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Abstract: Identifying similar network structures is key to capturing graph isomorphisms and learning
representations that exploit structural information encoded in graph data. This work shows that ego
networks can produce a structural encoding scheme for arbitrary graphs with greater expressivity
than the Weisfeiler–Lehman (1-WL) test. We introduce IGEL, a preprocessing step to produce fea-
tures that augment node representations by encoding ego networks into sparse vectors that enrich
message passing (MP) graph neural networks (GNNs) beyond 1-WL expressivity. We formally
describe the relation between IGEL and 1-WL, and characterize its expressive power and limitations.
Experiments show that IGEL matches the empirical expressivity of state-of-the-art methods on iso-
morphism detection while improving performance on nine GNN architectures and six graph machine
learning tasks.

Keywords: graph neural networks; graph representation learning; Weisfeiler–Lehman; graph isomorphism;
GNN expressivity; ego networks

1. Introduction

Novel approaches for representation learning on graph-structured data have appeared
in recent years [1]. Graph neural networks can efficiently learn representations that depend
both on the graph structure and node and edge features from large-scale graph data sets.
The most popular choice of architecture is the message passing graph neural network
(MP-GNN). MP-GNNs represent nodes by repeatedly aggregating feature ‘messages’ from
their neighbors.

Despite being successfully applied in a wide variety of domains [2–6], there is a limit
on the representational power of MP-GNNs provided by the computationally efficient
Weisfeiler–Lehman (1-WL) test [7] for checking graph isomorphisms [8,9]. Establishing this
connection has lead to a better theoretical understanding of the performance of MP-GNNs
and many possible generalizations at the price of additional computational cost [10–14].

To improve the expressivity of MP-GNNs, recent methods have extended the vanilla
message passing mechanism is various ways. For example, using higher order k-vertex
tuples [9] leading to k-WL generalizations, introducing relative positioning information
for network vertices [15], propagating messages beyond direct neighborhoods [16], using
concepts from algebraic topology [17], or combining subgraph information in different
ways [18–24]. Similarly, provably powerful graph networks (PPGN) [25] have been pro-
posed as an architecture with 3-WL expressivity guarantees, at the cost of quadratic memory
and cubic time complexities with respect to the number of nodes. More recently, Balcilar
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et al. [26] proposed a novel MP-GNN with linear time and memory complexity, but the-
oretically more powerful than the 1-WL test, and experimentally as powerful as 3-WL
by leveraging a preprocessing, spectral decomposition step, with cubic worst-case time
complexity. All aforementioned approaches improve expressivity by extending MP-GNN
architectures, often evaluating on standarized benchmarks [27–29]. However, identifying
the optimal approach on novel domains requires costly architecture searches.

In this work, we show that a simple encoding of local ego networks is a possible
solution to these shortcomings. We present IGEL, an Inductive Graph Encoding of Local
ego network subgraphs allowing MP-GNN and deep neural network (DNN) models to go
beyond 1-WL expressivity without modifying existing model architectures. IGEL produces
inductive representations that can be introduced into MP-GNN models. IGEL reframes
capturing 1-WL information irrespective of model architecture as a preprocessing step that
simply extends node/edge attributes. Our main contributions in this paper are:

C1 We present a novel structural encoding scheme for graphs, describing its relationship
with existing graph representations and MP-GNNs.

C2 We formally show that the proposed encoding has more expressive power than the
1-WL test, and identify expressivity upper bounds for graphs that match subgraph
GNN state-of-the-art methods.

C3 We experimentally assess the performance of nine model architectures enriched with
our proposed method on six tasks and thirteen graph data sets and find that it
consistently improves downstream model performance.

We structure the paper as follows: In Section 2, we introduce our notation and the
required background, including relevant works extending MP-GNNs beyond 1-WL. Then,
we describe IGEL in Section 3. We analyze IGEL’s expressivity in Section 4 and evaluate its
performance experimentally in Section 5. Finally, we discuss our findings and summarize
our results in Section 6.

2. Notation and Related Work

Given a graph G = (V, E), we define n = |V| and m = |E|, dG(v) is the degree of
a node v in G, and dmax is the maximum degree. For u, v ∈ V, lG(u, v) is their shortest
distance, and diam(G) = max(lG(u, v)|u, v ∈ V) is the diameter of G. Double brackets {{·}}
denote a lexicographically-ordered multi-set, Eα

v ⊆ G is the α-depth ego network centered
on v, and N α

G(v) is the set of neighbors of v in G up to distance α, i.e., N α
G(v) = {u | u ∈

V ∧ lG(u, v) ≤ α}.

2.1. Message Passing Graph Neural Networks

Graph neural networks are deep learning architectures for learning representations on
graphs. The most popular choice of architecture is the message passing graph neural net-
work (MP-GNN). In MP-GNNs, there is a direct correspondence between the connectivity
of network layers and the structure of the input graph. Because of this, the representation
(embedding) of each node depends directly on its neighbors and only indirectly on more
distant nodes.

Each layer of an MP-GNN computes an embedding for a node by iteratively aggregat-
ing its attributes and the attributes of their neighboring nodes. Aggregation is expressed via
two parametrized functions: MSG, which represents the computation of joint information
for a vertex and a given neighbor, and UPDATE, a pooling operation over messages that
produces a vertex representation. Let h0

v ∈ Rw denote an initial w-dimensional feature
vector associated with v ∈ V. Each i-th GNN layer computes the i-th message passing step,
such that µi

v is the multi-set of messages received by v:

µi
v =

{{
MSGi

G(h
i−1
u ) | ∀

u 6=v
u ∈ N 1

G(v)
}}

, (1)
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and hi
v is the output of a permutation-invariant UPDATE function over the message multi-set

and the previous vertex state:

hi
v = UPDATEi

G

(
µi

v, hi−1
v

)
. (2)

For machine learning tasks that require graph-level embeddings, an additional param-
eterized function dubbed READOUT produces a graph-level representation ri

G, pooling all
vertex representations at step i:

ri
G = READOUT

({{
hi

v | ∀ v ∈ V
}})

. (3)

The functions MSG, UPDATE, and READOUT are differentiable with respect to their
parameters, which are optimized during learning via gradient descent. The choice of
functions gives rise to a broad variety of GNN architectures [30–34]. However, it has
been shown that all MP-GNNs defined by MSG, UPDATE, and READOUT are at most as
expressive as the 1-WL test when distinguishing non-isomorphic graphs [8].

2.2. Expressivity of Weisfeiler–Lehman and MATLANG

The classic Weisfeiler–Lehman algorithm (1-WL), also known as color refinement, is
shown in Algorithm 1. The algorithm starts with an initial color assignment to each vertex
c0

v according to their degree and proceeds updating the assignment at each iteration.

Algorithm 1 1-WL (Color refinement).

Input: G = (V, E)
1: c0

v := hash({{dG(v)}}) ∀ v ∈ V
2: do
3: ci+1

v := hash({{ci
u : ∀ u ∈ N 1

G(v)}})
4: while ci

v 6= ci−1
v

Output: ci
v : V 7→ N

The update aggregates, for each node v, its color ci
v and the colors of its neigbors ci

u,
then hashes this multi-set of colors, mapping it into a new color to be used in the next
iteration ci+1

v . The algorithm converges to a stable color assignment, which can be used to
test graphs for isomorphism. Note that neighbor aggregation in 1-WL can be understood
as a message passing step, with the hash operation being analogous to UPDATE steps in
MP-GNNs.

Two graphs, G1, G2, are not isomorphic if they are distinguishable (that is, their stable
color assignments do not match). However, if they are not distinguishable (that is, their
stable color assignments match), they are likely to be isomorphic [35]. To reduce the
likelihood of false positives when color assignments match, one can consider k-tuples of
vertices instead of single vertices, leading to higher order variants of the WL test (denoted
k-WL) which assign colors to k-vertex tuples. In this case, G1 and G2 are said to be k-WL
equivalent, denoted G1 ≡k−WL G2, if their stable assignments are not distinguishable. For
more details on the algorithm, we refer to [14,36]. k-WL tests are more expressive than their
(k− 1)-WL counterparts for k > 2, with the exception of 2-WL, which is known to be as
expressive as the 1-WL color refinement test [10].

Among the various characterizations of k-WL expressivity, the relationship with matrix
query languages defined by MATLANG [11] has also found applications for graph represen-
tation learning [26]. MATLANG is a language of operations on matrices, where sentences
are formed by sequences of operations. There exists a subset of MATLANG—ML1—that
is as expressive as the 1-WL test. Another subset—ML2—is strictly more expressive than
the 1-WL test but less expressive than the 3-WL test. Finally, there exists another subset
ML3 that is as expressive as the 3-WL test [13]. We provide additional technical details on
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MATLANG and its sub-languages in section E, where we analyze the relation between IGEL

and MATLANG.

2.3. Graph Neural Networks Beyond 1-WL

Recently, approaches have been proposed for improving the expressivity of MP-GNNs.
Here, we focus on subgraph and substructure GNNs, which are most closely related to
IGEL. For an overview on augmented message passing methods, see [37] and Appendix I.

k-hop MP-GNNs (k-hop) [16] propagate messages beyond immediate vertex neigh-
bors, effectively using ego network information in the vertex representation. Neighborhood
subgraphs are extracted, and message passing occurs on each subgraph, with an exponen-
tial cost on the number of hops k both at preprocessing and at each iteration (epoch). In
contrast, IGEL only requires a preprocessing step that can be cached once computed.

Distance encoding GNNs (DE-GNN) [38] also propose to improve MP-GNN by using
extra node features by encoding distances to a subset of p nodes. The features obtained
by DE-GNN are similar to IGEL when conditioning the subset to size p = 1 and using a
distance encoding function with k = α. However, these features are not strictly equivalent
to IGEL, as node degrees within the ego network can be smaller than in the full graph.

Graph Substructure networks (GSNs) [19] incorporate topological features by count-
ing local substructures (such as the presence of cliques or cycles). GSNs require expert
knowledge on what features are relevant for a given task with modifications to MP-GNN
architectures. In contrast, IGEL reaches comparable performance using a general encoding
for ego networks and without altering the original message passing mechanism.

GNNML3 [26] performs message passing in spectral domain with a custom frequency
profile. While this approach achieves good performance on graph classification, it requires
an expensive preprocessing step for computing the eigendecomposition of the graph Lapla-
cian and O(k)-order tensors to achieve k-WL expressiveness with cubic time complexity.

More recently, a series of methods formulate the problem of representing vertices or
graphs as aggregations over subgraphs. The subgraph information is pooled or introduced
during message passing at an additional cost that varies depending on each architecture.
Consequently, they require generating the subgraphs (or effectively replicating the nodes
of every subgraph of interest) and pay an additional overhead due to the aggregation.

