
Three Heads Are Better Than One:
Mastering NSA's Ghidra Reverse

Engineering Tool
Alexei Bulazel
@0xAlexei

Jeremy Blackthorne
@0xJeremy

github.com/0xAlexei/INFILTRATE2019

Disclaimer

This material is based on the publicly
released Ghidra, there is no classified

information in this presentation

● Senior Security Researcher at River Loop Security

● Research presentations and publications:
○ Presentations at REcon (MTL & BRX), SummerCon, DEFCON, Black Hat, etc.
○ Academic publications at USENIX WOOT and ROOTS
○ Cyber policy in Lawfare, etc.

● Collaborated with Jeremy on research at RPI, MIT Lincoln Laboratory, and
Boston Cybernetics Institute

● Proud RPISEC alumnus

Alexei Bulazel @0xAlexei

Jeremy Blackthorne @0xJeremy

● Instructor at the Boston Cybernetics Institute

● PhD candidate at RPI focused on
environmental keying

● Former researcher at MIT Lincoln Laboratory

● United States Marine Corps 2002 - 2006

● RPISEC alumnus

Outline

1. Intro
2. Interactive Exercises

a. Manual Static Analysis
b. Scripting Ghidra

3. P-Code & SLEIGH
4. Discussion
5. Conclusion

Participating

1. Install OpenJDK 11, add its bin directory to your PATH
● jdk.java.net/11

2. Download Ghidra
● ghidra-sre.org
● github.com/NationalSecurityAgency/ghidra/releases

3. Download our demo scripts and binaries
● github.com/0xAlexei/INFILTRATE2019

https://jdk.java.net/11/
https://ghidra-sre.org/
https://github.com/NationalSecurityAgency/ghidra/releases
https://github.com/0xAlexei/INFILTRATE2019

Ghidra
● Java-based interactive reverse engineering tool developed by US National

Security Agency - similar in functionality to IDA Pro, Binary Ninja, etc…
○ Static analysis only currently, debugger support promised to be coming soon
○ Runs on Mac, Linux, and Windows

● All credit for creating Ghidra goes to the developers at NSA
● Released open source at RSA in March 2019

○ 1.2M+ lines of code
● NSA has not discussed the history of the tool, but

comments in source files go as far back as February 1999

Outline

1. Intro
2. Interactive Exercises

a. Manual Static Analysis
b. Scripting Ghidra

3. P-Code & SLEIGH
4. Discussion
5. Conclusion

Default UI - CodeBrowser

Default UI - Program Trees

Default UI - Symbol Tree

Default UI - Data Type Manager

Default UI - Listing (Disassembly)

Default UI - Decompiler

Control
Flow
Graph

Disassembly with P-Code

Decompilation Across Architectures - x64

Decompilation Across Architectures - SPARC

Decompilation Across Architectures - PowerPC

Cross-References

Strings

Type System / Structure Recovery

Customize Appearance

Edit >Tool Options → Filter: Fonts

The Undo Button!

Version Tracker

● Feature for porting RE symbols, annotations, etc. between
incrementally updated versions of the same program

● In our experience, not well suited for quick 1-day discovery in
patch analysis
○ Use Diaphora or BinDiff for this purpose

Version Tracker - Overview

Version Tracker - Selecting Correlation Algorithms

Version Tracker - Function Name Ported

Program Differences

1:1 comparison of program memory ranges,
only helpful if you had two annotated
Ghidra databases for the same binary, or a
version that had been statically patched

Program Differences

Function Call Graph

Decompiler Slicing

● Decompiler calculates data flow
during auto-analysis

● Users can right-click on variables to
view def-use chain and forward /
backward slices

● Menu bar “Select” options allow
users to trace flows to / from given
points

Decompiler Slicing

Middle Click

Highlight Forward
Inst Slice

Decompiler Slicing

Outline

1. Intro
2. Interactive Exercises

a. Manual Static Analysis
b. Scripting Ghidra

3. P-Code & SLEIGH
4. Discussion
5. Conclusion

Scripting With Ghidra

● Available in Java (natively) and Python (via Jython)

