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Motivation

• Entities invaluable asset for numerous current 

applications and systems

• Encode a large part of our knowledge

Matching, Linkage, Reconciliation, etc.
• Many names, descriptions, or IDs (URIs) 

are used for the same real-world “entity”
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• Goal remains the same for the last 50+ years

• BUT the challenges to be addressed are constantly evolving

Entity Resolution is required for data integration, link discovery, 

query answering, Web / object-oriented searching, etc.

cf. book: “The Four Generations of Entity Resolution”

Motivation
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Entity Resolution

• Identifies and aggregates the different entity profiles that 
describe the same objects [1, 2, 3, 4]

• Primary usefulness:

– Improves data quality and integrity 

– Fosters re-use of existing data sources

• Example application domains:

– Linked Data

– Building Knowledge Graphs

– Census data

– Price comparison portals
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Types of Entity Resolution

• The given entity collections can be of two types:    

clean + dirty [3,5]

• Clean:

– Duplicate-free data

– E.g., DBLP, ACM Digital Library, Wikipedia, Freebase 

• Dirty:

– Contain duplicate entity profiles

–E.g., Google Scholar, CiteseerX
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Types of Entity Resolution

• The given entity collections can be of two types:    

clean + dirty [3,5]

• Clean:

– Duplicate-free data

– E.g., DBLP, ACM Digital Library, Wikipedia, Freebase 

• Dirty:

– Contain duplicate entity profiles

–E.g., Google Scholar, CiteseerX

Clean Dirty 
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Types of Entity Resolution

• Based on the quality of input, we distinguish entity 
resolution into 3 sub-tasks:

1. Clean-Clean ER (a.k.a. Record Linkage in databases)

2. Dirty-Clean ER 

3. Dirty-Dirty ER

Equivalent to Dirty ER 
(a.k.a. Deduplication in databases)
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– Generation 1: tackling Veracity

– Generation 2: tackling Volume and Veracity 

– Generation 3: tackling Variety, Volume and Veracity

– Generation 4: tackling Velocity, Variety, 

Volume and Veracity

– Generation 5: Entity Resolution Revisited: 

Leveraging External Knowledge

Part B – Generations 

• Hands-on Session
• Challenges and Final Remarks

• Introduction
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• Earliest approach

• Scope:
– Structured data

• Goal:
– Achieve high accuracy despite inconsistencies, noise, or 

errors in entity profiles

• Assumptions:
– Known schema → custom, schema-based solutions

Generation 1: Tackling Veracity

Blocking Matching
Schema

Alignment
Clustering
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Step 1: Schema Alignment / Matching

• Scope:

– Record Linkage

• Goal:

– Create mappings between equivalent 
attributes of the two schemata, e.g., profession 
≡ job 

• Types of Solutions:

– Structure-based

– Instance-based

– Usage-based

– Hybrid

Generation 1: Tackling Veracity
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Method Category Type of Evidence

Cupid [1] Structure-based Name similarity, Constraints, 
Contextual similarity

Similarity Flooding [2] Structure-based Name similarity, Contextual 
similarity

COMA [3] Hybrid Name similarity, Constraints, 
Contextual similarity

Distribution-based [4] Instance-based Value distribution

Step 1: Schema Alignment / Matching

• Taxonomy of Main Schema Matching Methods
(in chronological order)

Generation 1: Tackling Veracity
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Step 2: Blocking

• Scope:

– Both Deduplication and Record Linkage

• Goal:

– ER is an inherently quadratic problem, O(n2):
every entity has to be compared with all others 

– Blocking groups similar entities into blocks

• Comparisons are executed only inside each block

• Complexity is now quadratic to the size of the block 
(much smaller than dataset size!)

