
Locating Sound with Machine Learning
Brady Zhou, Raymond Zhao

Introduction
With the growing ubiquity of microphones (due in large part to Alexa and Google Home), localizing sound sources is becoming a more relevant issue.
The paper [1] discusses two strategies to solve this issue: affine mapping (or linear transformation) and principal component analysis (PCA). PCAs and
affine mappings were conducted to determine and map the sound source. In addition to the previously mentioned methods, supervised machine
learning was also mentioned (though not executed) as another possible method.

This group proposes to develop a supervised machine learning method mentioned in the paper [1] and also address some of the issues with the
previous methods. This is namely the low robustness to missingness in PCAs and the need for good anchor points in affine mapping. What we found
was that the SVM and Neural Network models were able to replicate the performance of the previous methods whereas Random Forest could not.
And between SVM and Neural Net, the latter proved more generalizable to unseen data.

Problem
A playing speaker is placed on a desk in a room. With a set of microphone arrays placed around the room, its location can be roughly triangulated
given the resulting data collected by the arrays, processed using beamforming [1]. In our experiment, our 5 arrays each produce a 3D "vector" of
arrival that tells the direction from which the array perceived the signal. From here, the goal becomes to transform this data from to

There are several naive solutions here, but two stand out as particularly robust: PCA and linear mapping. PCA seems a natural fit; downsizing from
 with no real interpretative significance on any particular variable. While surprisingly precise, PCA suffers from 2 large issues: PCA can't handle

missing values and the arrays' data output can be inconsistent, and the final result is couched in the fitted PCA space, which is extremely difficult to
map back to the real world.

Linear (or affine) mappings solve the issues of missing values and abstract spaces but still leave a little to be desired, since accuracy is then limited by
the fact that it still only maps linear functions when clearly the underlying dynamics of a room are likely nonlinear. This in addition to the fact that
they need to be very well calibrating on anchor points to work some things to be desired, so the aim then is to find models to address the problems
above while minimizing tradeoffs in accuracy or practicality.

Setup

Plots

R
15

R
3

15 → 3

In [1]: import warnings

warnings.filterwarnings('ignore')

import sys

sys.path.append('../src')

from Mapping import *

sys.path.append('../src/prediction')

from PCA import *

from nn import *

import itertools

import pickle

import matplotlib

import matplotlib.pyplot as plt

In [2]: V5 = pickle.load(open('../data/V5.p','rb'))

cp_list = V5["cp_list"]

active_L_table_slide_DOA = V5["active_L_table_slide_DOA"]

active_L_table_slide_matrix = V5["active_L_table_slide_matrix"]

active_long_table_slide_DOA = V5["active_long_table_slide_DOA"]

active_long_table_slide_matrix = V5["active_long_table_slide_matrix"]

In [3]: DOA_LIST = cp_list

ROOM_COORDINATES = ROOM_COORDINATES

TABLE_CP_IND = [0,1,2,3,4,5]

CHAIR_CP_IND = [6,7,8,9,10]

ALL_CP_IND = [0,1,2,3,4,5,6,7,8,9,10]

L_TABLE_CP_IND = [0,1,2,3]

LONG_TABLE_CP_IND = [4,5]

DATA_IND = [TABLE_CP_IND,CHAIR_CP_IND,ALL_CP_IND]

R_1 = ROOM_COORDINATES[0,:2].T.reshape(-1,1)

D_1 = np.median(DOA_LIST[0], axis=0).reshape(-1,1)

use cp6 to calculate displacement for long table slide

R_6 = ROOM_COORDINATES[5,:2].T.reshape(-1,1)

D_6 = np.median(DOA_LIST[5], axis=0).reshape(-1,1)

R_LIST = [R_1, R_6]

D_LIST = [D_1, D_6]

Here are example plots of all three networks in action. The following plots show the path that the sound source travels. The path makes a semi-
rectangular path as it moves from each corner of the table on the lower portion of the L-shaped table. On the long table, the sound source travels in a
relatively straight line. What paths we are expected is a rectangle on the right and a line on the left.