● Can be run with interactive GUI or in headless mode

● Ghidra comes with 230+ scripts pre-installed
○ Educational examples
○ Code patching
○ Import / export
○ Analysis enhancements

● Windows, Mac, Linux, VXWorks
● PE, ELF, Mach-O, COFF
● x86, MIPS, ARM/THUMB, 8051, etc…

Ghidra APIs

FlatProgramAPI
● Simple “flattened” API for Ghidra

scripting
● Programmatic access to common

tasks
○ query / modify / iterate / create /

delete - functions / data /
instructions / comments

● Mostly doesn’t require the use of
Java objects

● Stable

Ghidra Program API
● More complex rich API for deeper

scripting
● Object-oriented (Program,

Memory, Function, Instruction,
etc…)

● Utility functions help with
common scripting tasks

● UI scripting / interactivity
● Prone to change between versions

API Highlights

Rich Scripting Interface
● Programmatic access to binary

file formats
● P-code interaction
● Decompiler API
● C header parsing
● Interface for graphing

(implementation not included)
● Cyclomatic complexity

Common Utilities Included
● UI windows
● Assembly
● Data serialization
● String manipulation
● Hashing
● Search / byte matching
● XML utilities

Eclipse Integration

● Ghidra has built-in Eclipse integration, via its “GhidraDev” Eclipse plugin

● NOTE: For these exercises, we’ll be using Ghidra’s built-in basic editor - don’t
waste time trying to get Eclipse set up during this workshop

Scripting Demos

1. Hello World
a. Java
b. Python

2. Crypto Constant Search
3. Cyclomatic Complexity
4. Xor with Python

Importing Demo Scripts Click the “Display Script
Manager” button to open the
Script Manager Window

Importing Demo Scripts Click the “Display Script
Manager” button to open the
Script Manager Window

Click the “Script Directories”
button on the Script Click the
“Display Script Manager” button
to open the Script Manager
Window

Importing Demo Scripts Click the “Display Script
Manager” button to open the
Script Manager Window

Click the “Script Directories”
button on the Script Click the
“Display Script Manager” button
to open the Script Manager
Window

Click the green plus to open
the file chooser, choose the
script directory

Running Script Demos

Find the
“INFILTRATE” folder
in the script
manager

Running Script Demos

Find the
“INFILTRATE” folder
in the script
manager Choose a script and click “Run Script”

to run

Running Script Demos

Find the
“INFILTRATE” folder
in the script
manager Choose a script and click “Run Script”

to run

Make sure
the
“Console”
window is
open if you
want to see
output

DEMO: Hello World

● A simple script to print “Hello World” and then iterate over all functions in
the program, printing out their names

● HelloWorld.java
● HelloWorld.py

DEMO: Crypto Search

● Find MD5 constants present in a binary, report offset and
function name

● Take binary endianness into account automatically without
user specification

● CryptoConstantsSearch.java

DEMO: Crypto Search

DEMO: Calculating Cyclomatic Complexity

● Leverage Ghidra’s API for calculating cyclomatic complexity* to easily
analyze a whole program

● Pop a GUI window if running interactively, else print to the terminal
in headless mode

● ComputeCyclomaticComplexityForAllFunctions.java

* cyclomatic complexity is a measure of the number of unique paths which may be taken through a
given function. It can be helpful in finding complex functions likely to have vulnerabilities, e.g,
complex parsing routines or state machines.

DEMO: Calculating Cyclomatic Complexity

DEMO: Python Scripting

● Ghidra can run Python in a Jython environment, the Ghidra
Java API is exposed to Python

● This script takes a user address selection and XORs the bytes in
place with 0x41

● XorMemoryScript.py

DEMO: Python Scripting

Outline

1. Intro
2. Interactive Exercises

a. Manual Static Analysis
b. Scripting Ghidra

3. P-Code & SLEIGH
4. Discussion
5. Conclusion

P-Code
● Ghidra’s intermediate language

○ Dates back to at least 2005 according to documentation
● Code for different processors can be lifted into p-code, data-flow

analysis and decompilation can then run over the p-code
● Pseudo-assembly, represents lifted instructions as small atomic

operations without side-effects
● Built-in floating point support

P-Code Design
● The language is machine

independent.
● The language is designed to model

general purpose processors.
● Instructions operate on user defined

registers and address spaces.
● All data is manipulated explicitly.