Generation 1: Tackling Veracity
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|E| entities

|E| entities

Brute-force 
approach

Duplicate 
Pairs

Blocking
Input: 
Entity Collection E

E.g.: For a dataset with 
100,000 entities:
~1010 comparisons,
If 0.05 msec each →
>100 hours in total

Computational cost

Generation 1: Tackling Veracity
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General Principles of Blocking

1. Represent each entity by one or more signatures 
called blocking keys
– Focus on string values

2. Place into blocks all entities having the same or 
similar blocking key

3. Two matching profiles can be detected as long as 
they co-occur in at least one block

– Trade-off between recall and precision!

Generation 1: Tackling Veracity
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Method Key Type Redundancy 
awareness

Matching 
awareness

Key selection

Standard Blocking [2] Hash-based Red.-free Static Non-learning

Suffix Arrays [3] + [4,5] Hash-based Red.-positive Static Non-learning

Q-grams Blocking [6] + [4] Hash-based Red.-positive Static Non-learning

MFIBlocks [7] Hash-based Red.-positive Static Non-learning

Sorted Neighborhood [9] + [4,10] Sort-based Red.-neutral Static Non-learning

Duplicate Count Strategy [11] Sort-based Red.-neutral Dynamic Non-learning

Sorted Blocks [12] Hybrid Red.-neutral Static Non-learning

ApproxDNF [13] Hash-based Red.-positive Static Learning-based

Blocking Scheme Learner [14] Hash-based Red.-positive Static Learning-based

CBlock [15] Hash-based Red.-positive Static Learning-based

FisherDisjunctive [16] Hash-based Red.-positive Static Learning-based

Taxonomy of Blocking Methods [1] 

Generation 1: Tackling Veracity
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Genealogy Tree of Non-learning Blocking Methods [1] 

Generation 1: Tackling Veracity
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Step 3: Matching

• Estimates the similarity of candidate matches.

• Input

– A set of blocks

• Every distinct comparison in any block is a candidate match

• Output

– Similarity Graph

• Nodes → entities

• Edges → candidate matches

• Edge weights → matching likelihood (based on 
similarity score)

Generation 1: Tackling Veracity
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Evolution of Matching

Rule-based Methods [6]

Learning-based Methods Collective Methods [9,10,11]

Probabilistic Methods [5,6]

Supervised Methods [3,4]

Active Learning Methods [1,2]

Unsupervised Methods [7,8]

Generation 1: Tackling Veracity

All are heavily based on string similarity measures [6].
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Step 4: Clustering

• Partitions the matched pairs into equivalence clusters 

i.e., groups of entity profiles describing the same 

real-world object

• Input
– Similarity Graph:

• Nodes → entities

• Edges → candidate matches

• Edge weights → matching likelihood (based on similarity 
score)

• Output
– Equivalence Clusters

Generation 1: Tackling Veracity
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Clustering Algorithms for Record Linkage

Relies on 1-1 constraint
– 1 entity from source dataset matches to 1 entity from target dataset

1. Unique Mapping Clustering [1][2]
– Sorts all edges in decreasing weight
– Starting from the top, each edge corresponds to a pair of duplicates if:

• None of the adjacent entities has already been matched
• predefined threshold < edge weight

2. Row-Column Clustering [3]
– efficient approximation of the Hungarian Algorithm

3. Best Assignment Clustering [4]
– efficient, heuristic solution to the assignment problem in unbalanced 

bipartite graphs

4. Exact Clustering [7]
– each entity is matched with its reciprocally most similar entity

5. Kiraly Clustering [7]
– efficient solution to the stable marriage problem

Generation 1: Tackling Veracity
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Clustering Algorithms for Deduplication

• A wealth of literature on 
clustering algorithms

• Requirements:
– Partitional and disjoint Algorithms

• Sometimes overlapping may be 
desirable

– Goal: Create sets of clusters that
• maximize the intra-cluster

weights

• minimize the inter-cluster edge 
weights

Classification of clustering algorithms 

[6]

Generation 1: Tackling Veracity (courtesy of Oktie Hassanzadeh)
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Dirty ER Clustering Algorithms Characteristics [3]

