
Technical analysis of the masked AES

implementation

LSC, ANSSI

January 6, 2021

Contents

1 Introduction 3

2 Secured AES: Affine masking 4

3 Characterization phase 6
3.1 Key bytes . 6
3.2 Plaintext bytes . 7
3.3 Ciphertext bytes . 7
3.4 Mask bytes . 8

3.4.1 State masks . 8
3.4.2 Key masks . 13

3.5 Sbox output bytes . 16
3.5.1 Raw bytes . 16
3.5.2 Multiplied by mask . 16
3.5.3 Affine masked . 17

3.6 Unshuffled output bytes . 17
3.6.1 Raw bytes . 17
3.6.2 Multiplicately masked . 18
3.6.3 Affinely masked . 19

4 First-order correlation analysis 19
4.1 Priviledged knowledge . 19

4.1.1 Affinely masked Sbox output 20
4.1.2 Multiplicatively masked Sbox output 20
4.1.3 Raw Sbox output . 21

4.2 Unknown permutation, processed traces 22
4.2.1 Affinely masked Sbox output 22
4.2.2 Multiplicatively masked Sbox output 22
4.2.3 Raw Sbox output . 23

4.3 Unknown permutation, non-processed traces 24
4.4 Summary . 24

1

5 Second-order correlation analysis 24
5.1 Priviledged knowledge . 25

5.1.1 Multiplicatively masked Sbox output 25
5.1.2 Raw Sbox output . 25

5.2 Unknown permutation, processed traces 26
5.2.1 Multiplicatively masked Sbox output 26
5.2.2 Raw Sbox output . 27

5.3 Unknown permutation, non-processed traces 28
5.4 Summary . 28

6 Third-order correlation analysis 28
6.1 Priviledged knowledge . 29

6.1.1 Raw Sbox output . 29
6.2 Unknown permutation, processed traces 30

6.2.1 Raw Sbox output . 30
6.3 Unknown permutation, non-processed traces 31
6.4 Summary . 31

2

1 Introduction

This document describes the side-channel characterization of a secure AES en-
cryption implementation. We perform this study on the ChipWhisperer target
based on a STM32F303RCT7 chip (using a Cortex-M4 core). Using the Chip-
Whisperer as a board for side-channel characterization is explained by an easy
access to power consumption and clean signal acquisition chain. Furthermore,
this board natively supports the undercloking of the Cortex-M4 target using an
external oscillator: slowing down the core frequency to 4 MHz allows to use
reasonable sampling rates during the acquisition.

This evaluation was performed on power consumption traces captured through
an oscilloscope, sampling 100.000.000 samples by second. The obtained traces
consist in 2.000.000 samples, encompassing the whole AES implementation. Fig-
ure 1 shows two main steps: the first one is the pre-processing, and the second
one is the execution of the raw AES rounds. More details are given in Section
2.

Pre-processing AES rounds

Figure 1: Power consumption trace of the AES encryption.

No resynchronization step has been performed on these traces. Nonetheless,
visual inspection indicates that no significant desynchronization occurs. To
illustrate this, Figure 2 displays a temporal zoom on three different traces.

A first acquisition campaign of 50.000 traces of the rolled version (ie., the
default version) is used to perform the caracterisation step as well as the first-
order resilience assessment. For the second and third order assessments, we
used a second campaign of 100.000 traces of the unrolled version. The following
table summarizes the results. The analyses are further detailed in the rest of
this document.

3

Figure 2: Three traces on a short temporal window.

Known permutation Unknown permutation
Known rm, rout rm None rm, rout rm None
Order 1 ≈ 1.000 > 50.000 > 50.000 ≈ 20.000 > 50.000 > 50.000
Order 2 N/A > 8.000 > 100.000 N/A > 100.000 > 100.000
Order 3 N/A N/A > 100.000 N/A N/A > 100.000

Figure 3: Number of traces needed for a successful first-order, second-order, and
thirs-order attack, depending on the masks known to the attacker.

2 Secured AES: Affine masking

The version of the AES is an affine implementation according to the paper
Affine masking against high-order side channel analysis [?]. Each byte state of
the AES state, denoted state[i] for the i-th byte, is manipulated under the form
rm × state[i] ⊕ stateM[i]: rm is a non zero random byte, stateM[i] is initialized
with 16-random bytes denoted M[0] . . .M[15], and × denotes the multiplication
over the AES finite field [?]. For each round, the AES operations are applied to
both state and stateM.