Instructions have no indirect effects.
● Individual p-code operations mirror

typical processor tasks and concepts.

Quoted from docs/languages/html/sleigh.html

Processor to p-code modeling:
● RAM → address space
● Register → varnode
● Instruction → operation

Category P-Code Operations

Data Moving COPY, LOAD, STORE

Arithmetic INT_ADD, INT_SUB, INT_CARRY, INT_SCARRY, INT_SBORROW, INT_2COMP, INT_MULT,
INT_DIV, INT_SDIV, INT_REM, INT_SREM

Logical INT_NEGATE, INT_XOR, INT_AND, INT_OR, INT_LEFT, INT_RIGHT, INT_SRIGHT

Int Comparison INT_EQUAL, INT_NOTEQUAL, INT_SLESS, INT_SLESSEQUAL, INT_LESS, INT_LESSEQUAL

Boolean BOOL_NEGATE, BOOL_XOR, BOOL_AND, BOOL_OR

Floating Point FLOAT_ADD, FLOAT_SUB, FLOAT_MULT, FLOAT_DIV, FLOAT_NEG, FLOAT_ABS,
FLOAT_SQRT, FLOAT_NAN

FP Compare FLOAT_EQUAL, FLOAT_NOTEQUAL, FLOAT_LESS, FLOAT_LESSEQUAL

FP Conversion INT2FLOAT, FLOAT2FLOAT, TRUNC, CEIL, FLOOR, ROUND

Branching BRANCH, CBRANCH, BRANCHIND, CALL, CALLIND, RETURN

Extension /
Truncation

INT_ZEXT, INT_SEXT, PIECE, SUBPIECE

DEMO: Source-Sink Analysis

● Use Ghidra p-code and the decompiler’s analysis to identify the sources for
values passed to function calls of interest (malloc), particularly function
calls accepting user input

● Solving for the actual arguments requires a solver, this is a much simpler
analysis that can empower a human analyst to hone in on interesting calls

● Start at the varnode for each argument to malloc, then trace back to the
p-code operation that it’s derived from

○ From there, recursively trace back the p-code operation(s) defining the
varnode(s) that define that the inputs to those operations

● At function call sites, trace in, and find how the returned values are derived
● When a parameter is used, trace back to call sites which set the parameter

SLEIGH

● Ghidra’s language for describing instruction sets to facilitate RE

● Disassembly: translate bit-encoded machine instructions into
human-readable assembly language statements

● Semantics: translate machine instructions into p-code instructions
(one-to-many) for decompilation, analysis, and emulation

● Based off of SLED (Specification Language for Encoding and
Decoding), a 1997 academic IL

SLEIGH Example - x86 JMP rel8
Raw bytes: 0xEB 0x03
x86 instruction: JMP $+5

SLEIGH Example - x86 JMP rel8
Raw bytes: 0xEB 0x03
x86 instruction: JMP $+5

SLEIGH Example - x86 JMP rel8
Raw bytes: 0xEB 0x03
x86 instruction: JMP $+5

SLEIGH:
:JMP rel8 is vexMode=0 & byte=0xeb; rel8 {

goto rel8;
}

SLEIGH Example - x86 JMP rel8
Raw bytes: 0xEB 0x03
x86 instruction: JMP $+5

SLEIGH:
:JMP rel8 is vexMode=0 & byte=0xeb; rel8 {

goto rel8;
}

rel8: reloc is simm8 [reloc=inst_next+simm8;] {
export *[ram]:$(SIZE) reloc;

}

SLEIGH Example - x86 JMP rel8
Raw bytes: 0xEB 0x03
x86 instruction: JMP $+5

SLEIGH:
:JMP rel8 is vexMode=0 & byte=0xeb; rel8 {

goto rel8;
}

rel8: reloc is simm8 [reloc=inst_next+simm8;] {
export *[ram]:$(SIZE) reloc;