• Most important feature “Unconstrained algorithms”
– Algorithms need to be able to predict the correct number of 

clusters

• Need to scale well 
– Time complexity < O(n2)

• Need to be robust with respect to characteristics of the data
– E.g., distribution of the duplicates

• Need to be capable of finding ‘singleton’ clusters
– Different from many clustering algorithms

• E.g., algorithms proposed for image segmentation

Generation 1: Tackling Veracity (courtesy of Oktie Hassanzadeh)
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Summary of Experimental Results [3]

Generation 1: Tackling Veracity
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Generation 1: Tackling Veracity
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Generation 1: Tackling Veracity
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Generation 1: Tackling Veracity
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Generation 1: Tackling Veracity
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Generation 1: Tackling Veracity
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• Same workflow as Generation 1
• Scope:

– (tens of) millions of structured entity profiles

• Goals:
– High accuracy despite noise 
– High time efficiency despite the size of data

• Assumptions:
– Known schema → custom, schema-based solutions

Generation 2: Tackling Volume and Veracity

Blocking Matching
Schema

Alignment
Clustering
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Solution: Parallelization

Two types:

• Multi-core parallelization
– Single system → shared memory

– Distribute processing among available CPUs

• Massive parallelization
– Cluster of independent systems

– Map-Reduce paradigm [1]
• Data partitioned across the nodes of a cluster

• Fault-tolerant, optimized execution

• Map Phase: transforms a data partition into (key, value) 
pairs 

• Reduce Phase: processes pairs with the same key

Generation 2: Tackling Volume & Veracity
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Parallelization Methods per Step

• Blocking
• Dedoop [2]

• MapReduce-based Sorted Neighborhood [3]

• Matching
– Multi-core approaches [7][8]

– MapReduce-based: Emphasis on load balancing
• BlockSplit & PairRange [4][5]

• Dis-Dedup [6]

• Message-passing framework [9]

• Clustering
• Fast Multi-source Entity Resolution (FAMER) framework 

[10][11]

Generation 2: Tackling Volume & Veracity
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• Scope:
– User-generated Web Data

Voluminous, (semi-)structured datasets. 

• BTC09:  1.15 billion triples, 182 million entities

Users are free to add attribute values and/or attribute names 

unprecedented levels of schema heterogeneity. 

• Google Base: 100,000 schemata for 10,000 entity types

• BTC09:  136,000 attribute names

G3: Tackling Variety, Volume and Veracity

Block
Building

Block
Processing

Matching Clustering
Schema

Clustering
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Example of Web Data

Noise

Attribute
Heterogeneity

Loose Schema 
Binding

Split
values

Generation 3: Tackling Variety, Volume & Veracity
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Schema Clustering

• Schema Matching → not applicable

• Instead, partition attributes according to their syntactic
similarity, regardless of their semantic relation

• Goal:
– Facilitate next steps

• Scope:
– Both Clean-Clean and Dirty ER

• Attribute Clustering [1][2][3]
• Create a graph, where every node represents an attribute 

• For each attribute name/node ni

• Find the most similar node nj

• If sim(ni,nj) > 0, add an edge <ni,nj>

– Extract connected components

– Put all singleton nodes in a “glue” cluster

Generation 3: Tackling Variety, Volume & Veracity
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Block Building

• Unlike Blocking in G1/G2, it considers all attribute 
values and completely ignores all attribute names 

→ schema-agnostic functionality

• Core approach: Token Blocking [1]
1. Given an entity profile, extract all tokens that are 

contained in its attribute values.