Affine Mapping Plot (the baseline)

The baseline method for mapping sound source is an affine mapping [1]. Explained more deeply in the paper “Audio scene monitoring using
redundant ad-hoc microphone array networks“, affine mapping is essentially a linear transformation of the values in the DoA matrix into real-world
coordinates. The paths generated by these calculations are what we want to represent in our machine learning models.

([<matplotlib.axis.YTick at 0x2d0bb8f4688>,

 <matplotlib.axis.YTick at 0x2d0bb818848>,

 <matplotlib.axis.YTick at 0x2d0bb8a7dc8>,

 <matplotlib.axis.YTick at 0x2d0bcec7e08>,

 <matplotlib.axis.YTick at 0x2d0bceccb88>],

 [Text(0, 0, ''),

 Text(0, 0, ''),

 Text(0, 0, ''),

 Text(0, 0, ''),

 Text(0, 0, '')])

In [4]: EVENT_DOA = [active_L_table_slide_DOA, active_long_table_slide_DOA]

EVENT_LABEL = ['L Table Slide', 'Long Table slide']

B_MATRIX_NAME = ['Table','Chair','All']

COLOR_LIST = ['r','b','g']

MARKER_LIST = ["1","2","3","4","5","6","7","8","9","10","11"]

fig = plt.figure(figsize = [16,12])

plt.rcParams['font.size'] = '16'

ax = fig.add_subplot(1,1,1)

rect_side_table = matplotlib.patches.Rectangle((0,1.71), 0.92, (3.54-1.71), alpha = 0.3, color = '0.7')

rect_main_table_1 = matplotlib.patches.Rectangle((2.08,1.81), (4.4-0.2-2.08), (2.57-1.81), alpha = 0.3, color = '0.7')

rect_main_table_2 = matplotlib.patches.Rectangle((3.45,2.58), (4.4-0.2-3.45), (3.54-2.595+0.2), alpha = 0.3, color = '0.7')

for ii in range(len(EVENT_DOA)):

 for jj in range(len(DATA_IND)):

 DOA_points = [DOA_LIST[IND] for IND in DATA_IND[jj]]

 room_coordinates = ROOM_COORDINATES[DATA_IND[jj],:]

 B,R_mean,D_mean,D = generate_linear_transform_matrix(DOA_points, room_coordinates, 2)

 R_0 = R_LIST[ii]-B @ D_LIST[ii]

 r = R_0 +B @ EVENT_DOA[ii].T

 # only plot with label once

 if ii==0:

 ax.scatter(r[0,:], r[1,:], c=COLOR_LIST[jj], s=2)

 else:

 ax.scatter(r[0,:], r[1,:], c=COLOR_LIST[jj], s=2, label=B_MATRIX_NAME[jj])

ax.add_patch(rect_side_table)

ax.add_patch(rect_main_table_1)

ax.add_patch(rect_main_table_2)

ax.set_xlabel("X (m)", fontsize = 21)

ax.set_ylabel("Y (m)", fontsize = 21)

ax.set_aspect('equal')

ax.set(xlim=(0,4.385), ylim=(0,3.918))

ax.set(xlim=(0,4.385), ylim=(1.4,3.65))#ylim=(1.4,3.918))

plt.xticks([0, 1, 2, 3, 4])

plt.yticks([1.5, 2,2.5, 3, 3.5])

ax.scatter(ROOM_COORDINATES[:,0],ROOM_COORDINATES[:,1], c='k', s=30)

ax.tick_params(axis='y', labelsize = 21, width = 2, length = 8)

ax.tick_params(axis='x',labelsize = 21, width = 2, length = 8)

for kk in range(ROOM_COORDINATES.shape[0]):

ax.scatter(ROOM_COORDINATES[kk,0]+0.2, ROOM_COORDINATES[kk,1], marker=MARKER_LIST[kk], s=200, c='k')

ax.legend(markerscale=5,fontsize=15)

plt.show()

fig.savefig('Mappingtables.pdf', bbox_inches='tight', pad_inches=0)

