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High-temperature tunable superfluidity of polaritons in Xene monolayers in an optical microcavity
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We study tunable polaritons in monolayers of silicene, germanene, and stanene (Xenes) via an external electric
field in an open optical microcavity whose length can be adjusted. An external electric field applied perpendicular
to the plane of the Xene monolayer simultaneously changes the band gap and the exciton binding energy,
while the variable length of the open microcavity allows one to keep the exciton and cavity photon modes in
resonance. First, the Schrödinger equation for an electron and hole in an Xene monolayer is solved, yielding
the eigenergies and eigenfunctions of the exciton as a function of the external electric field. The dependence
of the polaritonic properties, such as the Rabi splitting, on the external electric field and on the cavity length,
is analyzed. The Berezinskii-Kosterlitz-Thouless (BKT) transition temperature of polaritons is calculated as a
function of the external electric field. We analyze and present the conditions for a room-temperature superfluid
of lower polaritons by simultaneously maximizing the Rabi splitting and BKT transition temperature.
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I. INTRODUCTION

Due to their dual nature as both matter and light, exciton-
polaritons (hereafter polaritons) exhibit a fascinating combi-
nation of light and matter properties, and they are therefore
the ideal medium for studying a wide variety of quantum
phenomena. For example, polaritons inherit their extremely
small effective mass, ≈ 104 m0, from the effective mass of
spatially confined photons [1], which significantly increases
the superfluid critical temperature. It is also straightforward
to experimentally detect and characterize polaritons since
they couple directly to out-of-cavity photons with the same
energy and in-plane wave vector [1]. Meanwhile, the ex-
citonic character of polaritons leads to polariton-polariton
interactions which allows polaritons to thermalize, enabling
the formation of quantum degenerate phases such as Bose-
Einstein condensates (BEC) [2]. In addition, the photonic
component enhances the phase-coherence of the spatial wave
function of the polariton, which makes it robust against crystal
defects which are usually fatal to the formation of a BEC of,
for example, excitons [3]. In order to leverage these unique
properties, polaritonic devices have been proposed for a wide
variety of applications, from vertical-cavity surface-emitting
lasers [4–7] to optical circuits [8–11] and spin optical memory
devices [12–17]. It can be seen, then, that polaritons are not
just a physical curiosity but represent a very real path towards
the development of next-generation optoelectronic devices.
Comprehensive reviews of recent progress in polaritonic de-
vices can be found in Refs. [18,19].

Amongst the most-sought-after phenomena in polaritonic
devices is room-temperature superfluidity via the formation of
a Bose-Einstein condensate of polaritons. In two-dimensional
systems, the transition to the superfluid phase is charac-
terized by the formation of bound vortex-antivortex pairs,
first described in the early 1970s by Berezinskii [20,21] and

Kosterlitz and Thouless [22,23]. The Berezinskii-Kosterlitz-
Thouless (BKT) phase transition model has been successfully
used to describe the superfluid behavior of dilute, weakly
interacting 2D Bose gases of excitons in semiconductor
quantum wells (QWs) [24–30], gapped graphene [31], tran-
sition metal dichalcogenides (TMDCs) [32–35], and phos-
phorene [36], as well as polaritons in QWs [30,37–41] and
gapped graphene [42–44]. The first experimental evidence
of a nonequilibrium polariton condensate was reported in
Ref. [45], where the authors indirectly observed evidence of
polariton condensation in GaAs/GaAlAs QWs at T = 4 K;
subsequent claims of polariton condensates followed [46,47].
Around the same time, theoretical works predicted that the
BEC transition temperature was well above room-temperature
for GaN- [5] and ZnO-based [48] microcavities. The first con-
clusive observation of polaritonic BEC was given in Ref. [49]
in a CdTe multiple QW structure in an optical microcavity at
T = 19 K. Following this result, room-temperature condensa-
tion of polaritons was observed in the case of polariton lasing
in bulk GaN in a microcavity [6]. Superfluidity of polaritons
was observed in Ref. [50], albeit at T = 5 K and with a
Rabi splitting of only 5.1 meV. Reviews of theoretical and
experimental results on polariton condensation can be found
in Refs. [1–3,51,52].

Since the advent of graphene, the atomically flat allotrope
of carbon, in 2004 [53], polaritonic research has begun to
shift towards 2D materials. Atomically thin semiconductors
such as TMDCs have several clear advantages over quasi-2D
semiconductor QWs, namely their significantly enhanced
exciton binding energies and extremely strong optical
absorption by excitons when compared to semiconductor
QWs [54–58] (see, e.g., Refs. [59–62] for reviews of the
electronic and optical properties of TMDCs). Indeed, TMDCs
have already been shown to exhibit the strong-coupling
regime at room temperature [63,64] and have been identified
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as candidates for room-temperature polaritonic devices [65]
and room-temperature superfluidity [66]. TMDC bilayers and
heterostructures consisting of TMDC monolayers sandwich-
ing few-layer hexagonal boron nitride (h-BN) have also been
identified as excellent candidates for high-temperature super-
fluidity of indirect (spatially separated) excitons [32,34,35]

Another category of 2D semiconductors are the buck-
led 2D allotropes of silicon (Si), germanium (Ge), and tin
(Sn), known as silicene, germanene, and stanene, and col-
lectively referred to as Xenes [67] (for reviews of the prop-
erties of buckled 2D materials, see Refs. [68–72]). Like
TMDCs, Xenes exhibit very large exciton binding energies,
but Xenes are unique amongst even the 2D materials be-
cause their buckled structure allows one to change the band
gap using an external electric field aligned perpendicular
to the Xene monolayer [73]. By changing the band gap
one also changes the effective mass of electrons and holes
[74–76], and therefore one can tune the binding energy and
optical properties of excitons in Xenes using an electric
field [77].

In this paper, we study and examine the behavior and
properties of polaritons in the freestanding (FS) Xenes, that
is, an Xene monolayer suspended in vacuum, as well as
in silicene encapsulated by h-BN, embedded in an open,
variable-length microcavity. In particular, we consider two
sets of parameters describing silicene encapsulated by h-BN,
based on an ab initio study of silicene on an h-BN substrate
[78]. In that study, it was found that the slight mismatch in
lattice parameters between h-BN and silicene leads to the
formation of a variety of possible superlattices depending on
the relative angle between the two materials. Each superlat-
tice pattern is characterized by slightly different electronic
properties in the supported silicene, primarily distinguished
by the intrinsic band gap and the Fermi velocity. Of the many
superlattice arrangements studied in Ref. [78], we chose the
combinations with the smallest and largest Fermi velocities
and intrinsic gaps, and refer to them as type I and type II
silicene, respectively.

It is shown that Xenes are excellent candidates
for extremely strong exciton-photon coupling and
room-temperature superfluidity. In addition, we demonstrate
that the exceptional tunability of Xenes via an external
electric field, combined with the tunable nature of the open
microcavity design, offers unprecedented control over the
strength of the exciton-photon coupling, Rabi splitting, and
BKT superfluid critical temperature. First, we determine the
ground state properties of direct excitons formed in an Xene
monolayer, namely, the direct exciton binding energy Eb

and excitonic Bohr radius aB, by solving the Schrödinger
equation for an interacting electron and hole constrained in
the Xene monolayer plane, for which the interaction potential
is the Rytova-Keldysh (RK) potential [79,80]. We then
obtain the properties of polaritons for an Xene monolayer
embedded in a tunable-length open microcavity, in particular,
the dependence of the Rabi splitting on the external electric
field when the cavity length is changed in coincidence with
the electric field so that the exciton and photon modes are kept
in resonance. The theory of BEC and superfluidity in a 2D
Bose gas of polaritons is then presented, and we examine the
dependence of the BKT critical temperature on the external

electric field for some fixed polariton concentration which is
representative of a typical experimental setup.