2. Create one block for every distinct token with 
frequency > 2 → each block contains all entities with the 
corresponding token.
Pros:
• Parameter-free

• Efficient

• Unsupervised

Generation 3: Tackling Variety, Volume & Veracity
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Example of Token Blocking 

Generation 3: Tackling Variety, Volume & Veracity
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Genealogy of Block Building Techniques [8]

MapReduce-based parallelizations in [7]

Generation 3: Tackling Variety, Volume & Veracity
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Block Processing

• High Recall due to redundancy 

• Low Precision due to:
1. the blocks are overlapping → redundant comparisons

2. high number of comparisons between irrelevant entities 
→ superfluous comparisons

Solution:

restructure the original blocks so as to increase 

precision at no significant cost in recall

Generation 3: Tackling Variety, Volume & Veracity
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Block Processing Techniques

Generic approach

– Assign a matching likelihood score to each item

– Discard items with low costs

Block-centric methods

• Block Purging [1,2,3]

• Block Filtering [4]

• Block Clustering [5]

Generation 3: Tackling Variety, Volume & Veracity
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Comparison Cleaning Methods [17]

Generation 3: Tackling Variety, Volume & Veracity
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Entity Matching

• Collective approaches to tackle Variety
• Most methods crafted for Clean-Clean ER
• General outline of 

SiGMa [1], PARIS [2],  LINDA [3], RiMOM-IM [4,5]
– Bootstrap with a few reliable seed matches. 
– Using value and neighbor similarity, propagate initial 

matches to neighbors. 
– Order candidate matches in descending overall similarity 
– Iteratively mark the top pair as a match if it satisfies a 

constraint
– Recompute the similarity of the neighbors
– Update candidate matches order

• MinoanER [6] performs a specific number of steps, 
rather than iterating until convergence

Generation 3: Tackling Variety, Volume & Veracity
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Entity Clustering

• Methods of G1 & G2 are still applicable

– Only difference: similarity scores extracted in a 
schema-agnostic fashion, not from specific 
attributes

• SplitMerge [1]

– inherently capable of handling heterogeneous 
semantic types

[1] M. Nentwig, A. Groß, and E. Rahm. Holistic entity clustering 
for linked data. In ICDM Workshops, pages 194–201, 2016.

Generation 3: Tackling Variety, Volume & Veracity
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Generation 3: Tackling Variety, Volume & Veracity
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• Scope:
– Applications with increasing data volume and time 

constraints
• Loose ones (e.g., minutes, hours) → Progressive ER

• Strict ones (i.e., seconds) → Real-time (On-line) ER

• End-to-end workflows for Progressive ER

G4: Tackling Velocity, Variety, Volume and Veracity
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Progressive Entity Resolution

Unprecedented, increasing volume of data → applications 
requiring partial solutions to produce useful results

get most of the benefit 
much earlier

may require some
pre-processing

Generation 4: Tackling Velocity, Variety, Volume and Veracity
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Outline Progressive ER

• Requires:
– Improved Early Quality

– Same Eventual Quality

• Prioritization
– Defines optimal processing order for a set of entities

– Static Methods [1,2]:
• Guide which records to compare first, independently of Entity Matching

results

– Dynamic Methods [3]:
• If ci,j is a duplicate, then check ci+1,j and ci,j+1 as well.

• Assumption:

– Oracle for Entity Matching

Generation 4: Tackling Velocity, Variety, Volume and Veracity
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Real-time Entity Resolution

Same workflow as Generations 1 and 2:

Same scope (so far):

• Structured data

Different input:

• stream of query entity profiles

Different goal:

• resolve each query over a large dataset in the shorted 
possible time (& with the minimum memory footprint)

Blocking Matching
Schema

Alignment
Clustering

Generation 4: Tackling Velocity, Variety, Volume and Veracity
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Techniques per workflow step

Incremental Blocking
• DySimII [1] - extends Standard Blocking

• F-DySNI [2,3] - extends Sorted Neighborhood 

• (S)BlockSketch [4] - bounded matching time, constant memory footprint

Incremental Matching
• QDA [5] - SQL-like selection queries over a single dataset

• QuERy [6] - complex join queries over multiple, overlapping, dirty DSs 

• EAQP [7] - queries under data

• Evolving matching rules [8]

Incremental Clustering
• Incremental Correlation Clustering [9]

