optimal policy more efficient
than solving the whole product MDP, as we reduce the num-
ber of states on which it is necessary to compute the value
function.

When presented with different task specifications (e.g. Fig-
ure 2), the agent may have to perform the same subtask at
different moments of the plan or in different FSAs. We aim
to provide agents with a collection of base behaviors that can
be combined to retrieve the optimal behavior for the whole
task.

In line with the previous reasoning, we introduce a two-
step algorithm in which the agent first learns a ΠCCS (a set
of policies that constitute a CCS) on a well-specified repre-
sentation of the environment. Then these (sub)policies are
used to solve efficiently any FSA task specification on the
propositional symbols of the environment. In what follows,
we motivate the design of the feature vectors, explain our
high-level dynamic programming algorithm and prove that it
achieves the optimal solution.

Feature vectors For a family of MDPsMϕ, feature vec-
tors ϕ(s, a, s′) are |E|-dimensional. Each feature component
ϕj is associated with an exit state εj ∈ E = {ε1, . . . , ε|E|}.
Such vectors are built as follows. At terminal transitions
(s, a, εi) ∈ T , ϕj = 1 when j = i and ϕj = 0 when
j ̸= i. For non-terminal transitions, For non-terminal tran-
sitions, we just require that w⊺ϕ(s, a, s′) < 1. In the case
that ϕ(s, a, s′) = 0 ∈ R|E|, the SF representation in Equa-
tion (4) of each policy consists of a discounted distribution
over the exit states. This indicates how likely it is to reach
each exit state following such a policy. Furthermore, we re-
quire that E ⊂ supp(P0) so the value functions at exit states
are well-defined.

Example In the office domain depicted in Figure 1a, the
propositional symbols are P = {K,B, o} while the exit
states E = {K1,K2,B1,B2, o1, o2}. Consequently, the

Algorithm 1: SF-FSA-VI
Input: Low-level MDPMϕ, task specification F

1: Obtain ΠCCS onMϕ.
2: Initially w0(u) = 0 ∈ R|E| ∀u ∈ U .
3: while not done do
4: for u ∈ U do
5: Update each wk+1

j (u) with Equation (11).

6: return {w∗(u) ∀u ∈ U}

same propositional symbol is satisfied at different exit lo-
cations, this is O(K1) ⊨ K and O(K2) ⊨ K. In this case,
ϕ(s, a, s′) ∈ R6, is defined as the zero vector in R6 for every
s′ ∈ S\E and gets the corresponding vector component equal
to 1 when s′ ∈ E . Figure 2 shows two different FSA task
specifications for this domain, note that FSAs use symbols in
P to define the subgoals. The FSA in Figure 2a (disjunction)
corresponds to ‘get coffee or mail, and then go to an office’
and the one in Figure 2b (composite) to ‘get coffee and mail
in any order, then go to an office’.

Algorithm The solution to an FSA task specification im-
plies solving a product MDP M′ = F ×Mϕ. Since we
have the CCS, the optimal Q-function can be represented by
a weight vector w∗:

Q∗
w(u, s, a) = max

π∈ΠCCS
w∗(u)⊺ψπ(s, a). (8)

for all (u, s, a) ∈ U × S × A. Here, w∗
j (u) indicates the

optimal value from exit state εj ∈ E for FSA state u. Then
an optimal policy is defined as

µ∗
w(u, s) ∈ argmax

a∈A
Q∗

w(u, s, a) ∀(s, u) ∈ U × S. (9)

Therefore, we observe that finding the optimal weight vec-
tors w∗(u), ∀u ∈ U is enough for retrieving the optimal ac-
tion value function of the product MDP M′ and, thus, an
optimal policy. We can obtain this vector using a dynamic-
programming approach similar to value iteration:

wk+1
j (u) =max

a
Q∗

w

(
τ(u,O(εj)), a

)
(10)

=max
a,π

wk
(
τ(u,O(εj))

)⊺
ψπ(εj , a), (11)

where τ(u,O(ε)) ∈ U is the FSA state that results from
achieving the valuationO(ε) in u. We know that, wk

j (u) = 1
if τ(u,O(j)) = t, per definition, since the high-level reward
function δ(t) = 1. As a result, we propose SF-FSA-VI (see
Algorithm 1) to extract an optimal policy for a product MDP.
As k → ∞, SF-FSA-VI converges to the optimal set of
weight vectors {w∗(u)}u∈U and, hence, to the optimal value
function in Equation (8).