Out[4]:

Figure 1: Blue is with the chair training points, red is the table, and green is with all

Feedforward Neural Network

Neural Networks work best by processing large datasets in ways similar to a human mind, but in ways the brain does not work. In the case of
localizing sound source, this comes with processing data inputs of 15x3 shaped sound arrays. The gist of the neural network structure is a list of
inputs is multiplied by a list of weights (which are determined after training) and then goes through a net input function to aggregate the points.
Finally, the remaining data goes through an activation function which finally returns the output. This feedforward neural network is the classic neural
network architecture. The input shape is 15x3 while the output (in this use-case) is a 2-D coordinate. The hidden size is 20 and the number of epochs
is 2.

In [5]: cp_torch = [torch.from_numpy(cp) for cp in cp_list[:4]]

room_coords = [torch.from_numpy(np.array([i[0], i[1]])) for i in ROOM_COORDINATES[:4]]

X = cp_torch

y = room_coords

In [6]: model = NeuralNet(input_size, hidden_size, output_size)

model = model.float()

model.train(X, y)

predictions = model.predict(active_L_table_slide_DOA)

l_predictions = model.predict(active_long_table_slide_DOA)

maps_train = model.predict(itertools.chain(cp_list[0], cp_list[1], cp_list[2], cp_list[3]))

In [7]: fig = plt.figure(figsize = [16,12])

plt.rcParams['font.size'] = '16'

ax = fig.add_subplot(1,1,1)

rect_side_table = matplotlib.patches.Rectangle((0,1.71), 0.92, (3.54-1.71), alpha = 0.3, color = '0.7')

rect_side_table = matplotlib.patches.Rectangle((0,1.71), 0.92, (3.54-1.71), alpha = 0.3, color = '0.7')

rect_main_table_1 = matplotlib.patches.Rectangle((2.08,1.81), (4.4-0.2-2.08), (2.57-1.81), alpha = 0.3, color = '0.7')

rect_main_table_2 = matplotlib.patches.Rectangle((3.45,2.58), (4.4-0.2-3.45), (3.54-2.595+0.2), alpha = 0.3, color = '0.7')

plot the path from the model

mapX = [x[0] for x in predictions]

mapy = [x[1] for x in predictions]

mapX_L = [x[0] for x in l_predictions]

mapy_L = [x[1] for x in l_predictions]

mapX_train = [x[0] for x in maps_train]

mapy_train = [x[1] for x in maps_train]

Scatter the paths

ax.scatter(mapX_L, mapy_L, s=2)

ax.scatter(mapX, mapy, s=2)

ax.scatter(mapX_train, mapy_train, s=2)

ax.add_patch(rect_side_table)

ax.add_patch(rect_main_table_1)

ax.add_patch(rect_main_table_2)

ax.set_xlabel("X (m)", fontsize = 21)

ax.set_ylabel("Y (m)", fontsize = 21)

ax.set_aspect('equal')

ax.set(xlim=(0,4.385), ylim=(0,3.918))

ax.set(xlim=(0,4.385), ylim=(1.4,3.65))#ylim=(1.4,3.918))

([<matplotlib.axis.YTick at 0x2d0bcfa9dc8>,

 <matplotlib.axis.YTick at 0x2d0bcf69e08>,

 <matplotlib.axis.YTick at 0x2d0bcf68e08>,

 <matplotlib.axis.YTick at 0x2d0bcff1208>,

 <matplotlib.axis.YTick at 0x2d0bcff4788>],

 [Text(0, 0, ''),

 Text(0, 0, ''),

 Text(0, 0, ''),

 Text(0, 0, ''),

 Text(0, 0, '')])

Figure 2: Blue is the long table, and yellow is the yellow table points. This is trained on just the table training data

Support Vector Machine

SVM is a supervised learning algorithm that creates “decision boundaries” with regard to the values of the input data. While an SVM is known for
being a classification algorithm, it is also capable of regression and can work with this sort of problem. We can see SVM works well at finding the
general path of the sound; this can be attributed to SVM’s resilience with small training datasets. However, the model does not perform as well at
finding sound that is far from the training points: the long-table sound data is very far off where it should be.