These approaches include identity-aware GNNs (ID-GNNs) [39], which embed each
node while incorporating identity information in the GNN and apply rounds of hetero-
geneous message passing; nested GNNs (NGNNs) [20], which perform a two-level GNN
using rooted subgraphs and consider a graph as a bag of subgraphs; GNN-as-Kernel
(GNN-AK) [21], which follows a similar idea but introduces additional positional and
contextual embeddings during aggregation; equivariant subgraph aggregation networks
(ESAN) [22] encode graphs as bags of subgraphs and show that such an encoding can lead
to a better expressive power; shortest-path neural networks (SPNNs) [40], which represent
nodes by aggregating over sets of neighbors at the same distance; and subgraph union
networks (SUN) [23], which unify and generalize previous subgraph GNN architectures
and connect them to invariant graph networks [41]. Compared to all these methods, IGEL

only relies on an initial preprocessing step based on distances and degrees without having
to run additional message passing iterations or modify the architecture of the GNN.

Interestingly, recent work [42] showed that the implicit encoding of the pairwise
distance between nodes plus the degree information which can be extracted via aggregation
are fundamental to provide a theoretical justification of ESAN. Furthermore, the work on
SUN [23] showed that node-based subgraph GNNs are provably as powerful as the 3-WL
test. This result is aligned with recent analyses on the hierarchies of model expressivity [43].

In this work, we directly consider distances and degrees in the ego network, explicitly
providing the structural information encoded by more expressive GNN architectures. In
contrast to previous work, IGEL aims to be a minimal yet expressive representation of network
structures without learning that is amenable to formal analysis, as shown in Section 4. This
connects ego network properties to subgraph GNNs, corroborating the 3-WL upper bound
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of SUN and the expressivity analysis of ESAN—to which IGEL is strongly related in its ego
networks policy (EGO+). Furthermore, these relationships may explain the comparable
empirical performance of IGEL to the state of the art, as shown in Section 5.

3. Local Ego-Network Encodings

The idea behind the IGEL encoding is to represent each vertex v by compactly encoding
its corresponding ego network Eα

v at depth α. The choice of encoding consists of a histogram
of vertex degrees at distance d ≤ α, for each vertex in Eα

v . Essentially, IGEL runs a breadth-
first traversal up to depth α, counting the number of times the same degree appears at
distance d ≤ α. We postulate that such a simple encoding is sufficiently expressive and at
the same time computationally tractable to be considered as vertex features.

Figure 1 shows an illustrative example for α = 2. In this example, the green node is
encoded using a (sparse) vector of size 5× 3 = 15, since the maximum degree at depth 2 is
5 and there are three distances considered: 0, 1, 2. The ego network contains six nodes, and
all (distance, degree) pairs occur once, except for degree 3 at distance 2, which occurs twice.
Algorithm 2 describes the steps to produce the IGEL encoding iteratively.

4

2 4

2

3

3

1 1 1 12

Figure 1. IGEL encoding of the green vertex. Dashed region denotes Eα
v (α = 2). The green vertex is

at distance 0, blue vertices at 1, and red vertices at 2. Labels show degrees in Eα
v . The frequency of

distance degree (l̃, d̃) tuples forming IGELα
vec(v) is: {(0, 2) : 1, (1, 2) : 1, (1, 4) : 1, (2, 3) : 2, (2, 4) : 1}.

Algorithm 2 IGEL Encoding.

Input: G = (V, E), α : N
1: e0

v := {{(0, dG(v))}} ∀ v ∈ V
2: for i := 1; i += 1 until i = α do
3: ei

v :=
⋃
(ei−1

v , {{(i, dEα
G(v)

(u)) ∀u ∈ N α
G(v) | lG(u, v) = i}})

4: end for
Output: eα

v : V 7→ {{(N,N)}}

Similarly to 1-WL, information of the neighbors of each vertex is aggregated at each
iteration. However, 1-WL does not preserve distance information in the encoding due to
the hashing step. Instead of hashing the degrees into equivalence classes, IGEL keeps track
of the distance at which a degree is found, generating a more expressive encoding.

The cost of such additional expressiveness is a computational complexity that grows
exponentially in the number of iterations. More precisely, the time complexity follows
O(n ·min(m, (dmax)α)), with O(n ·m) when α ≥ diam(G). In Appendix F, we provide a
possible breadth-first search (BFS) implementation that is embarrassingly parallel and thus
can be computed over p processors following O(n ·min(m, (dmax)α)/p) time complexity.
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The encoding produced by Algorithm 1 can be described as a multi-set of path length
and degree pairs (l̃, d̃) in the α-depth ego graph of v, Eα

v :

eα
v =

{{(
lEα

v (u, v), dEα
v (u)

)∣∣∣ ∀ u ∈ N α
G(v)

}}
, (4)

which also results in exponential space complexity. However, eα
v can be represented as a

(sparse) vector IGELα
vec(v), where the i-th index contains the frequency of path length and

degree pairs (l̃, d̃), as shown in Figure 1:

IGELα
vec(v)i =

∣∣∣{{(l̃, d̃) ∈ eα
v s.t. f (l̃, d̃) = i}}

∣∣∣, (5)

which has linear space complexity O(α · n · dmax), conservatively assuming every node
requires dmax parameters at every α depth from the center of the ego network, where
dmax = O(n) in the worst case when a vertex is fully connected. Note that in practice,
we may normalize raw counts by, e.g., applying log1p-normalization, and for real-world
graphs, dmax � n, where the probability of larger degrees often decays exponentially [44].
Finally, complexity can be further reduced by making use of sparse vector implementations.

We finish this section with two remarks. First, the produced encodings can differ
only for values of α < diam(G), since otherwise the ego network is the same for all nodes,
Eα

v = Eα+1
v = G, ∀v, and thus the resulting encodings, i.e., eα

v = eα+1
v , for α ≥ diam(G).

Second, the sparse formulation in Equation (5) can be understood as an inductive analogue
of Weisfeiler–Lehman graph kernels [45], as we explore in Appendix B.

4. Which Graphs Are IGEL-Distinguishable?

We now present results about the expressive power of IGEL, extending previous
preliminary results on 1-WL that had been presented in [46]. We discuss the increased
expressivity of IGEL with respect to 1-WL, and identify upper-bounds on the expressivity
on graphs that are also indistinguishable under MATLANG and the 3-WL test. We assess
expressivity by studying whether two graphs can be distinguished by comparing the
encodings obtained by the k-WL test and the IGEL encodings for a given value of α. Similarly
to the definition of k-WL equivalence, we say that G1 = (V1, E1) and G2 = (V1, E1) are
IGEL-equivalent if the sorted multi-set of node representations is the same for G1 and G2:

G1 ≡α
IGEL G2 ⇐⇒ {{eα

v1
: ∀v1 ∈ V1}} = {{eα

v2
: ∀v2 ∈ V2}}.

4.1. Distinguishability on 1-WL Equivalent Graphs

We first show IGEL is more powerful than 1-WL, following Lemmas 1 and 2:

Lemma 1. IGEL is at least as expressive as 1-WL. For two graphs, G1, G2, which are distinguished
by 1-WL in k iterations (G1 6≡1-WL G2) it also holds that G1 6≡α

IGEL G2 for α = k + 1. If IGEL does
not distinguish two graphs G′1 and G′2, 1-WL also does not distinguish them: G′1 ≡α

IGEL G′2 ⇒
G′1 ≡1-WL G′2.

Lemma 2. There exist at least two non-isomorphic graphs, G1, G2, that IGEL can distinguish but
that 1-WL cannot distinguish; i.e., G1 6≡α

IGEL G2 while G1 ≡1-WL G2.

First, we formally prove Lemma 1, i.e., that IGEL is at least as expressive as 1-WL. For
this, we consider a variant of 1-WL which removes the hashing step. This modification
can only increase the expressive power of 1-WL and makes it possible to directly compare
such (possibly more expressive) 1-WL encodings with the encodings generated by IGEL.
Intuitively, after k color refinement iterations, 1-WL considers nodes at k hops from each
node, which is equivalent to running IGEL with α = k + 1, i.e., using ego networks that
include information of all nodes that 1-WL would visit.
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Proof of Lemma 1. For convenience, let ci+1
v = {{ci

v; ci
u ∀ u ∈ N 1

G(v) | u 6= v}} be a re-
cursive definition of Algorithm 1 where hashing is removed and c0

v = {{dG(v)}}. Since
the hash is no longer computed, the nested multi-sets contain strictly the same or more
information as in the traditional 1-WL algorithm.

For IGEL to be less expressive than 1-WL, it must hold that there exist two graphs
G1 = (V1, E1) and G2 = (V2, E2) such that G1 6≡1-WL G2 while G1 ≡α

IGEL G2.
Let k be the minimum number of color refinement iterations such that ∃ v1 ∈ V1 and

∀ v2 ∈ V2, ck
v1
6= ck

v2
. We define an equally or more expressive variant of the 1-WL test 1-WL*

where hashing is removed, such that ck
v1

= {{{{...{{dG(v1)}}, {{dG(u)∀u ∈ N 1
G1
(v1)}}...}}}},

nested up to depth k. To avoid nesting, the multi-set of nested degree multi-sets can be
rewritten as the union of degree multi-sets by introducing an indicator variable for the
iteration number where a degree is found:

ck
v1

=

{{
(0, dG(v1))

}}⋃
{{
(1, dG(v1)); (1, dG(u)) ∀ u ∈ N 1

G(v1)

}}⋃
{{
(2, dG(v1)); (2, dG(u)) ∀ u ∈ N 1

G(v1); (2, dG(w)) ∀ w ∈ N 1
G(u)

}}⋃
...

At each step i, we introduce information about nodes up to distance i of v1. Further-
more, by construction, nodes will be visited on every subsequent iteration—i.e., for c2

v1
,

we will observe (2, dG(v1)) exactly dG(v1) + 1 times, as all its dG(v1) neighbors u ∈ N 1
G(v)

encode the degree of v1 in c1
u. The flattened representation provided by 1-WL* is still equally

or more expressive than 1-WL, as it removes hashing and keeps track of the iteration at
which a degree is found.

Let IGEL-W be a less expressive version of IGEL that does not include edges between
nodes at k + 1 hops of the ego network root. Now, consider the case in which ck

v1
6= ck

v2

from 1-WL*, and let α = k + 1 so that IGEL-W considers degrees by counting edges
found at k to k + 1 hops of v1 and v2. Assume that G1 ≡α

IGEL-W G2. By construction, this
means that {{eα

v1
: ∀ v1 ∈ V1}} = {{eα

v2
: ∀ v2 ∈ V2}}. This implies that all degrees and

iteration counts match as per the distance indicator variable at which the degrees are
found, so ck

v1
= ck

v2
which contradicts the assumption ck

v1
6= ck

v2
and therefore implies

that also G1 ≡1-WL* G2. Thus, G1 ≡α
IGEL-W G2 ⇒ G1 ≡1-WL* G2 for α = k + 1 and also

G1 6≡1-WL* G2 ⇒ G1 6≡α
IGEL-W G2. Therefore, by extension IGEL is at least as expressive as

1-WL.

To prove Lemma 2, we show graphs that IGEL can distinguish despite being undis-
tinguishable by 1-WL and the MATLANG sub-languages ML1 and ML2. In Section 4.1.1,
we provide an example where IGEL distinguishes 1-WL/ML1 equivalent graphs, while
Section 4.1.2 shows that IGEL also distinguishes graphs that are known to be distinguish-
able in the strictly more expressive ML2 language.