Proof of optimality We first restate the following theorem
from Alegre, Bazzan, and Da Silva (2022).
Theorem 1 (Alegre, Bazzan, and Silva, 2022). Let Π
be a set of policies such that the set of their expected
SFs, Ψ = {ψπ}π∈Π, constitutes a CCS. Then, given
any weight vector w ∈ Rd, the GPI policy πGPI

w (s) ∈
argmaxa∈A maxπ∈Π Qπ

w(s, a) is optimal with respect to
w : V GPI

w = V ∗
w.



Applied to our setting, once the set of policies ΠCCS and as-
sociated SFs have been computed, we can define an arbitrary
vector w of rewards on the exit states, and use the CCS to
obtain an optimal policy µ∗

w and an optimal value function
V ∗
w without learning. We can then use composition by setting

the reward of the exit states equal to the optimal value.
We aim to show that for each augmented state

(u, s) ∈ U × S, the value function output by our algorithm
equals the optimal value of (u, s) in the product MDP
M′ = F × Mϕ, i.e. that Vw(u)(s) = V ∗

M′(u, s). To do
so, it is sufficient to show that the weight vectors {w(u)}u∈U
are optimal.

Each element of w(u) is recursively defined as wj(u) =
Vw(τ(u,O(εj)))(εj). If all weight vectors are optimal, it
holds that Vw(τ(u,O(εj)))(εj) = V ∗

M′(w(τ(u,O(εj))), εj)
for each such exit state. Due to the above theorem, the value
function Vw(u) is optimal for w(u). Due to composition that
follows GPE and GPI, this means that the value of each
internal state s is optimal, i.e. that Vw(u)(s) = V ∗

M′(u, s).
It remains to show that the weight vectors {w(u)}u∈U

returned by the algorithm are indeed optimal. To do so it is
sufficient to focus on the set of augmented exit states U × E .
We can state a set of optimality equations on the weight
vectors as follows:

w∗
j (u) = Vw∗(τ(u,O(ε)))(εj) = max

a
Q∗(τ(u,O(ε)), εj , a)

= max
a

max
π
ψπ(εj , a)

⊺w∗(τ(u,O(ε))),

where ψπ(εj , a) =
∑

s′ P(s′|εj , a)ψ
π(εj , a, s

′). Our ter-
mination condition implies that all subtasks take at least
one time step to complete, and due to the discount factor γ,
we have ∥ψ(εj , a)∥1 < 1. Hence the update rule in Equa-
tion (11) is a contraction and converges to the set of optimal
weight vectors due to the Contraction Mapping Theorem.

Experiments
We test SF-FSA-VI in two complex discrete environments.
At test time, we change the reward to −1 for every timestep
and use the cumulative reward as the performance metric.
We report two types of results. First, we are interested in
observing the performance of the derived optimal policy, in
Equation (9), during the learning phase. For this, we fully
retrain the high-level policy (lines 2-6 in Algorithm 1) every
several interactions with the environment as ΠCCS is being
learned. Second, once the base behaviors are learned (this is
once a complete ΠCCS has been computed), we measure how
many planning iterations SF-FSA-VI needs to converge to
an optimal solution for different task specifications. In both
cases, we compare against existing baselines.

Environments and tasks We use the Delivery do-
main (Araki et al. 2021) and a modified version of the Office
domain (Toro Icarte et al. 2018a) as testbeds for our algo-
rithm. Both environments are depicted in Figure 1 and present
a propositional vocabulary that is rich enough to build com-
plex tasks. In the Delivery domain there is a single low-level
state associated with each of the propositional symbols, im-
plying that E = P = {A,B,C,H}. The feature vectors are
consistent with our design choice. For terminal transitions,

they correspond to their one-hot encodings of the terminal
states. There exist obstacle states (in black) for which, upon
entering, the feature vector is ϕ(s, a, s′) = −1000 ∈ R4.
This transforms in a large negative reward when multiplied
with a corresponding weight vector w ∈ R4. For regular grid
cells (in white) ϕ(s, a, s′) = 0 ∈ R4. The Office domain is
more complex since there are three propositional symbols
P = {K,B, o} which can be satisfied at different locations,
namely E = {K1,K2,B1,B1, o1, o2}. Here, there are no
obstacle states and ϕ(s, a, s′) = 0 ∈ R6 for non-terminal
transitions.