Generation 4: Tackling Velocity, Variety, Volume and Veracity
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• Applies to any of the previous generations
– No change in the end-to-end workflows

• Performance improves by incorporating one of 
the three types of contextual information:
1. Human common sense through crowd-sourcing
– Open web data through:

2. Pre-trained Language Models (PLMs)
3. Large Language Models (LLMs)

• PLMs apply to both blocking and matching, 
unlike crowd-sourcing and LLMs, which apply 
exclusively to matching

G5: Leveraging External Knowledge
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Crowd-sourcing 

• Process/work divided among a large number of people, 
either paid or unpaid

• Idea: tasks are simple for human intelligence, but 
complex for computers

• Approach:
– Break a problem into  microtasks, called Human Intelligence 

Tasks (HITS)

– Choose an online community

• Amazon Mechanical Turk

• Figure Eight (former CrowdFlower)

– Assign to every individual, called worker, a series of HITs

– Each worker is paid per executed HIT → monetary cost

– Popular for solving many tasks, e.g., CrowdDB
Generation 5: Leveraging External Knowledge

https://www.mturk.com/
https://www.figure-eight.com/
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Crowd-sourcing for Entity Resolution

• Delegate the entity matching decisions to the workers
i.e., transform pairwise comparisons into HITs

• Challenges:
1.  Generating HITs: CrowdER [8], ZenCrowd [9]

2.  Formulating HITs: 
Pair- & cluster-based [8], Hybrid [10], Crowdlink [14]

3.  Balancing accuracy and monetary cost: 
Random ordering [3], probabilistic question selection [2], Edge- and
node-centric ordering [1], maximize progressive recall [4], adaptive 
crowd-based deduplication [12], attribute labeling and clustering [15], 
partial-order based framework [17],  bDENSE [18], probabilistic ER 
with crowd errors [11, 16], and pair-wise error correction layer [13]

4.  Restricting the labor cost: 
Corleone [5], Falcon [6], and CloudMatcher [7]

Generation 5: Leveraging External Knowledge
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Embeddings

• Based on the distributional hypothesis

i.e., words appearing in the same context share meaning

• Each word is represented as a distribution of weights 
(positive or negative) across specific dimensions

Generation 4: Tackling Velocity, Variety, Volume and Veracity

• Goal: capture semantic
string similarities

• Popular embeddings     
pre-trained over huge 
corpora:
- Word2Vec [5] 
- Glove [6] 
- fastText [7]
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Deep Learning

• Specific class of Machine Learning / Data Mining

• Teaches computers to do what comes naturally to 
humans: learn by example 

• Goal: learn a complicated function from the data 

• Ideal for complex tasks involving multi-dimensional data 
like the embedding vectors of PLMs

• Has transformed many fields, e.g., computer vision, 
speech recognition, natural language processing, etc.
– Similar performance, or even better, to human expert 

performance

• Details in [1] 
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• SEMPROP [2] for schema matching
– Semantic + syntactic matcher

• AutoBlock [3] for blocking
– Combines similarity-preserving representation learning 

with nearest neighbor search

• DeepMatcher [8], Multi-Perspective Matching [9], 
and DeepER [4] for matching
– Attribute embedding, summarization, and comparison

– Deep Learning solutions 

• Following approaches
– Improve weaknesses

Initial Approaches of Deep Learning 
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• Weaknesses of existing initial approaches 
– Assume all words / attributes are equally important 

– Don’t consider that words from different domains may 
have different meanings

• Create and process resolution using a Graph

• Encodes entities, attributes, and words  

• Captures related relationships

• Assigns different weights given category

HierGAT [10]
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• Weaknesses of existing initial approaches: 
– Task-specific solutions that disable the opportunities 

for generalization or sharing learnt knowledge

Unicorn [11] 

• Proposed a unified model for 
“data matching” task in data 
integration
– Encoder: converts pair (𝑎,𝑏)  

into a learned representation

– Mixture-of-Experts: enhances 
the learned representation into 
a better representation

– Matcher: binary classifier
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• Weaknesses of existing initial approaches:
– Require creating large-scale, high quality labeled datasets

– Require separate modeling, annotation, and 
experimentation for  each (sub) task of the process

• Contrastive learning: self-supervision approach that 
learns data representations where similar data items are 
close while different ones are far apart
– Done by pre-training a representation model

• This fine-tuned model is used to generate the 
embeddings.