4.1.1. ML1/1-WL Expressivity: Decalin and Bicyclopentyl

Decalin and Bycyclopentyl (in Figure 2) are two molecules whose graph represen-
tations are not distinguishable by 1-WL despite their simplicity. The graphs are non-
isomorphic, but 1-WL identifies 3 equivalence classes in both graphs: central nodes with
degree 3 (purple), their neighbors (blue), and peripheral nodes farthest from the center
(green).
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Decalin

Bicyclopentyl

Figure 2. Decalin (top) and Bicyclopentyl (bottom). 1-WL (Algorithm 1) produces equivalent colorings
in both graphs; hence, they are 1-WL equivalent. The colorings match between central nodes (purple),
their immediate neighbors (blue), and peripheral nodes farthest from the center (green).

Figure 2 shows the resulting IGEL encoding for the central node (in purple) using
α = 1 (top) and α = 2 (bottom). For α = 1, the encoding field of IGEL is too narrow to
identify substructures that distinguish the two graphs (Figure 3, top). However, for α = 2
the representations of central nodes differ between the two graphs (Figure 3, bottom). In
this example, any value of α ≥ 2 can distinguish between the graphs.

IGEL 

IGEL 

Figure 3. IGEL encodings (α ∈ {1, 2}) for Decalin and Bicyclopentyl computed for purple vertices
(v). Dotted sections are not encoded. Colors denote different (l̃, d̃) tuples. IGEL(α = 2) distinguishes
the graphs since Decalin nodes at distance 2 from v have degree 1 (green) while their Bicyclopentyl
counterparts have degrees 1 (green) and 2 (red).
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4.1.2. ML2 Expressivity: Cospectral 4-Regular Graphs

IGEL can also distinguish ML2-equivalent graphs. Recall that ML2 is strictly more
expressive than 1-WL, as described in Section 2.2. It is known that d-regular graphs of the
same cardinality are indistinguishable by the 1-WL test in Algorithm 1 and that co-spectral
graphs cannot be distinguished in ML2:

Definition 1. G = (V, E) is d-regular with d ∈ N if ∀ v ∈ V, dG(v) = d.

Remark 1. For any pair of n-vertex d-regular graphs G1 = (V1, E1) and G2 = (V2, E2),
G1 ≡1−WL G2 (see [10], Example 3.5.2, p. 81).

Definition 2. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are co-spectral if their adjacency
matrices have the same multi-set of eigenvalues.

Remark 2. For any pair of n-vertex co-spectral graphs G1 = (V1, E1) and G2 = (V2, E2),
G1 ≡ML2 G2 (see [13], Proposition 5.1).

In contrast to 1-WL, we can find examples of non-isomorphic d-regular graphs that
IGEL can distinguish, as the generated encodings will differ for any pair of graphs whose
sets of sorted degree sequences do not match at any path length less than α. Furthermore,
we can find examples of co-spectral graphs that can be distinguished by IGEL encodings.
In both cases, the intuition is that the ego network encoding generated by IGEL discards
the edges that connect nodes beyond the subgraph. Consequently, the generated encoding
will depend on the actual connectivity at the boundary of the ego network and provide
IGEL with increased expressivity compared to other methods.

Figure 4 shows two co-spectral 4-regular graphs taken from [47], and the structures
obtained using IGEL encodings with α = 1 on each graph. The 1-WL test assigns a single
color to all nodes and stabilizes after one iteration. Likewise, any ML2 sentences executed
as operations on the adjacency matrices of both graphs produce equal results. However,
IGEL identifies four different structures (denoted a, b, c, d). Since the IGEL encodings
between both graphs do not match, they are distinguishable. This is the case for any value
of α ≥ 1.

b a b

a a a

a a

b b

c a c

d a d

c c

d d

01

1

1

1

01 1

11

(a)

(b)

01 1

11(c)

(a)

01

1

1

1

(d)

01

1

1

1

Figure 4. IGEL encodings for two co-spectral 4-regular graphs from [47]. IGEL distinguishes 4 kinds
of structures within the graphs (associated with every node as a, b, c, and d). The two graphs can be
distinguished since the encoded structures and their frequencies do not match.
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4.2. Indistinguishability on Strongly Regular Graphs

We identify an upper bound on the expressive power of IGEL: non-isomorphic
Strongly Regular Graphs with equal parameters. In this case, two non-isomorphic graphs
are not indistinguishable by IGEL.

Definition 3. A n-vertex d-regular graph is strongly regular—denoted SRG(n, d, λ, γ)—if all
adjacent vertices have λ vertices in common and all non-adjacent vertices have γ vertices in common.

Remark 3. For any G = SRG(n, d, λ, γ), diam(G) ≤ 2 [48].

Theorem 1. IGEL cannot distinguish two SRGs when n, d, and λ are the same, and between any
value of γ (equal or not).

Formally, given G1 = SRG(n1, d1, λ1, γ1), G2 = SRG(n2, d2, λ2, γ2):
— G1 ≡1

IGEL G2 ⇐⇒ n1 = n2 ∧ d1 = d2 ∧ λ1 = λ2;
— G1 ≡2

IGEL G2 ⇐⇒ n1 = n2 ∧ d1 = d2;
— no values of γ can be distinguished by ≡1

IGEL or ≡2
IGEL.

Proof. Recall that for any graph G, IGEL encodings are equal for all α ≥ diam(G) and
per Remark 3, SRGs have diameters of two or less. Let G = SRG(n, d, λ, γ), only α ∈ {1, 2}
produce different encodings for nodes of G. By construction, ∀v in G, v has encoding eα

v ,
so the encoding of G is eα

G = {{eα
v}}

n. Furthermore, {{e1
v}}

n only encodes n, d, and λ, and
{{e2

v}}
n only encodes n and d by expanding eα

v in Algorithm 2:

- Let α = 1: ∀ v ∈ V, E1
v = (V′, E′) s.t. V′ = N 1

G(v). Since G is d-regular, v is the center of
E1

v , and has d-neighbors. By definition, d neighbors of v have λ shared neighbors with v
each, plus an edge with v, and E1

v does not include γ edges beyond its neighbors. Thus,
for SRGs G1, G2 where n1 = n2, d1 = d2, and λ1 = λ2, e1

G1
= e1

G2
= {{e1

v}}
n where

e1
v =

{{(
0, d
)}}⋃ {{(

1, λ + 1
)}}d

.

- Let α = 2: ∀ v ∈ V, E2
v = G as ∀ u ∈ V, u ∈ N 2

G(v) when diam(G) ≤ 2. G is d-regular,
so ∀ v ∈ V, d = dE2

v
(v) = dG(v). Thus, for any SRGs G1, G2 s.t. n1 = n2 and d1 = d2,

e2
G1

= e2
G1

= {{e2
v}}

n where

e2
v =

{{(
0, d
)}}⋃ {{(

1, d
)}}d⋃ {{(

2, d
)}}n−d−1

Thus, IGEL with α ∈ {1, 2} can only distinguish between different values of n, d and λ.

4.3. Expressivity Implications

As expected from Theorem 1, IGEL cannot distinguish the Shrikhande and 4× 4 Rook
graphs (shown in Figure 5), which are known to be ML3-equivalent graphs [26,49] with
SRG(16, 6, 2, 2) parameters despite not being isomorphic.

Our findings show that IGEL is a powerful permutation-equivariant representation
(see Lemma A1), capable of distinguishing 1-WL equivalent graphs such as Figure 4—which
as cospectral graphs are known to be expressable in strictly more powerful MATLANG sub-
languages than 1-WL [13]. Furthermore, in Appendix D, we connect IGEL to SPNNs [40]
and show that IGEL is strictly more expressive than SPNNs on unattributed graphs. Finally,
we note that the upper bound on strongly regular graphs is a hard ceiling on expressivity
since SRGs are commonly known to be indistinguishable by 3-WL [14,21,23,43,49].
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(a) 4× 4 Rook Graph. (b) Shrikhande Graph.

Figure 5. 3-WL equivalent 4× 4 Rook ((a), red) and Shrikhande ((b), blue) graphs are indistinguish-
able by IGEL as they are non-isomorphic SRGs with parameters SRG(16, 6, 2, 2).

IGEL formally reaches an expressivity upper bound on SRGs, distinguishing SRGs
with different values of n, d, and λ. These results are similar with subgraph methods
implemented within MP-GNN architectures, such as nested GNNs [20] and GNN-AK [21],
which are known to be not less powerful than 3-WL, and the ESAN framework when
leveraging ego networks with root-node flags as a subgraph sampling policy (EGO+),
which is as powerful as 3-WL on SRGs [22]. However, in contrast to these methods, IGEL

cannot distinguish graphs with different values of γ. Furthermore, in Section 5, we study
IGEL in a series of empirical tasks, finding that the expressivity difference that IGEL exhibits
on SRGs does not have significant implications in downstream tasks.

Summarizing, IGEL distinguishes non-isomorphic graphs that are undistinguishable
by the 1-WL test. Furthermore, Lemma 2 shows that IGEL can distinguish any graphs that
1-WL can distinguish. We derive a precise expressivity upper bound for IGEL on SRGs,
showing that IGEL cannot distinguish SRGs with equal parameters or between values of γ.
Overall, the expressive power of IGEL on SRGs is similar to other state-of-the-art methods,
including k-hop GNNs [16], GSNs [19], NGNNs [20], GNN-AK [21], and ESAN [22].

5. Empirical Validation

We evaluate IGEL as a sparse local ego network encoding following Equation (5),
extending vertex/edge attributes on six experimental tasks: graph classification, graph
isomorphism detection, graphlet counting, graph regression, link prediction, and vertex
classification. With our experiments, we seek to evaluate the following empirical questions:

Q1. Does IGEL improve MP-GNN performance on standard graph-level tasks?
Q2. Can we empirically validate our results on the expressive power of IGEL compared to

1-WL?
Q3. Are IGEL encodings appropriate features to learn on unattributed graphs?
Q4. How do GNN models compare with more traditional neural network models when

they are enriched with IGEL features?

5.1. Overview of the Experiments

For graph classification, isomorphism detection, and graphlet counting, we reproduce
the benchmark proposed by [26] on eight graph data sets. For each task and data set, we
introduce IGEL as vertex/edge attributes, and compare the performance of including or
excluding IGEL on several GNN architectures—including linear and MLP baselines (with-
out message passing), GCNs [31], GATs [33], GINs [8], Chebnets [30], and GNNML3 [26].
We measure whether IGEL improves inductive MP-GNN performance while validating
our theoretical expressivity analysis (Q1 and Q2). We also evaluate on the ZINC-12K and
PATTERN data sets from benchmarking GNNs [50] to test IGEL on larger, real-world data
sets.
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For link prediction, we experiment on two unattributed social network graphs. We
train self-supervised embeddings on IGEL encodings and compare them against standard
transductive vertex embeddings. Transductive methods require that all nodes in the graph
are known at training and inference time, while inductive methods can be applied to unseen
nodes, edges, and graphs. Inductive methods may be applied in transductive settings but
not vice-versa. Since IGEL is label and permutation invariant, its output is an inductive
representation. We detail the self-supervised embedding approach in Appendix H. We
compare our results against strong vertex embedding models, namely DeepWalk [51] and
Node2Vec [52], seeking to validate IGEL as a theoretically grounded structural feature
extractor in unattributed graphs (Q3).