For each of the environments we define three different
tasks: sequential, disjunction and composite (all described in
the Supplementary Material). The sequential task is meant
to show how our algorithm can indeed be effectively used
to plan over long horizons, when the other two tasks show
the ability of our method to optimally compose the base
(sub)policies in complex settings. In natural language, the
tasks in the Delivery domain correspond to: "go to A, then
B, then C and finally H" (sequential), "go to A or B, then C
and finally H" (disjunction) and "go to A and B in any order,
then B, then C and finally H" (composite). The agent has
to complete the tasks by avoiding obstacles. The counterpart
of these tasks in the Office environment are: "get a coffee,
then pick up mail and then go to an office" (sequential), "get
a coffee or mail, and then go to an office" (disjunction) and
"get a coffee and mail in any order, and then go to an office"
(composite). Our agent never learns how to solve these tasks,
but rather learns the set of (sub)policies that constitutes the
CCS. At test time, we provide the agent with the FSA task
specification, extract a high-level optimal policy and test its
performance on solving the task.

Baselines In the literature, we find the most similar ap-
proach to ours in the Logical Options Framework (LOF)
(Araki et al. 2021). We thus use LOF and flat Q-learning
on the product MDP as baselines. LOF trains one option
per exit state, which are trained simultaneously using intra-
option learning, and then uses a high-level value iteration
algorithm to train a meta-policy that decides which option
to execute in each of the MDP states. On the other hand, the
latter learns the action value function in the flat product MDP,
from which it extracts the policy. Under certain conditions,
flat Q-learning converges to the optimal value function but,
especially for longer tasks, it may take a large number of
samples. Additionally, it is trained for a specific task, so it is
not able to generalize to other task specifications. For LOF,
we followed the implementation details prescribed by the
authors.

Results
Learning Empirical results for learning are shown in Fig-
ure 3 (top-left and bottom-left). The plots reflect how the
different methods (ours, LOF and flat Q-learning) perform at
solving an FSA task specification during the learning phase.
In the case of SF-FSA-VI and LOF, the learning phase corre-
sponds to obtaining the low level (sub)policies for ΠCCS and
the options, while for . Results are averaged over the three
tasks (sequential, disjunction and composite) previously de-
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Figure 3: Experimental results for learning (Delivery, top-left and Office, bottom-left) and compositionality (Delivery, top-right
and Office, bottom-right). Results show the average performance and standard deviation over the three tasks and 5 seeds per task.

scribed for each environment. Each data point in the plots
represent the cumulative reward obtained by a fully retrained
policy with the current status of ΠCCS and options. In both
environments, SF-FSA-VI is the first to reach optimal per-
formance. There exist, however, some differences between
LOF and SF-FSA-VI. LOF trains all options simultaneously
with intra-option learning. This means that, every transition
(st, at, st+1) is used to update all options’ value functions
and policies. The learning of a ΠCCS, on the other hand, is
done sequentially. A fixed sample budget per (sub)policy is
set prior to learning, which can be seen as a hyperparameter.
We use a total of 8 · 103 samples per (sub)policy in both
environments. A experience replay buffer is used to speed
up the learning of the policy basis ΠCCS. Both options and
the SF representation of (sub)policies are learned using Q-
learning. Due to the incremental nature, at the beginning of
the learning process there might be not enough policies in
the basis ΠCCS to construct a feasible solution. This is clearly
observed in the Delivery domain (Figure 3, top left), where at
the early stages of the interaction, SF-FSA-VI achieves very
low cumulative reward due to failing at delivering a solution.
It is not until when there are enough (sub)policies in the basis
that Algorithm 1 attains a policy that solves the problem,
which eventually converges to an optimal policy. Similarly,
LOF converges to an optimal policy albeit it takes slightly
longer to learn. In the more complex Office environment,
results follow the same pattern. However, this environment
breaks one of the of LOF requirements for optimality: to
have a single exit state associated with each propositional
predicate. In this problem, for each predicate there exist two
exit states that can satisfy them. This makes LOF prone to
converge to suboptimal solutions when SF-FSA-VI attains

optimality. This is the case for the composite task, where
LOF is short-sighted and returns a longer path (in red, Fig-
ure 1a) in contrast to ours that retrieves the optimal solution
(in green, Figure 1a). This means that SF-FSA-VI is more
flexible in the task specification. In this environment, our
algorithm also converges faster with a more obvious gap with
respect to LOF. In any case, learning (sub)policies or options
is faster than learning directly on the flat product MDP, as
flat Q-learning takes the longest to converge.