Similarly, the key schedule operation is also protected by manipulating each
byte of the key state, denoted stateK[i], under an affine form rm

′ × stateK[i] ⊕
state′M[i] where state′M is initialize with 16-random bytes denoted M′[0] . . .M′[15]
independent from the aes random bytes M[0] . . .M[15]. As the key schedule
is performed independently from encryption and decryption operations, before
using each masked key byte, it has to be changed into rm × stateK[i]⊕ state′M[i]
(same multiplicative byte rm) to have a consistent computation.

To sum up, the AES encryption/decryption and the key schedule each use
19 random bytes as input:

� 16 bytes for Boolean masking M[0] . . .M[15]/M′[0] . . .M′[15] that initial-
ized the masking state stateM/stateK;

4

� 1 multiplicative byte rm/rm
′;

� 2 bytes rin, rout / rin
′, rout

′ (two boolean masking bytes used for SubByte
operation).

To make this report more readable, we provide the correspondance Table 1
between the notations in this report (“Here”) and in the “assembly code”.

Assembly code Here size
key_rin[0] rin

′ 1
key_rout[0] rout

′ 1
key_rmult[0] rm

′ 1
key_maskedState[i] rm × stateK[i]⊕ state′M[i] 1
key_masksState[i] state′M[i] 1
key_gtab GTab 16× 16
key_permIndicesMC permIndicesMC 4
aes_state[i] rm × state[i]⊕ stateM[i] 1
aes_state2[i] stateM[i] 1
aes_rin[0] rin 1
aes_rout[0] rout 1
aes_rmult[0] rm 1
aes_gtab GTab 16× 16
aes_permIndices permIndices 16
aes_permIndicesBis permIndicesBis 16
aes_permIndicesMC permIndicesMC 4
aes_permIndicesBisMC permIndicesMCbis 4
aes_sboxMasked Sboxm 16× 16

Table 1: Notations correspondance between this report and the assembly code.
Sizes are in number of bytes.

We can distinguish three main steps:

1 Pre-processing: before the AES rounds, the following operations in this
order are performed : loading of inputs, computation of the table GTab
(multiplication by rm), computation of the affine sbox denoted Sboxm, key
schedule with affine masking.

2 AES rounds: 10 AES rounds with affine masking of the state and subkeys.

3 Post-processing: after AES rounds, the state state is unmasked by remov-
ing the Boolean mask stateM and by removing the multiplicative factor rm
(multiplying by rm

−1).

Shuffling: Many sub-operations on the AES state are performed in a random
order: each byte is processed in a random order with pre-computed permuta-
tion based on the input random values. For AES rounds: permIndicesMC is used
to shuffle MixColumns of state and permIndicesMCbis to shuffle MixColumns of

5

stateM. Permutation permIndicesMC (resp. permIndicesMCbis) is computed from
the initial value stateM[0] = M[0] (resp. stateM[1] = M[1]). The permutation
permIndices is used to shuffle SubBytes and ShiftRows of state and the permuta-
tion permIndicesBis is used to shuffle SubBytes and ShiftRows of stateM. These
permutations are computed from M[0],M[1],M[2],M[3].

For key schedule: the four permutations are similar. The permutation
permIndicesMC is used to shuffle the manipulation of the words’ coordinates
of the masked key state (the term word referring here to 4-bytes vector) and
permIndicesMCbis is used to shuffle the manipulation of the words’ coordinates of
state′M. The former permutation is computed from M′[0], while the latter one is
computed from M′[1]. The permutation permIndices is used to shuffle SubBytes
and ShiftRows of the masked key state and permIndicesBis is used to shuffle
SubBytes and ShiftRows of the key mask state state′M. These permutations are
computed from M′[0],M′[1],M′[2],M′[3].

3 Characterization phase

In this section, we perform several Signal-to-Noise Ratio (SNR) computations
in order to identify univariate leakage samples related to the manipulation of
different sensitive values.