}

SLEIGH Example - x86 JMP rel8
Raw bytes: 0xEB 0x03
x86 instruction: JMP $+5

SLEIGH:
:JMP rel8 is vexMode=0 & byte=0xeb; rel8 {

goto rel8;
}

rel8: reloc is simm8 [reloc=inst_next+simm8;] {
export *[ram]:$(SIZE) reloc;

}

SLEIGH Example - x86 XOR AL, imm8
Raw bytes: 0x34 0x57
x86 instruction: XOR AL, 0x57

SLEIGH Example - x86 XOR AL, imm8
Raw bytes: 0x34 0x57
x86 instruction: XOR AL, 0x57

SLEIGH Example - x86 XOR AL, imm8
Raw bytes: 0x34 0x57
x86 instruction: XOR AL, 0x57

SLEIGH:
:XOR AL,imm8 is vexMode=0 & byte=0x34; AL & imm8 {

logicalflags();
AL = AL ^ imm8;
resultflags(AL);

}

SLEIGH Example - x86 XOR AL, imm8
Raw bytes: 0x34 0x57
x86 instruction: XOR AL, 0x57

SLEIGH:
:XOR AL,imm8 is vexMode=0 & byte=0x34; AL & imm8 {

logicalflags();
AL = AL ^ imm8;
resultflags(AL);

}

macro logicalflags() {
CF = 0;
OF = 0;

}

macro resultflags(result) {
SF = result s < 0;
ZF = result == 0;
PF, AF not implemented

}

SLEIGH Example - x86 XOR AL, imm8
Raw bytes: 0x34 0x57
x86 instruction: XOR AL, 0x57

SLEIGH:
:XOR AL,imm8 is vexMode=0 & byte=0x34; AL & imm8 {

logicalflags();
AL = AL ^ imm8;
resultflags(AL);

}

macro logicalflags() {
CF = 0;
OF = 0;

}

macro resultflags(result) {
SF = result s < 0;
ZF = result == 0;
PF, AF not implemented

}

SLEIGH Example - x86 XOR AL, imm8
Raw bytes: 0x34 0x57
x86 instruction: XOR AL, 0x57

SLEIGH:
:XOR AL,imm8 is vexMode=0 & byte=0x34; AL & imm8 {

logicalflags();
AL = AL ^ imm8;
resultflags(AL);

}

macro logicalflags() {
CF = 0;
OF = 0;

}

macro resultflags(result) {
SF = result s < 0;
ZF = result == 0;
PF, AF not implemented

}

SLEIGH Example - x86 XOR AL, imm8
Raw bytes: 0x34 0x57
x86 instruction: XOR AL, 0x57

SLEIGH:
:XOR AL,imm8 is vexMode=0 & byte=0x34; AL & imm8 {

logicalflags();
AL = AL ^ imm8;
resultflags(AL);

}

macro logicalflags() {
CF = 0;
OF = 0;

}

macro resultflags(result) {
SF = result s < 0;
ZF = result == 0;
PF, AF not implemented

}

SLEIGH Example - x86 XOR AL, imm8
Raw bytes: 0x34 0x57
x86 instruction: XOR AL, 0x57

SLEIGH:
:XOR AL,imm8 is vexMode=0 & byte=0x34; AL & imm8 {

logicalflags();
AL = AL ^ imm8;
resultflags(AL);

}

macro logicalflags() {
CF = 0;
OF = 0;

}

macro resultflags(result) {
SF = result s < 0;
ZF = result == 0;
PF, AF not implemented

}

SLEIGH Example - x86 RDTSC
Raw bytes: 0x0F 0x31
x86 instruction: RDTSC

SLEIGH Example - x86 RDTSC
Raw bytes: 0x0F 0x31
x86 instruction: RDTSC

SLEIGH Example - x86 RDTSC
Raw bytes: 0x0F 0x31
x86 instruction: RDTSC

SLEIGH:
:RDTSC is vexMode=0 & byte=0xf; byte=0x31 {

tmp:8 = rdtsc();
EDX = tmp(4);
EAX = tmp(0);