MultiOutputRegressor(estimator=SVR(C=1000.0, gamma=0.1))

plt.xticks([0, 1, 2, 3, 4])

plt.yticks([1.5, 2,2.5, 3, 3.5])

Out[7]:

In [8]: control_points = cp_list[:4]

coordinates = [np.array([i[0], i[1]]) for i in ROOM_COORDINATES[:4]]

X = np.vstack([c for c in cp_list[:4]])

y = np.vstack([np.full([p.shape[0], len(c)], c) for p, c in zip(control_points, coordinates)])

from sklearn.multioutput import MultiOutputRegressor

from sklearn.svm import SVR

regr = MultiOutputRegressor(SVR(kernel='rbf', C=1e3, gamma=0.1))

regr.fit(X, y)

Out[8]:

In [9]: # plot the svm

fig = plt.figure(figsize = [16,12])

plt.rcParams['font.size'] = '16'

ax = fig.add_subplot(1,1,1)

rect_side_table = matplotlib.patches.Rectangle((0,1.71), 0.92, (3.54-1.71), alpha = 0.3, color = '0.7')

rect_side_table = matplotlib.patches.Rectangle((0,1.71), 0.92, (3.54-1.71), alpha = 0.3, color = '0.7')

rect_main_table_1 = matplotlib.patches.Rectangle((2.08,1.81), (4.4-0.2-2.08), (2.57-1.81), alpha = 0.3, color = '0.7')

rect_main_table_2 = matplotlib.patches.Rectangle((3.45,2.58), (4.4-0.2-3.45), (3.54-2.595+0.2), alpha = 0.3, color = '0.7')

ax.scatter(*regr.predict(active_long_table_slide_DOA).T)

ax.scatter(*regr.predict(active_L_table_slide_DOA).T)

ax.scatter(*regr.predict(X).T)

ax.add_patch(rect_side_table)

ax.add_patch(rect_main_table_1)

ax.add_patch(rect_main_table_2)

ax.set_xlabel("X (m)", fontsize = 21)

ax.set_ylabel("Y (m)", fontsize = 21)

ax.set_aspect('equal')

ax.set(xlim=(0,4.385), ylim=(0,3.918))

([<matplotlib.axis.YTick at 0x2d0c58ff448>,

 <matplotlib.axis.YTick at 0x2d0c58fb208>,

 <matplotlib.axis.YTick at 0x2d0c58e2408>,

 <matplotlib.axis.YTick at 0x2d0c5947288>,

 <matplotlib.axis.YTick at 0x2d0c594a388>],

 [Text(0, 0, ''),

 Text(0, 0, ''),

 Text(0, 0, ''),

 Text(0, 0, ''),

 Text(0, 0, '')])

Figure 3: Blue is the long table, and yellow is the yellow table points. We can see SVM performs worse on data it is not trained on.

Linear Regression compared with Random Forest and Decision Tree

Random Forest is another supervised learning algorithm that determines output values through a decision tree. Like decision trees, random forests
are an ensemble method through a number of decisions. The difference between a random forest and a decision tree, however, is that random forest
allows for significantly more granular decisions. Trees in general, though, have a tendency to overfit to their training datasets and - unlike the previous
methods - produce irregular patterns, as we will see later.