For vertex classification, we train using IGEL encodings and vertex attributes as inputs
on DNN models without message passing on an inductive protein-to-protein interaction
(PPI) multi-label classification problem. We evaluate the impact of introducing IGEL on top
of vertex attributes and compare the performance of IGEL-inclusive models with MP-GNNs
(Q4).

5.2. Experimental Methodology

On graph-level tasks, we introduce IGEL encodings concatenated to existing vertex
features, and also introduce IGEL as edge-level features representing an edge as the element-
wise product of node-level IGEL encodings at each end of the edge into the best performing
model configurations found by [26] without any hyper-parameter tuning (e.g., number of
layers, hidden units, choice pooling and activation functions). We evaluate performance
differences with and without IGEL on each task, data set and model on 10 independent runs,
measuring statistical significance of the differences through paired t-tests. On benchmark
data sets, we reuse the best reported GIN-AK+ baseline from [21] and simply introduce
IGEL as additional node features with α ∈ {1, 2}, with no hyper-parameter changes.

On vertex and edge-level tasks, we report best performing configurations after hyper-
parameter search. Each configuration is evaluated on five independent runs. Our results
are compared against strong standard baselines from the literature, and we provide a
breakdown of the best-performing hyper-parameters found in Appendix A.

5.3. Results and Notation

The following formatting denotes significant (as per paired t-tests) positive (in bold),
negative (in italic), and insignificant differences (no formatting) after introducing IGEL, with
the best results per task/data set underlined.

5.4. Graph Classification: TU Graphs

Table 1 shows graph classification results for TU molecule data sets [28]. In each data
set, nodes represent atoms and edges represent their atomic bonds. The graphs contain no
edge features while, node features are a one-hot encoded vector of the atom represented
by that node. We evaluate differences in mean accuracies with and without IGEL through
paired t-tests, denoting significance intervals of p < 0.01 as * and p < 0.0001 as �.

Table 1. Per-model classification accuracy metrics on TU data sets. Each cell shows the average
accuracy of the model and data set in that row and column, with IGEL (left) and without IGEL (right).

Model Enzymes Mutag Proteins PTC

MLP 41.10 > 26.18 � 87.61 > 84.61 � 75.43 ~ 75.01 64.59 > 62.79 �

GCN 54.48 > 48.60 � 89.61 > 85.42 � 75.67 > 74.50 * 65.76 ~ 65.21
GAT 54.88 ~ 54.95 90.00 > 86.14 � 73.44 > 70.51 � 66.29 ~ 66.29
GIN 54.77 > 53.44 * 89.56 ~ 88.33 73.32 > 72.05 � 61.44 ~ 60.21
Chebnet 61.88 ~ 62.23 91.44 > 88.33 � 74.30 > 66.94 � 64.79 ~ 63.87
GNNML3 61.42 < 62.79 � 92.50 > 91.47 * 75.54 > 62.32 � 64.26 < 66.10 �
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Our results show that IGEL in the Mutag and Proteins data sets improves the perfor-
mance of all MP-GNN models, including GNNML3, contributing to answer Q1. By intro-
ducing IGEL in those data sets, MP-GNN models reach similar performance to GNNML3.
Introducing IGEL achieves this at O(n ·min(m, (dmax)α)) preprocessing costs compared to
O(n3) worst-case eigen-decomposition costs associated with GNNML3’s spectral supports.

Additionally, since IGEL is an inductive method, the worst-case O(n · (dmax)α) when
α < diam(G) cost is only required when the graph is first processed. Afterwards, encodings
can be reused, recomputing them for nodes neighboring new nodes or updated edges as
given by α. This contrasts with GNNML3’s spectral supports, which are computed on the
adjacency matrix and would require a full recalculation when nodes or edges change.

On the Enzymes and PTC data sets, results are mixed: for all models other than
GNNML3, IGEL either significantly improves accuracy (on MLPNet, GCN, and GIN on
Enzymes), or does not have a negative impact on performance. GAT outperforms GNNML3
in PTC, while GNNML3 is the best performing model on Enzymes. Additionally, GNNML3
performance degrades when IGEL is introduced on the Enzymes and PTC data sets. We
believe this degradation may be caused by overfitting due to a lack of additional parameter
tuning, as GNNML3 models are deeper in Enzymes and PTC (four GNNML3 layers) when
compared Mutag and Proteins (three and two GNNML3 layers respectively). It may be
possible to improve GNNML3 performance with IGEL by re-tuning model parameters,
but due to computational constraints we do not test this hypothesis. Nevertheless, we
observe that all models improve in at least two different data sets after introducing IGEL

without hyper-parameter tuning, which we believe indicates our results are a conservative
lower-bound on model performance.

We also compare the best IGEL results from Table 1 with state-of-the-art methods
improving expressivity. Table 2 summarizes the reported results for k-hop GNNs [16],
GSNs [19], nested GNNs [20], ID-GNNs [39], GNN-AK [21], and ESAN [22]. When we
compare IGEL and the best performing baseline for every data set, none of the differences
are statistically significant (p > 0.01) except for ID-GNN in Proteins (where p = 0.009).

Table 2. Mean ± stddev of best IGEL configuration and state-of-the-art results reported
on [16,19–22,39] with best performing baselines underlined.

Model Mutag Proteins PTC

IGEL (ours) 92.5± 1.2 75.7± 0.3 66.3± 1.3

k-hop [16] † 87.9 ± 1.2 � 75.3± 0.4 —
GSN [19] † 92.2± 7.5 76.6± 5.0 68.2± 7.2
NGNN [20] † 87.9± 8.2 74.2± 3.7 —
ID-GNN [39] † 93.0± 5.6 77.9± 2.4 * 62.5± 5.3
GNN-AK [21] † 91.7± 7.0 77.1± 5.7 67.7± 8.8
ESAN [22] † 91.1± 7.0 76.7± 4.1 69.2± 6.5

†: Results as reported by [16,19–22,39].

Overall, our results show that incorporating the IGEL encodings in a vanilla GNN
yields comparable performance to state-of-the-art methods (Q2).

5.5. Graph Isomorphism Detection

Table 3 shows isomorphism detection results on two data sets: Graph8c (as described
in Appendix A), and EXP [53]. On the Graph8c data set, we identify isomorphisms by
counting the number of graph pairs for which randomly initialized MP-GNN models
produce equivalent outputs. Equivalence is measured by the Manhattan distance between
graph on 100 independent initialization runs further described in Appendix A. The EXP
data set contains 1-WL equivalent pairs of graph, and the objective is to identify whether
they are isomorphic or not. We report model accuracies on the binary classification task of
distinguishing non-isomorphic graphs that are 1-WL equivalent.
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Table 3. Graph isomorphism detection results. The IGEL column denotes whether IGEL is used or
not in the configuration. For Graph8c, we describe graph pairs erroneously detected as isomor-
phic. For EXP classify, we show the accuracy of distinguishing non-isomorphic graphs in a binary
classification task.

Model + IGEL Graph8c EXP Class.
(#Errors) (Accuracy)

No 6.242M 50%Linear Yes 1571 97.25%

No 293K 50%MLP Yes 1487 100%

No 4196 50%GCN Yes 5 100%

No 1827 50%GAT Yes 5 100%

No 571 50%GIN Yes 5 100%

No 44 50%Chebnet Yes 1 100%

No 0 100%GNNML3 Yes 0 100%

On Graph8c, introducing IGEL significantly reduces the amount of graph pairs erro-
neously identified as isomorphic for all MP-GNN models. Furthermore, IGEL allows a
linear baseline employing a sum readout over input feature vectors, then projecting onto a
10-component space to identify all but 1571 non-isomorphic pairs compared to GCNs (4196
errors) or GATs (1827 errors) that can be identified without IGEL.

We also find that all Graph8c graphs can be distinguished if the IGEL encodings for
α = 1 and α = 2 are concatenated. We do not study the expressivity of concatenating
combinations of α in this work, but based on our results we hypothesize it produces strictly
more expressive representations.

On EXP, introducing IGEL is sufficient to correctly identify all non-isomorphic graphs
for all standard MP-GNN models, as well as the MLP baseline. Furthermore, the linear
baseline can reach 97.25% classification accuracy with IGEL despite only computing a global
sum readout before a single-output fully connected layer. Results on Graph8c and EXP
validate our theoretical claims that IGEL is more expressive than 1-WL and can distinguish
graphs that would be indistinguishable under 1-WL, answering Q2.

We also evaluate IGEL on the SR25 data set (described in Appendix A), which contains
15 strongly regular 25 vertex non-isomorphic graphs known to be indistinguishable by
3-WL where we can empirically validate Theorem 1. In [26], it was shown that all models
in our benchmark are unable to distinguish any of the 105 non-isomorphic graph pairs in
SR25. Introducing IGEL does not improve distinguishability—as expected from Theorem 1.

5.6. Graphlet Counting

We evaluate IGEL on a graphlet counting regression task, training a model to minimize
mean squared error (MSE) on the normalized graphlet counts. Counts are normalized by
the standard deviation of counts in the training set, as in [26].

In Table 4, we show the results of introducing IGEL in five graphlet counting tasks
on the RandomGraph data set [54]. We identify 3-stars, triangles, tailed triangles and
4-cycle graphlets, as shown in Figure 6, plus a custom structure with 1-WL expressiveness
proposed in [26] to evaluate GNNML3. We highlight statistically significant differences
when introducing IGEL (p < 0.0001).
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3-Star Triangle Tailed 
Triangle 4-Cycle

Figure 6. Graphlet types in the counting task.

Table 4. Graphlet counting results. On every cell, we show mean test set MSE error (lower is better),
with stat. sig (p < 0.0001) results highlighted and best results per task underlined. For comparison,
we also report strong literature results from two subgraph GNNs: GNN-AK+ using a GIN base [21]
and SUN [23].