}

SLEIGH Example - x86 RDTSC
Raw bytes: 0x0F 0x31
x86 instruction: RDTSC

SLEIGH:
:RDTSC is vexMode=0 & byte=0xf; byte=0x31 {

tmp:8 = rdtsc();
EDX = tmp(4);
EAX = tmp(0);

}

define pcodeop rdtsc;

SLEIGH Example - x86 RDTSC
Raw bytes: 0x0F 0x31
x86 instruction: RDTSC

SLEIGH:
:RDTSC is vexMode=0 & byte=0xf; byte=0x31 {

tmp:8 = rdtsc();
EDX = tmp(4);
EAX = tmp(0);

}

define pcodeop rdtsc;

SLEIGH Example - x86 RDTSC
Raw bytes: 0x0F 0x31
x86 instruction: RDTSC

SLEIGH:
:RDTSC is vexMode=0 & byte=0xf; byte=0x31 {

tmp:8 = rdtsc();
EDX = tmp(4);
EAX = tmp(0);

}

define pcodeop rdtsc;

SLEIGH Example - x86 RDTSC
Raw bytes: 0x0F 0x31
x86 instruction: RDTSC

SLEIGH:
:RDTSC is vexMode=0 & byte=0xf; byte=0x31 {

tmp:8 = rdtsc();
EDX = tmp(4);
EAX = tmp(0);

}

define pcodeop rdtsc;

Outline

1. Intro
2. Interactive Exercises

a. Manual Static Analysis
b. Scripting Ghidra

3. P-Code & SLEIGH
4. Discussion
5. Conclusion

Other Major Features
● Multi-user collaboration
● Version tracking
● Extensibility for new binary

loaders and architectures

● Headless mode
● GhidraDev Eclipse plugin
● Debugger promised at RSA
● Undocumented p-code emulator

IDA vs Binary Ninja vs Ghidra
IDA
● Maturity
● Windows support
● Decompiler
● Existing corpus of

powerful plugins
● Debugger
● Support for paid

customers
● Well tested
● Industry standard

Binary Ninja
● Innovation and

modern design
● Program analysis

features (SSA)
● Multi-level IL
● Rich API
● Embeddable
● Python-native

scripting
● Clean modern UI
● Community

Ghidra
● Maturity
● Embedded support
● Decompiler
● Massive API
● Documentation
● Breath of features
● Collaboration
● Version tracking
● Price and open

source extensibility

IDA Hex-Rays
● Optional add-on for IDA for IDA
● Microcode-based
● Supports limited architectures
● Better built-in support for Windows
● Variables, data, and functions can

be xrefed from decompiler
● Variables can be mapped
● Variable representation can be

changed in the decompiler
(decimal, hex, char immediate, etc)

● Click to highlight

Ghidra Decompiler Decompiler
● Deeply integrated with Ghidra
● P-code based
● Supports all architectures
● No way to xref from decompiler
● Produces fewer goto statements

and seemingly more idiomatic C
● Built in program analysis features,

e.g., slicing and data flow
● Variables cannot be mapped
● Variable representation cannot be

changed in the decompiler
● Middle click to highlight

Decompiler - IDA Hex-Rays vs Ghidra

Binary Ninja
● Multi-level: LLIL, MLIL,

forthcoming HLIL
● Machine consumable and human

readable
● SSA form
● Designed in light of years of

program analysis research
● Feels nicer to work with
● Deferred flag calculations

Ghidra
● Single level p-code, but can be

enhanced by decompiler analysis
● Designed for machine

consumption first, not human
readability

● Uses SSA during decompilation,
but raw p-code is not SSA

● Design origins based off of
program analysis research from
20+ years ago

ILs - Binary Ninja vs Ghidra

ILs - Binary Ninja vs Ghidra

LLIL

MLIL

We Like Ghidra For...