3.1 Key bytes

We perform a SNR targeting each key byte. We superpose the leakage and
SNR curves for the first key byte in Figure 4 to locate where the SNR peaks
are located during AES computation. For each key byte, the results evidence
one leakage point, which highlights the key manipulation during its masking
(Load_masterKey function).

Figure 4: SNR targeting key byte 0 (in red), superposed to one leakage trace.
SNR computed using 10.000 traces.

6

3.2 Plaintext bytes

Similarly, we perform a SNR targeting each plaintext byte as shown in Figure 5.
The results evidence three leakage points. The first leakage is explained by the
loading of the plaintext in the target. The second leakage is explained by the
loading of the plaintext in the context (Load_data function). The third leakage
is explained by the masking of the plaintext (Map_in_G function).

Figure 5: SNR targeting plaintext byte 0 (in red), superposed to one leakage
trace. SNR computed using 10.000 traces.

3.3 Ciphertext bytes

Similarly, we perform a SNR targeting ciphertext bytes as shown in Figure 6.
Leakages appear during the unmasking operation (Multiplicative_unmasking
function) and the serial writing of the bytes: when the ciphertext is loaded in
the output variable.

7

Figure 6: SNR targeting ciphertext byte 0 (in red), superposed to one leakage
trace. SNR computed using 10.000 traces.

3.4 Mask bytes

Similarly, we perform a SNR targeting each mask byte. We detail the results
hereafter, depending on the usages of each mask in the implementation.

3.4.1 State masks

Bytes M[0] to M[15], rin, rout and rm are used for the masking of the state of the
encryption. We characterize hereafter their leakages.

Figure 7 and Figure 8 illustrate the results when targeting bytes M[0] and
M[1]. These bytes are used for computing both the shuffling permutation used
in the substitution layer of the AES, and the permutations used in the lin-
ear layer. They are also used as linear masks. Leakages appear during the
loading of the bytes (Load_random function). Then, leakages appear during
the computation of the shuffling permutation of the substitution layer, Com-

pute_permIndices_Tables, and the computation of the permutations in the
linear layer (Compute_permIndices_Tables_MC functions). Another leakage
peak appears when the masks are loaded just before the encryption (Load_data
function), and a smaller peak appears when the state is masked (Xor_states
function). Finally, we observe nine peaks corresponding to the 9 MixColumns

operations.

8

Figure 7: SNR targeting mask byte M[0] (in red), superposed to one leakage
trace. SNR computed using 10.000 traces.

Figure 8: SNR targeting mask byte M[1] (in red), superposed to one leakage
trace. SNR computed using 10.000 traces.

Figures 9 and 10 illustrate the results when targeting bytes M[2] and M[3].
These bytes are used for computing the shuffling permutation used in the substi-
tution layer, and as linear masks. The leakages are similar to those of bytes M[0]
and M[1], except that no leakage is observed during the MixColumns operations,
nor during the computation of the permutations used in the linear layer.

9

Figure 9: SNR targeting mask byte M[2] (in red), superposed to one leakage
trace. SNR computed using 10.000 traces.

Figure 10: SNR targeting mask byte M[3] (in red), superposed to one leakage
trace. SNR computed using 10.000 traces.

Figures 11 and 12 illustrate the results when targeting bytes M[4] and M[15].
These bytes are used as linear masks. Similar results are obtained for bytes M[5]
to M[14]. The leakages are similar to the one obtained for previous bytes, but
are now only observed for the loadings and masking of the state.

10

Figure 11: SNR targeting mask byte M[4] (in red), superposed to one leakage
trace. SNR computed using 10.000 traces.

Figure 12: SNR targeting mask byte M[15] (in red), superposed to one leakage
trace. SNR computed using 10.000 traces.

Figure 13 illustrates the results when targeting rin. This byte is used as the
input mask of the substition layer. Leakage first appears during the loading of
the randoms (Load_data). Strong leakage can then be observed during the re-
computation of the substitution table (Compute_Affine_sboxMasked function).
Finally 10 peaks appear during the substitution steps of each round of the AES.

11

Figure 13: SNR targeting mask byte rin (in red), superposed to one leakage
trace. SNR computed using 10.000 traces.

Figure 14 illustrates the results when targeting rout. This byte is used as the
output mask of the subtitution layer. Leakages appear at similar time samples
as for rin.