('linear regression', <class 'sklearn.linear_model._base.LinearRegression'>)

('svr', <class 'sklearn.svm._classes.SVR'>)

('decision tree', <class 'sklearn.tree._classes.DecisionTreeRegressor'>)

('random forest', <class 'sklearn.ensemble._forest.RandomForestRegressor'>)

ax.set(xlim=(0,4.385), ylim=(1.4,3.65))#ylim=(1.4,3.918))

plt.xticks([0, 1, 2, 3, 4])

plt.yticks([1.5, 2,2.5, 3, 3.5])

Out[9]:

In [10]: control_points = cp_list[:4]

coordinates = [np.array([i[0], i[1]]) for i in ROOM_COORDINATES[:4]]

X = np.vstack([c for c in cp_list[:4]])

y = np.vstack([np.full([p.shape[0], len(c)], c) for p, c in zip(control_points, coordinates)])

from sklearn.multioutput import MultiOutputRegressor

from sklearn.linear_model import LinearRegression

from sklearn.svm import SVR

from sklearn.tree import DecisionTreeRegressor

from sklearn.ensemble import RandomForestRegressor

fig, axes = plt.subplots(2, 2)

axes = axes.flatten()

models = {

 'linear regression': LinearRegression,

 'svr': SVR,

 'decision tree': DecisionTreeRegressor,

 'random forest': RandomForestRegressor

}

for m, ax in zip(models.items(), axes):

 print(m)

 model_name, model = m

 regr = MultiOutputRegressor(model())

 regr.fit(X, y)

 ax.scatter(*regr.predict(X).T)

 ax.scatter(*regr.predict(active_L_table_slide_DOA).T, label=model_name)

fig

Figure 4: The top plot is the decision tree comparison with linear regression and the bottom plot is the random forest compared with linear
regression. Here we can see that both random forest and decision tree - as ensemble methods - share a weakness when the training data is as
scant as we have here. Because of this, the model seems unable to find more than 18 points of locations for the sound.

Random Forest Plot on its own

Here we can see both the Random Forest's limitations by the data it is fed. As with our previous models, this random forest regressor was trained on
the training points from the toy dataset. Because the training data really only consists of 4 points on the L-shaped table, the model has trouble with
sound data originating from elsewhere in the room. Here the model is also plotting data from the long table which is labeled with green, and we can
clearly see it incorrectly places the sound on the L-shaped table.

([<matplotlib.axis.YTick at 0x2d0c5fe6688>,

 <matplotlib.axis.YTick at 0x2d0c5fd78c8>,

 <matplotlib.axis.YTick at 0x2d0c5fd0b48>,

 <matplotlib.axis.YTick at 0x2d0c6026888>,

 <matplotlib.axis.YTick at 0x2d0c6030a08>],

 [Text(0, 0, ''),

 Text(0, 0, ''),

 Text(0, 0, ''),

 Text(0, 0, ''),

 Text(0, 0, '')])

In [11]: fig = plt.figure(figsize = [16,12])

plt.rcParams['font.size'] = '16'

ax = fig.add_subplot(1,1,1)

rect_side_table = matplotlib.patches.Rectangle((0,1.71), 0.92, (3.54-1.71), alpha = 0.3, color = '0.7')

rect_side_table = matplotlib.patches.Rectangle((0,1.71), 0.92, (3.54-1.71), alpha = 0.3, color = '0.7')

rect_main_table_1 = matplotlib.patches.Rectangle((2.08,1.81), (4.4-0.2-2.08), (2.57-1.81), alpha = 0.3, color = '0.7')

rect_main_table_2 = matplotlib.patches.Rectangle((3.45,2.58), (4.4-0.2-3.45), (3.54-2.595+0.2), alpha = 0.3, color = '0.7')

plt.scatter(*regr.predict(active_long_table_slide_DOA).T)

plt.scatter(*regr.predict(active_L_table_slide_DOA).T)

plt.scatter(*regr.predict(X).T)

ax.add_patch(rect_side_table)

ax.add_patch(rect_main_table_1)

ax.add_patch(rect_main_table_2)

ax.set_xlabel("X (m)", fontsize = 21)

ax.set_ylabel("Y (m)", fontsize = 21)

ax.set_aspect('equal')

ax.set(xlim=(0,4.385), ylim=(0,3.918))

ax.set(xlim=(0,4.385), ylim=(1.4,3.65))#ylim=(1.4,3.918))

plt.xticks([0, 1, 2, 3, 4])

plt.yticks([1.5, 2,2.5, 3, 3.5])

Out[11]:

Figure 5: Random Forest is only able to map out some specifc points. And unable to predict long table data.