Planning Figure 3 top-right and bottom-right show how
fast SF-FSA-VI and LOF can plan for an optimal solution.
Results are again averaged for the three tasks for each en-
vironment. Here, a complete policy basis ΠCCS has been
previously computed, as well as the option’s optimal poli-
cies. In LOF, the cost of each iteration of value iteration is
|U| × |S| × |K|, where K is the set of options, while for the
Algorithm 1 we propose it is |U| × |E| × |ΠCCS|. By defi-
nition, the number of options is equivalent to the number
of exit states |K| = |E|, so a single iteration of SF-FSA-
VI is more efficient than LOF whenever |ΠCCS| ≪ |S|. In
our experiments, the sizes of the CCS are 15 and 12 for the
Delivery and Office domains, respectively, while the sizes
of the state spaces are of 225 and 121. Therefore, since our
algorithm needs fewer, shorter iterations during planning, it
outperforms LOF in terms of planning speed in both domains
when composing the global solution. This can be observed in
the plots for both environments.

Policy basis over options In deterministic environments,
it is sufficient to learn the (sub)policies associated with the
extrema weights (i.e. those (sub)policies that reach each of
the exit states individually) to find a globally optimal pol-



u0

start

u1 u2

blue red

Figure 4: Double Slit environment (left) and FSA task speci-
fication to reach either goal locations blue or red.

icy via planning. In such cases, it may not be necessary to
learn a full CCS. That is why, approaches that use the op-
tions framework such as LOF traditionally define one option
per subgoal. However, there are scenarios, in which these
approaches will not find optimal policy. This is the case for
most stochastic environments. For example, consider the very
simple domain of Double Slit in and the FSA task specifica-
tion in Figure 4. In this environment, there are two exit states
E = {blue, red}. The agent starts in the leftmost column and
middle row. At every timestep, the agent chooses an action
amongst {UP,RIGHT,DOWN} and is pushed one column
to the right in addition to moving in the chosen direction,
except in the last column. If the agent chooses RIGHT, he
moves an extra column to the right. At every timestep there
is a random wind that can blow the agent away up to three
positions in the vertical direction. The FSA task specification
represents a task in which the agent is indifferent between
achieving either of the goal states. Since the RIGHT action
brings the agent closer to both goals, the optimal behavior
in this case is to commit to either goal as late as possible. In
this setting, methods that use one policy per sub-goal, such
as LOF, train two policies to reach both goals. This means
that the agent has to commit to one of the goals from the very
beginning, which hurts the performance as it has to make up
for the consequences of the random noise. On the other hand,
the CCS used by SF-FSA-VI will contain an additional policy
that is indifferent between two goals. This leads to a perfor-
mance gap as our approach achieves an average accumulated
reward of −19.7± 3.65 and LOF −22.70± 5.72.

Related Work
One of the key distinctions in our research compared to prior
studies is the optimality of the final solution. As noted by
Dietterich (2000), hierarchical methods usually have the capa-
bility to achieve hierarchical, recursive, or global optimality.
The challenge that often arises when sub-task policies are
trained in isolation is that the combination of these locally
optimal policies does not lead to a globally optimal policy but
a recursively (Dayan and Hinton 1992) or hierarchically opti-
mal policy (Sutton, Precup, and Singh 1999; Mann, Mannor,
and Precup 2015; Araki et al. 2021). To tackle this challenge,
our approach relies on acquiring a set of low-level policies for
each sub-task and employing planning to identify the optimal
combination of low-level policies when solving a particular

task. By learning the CCS with OLS (Roijers, Whiteson, and
Oliehoek 2014) in combination with high-level planning our
approach ensures that globally optimal policy is found. In
this regard, the work of Alegre, Bazzan, and Da Silva (2022)
is of particular interest as it was the first work that used OLS
and successor features (Barreto et al. 2017) for optimal policy
transfer learning. However, this method has only applied in
a setting with Markovian reward function and has not been
used with non-Markovian task specifications or high-level
planning.

On the other hand, many recent approaches proposed to use
high-level task specifications in the form of LTL (Toro Icarte
et al. 2018b; Kuo, Katz, and Barbu 2020; Vaezipoor et al.
2021; Jothimurugan et al. 2021), or similar formal language
specifications (Toro Icarte et al. 2019; Camacho et al. 2019;
Araki et al. 2021; Toro Icarte et al. 2022) to learn policies.
However, the majority of the methods in this area are de-
signed for single-task solutions, with only several focusing
on acquiring a set of policies that is capable of addressing
multiple tasks (Toro Icarte et al. 2018b; León, Shanahan, and
Belardinelli 2020; Kuo, Katz, and Barbu 2020; Araki et al.
2021; Vaezipoor et al. 2021). But, in contrast to our approach,
they do not guarantee optimality of the solution.