This paper is organized as follows. In Sec. II, we describe
how an external electric field affects the band gap and binding
energy of direct excitons in Xene monolayers. In Sec. III, the
properties of photons confined in an optical microcavity are
presented. The Rabi splitting of polaritons in an open optical
microcavity is calculated in Sec. IV. In Sec. V, the superfluid
critical temperature of polaritons in an optical microcavity
is calculated. The optimization problem of simulatenously
maximizing the Rabi splitting and BKT critical temperature
is analyzed in detail in Sec. VI. We analyze our results
and discuss their implications towards ongoing research in
polaritons in 2D crystals and open microcavities in Sec. VII.
Our conclusions follow in Sec. VIII.

II. 2D DIRECT EXCITONS IN AN XENE MONOLAYER
IN AN EXTERNAL ELECTRIC FIELD

Xene monolayers have a hexagonal lattice structure where
the two triangular sublattices are vertically offset with respect
to each other by a distance d0, known as the buckling constant
[74,75]. If an electric field is applied perpendicular to the
plane of the monolayer, a potential difference between the
offset sublattices is created [76], which changes the band
gap, and therefore the effective charge carrier masses, in the
Xene monolayer. In the absence of an external electric field,
the Xenes exhibit a prominent Dirac cone, though the Xenes
have a small intrinsic gap (≈ 1.9 meV in FS Si) [81]. The
Hamiltonian of the band structure includes an additional term
describing the dependence of the band gap on the external
electric field [76,82–84]. The Fermi energy is set to the
midway point between the valence-band maximum (VBM)
and the conduction-band minimum (CBM), and the difference
in energy between either the VBM or CBM and the Fermi
energy is given by [73]

�ξσ = |ξσ�SO − ed0E⊥|, (1)

where E⊥ is the perpendicular electric field, ξ = ±1 and σ =
±1 are the valley and spin indices, respectively, �SO is half
of the intrinsic band gap when E⊥ = 0, and e is the electron
charge. Eq. (1) shows that the spin-up and spin-down valence
and conduction bands are degenerate when E⊥ = 0. In other
words, spin-orbit splitting only manifests itself at nonzero
external electric fields. At nonzero electric fields, both the
valence and conduction bands split, into the “upper” bands
with a large gap (when ξσ = −1), and the “lower” bands
with a small gap (when ξσ = 1). We refer specifically to the
large band gap as �−1 and to the small band gap as �1. When
the external field reaches a critical value Ec = �SO/(ed0), the
“lower” bands form a Dirac cone at the K/K ′ points. For
E⊥ � Ec, both the “upper” and “lower” bands move away
from the Fermi energy, and the difference in energy between
the upper and lower conduction or valence bands is given
by 2�SO. This spin-orbit coupling gives rise to two types of
excitons with different effective masses—we refer to excitons
formed from the “large” gap (ξσ = −1) as A excitons, and
excitons formed from the “small” gap (ξσ = 1) as B excitons.

In the vicinity of the K/K ′ points, the conduction and
valence bands are parabolic. Writing the dispersion relation as
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E (k) =
√

�2
ξσ + h̄2v2

F k2 [73], where vF is the Fermi velocity,

and performing a Taylor expansion for small k, we can
identify the effective mass of charge carriers as m = �ξσ /v2

F .
Due to the symmetry of the conduction and valence bands,
the effective masses of electrons and holes are the same,
mh = me = m, and can be written as

m = |ξσ�SO − ed0E⊥|
v2

F

. (2)

Therefore both the band gap (1) and effective carrier mass
(2) depend the external electric field, demonstrating that it
is imperative that one also obtains accurate values for the
quantities �SO, d0, and vF .

The eigenenergies and eigenfunctions of the exciton can
be obtained by solving the 2D Schrödinger equation. We treat
the electron-hole interaction using the Rytova-Keldysh (RK)
potential [79,80], which has been widely used to describe the
screened electron-hole interaction in different 2D materials
[77,85,86]. The RK potential is given by

VRK(r) = πke2

2κρ0

[
H0

(
r
ρ0

)
− Y0

(
r
ρ0

)]
. (3)

In Eq. (3), r = re − rh is the electron-hole separation, k =
1/(4πε0), where ε0 = 8.85 × 10−12 C2 N−1 m−2 is the per-
mittivity of free space, ρ0 = (lε)/(2κ ) is the screening length,
l is the thickness of the Xene monolayer, ε is the static dielec-
tric constant of the Xene monolayer, κ = (ε1 + ε2)/2, with ε1

and ε2 denoting the dielectric constants of the materials above
and below the Xene monolayer, and H0 and Y0 are the Struve
and Bessel functions of the second kind, respectively.

After separation of the center-of-mass and relative motion,
the Schrödinger equation for the exciton reads[−h̄2

2μ
∇2 + VRK(r)

]
ψ (r) = Eψ (r), (4)

where μ = (memh)/(me + mh) = m/2 is the reduced mass of
the exciton.

A detailed study of the field-dependent excitonic properties
in Xene monolayers and Xene/h-BN heterostructures based
on the solution of Eq. (4) was performed in Ref. [77]. Notably,
these calculations demonstrated that the freestanding Xenes
exhibit a phase transition from the excitonic insulator phase
to the semiconductor phase as the electric field is increased
beyond some critical value E⊥,c, which was addressed in
more detail in Ref. [87]. Therefore we will only consider
the formation of polaritons in the freestanding Xenes for
E⊥ > E⊥,c. Let us also mention here that while both �ξσ

and m depend linearly on the electric field, this should not be
taken to imply that the external electric field can be increased
without limit while the aforementioned quantities behave as
described in Eqs. (1) and (2). On the other hand, the upper
limit of E⊥ = 2.7 V/Å considered in this work is based on an
ab initio study [76] which found that the crystal structure of
silicene began to dissociate for electric fields greater than the
upper limit we consider here. Therefore, in the FS Xenes, we
consider the electric field in the range E⊥ ∈ [E⊥,c, 2.7 V/Å],
while for silicene encapsulated by h-BN, we consider E⊥ ∈
[0, 2.7] V/Å.

III. MICROCAVITY PROPERTIES AND PARAMETERS

We consider a microcavity containing an Xene monolayer
placed on top of a DBR mirror. The opposite end of the
cavity comprises a movable stage which enables adjustment
of the cavity length Lc. Throughout the following calculations
we consider that the cavity length is changed in coincidence
with the electric field E⊥ such that the excitonic and photonic
modes remain in resonance. The cavity length determines the
allowed resonant photon modes Eph and the energy of these
modes is related to Lc as

Eph = h̄πc

Lc
√

εcav
. (5)

The mirror placed on the movable stage can be either
another DBR [63,88,89], or a metallic mirror [64]. A crucial
difference between the choice of a DBR or metallic mirror is
that a DBR introduces additional photonic path length since
reflection from a DBR involves the photon penetrating some
distance into the DBR. For each DBR, the additional photonic
path length is given by [88,90–92]

LDBR = λc

2
√

εcav

n1n2

(n2 − n1)
= hc

2Eph
√

εcav

n1n2

(n2 − n1)
, (6)

where n1 and n2 are the refractive indices of the dielectrics
composing the DBR and λc is the central wavelength of the
DBR, at which the mirror is maximally reflective. Therefore
the effective photonic path length of the microcavity can be
written Leff = Lc + LDBR for the case of a microcavity with
one DBR and one silver mirror, and Leff = Lc + 2LDBR if the
microcavity consists of two identical DBR mirrors. Assuming
a typical DBR consisting of alternating layers of SiO2 (n1 =
1.45) and TiO2 (n2 = 2.05) [64], where λc corresponds to the
Eph given by a particular Lc, we find that LDBR is greater than
Lc by nearly a factor of 4, so the choice between a 2 DBR
and 1 DBR microcavity configuration significantly changes
the value of Leff .