Model + IGEL Star Triangle Tailed Tri. 4-Cycle Custom

No 1.60× 10−1 3.41× 10−1 2.82× 10−1 2.03× 10−1 5.11× 10−1
Linear Yes 4.23× 10−3 4.38× 10−3 1.85× 10−2 1.36× 10−1 5.25× 10−2

No 2.66× 10−6 2.56× 10−1 1.60× 10−1 1.18× 10−1 4.54× 10−1
MLP Yes 8.31× 10−5 5.69× 10−5 5.57× 10−5 7.64× 10−2 2.34× 10−4

No 4.72× 10−4 2.42× 10−1 1.35× 10−1 1.11× 10−1 1.54× 10−3
GCN Yes 8.26× 10−4 1.25× 10−3 4.15× 10−3 7.32× 10−2 1.17× 10−3

No 4.15× 10−4 2.35× 10−1 1.28× 10−1 1.11× 10−1 2.85× 10−3
GAT Yes 4.52× 10−4 6.22× 10−4 7.77× 10−4 7.33× 10−2 6.66× 10−4

No 3.17× 10−4 2.26× 10−1 1.22× 10−1 1.11× 10−1 2.69× 10−3
GIN Yes 6.09× 10−4 1.03× 10−3 2.72× 10−3 6.98× 10−2 2.18× 10−3

No 5.79× 10−4 1.71× 10−1 1.12× 10−1 8.95× 10−2 2.06× 10−3
Chebnet Yes 3.81× 10−3 7.88× 10−4 2.10× 10−3 7.90× 10−2 2.05× 10−3

No 8.90× 10−5 2.36× 10−4 2.91× 10−4 6.82× 10−4 9.86× 10−4
GNNML3 Yes 9.29× 10−4 2.19× 10−4 4.23× 10−4 6.98× 10−4 4.17× 10−4

GIN-AK+ [21] No 1.6× 10−2 1.1× 10−2 1.0× 10−2 1.1× 10−2 —

SUN [23] No 6.0× 10−3 8.0× 10−3 8.0× 10−3 1.1× 10−2 —

Introducing IGEL improves the ability of 1-WL GNNs to recognize triangles, tailed
triangles, and custom 1-WL graphlets from [26]. Stars can be identified by all baselines, and
introducing IGEL only produces statistically significant differences on the linear baseline.
Interestingly, IGEL on the linear model produces results outperforming MP-GNNs without
IGEL for star, triangle, tailed triangle, and custom 1-WL graphlets.

By introducing IGEL on the MLP baseline, it obtains the best performance (lower
MSE) on the triangle, tailed-triangle, and custom 1-WL graphlets, even when compared to
GNNML3 and subgraph GNNs—including when IGEL encodings are input to GNNML3.

Results on linear and MLP baselines are interesting as neither baseline uses message
passing, indicating that raw IGEL encodings may be sufficient to identify certain graph
structures in simple linear models. For all graphlets except 4-cycles, introducing IGEL

outperforms or matches GNNML3 performance at lower preprocessing and model train-
ing/inference costs—without the need for costly eigen decomposition or message passing,
answering Q1 and Q2. IGEL moderately improves performance counting 4-cycle graphlets,
but the results are not competitive when compared to GNNML3.

5.7. Benchmark Results with Subgraph GNNs

Given the favorable performance of IGEL compared to related subgraph aware meth-
ods such as NGNN and ESAN, as shown in Table 2, we also explore introducing IGEL on
a subgraph GNN, namely GNN-AK proposed by [21]. We follow a similar experimental
approach as in previous experiments, reproducing the results of GNN-AK using GINs [8]
with edge-feature support [55] (GINs are the best performing base model in three out of
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the four data sets, as reported in [21]) as the base GNN on two real-world benchmark data
sets: ZINC-12K (as a graph regression task minimizing mean squared error ↓, where lower
is better) and PATTERN (as a graph classification task, where higher accuracy ↑ is better)
from benchmarking GNNs [50].

Without performing any additional hyper-parameter tuning or architecture search,
we evaluate the impact of introducing IGEL with α ∈ {1, 2} on the best performing model
configuration and code published by the authors of GNN-AK [21]. Furthermore, we also
evaluate the setting in which subgraph information is not used to assess whether IGEL can
provide comparable performance to GNN-AK without changes to the network architecture.
Table 5 summarizes our results.

Table 5. Mean and standard deviations of the evaluation metrics on the real-world benchmark data
sets in combination with GNN-AK [21], highlighting positive and negative stat. sig, (p < 0.05) results
when IGEL is added with best per-data set results underlined.

Model + IGEL
ZINC-12K

(Mean Squared Error, ↓)
PATTERN
(Accuracy, ↑)

No 0.155± 0.003 85.692± 0.042GIN Yes 0.155± 0.005 86.711± 0.009

GIN-AK+ No 0.086± 0.002 86.877± 0.006
Yes 0.078± 0.003 86.737 ± 0.062

↓: lower is better; ↑: higher is better.

IGEL maintains or improves performance in both cases when introduced on a GIN,
but only in the case of PATTERN we find a statistically significant difference (p < 0.05).
When introducing IGEL on a GIN-AK model, we find statistically significant improvements
on ZINC-12K. Introducing IGEL on GIN-AK+ in PATTERN produces unstable losses on
the validation set, with model performance showing larger variations across epochs. We
believe that this instability might explain the loss in performance and that further hyper-
parameter tuning and regularization (e.g., tuning dropout to avoid overfitting on specific
IGEL features) could result in improved model performance.

Finally, we note that despite our constrained setup, introducing IGEL is also interesting
from a runtime and memory standpoint. In particular, introducing IGEL on a GIN for
PATTERN yields performance only−0.2% worse than its GNN-AK (86.711 vs. 86.877), while
executing 3.87 times faster (62.21 s vs. 240.91 s per iteration) and requiring 20.51 times
less memory (26.2 GB vs. 1.3 GB). This is in line with our theoretical analysis in Section 3,
as IGEL can be computed once as a preprocessing step and then introduces a negligible
cost on the input size of the first layer, which is amortized in multi-layer GNNs. Together
with our results on graph classification, isomorphism detection, and graphlet counting, our
experiments show that IGEL is also an efficient way of introducing subgraph information
without architecture modifications in large real-world data sets.

5.8. Link Prediction

We also test IGEL on a link prediction task, following the approach of [52] to compare
with well-known transductive node embedding methods on the Facebook and ArXiv
AstroPhysics data sets [56]. We mode the task as follows: for each graph, we generate
negative examples (non-existing edges) by sampling random unconnected node pairs.
Positive examples (existing edges) are obtained by removing half of the edges, keeping
the pruned graph connected after edge removals. Both sets of vertex pairs are chosen to
have the same cardinality. Note that keeping the graph connected is not required for IGEL—
it is required by transductive methods, which fail to learn meaningful representations
on disconnected graph components. We learn self-supervised IGEL embeddings with a
DeepWalk [51] approach (described in Appendix H) and model the link prediction task as
a logistic regression problem whose input is the representation of an edge—as the element-



Mach. Learn. Knowl. Extr. 2023, 5 1250

wise product of IGEL embeddings of vertices at each end of an edge without fine-tuning,
which is the best edge representation reported by [52].

In Table 6, we report AUC results averaged on five independent executions and com-
pared against previous reported baselines. In this case, we perform hyper-parameter search,
with results described on Appendix A. We provide additional details on the unsupervised
parameters in our code repositories also referenced in Appendix A.

Table 6. Area under the ROC curve (AUROC) link prediction results on Facebook and AP-arXiv.
Embeddings learned on IGEL encodings outperform transductive methods. IGEL stddevs < 0.005.

Method Facebook arXiv

DeepWalk [51] 0.968 0.934
node2vec [52] 0.968 0.937

IGEL (α = 2) 0.976 0.984

IGEL with α = 2 significantly outperforms standard transductive methods on both
data sets. This is despite the fact that we compare against methods that are aware of node
identities and that several vertices can share the same IGEL encodings. Furthermore, IGEL

is an inductive method that may be used on unseen nodes and edges, unlike transductive
methods DeepWalk or node2vec. We do not explore the inductive setting as it would
unfairly favor IGEL and cannot be directly applied to DeepWalk or Node2vec.

Additionally, IGEL significantly underperforms when α = 1. We believe this might
be caused by the fact that when α < 2, it is not possible for the model to assess whether
two vertices are neighbors based on their IGEL representation. Overall, our link prediction
results show that IGEL encodings can be used as a potentially inductive feature generation
approach in unattributed networks, without degrading performance when compared to
standard vertex embedding methods—answering Q3.

5.9. Vertex Classification

In light of our graph-level results on graphlet counting, we evaluate to which extent
a vertex classification task can be solved by leveraging IGEL structural features without
message passing (Q4). We introduce IGEL in a DNN model and evaluate against sev-
eral MP-GNN baselines. Our comparison includes supervised baselines proposed by
GraphSAGE [32], LCGL [34], and GAT [33] on a multi-label classification task in a protein-
to-protein interaction (PPI) [32] data set. The aim is to predict 121 binary labels, given
graph data where every vertex has 50 attributes. We tune the parameters of a multi-
layer perceptron (MLP) whose input features are either IGEL, vertex attributes, or both
through randomized grid search—and we provide a detailed description of the grid-search
parameters in Appendix A.

Table 7 shows Micro-F1 scores averaged over five independent runs. Introducing IGEL

alongside vertex attributes in an MLP can outperform standard MP-GNNs like GraphSAGE
or LGCL despite not using message passing—and thus only having access to the attributes
of a vertex without additional context from its neighbors, answering Q4. Furthermore, even
though IGEL underperforms when compared with GAT, the results reported by [33] use a
three-layer GAT model propagating messages through 3-hops, while we observe the best
IGEL performance with α = 1. We believe that the structural information at 1-hop captured
by IGEL might be sufficient to improve performance on tasks where local information is
critical, potentially reducing the hops required by downstream models (e.g., GATs).
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Table 7. Multi-label class. Micro-F1 scores on PPI. IGEL plus node features as input for an MLP
outperforms LGCL and GraphSAGE. IGEL stddevs < 0.01.

Method PPI

Only Features (MLP, ours) 0.558

GraphSAGE-GCN [32] 0.500
GraphSAGE-mean [32] 0.598
GraphSAGE-LSTM [32] 0.612
GraphSAGE-pool [32] 0.600

GraphSAGE (no sampling) [33] 0.768
LGCL [34] 0.772

IGEL (α = 1) Graph Only 0.736
Graph + Feats 0.850

IGEL (α = 2) Graph Only 0.506
Graph + Feats 0.741

Const-GAT [33] 0.934
GAT [33] 0.973

6. Discussion and Conclusions

IGEL is a novel and simple vertex representation algorithm that increases the expres-
sive power of MP-GNNs beyond the 1-WL test. Empirically, we found IGEL can be used
as a vertex/edge feature extractor on graph-, edge-, and node-level settings. On four
different graph-level tasks, IGEL significantly improves the performance of nine graph
representation models without requiring architectural modifications—including Linear
and MLP baselines, GCNs [57], GATs [33], GINs [8], ChebNets [30], GNNML3 [26], and
GNN-AK [21]. We introduce IGEL without performing hyper-parameter search on an exist-
ing baseline, which suggests that IGEL encodings are informative and can be introduced in
a model without costly architecture search.

Although structure-aware message passing [16,20,21,23], substructure counts [19],
identity [39], and subgraph pooling [22] may also be combined with existing MP-GNN
architectures, IGEL reaches comparable performance as related models while simply aug-
menting the set of vertex-level feature without tuning model hyper-parameters. IGEL

consistently improves performance on five data sets for graph classification: one data set
for graph regression, two data sets for isomorphism detection, and five different graphlet
structures in a graphlet counting task. Furthermore, even though MP-GNNs with learnable
subgraph representations are expected to be more expressive since they can freely learn
structural characteristics according to optimization objectives, our results show that intro-
ducing IGEL produces comparable results on three different domains and improves the
performance of a strong GNN-AK+ baseline on ZINC-12K. Additionally, introducing IGEL

on a GIN model in the PATTERN data set achieves 99.8% of the performance of a strong
GIN-AK+ baseline at 3.87 times lower memory costs. The computational efficiency is a
key benefit of IGEL as it only requires a single preprocessing step that extends vertex/edge
attributes and can be cached during training and inference.