From these works, our approach is the most similar to
the Logical Options Framework (Araki et al. 2021). The
main difference is that LOF trains a single policy for each
sub-goal, resulting in a set of learned policies that is either
smaller than or equal to the set acquired through SF-FSA-VI.
While employing one policy per sub-goal proves sufficient
for obtaining a globally optimal policy through planning
in deterministic environments (Wen et al. 2020), this may
not hold true in stochastic environments, as our experiments
demonstrate. In such instances, the policies generated by LOF
are hierarchically optimal but fall short of global optimality.

Two notable examples from aforementioned works on
multi-task learning with formal language specifications are
the works of Toro Icarte et al. (2018b) and Vaezipoor et al.
(2021). The former struggles with generalizing to unseen
tasks, because it uses LTL progression to determine which
sub-tasks need to be learned to solve given tasks. The Q-
functions that are subsequently learned for each LTL sub-task
will therefore not be useful for a new task if its sub-tasks were
not part of the training set. Such limitation does not apply to
the latter as it instead encodes the remaining LTL task spec-
ification using a neural network and conditions the policy
on this LTL embedding. While this approach may be more
adaptable to tasks with numerous propositions or sub-goals,
it risks generating sub-optimal policies as it relies solely on
the neural network to select the next proposition to achieve,
without incorporating planning. Additionally, since the plan-
ning is implicitly done by the neural network, the policy is
less interpretable than when explicit planning is used.

The method we propose can be viewed as a method for
composing value functions through successor features, akin
to previously proposed approaches for composition of value
functions and policies (van Niekerk et al. 2019; Barreto
et al. 2019; Nangue Tasse, James, and Rosman 2020; Infante,
Jonsson, and Gómez 2022). In the work of Infante, Jonsson,
and Gómez (2022), which is the closest to our work, the



authors propose to learn a basis of value functions that can
be combined to form an optimal policy. However, unlike SF-
FSA-VI, their approach only works in a restricted class of
linearly-solvable MDPs. Lastly, since our approach uses the
values of exit states for planning it is also related to planning
with exit profiles (Wen et al. 2020). The CCS that we propose
to use as a policy basis in our work can be seen as a collection
of policies that are optimal for all possible exit profiles.

Discussion and Conclusion
In this work, we address the problem of finding optimal be-
havior for new non-Markovian goal specifications in known
environments. To do so, we introduce a novel approach that
uses successor features to learn a policy basis, that can subse-
quently be used to solve any unseen task specified by an FSA
with the set of given predicates P by planning. SF-FSA-VI is
the first that can provably generalize to such new task speci-
fication without sacrificing optimality in both deterministic
and stochastic environments.

The experiments show that SF-FSA-VI offers several ad-
vantages over previous methods. First, due to the use of SF, it
allows for faster composition of the high-level value function
since it drastically reduces the number of states to plan on.
Secondly, thanks to using a CCS over a set of options SF-
FSA-VI achieves optimality even in stochastic environments
(as shown in the Double Slit example). Lastly, we do not
require that there exists a single exit state per predicate which
permits more flexible task specification while at the same
time allowing deployment in more complex environments.

A limitation of our approach could be the need to construct
a full CCS if one wants to attain global optimality. While the
construction of CCS is not timecomsuming for environments
with several exit states presented in our work, the compu-
tation cost of finding the full CCS could become too large
for environments with many exit states. In such case one
could instead learn a partial CCS at the cost of a bounded
decrease in performance (Alegre, Bazzan, and Da Silva 2022)
or consider splitting the environment into smaller parts with
fewer exit states. While our experiments only considered dis-
crete environments, SF-FSA-VI should also be applicable
in continuous environments with minor adjustments. These
include: using an contiguous set of states instead of a single
exit state and using reward shaping to facilitate learning in
sparse reward setting.
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Supplementary Material

1 Computation of a ΠCCS
The successor features (SF) extension of the optimistic lin-
ear support (OLS) algorithm (SFOLS, Alegre, Bazzan, and
Da Silva (2022)) that is used in our work to compute ΠCCS is
fully described in Algorithm 2.

