
SquirrelWaffle
From Maldoc to Cobalt Strike

Joel Dönne | @jxd_io

Background

▪ A new spam mail campaign has been running since mid-September 2021, which delivered a new

kind of malware loader → SquirrelWaffle

▪ Similar to other campaigns before, this one sends a mail with a malicious attachment or a link to

download one.

▪ Let‘s analyze it!

Virustotal Research

▪ Campaign uses similar naming scheme: „diagram-<Number>.doc“

– Sample Case 1) diagram-721.doc

– Sample Case 2) diagram-623.doc

▪ Search results on VT: 76 files since 10.09.

▪ Submissions from DE, FR, HU, IN, US

▪ In some other cases .xlm files are used for initial compromise,

but the delivered samples in stage 2 and afterwards are the same

Analysis – Stage 1

▪ Word document with obfuscated VBA macro

▪ Analysis via olevba --deobf

– Some decoy code

– Dropper & CnC communication

Analysis – Stage 1

drop

C:\ProgramData\pin.vbs

download drop

hxxps://priyacareers.com/u9hDQN9Yy7g/pt.html

hxxps://perfectdemos.com/Gv1iNAuMKZ/pt.html

hxxps://bussiness-z.ml/ze8pCNTIkrIS/pt.html

hxxps://cablingpoint.com/ByH5NDoE3kQA/pt.html

hxxps://bonus.corporatebusinessmachines.co.in/1Y0qVNce/pt.html

www1.dll

www2.dll

www3.dll

www4.dll

www5.dll

execute

1) "cmd /c rundll32.exe C:\ProgramData\www1.dll,ldr"

2) "cmd /c rundll32.exe C:\ProgramData\www2.dll,ldr"

3) "cmd /c rundll32.exe C:\ProgramData\www3.dll,ldr"

4) "cmd /c rundll32.exe C:\ProgramData\www4.dll,ldr"

5) "cmd /c rundll32.exe C:\ProgramData\www5.dll,ldr"

Analysis – Stage 2

▪ Dropped PE-DLLs www[1-5].dll vary on

requested dropper URLs

▪ Code is obfuscated

▪ The called „ldr“ function is not available…

Analysis – Stage 2
Flow Graph

Analysis – Stage 2

▪ Some interesting Imports of this sample are

not referenced directly…

FLARE CAPA explorer

Analysis – Stage 2

▪ Lets start with the dynamic analysis setting a

breakpoint at kernel32.dll VirtualAlloc

▪ 1) Call is coming from

call dword ptr ds:[ebx+2113E4]

▪ 2) Allocated memory is written by

rep movsb

▪ 3) Jumping into buffer shellcode via
jmp eax

1)

2)

3)

Analysis – Stage 2

▪ Lets start with the dynamic analysis setting a

breakpoint at kernel32.dll VirtualAlloc

▪ 1) Call is coming from

call dword ptr ds:[ebx+2113E4]

▪ 2) Allocated memory is written by

rep movsb

▪ 3) Jumping into buffer shellcode via
jmp eax

E8 00 00 00 00 = shellcode call instruction

Analysis – Stage 2

▪ A further call of VirtualAlloc leads to a new

buffer

▪ Setting a HW,Write breakpoint on that buffer

leads to the routine which fills this buffer

▪ Remove this breakpoint and set another one

at the end of the filling routine

(leave instruction)

▪ Magic Bytes: M8Z → aPLib compression

Analysis – Stage 2

▪ To reveal the aPLib decompression routine

remove all further breakpoints and set a new

one (HW,Access) at the M8Z header bytes

→ Breakpoint triggerd in the aPLib

decompression function

→ The EDI register reveals the destination

offset for the decompressed content

▪ Replace the breakpoint with one at the end of

the decompression routine

(ret instruction)

→ Decompressed PE-DLL

▪ Dump PE-DLL

Analysis – Stage 2

▪ „ldr“ function has only one call instruction to

the main function

▪ To start „ldr“ function, do the following steps:

1) Load PE-DLL in x32dbg

2) Run DllEntryPoint function till returning to

initial ntdll call (at least function at offset

0x1000)

3) Move EIP manually to „ldr“ entry point

Analysis – Stage 3

The interesting parts of that function are

mainly the decryption of the CnC server list

and the ones which are used to generate the

payload for the further communication.

The output from the function calls are

concatenated in a string like
<ComputerName><Username><AppDataPath><Domain>

and XORd with the static key „KJKLO“

XOR crypt function

XOR the concatenated string

Analysis – Stage 3

To follow the preparation, set

breakpoints to the XOR crypt

function calls.

The result of the call is

returned as a pointer in the

EAX register

Analysis – Stage 3

After XORing the concatenated string,

the result is encoded base64

Input XOR B64 Output

Key

CyberChef decryption

Analysis – Stage 3

Like mentioned before, the

XOR crypt routine is also used

to decrypt the embedded

CnC server, but using a

different key. CnC communication function

Key for CnC server list decryption

Analysis – Stage 3

Analysis – Stage 3

In the next step the malware

does more preparation for a

further communication with the

CnC server

It concatenates a random

string with the the local IP

address, XORs and encodes it

base64

CyberChef decryption

Analysis – Stage 3

Set breakpoints on

communication functions

(send & recv) to follow the

further communication

Analysis – Stage 3

Prepared HTTP request

sent to the CnC server

Analysis – Stage 3

HTTP response received

from CnC server

Analysis – Stage 3/4

Unfortunately curren‘t requests to the CnC Server doesn‘t result in a further

infection...