In an optical microcavity, the rate of photon leakage from
the microcavity can be considered a type of damping in the
system, and the contribution to the photonic damping due to
the leakage from a single mirror, γ

′
ph, is given by [64]

γ
′
ph = 1 − √

R√
R

c√
εcav(2Leff )

, (7)

where R is the reflectivity of the mirror, and the second
fraction represents the time it takes for the photon to travel
back and forth across the cavity once. Therefore the decay rate
of photons from the cavity is given by the sum of the photonic
decay rate from each mirror:

γ
(2 DBR)
ph = 1 − √

R1√
R1

c√
εcavLeff

, (8)

γ
(1 DBR)
ph =

[
1

2

(
1 − √

R1√
R1

+ 1 − √
R2√

R2

)]
c√

εcavLeff

= 1 − √
Reff√

Reff

c√
εcavLeff

, (9)

for each microcavity configuration considered in this work. In
Eq. (9), R1 is the reflectivity of the DBR, R2 is the reflectivity
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FIG. 1. Spectrum of A exciton transition energy, Eex,A =
(2�−1 − Eb,A), at k = 0 as a function of the electric field E⊥. The
right-hand side of the frame shows the correspondence between
the exciton energy Eex and the cavity length Lc necessary to keep
Eph = Eex.

of the metallic mirror, and Reff = (4R1R2)/(
√

R1 + √
R2)2 is

the effective reflectivity of a microcavity with two nonidenti-
cal mirrors.

In this work, we consider two open (εcav = 1) microcavity
configurations, one consisting of two DBRs and one with one
DBR and one silver mirror. The microcavity is characterized
by the following parameters: a DBR consisting of SiO2/TiO2

[64] with refractive indices n1 = 1.45 and n2 = 2.05, respec-
tively, and reflectivity R1 = 0.985 [90,93]; the silver mirror
has a reflectivity R2 = 0.95 [64].

We calculated the dependence of the A exciton transition
energy, Eex,A, on the external electric field E⊥, for each of the
five materials under consideration, and present our results in
Fig. 1. Also shown along the right side of the frame is the
cavity length Lc which yields a photon energy in resonance
with the excitonic transition energy, Eph = Eex.

IV. POLARITONS IN AN OPTICAL MICROCAVITY

The Hamiltonian of the exciton-photon interaction is given
by [94]

Ĥ0 =
∑

k

Eex(k)b̂†
kb̂k +

∑
k

Eph(k)â†
kâk

+ h̄V
∑

k

(â†
kb̂k + b̂†

kâk ) + 1

2A

∑
k,k′,q

Uqb̂†
k′+qb̂†

k−qb̂kb̂k′ ,

(10)

where âk (â†
k ) and b̂k (b̂†

k ) are the photonic and excitonic Bose
annihilation (creation) operators, respectively.

The first term in Eq. (10) is the Hamiltonian of noninter-
acting excitons, where

Eex(k) = Eex + h̄2k2

2Mex
(11)

is the dispersion relation of a single exciton in the Xene
monolayer with in-plane momentum k and Mex = 2m is the
total mass of the exciton.

The second term in Eq. (10) is the Hamiltonian of noninter-
acting photons confined in a semiconductor microcavity [95],

where

Eph(k) = h̄c√
εcav

√
π2

L2
c

+ k2 (12)

is the dispersion relation of the photon [44]. Assuming k is
small, Eq. (12) can be expanded to obtain [3]

Eph(k) ≈ Eph + h̄2k2

2mph
, (13)

where mph = (Ephεcav)/(c2) is the effective mass of the photon
due to confinement within the cavity.

The third term in Eq. (10) is the Hamiltonian of harmonic
exciton-photon coupling [96], where V is the exciton-photon
coupling constant. The functional form of V depends on the
system in question, but following Refs. [63,66,90,97], the
exciton-photon coupling constant in this system can be written
as

V =
[

NX
1 + √

R√
R

4πke2v2
F

EexLeff
√

εcavκ
|ψ (0)|2

]1/2

, (14)

where NX is the number of Xene monolayers in the micro-
cavity, R is the reflectivity of the mirrors, Leff is the effective
cavity length, ψ (0) is the value of the exciton relative motion
wave function evaluated at r = 0, and the expressions for R
and Leff are determined by the choice of either the 1 DBR or 2
DBR microcavity setup. A brief summary of how Eq. (14) is
obtained is given in Appendix B.

The fourth term in Eq. (10) describes the repulsive exciton-
exciton interaction potential. As a first step, we neglect this
term while considering the formation of polaritons in the
microcavity.

The eigenenergies of Eq. (10) can be obtained by diago-
nalizing the Hamiltonian using a well-established procedure
[98] (see Appendix A). To properly account for excitonic and
photonic damping, which originate from the finite linewidth of
the excitonic transition and the leakage rate of photons from
the mirrors, we write Eex and Eph as explicity complex, that
is, Eex → Eex − ih̄γex and Eph → Eph − ih̄γph. Then the com-
plex upper/lower polariton eigenergies are given by [3,12]

EUP/LP(k) = Eph(k) + Eex(k) − ih̄(γex + γph )

2

±
√

h̄2V 2 + 1

4
[�E (k) + ih̄(γex − γph)]2, (15)

where �E (k) = Eph(k) − Eex(k) is the so-called detuning
between the bare exciton and photon modes. The real and
imaginary parts of the complex eigenenergies of Eq. (15)
correspond to the eigenenergies, EUP and ELP, and decay rates,
γUP and γLP, of upper and lower polaritons, respectively. The
polariton decay rates can also be calculated directly as [3]

γLP(k) = |Xk|2γex + |Ck|2γph,
(16)

γUP(k) = |Ck|2γex + |Xk|2γph,

where |Xk| and |Ck| are the Hopfield coefficients of Eq. (A2),
but it turns out that calculating γUP/LP(k) using Eq. (16)
yields exactly the same result as taking the imaginary part of
Eq. (15). Interestingly enough, one can obtain the eigenmodes
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of the upper and lower polariton branches while explicitly
accounting for excitonic and photonic damping by writing the
coupled damped oscillator equation [12]:

h̄2V 2 = (Eex − E − ih̄γex)(Eph − E − ih̄γph ), (17)

where the two solutions of E correspond exactly to the expres-
sions given in Eq. (15).

According to Eq. (15), the observable difference between
the upper and lower polariton eigenergies at k = 0, known as
the Rabi splitting, is given by

h̄R = EUP − ELP = 2
√

h̄2V 2 + 1
4 [�E + ih̄(γex − γph)]2.

(18)

Let us focus on the case of zero detuning, �E = 0. Then
Eq. (18) reduces to

h̄R = 2h̄

√
V 2 −

(
γex − γph

2

)2

. (19)

Now, if the exciton-photon coupling constant V > |γex −
γph|/2, the system is said to be in the strong-coupling regime,
where the UP/LP eigenenergies differ from the bare exciton
and photon energies, and therefore the Rabi splitting, h̄R,
is positive and real. If instead V < |γex − γph|/2, the system
is in the weak-coupling regime, where EUP and ELP corre-
spond to the exciton and photon energies, and the quantity
h̄R is imaginary. If γex and γph are much smaller than V ,
the Rabi splitting can be approximated by h̄R ≈ 2h̄V . By
calculating h̄0

R ≡ 2h̄V and comparing it to h̄R, we can
compare the strength of the exciton-photon interaction to the
splitting between the upper and lower polariton eigenmodes,
and in the process gain insight into the effect of the excitonic
and photonic damping on the formation and properties of
polaritons.