Figure 14: SNR targeting mask byte rout (in red), superposed to one leakage
trace. SNR computed using 10.000 traces.

Figure 15 illustrates the results when targeting rm. This byte is used as
the multiplicative mask of the substitution layer. Leakage once again appear
when the randoms are loaded (Load_data function). Leakage also appear dur-
ing the computation of the multiplicative table (Compute_GTab function), and
during the computation of the substitution box (Compute_Affine_sboxMasked
function).

12

Figure 15: SNR targeting mask byte rm (in red), superposed to one leakage
trace. SNR computed using 10.000 traces.

3.4.2 Key masks

Bytes M′[0] to M′[15], rin
′, rout

′ and rm
′ are used for the masking of the key. We

characterize hereafter their leakages. Figure 16 illustrates the results when tar-
geting byte M′[0]. These bytes are used for computing the shuffling permutation
used in the key expansion. They are also used as linear masks.

Observed peaks correspond to the loading of the random in the target, load-
ing of the masks (Load_random_key function), masking of the key (Load_masterKey),
and the key expansion (KeyExpansion_masked function), due to the involvment
of the mask byte in the computation of the shuffling permutation
(Compute_permIndices_Tables_MC function).

Figure 16: SNR targeting mask byte M′[0] (in red), superposed to one leakage
trace. SNR computed using 10.000 traces.

Figures 17 and 18 illustrate the results when targeting bytes M′[1] and M′[2].

13

Similar results are observed when targeting bytes M′[3] to M′[15]. These bytes
are not used for the computation of the shuffling permutation. However, they
serve as linear masks during the key expansion, and, as such, a small peak
appears at the beginning of the KeyExpansion_masked function. The other
peaks are similar to the ones appearing for byte M′[0].

Figure 17: SNR targeting mask byte M′[1] (in red), superposed to one leakage
trace. SNR computed using 10.000 traces.

Figure 18: SNR targeting mask byte M′[2] (in red), superposed to one leakage
trace. SNR computed using 10.000 traces.

Figure 19 illustrates the results when targeting rin
′. This byte is used as the

input mask of the substition layer. Leakages appear at the same time samples
as for bytes M′[1] to M′[15], and also during the recomputation of the Sbox and
the key expansion.

14

Figure 19: SNR targeting mask byte rin
′ (in red), superposed to one leakage

trace. SNR computed using 10.000 traces.

Figure 20 illustrates the results when targeting rout
′. This byte is used as

the output mask of the subtitution layer. Leakages appear at the same time
samples as for bytes M′[1] to M′[15], and also during the recomputation of the
Sbox and the key expansion.

Figure 20: SNR targeting mask byte rout
′ (in red), superposed to one leakage

trace. SNR computed using 10.000 traces.

Figure 21 illustrates the results when targeting byte rm
′. This byte is used as

the multiplicative mask of the substitution layer. Leakages appear at the same
time samples as the previous bytes, and also during the computation of the
multiplication table Gtab. Finally, a peak appears just before the encryption,
when the value is loaded.

15

Figure 21: SNR targeting mask byte rm
′ (in red), superposed to one leakage

trace. SNR computed using 10.000 traces.

3.5 Sbox output bytes

3.5.1 Raw bytes

Figure 22 illustrates the results when targeting a Sbox output byte without
taking into account the output mask (ie. for each byte i, the value S[P[i]⊕K[i]]
is targeted) and there is no observable leakage.

Figure 22: SNR targeting Sbox output byte 0 (in red), superposed to one leakage
trace. SNR computed using 50.000 traces.

3.5.2 Multiplied by mask

Figure 23 illustrates the results when targeting a byte of the Sbox output, multi-
plied by the multiplicative mask, ie., for each byte i, the value rm×S[P[i]⊕K[i]]
is targeted. No significant leakage is observed.

16

Figure 23: SNR targeting the multiplicatively masked Sbox output byte 0 (in
red), superposed to one leakage trace. SNR computed using 50.000 traces.