Data Collection
As shown, many of our predictions struggled with drawing straight lines with the continuous data. We decided we wanted to see how the models
would perform on a different dataset. In our experiment we recorded from a different room and used 12 points on a singular table instead of 8 across
table and chair points. We also used 3 microphone arrays as two of the arrays failed during recording. We opted to look into how using fewer arrays
would affect the models in not just the new data, but also the previously collected data.

Model with shape of 9
Because the format of our data was slightly different, we decided to re-run the model with a shape of 9x3 instead of 15x3 previously used. This
reflect the 3 pis used to record instead of the 5 in the office room. Each pi record three values , , and which are the direction values to figure out
the location of sound. This is why our model from here on out have an input shape of 9 .

x y z

In [12]: import pandas as pd

In [13]: cp_office_9 = [pd.DataFrame(cp_list[:4][i]).iloc[:,6:].to_numpy() for i in range(len(cp_list[:4]))]

office_L_9 = [active_L_table_slide_DOA[i][6:] for i in range(len(active_L_table_slide_DOA))]

office_long_9 = [active_long_table_slide_DOA[i][6:] for i in range(len(active_long_table_slide_DOA))]

cp_office_9_torch = [torch.from_numpy(cp) for cp in cp_office_9]

In [14]: model_9 = NeuralNet(input_size=9, hidden_size=20, output_size=output_size)

model_9 = model_9.float()

model_9.train(cp_office_9_torch, room_coords)

predictions = model_9.predict(office_L_9)

l_predictions = model_9.predict(office_long_9)

maps_train = model_9.predict(itertools.chain(cp_office_9[0], cp_office_9[1], cp_office_9[2], cp_office_9[3]))

for i in list(itertools.chain(cp_office_9[0], cp_office_9[1], cp_office_9[2], cp_office_9[3])):

testI = torch.from_numpy(i)

prediction = model_9(testI.float()).tolist()

maps_train.append(prediction)

In [15]: fig = plt.figure(figsize = [16,12])

plt.rcParams['font.size'] = '16'

ax = fig.add_subplot(1,1,1)

rect_side_table = matplotlib.patches.Rectangle((0,1.71), 0.92, (3.54-1.71), alpha = 0.3, color = '0.7')

rect_side_table = matplotlib.patches.Rectangle((0,1.71), 0.92, (3.54-1.71), alpha = 0.3, color = '0.7')

rect_main_table_1 = matplotlib.patches.Rectangle((2.08,1.81), (4.4-0.2-2.08), (2.57-1.81), alpha = 0.3, color = '0.7')

rect_main_table_2 = matplotlib.patches.Rectangle((3.45,2.58), (4.4-0.2-3.45), (3.54-2.595+0.2), alpha = 0.3, color = '0.7')

plot the path from the model

mapX = [x[0] for x in predictions]

mapy = [x[1] for x in predictions]

mapX_L = [x[0] for x in l_predictions]

mapy_L = [x[1] for x in l_predictions]

mapX_train = [x[0] for x in maps_train]

mapy_train = [x[1] for x in maps_train]

([<matplotlib.axis.YTick at 0x2d0b93fc208>,

 <matplotlib.axis.YTick at 0x2d0b93f4608>,

 <matplotlib.axis.YTick at 0x2d0b93e8888>,

 <matplotlib.axis.YTick at 0x2d0bcf12b88>,

 <matplotlib.axis.YTick at 0x2d0bcef5ac8>],

 [Text(0, 0, ''),

 Text(0, 0, ''),

 Text(0, 0, ''),

 Text(0, 0, ''),

 Text(0, 0, '')])