Before presenting calculations of h̄0
R and h̄R, let us

discuss the choice of γex to be used in our calculations.
Experimental studies of the excitonic properties in the FS
Xenes are nonexistent, and the sensitivity of the material
parameters of silicene to the choice of substrate further
complicates the generalization of experimental data for sil-
icene between substrates. On the other hand, the excitonic
and optical properties of the TMDCs have been extensively
studied for nearly a decade [54], and TMDCs have been
studied experimentally in optical microcavities for the past 5
years [63,88,99,100]. The linewidth of the excitonic transition
in the TMDCs has been observed to be roughly 11 meV
at cryogenic temperatures [63] and approximately 30 meV
at room temperature [64,65,89,99]. Since we consider the
polaritonic properties at room-temperature in this work, we
assume γex = (30 meV)/h̄ ≈ 5 × 1013 s−1 as an upper limit
of γex to be used in calculations for both the FS Xenes and
type I/II Si. However, it is well documented that encapsu-
lating TMDCs with h-BN strongly suppresses the excitonic
linewidth, such that cryogenic linewidths are observed even
at room temperature [101–103]. Therefore we also consider a
lower limit of γex = 1013 s−1 for type I/II Si.

Comparisons of h̄0
R and h̄R across all five materials in

both 2 DBR and 1 DBR microcavity designs are presented
in Fig. 2. Figure 2(a) shows the quantity h̄0

R for A excitons

in each of the five materials in a 2 DBR microcavity, while
Fig. 2(b) shows the same quantity for a 1 DBR setup. Analysis
of these results shows that the choice of microcavity configu-
ration has a significant effect on the strength of the exciton-
photon coupling constant V . Since LDBR ≈ 4Lc, the extra
factor of LDBR added to Leff in the 2 DBR configuration nearly
doubles Leff , and since V ∝ L−1/2

eff , we find that V (1 DBR) ≈
1.35 × V (2 DBR) for all materials and at all electric fields.
The factor of

√
κ in the denominator of V also significantly

reduces V in encapsulated Si (κ = εh-BN = 4.89), compared
to the FS Xenes (κ = 1).

The large excitonic line broadening γex = 5 × 1013 s−1

and choice of Leff significantly affects the Rabi splitting, as
presented in Figs. 2(c) and (d). In the 2 DBR configuration
shown in Fig. 2(c), the FS Xenes do not enter the strong
coupling regime until E⊥ ≈ 1.0 V/Å, while encapsulated Si
is in the weak coupling regime until the electric field becomes
extremely strong, E⊥ ≈ 2.5 V/Å. The 1 DBR configuration
shown in Fig. 2(d) demonstrates that the dependence of Leff

on the cavity configuration has a significant effect on the
onset of the strong coupling regime. In this microcavity setup,
the FS Xenes enter the strong coupling regime around E⊥ ≈
0.6 V/Å, while the transition to the strong coupling regime
in encapsulated Si occurs around E⊥ ≈ 1.6 V/Å. In addition,
the maximal value of h̄R for each material is nearly twice as
large in the 1 DBR case compared to the 2 DBR case.

Next, we analyze the dependence of the Rabi splitting on
the external electric field for different numbers of encapsu-
lated type II Si monolayers, NX , stacked on top of each other,
and on different values of the excitonic damping, γex, shown
in Fig. 3. In Fig. 3(a), we vary the number of Si monolayers in
the microcavity, keeping γex = 5 × 1013 s−1. For NX > 1, we
consider a stack of Si monolayers, each separated by few-layer
h-BN such that the Si monolayers do not interact with each
other, while the height of the stack of NX Si monolayers with
h-BN spacers remains negligible compared to Lc, so that Lc

and Leff do not need to be modified. We find that increasing
NX to 3 brings the onset of the strong coupling regime in type
II Si to E⊥ = 0.7 V/Å and increases the maximum h̄R at
large electric fields to about 70 meV, which is quantitatively
similar to h̄R in the FS Xenes.

In Fig. 3(b), we vary the exciton linewidth γex while
keeping NX = 1. We find that reducing γex reduces the value
of E⊥ at which the strong coupling regime is reached, but the
maximal value of h̄R at large electric fields is not increased
as it is when NX is increased. This is because increasing NX

increases V itself, while reducing γex only causes h̄R to
converge towards V .

Finally, let us comment on the relationship between the
upper and lower polariton eigenenergies, the Rabi splitting,
and the binding energy of polaritons, by which we mean the
stability of polaritons against dissociation. At �E = 0 and
k = 0, the lower (upper) polariton may dissociate into its con-
stituent exciton and photon states if it gains (loses) an amount
of energy equal to the difference between the lower (upper)
polariton eigenenergy and the bare exciton/photon energy.
Since the splitting of the upper/lower polariton eigenenergies
is symmetric with respect to the (equal) bare exciton and pho-
ton energies, the binding energy of polaritons at �E = k = 0
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(a) (b)

(c) (d)

FIG. 2. Dependence of the exciton-photon coupling constant h̄0
R on the external electric field E⊥ in each of the five materials, for A

excitons, in (a) a 2 DBR microcavity and (b) a 1 DBR microcavity. Dependence of the Rabi splitting with excitonic and photonic damping
h̄R for A excitons, in (c) a 2 DBR microcavity, and (d) a 1 DBR microcavity.

is straightforwardly given by Eb,UP/LP ≡ |EUP/LP − Eex/ph| =
(h̄R)/2.

Since the splitting between the upper and lower polariton
branches is symmetric with respect to the average of Eex and
Eph, in the case of either nonzero detuning or nonzero in-plane
momentum, the polariton binding energy cannot be straight-
forwardly calculated as (h̄R/2). Restricting this example
to the case where EUP(k) > Eph(k) > Eex(k) > ELP(k), we
can see that upper polaritons would dissociate into photons

if they lost energy equal to EUP − Eph, and lower polaritons
would dissociate into excitons if they gained energy equal to
Eex − ELP. Thus the binding energy of polaritons can be given
generally as

Eb,UP(�E , k) = |EUP − Max
[
Eex, Eph

]|,
Eb,LP(�E , k) = |ELP − Min

[
Eex, Eph

]|. (20)

(a) (b)

FIG. 3. (a) Dependence of h̄R on the electric field E⊥ in type II Si for different numbers of Si monolayers NX stacked on top of each
other. (b) Dependence of h̄R on the electric field E⊥ in type II Si for different values of the exciton damping γex.
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V. TUNABLE SUPERFLUIDITY OF POLARITONS IN AN
XENE MONOLAYER IN AN OPEN MICROCAVITY

In the previous section, we considered a very dilute system
of noninteracting polaritons when the exciton-exciton inter-
action term in the Hamiltonian (10) is neglected. Now let us
consider a weakly interacting Bose gas of polaritons, taking
into account the exciton-exciton interaction.

In this low-density limit, a system of excitons can be
treated purely as bosons if one includes an interaction poten-
tial that accounts for the fermionic nature of the constituent
electrons and holes [24,91]. For small wave vectors satisfy-
ing q � a−1

2D , where a2D is the 2D exciton Bohr radius, the
exciton-exciton repulsion can be approximated by a contact
potential, Uq ≈ U0 ≡ 6Eba2

2D [66,104,105].
Diagonalizing Eq. (10) using the same procedure as before

without discarding the exciton-exciton interaction term, we
obtain the Hamiltonian for a system of interacting lower
polaritons:

ĤLP =
∑

k

ELP(k) p̂†
P p̂P + 1

2A

∑
k,k′,q

Uk,k′,q p̂†
k+q p̂†

k′−q p̂k p̂k′ ,

(21)

where the second term now describes the repulsive polariton-
polariton interaction potential, corresponding to the fourth
term in Eq. (10). Equation (21) therefore corresponds to a
dilute, weakly interacting Bose gas of lower polaritons. Since
polaritons interact entirely via their excitonic component, the
polariton-polariton interaction potential must be proportional
to the exciton-exciton interaction, Uk,k′,q ∝ Uq, and is given
by [66,104,105]

Uk,k′,q = 6Eba2
2DXk+qXk′Xk′−qXk. (22)

In the Bogoliubov approximation, the sound spectrum of
collective excitations at low momenta in a dilute, weakly
interacting Bose gas is given by ε(k) = csk, where cs is the
sound velocity [106,107]:

cs =
√

UeffnLP

MLP
. (23)

In Eq. (23), Ueff ≡ U(k,k′,q)≈0 = 6Eba2
2D|X |4 is the effective

polariton-polariton interaction potential in the limit of small
momenta, nLP is the 2D concentration of lower polaritons, and
MLP is the effective mass of lower polaritons, given by

M−1
LP (k) = |X |2M−1

ex + |C|2m−1
ph . (24)

The Hopfield coefficients |X | and |C| in both Eq. (24) and
in Ueff are evaluated in the limit k → 0, but we note that
their values here still depend on the detuning �E between
the exciton and photon eigenenergies.