3.5.3 Affine masked

Figure 24 illustrates the results when targeting a byte of the Sbox output,
affinely masked, ie., for each byte i, the value rm × S[P [i] ⊕K[i]] ⊕ rout is tar-
geted. We remark that 50.000 traces are not enough to highlight a leakage of
this value. This result is expected because of the shuffling countermeasure.

Figure 24: SNR targeting the affinely masked Sbox output byte 0 (in red),
superposed to one leakage trace. SNR computed using 50.000 traces.

3.6 Unshuffled output bytes

3.6.1 Raw bytes

We use the knowledge of the mask bytes to inverse the shuffling Sh performed
during the substitution phase. For each index i, we target the value S[P[Sh[i]]⊕

17

K[Sh[i]]]. No significant leakage can be observed. Figure 25 illustrates the
results.

Figure 25: SNR targeting the unshuffled Sbox output byte 0 (in red), superposed
to one leakage trace. SNR computed using 50.000 traces.

3.6.2 Multiplicately masked

We use the knowledge of the mask bytes to inverse the shuffling Sh performed
during the substitution phase. For each index i, we target the value rm ×
S[P[Sh(i)] ⊕ K[Sh(i)]]. A small amount of leakage is present, at the time of
the manipulation of rm. This is easily explained since the random variables
rm × S[P[Sh(i)] ⊕ K[Sh(i)]] and rm are not independent. Figure 26 illustrates
the results.

Figure 26: SNR targeting the unshuffled multiplicatively masked Sbox output
byte 0 (in red), superposed to one leakage trace. SNR computed using 50.000
traces.

18

3.6.3 Affinely masked

We use the knowledge of the mask bytes to inverse the shuffling Sh performed
during the substitution phase. For each index i, we target the value rm ×
S[P[Sh(i)] ⊕ K[Sh(i)]] ⊕ rout. A significant leakage is observed after the first
substitution layer. Figure 27 illustrates the results.

Figure 27: SNR targeting the unshuffled affinely masked Sbox output byte 0 (in
red), superposed to one leakage trace. SNR computed using 50.000 traces.

4 First-order correlation analysis

In this section, we analyse the effectiveness of the implemented countermeasures
against first-order side-channel analysis based on the linear correlation coeffi-
cient (Correlation Power Analysis CPA). For this study, we will target the Sbox
output value.

We separate this study in two parts. In the first part, we will characterize the
effectiveness of a CPA against this implementation, by considering an attacker
with priviledged knowledge. In the second part, we will evaluate the effectiveness
of a CPA against this implementation without such knowledge.

4.1 Priviledged knowledge

We first study the setting where the attacker knows the random masks used to
compute the permutation.

In order to characterize the effectiveness of a CPA against this implemena-
tion, we use the random masks to recompute the permutation Sh(i) for each
byte index i. We then perform an attack targeting the value
ZK̂[i] = S[P[Sh(i)]⊕ K[Sh(i)]⊕ K̂], where K̂ is an hypothesis on a value of one
byte. The attack is successful if the best hypothesis returned by the attack is 0.

19

4.1.1 Affinely masked Sbox output

We suppose the knowledge of both the multiplicative mask and the output mask.
This knowledge allows for the prediction of the value rm × ZK̂[i] ⊕ rout for any
hypothesis K. Depending on the index byte, the attack succeeds with around
1.000 traces. Figure 28 illustrates the result of the attack targeting byte 0, using
1.000 traces.

Figure 28: Correlation coefficients obtained when targeting rm×ZK̂[i]⊕ rout, for

every value of K̂. Correct hypothesis is plotted in red.

4.1.2 Multiplicatively masked Sbox output

We suppose the knowledge of the multiplicative mask. This knowledge allows
for the prediction of the value rm × ZK̂[i] for any hypothesis K̂. The attack is
unsuccessful using 50.000 traces. Figure 29 illustrates the result of the attack
targeting byte 0, using 50.000 traces.

20

Figure 29: Correlation coefficients obtained when targeting rm×ZK̂[i], for every

value of K̂. Correct hypothesis is plotted in red.

4.1.3 Raw Sbox output

We suppose no prior knowledge (except the permutation), and predict the value

ZK̂[i] for any hypothesis K̂. The attack is unsuccessful using 50.000 traces.
Figure 30 illustrates the result of the attack targeting byte 0, using 50.000
traces.