• The learned representations either directly used or 
facilitate fine-tuning to support different tasks.

Sudowoodo [12]
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• Weaknesses of existing initial approaches 
– Require a large number of labeled pairs 

– Insufficient feature discovery

• Generate labeled tuple pairs construct a graph that
– Is the smallest, i.e., with fewer nodes and edges than 

graphs of other approaches

– Preserves the semantic relationships between each tuple 
and its corresponding attribute values and between 
different tuples via shared 

value-level nodes

CollaborEM [13]
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Large Language Models (LLMs)

• Core idea: ask a chatbot whether a given pair of 
entity descriptions are matching or not
– each question is called “prompt”

• Challenge: 
– Unlike PLMs, the embedding representation is 

transparent

– They constitute interactive approaches that are 
sensitive to the form of the prompt

• Solutions:
– Prompt engineering!
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Basic prompt engineering [1]

Three parameters that can be configured independently:
1. Problem definition: 

– "Are Product A and Product B the same?“ OR
– "Are Product A and Product B equivalent?" 

2. In-context learning:
– zero shot OR
– few shot

• Random Selection OR

• Manual Selection by experts

3. Entity serialization:
– with all attributes OR
– with a subset of attributes

Conclusions for GPT3-175B: 
– Few shot outperforms zero shot to a significant extent
– Attribute selection is better than using all attributes
– Problem definition can have a large impact 
– Comparable performance with DL-based matching algorithms
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Fine-grained prompt engineering [2]
Three parameters that can be configured independently:
1. Problem definition

– General (they refer to entities)
– Domain specific (they refer to entity types, e.g., products)

2. Language
– Simple (e.g., do two entities match?)
– Complex (e.g., do two entities refer to the same real-world product?)

3. Output
– Free (no output specifications)
– Forced (e.g., reply "Yes" or "No")

4. Entity Serialization
– Single attribute 
– Multiple attributes

5. In-context learning
– Zero shot
– Few shot

• examples selection
– at random, by expert or by context similarity

• number of examples (e.g., 6, 10 or 20)

6. Instructions with matching rules
7. Fine-tuning
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Conclusions using 6 LLMs:
• 3 hosted: 

1. gpt3.5-turbo-0301
2. gpt3.5-turbo-0613
3. gpt4-0613

• 3 open-source: 
1. SOLAR 70B
2. Beluga2
3. Mixtral-8x7B

Main takeaways:
1. No prompt consistently outperforms all others
2. Open-source LLMs have similar effectiveness with hosted ones
3. LLMs comparable with DL-based matchers even in zero-shot settings
4. Few shot and instruction-based prompts outperform zero shot
5. Fine-tuning significantly improves effectiveness

Fine-grained prompt engineering – Part II
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Prompt strategies [3]

Three different approaches:
1. Match strategy:

Pair-wise questions (as in previous works)

2. Comparison strategy:
Given two entities, find the most similar to a specific entity.

3. Selection strategy:
Given k candidates for a specific 
entity, identify the matching one 

or none of them.
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Batch Prompting [4]
• Goal: reduce the cost of hosted LLMs, which charge in proportion to the 

number of input tokens, through batching, i.e., multiple pairwise 
questions with the same demonstrations. 