A dilute 2D gas of weakly interacting bosons experiences a
BKT transition to the superfluid phase at a critical temperature
[20–23,108]:

Tc = π h̄2ns(Tc)

2kBMLP
. (25)

In Eq. (25), kB is the Boltzmann constant and ns(T ) = nLP −
nn(T ) is the superfluid concentration at temperature T , where
nn is the 2D concentration of the normal component of the

polariton Bose fluid, given by [106]

ns(T ) = nLP − 3ζ (3)

2π h̄2

sk3
BT 3

c4
s MLP

, (26)

where the spin degeneracy factor s = 1. Setting ns(T ) = 0 one
obtains the critical temperature in the mean-field approxima-
tion, or in other words, the temperature at which the local
concentration of the superfluid component ns(T ) vanishes:

T 0
c =

[
2π h̄2U 2

eff

3ζ (3)MLP

]1/3
nLP

kB
. (27)

Solving Eq. (27) for nLP, one effectively obtains the maximum
2D concentration of the normal component of the 2D Bose gas
of LP at a given temperature T :

n0
c =

[
3ζ (3)MLP

2π h̄2U 2
eff

]1/3

kBT 0
c . (28)

Therefore n0
c is the critical LP concentration in the mean-

field approximation, for a given T . In other words, a 2D
weakly interacting Bose gas of LP can only sustain a finite
LP concentration in the normal phase; as more LP are added
they occupy the degenerate superfluid state.

Let us mention that Eqs. (26)–(28) are obtained in the
low-temperature limit, by assuming that only the linear part
of the Bogoliubox spectrum is populated. In general, while the
Bogoliubov spectrum is linear at small k, it does not remain
linear for larger momentum, where it eventually recovers
a modified form of the lower polariton dispersion. There-
fore Eqs. (26)–(28) fall within the mean-field approximation
(MFA), which assumes a nearly ideal Bose gas, that is, that
the gas of bosons is both dilute and weakly interacting. Under
these conditions, the nearly ideal Bose gas can be described by
the Bose-Einstein distribution function, in which the excita-
tions comprising the normal component do not interact [106].
That is, the MFA is most accurate at very low temperature,
when ns � nn, and the approximation tends to break down as
T → Tc, since the increase in temperature means that a greater
proportion of the LP Bose gas consists of the interacting exci-
tations, therefore weakening the assumption that the LP Bose
gas is weakly-interacting. However, this weakening of the
MFA is somewhat mitigated since the LP Bose gas is overall
very dilute, that is, the diluteness condition nLP · (πa2

B) � 1 is
satisfied within the range of E⊥ considered here, regardless of
the relative magnitudes of nn and ns. Substituting n0

c , given by
Eq. (28), for nLP at T = 300 K and recalculating the diluteness
condition as a function of electric field, we actually find that as
the electric field is increased, the Bose gas becomes relatively
more dilute.

Therefore, while the approximation underpinning our an-
alytical results becomes less accurate as T is increased, the
fact that the diluteness condition of the LP Bose gas overall
remains strongly satisfied for all nLP, T , and E⊥ considered
here indicates that the MFA approximation is nonetheless
applied appropriately. Of course, a more detailed study of the
applicability of the MFA in this context, and a comparison
between these analytical results to numerical results obtained
without the MFA, is always warranted and would certainly be
instructive.
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(a) (b)

FIG. 4. (a) Dependence of Tc on E⊥. The vertical dashed lines denote the minimum E⊥ in which the corresponding material is in the strong
coupling regime in a 1 DBR configuration based on Fig. 2. (b) Dependence of the critical LP concentration nc on the external electric field, for
A polaritons, at Tc = 300 K.

Secondly, we recognize another important limitation, that
the present approach is valid for nondecaying particles. This
is an ideal limit which real systems may or may not approach
depending on the specifics of the system [109]. Our consider-
ation of the LP concentration is given in the thermodynamic
limit, that is valid if we consider timescales much smaller
than the LP lifetime. In particular, the expression for nn

was derived in Ref. [106] by considering the flow of the
momentum per unit area of the polariton system. If the LP
decays quickly, that reduces the ability of the polariton system
to transfer momentum via the flow of the normal component,
which in turn would affect the BKT critical temperature. Since
in an optical microcavity the photon lifetime is generally
much shorter than the exciton lifetime [3], and the photon
broadening in a 1 DBR microcavity, given by Eq. (9), ranges
from γph ≈ 1010 s−1–1012 s−1 from low to high electric fields,
respectively. Therefore the LP lifetime can be estimated as
τLP ≈ 1–100 ps [94,106,110]. Accounting for the finite LP
lifetime, as in Ref. [109], would, indeed, improve the accuracy
of our calculations, but such an approach is beyond the scope
of this work. Nevertheless, our analytical results provide an
ideal limit against which experimental results or more detailed
numerical analyses can be compared.

Substituting Eq. (26) into Eq. (25), one obtains a cubic
equation for the BKT transition temperature, which has the
following solution:

Tc =
[(

1 +
√

32

27

(
MLPkBT 0

c

π h̄2nLP

)3

+ 1

)1/3

+
(

1 −
√

32

27

(
MLPkBT 0

c

π h̄2nLP

)3

+ 1

)1/3] T 0
c

21/3
. (29)

Analysis of Eqs. (1), (2), (24), and (29) shows that the
BKT transition temperature Tc depends on the polariton
concentration nLP, the applied external electric field E⊥, and
on the properties of the microcavity. The results of calcula-
tions of the dependence of the BKT transition temperature and
the critical LP concentration in the mean-field approximation
on the external electric field are presented in Fig. 4. Using

Eq. (29), we calculated the dependence of the BKT critical
temperature Tc on the external electric field, E⊥, for each Xene
at nLP = 1015 m−2, shown in Fig. 4(a).

Analysis of the figure indicates that Tc decreases as the
external electric field, E⊥, is increased, and that FS Si
has by far the largest Tc at all values of E⊥, while type
I and type II encapsulated Si have the smallest Tc. Also
shown in Fig. 4(a) are vertical dashed lines which denote
the E⊥ at which the strong coupling regime is reached for
the corresponding material in a 1 DBR microcavity con-
figuration. While the FS Xenes are in the strong coupling
regime when the corresponding Tc > 300 K, type I/II en-
capsulated Si are not in the strong coupling regime when
Tc > 300 K.

Calculations of the critical LP concentration nLP for the
BKT transition to the superfluid phase for fixed critical
temperature Tc = 300 K as a function of E⊥ are presented
in Fig. 4(b). One can recover the superfluid phase in en-
capsulated Si at high E⊥ (when encapsulated Si is in the
strong coupling regime) by increasing the LP concentration
to about nLP = 2 × 1015 m−2, an increase of only a factor
of two compared to the concentration used to calculate the
results in Fig. 4(a), nLP = 1015 m−2. Therefore the nearly
linear relationship between nc and E⊥ at fixed T means that
increasing nLP by a factor of two in turn increases Tc by a
factor of two at a given E⊥.