Figure 30: Correlation coefficients obtained when targeting rm×ZK̂[i], for every

value of k̂. Correct hypothesis is plotted in red.

21

4.2 Unknown permutation, processed traces

We now study the setting where the attacker does not know the random masks
used to compute the permutation.

We preprocess the traces in order to average the leakage over the different
byte indices manipulation:

� for each index i in [0, 15], we define a small window wi of ` points around
the SNR peak corresponding to the manipulation of rm × S[P [Sh(i)] ⊕
K[Sh(i)]]⊕ rout in the characterization phase. In our experiments, the size
of the window was arbitrarily fixed to ` = 11.

� for each trace in our acquisition campaign, we compute the average window
m such that for each time sample j, m[j] = 1

16

∑15
i=0 wi[j]. We then

consider m as our reduced averaged trace of size `.

4.2.1 Affinely masked Sbox output

We suppose the knowledge of both the multiplicative mask and the output mask.
This knowledge allows for the prediction of the value rm × S[P[i]⊕ K̂]⊕ rout for

any hypothesis K̂ on one byte of the secret key. Depending on the byte index,
the CPA is successful using around 20.000 to 30.000 traces.

Figure 31 illustrates the results using 50.000 traces.

Figure 31: Correlation coefficients obtained when targeting rm×S[P[i]⊕K̂]⊕rout,
on averaged traces, for every value of K̂. Correct hypothesis is plotted in red.

4.2.2 Multiplicatively masked Sbox output

With 50.000 traces, the attack does not succeed when targeting rm×S[P[i]⊕ K̂].
Figure 32 illustrates the results using 50.000 traces.

Figure 32 illustrates the results using 50.000 traces.

22

Figure 32: Correlation coefficients obtained when targeting rm×S[P[i]⊕K̂]⊕rout,
on averaged traces, for every value of K̂. Correct hypothesis is plotted in red.

4.2.3 Raw Sbox output

With 50.000 traces, the attack does not succeed when targeting S[P[i] ⊕ K̂].
Figure 33 illustrates the results using 50.000 traces. Figure 33 illustrates the
results using 50.000 traces.

Figure 33: Correlation coefficients obtained when targeting rm×S[P[i]⊕K̂]⊕rout,
on averaged traces, for every value of K̂. Correct hypothesis is plotted in red.

23

4.3 Unknown permutation, non-processed traces

For the sake of completeness, we also perform these experiments on raw unpro-
cessed traces. No success is obtained when targeting ZK̂[i] or rm × ZK̂[i] using

50.000 traces. Similarly, by targeting rm×S[P[i]⊕ K̂]⊕ rout, the attack does not
succeed.

4.4 Summary

The results in this section evidence the effectiveness of the implementation of the
countermeasures against first-order side-channel attack. Assuming knowledge
of the mask values, the shuffling countermeasure alone increases the number of
necessary traces by a factor ∼ 20. Furthermore, masking countermeasures seem
to completely thwart first order side-channel attacks using 50.000 traces.

Known permutation Unknown permutation
Known rm, rout rm None rm, rout rm None

Traces ≈ 1.000 > 50.000 > 50.000 ≈ 20.000 > 50.000 > 50.000

Figure 34: Number of traces needed for a successful first-order attack, in the
different settings.

5 Second-order correlation analysis

In this section, we analyse the effectiveness of the implemented countermeasures
against second-order side-channel analysis based on the linear correlation coef-
ficient (CPA). For this study, we will target the Sbox output value and consider
a Hamming weight (HW) univariate leakage model.

In the remainder of this section, we will use:

� the centered product combination function C(x, y) = (x − x̄)(y − ȳ) to
preprocess the traces, where x̄ (resp. ȳ) stands for the mean value of x
(resp. y), computed on all traces in our campaign;

� the corresponding function fHW (z) =
∑

m(HW (z ⊕m)−HW (z ⊕m))

(HW (m) − HW (m)) to compute the predictions, where HW (m) (resp
HW (z ⊕m)) stands for the mean value of HW (m) (resp. HW (z ⊕m))
computed on all possible values of m1.

As in our first-order correlation analysis, we will split this study in two
parts. The first part will consider priviledged knowledge on the mask values.
The second part will not take this knowledge into account.