Model Evaluation on New Data

Scatter the paths

ax.scatter(mapX_L, mapy_L, s=2)

ax.scatter(mapX, mapy, s=2)

ax.scatter(mapX_train, mapy_train, s=2)

ax.add_patch(rect_side_table)

ax.add_patch(rect_main_table_1)

ax.add_patch(rect_main_table_2)

ax.set_xlabel("X (m)", fontsize = 21)

ax.set_ylabel("Y (m)", fontsize = 21)

ax.set_aspect('equal')

ax.set(xlim=(0,4.385), ylim=(0,3.918))

ax.set(xlim=(0,4.385), ylim=(1.4,3.65))#ylim=(1.4,3.918))

plt.xticks([0, 1, 2, 3, 4])

plt.yticks([1.5, 2,2.5, 3, 3.5])

Out[15]:

In [16]: def inch_to_meter(inch):

 meter = inch / 39.37

 return meter

In [17]: sys.path.append('../src/data_processing')

from make_data import *

In [18]: new_X, new_y = load_data()

In [19]: new_new_y = pd.DataFrame(new_y).applymap(inch_to_meter).to_numpy()

In [20]: from sklearn.multioutput import MultiOutputRegressor

from sklearn.linear_model import LinearRegression

from sklearn.svm import SVR

from sklearn.tree import DecisionTreeRegressor

from sklearn.ensemble import RandomForestRegressor

from sklearn.linear_model import Ridge

from xgboost import XGBRegressor

%%

V5 = pickle.load(open('../data/V5.p','rb'))

cp_list = V5["cp_list"]

active_L_table_slide_DOA = V5["active_L_table_slide_DOA"][:,6:]

active_L_table_slide_matrix = V5["active_L_table_slide_matrix"]

active_long_table_slide_DOA = V5["active_long_table_slide_DOA"][:,6:]

active_long_table_slide_matrix = V5["active_long_table_slide_matrix"]

Neural Network on New Data

<matplotlib.collections.PathCollection at 0x2d0c9cb7d88>

X, y = load_data(path='../data/doa_proj2_allData.p')

%%

fig, axes = plt.subplots(3, 2)

axes = axes.flatten()

%%

models = {'linear regression': LinearRegression, 'ridge': Ridge, 'svr': SVR, 'decision tree': DecisionTreeRegressor, 'random fores
for m, ax1 in zip(models.items(), axes):

	 regr = MultiOutputRegressor(m[1]())

	 regr.fit(X, y)

	 ax1.scatter(*regr.predict(X).T)

# 	 ax1.scatter(*regr.predict(active_L_table_slide_DOA).T, label=m[0])

fig

%%

In [21]: doa2 = pickle.load(open('../data/doa_proj2_allData.p','rb'))

cp4 = doa2['cp4']['source0'].dropna(axis=1, how='all').iloc[600:1200, 1:].to_numpy()

cp6 = doa2['cp6']['source0'].dropna(axis=1, how='all').iloc[600:1200, 1:].to_numpy()

cp10 = doa2['cp10']['source0'].dropna(axis=1, how='all').iloc[600:1200, 1:].to_numpy()

cp12 = doa2['cp12']['source0'].dropna(axis=1, how='all').iloc[600:1200, 1:].to_numpy()

y4 = np.array([inch_to_meter(coord) for coord in load_coordinates()['cp4']])

y6 = np.array([inch_to_meter(coord) for coord in load_coordinates()['cp6']])

y10 = np.array([inch_to_meter(coord) for coord in load_coordinates()['cp10']])

y12 = np.array([inch_to_meter(coord) for coord in load_coordinates()['cp12']])

In [22]: newmodel_9 = NeuralNet(input_size=9, hidden_size=20, output_size=output_size)

newmodel_9 = newmodel_9.float()

newcriterion_9 = nn.MSELoss()

newoptimizer_9 = torch.optim.SGD(newmodel_9.parameters(), lr=learning_rate)

newX_9 = [torch.from_numpy(cp4), torch.from_numpy(cp6), torch.from_numpy(cp10), torch.from_numpy(cp12)]

newy_9 = [torch.from_numpy(y4), torch.from_numpy(y6), torch.from_numpy(y10), torch.from_numpy(y12)]