Another interesting aspect of the BKT phase transition in
polaritons is the relationship between Tc and the detuning
�E . Since both the effective polariton-polariton interaction
potential Ueff and the LP mass,MLP depend on the Hopfield
coefficients |X |2 and |C|2, which in turn depend on the de-
tuning �E , the BKT critical temperature therefore depends
nonmonotonically on the detuning. For positive �E , the LP
becomes more excitonlike, increasing the strength of the
effective interaction potential, which increases Tc, but at the
same time, MLP also increases, which decreases Tc. Since Ueff

can only increase by a factor of four, while MLP can vary
by several orders of magnitude between mph and Mex, we
find that a local maximum in Tc is reached for small positive
values of �E . Specifically, in FS Si, for small E⊥, the value
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of �E which maximizes Tc corresponds to Eph ≈ 1.07Eex,
and as E⊥ increases, the maximizing value of �E approaches
Eph ≈ 1.03Eex, or in other words, the percent detuning which
maximizes Tc in FS Si lies between 4%–7%, depending on
E⊥. Interestingly, in all materials except FS Si, the percent
detuning which maximizes Tc lies between approximately
1%–4%. Furthermore, the difference in Tc between the maxi-
mal detuning and zero detuning is about 35% for all values of
E⊥ in all materials, quite a significant increase.

However, in Sec. IV, it was mentioned that any nonzero
detuning reduces the LP binding energy by reducing the en-
ergy difference between ELP and the lesser of Eex or Eph. Our
calculations show that as the detuning �E > 0 is increased,
the LP binding energy decreases faster than Tc increases,
making detuning an ineffective mechanism for maximizing Tc

and Eb,LP simultaneously. On the other hand, for NX > 1 in
encapsulated Si, varying the detuning may be an effective way
to increase Tc, since the enhanced Rabi splitting compared to
NX = 1 can allow for LP which are still stable at Tc despite
the reduction in Eb,LP for nonzero detunings. At temperatures
T where Eb,LP � kBT , changing the detuning can still be used
to tune Tc, but examination of Fig. 4 indicates that one should
encounter few difficulties achieving a stable superfluid of LP
at relatively low temperatures in any case.

In essence, simultaneously maximizing Eb,LP and Tc sub-
ject to a variety of constraints on material and environmental
parameters such as nLP, �E , NX , and γex is a classic example
of an optimization problem, which we analyze in detail in the
next section.

VI. ANALYSIS OF THE RABI SPLITTING
AND SUPERFLUID CRITICAL TEMPERATURE

Earlier, we calculated the dependence of the Rabi splitting
on E⊥, γex, and NX , and found that polaritons in the Xenes
should be stable at room temperature for some combination of
large E⊥ and small γex, and that increasing NX is a straightfor-
ward way of significantly increasing h̄R in encapsulated Si.
Then, calculations of Eq. (29) revealed that Tc in all materials
is extremely high at small E⊥, and even for E⊥ > 2.0 V/Å,
Tc exceeds 100 K. Let us now analyze the intersection of
the “high Rabi splitting” and “high Tc” regimes and the
dependence of these regimes on experimental parameters such
as nLP, �E , γex, and NX . We primarily focus on encapsulated
(type II) Si since such a setup is already very similar to previ-
ous experimental work on polaritons in TMDCs encapsulated
by h-BN [64,66,99]. Instead of addressing each of the FS
Xenes individually, we focus on FS Si because it shows by
far the largest Tc of the FS Xenes, while the FS Xenes all have
similar h̄R.

At a minimum, three conditions must be met in order to
obtain a stable LP superfluid at room temperature: (i) the ex-
citon binding energy must exceed 26 meV, (ii) the LP binding
energy, given by h̄R/2 at �E = 0 and by Eex − ELP at �E >

0, must exceed 26 meV, and (iii) the critical temperature for
the BKT superfluid phase transition must be at least 300 K.
Since the exciton binding energy in all materials exceeds
100 meV for E⊥ > 0.5 V/Å, the excitons are certainly stable
in the range of E⊥ considered [77]. The conditions therefore
reduce to: Eb,LP > kBT and Tc > T .

FIG. 5. Shaded regions show where Tc and Eb,LP both exceed
T (along vertical axis) in FS Si. The labeled regions denote the
following combinations of parameters: (i) nLP = 1015, (ii) 1.25 ×
1015, and (iii) 1015 m−2; for (i) and (ii) γex = 5 × 1013 and (iii)
1013 s−1. Regions (i) and (ii) share the same left-hand-side boundary
(same γex), while regions (i) and (iii) share the same right-hand-side
boundary (same nLP).

Figures 5 and 6 depict regions where both Tc and Eb,LP/kB

exceed T (along the vertical axis) for the range of 1.0 < E⊥ <

2.7 V/Å in FS Si or type II encapsulated Si. Each region
therefore represents the range of external electric field E⊥, and
ambient temperature T , for which a stable LP superfluid could
form, based on the choice of material parameters denoted by
the lower case roman numeral in each region. The left-hand
boundary of each region is formed by the curve Eb,LP(E⊥) =
kBT , while the right-hand boundary of each region is formed
by the curve Tc(E⊥) = T .

Figure 5 shows that FS Si should support a stable LP super-
fluid at T = 300 K under the following conditions: (i) E⊥ ∈
[1.8, 2.2] V/Å, (ii) E⊥ > 1.8 V/Å, (iii) E⊥ ∈ [1.3, 2.2] V/Å.
In other words, for γex = 5 × 1013 s−1 and nLP = 1015 m−2, a
stable LP superfluid should form at T = 300 K for 1.8 V/Å <

E⊥ < 2.2V/Å; if nLP � 1.25 × 1015 m−2, a stable superfluid
should form for all E⊥ > 1.8 V/Å.

Figure 6(a) shows the same information as in Fig. 5 but
for type II Si with γex = 5 × 1013 s−1. The different regions
correspond to the overlap of Tc > T and Eb,LP/kB > T for
different combinations of NX and nLP. As was shown in Fig. 4,
Tc < 300 K in type II Si for nLP = 1015 m−2, so that the
prospect of room-temperature superfluidity is only feasible for
nLP > 2 × 1015 m−2 and NX > 4 when E⊥ ∈ [1.5, 1.8] V/Å.
If instead nLP = 3 × 1015 m−2, by following the curves of the
region boundaries we find that a stable room-temperature su-
perfluid could be achieved for NX = 3 for E⊥ � 2.0 V/Å. At
nLP = 3 × 1015 m−2 and NX = 4, a stable room-temperature
superfluid could be expected to form for E⊥ � 1.5 V/Å.
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FIG. 6. (a) Shaded regions denote ranges of E⊥ and T where a stable LP superfluid is expected to form for the combination of material
parameters specified by the region labels. [(i), (ii), and (iii)] nLP = 1015 m−2 and NX = 1, 2, 3, respectively; [(iv) and (v)] nLP = 2 × 1015 m−2

and NX = 2, 4, respectively; (vi) nLP = 3 × 1015 m−2 and NX = 5. (b) Shaded regions correspond to the same parameters as in (a) but with
γex = 1013 s−1.

In Fig. 6(b), we consider the conditions for a stable LP
superfluid in type II Si with γex = 1013 s−1, while the labeled
regions correspond to the same combinations of material
parameters as in Fig. 6. The benefits of the possible reduction
in γex due to h-BN encapsulation are clearly displayed here—
the increase in Eb,LP means that at T = 300 K a stable LP
superfluid could form at nLP = 2 × 1015 m−2 for 1.2 V/Å
< E⊥ < 1.8 V/Å with NX = 4, while for NX = 3, the corre-
sponding range of E⊥ is roughly 1.4–1.8 V/Å. These ranges
of E⊥ are notably smaller than the corresponding range of E⊥
shown in Fig. 5 for FS Si, but the values of E⊥ are themselves
also smaller than in FS Si.

Finally, let us address the effect that nonzero detuning has
on the existence of a stable LP superfluid. As mentioned in
Sec. V, Tc increases if the photon energy is slightly blueshifted
from the exciton energy, and Tc reaches a maximum when
the photon energy exceeds the exciton energy by approxi-
mately 1%–2% (the precise value of the percentage detuning
which maximizes Tc depends on E⊥ but does not depend on
nLP—the maximal value of the percent detuning decreases
as E⊥ increases). When the detuning is increased from zero,
two qualitative changes to the region of stability adversely
affect the feasibility of high-temperature superfluidity. First,
the temperature at which the curves Eb,LP(E⊥) and Tc(E⊥)
intersect decreases. The intersection of these curves can be
identified as the pointed apex of the regions in Figs. 5 and
6. Second, the range of E⊥ which fall within a particular
region widens, but the value of E⊥ at the beginning and end
of the range increases, or in other words, the region of E⊥
widens but shifts towards greater E⊥ overall. In general, we
consider it advantageous to minimize the E⊥ required to reach
the SF regime since applying and maintaining a strong static
electric field imposes additional challenges on device design
and fabrication.

VII. DISCUSSION

We began by briefly reviewing the theoretical description
of the electronic properties of Xenes in an external
electric field and calculated the excitonic transition energy,
Eex = 2�SO − Eb. The material with the smallest Eex is FS
Si, which increases roughly linearly from Eex ≈ 200 meV
at E⊥ = 1.0 V/Å, to Eex ≈ 1.6 eV at E⊥ = 2.7 V/Å.
Despite the enhanced dielectric screening of encapsulated Si
(κ = 4.89) compared to FS Si (κ = 1), the modified material
parameters of encapsulated Si, which are more similar to
FS Ge than to FS Si, result in a maximal Eex ≈ 2.2 eV at
E⊥ = 2.7 V/Å. The maximum values for FS Ge and FS Sn
are Eex ≈ 3, 4.2 eV, respectively.

It was shown that the exciton-photon coupling strength
h̄0

R can, at high electric fields, reach about 55 meV in the
FS Xenes and about 35 meV in encapsulated Si for a 2 DBR
microcavity configuration, while for a 1 DBR microcavity,
the corresponding maximal values of h̄0

R for the FS Xenes
and encapsulated Si are about 80 and 45 meV, respectively.
However, the large value of γex used here strongly suppresses
the Rabi splitting h̄R, such that the polariton system is
in the weak coupling regime until about E⊥ = 1.0 V/Å
(0.5 V/Å) in the FS Xenes and until about E⊥ = 2.5 V/Å
(1.5 V/Å) in encapsulated Si for 2 DBR (1 DBR) microcavity
configurations. The significant reduction in h̄R means that
lower polaritons are never stable at room-temperature in a
2 DBR microcavity, while for a 1 DBR cavity, LP are only
stable at room-temperature in the FS Xenes beyond about
E⊥ = 2.2 V/Å. Since γex = 5 × 1013 s−1 is borrowed from
experimental determinations of the excitonic broadening in
TMDCs at room temperature, it is possible that γex in the
Xenes may be smaller, in which case we find that the strong
coupling regime is reached at much lower E⊥, though the
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maximal value of h̄R at high E⊥ does not change much. On
the other hand, increasing NX appears to be a promising way
to significantly increase the Rabi splitting at all values of E⊥,
since increasing V depends directly on NX .

We then considered the conditions under which a weakly
interacting Bose gas of lower polaritons would undergo a BKT
phase transition to the superfluid phase. At typical LP concen-
trations nLP = 1015 m−2, Tc in FS Si is almost always greater
than T = 300 K, with Tc in FS Ge exceeding 300 K until
roughly E⊥ = 1.5 V/Å. However, FS Sn and encapsulated Si
have by far the smallest Tc at a given E⊥, and we find that
beyond about E⊥ = 0.9 V/Å, Tc < 300 K. Analysis of the de-
pendence of Tc on nLP revealed that Tc depends nearly linearly
on nLP, so that the critical concentration of LP to induce a
BKT phase transition at Tc = 300 K does not exceed about
nLP = 3.5 × 1015 m−2, even in encapsulated Si at high E⊥.

Finally, we examined in detail the optimization problem
of trying to simultaneously maximize h̄R and Tc, and pre-
sented the sets of conditions which could lead to a stable
LP superfluid at T = 300 K, namely that the LP binding
energy exceeds the thermal energy at temperature T, Eb,LP >

kBT , and that the BKT critical temperature Tc exceeds the
ambient temperature, Tc > T . Simultaneously satisfying these
conditions yields a range of E⊥ where a stable LP superfluid
could form, with quantities such as nLP, NX , and γex acting
as parameters. Since increasing nLP increases Tc, while in-
creasing E⊥ decreases Tc, it was found that increasing nLP

would increase the maximum E⊥ which could support an LP
superfluid. Meanwhile, by increasing Eb,LP, the lower limit of
E⊥ is decreased, which can be achieved by either increasing
NX or reducing γex.

It was determined that FS Si could support a stable LP
superfluid at T � 300 K, intermediate E⊥ ∈ [1.7, 2.2] V/Å,
and relatively low LP concentrations, nLP = 1015 m−2. The
upper limit of E⊥ = 2.2 V/Å can be increased by increasing
nLP, but there is no convenient mechanism for decreasing the
lower limit of E⊥ = 1.7 V/Å, since γex is effectively fixed and
increasing NX by stacking multiple FS Si monolayers on top
of each other (in a sort of stacked bridge configuration) seems
impractical. On the other hand, type II Si is a more promising
candidate for room-temperature superfluidity of LP, though
it requires much higher LP concentration than FS Si. With
γex = 5 × 1013 s−1, we find that the LP superfluid regime
can be achieved for nLP � 2 × 1015 m−2 and NX � 4 in the
range E⊥ ∈ [1.5 V/Å, 1.8 V/Å]. As mentioned in Sec. IV,
based on experiments in TMDCs, we consider the possibility
that γex in encapsulated Si could be much lower than in the
FS Xenes. Taking γex = 1013 s−1, we then predict that the
superfluid phase can be achieved for T > 300 K in the range
E⊥ ∈ [1.2 V/Å, 1.8 V/Å], for nLP = 2 × 1015 m−2 and NX �
4. By increasing the concentration to nLP = 3 × 1015 m−2, we
predict the existence of the superfluid LP phase at T > 300 K
for NX � 5 in the range E⊥ ∈ [1.0 V/Å, 2.4 V/Å].

Let us now mention two important caveats to the three
conditions for a stable LP superfluid, given in the previous
section: the effect of temperature on LP concentration and
lifetime, and the superfluid concentration at temperatures very
slightly less than Tc. Since a significant fraction of particles in
a gas at an average temperature T would have kinetic energies

that exceed kBT , the LP binding energy should comfortably
exceed 26 meV so that the population of LP is not significantly
decreased due to thermal dissociation. To put it another way,
in the low-temperature limit, it is often possible to experi-
mentally correlate pump intensity and LP concentration—the
effect of increasing temperature would be to decrease the LP
concentration for a given pump intensity. Furthermore, from
Eq. (26), the concentration of the superfluid component of the
weakly interacting Bose gas of LP is given by the difference
between the total concentration nLP and the critical concen-
tration of the normal component, nc. Therefore the total LP
concentration should exceed nc by an appreciable amount in
order to obtain a non-negligible superfluid concentration.