I got a successful infection in my lab environment in the past resulting in a

dropped and executed file

<RandomString>.txt in C:\User\<User>\AppData\Local\Temp

This file was similar to the one uploaded by

malware-traffic-analysis.com

Name: RVOgDko8fnP.txt (MD5 ef799b5261fd69b56c8b70a3d22d5120)

Analysis – Stage 4

▪ Don‘t get fooled by .txt ending, actually it‘s a

PE-DLL

▪ Interesting Imports

LoadLibrary

VirtualAlloc

▪ Libraries are mostly linked at runtime

▪ Dynamic Analysis

Set breakpoints at relevant functions

LoadLibrary

VirtualAlloc

▪ After multiple LoadLibrary calls, a VirtualAlloc follows

▪ Set HW,Write breakpoint at the new allocated buffer

VirtualAlloc

Filling the buffer Buffer completely filled

HW,Write End of loop

Analysis – Stage 4

▪ Jump to the new buffer takes place immediately after the end of the loop

→ Shellcode execution

EB = jmp 670005

03 = add eax, edx

C2 = ret C

Analysis – Stage 5

▪ Dump the PE-EXE

▪ Static analysis reveals, that there is

one „main“ function, which is a

shellcode wrapper

▪ Breakpoint on LoadLibrary shows, that

wininet.dll is used during runtime

▪ Additional Breakpoints on wininet

functions

InternetConnectA

InternetOpenA

InternetReadFile

HttpOpenRequestA

HttpSendRequestA

Analysis – Stage 5

1) InternetConnectA

2) HttpOpenRequestA

3) HttpSendRequestA

Analysis – Stage 5

HTTP GET Request

The crafted request looks like a

harmless HTTP GET Request to receive

a JQuery Javascript file

Setting up a simple request with no

additions, results in a blank answer…

To receive the .js file, reproducing the

whole GET request including HTTP

Header fields is required, e.g.:

Referer hxxp://code.jquery.com/

Analysis – Stage 5

4) VirtulAlloc

Response of the request is saved into

a buffer

Size: 4MB

5) InternetReadFile

Buffer is filled in multiple chunks

Important offset 0xFAF stored

in ECX register

Analysis – Stage 5

Breakpoint at the end of the loop

→ Buffer is filled completely

On the first look, the response looks like

a valid JQuery response

Looking more in detail and following the code

execution, the buffer contains a shellcode which is

called directly afterwards, by jumping to offset 0xFAF

Pseudo JQuery

Embedded

Shellcode

...

...

Pseudo JQuery

Analysis – Stage 5/6

Dump the memory page

Extract the PE-DLL from dumped page

Offsets for extraction:

Begin 0xFAF -- End 0x3440E

Analyze it using Cobalt Strike Parser!

Recap

Spam mail

with link

Encrypted

.zip archive

Word document

with obfuscated VBA

VBS Loader

CnC-Server

Stage 2

PE-DLL

www[1-5].dll

Extract Drop Execute

DropDownload

aPLib

compressed

Stage 3

PE-DLL

Dll1.dll,ldr

Stage 4

PE-DLL

RVOgDko8fnP.txt

CnC-Server

Download

Drop

Execute

Stage 5

PE-EXE

Cobalt Strike

Beacon Loader

Embedded

Execute

CnC-Server

Execute

Stage 6

PE-DLL

Cobalt Strike

Beacon

SquirrelWaffle

Loader

YARA

To detect the SquirrelWaffle loader i

created a YARA rule based on the

decryption function used in Stage 3

https://github.com/0xjxd/YARA-rules/blob/main/Loader.SquirrelWaffle.yara

IOCs

▪ Stage 1 - 2
Dropper Server

hxxps://priyacareers.com

hxxps://perfectdemos.com

hxxps://bussiness-z.ml

hxxps://cablingpoint.com

hxxps://bonus.corporatebusinessmachines.co.in

▪ Stage 3
CnC Server

hxxp://celulasmadreenmexico.com.mx

hxxp://gerencial.institutoacqua.org.br

hxxp://dashboard.adlytic.ai

hxxp://bussiness-z.ml

hxxp://ifiengineers.com

hxxp://bonusvulkanvegas.srdm.in

hxxp://ebrouteindia.com

▪ Stage 4 - 6
Cobalt Strike Server

hxxps://systemmentorsec.com:8080/jquery-3.3.1.min.js

▪ Sample Hashes
Stage 1: f0a3d4e47b098d302ad13bc4e51a03adeb9428e5c34630428222e989792f7a6d

Stage 2: 00d045c89934c776a70318a36655dcdd77e1fedae0d33c98e301723f323f234c

Stage 3: ab05d6335b06a0dbc41386c7c356202b4e07dcf76a4932ed4d4e7dd69b7a3101

Stage 4: 3c280f4b81ca4773f89dc4882c1c1e50ab1255e1975372109b37cf782974e96f

Stage 5: 964c5933844de7ed5a7813cdb36b9974a5a819b046e73a0bc6754d7299374a9f

Stage 6: 804f83a9754cfa2e43f167cc22980b1eca2ff11c05029e7ce0a8c2aae524a8b5

hxxp://test.dirigu.ro

hxxp://cablingpoint.com

hxxp://perfectdemos.com

hxxp://afrizam.360cyberlink.com

hxxp://giasuphire.tddvn.com

hxxp://priyacareers.com

hxxp://assurant.360cyberlink.com

hxxp://sig.institutoacqua.org.br