1Note that all possible values for m are in [0, 255].

24

5.1 Priviledged knowledge

We first study the setting where the attacker knows the random masks used
to compute the permutation. In order to characterize the effectiveness of a
CPA against this implementation, we use the random masks to recompute the
permutation Sh(i) for each byte index i.

For each byte index i, we use the characterization phase to isolate a window
wz⊕m of 11 points of interest corresponding to the manipulation of the Sbox
output rm × S[P [Sh(i) ⊕ K[Sh(i)]] ⊕ rout, and a window wm of 11 points of
interest corresponding to the manipulation of the mask value rout. For each
couple (i, j) of points in wz⊕m×wm, we apply the combination function C(i, j).
We then perform an attack targeting the value Zk̂[i] = S[P [Sh(i)]⊕K[Sh(i)]⊕k̂],

where k̂ is an hypothesis on a value of one byte.

5.1.1 Multiplicatively masked Sbox output

We suppose the knowledge of the multiplicative mask rm. This knowledge allows
for the prediction of the value rm × Zk̂[i] for any hypothesis k̂. The attack
succeeds with around 8.000 traces to 20.000 traces. Figure 35 illustrates the
results using 20.000 traces.

Figure 35: Correlation coefficients obtained when targeting rm×S[P [i]⊕ k̂], for

every value of k̂. Correct hypothesis plotted in red. X-axis represents all 121
points combinations.

5.1.2 Raw Sbox output

We target the value Zk̂[i] for any hypothesis k. The attack does not succeed
using the 100.000 traces. Figure 36 illustrates the results using 100.000 traces.

25

Figure 36: Correlation coefficients obtained when targeting S[P [i]⊕ k̂], for every

value of k̂. Correct hypothesis plotted in red. X-axis represents all 121 points
combinations.

5.2 Unknown permutation, processed traces

We now study the setting where the attacker does not know the random masks
used to compute the permutation. We preprocess the traces in order to average
the leakage over the different byte indices manipulation:

� for each index i in [0, 15], we define a small window wi of ` points around
the SNR peak corresponding to the manipulation of rm × S[P [Sh(i)] ⊕
K[Sh(i)]]⊕ rout in the characterization phase. In our experiments, the size
of the window was arbitrarily fixed to ` = 11.

� for each trace in our acquisition campaign, we compute the average window
m such that for each time sample j, m[j] = 1

16

∑15
i=0 wi[j]. We then

consider m as our reduced averaged trace of size `.

� we concatenate to this trace a small window of ` points around the SNR
peak corresponding to the manipulation of rout.

5.2.1 Multiplicatively masked Sbox output

We suppose the knowledge of the multiplicative mask rm. This knowledge allows
for the prediction of the value rm × Zk̂[i] for any hypothesis k̂. The attack is
unsuccessful using 100.000 traces.

Figure 37 illustrates the results using 100.000 traces.

26

Figure 37: Correlation coefficients obtained when targeting rm×S[P [i]⊕ k̂], for

every value of k̂. Correct hypothesis plotted in red. X-axis represents all 121
points combinations.

However, we observe that, for certain combinations of points (around ab-
scissa 135), the correct hypothesis is indeed the most likely. Furthermore, the
rank convergence of the key, plotted on Figure 38, might indicate that the attack
could be successful when using more traces.

Figure 38: Rank of the ten best-ranked keys, by steps of 10000 measurements,
from 10.000 to 100.000. Correct key plotted in red.

5.2.2 Raw Sbox output

We target the value Zk̂[i] for any hypothesis k̂. The attack does not succeed
using the 100.000 traces. Figure 39 illustrates the results using 100.000 traces.

27

Figure 39: Correlation coefficients obtained when targeting S[P [i]⊕ k̂], for every

value of k̂. Correct hypothesis plotted in red. X-axis represents all 121 points
combinations.

5.3 Unknown permutation, non-processed traces

For the sake of completeness, we also perform these experiments on raw unpro-
cessed traces. No success is obtained when targeting Zk̂[i] or rm × Zk̂[i].

No attack is successful using 100.000 traces.