On link prediction tasks evaluated in two different graph data sets, IGEL-based Deep-
Walk [51] embeddings outperformed transductive methods based on embedding node
identities such as DeepWalk [51] and Node2vec [52]. Finally, IGEL with α = 1 outperformed
certain MP-GNN architectures like GraphSAGE [32] on a protein–protein interaction node-
classification task despite being used as an additional input to a DNN without message
passing. More powerful MP-GNNs—namely a three-layer GAT [33]—outperformed the
IGEL-enriched DNN model, albeit at potentially higher computational costs due to the
increased depth of the model.
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A fundamental aspect in our analysis of the expressivity of IGEL is that the connectivity
of nodes is different depending on whether they are analyzed as part of the subgraph (ego
network) or within the entire input graph. In particular, edges at the boundary of the
ego network are a subset of the edges in the input graph. IGEL exploits this idea in
combination with a simple encoding based on frequencies of degrees and distances. This is
a novel idea, which allows us to connect the expressive power of IGEL with other analyses
like the 1-WL test, as well as Weisfeiler–Lehman kernels (see Appendix B), shortest-path
neural networks (see Appendix D), and MATLANG (see Appendix E). Furthermore, the
ego network formulation allows us to identify an upper-bound on expressivity in strongly
regular graphs—matching recent findings on the expressivity of subgraph GNNs.

Although we have presented IGEL on unattributed graphs, the principle underlying
its encoding can be also applied to labelled or attributed graphs. Appendix G outlines
possible extensions in this direction. In Appendix G.3, we also connect IGEL with k-hop
GNNs and GNN-AK—drawing a direct link between subgraph GNNs and our proposed
encoding.

Overall, our results show that IGEL can be efficiently used to enrich network repre-
sentations on a variety of tasks and data sets, which we believe is an attractive baseline in
expressivity-related tasks. This opens up interesting future research directions by showing
that explicit network encodings like IGEL can perform competitively compared to more
complex learnable representations while being more computationally efficient.
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Appendix A. Additional Settings and Results

Appendix A.1. Data Set Details

We summarize all graph data sets used in the experimental validation of IGEL in Table A4.
To provide an overview of each data set and its usage, we indicate the average cardinality
of the graphs in the data set (Avg. n), the average number of edges per graph (Avg. m), and
the total number of graphs per data set. We describe the task, loosely grouped in graph
classification, non-isomorphism detection, graph regression, link prediction and vertex
classification. We also provide the shape of the output for every problem and describe the
split regime for training/validation/test sets when relevant.

Reproducibility —We provide three code repositories with our code and changes to
the original benchmarks, including our modeling scripts, metadata, and experimental
results: https://github.com/nur-ag/IGEL, https://github.com/nur-ag/gnn-matlang and
https://github.com/nur-ag/IGEL-GNN-AK (all accessed on 16 September 2023).

https://github.com/nur-ag/IGEL
https://github.com/nur-ag/gnn-matlang
https://github.com/nur-ag/IGEL-GNN-AK
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Appendix A.2. Hyper-Parameters and Experiment Details

Graph Level Experiments. We reproduce the benchmark of [26] without modifying
model hyper-parameters for the tasks of graph classification, graph isomorphism detection,
and graphlet counting. For classification tasks, the six models in Table 2 are trained on
binary/categorical cross-entropy objectives depending on the task. For Graph isomorphism
detection, we train GNNs as binary classification models on the binary classification task
on EXP [53], and identify isomorphisms by counting the number of graph pairs for which
randomly initialized MP-GNN models produce equivalent outputs on Graph8c—Simple 8
vertices graphs from: http://users.cecs.anu.edu.au/~bdm/data/graphs.html (accessed on
16 September 2023). This evaluation procedure means models are not trained but simply
initialized, following the approach of [26]. We also evaluate on the SR25 dataset and find
IGEL encodings cannot distinguish the 105 Strongly Regular graph pairs with parameters
SRG(25, 12, 5, 6) from: http://users.cecs.anu.edu.au/~bdm/data/graphs.html (accessed
on 16 September 2023). For the graphlet counting regression task on the RandomGraph
data set [54], we train models to minimize mean squared error (MSE) on the normalized
graphlet counts for five types of graphlets.

On all tasks, we experiment with α ∈ {1, 2} and optionally introduce a preliminary
linear transformation layer to reduce the dimensionality of IGEL encodings. For every
setup, we execute the same configuration 10 times with different seeds and compare
runs introducing IGEL or not by measuring whether differences on the target metric (e.g.,
accuracy or MSE) are statistically significant, as shown in Tables 1 and 2. In Table A1, we
provide the value of α that was used in our experimental results. Our results show that
the choice of α depends on both the task and model type. We believe these results may be
applicable to subgraph-based MP-GNNs, and will explore how different settings, graph
sizes, and downstream models interact with α in future work.

Table A1. Values of α used when introducing IGEL in the best reported configuration for graphlet
counting and graph classification tasks. The table is broken down by graphlet types (upper section)
and graph classification tasks on the TU data sets (bottom section).

Chebnet GAT GCN GIN GNNML3 Linear MLP

Star 2 1 2 1 1 2 1
Tailed Triangle 1 1 1 1 2 1 1

Triangle 1 1 1 1 1 1 1
4-Cycle 2 1 1 1 1 1 1

Custom Graphlet 2 1 1 1 2 2 2

Enzymes 1 2 2 1 2 2 2
Mutag 1 1 1 1 1 1 2

Proteins 2 2 2 1 2 1 1
PTC 1 1 2 1 1 2 2

Vertex and Edge-level Experiments. In this section we break down the best perform-
ing hyper-parameters on the edge- (link prediction) and vertex-level (node classification)
experiments.

Link Prediction—The best performing hyperparameter configuration on the Facebook
graph including α = 2, learning t = 256 component vectors with e = 10 walks per node,
each of length s = 150 and p = 8 negative samples per positive for the self-supervised
negative sampling. Respectively, on the arXiv citation graph, we find the best configuration
at α = 2, t = 256, e = 2, s = 100 and p = 9.

Node Classification—In the node classification experiment, we analyze both encoding
distances α ∈ {1, 2}. Other IGEL hyper-parameters are fixed after a small greedy search
based on the best configurations in the link prediction experiments. For the MLP model,
we perform a greedy architecture search, including number of hidden units, activation

http://users.cecs.anu.edu.au/~bdm/data/graphs.html
http://users.cecs.anu.edu.au/~bdm/data/graphs.html
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functions and depth. Our results show scores averaged over five different seeded runs with
the same configuration obtained from hyperparameter search.

The best performing hyperparameter configuration on the node classification is found
with α = 2 on t = 256 length embedding vectors, concatenated with node features as the
input layer for 1000 epochs in a three-layer MLP using ELU activations with a learning rate
of 0.005. Additionally, we apply 100 epoch patience for early stopping, monitoring the F1
score on the validation set.

Reproducibility—We provide a replication folder in the code repository for the exact
configurations used to run the experiments.

Appendix B. Relationship to Weisfeiler–Lehman Graph Kernels

The Weisfeiler–Lehman algorithm has inspired the design of graph kernels for graph
classification, as proposed by [45,58]. In particular, Weisfeiler–Lehman graph kernels [45]
produce representations of graphs based on the labels resulting of evaluating several
iterations of the 1-WL test described in Algorithm 1. The resulting vector representation re-
sembles IGEL encodings, particularly in vector form—IGELα

vec(v). In the case of WL kernels,
the hash function maps sorted label multi-sets in terms of their position in lexicographic
order within the iteration. An iteration of the algorithm is illustrated in Figure A1.

1

3

1 1

1

3

2 2

(1.) Input Labels (2.) Multiset Determination

{1,3}

{1,1,1,3}

{1,3} {1,3}

{1,3}

{1,2,2,3}

{2,2,3} {2,2,3}

(3.) Label Compression
{1,3} 4

{2,2,3} 5

{1,1,1,3} 6

{1,2,2,3} 7

4

6

4 4

4

7

5 5

(4.) Relabeling

Figure A1. One iteration of the Weisfeiler–Lehman graph kernel where input labels are node degrees.
Given an input labeling, one iteration of the kernel computes a new set of labels based on the sorted
multi-sets produced by aggregating the labels of each node’s neighbors.

After k iterations, graphs are represented by counting the frequency of distinct labels
ci

v that were observed at each iteration 1 ≤ i ≤ k. The resulting vector representation can
be used to compare whether two graphs are similar and as an input to graph classification
models.

However, WL graph kernels can suffer from generalization problems, as the label
compression step assigns different labels to multi-sets that differ on a single element within
the multi-set. If a given graph contains a previously unseen label, each iteration will
produce previously unseen multi-sets, propagating at each iteration step and potentially
harming model performance. Recent works generalize certain iteration steps of WL graph
kernels to address these limitations, introducing topological information [59] or Wasserstein
distances between node attribute to derive labels [60]. IGEL can be understood as another
work in that direction, removing the hashing step altogether and simply relying on target
structural features—path length and distance tuples—that can be inductively computed in
unseen or mutating graphs.
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Appendix C. IGEL Is Permutation Equivariant

Lemma A1. Given any v ∈ V for G = (V, E) and given a permuted graph G′ = (V′, E′) of
G produced by a permutation of node labels π : V → V′ such that ∀v ∈ V ⇔ π(v) ∈ V′,
∀(u, v) ∈ E⇔ (π(u), π(v)) ∈ E′.

The IGEL representation is permutation equivariant at the graph level

π({{eα
v1

, . . . , eα
vn}}) = {{e

α
π(v1)

, . . . , eα
π(vn)
}}.

The IGEL representation is permutation invariant at the node level

eα
v = eα

π(v), ∀v ∈ G.

Proof. Note that eα
v in Algorithm 2 can be expressed recursively as

eα
v =

{{(
lEα

v (u, v), dEα
v (u)

)∣∣∣ ∀ u ∈ N α
G(v)

}}
.

Since IGEL only relies on node distances lG(·, ·) and degree nodes dG(·), and both
lG(·, ·) and dG(·) are permutation invariant (and the node level) and equivariant (at the
graph level) functions, the IGEL representation is permutation equivariant at the graph
level, and permutation invariant at the node level.

Appendix D. Connecting IGEL and SPNNs

In this section, we connect IGEL with the shortest-path neural network (SPNN)
model [40] and show that IGEL is strictly more expressive than SPNNs.

Proposition A1. IGEL is strictly more expressive than SPNNs on unattributed graphs.

