import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score def house_price_prediction(): df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/BostonHousing.csv") X = df.drop("medv", axis=1) y = df["medv"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LinearRegression() model.fit(X_train, y_train) y_pred = model.predict(X_test) print("🏠 房价预测") print("MSE:", mean_squared_error(y_test, y_pred)) print("R2 Score:", r2_score(y_test, y_pred))