5.4 Summary

This section evidences the effectiveness of the implemented countermeasures.
The shuffling countermeasures increases the number of needed measurements by
a factor of at least 100.000

8.000 = 12, 5. It is however likely that this countermeasure
does not suffice when increasing slightly the number of measurements. The
effectiveness of the affine countermeasure is evidenced by the fact that a 2OCPA
is achievable targeting the value rm×S[P [i]⊕ k̂] but no attack is found targeting

the value S[P [i]⊕ k̂] using 100.000 traces.

Known permutation Unknown permutation
Known rm None rm None

Traces ≈ 8.000 > 100.000 > 100.000 > 100.000

Figure 40: Number of traces needed for a successful second-order attack, in the
different settings.

6 Third-order correlation analysis

In this section, we analyse the resistance of the implementation against third
order side-channel analysis based on the linear correlation coefficient (CPA).

28

For this study, we will target the Sbox output value and consider a Hamming
weight (HW) univariate leakage model.

In the remainder of this section, we will use:

� the centered product combination function C(x, y, z) = (x−x)(y−y)(z−z̄)
to preprocess the traces, where x (resp. y, z̄) stands for the mean value
of x (resp. y, z), computed on all traces in our campaign;

� the corresponding function fHW (z) =
∑

m,m′(HW (m′ × z ⊕m)−
HW (m′ × z ⊕m))(HW (m)−HW (m))(HW (m′)−HW (m′)) to compute
the predictions, where HW (m) (resp HW (m′ × z ⊕m), HW (m′)) stands
for the mean value of HW (m) (resp. HW (m′ × z ⊕m), HW (m′)) com-
puted on all possible values of m,m′2.

As in our first-order and second-order correlation analyses, we will split this
study in two parts. The first part will consider priviledged knowledge on the
mask values. The second part will not consider this knowledge.

6.1 Priviledged knowledge

We first study the setting where the attacker knows the random masks used to
compute the permutation.

In order to characterize the effectiveness of a CPA against this implemena-
tion, we use the random masks to recompute the permutation Sh(i) for each
byte index i.

6.1.1 Raw Sbox output

We target the value Zk̂[i] for any hypothesis k. The attack does not succeed
using the 100.000 traces. Figure 41 illustrates the results using 100000 traces.

2Note that all possible values for m are in [0, 255], while all possible values for m′ are in
[1, 255].

29

Figure 41: Correlation coefficients obtained when targeting S[P [i]⊕ k̂], for every

value of k̂. Correct hypothesis plotted in red. X-axis represents all 1331 points
combinations.

6.2 Unknown permutation, processed traces

We now study the setting where the attacker does not know the random masks
used to compute the permutation.

We preprocess the traces in order to average the leakage over the different
byte indices manipulation:

� for each index i in [0, 15], we define a small window wi of ` points around
the SNR peak corresponding to the manipulation of rm × S[P [Sh(i)] ⊕
K[Sh(i)]]⊕ rout in the characterization phase. In our experiments, the size
of the window was arbitrarily fixed to ` = 11.

� for each trace in our acquisition campaign, we compute the average window
m such that for each time sample j, m[j] = 1

16

∑15
i=0 wi[j]. We then

consider m as our reduced averaged trace of size `.

� we concatenate to this trace a small window of ` points around the SNR
peak corresponding to the manipulation of rout.

6.2.1 Raw Sbox output

We target the value Zk̂[i] for any hypothesis k. The attack does not succeed
using the 100.000 traces. The correct key rank does not seem to indicate that
this number of traces is close to allow a success attack. Figure 42 illustrates the
results using 100.000 traces.

30

Figure 42: Correlation coefficients obtained when targeting S[P [i]⊕ k̂], for every

value of k̂. Correct hypothesis plotted in red. X-axis represents all 1331 points
combinations.

6.3 Unknown permutation, non-processed traces

For the sake of completeness, we also perform these experiments on raw un-
processed traces. No success is obtained when targeting Zk̂[i]. No attack is
successful using 100.000 traces. Figure 43 illustrates the results using 100.000
traces.

Figure 43: Correlation coefficients obtained when targeting S[P [i]⊕ k̂], for every

value of k̂. Correct hypothesis plotted in red. X-axis represents all 1331 points
combinations.

6.4 Summary

No third order attack has been achieved using 100.000 traces.

31