● Scripting reverse engineering
● Firmware / embedded systems analysis
● Analysis of software that Hex-Rays can’t decompile
● Collaborative long-term professional RE
● Professional reversing at a computer workstation with multiple

monitors, full keyboard with function keys, mouse with middle
click and scroll wheel, etc...

Scripting - Java vs Python

● Java will catch errors at compile time, Ghidra’s API is highly
object-oriented and benefits from this

● Complex Python scripts feel like binding together Java API calls
with Python control flow and syntax

● Recommended workflow: prototype
and experiment with APIs / objects in
the Python interpreter, write final
code in Java

For Reverse Engineers, By Reverse Engineers
● Built for multi-monitor use
● “Moving ants” highlight on

control flow graphs
● Configurable “tool” views
● Hotkeys mappable to actions

and scripts
● Right click > “extract and

import”
● Processor manual integration
● Undo button
● Import directly from zip file
● Snapshot views
● Configurable listings
● Version tracker

● Project-based multi-binary RE
● F1 to open help on whatever

the mouse is pointing at
● File System browser
● Highly configurable assembly

code listing
● Data flow analysis built into UI
● Embedded image detection
● Search for matching instructions
● Unique windows

○ Checksum Generator
○ Disassembled View
○ Data Type Preview
○ Function Tags
○ Symbol tree

Contributing to Ghidra

● Ghidra code is available on Github
○ Apache License 2.0

● NSA has been responsive to community questions and bug
reports posted on Github
○ The agency has already published two minor-version updates

Official site: ghidra-sre.org
Open source: github.com/NationalSecurityAgency/ghidra
github.com/NationalSecurityAgency/ghidra-data

https://ghidra-sre.org/
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra-data

Outline

1. Intro
2. Interactive Exercises

a. Manual Static Analysis
b. Scripting Ghidra

3. P-Code & SLEIGH
4. Discussion
5. Conclusion

Demo material: github.com/0xAlexei/INFILTRATE2019
IDA keybindings: github.com/JeremyBlackthorne/Ghidra-Keybindings
Official NSA sites:
github.com/NationalSecurityAgency/ghidra
ghidra-sre.org
Ghidra training: ringzer0.training

Ghidra is a powerful binary reverse engineering
tool built by the US National Security Agency

● For reverse engineers, by reverse
engineers

● Interactive and headless scripting
● Built for program analysis
● We have yet to see what the community

will do with Ghidra, this is just the
beginning

Acknowledgements:
● NSA’s Ghidra team
● Rob Joyce
● Rolf Rolles
● Evan Jensen
● Sophia d’Antoine
● Dave Aitel and the INFILTRATE team

@0xAlexei / @0xJeremyConclusion

https://github.com/0xAlexei/INFILTRATE2019
https://github.com/NationalSecurityAgency/ghidra
https://ghidra-sre.org/
https://ringzer0.training/

Appendix

● Supports a variety of common desktop, embedded,
and VM architectures

● Can handle unique compiler idioms and CPU modes
● Users can extend Ghidra with their own custom

processor modules

● Ghidra can decompile
anything it can
disassemble

Architecture Support

Documentation
● Help > Contents

● F1 or Help key while
pointing at any field or
menu option

● docs directory
○ JavaDoc
○ Several classes
○ P-code and SLEIGH

● Doxygen in source files

Python Interpreter Window

● Unlike Java, which must be compiled in order to run, Python
can be run inside Ghidra in an interactive REPL shell

● The shell can be helpful for exploring unfamiliar objects -
Ghidra has great Python object __str__ implementations

Script vs. Plugin vs. Extension

● Scripts: do a single thing with defined start and end point

● Plugins: base components for everything you interact with in Ghidra,
such as UI panes

● Extensions: sets of plugins for extended functionality, e.g., custom
binary format loaders, interfaces to external tools, libraries for use by
other scripts
○ Example: Rolf Rolles’ GhidraPAL

github.com/RolfRolles/GhidraPAL/releases

https://github.com/NationalSecurityAgency/ghidra/issues/243#issuecomment-475640292

https://github.com/NationalSecurityAgency/ghidra/issues/243

Tools

● Ghidra tools are assemblies of
plugins

● Ghidra comes with two tools:
CodeBrowser and
VersionTracker

● Tools can be configured and
customized to suit unique RE
needs - though currently there
doesn’t seem to be much point