Proof. First, we show that IGEL encodings contain at least the same the information as
SPNNs in unattributed graphs. Let Lk

G(v) = {u|u ∈ V ∧ lG(u, v) = k} be the nodes in G
exactly at distance k of v. In [40], the embedding of v at layer t + 1 (ht+1

v ) in a k-depth SPNN
is defined based on the following aggregation over the 1, ..., k-distance neighborhoods:

(1 + ε) · ht
v +

k

∑
i=1

ψi ∑
u∈Li

G(v)

ht
u, (A1)

where ε and ψi are learnable parameters that modulate aggregation of node embeddings
for node v and node embeddings for nodes at a distance i, respectively.

For unattributed graphs, the information captured by Equation (A1) is equivalent
to counting the frequency of all node distances to node v in Eα

v . This can be written as a
reduced IGEL representation following Equation (4):

SPNNα
v =

{{
lEα

v (u, v)
∣∣∣ ∀ u ∈ N α

G(v)
}}

. (A2)

This representation captures an encoding that only considers distances. While SPNNα=1
v

can be used to compute the degree of v ∈ V in the entire graph G, it does not capture
the degree of any node u only within the ego network Eα

v . Thus, by definition, the IGEL

encoding of Equation (4), contains at least all the necessary information to construct Equa-
tion (A2)—showing that IGEL is at least as expensive as SPNNs in unattributed graphs.

Second, we show that there exist unattributed graphs that IGEL can distinguish but
that cannot be distinguished by SPNNs. Figure A2 shows an example. Thus, IGEL is strictly
more expressive than SPNNs.
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Figure A2. IGEL encodings for two SPNN-indistinguishable graphs [40] from [61] (top). IGEL with
α = 1 distinguishes both graphs (bottom) as all ego networks form tailed triangles on the right graph
and stars on the left. However, SPNNs (as well as 1-WL) fail to distinguish them as all ego network
roots (purple) have three adjacent nodes (blue) and two non-adjacent nodes at 2-hops (dotted).

Appendix E. IGEL and MATLANG

A natural question is to explore how IGEL relates to MATLANG—whether IGEL can
be expressed in ML1, ML2, or ML3, and whether certain MATLANG operations (and hence
languages containing them) can be reduced to IGEL. We focus on the former to evaluate
whether IGEL can be computed for a given node as an expression in MATLANG.

Appendix E.1. MATLANG Sub-Languages

As introduced in Section 1, MATLANG is a language of operations on matrices. MAT-
LANG sentences are formed by sequences of operations containing matrix multiplication
(·), addition (+), transpose ( ᵀ), element-wise multiplication (�), column vector of ones
(1), vector diagonalization (diag), matrix trace (tr), scalar-matrix/vector multiplication
(×), and element-wise function application ( f ). Given MATLANG’s operations ML =
{·,+, ᵀ,�, 1, diag, tr,×, f }, [13] shows that a language containing ML1 = {·, ᵀ, 1, diag}
is as powerful as the 1-WL test, ML2 = {·, ᵀ, 1, diag, tr} is strictly more expressive than
the 1-WL test, but less expressive than the 3-WL test, and ML3 = {·, ᵀ, 1, diag, tr,�} is as
powerful as the 3-WL test. For ML1, ML2, ML3, enriching the language with {+,×, f } has
no impact on expressivity.

Appendix E.2. Can IGEL Be Represented in MATLANG?

Let A ∈ {0, 1}n×n be the adjacency matrix of G = (V, E) where n = |V|. Our objective
is to find a sequence of operations in ML = {·,+, ᵀ,�, 1, diag, tr,×, f } such that when
applied to A, we can express the same information as IGELα

vec(v) for all v ∈ V. To compute
the IGEL encoding of v for a given α, we must write ML sentences to compute:

(a) Eα
v = (V′, E′), the ego network of v in G at depth α.

(b) The degrees of every node in Eα
v .

(c) The shortest path lengths from every node in Eα
v to v.

Let Aα
v ∈ {0, 1}n×n denote the adjacency matrix of Eα

v . Provided we can compute Aα
v

from A, computing the degree is a trivial operation in ML1 as we only need to compute
the matrix-vector product (·) of Aα

v with the vector of ones (1). Recall that dEα
G(v)

(u) is the
degree of vertex u ∈ Eα

v , and let (·)i denote the i-th index in the resulting vector:

dEα
G(v)

(u) = (Aα
v · 1)u
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Furthermore, if we can find Aα
v , it is also possible to find Ak

v ∀ k ∈ {1, ..., α}. Thus, we
can compute the distance of every node to v by progressively expanding k, mapping the
degrees of nodes to the value of k being processed by means of unary function application
( f ), and then computing the minimum value. Let ξ denote a distance vector containing
entries for all vertices found at distance k of v:

ξE k
G(v)

= Aα
v · 1 fk

where

fk(x) =

{
k + 1 if x > 0
0 otherwise

The distance lEα
v (u) between a given node u to v in Eα

v can then be computed in terms
of ML1 operations that may be applied recursively:

lEα
v (u) =

(
ξEα

G(v)
− lEα−1

v
(u)
)

f α
min

where f α
min is a unary function that retrieves the minimum length from having computed

α− lEα−1
v

(u):

f α
min(x) =


α if x = α

α− x if x < α ∧ x > 0
0 otherwise

Thus, computing the distance is also possible in ML1 given Aα
v . However, in order

to compute Aα
v , we must be able to extract a subset of V contained in Eα

v . Following the
approach of [13] (see Proposition 7.2), we may leverage a node indicator vector 1V′ ∈ {0, 1}n

for V′ ⊆ V where 1V′v = 1 when v ∈ V′ and 0 otherwise. We can then compute Aα
v via a

diagonal mask matrix M ∈ {0, 1}n×n such that Mi,i = 1 when vi ∈ V′, and Mi,i = 0 when
vi /∈ V′, computed as M = 1V′ · 1

ᵀ
V′ . Finding Aα

v involves

Aα
v = M · A ·M (A3)

It follows from Equation (A3) that if we are provided M, it is possible to compute Aα
v

in ML1. However, since indicator vectors are not part of ML, it is not possible to extract
the ego subgraph for a given node v. As such IGEL cannot be expressed within MATLANG

unless indicator vectors are introduced.
A natural question is whether it is possible to express IGEL with an operator that re-

quires no knowledge of V′ unlike indicator vectors, which require computing Eα
v = (V′, E′)

beforehand. One possible approach is to only allow indicator vectors for single vertices,
encoding any V′ ⊆ V only if |V′| = 1. We denote single-vertex indicator vectors as
one-hotv—an operation that represents the one-hot encoding of v. Note that for any
V′ ⊆ V, its indicator vector 1V′ can be computed as the sum of one-hot encoding vectors:
1V′ = ∑v∈V′ one-hotv. Thus, introducing one-hot is as expressive as introducing indicator
vectors.

We now express IGEL in terms of the one-hot operation. Consider the following ML1
expression where Z0

v = one-hotv:

Zi+1
v =

(
A · Zi

v

)
fbin

For Z1
v, we obtain an indicator vector containing the neighbors of v—matching

N 1
G(v)—which is binarized (mapping non-zero values to 1—e.g., applying fbin returns 0

when x is 0, and 1 otherwise). Furthermore, when computed recursively for α steps, Zα
v
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matches the indicator vector of N α
G(v), which can trivially be used to compute ξE k

G(v)
. We

can then find M as used in Equation (A3)

M =

(
diag

(
Zα

v

))
fbin

Thus, introducing one-hotv is sufficient to express IGEL within MATLANG as ML1.
Given our results in Sections 4 and 5, introducing one-hotv in MATLANG produces matrix
languages that are at least as expressive as IGEL. We leave the study of the expressivity of
MATLANG after introducing a transductive operation such as one-hotv as future work.

Appendix F. Implementing IGEL through Breadth-First Search

The idea behind the IGEL encoding is to represent each vertex v by compactly encoding
its corresponding ego network Eα

v at depth α. The choice of encoding consists of a histogram
of vertex degrees at distance d ≤ α, for each vertex in Eα

v . Essentially, IGEL runs a breadth-
first traversal up to depth α, counting the number of times the same degree appears at
distance d ≤ α.

The algorithm shown in Algorithm 2 showcases IGEL and its relationship to the 1-WL
test. However, in a practical setting, it might be preferable to implement IGEL through
breadth-first search (BFS). In Algorithm A1, we show one such implementation that fits the
time and space complexity described in Section 3.

Algorithm A1 IGEL Encoding (BFS).

Input: v ∈ V, α ∈ N
1: toVisit := [ ] . Queue of nodes to visit.
2: degrees := { } . Mapping of nodes to their degrees.
3: distances := {v : 0} . Mapping of nodes to their distance to v
4: while toVisit 6= ∅ do
5: u := toVisit.dequeue()
6: currentDistance := distances[u]
7: currentDegree := 0
8: for w ∈ u.neighbors() do
9: if w /∈ distances then

10: distances[w] := currentDistance+ 1
. w is a new node 1-hop further from v.

11: end if
12: if distances[w] ≤ α then
13: currentDegree := currentDegree+ 1

. Count edges only within α-hops.
14: if w /∈ degrees then . Enqueue if w has not been visited.
15: toVisit.append(w)
16: end if
17: end if
18: end for
19: degrees[u] := currentDegree

. u is now visited: we know its degree and distance to v.
20: end while
21: eα

v = {{(distances[u], degrees[u]) ∀ u ∈ degrees.keys()}}
. Produce the multi-set of (distance, degree) pairs for visited nodes.

Output: eα
v : (N,N)→ N

Due to how we structure BFS to count degrees and distances in a single pass, each
edge is processed twice—once for each node at end of the edge. It must be noted that when
processing every v ∈ V, the time complexity is O(n ·min(m, (dmax)α)). However, the BFS
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implementation is also embarrassingly parallel, which means that, as noted in Section 3, it
can be distributed over p processors with O(n ·min(m, (dmax)α)/p) time complexity.

Appendix G. Extending IGEL beyond Unattributed Graphs

In this appendix, we explore extensions to IGEL beyond unattributed graphs. In
particular, we describe how minor modifications would allow IGEL to leverage label and
attribute information, connecting IGEL with state-of-the-art MP-GNN representations.

Appendix G.1. Application to Labelled Graphs

Labeled graphs are defined given G = (V, E,L), where LG(v) : V 7→ L is a mapping
function assigning a label L ∈ L to each vertex. A standard way of applying the 1-WL
test to labeled graphs is to replace dG(v) in the first step of Algorithm 1 with LG(v), such
that the initial coloring is given by node labels. Since IGEL retains a similar structure, the
same modification can be introduced in Equation (4). Some applications might require both
degree and label information, achievable through a mapping CG(v) : V 7→ N that combines
LG(v) and dG(v) given a label indexing function I : L 7→ {0, ..., |L| − 1}:

CG(v) = dG(v) · |L|+ I(LG(v))

Applying LG(v) or CG(v) only requires adjusting the shape of the vector representa-
tion, whose cardinality will depend on the size of the label set (e.g., |L|), or the combination
of degrees and L given by dmax × |L|.