VIII. CONCLUSIONS

In this paper, we demonstrated that the combination of tun-
able excitons (via a perpendicular electric field) in a tunable
optical microcavity (via the cavity length) has the potential to
give researchers unprecedented control over the Rabi splitting
of polaritons as well as their collective properties such as the
critical temperature of the BKT superfluid phase transition.
Our results show that the properties of polaritons, especially
the Rabi splitting, are highly sensitive to the cavity configura-
tion (1 or 2 DBR) and the electric field. Indeed, we found that
the significant increase in the effective cavity length in the 2
DBR configuration compared to the 1 DBR case strongly sup-
presses the Rabi splitting, to the point that the strong-coupling
regime is only barely achieved in encapsulated Si at very
high electric fields. However, for the 1 DBR configuration, the
strong coupling regime can be achieved at small electric fields
for the FS Xenes and moderate electric fields in encapsulated
Si. We also considered stacking multiple Si monolayers on
top of each other in the case of encapsulated Si—for NX � 2,
the enhancement of the exciton-photon coupling constant V
is significant enough to drastically reduce the threshold E⊥
for the onset of the strong coupling regime in encapsulated
Si. Based on previous experiments on polaritons in TMDCs
embedded in an optical microcavity, the excitonic inhomoge-
neous line broadening, γex = 5 × 1013 s−1, which we use as
a baseline value in our calculations, also significantly reduces
the Rabi splitting. It was shown in TMDCs that encapsulating
the TMDC monolayer with h-BN very strongly suppresses the
excitonic broadening—by considering a similar reduction in
γex in encapsulated Si compared to the FS Xenes, we find
that the strong coupling regime in encapsulated Si could be
achieved at quite low electric fields.

Next, we closely analyzed the conditions for the formation
of a superfluid of lower polaritons in the Xenes embedded
in a microcavity. As was the case for the Rabi splitting, our
results showed that Tc is largest for the FS Xenes, but unlike
the Rabi splitting, Tc is inversely proportional to E⊥. By
analyzing the critical concentration for the onset of the BKT
phase transition at fixed temperature, it was shown that an LP
concentration of at most nLP = 3 × 1015 m−2 is required for
even encapsulated Si to exhibit an LP superfluid at T = 300 K
at very large E⊥. The nearly linear relationship between Tc

and nLP for fixed E⊥ is beneficial in terms of pushing for
larger nLP in order to increase Tc.
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Finally, we considered in detail the feasibility of room-
temperature superfluidity in FS Si and encapsulated Si in
particular. It was established that a stable LP superfluid
simultaneously requires (i) a large exciton binding energy,
(ii) a large Rabi splitting (so that the LP do not dissoci-
ate due to thermal interactions), and (iii) a BKT critical
temperature greater than or equal to room temperature at
experimentally obtainable LP concentrations, for which we
specify the condition Tc � 300 K. We note that because the
exciton binding energy always exceeds the Rabi splitting at a
given E⊥, we focus our attention on the range of E⊥ which
satisfies conditions (ii) and (iii). It was found that a stable
LP superfluid should be possible in FS Si for E⊥ ∈ [1.7, 2.2]
V/Å. Increasing nLP would increase the maximum E⊥ in that
range, but since NX = 1 and γex = 5 × 1013 s−1 are effectively
fixed for FS Si, there is no way to decrease the minimum
E⊥.

On the other hand, in encapsulated Si we considered the
conditions for room-temperature superfluidity of LP sub-
ject to the variation in three parameters: nLP, γex, and NX .
The additional adjustable parameters were shown to af-
ford experimentalists much more freedom in constructing
a device which could exhibit room-temperature superflu-
idity of LP in a wide range of E⊥ based on the choice
of NX and the value of γex in encapsulated Si. If, in
encapsulated Si, the excitonic line broadening γex = 5 ×
1013 s−1, we predict the existence of a stable LP superfluid
at T = 300 K between E⊥ ∈ [1.5, 1.8] V/Å, for NX � 3 and
nLP � 2 × 1015 m−2. For γex = 1013 s−1, we find that the
range of E⊥ increases to E⊥ ∈ [1.2, 1.8] for NX = 3 and
nLP = 2 × 1015 m−2.

Our results indicate that the Xenes warrant intensive study
alongside more well-studied 2D materials such as graphene
and the TMDCs. Their tunable nature via and external electric
field allows for highly flexible manipulations of excitons,
which can be naturally extended to polaritons in an open
microcavity. The prospect of room-temperature superfluidity
of LP in encapsulated Si is especially noteworthy because of
how closely such a setup would resemble current experimental
work in the TMDCs. Therefore much more work remains
to be done in studying polaritons in the Xenes in optical
microcavities.
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APPENDIX A: HOPFIELD COEFFICIENTS

The exciton-photon Hamiltonian of Eq. (10) can be diago-
nalized by means of a linear unitary transformation [3],

p̂k = Xkb̂k + Ckâk,
(A1)

ûk = −Ckb̂k + Xkâk,

where p̂k ( p̂†
k ) and ûk (û†

k ) are the Bose annihilation (creation)
operators of lower and upper polaritons, respectively, and the
coefficients Xk and Ck are known as the Hopfield coefficients

[98] and are given by [3]

|Xk|2 = 1

2

(
1 + �E (k)√

(�E (k))2 + (4h̄V )2

)
,

(A2)

|Ck|2 = 1

2

(
1 − �E (k)√

(�E (k))2 + (4h̄V )2

)
,

where �E (k) = Eph(k) − Eex(k). Let us further note that
|Xk|2 and |Ck|2 give the excitonic and photonic fractions of
lower polaritons, respectively, and |Xk|2 + |Ck|2 = 1.

APPENDIX B: EXCITON-PHOTON COUPLING CONSTANT

In Ref. [90], the authors considered polaritons in semicon-
ductor quantum wells in an optical microcavity, and obtained
the following expression for V in an optical microcavity with
one active layer,

V =
[

1 + √
R√

R

c�0√
εcavLeff

]1/2

. (B1)

In Eq. (B1), �0 is the decay rate of the exciton amplitude,
given by [63]

�0 =
(

πke2

m0c
√

κ

)(
2|Pcv|2
m0Eex

)
|ψ (ρ = 0)|2, (B2)

where m0 is the electron rest mass, Pcv is the dipole transition
matrix element given in terms of the momentum operator
of the exciton-forming optical transition associated with the
transition energy Eex, and ψ (ρ = 0) is the value of the direct
exciton relative motion eigenfunction at ρ = 0.

In Ref. [66], the authors approximated the momentum
dipole matrix element as |Pcv|2 ≈ 2m2

0v
2
F . This approximation

only applies in the immediate vicinity of the parabolic band
extrema, q ≈ 0, so it is possible that the Fermi velocity is
changed for nonzero q which falls outside of the regime
considered here. Despite the fact that an applied electric field
obviously has a profound effect on the band structure and,
more generally, the properties of charge carriers in the Xenes,
the question of how, if at all, the Fermi velocity vF changes in
response to an electric field apparently remains unaddressed in
the literature. In Ref. [66], the effective charge carrier mass is
m = h̄2�SO

a2t2 , where a and t are the lattice constant and hopping
parameter, respectively, and in turn vF = at/h̄. Of course, a
and t are sensitive to the environment, as seen in Ref. [78]
which found that vF depends on the lattice mismatch between
silicene and an h-BN substrate.

In our calculations, we assume vF is constant, because
the electric field dependence of t is never addressed in ab
initio studies of electric field effects in the Xenes. However,
it remains possible that t does indeed depend on the electric
field and that future studies would benefit from examining this
dependence in particular.

We also note that it is well known that V ∝ √
N , where N

is the number of quantum wells [97] or TMDC monolayers
[63], therefore we add a factor

√
NX to our expression for V ,

where NX is the number of stacked Xene monolayers. Finally,
combining Eqs. (B1), (B2), the approximate expression for
|Pcv|2, and the proportionality V ∝ √

NX , we obtain Eq. (14).
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