module LIMPS """ LIMPS (Language-Integrated Matrix Processing System) - Julia Module A comprehensive system for polynomial operations, matrix processing, and entropy analysis """ using DynamicPolynomials using MultivariatePolynomials using LinearAlgebra using JSON using Random using HTTP using Sockets using Statistics using Logging # Export main functions export create_polynomials, analyze_polynomials, optimize_matrix, matrix_to_polynomials export analyze_text_structure, optimize_polynomial, to_json export start_http_server, start_limps_server export LIMPSConfig, configure_limps # Include submodules include("polynomials.jl") include("matrices.jl") include("entropy.jl") include("api.jl") include("config.jl") # Re-export submodule functions using .Polynomials: create_polynomials, analyze_polynomials, optimize_polynomial using .Matrices: optimize_matrix, matrix_to_polynomials using .Entropy: analyze_text_structure, process_entropy_matrix using .API: start_http_server, start_limps_server using .Config: LIMPSConfig, configure_limps """ Main LIMPS processing function """ function process_limps_data(data::Union{Matrix{Float64}, Vector{Float64}}, data_type::String="matrix") """ Main entry point for LIMPS data processing Args: data: Input data (matrix or vector) data_type: Type of data ("matrix", "vector", "text") Returns: Processed results """ try if data_type == "matrix" return process_matrix_data(data) elseif data_type == "vector" return process_vector_data(data) elseif data_type == "text" return process_text_data(String(data)) else return Dict("error" => "Unknown data type: $data_type") end catch e return Dict("error" => "Processing failed: $(e)") end end function process_matrix_data(matrix::Matrix{Float64}) """Process matrix data through LIMPS pipeline""" results = Dict{String, Any}() # Convert to polynomial representation results["polynomial_representation"] = matrix_to_polynomials(matrix) # Analyze structure results["structure_analysis"] = analyze_matrix_structure(matrix) # Optimize based on structure complexity = results["structure_analysis"]["complexity_score"] if complexity > 0.7 method = "rank" elseif complexity > 0.4 method = "structure" else method = "sparsity" end results["optimization"] = optimize_matrix(matrix, method) results["optimization_method"] = method return results end function process_vector_data(vector::Vector{Float64}) """Process vector data through LIMPS pipeline""" # Convert to matrix for processing matrix = reshape(vector, :, 1) return process_matrix_data(matrix) end function process_text_data(text::String) """Process text data through LIMPS pipeline""" results = Dict{String, Any}() # Analyze text structure results["text_analysis"] = analyze_text_structure(text) # Create feature vector features = extract_text_features(text) results["feature_vector"] = features # Convert features to polynomial representation variables = ["length", "words", "unique", "avg_len", "entropy"] results["polynomial_features"] = create_polynomials(features, variables) return results end function extract_text_features(text::String) """Extract numerical features from text""" words = split(text) features = [ length(text), # text_length length(words), # word_count length(unique(words)), # unique_words mean([length(word) for word in words]), # average_word_length calculate_text_entropy(text) # text_entropy ] return reshape(features, 1, :) end function calculate_text_entropy(text::String) """Calculate Shannon entropy of text""" words = split(text) word_freq = Dict{String, Int}() for word in words word_freq[word] = get(word_freq, word, 0) + 1 end total_words = length(words) entropy = 0.0 for (word, freq) in word_freq p = freq / total_words entropy -= p * log(p) end return entropy end function analyze_matrix_structure(matrix::Matrix{Float64}) """Analyze matrix structure for optimization decisions""" m, n = size(matrix) # Calculate various metrics sparsity = 1.0 - count(!iszero, matrix) / (m * n) condition_num = try cond(matrix) catch; Inf end matrix_rank = rank(matrix) # Complexity score based on multiple factors complexity = (sparsity * 0.3 + (condition_num > 1000 ? 0.4 : 0.0) + (matrix_rank < min(m, n) * 0.5 ? 0.3 : 0.0)) return Dict( "sparsity" => sparsity, "condition_number" => condition_num, "rank" => matrix_rank, "complexity_score" => complexity, "shape" => [m, n] ) end """ Batch processing for multiple datasets """ function batch_process_limps(data_list::Vector{Any}, data_types::Vector{String}) """Process multiple datasets in batch""" results = [] for (data, data_type) in zip(data_list, data_types) try result = process_limps_data(data, data_type) push!(results, result) catch e push!(results, Dict("error" => "Batch processing failed: $(e)")) end end return results end """ Health check function for microservice """ function health_check() """Return system health status""" return Dict( "status" => "healthy", "timestamp" => string(now()), "version" => "1.0.0", "modules" => ["Polynomials", "Matrices", "Entropy", "API"] ) end """ Main function for testing """ function main() println("=== LIMPS.jl Module Test ===") # Test matrix processing println("1. Testing matrix processing...") matrix = rand(5, 5) result1 = process_limps_data(matrix, "matrix") println("Matrix processing: $(haskey(result1, "error") ? "FAILED" : "SUCCESS")") # Test text processing println("2. Testing text processing...") text = "Show monthly sales totals for electronics category" result2 = process_limps_data(text, "text") println("Text processing: $(haskey(result2, "error") ? "FAILED" : "SUCCESS")") # Test batch processing println("3. Testing batch processing...") data_list = [matrix, text] data_types = ["matrix", "text"] result3 = batch_process_limps(data_list, data_types) println("Batch processing: $(length(result3)) items processed") # Test health check println("4. Testing health check...") health = health_check() println("Health status: $(health["status"])") println("All tests completed!") end # Run main function if script is executed directly if abspath(PROGRAM_FILE) == @__FILE__ main() end end # module LIMPS