• BatchER options:
– Question Batching

based on PLMs or structure-aware similarities like Jaccard similarity or edit 
distance
• Random
• Similarity-based (using clustering algorithms like DBScan and K-Means )
• Diversity-based (using one pair from each similarity-based cluster)

– Demonstration selection
• Fixed
• Top-k batch, i.e., the k most relevant demonstrations per batch
• Top-k question, i.e., the most relevant demonstration per pair in the batch
• Covering-based, i.e., for each pair in the batch, there is a demonstration with 

distance lower than a threshold

• Conclusions:
– Batch prompting outperforms standard prompting both to effectiveness 

and cost
– Best performance corresponds to Diversity-based Question Batching with 

Covering-based Demonstration Selection
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• Part C: Hands-on Session

• Introduction

• Generations: 1st, 2nd, 3rd, 4th, 5th

• Challenges and Final Remarks
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Our tool for ER – pyJedAI!

• A library of end-to-end ER workflows leveraging the Filtering-Verificaton
framework

• pyJedAI is an open-source Python framework, supporting both experts and 
novice users, that is leverages the latest breakthroughs in Deep Learning 
and NLP techniques, which are publicly available through the data science 
ecosystem

• Available at: https://github.com/AI-team-UoA/pyJedAI,

• Extends the              tool that is implemented in Java 

(available at: https://github.com/scify/JedAIToolkit)

https://github.com/AI-team-UoA/pyJedAI
https://github.com/scify/JedAIToolkit
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pyJedAI Architecture
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3 main Workflows

(a) Joins-based workflow

(b) Blocking-based workflow

(c) NN-based with embeddings workflow
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Blocking-based workflow

Link to tutorial: 

https://pyjedai.readthedocs.io/en/latest/tutorials/CleanCleanER.html

https://pyjedai.readthedocs.io/en/latest/tutorials/CleanCleanER.html
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NN-based with embeddings workflow

Link to tutorial: 

https://pyjedai.readthedocs.io/en/latest/tutorials/pyTorchWorkflow.html

https://pyjedai.readthedocs.io/en/latest/tutorials/pyTorchWorkflow.html
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Joins-based workflow

Link to tutorial: 

https://pyjedai.readthedocs.io/en/latest/tutorials/SimilarityJoins.html 

https://pyjedai.readthedocs.io/en/latest/tutorials/SimilarityJoins.html
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Install pyJedAI!

Scan QR and start 

entity-linking with 

pyJedAI!
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• Part D: Challenges & Final Remarks

• Introduction

• Generations: 1st, 2nd, 3rd, 4th, 5th

• Hands-on Session
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Conclusions

Most promising works focus on:
1. Deep Learning

• Pros: 
– High accuracy

• Cons: 
– High training time
– Too many training instances

2. Crowd-sourcing
• Pros: 

– High accuracy

• Cons: 
– High monetary cost
– Not scalable to very large datasets
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Challenges

Many challenges ahead

• Address shortcomings of Deep Learning

– e.g., transfer learning for reducing labelling cost

• Cover gaps

– e.g., incremental ER for semi-structured data

• New domains

– e.g., adapt aforementioned techniques to privacy-
preserving Entity Resolution
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ER Systems

• Literature focuses on stand-alone methods

• More emphasis on end-to-end systems
– Examples: Magellan [1], JedAI [2]

– Partially cover the 4 generations

– More efforts meeting the following requirements 
[1,3]:
• open-source, extensible systems

• process data of any structuredness

• no coding! for users

• guidelines for creating effective solutions

• covers the entire end-to-end pipeline exploit

• a wide range of techniques 
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Automatic Configuration

Facts:

• Several parameters in every method 
– Applies to all generations and workflow steps

• Performance sensitive to internal configuration

• Manual fine-tuning required

Open Research Directions:

• Plug-and-play methods

• Data-driven configuration
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• Introduction

• Generations: 1st, 2nd, 3rd, 4th, 5th

• Hands-on Session

• Challenges &

Final Remarks

• Thank you!

information & material 
related to the tutorial 

is available online https://edu.nl/97b8v

time for 
additional 
questions
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