IDA Interoperability

Ghidra comes with
importers and
exporters to enable
Ghidra / IDA
interoperability

Decompiler Windows Structs - Hex-Rays vs Ghidra

P-Code Decompilation / Analysis

● “Raw p-code” = direct translation of one CPU instructions to p-code ops
● During decompilation, p-code is analyzed, and may be modified

○ Insertion of MULTIEQUAL instructions (SSA phi-nodes)
○ Association of parameters with CALL ops and return values with RETURN ops
○ Construction of abstract syntax tree
○ etc… - see linked documents

● The Decompiler is a C++ binary that runs on the host system

● When writing scripts interacting with p-code expect to experiment, read
source code, and glean usage from example included scripts

docs/languages/html/additionalpcode.html
Ghidra/Features/Decompiler/src/decompile/cpp/docmain.hh

Links

Recommended Readings

Elias Bachaalany’s quick overview: 0xeb.net/2019/03/ghidra-a-quick-
overview

Danny Quist on getting started with Ghidra:
github.com/dannyquist/re/blob/master/ghidra/ghidra-getting-started.md

Rolf Rolles’ GhidraPAL program analysis library:
github.com/RolfRolles/GhidraPAL
msreverseengineering.com/blog/2019/4/17/an-abstract-interpretation-based-
deobfuscation-plugin-for-ghidra

Travis Goodspeed on reversing MD380 firmware with Ghidra:
github.com/travisgoodspeed/md380tools/wiki/GHIDRA

http://0xeb.net/2019/03/ghidra-a-quick-overview/
https://github.com/dannyquist/re/blob/master/ghidra/ghidra-getting-started.md
https://github.com/RolfRolles/GhidraPAL
https://www.msreverseengineering.com/blog/2019/4/17/an-abstract-interpretation-based-deobfuscation-plugin-for-ghidra
https://github.com/travisgoodspeed/md380tools/wiki/GHIDRA

Additional Recommended Readings

Links to many loaders and processor modules:
groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/sleigh/pD12wcoKUQM/rG8esJAVBAAJ

Writing a WASM Loader: habr.com/en/post/443318/

Sega Genesis loader: zznop.github.io/romhacking/2019/03/14/sega-genesis-rom-
hacking-with-ghidra.html

Because Security’s first impressions, with many Ghidra video links:
blog.because-security.com/t/ghidra-wiki/431#Firstimpress283

Elias Bachaalany’s “Daenerys” IDA Pro / Ghidra interoperability framework:
0xeb.net/2019/03/daenerys-ida-pro-and-ghidra-interoperability-framework

https://groups.google.com/forum/?utm_medium=email&utm_source=footer
https://habr.com/en/post/443318/
https://zznop.github.io/romhacking/2019/03/14/sega-genesis-rom-hacking-with-ghidra.html
https://blog.because-security.com/t/ghidra-wiki/431
http://0xeb.net/2019/03/daenerys-ida-pro-and-ghidra-interoperability-framework/

Academic Work Related to SLEIGH / P-code

Norman Ramsey and Mary F. Fernández. 1997. Specifying representations of
machine instructions. ACM Transactions on Programming Languages and
Systems (TOPLAS) Vol. 19, Issue 3 (1997)
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.360&rep=rep1&type=pdf

Cristina Cifuentes and Mike Van Emmerik. "UQBT: Adaptable binary translation
at low cost." Computer 33.3 (2000)
personales.ac.upc.edu/vmoya/docs/00825697.pdf

The New Jersey Machine-Code Toolkit (1990s)
www.cs.tufts.edu/~nr/toolkit/

See docs/languages/html/sleigh.html

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.360&rep=rep1&type=pdf
http://personales.ac.upc.edu/vmoya/docs/00825697.pdf
https://www.cs.tufts.edu/~nr/toolkit/