It utilizes the value of the set max policy (SMP, Zahavy
et al. (2021)), which is a commonly used, weaker approach
for transfer learning in multi-objective RL. For a given weight
vector w and a set of policies Π, it is defined as:

πSMP
w (s) = π′(s),where π′ = argmax

π∈Π
V π
w

and the value of this policy is V SMP
w = maxπ∈Π V π

w .
The algorithm constructs ΠCCS incrementally. Starting

with the extremum points of weights simplex Cd, it sequen-
tially processes weights from its weight priority queue Q. In
each iteration, an (optimal) policy and its successor feature
representation are found for the selected weight w. If the
successor features of this policy are different from the succes-
sor features of policies currently in the ΠCCS, the new policy
is added to the ΠCCS and the weight priority queue Q is ad-
justed. This adjustment has two steps. Firstly, the weights for
which the new policy performs better than all current policies
are removed and secondly, the new corner weights found
with Algorithm 4 are added to Q with corresponding priority
computed with Algorithm 3.

Algorithm 2: SFs Optimistic Linear Support (SFOLS)
Initialize: ΠCCS ← {},Ψ← {},W ← {}, Q← {}

1: for each extremum weight vector we ∈ Cd do
2: Add we to Q with max. priority
3: repeat
4: w← pop weight with max. priority in Q
5: π,ψπ ← Solve ⟨S, E ,A,Rw,P0,P, γ⟩
6: Add w toW
7: if ψπ /∈ Ψ then
8: Remove from Q all w′ s.t. w′⊺ψπ > V SMP

w′

9: X ← CornerWeights(ψπ,w,Ψ)
10: Add Ψπ to Ψ and π to ΠCCS
11: for w′ ∈ X do
12: ∆(w′)← EstimateImprovement(w′,Ψ)
13: Add w′ to Q with priority ∆(w′)

14: until Q is empty
15: return ΠCCS,Ψ

The runtime complexity of the SFOLS algorithm depends
heavily on the number of policies that have to be trained and
considered for ΠCCS. It is the same as the number of corner
weights that must be analyzed in the original OLS for which
Roijers, Whiteson, and Oliehoek (2015) provide a following
bound:

O(

(
|CCS|⌊ |E|+1

2 ⌋
|CCS| − |E|

)
+

(
|CCS|⌊ |E|+2

2 ⌋
|CCS| − |E|

)
).

Scaling to many objectives can thus be prohibitive but should
be possible by sacrificing optimality and using ϵ-CCS (Ale-
gre, Bazzan, and Da Silva 2022).

Algorithm 3: EstimateImprovement
Input: New weight vector w, Ψ,W

1: Let V̄ ∗
w′ be the optimistic upper bound on V ∗

w′ computed
by the following linear program

max w⊺ψ

subject to w′⊺ψ ≤ V SMP
w′ ∀ w′ ∈ W

2: ∆(w)← V̄ ∗
w′ − V SMP

w′

3: return ∆(w)

Algorithm 4: CornerWeights
Input: New SF vector ψπ , current weight vector w, current
set Ψ

1: LetWdel be the set of obsolete weights removed from Q
in line 8 of Algorithm 2

2: Add w toWdel
3: Vrel ← {ψπ|ψπ ∈ argmaxψπ∈Ψ w′⊺ψπ} for at least

one w′ ∈ Wdel
4: Brel ← the set of boundaries of the weight simplex Cd

involved in any w′ ∈ Wdel
5: X ← {}
6: for each subset Y of d− 1 elements from Vrel ∪ Brel do
7: wc ∈ Cd where ψπ intersects with boundaries in Y
8: Add wc to Cc
9: return X

2 Task specifications
The FSA task specifications used in the experiments are fully
described in Figure 5 (Office environment) and Figure 6
(Delivery environment). We divide the tasks into three types
and their natural language interpretation is as follows:

• Sequential ‘Get coffee, then get mail and then go to an
office location’ (Office domain, Figure 5a) and ‘go A,
then B, then C and then H’ (Delivery domain, Figure 6a).

• Disjunction ‘Get coffee OR get mail, then go to an office
location’ (Office domain, Figure 5b)) and ‘go to A OR B,
then to C, and then to H’ (Delivery domain, Figure 6b).

• Composite ‘Get coffee AND get mail in any order, then
go to an office location’ (office domain, Figure 5c)) ‘go
to A AND B in any order, then go to C, then H’ (Delivery
domain, Figure 6c).

Note that agents must satisfy such tasks in the least possible
number of steps.
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Figure 5: Finite state automatons for the Office domain (sequential (a), disjunction (b) and composite (c)) tasks.
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Figure 6: Finite state automatons for the Delivery domain (sequential (d), disjunction (e) and composite (f)) tasks.