Appendix G.2. Application to Attributed Graphs

IGEL can also be applied to attributed graphs of the form G = (V, E, X), where
X ∈ Rn×w. Following Algorithm 2, IGEL relies on two discrete functions to represent
structural features—the path length between vertices lG(u, v) and vertex degrees dG(v).
However, in an attributed graph, it may be desirable to consider the attributes of a node
besides degree to represent it with respect to its attributes and the attributes of its neighbors.
To extend the representation to node attributes, dG(v) may be replaced by a bucketed
similarity function φ(u, v) : (V×V) 7→ B applicable for v and any u ∈ Eα

G(v), whose output
is discretized into b ∈ B ⊆ N buckets 1 ≤ b ≤ |B|. A straightforward implementation
of φcos is to compute the cosine similarity (|·|) between attribute vectors and remaps the
[−1, 1] interval to discrete buckets by rounding:

φcos(u, v) :
⌊(∣∣B∣∣− 1

)
· (Xu|·|Xv) + 1

2

⌉
φ-IGEL is a generalization over the structural representation function in Algorithm 2

to take also source vertex v. Thus, unattributed and unlabeled IGEL can be understood as
the case in which φ(u, v) = dG(u), such that |B| = dmax.

Furthermore, by introducing the bucketing transformation in φ-IGEL, we are de-
facto providing a simple mechanism to control the size of IGEL encoding vectors. By
implementing φ(u, v) = bdG(u)/bc or introducing non-linear transformations such as
φ(u, v) = blog(dG(u))/bc with b ∈ {1, ..., dmax}, it is possible to compress IGELα

vec(v) into
the t = (α + 1)× b denser components of a t-dimensional vector.

Appendix G.3. IGEL and Subgraph MP-GNNs

Another natural extension is to apply the distance-based aggregation schema to mes-
sage passing GNNs. This can be achieved by expressing message passing in terms not just
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of immediate neighbors of v but from nodes at every distance 1 ≤ l̃ ≤ α. Equation (1) then
becomes

µi,l̃
v =

{{
MSGi,l̃

G (hi−1
u ) | ∀ u ∈ N α

G(v) ∧ lG(u, v) = l̃
}}

The update step will need to pool over the messages passed onto v:

hi
v = UPDATEi

G

(
µi,0

v , µi,1
v , ..., µi,α

v , hi−1
v

)
This formulation matches the general form of k-hop GNNs [16] presented in Section 2.3.

Furthermore, introducing distance and degree signals in the message passing can yield
models analogous to GNN-AK [21]—which explicitly embed the distance of a neighboring
node when representing the ego network root during message passing. As such, IGEL

directly connects the expressivity of k-hop GNNs with the 1-WL algorithm and provides a
formal framework to explore the expressivity of higher order MP-GNN architectures.

Appendix H. Self-Supervised IGEL

We provide additional context for the application of IGEL as a representational input
for methods such as DeepWalk [51]. This section describes in detail how self-supervised
IGEL embeddings are learned. We also provide a qualitative analysis of IGEL in the self-
supervised setting using networks that are amenable for visualization. We focus on analyz-
ing how α influences the learned representations.

IGEL & Self-Supervised Node Representations

IGEL can be easily incorporated in standard node representation methods like Deep-
Walk [51] or node2vec [52]. Due to its relative simplicity, integrating IGEL only requires
replacing the input to the embedding method so that IGEL encodings are used rather
than node identities. We provide an overview of the process of generating embeddings
through DeepWalk, which involves (a) sampling random walks to capture the relationships
between nodes and (b) training a negative-sampling based embedding model in the style
of word2vec [62] on the random walks to embed random walk information in a compact
latent space.

Distributional Sampling through Random Walks— First, we sample π random walks
from each vertex in the graph. Walks are generated by selecting the next vertex uniformly
from the neighbors of the current vertex. Figure A3 illustrates a possible random walk of
length 9 in the graph of Figure 1. By randomly sampling walks, we obtain traversed node
sequences to use as inputs for the following negative sampling optimization objective.

2,9

1 3 4,7

5

8

6

Figure A3. Example of random walk starting on the green node and finishing on the purple node.
Nodes contain the time-step when they were visited. The context of a given vertex will be any nodes
whose time-steps are within the context window of that node.
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Negative Sampling Optimization Objective— Given a random walk ω, defined as a
sequence of nodes of length s, we define the context C(v, ω) associated with the occurrence
of vertex v in ω as the the sub-sequence in ω containing the nodes that appear close to
v, including repetitions. Closeness is determined by p, the size of the positive context
window, i.e., the context contains all nodes that appear at most p steps before/after the
node within ω. In DeepWalk, a skip-gram negative sampling objective learns to represent
vertices appearing in similar contexts within random walks.

Given a node vc ∈ V in random walk ω, our task is to learn embeddings that assign
high probability for nodes vo ∈ V appearing in the context C(vc, ω) and lower probability
for nodes not appearing in the context. Let σ(·) denote the logistic function. As we focus
on the learned representation capturing these symmetric relationships, the probability of
vo being in C(vc, ω) is given by

p(vo ∈ C(vc, ω)) = σ(e>vc · evo ),

Table A2 summarizes the hyper-parameters of DeepWalk. Our global objective func-
tion is the following negative sampling log-likelihood. For each of the π random walks and
each vertex vc at the center of a context in the random walk, we sum the term corresponding
to the positive cases for vertices found in the context and the expectation over z negative,
randomly sampled vertices.

Table A2. DeepWalk hyper-parameters.

Param. Description

π ∈ N Random walks per node
s ∈ N Steps per random walk
z ∈ N # of neg. samples
p ∈ N Context window size

Let Pn(V) be a noise distribution from which the z negative samples are drawn; our
task is to maximize (A4) through gradient ascent:

lu(W) =
w

∑
j=1

∑
vc∈ωj ,

no∈C(vc ,ωj)

[
log σ(e>vc · eno ) +

z

∑
i=1

Evi∼Pn(V)

[
log σ(−e>vc · evi )

]]
. (A4)

Defining the IGEL-DeepWalk embedding function— In DeepWalk, for every vertex v ∈
V, there is a corresponding t-dimensional embedding vector ev ∈ Rt. As such, one
can represent the embedding function as a product between a one-hot encoded vector
corresponding to the index of the vertex one-hotv ∈ Bn where and an embedding matrix
EV ∈ Rn×t:

ev = one-hotv · EV

Introducing IGEL requires modifying the shape of EV to account for the shape of
tvec-dimensional IGELα

vec(v) encoding vectors dependent on α and dmax, so that IGEL em-
beddings are computed as a weighted sum of embeddings corresponding to each (path
length, degree) pair. Let Eα

IGEL ∈ Rtvec×temb define a structural embedding matrix with one
embedding per (path length, degree) pair; a linear IGEL can be defined as:

IGELα
emb(v) = IGELα

vec(v) · Eα
IGEL

Since the definition of IGELα
emb(v) is differentiable, it can be used as a drop-in replace-

ment of ev in Equation (A4).
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Appendix I. Comparison of Existing Methods

In this section, we provide a summarized overview of the existing work presented
in Section 2, including an overview of the main methods that exemplify distance-aware,
subgraph, structural, and spectral approaches most related to our theoretical and practical
work. Table A3 summarizes the main model architectures, the extensions they introduce
within the message passing mechanism, and the limitations associated with each approach.

In contrast with existing methods, IGEL is capable of boosting the expressivity of
underlying MP-GNN architectures as additional features concatenated to node/edge
attributes—that is, without requiring any modification to the design of the downstream
model.

Table A3. Comparison of state-of-the-art methods most closely related to IGEL. We provide an
overview of the four families of approaches that extend the expressivity of GNNs beyond 1-WL,
summarizing key model architectures, the message passing extensions that they introduce in the
learning process, and the common limitations for each approach.

Approach Model Architectures Message Passing Extensions Limitations

Distance-Aware
PGNNs [15]
DE-GNNs [38]
SPNNs [40]

Introduce distance to target nodes, ego network roots
as an encoded variables, or as the explicit distance as
part of the message passing mechanism.

Considers a fixed set of target nodes or requires
architecture modifications to introduce permutation
equivariant distance signals.

subgraph

k-hop GNNs [16]
Nested-GNNs [20]
ESAN [22]
GNN-AK [21]
SUN [23]

Propagate information through subgraphs around
k-hops, either applying GNNs on the subgraphs,
pooling subgraphs, and introducing distance/context
signals within the subgraph.

Requires learning over subgraphs with an increased
time and memory cost and architecture modifications to
propagate messages across subgraphs (incl. distance,
context, and node attribute information).

Structural SMP [18]
GSNs [19]

Explicitly introduce structural information in the
message passing mechanism, e.g., counts of cycles or
stars where a node appears.

Requires identifying and introducing structural features
(e.g., node roles in the network) during message passing
through architecture modifications.

Spectral GNN-ML3 [26] Introduce features from the spectral domain of the
graph in the message passing mechanism.

Requires cubic-time eigenvalue decomposition to
construct spectral features and architecture modifications
to introduce them during message passing.

Table A4. Overview of the graphs used in the experiments. We show the average number of vertices
(Avg. n), edges (Avg. m), number of graphs, target task, output shape, and splits (when applicable).

Avg. n Avg. m Num.
Graphs Task Output Shape Splits

(Train/Valid/Test)

Enzymes 32.63 62.14 600 Multi-class
Graph Class.

6 (multi-class
probabilities)

9-fold/1 fold
(Graphs, Train/Eval)

Mutag 17.93 39.58 188 Binary
Graph Class.

2 (binary class
probabilities)

9-fold/1 fold
(Graphs, Train/Eval)

Proteins 39.06 72.82 1113 Binary
Graph Class.

2 (binary class
probabilities)

9-fold/1 fold
(Graphs, Train/Eval)

PTC 25.55 51.92 344 Binary
Graph Class.

2 (binary class
probabilities)

9-fold/1 fold
(Graphs, Train/Eval)

Graph8c 8.0 28.82 11,117 Non-isomorphism
Detection

N/A N/A

EXP Classify 44.44 111.21 600 Binary Class.
(pairwise graph

distinguishability)

1 (non-isomorphic
graph pair probability)

Graph pairs
400/100/100

SR25 25 300 15 Non-isomorphism
Detection

N/A N/A

RandomGraph 18.8 62.67 5000 Regression
(Graphlet Counting)

1 (graphlet counts) Graphs
1500/1000/2500

ZINC-12K 23.1 49.8 12,000 Molecular prop. regression 1 Graphs
10,000/1000/1000

PATTERN 118.9 6079.8 14,000 Recognize subgraphs 2 Graphs
10,000/2000/2000

ArXiv
ASTRO-PH

18,722 198,110 1 Binary Class.
(Link Prediction)

1 (edge probability) Randomly sampled edges
50% train/50% test

Facebook 4039 88,234 1 Binary Class.
(Link Prediction)

1 (edge probability) Randomly sampled edges
50% train/50% test

PPI 2373 68,342.4 24 Multi-label
Vertex Class.

121 (binary
class probabilities)

Graphs
20/2/2
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