In [23]: for i in range(10000):

 for x_i, y_i in zip(newX_9, newy_9):

 outputs = newmodel_9(x_i.float())

 loss = newcriterion_9(outputs, y_i.float())

 newoptimizer_9.zero_grad()

 loss.backward()

 newoptimizer_9.step()

In [24]: newmaps9 = []

old_newmaps9 = []

for i in new_X:

 testI = torch.from_numpy(i)

 prediction = newmodel_9(testI.float()).tolist()

 newmaps9.append(prediction)

for i in office_L_9:

 testI = torch.from_numpy(i)

 prediction = newmodel_9(testI.float()).tolist()

 old_newmaps9.append(prediction)

l_old_newmaps9 = newmodel_9.predict(office_long_9)

In [25]: newmapX9 = [x[0] for x in newmaps9]

newmapy9 = [x[1] for x in newmaps9]

plt.scatter(newmapX9, newmapy9, s=2)

Out[25]:

The models run on different rooms' data

<matplotlib.collections.PathCollection at 0x2d0c9dd3208>

<matplotlib.collections.PathCollection at 0x2d0c95d4648>

Discussion and Conclusion

We conclude that - to varying degrees - machine learning methods work well not only at localizing sound but also are resilient to array dropping. This
is joined by the fact that the models can translate directly into real world space unlike the PCA models from the original paper [1] and our proposal
[3]. Furthermore, this depends on what kind of sound we are mapping; random forest works well at mapping single source points, while the other two
methods are better are mapping out sound paths.

In our proposal we talked about the limitations of the methods presented in the paper [1], namely PCA’s dimensional reduction into PCA space and
affine mapping’s need for well-anchored points. With SVM and a basic neural network we were able to replicate the mappings of both methods while
also outputting into real-world space. The two methods differed on performing without well-anchored points: SVM performed very well in well-
defined space but not otherwise, meanwhile a basic neural network performed well in both these areas.

In [26]: old_newmapX9 = [x[0] for x in old_newmaps9]

old_newmapy9 = [x[1] for x in old_newmaps9]

old_newmapX9_L = [x[0] for x in l_old_newmaps9]
old_newmapy9_L = [x[1] for x in l_old_newmaps9]
plt.scatter(old_newmapX9, old_newmapy9, s=2)

plt.scatter(old_newmapX9_L, old_newmapy9_L, s=2)

Out[26]:

In [27]: maps9 = []

for i in new_X:

 testI = torch.from_numpy(i)

 prediction = model_9(testI.float()).tolist()

 maps9.append(prediction)

In [28]: mapX9 = [x[0] for x in maps9]

mapy9 = [x[1] for x in maps9]

plt.scatter(mapX9, mapy9, s=2)

Out[28]:

Using the new data, we found considerably more noise with the support vector machine and neural network methods compared to the random forest
model. For the former two models, three points observed larger amounts of noise (the points nearest the microphone arrays). In the case of needing
to map fewer points, having decision points actually works well. The XGBoost model also works well in this case. We believe that in this case, because
the output points are few, a trees do not need to find too many unseen points.

However, in terms of generalizable models, this may not be a desirable result. This is why we found – in most cases – that our feedforward neural
network was the best performing model.

References
[1] P. Gerstoft, Y. Hu, M. J. Bianco, C. Patil, A. Alegre, Y. Freund, F. Grondin “Audio scene monitoring using redundant ad-hoc microphone array
networks”

[2] M. Hahmann, E. Fernandez-Grande, H. Gunawan, P. Gerstoft “Sound Source Localization in 3D Using Ad-Hoc Distributed Microphone Arrays”

[3] B. Zhou, R. Zhao, L. Meng "Interpreting Microphone Arrays with Machine Learning Methods"

In []:

In []:

