{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Miscellaneous concepts in Machine Learning\n", "\n", "This is one of the notebooks for the fourth session of the [Machine Learning workshop series at Harvey Mudd College](http://www.aashitak.com/ML-Workshops/).\n", "\n", "Topics covered:\n", "* Evaluation metrics for classification\n", "* k-fold Cross-validation\n", "* Dimensionality reduction\n", "\n", "## Evaluation metrics for classification" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Suppose we want to use machine learning to detect patients' in risk of developing a rare type of cancer. We are given a dataset consisting of certain features derived from subjects' past medical history and information about whether they develop the cancer later on.\n", "\n", "Q: Can this be framed as a regression, classification task or neither? \n", "Q: If yes, what are the features? \n", "Q: What is the target variable? \n", "Q: How do we know how good is our model and how do we compare different models? \n", "\n", "\n", "### Classification accuracy:\n", "$$\\text{Accuracy} = \\frac{\\text{Number of correct predictions}}{\\text{Total number of predictions made}}$$\n", "\n", "Suppose, only 1% of the subjects in our dataset are diagonized with the cancer. We trained a classifier that correctly detects almost all the subjects with cancer, but also misclassify certain subjects that do not have it. The total accuracy of our classifier is 96%. \n", "\n", "Q: If we are given another classifier that have an accuracy of 99%. Should we prefer it over ours? \n", "Q: If not, why? What additional information we would like to have to decide?\n", "\n", "To answer this, suppose I built a dummy classifier that always predict that a subject do not have cancer. It will be right 99% of the time and hence 99% accuracy. This suggests that accuracy is not a good metric when the classes are imbalanced. \n", "\n", "Q: Suppose we were able to get additional dataset and now almost half of the subjects in our dataset were diagonized with the cancer. Is accuracy now a good choice to compare two classifiers?\n", "\n", "Key takeaway: Accuracy is a good metric for evaluating classifier performance only when the classes are more or less equally distributed and classifying each class carries the same priority. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Confusion matrix:\n", "![](https://www.dataschool.io/content/images/2015/01/confusion_matrix_simple2.png)\n", "\n", "1. True Positives (TP): Actual Yes and Predicted Yes\n", "2. False Positives (FP): Actual No and Predicted Yes\n", "3. True Negatives (TN): Actual No and Predicted No\n", "4. False Negatives (FN): Actual Yes and Predicted No\n", "\n", "In the context of hypothesis testing, False Positive is also known as Type I error whereas False Negative is known as Type II error.\n", "![](https://i.stack.imgur.com/W7I4r.png)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Confusion Matrix\n", " [[81 0]\n", " [14 5]]\n" ] } ], "source": [ "# Importing modules\n", "import numpy as np\n", "import warnings\n", "warnings.simplefilter('ignore')\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "\n", "# Create dataset for classification\n", "from sklearn.datasets import make_classification\n", "X, y = make_classification(\n", " n_samples=400, n_features=2, \n", " n_redundant=0, n_informative=2, \n", " n_classes=2, n_clusters_per_class=1, \n", " class_sep=1, weights=[0.9, 0.1],\n", " flip_y=0.15, random_state=0 \n", ")\n", "\n", "# Split the dataset into testing and validation\n", "from sklearn.model_selection import train_test_split\n", "X_train, X_valid, y_train, y_valid = train_test_split(X, y, random_state=0)\n", "\n", "# Train a classifier\n", "from sklearn.linear_model import LogisticRegression\n", "LR_clf = LogisticRegression().fit(X_train, y_train)\n", "\n", "# Compute confusin matrix\n", "from sklearn.metrics import confusion_matrix\n", "y_predicted = LR_clf.predict(X_valid)\n", "confusion = confusion_matrix(y_valid, y_predicted)\n", "print('Confusion Matrix\\n', confusion)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is not always practical or feasible to use confusion matrix to compare model performance while tuning hyperparameters. It is helpful to come up with a single easy-to-compare metric to optimize our classifier. Depending on the task, we pick one of the metrics derived from confusion matrix that are given below." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Decision Threshold\n", "\n", "Most classifiers, especially the ones we are interested in, such as logistic classifier and neural networks, predicts the probabilities that an observation will belong to the different classes in a classification task rather than predicting the classes directly.\n", "\n", "For a binary classication problem, if the probability for a class is greater than a threshold value, usually 0.5, then the observation is classified to belong to that class. For a number of reasons, we might want to change this threshold value, also called decision threshold. \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The implementation for classifiers in scikit-learn has built-in function `predict_proba()` that gives us the probability that an observation belongs to class 1." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(Actual class, Predicted class, probability that an observation belongs to class 1):\n" ] }, { "data": { "text/plain": [ "[(0, 0, 0.19725899013254114),\n", " (0, 0, 0.08464011501971314),\n", " (0, 0, 0.2538750065970439),\n", " (0, 0, 0.09817410467675795),\n", " (0, 0, 0.04869468332936763),\n", " (0, 0, 0.1646743398507587),\n", " (0, 0, 0.25009788774661157),\n", " (0, 0, 0.09741946339500032),\n", " (0, 0, 0.09668506669493857),\n", " (0, 0, 0.04446872097997831),\n", " (1, 0, 0.30077363964436465),\n", " (0, 0, 0.08969748254821192),\n", " (0, 0, 0.06387692630668854),\n", " (0, 0, 0.13798328982244196),\n", " (0, 0, 0.05727974314189011)]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y_proba = LR_clf.predict_proba(X_valid)\n", "y_proba_list = list(zip(y_valid[0:15], y_predicted[0:15], y_proba[0:15, 1]))\n", "print(\"(Actual class, Predicted class, probability that an observation belongs to class 1):\") \n", "y_proba_list" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For the above classifier, the observation with index 11 that belongs to class 1 is incorrectly classified to class 0. It has a higher probability of approx. 0.3 to belong to class 1 than most other observations. So, if we lower the threshold for probability to 0.3, it will be correctly classified. We can write a function to change the threshold for probability to classify the points into the two classes." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "def adjusted_prediction(y_scores, t):\n", " \"\"\"\n", " This function classifies observations with probability greater than \n", " threshold (t) to the class 1.\n", " \"\"\"\n", " return [1 if y >= t else 0 for y in y_scores]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![](https://cdn-images-1.medium.com/max/2000/1*qLjMtrdG3qIcuNBALvsYQA.jpeg)\n", "\n", "The above figure represents the probability distribution for the positive and negative classes given by green and red curves as predicted by a classifier. The black vertical line for the cut-off is the decision threshold for the probability and as we move it left or right, we change the classification prediction of the affected data points. The false positives and the false negatives mostly lies around the cut-off line. More precisiely, the points on the green curve to the left of the cut-off line are false negatives - they should be classified as positives but due to lower probability predicted by the classifier, they are falsely classified as negatives. Similarly, the points on the red curve to the right are false positives." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Precision and Recall\n", "Suppose we are trying to build a search engine using a training set of a million articles. For a search keyword, our algorithm comes up with 300 results. There are two questions we could ask. \n", "\n", "1. How many of these search results are relevant to our search keyword? (Precision)\n", "2. Of all the pages relevant to the search keyword, how many are included in the search results? (Recall)\n", "\n", "Precision and recall are formulated as follows.\n", "\n", "$$\\text{Precision} = \\frac{\\text{True Positives (TP)}}{\\text{True Positives (TP) + False Positives (FP)}}\n", "= \\frac{\\text{True Positives (TP)}}{\\text{Total Predicted Positives}}$$\n", "\n", "$$\\text{Recall} = \\frac{\\text{True Positives (TP)}}{\\text{True Positives (TP) + False Negatives (FN)}}\n", "= \\frac{\\text{True Positives (TP)}}{\\text{Total Actual Positives}}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Precision: How useful are the results?\n", "* Recall: How complete are the results?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There is a trade-off between the precision and recall. If we want to recall all the relevant pages (high recall), we will retrieve many more results, more of them irrelevant and that will lower our precision. Similarly, if we want our results to be highly accurate (high precision), we will be more selective and might end up missing a large number of relevant results (low recall). We might want to choose one over the other depending on our objective. \n", "\n", "For some situations, high recall is more desirable than high precision. For example, if you are building a machine learning model for a bank to detect fradulent transactions, you want it to catch every fradulent transaction, even if it sometimes raises suspicion for some legit transactions. Another example would be inspecting airplane safety features, you would want to target for high recall even at the cost of low precision.\n", "\n", "The justice systems for most democratic nations aims for high precision and assume people are innocent until proven guilty. Jurisprudence prefers that some culprits may let go free (low recall) but no innocent should be punished (high precision). " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![](https://docs.aws.amazon.com/machine-learning/latest/dg/images/mlconcepts_image2.png)\n", "\n", "Note: In the above figure, the x-axis corresponds to the probability scores of the classifier and the cut-off means the decision threshold for the probability." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Higher precision (or higher recall) is achieved by increasing (or decreasing) the decision threshold. \n", "\n", "* Higher precision: Raising the decision threshold for the probability (or sliding the cut-off line to the right) will eliminate more False Postives albeit at the cost of including more False Negatives. \n", "\n", "* Higher recall: Lowering the decision threshold for the probability (or sliding the cut-off line to the left) will eliminate more False Negatives albeit at the cost of including more False Positives. \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![](https://www.qualtrics.com/support/wp-content/uploads/2017/07/precision-recall-curve-for-regression-docs1.png)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAGMCAYAAAA4Ms7HAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VPW9//HXJwmELRBIwh5AARGwijbigrVuWAXrbt2tW/V6S2vVtlcvVtH22ofS9trba22xWhXr2p9aUNReF6qiqAiCoqBhDxGSsIZAyPb5/XEmMQ4TkgmTmUzm/Xw88mDmzDlnPueQzHvO93vO95i7IyIiqS0t0QWIiEjiKQxERERhICIiCgMREUFhICIiKAxERASFgbQxM1ttZnNbsdzlZuZmdlzsq+rYzGyuma0Om/awmek8cmmSwiDJmdlxoQ/Nxj87zOxDM7vezNITXWMyaxRK9T91ZrbNzOaZ2eWJrq8tmVlBKERWmtkuM6sws0/M7F4zOzDR9UlsZSS6AImZJ4A5gAEDgcuBe4GxwDWJK4tRQGu+kc4EngSqYltOq/0P8AHBF6h84Grgr2Y20N3vSmhlbcDMbgOmAWXA48BnBL9bY4HzgSlm1tvdyxNWpMSUwqDjWOjuj9U/MbP7Cf6ArzazX7j7xkgLmVknIN3dK9uiKHff3crlaoHaGJezL95y97/XPzGzvwKfAz83s7tD9XYIZnYlcAfwBnCWu28Le/3nwO0E4RCr98xSsCSWmok6KHffDrxL8Ae7P4CZTQs1dYw1s9+ZWRFQCRxZv5yZnWRm/zSzrWZWaWZLzOzfIr2HmR1qZs+Y2UYz221m68zsCTMb3miePfoMzOxoM3vJzDaE3mO9mc0xs8Z1ROwzMLNcM7sv9F5VoX/vM7OcsPnqlz/BzH5qZitCNX5uZt9v5W5t4O7FBGHbC8iLsG9ivR/PN7NZZrY2NE+ZmT1vZgfv67aE1dIZ+C9gB3B+eBAAuPsud7859DvW+PdqWIT1Rfr/91Dz04lm9raZ7QBmm9l1oddOj7CeNDMrMrOPwqYXmNlzof2x28yWm9lUM9MX3Shph3VQZmbAiNDTsrCX/wbsAn5L0ITzZWiZa4A/AfMJPhAqgInA/WY23N1/1mj9pwH/LzTPX4BCoD/wHeAgYEUTdY0C/g/YAPwe2BhabgJwSOi9m9qmXsA7oe16CFgIHApcB5xgZuMjfLu8C+gK/BnYHZr3YTMrdPd5Tb1Xc0JHVEOAOmBr2GttsR+nAJuBGQT7bjhB8988MzvM3b9o7baEmRB6/5nuXhqjdUZSAJwDPAA8Epr2d+C/gcuAWWHznwgMIvidBcDMJgHPEeyz3xLsn6OAO4FxwHltV34H5O76SeIf4DiCD/TbgFyCb6kHE/yROfBuo3mnhabNBTLC1jOA4Cjh8Qjv8XuCJpvhoefdgFKgBBgUYf60Ro9XA3MbPf9xqIbxzWzX5aH5jms07b9C0/49bN4fhqb/MsLyi4DOjaYPIgiFJ1q4f+vXc0Vo//YFvgk8E5r+dJz2Y/cIr48Obcsfw6bPBVaHTXs4+HNvdnt/FNquG6P4Haz/vRoW4bWv/f+Hpnno56QI8z8T2n+9w6bPBKqBfqHnXQhC8c0Iv8s3hP/u6Kf5HzUTdRx38NUHy2LgSoJvV2dGmPded68Jm3YukAk8GGqKafgBZhM0KZ4Ymvc7BB+Mv3X39eErd/e6vdRZ3+xwhpl1admmNTiLYBtnhE3/M8HRz1kRlvmjuzd0Qofq/RwYGeV7PxR6743AAr76Vntl2Hxtsh/dvQKCIz4z6xlaXymwHDgiym3Zm56hf7fHcJ2RLHb3VyNMf4Rg/51fP8HMehD8377sX/V9TQT6AX8FssP285zQPCe3WfUdkJqJOo4ZfPVttQL43N03NzHv5xGmjQ79G+kPtF6/0L/1H6SLoi2S4AyhS4D/BG4ws/nAK8CT7r6mmWX3AxaEB5m715jZcuCwCMusjDBtEzC0/omZ9QE6h61zQ9gydwJvEXxQjQd+TnAUEH62U5vsRzM7FPglwZFg97CXVzW3fBTqQyArhuuMJNLvIMDLBF9oLiNoaoMgeLvzVXMSfLWfH9rLe/Tby2sSRmHQcXzRxDetSHZGmFZ/ZshlhPoQIlgZNm/Up4x6cHbRRDMbT/DN+FiCD9ppZnaRuz8X7Tqb0dRZPo3PhHkW+PZeXgf4uNH+fdHMPiM4nfdO4OYIy8VsP5rZEILmkO0EgbCcIPCd4PThHntbPkqfhP49NIpl9lZ/U58xkX4H64P9ceAnZjbC3QsJ9uUWgiOrevX77mfAR0RWvJe6JIzCQOrVd0CWtSBUlof+PZSgMzhq7v4+8D6AmeUTfDv+FUGHYFNWAqPMLKPx0UHozJEDiHwU0BI3Ab2jWcDdnwydHXSDmf3J3VeHXmqL/XgWwQf+6e7+RuMXQmdRter03SbMI2iLP9PMctx9UwuWqT8C7UPQR1BfWxeCo6fCKGt4BPgJcJmZzSA4GprhXz9NuX4/V0TxJUj2Qn0GUu9pgg+VO8ysa/iLZtbLzDJDT/9J0EZ/k5kNiDBvk+efh9p0wxURtH/3aabG5wk6yK8Om/6D0PRWHVW4+4fu/mrjnxYuegdB89Ktjaa1xX6sP7qxsNd/QHDmT8yE+lemEjQTPWVmezQXmVkXM7vLzOr7F+qbfE4Km/UGWvEZ4+4fAUsImhMvC63jkbDZXiFoTro51MwXXmPXSLVL03RkIAC4e5GZXUdweuNnZjYTWEPwIfsNgo7oMQRnqew0s6sITgX8xMzqT4nMI2j6+R3wjybe6lYzOxl4gaCt24DvAgcC9zRT5j0EpwveZ2aHERxNHApcRfAtu7nlY8rd3zCzecD3zewud1/ZRvvxJYJmlZlm9r8ETSYTgEkEp57G9O/Y3R8KHa3dDhSGmm0+JfhQHk3wf9AX+HVokVeBZcCdoSOVVcAxBNevhJ/W3FKPEJwu+h8E/V9fO+XY3SvM7DKCLwjLzewhgn2XTfC7dDbBEdXcVr5/6kn06Uz62bcfvjq19KctmHcaTZwC2GieCQTfsEsIOkeLCa5EvQnoEjbveII/xjKCb8NrCYYu2L/RPKv5+qmlxwFPhabvImhieI/g2741mu9yIpweSPBB+UeCo4nq0L/3Ablh80VcPvTaXMJOvdzL/qhfz7lNvP6d0Ot/beP9eCzwNlBOcF3DiwTXIeyxLU1Me5gWnFoatkwBwYfyKoLTPXcCHxOE1MiweQ8g6PzdGarvaYLTeL/2/x+a14GHm3nvfqH/Xwem7mW+g4DHgPWh/byR4FqUXwB9Ev33mUw/FtqhIiKSwtRnICIiCgMREVEYiIgICgMRESHOYWBmD5lZiZl90sTrZmb/Y2aFFgz5G2l4ARERibF4X2fwMPC/wKNNvH4qwXgtIwkG37qfFgzClZub68OGDYtNhSIiHcCHH35Y5u573GujKXENA3d/M9INMBo5A3jUg/Nd55tZtpkNcPemxngBYNiwYSxYsCCGlYqIJDcza27gx69pb30Gg4B1jZ4XhabJXsxaXMy37nmd9Vt3JboUEUlS7S0MIo1pE/GqODO7xswWmNmC0tK2vCFT+/f5hnKKt1aS1yOz+ZlFRCJob2FQBOQ3ej6YJoahdfcZ7l7g7gV5eS1uFuuQvigpZ2hONzpntLf/ThFJFu3t02MWwbC1ZsHN0bc1118gUFiyg5F9YzmkvYikmrh2IJvZEwQDleWaWRHBqIidANz9TwS3q5tEMPrgToL7zspeVNXUsXrTTk49aI8RkEVEWizeZxNd2MzrTnBzc2mh1ZsqqK1zRvbTkYGItF57ayaSKH2xcQcAI9RMJCL7QGGQ5L4oKccMhucpDESk9RQGSa6wZAf5vbvRpVN6oksRkSSmMEhyOpNIRGJBYZDEamrrWFlawQh1HovIPlIYJLG1m3dSVVvHCPUXiMg+UhgkscKS4Eyikf2yElyJiCQ7hUES+6JEp5WKSGwoDJJYYckOBvbqQo/MeN+WQkQ6GoVBEvuipJwRaiISkRhQGCSpujqnsGSHOo9FJCbUvpCkNmyvpLK6jofmreLlT1o+sOuu6lr6dO/MQ5cfztCc7m1YoYgkE4VBkuqblck1x+7PloqqqJab8/GXrCitYNuu6jaqTESSkcIgSWWkp/Gfk0ZHvVxuViYPvLmSUf3V1yAiX1GfQYpZWrydkf2yyMzQWEYi8hWFQQpxd5au38bYgT0TXYqItDMKgxSycftuNlVUcZDCQETCKAxSyCfrtwEwdlCvBFciIu2NwiCFLC3ejhmMHqAjAxH5OoVBCvmkeBv75XTX8BUisgeFQQr5tHi7mohEJCKFQYrYUlHF+q271HksIhEpDFLE0uLtAIwdqCMDEdmTwiBFfFIcOpNIRwYiEoHCIEUsLd7OoOyu9O7eOdGliEg7pDBIEUuLdeWxiDRNYZACKnbXsKqsQv0FItIkhUEK+OzL7bjDQYN0ZCAikenqoxSwbEM5AFc/uoD+Pbu0ej2nHTyAqZPHxKosEWlHFAYp4JgRuVw4fgg1tXWYtW4dz39UzMrSitgWJiLthsIgBQzL7c6vz/5Gq5ffXFHF0wuK+Oaw3jGsSkTaE/UZSLMWrtkCQMHQPgmuRETaisJAmrVgzRY6pRsHD9bZSCIdlcJAmrVwzRbGDuxFl066VaZIR6UwkL2qqqljcdFWvjlU/QUiHZnCQPZqafE2dtfUUaAwEOnQFAayVx+GOo91ZCDSsSkMZK8+XLOF/D5d6bsPF6uJSPunMJAmuTsL1mzRKaUiKUBhIE0q2rKL0vLdHKYmIpEOT2EgTVqwZjOAOo9FUoDCQJr04ZotZGVmcEC/rESXIiJtTGEgTVqwegvjhmSTntbK0e1EJGkoDCSi7ZXVLN9YrlNKRVKEwkAi+mjtVtw1OJ1IqtAQ1hLRkqKtAPzkqY/IaONmopwenfl/1x2tsY9EEkhhIBGdOLof67fuoq6ubd/n3ZWbKCzZ0bZvIiLNUhhIRKMH9OTXZx/c5u9z0u/+xfj9+uioQCTB1GcgCVO8dReFJTs4dmReoksRSXkKA0mYt78oA+DYAxQGIommMJCE+dcXpfTrmckB/XokuhSRlKcwkISorXPmFZbxrZF5mOmiNpFEUxhIQny8fhtbd1bzrZG5iS5FRFAYSIK89XkpZvAtdR6LtAsKA0mIN78o5aCBvejTvXOiSxERFAaSAOWV1Sxcu5VjD1ATkUh7EfcwMLNTzGy5mRWa2c0RXh9iZm+Y2SIzW2Jmk+Jdo7Std1ZsorbO1UQk0o7ENQzMLB24DzgVGANcaGZjwma7FXja3Q8FLgD+GM8ape299UUp3Tunc9gQjYgq0l7E+8hgPFDo7ivdvQp4EjgjbB4HeoYe9wKK41ifxMGbn5dx1PAcOmeolVKkvYj3X+MgYF2j50WhaY1NAy4xsyJgDvCjSCsys2vMbIGZLSgtLW2LWqUNrNlUwdrNO3XVsUg7E+8wiHR1kYc9vxB42N0HA5OAmWa2R53uPsPdC9y9IC9PHyzJ4s3Pg+BWf4FI+xLvMCgC8hs9H8yezUBXAU8DuPu7QBdAp510EG9+UUZ+n64My+mW6FJEpJF4D2H9ATDSzPYD1hN0EF8UNs9a4ETgYTMbTRAGagfqANyd+Ss3sbu6jiN//VrD9Iy0NKafdzBHD1fmiyRKXMPA3WvMbArwCpAOPOTuS83sTmCBu88CbgIeMLMbCJqQLnf38KYkSUJmxo9OGMHK0oqGaWs37+SdFZvYvqsmgZWJSNxvbuPucwg6hhtPu63R40+BCfGuS+LjmmOHf+35XXM+44PVmzlGYxSJJJTO7ZOEeu2zjRy5fw49MnXTPZFEUhhIwqzdtJMVpRUcP6pvoksRSXkKA0mY15dtBOCEAxUGIommMJCEeW1ZCfvndWdYbvdElyKS8hQGkhAVu2t4b+VmTlATkUi7oDCQhHi7sIyq2jpOGK0wEGkPFAaSEG8sKyErM4PDh/VJdCkigsJAEsDdeX1ZCd86IJdO6foVFGkP9Jcocbe0eDsl5bs54cB+iS5FREIUBhJ3ry8rwQyOG6WRS0XaC4WBxN1ry0o4ZHA2uT0yE12KiIQoDCSuynbsZknRVl1oJtLOKAwkruYuL8VdVx2LtDcKA4mr15dtpF/PTMYO7Nn8zCISNxoqUuJqXuEmdlbVcMRdrzU/8150zkjjjxcfxsGDs2NUmUhqUxhIXE05fgQry3bs0zo++7Kcj9ZtZXdNXYyqEhGFgcTVD47df5/Xce3MBfTrmck3h/SOQUUiAuozkCRTsbuGuctLOfWgAaSlWaLLEekwFAaSVF5bVsLumjomfWNAoksR6VAUBpJU5iz5kr5ZmRQMVRORSCwpDCRpVOyu4Y3lJZx6UH81EYnEmMJAksbraiISaTMKA0kacz7+krysTAp0DwSRmFMYSFLYWfVVE1G6mohEYk5hIEnh9WUlVFariUikrSgMJCnM+fhLcntk6jaZIm1EYSDt3s6qGl5fpiYikbakMJB2741lpVRW13HqN/onuhSRDkthIO1e0ETUmSP2y0l0KSIdlsJA2rVdVbW8vqyE74xVE5FIW1IYSLv2xvISdlXXMllnEYm0KQ1hLe3a68tKAPjxk4swa/7IYPSAnjx65fi2Lkukw1EYSLt25rhBdEpv2QHsPz5az8ZtlW1ckUjHpDCQdu2YkbkcMzK32flWl1XwxPtrOeuwQXGoSqTjUZ+BdAjPLVqPGZwxbmCiSxFJSgoDSXruznOL1nP08BwG9Oqa6HJEkpLCQJLeh2u2sHbzTs46dHCiSxFJWgoDSXrPLlpPl05pnHKQrlAWaS2FgSS13TW1vLjkS04Z258emTofQqS1FAaS1N5YVsK2XdWcdZiaiET2hcJAktqzC9eTl5XJhOEat0hkXygMJGltqajijeUlnHHIQDJaeGGaiESmvyBJWi8sKaa61nWhmUgMKAwkaT27aD2j+mUxZkDPRJcikvQUBpKUVpVVsGjtVs46bFCLBrATkb1TGEhSqh9+4sxxaiISiQWFgSSdYPiJIiYMz6V/ry6JLkekQ1AYSNJZsGYL6zbv4qxDdVQgEiu6ZFOSzsufbADgly9+yq9fWpbgatoHM7j9u2M47WCN2iqtozCQpDPpG/3ZVV2b6DLajdVlFbyzYhM7q7RPpPUUBpJ0vjm0D98c2ifRZbQbNzz1EVmZGZx2sO4TLa2nPgORJLaloooXP/6Ssw4bRLfO+m4nracwEElizy5aT1VNHReOH5LoUiTJKQxEkpS78/h7azh0SDajdRW27COFgUiS+mD1FlaUVuioQGJCYSCSpJ54f606jiVm4h4GZnaKmS03s0Izu7mJeb5nZp+a2VIzezzeNYq0d+o4lliL62+RmaUD9wETgSLgAzOb5e6fNppnJHALMMHdt5hZ33jWKJIM1HEssRbvI4PxQKG7r3T3KuBJ4IyweX4A3OfuWwDcvSTONYq0a+o4lrYQ7zAYBKxr9LwoNK2xA4ADzGyemc03s1MircjMrjGzBWa2oLS0tI3KFWl/1HEsbSHeYRBp4HkPe54BjASOAy4E/mJm2Xss5D7D3QvcvSAvLy/mhYq0V+o4lrYQ7zAoAvIbPR8MFEeY5x/uXu3uq4DlBOEgkvLUcSxtJd5h8AEw0sz2M7POwAXArLB5ngeOBzCzXIJmo5VxrVKknVLHsbSVuIaBu9cAU4BXgM+Ap919qZndaWanh2Z7BdhkZp8CbwA/c/dN8axTpD1Sx7G0pbgfZ7r7HGBO2LTbGj124MbQj4iE1Hcc33PuwYkuRTogNTqKJIl/fLQegLvmfMY9L+umPrE0qHc3nrvuaNLSIp3jkhoUBiJJQncxaxv/+ryU1WUViS4j4RQGIkniqOE5HDU8J9FldDjH/2Yuhw/rk9JHBaCB6kQkhZVsr2RVWQVH7Kc75ykMRCRlvbdqMwBH7K8waLaZyMyiOqHZ3de2vhwRkfh5f9VmundOZ4xO1W1Rn8Fq9hwyYm/SW1eKiEh8vbdqE98c1oeMdDWStCQMriS6MBARafc2V1Tx+cYdnDEufKzM1NRsGLj7w3GoQ0Qkrt6v7y9Q5zGgDmQRSVHvr9pMZkYaBw/eY1DklNSSDuSHolifu/tV+1CPiEhcvL96E4cN6U3nDH0nhpb1GZxAy/sM1LcgIu3e9spqPi3ezo9P1Oj49VrSZzAsDnWIiMTNh6u3UOcwXv0FDXR8JCIp571Vm+mUbhya3zvRpbQbrR6byMz6Al3Cp+uiMxFp795btYlDBmfTtbMui6oX1ZGBmaWZ2V1mtgn4ElgV4UdEpN3aWVXDx0Xb1EQUJtpmop8APwR+S3Bz+7uAXxGEwArgBzGtTkQkxhat3UpNnXPE/hoBtrFom4muAO4E7iUIgefcfaGZ/Qr4J6Abs4pIu7Zo7RYAfvzEIjLaaNjqzhlp/PHiwzh0SPL0SUQbBvsDC9y91sxqgK4A7l5tZvcCfwCmxbZEEZHYmTimPyXlu6nztjkTvnhrJa8vK2HLzqo2WX9biTYMtvFVp3ExMAqY12hdaoQTkXZtVP8s7jzjoDZb/9/eW8Pry0o4oF9Wm71HW4g2DBYBY4BXQj93mNkuoAb4L2BhbMsTEUkun28op0dmBoOyuya6lKhEGwb3EjQVAdwOHAb8LfR8DTAlRnWJiCSl5RvLOaBfD8yS6zaaUYWBu/9fo8cbzGw8MBzoBnzm7tUxrk9EJGm4O8s3lHPKQf0TXUrUWn3RGQSj0gGFMapFRCSple7YzZad1UnXXwDRX3T2H2b2hyZe+x8z+1lsyhIRST6fb9gBwKiOHgYE1xksaeK1j0Kvi4ikpOUby4HgjKVkE20YDAG+aOK1lcDQfStHRCR5fb6hnNwencnpkZnoUqIWbRjsBJq6YehgYPe+lSMikryWbSxPyv4CiD4M3gJ+ZmZfi73Q85tCr4uIpJy6OueLJA6DaM8mmga8A3xuZo8B6wmOFC4BcoDLY1mciEiyWL91FzurapOyvwCiv85gsZkdD/wG+A+CI4s64G3gHHdfHPsSRUTav+UbkrfzGFpxnYG7vw8ca2Zdgd7AFnffFfPKRESSSP2ZRCP79khwJa2zL7e9TAc6EYxLJCKS0pZvKGdQdleyunRKdCmtEnUYmNlpZraQYATTFcA3QtP/YmYXxbg+EZGk8PnG8qRtIoLor0A+E/gHUMZXfQb1VgHfj11pIiLJobq2jhWlO5L2TCKI/sjgduCv7n4ywQimjX0CtN0g4SIi7dTyDeVU1zoHDeqZ6FJaLdowGA08FXocfpugLQSnl4qIpJSP1m0F4JDB2QmupPWiDYPtQG4Trw0DSvepGhGRJLR43VZyundmcO/kuqFNY9GGwf8Bt5hZ4/jz0BXIU4CXYlaZiEiSWFy0lUPys5PuhjaNRXudwVTgfWA5MIegqehm4GCgF3BmTKsTEWnnduyu4YuSHUz+xsBEl7JPojoycPfVBLe6fAGYCNQCxwLzgSPcvTjWBYqItGcfF23DHQ7J75XoUvZJa65ALgKuCp9uZplmdr27/z4mlYmIJIGO0HkM0V9nkGthjWJm1tXMbgJWA7+LYW0iIu3e4nVbGZrTjd7dOye6lH3SbBiEvvH/3sx2ABuBTWZ2Xei1SwhuajMdWAuc0pbFioi0N4uLtib9UQG0rJnoNuBHwKvAQmA/4PdmNgb4IfA5cI27z26zKkVE2qGN2yv5clslh+SnRhicD/zR3afUTzCzK4G/EJxq+l13r2qj+kRE2q3Fof6CcUneeQwt6zPIB54Lm/Zs6N/fKQhEJFUtLtpKepoxdmBqhEEnoDxsWv1zXXEsIilr8bptHNg/iy6d0hNdyj5r6amlg8xs/0bP0xtN39p4RndfGZPKRETasbo6Z3HRVr57SHJfbFavpWHw9yamPx9hWvJHpIhIM1ZtqqC8soZxHeBMImhZGFzR5lWIiCSZ+s7jjnAmEbQgDNz9kXgUIiKSTD5at5VundMZkaT3PA63L/dAFhFJWe+u2MQ3h/YmPS15RyptTGEgIhKlku2VfFGygwkjmrq9S/JRGIiIRGneijIAjlEYtJ6ZnWJmy82s0Mxu3st855qZm1lBPOsTEWnOvMJNZHfrxJgByXvP43BxDQMzSwfuA04FxgAXhsY4Cp8vC/gx8F486xMRaY67M6+wjKOH55DWQfoLIP5HBuOBQndfGRrG4kngjAjz/RK4B6iMZ3EiIs1ZWVbBl9sqO1R/AcQ/DAYB6xo9LwpNa2BmhwL57v5CPAsTEWmJdwqD/oIJwxUG+yLSMZU3vGiWBvw3cFOzKzK7xswWmNmC0lINkSQi8fF2YRmDsrsyNKdbokuJqXiHQRHBKKj1BgON75ucBRwEzDWz1cCRwKxIncjuPsPdC9y9IC8vrw1LFhEJ1NY5767YxIQROYTd9DHpxTsMPgBGmtl+ZtYZuACYVf+iu29z91x3H+buw4D5wOnuviDOdYqI7OGT9dvYXlnT4foLIM5h4O41wBTgFeAz4Gl3X2pmd5rZ6fGsRUQkWvXXFxzdwfoLoOWjlsaMu88B5oRNu62JeY+LR00iIi0xr7CMA/tnkZeVmehSYk5XIIuItEBldS0frN7SIZuIQGEgItIiH67ZQlVNHRNG5CS6lDahMBARaYG3C8vISDPG76cwEBFJWe8UljEuP5semXHvao2LjrlVIiIxVFldy8frt5GRlsa4O/+Z6HKadP7h+dxy6uhWLaswEBFpRmZGGjedPIqS7e13uLSXl25g0dqtrV5eYSAi0gwz44fHj0h0GXu1fGM5dd78fE1Rn4GIiCgMREREYSAiIigMREQEhYGIiKAwEBERFAYiIoLCQERE0EVnIiLJq7YWXnoJ7r+fB994k66VO+E/smDCBHpDr2hWpTAQEUlGy5fD2WfDp58C0L1++rZtMGcO+0NUl0wrDEREks3y5TBhAmzaFLNVKgxERJJJbW1wRFAfBF26wJQp3Jh1GF/mDuaJE/LgwQfx3/wmqpGK1IEsIpJMXnqpoWmILl3g9ddh+nSK+w+jNj0DDjwQpk/nC1gezWoVBiIiyeT++796PGUKHHVUxNnKoSKa1SoMRESSybxMidBdAAAVZElEQVR5Xz2+6qqYrVZhICKSTMrLv3o8fHjMVqswEBFJJllZXz1esSJmq1UYiIgkkwkTvnr84IMxW63CQEQkmVx33VeP//d/4d13I86W1eg6tJZQGIiIJJNTT4UxY4LHlZVw/PHw058y8MvVpNdUw2efwU9/ykgYFc1qzX0f7qDcThQUFPiCBQsSXYaISHy04ArkAmCBu7V0lToyEBFJNqNGBaeY1h8hxIDCQEQkGY0aBUuWwAsvwOTJ7OiWRZ2lQXY2TJ7MSiiMZnUam0hEJFmlp8PkyTB5MlfPeJc6h6evDa5I3mK2LZpV6chAREQUBiIiojAQEREUBiIigsJARERQGIiICAoDERFBYSAiIigMREQEhYGIiKAwEBERFAYiIoLCQEREUBiIiAgKAxERQWEgIiIoDEREBIWBiIigMBARERQGIiKCwkBERFAYiIgICgMREUFhICIiKAxERIQEhIGZnWJmy82s0MxujvD6jWb2qZktMbPXzGxovGsUEUk1cQ0DM0sH7gNOBcYAF5rZmLDZFgEF7n4w8HfgnnjWKCKSiuJ9ZDAeKHT3le5eBTwJnNF4Bnd/w913hp7OBwbHuUYRkZQT7zAYBKxr9LwoNK0pVwEvRXrBzK4xswVmtqC0tDSGJYqIpJ54h4FFmOYRZzS7BCgApkd63d1nuHuBuxfk5eXFsEQRkdSTEef3KwLyGz0fDBSHz2RmJwFTgW+7++441SYikrLifWTwATDSzPYzs87ABcCsxjOY2aHAn4HT3b0kzvWJiKSkuIaBu9cAU4BXgM+Ap919qZndaWanh2abDvQAnjGzj8xsVhOrExGRGIl3MxHuPgeYEzbttkaPT4p3TSIiqU5XIIuIiMJAREQUBiIigsJARERQGIiICAoDERFBYSAiIigMREQEhYGIiKAwEBERFAYiIoLCQEREUBiIiAgKAxERQWEgIiIoDEREBIWBiIigMBARERQGIiKCwkBERFAYiIgICgMREUFhICIiKAxERASFgYiIoDAQEREUBiIigsJARERQGIiICAoDEREBMhJdQFuqq6ujqKiIioqKRJciErXu3bszePBg0tL0nU3aXocOg7KyMsyMUaNG6Q9KkkpdXR3r16+nrKyMvn37JrocSQEd+hNy69at9OvXT0EgSSctLY1+/fqxbdu2RJciKaJDf0rW1tbSqVOnRJch0iqdOnWipqYm0WVIiujQYQBgZokuQaRV9Lsr8dThw0BERJqnMOjgxo4dy9y5c/c6z9q1a+nRowe1tbXxKSoOhg0bxquvvgrAtGnTuOSSSxJckUj7pjBIkGHDhtG1a1d69OhBv379uOKKK9ixY0fM32fp0qUcd9xxe51nyJAh7Nixg/T09Ji//7Rp0+jUqRM9evQgOzubo48+mnfffTfm77Mvtm/fzk9+8hOGDBlCjx49GDFiBD/5yU8oKytLdGkicaMwSKDZs2ezY8cOFi5cyAcffMCvfvWrPeZxd+rq6hJQXeycf/757Nixg7KyMo4//njOO++8RJfUoKqqihNPPJGlS5fy8ssvs337dt555x1ycnJ4//33o16fOnwlWSkM2oFBgwZx6qmn8sknnwBw3HHHMXXqVCZMmEC3bt1YuXIl27Zt46qrrmLAgAEMGjSIW2+99WvNOg888ACjR48mKyuLMWPGsHDhQuDrzSXvv/8+BQUF9OzZk379+nHjjTcCsHr1asys4YOsuLiY008/nT59+jBixAgeeOCBhveZNm0a3/ve97jsssvIyspi7NixLFiwoEXbmZGRwcUXX8z69espLS1tmP7CCy8wbty4hiOHJUuWNLy2bt06zj77bPLy8sjJyWHKlCkArFixghNOOIGcnBxyc3O5+OKL2bp1a9T7/tFHH2Xt2rU899xzjBkzhrS0NPr27csvfvELJk2aBAQduYWFhQ3LXH755dx6660AzJ07l8GDB3P33XfTv39/rrjiCkaPHs0LL7zQMH9NTQ25ubkN/yfz58/n6KOPJjs7m0MOOaTZZjyReOjQF52Fu2P2Uj4t3t6m7zFmYE9u/+7YqJZZt24dc+bM4eyzz26YNnPmTF566SVGjRqFu3PeeefRr18/CgsLqaio4LTTTiM/P59rr72WZ555hmnTpvH8889TUFDAihUrIp5Se/3113P99ddz6aWXsmPHjobwCXfhhRcyduxYiouLWbZsGRMnTmT//ffnxBNPBGDWrFk8++yz/PWvf+XWW29lypQpzJ8/v9ntrKqq4tFHHyUnJ4fevXsDsHDhQq688kpmz55NQUEBjz32GKeffjrLly8nIyOD0047jRNOOIGZM2eSnp7eEDzuzi233MKxxx7L9u3bOeecc5g2bRr33ntvVPv+1Vdf5ZRTTqFHjx5RLdfYhg0b2Lx5M2vWrKGuro7p06fzxBNPcNpppwHwyiuvkJuby2GHHcb69euZPHkyM2fO5JRTTuG1117jnHPOYdmyZeTl5bW6BpF9pSODBDrzzDPJzs7mmGOO4dvf/jb/+Z//2fDa5ZdfztixY8nIyGDz5s289NJL3HvvvXTv3p2+fftyww038OSTTwLwl7/8hZ///OccfvjhmBkjRoxg6NChe7xfp06dKCwspKysjB49enDkkUfuMc+6det4++23ufvuu+nSpQvjxo3j6quvZubMmQ3zHHPMMUyaNIn09HQuvfRSFi9evNftfPrpp8nOzqZr16488MAD/P3vfycjI/ge8sADD3DttddyxBFHkJ6ezve//30yMzOZP38+77//PsXFxUyfPp3u3bvTpUsXjjnmGABGjBjBxIkTyczMJC8vjxtvvJF//etfUf8fbNq0iQEDBkS9XGNpaWnccccdZGZm0rVrVy666CJmzZrFzp07AXj88ce56KKLAHjssceYNGkSkyZNIi0tjYkTJ1JQUMCcOXP2qQaRfZVSRwbRfmNva88//zwnnXRSxNfy8/MbHq9Zs4bq6uqvfWjV1dU1zLNu3TqGDx/e7Ps9+OCD3HbbbRx44IHst99+3H777Q3fXusVFxfTp08fsrKyGqYNHTr0a01B/fv3b3jcrVs3Kisrqamp4amnnuLaa68F4Fvf+hYvvfQSAN/73vd47LHHKCsr45xzzuHDDz9s6NRes2YNjzzyCH/4wx8a1llVVUVxcTHp6ekMHTq0ITgaKykp4cc//jFvvfUW5eXl1NXVNRxtRCMnJ4cvv/wy6uUay8vLo0uXLg3PR4wYwejRo5k9ezbf/e53mTVrFosWLQKC7X3mmWeYPXt2w/zV1dUcf/zx+1SDyL5KqTBIJo0vOMrPzyczM5OysrKIH4z5+fmsWLGi2XWOHDmSJ554grq6Op599lnOPfdcNm3a9LV5Bg4cyObNmykvL28IhLVr1zJo0KBm13/xxRdz8cUXN/l6bm4uf/7znzn88MO56KKLGDBgAPn5+UydOpWpU6fuMf+7777L2rVrqamp2WO7b7nlFsyMJUuWkJOTw/PPP9/QnxCNk046iVtvvZWKigq6d+8ecZ5u3bo1fMuHoFlo8ODBDc8jXRx24YUXNuzrMWPGMGLECCD4v7r00ku/1g8j0h6omSgJDBgwgJNPPpmbbrqJ7du3U1dXx4oVKxqaRa6++mp+85vf8OGHH+LuFBYWsmbNmj3W89hjj1FaWkpaWhrZ2dkAe5xOmp+fz9FHH80tt9xCZWUlS5Ys4cEHH9zrh3w0DjzwQL7zne9wzz33APCDH/yAP/3pT7z33nu4OxUVFbz44ouUl5czfvx4BgwYwM0330xFRQWVlZXMmzcPgPLy8obTVdevX8/06dNbVc+ll15Kfn5+Q7t9XV0dmzZt4q677mpouhk3bhyPP/44tbW1vPzyyy1qjrrgggv45z//yf3339/QRARwySWXMHv2bF555RVqa2uprKxk7ty5FBUVtap+kVhRGCSJRx99lKqqKsaMGUPv3r0599xzG5o3zjvvPKZOncpFF11EVlYWZ555Jps3b95jHS+//DJjx46lR48eXH/99Tz55JNfa96o98QTT7B69WoGDhzIWWedxR133MHEiRNjti0/+9nPmDFjBiUlJRQUFPDAAw8wZcoUevfuzYgRI3j44YeBIKhmz55NYWEhQ4YMYfDgwTz11FMA3H777SxcuJBevXoxefLkr3W+RyMzM5NXX32VAw88kIkTJ9KzZ0/Gjx9PWVkZRxxxBAC///3vmT17NtnZ2fztb3/jzDPPbHa9AwYM4KijjuKdd97h/PPPb5ien5/PP/7xD+666y7y8vLIz89n+vTpSX/6sCQ/c/dE17DPCgoKPNLpjZ999hmjR49OQEUisaHfYWmpC2a8S53D09ceBYCZfejuBS1dXkcGIiKiMBAREYWBiIiQAmHQEfpEJDXpd1fiqUOHQXp6OtXV1YkuQ6RVqqurI15XItIWOnQYZGdns3HjRp22J0mnrq6OjRs30qtXr0SXIimiQ3/tyM3NpaioiOXLlye6FJGode/endzc3ESXISmiQ4dBWloaQ4YMSXQZIiLtXtybiczsFDNbbmaFZnZzhNczzeyp0OvvmdmweNcoIpJq4hoGZpYO3AecCowBLjSzMWGzXQVscfcRwH8Dd8ezRhGRVBTvI4PxQKG7r3T3KuBJ4Iywec4AHgk9/jtwokUaFlJERGIm3mEwCFjX6HlRaFrEedy9BtgG5MSlOhGRFBXvDuRI3/DDr6xpyTyY2TXANaGnu80s8j0cU0cuUJboIhIo1bcftA9SffsBcu3fGvbBnrc73It4h0ERkN/o+WCguIl5iswsA+gF7DEes7vPAGYAmNmCaEbn64hSfR+k+vaD9kGqbz/s2z6IdzPRB8BIM9vPzDoDFwCzwuaZBXw/9Phc4HXXdfkiIm0qrkcG7l5jZlOAV4B04CF3X2pmdwIL3H0W8CAw08wKCY4ILohnjSIiqSjuF525+xxgTti02xo9rgTOi3K1M2JQWrJL9X2Q6tsP2gepvv2wD/ugQ9zpTERE9k2HHqhORERaJqnCINWHsmjB9t9oZp+a2RIze83Mojq1LBk0tw8azXeumbmZdbizS1qyD8zse6HfhaVm9ni8a2xLLfg7GGJmb5jZotDfwqRE1NlWzOwhMytp6nR6C/xPaP8sMbPDWrRid0+KH4IO5xXA/kBnYDEwJmyefwf+FHp8AfBUouuO8/YfD3QLPb6uI21/S/dBaL4s4E1gPlCQ6LoT8HswElgE9A4975vouuO8/TOA60KPxwCrE113jPfBscBhwCdNvD4JeIngmq0jgfdast5kOjJI9aEsmt1+d3/D3XeGns4nuI6jI2nJ7wDAL4F7gMp4FhcnLdkHPwDuc/ctAO5eEuca21JLtt+BnqHHvdjzWqak5u5vEuHaq0bOAB71wHwg28wGNLfeZAqDVB/KoiXb39hVBN8OOpJm94GZHQrku/sL8Swsjlrye3AAcICZzTOz+WZ2Styqa3st2f5pwCVmVkRw5uKP4lNauxHtZwWQXPcziNlQFkmqxdtmZpcABcC327Si+NvrPjCzNIKRbi+PV0EJ0JLfgwyCpqLjCI4O3zKzg9x9axvXFg8t2f4LgYfd/bdmdhTBdUsHuXuq3PKwVZ+DyXRkEM1QFuxtKIsk1ZLtx8xOAqYCp7v77jjVFi/N7YMs4CBgrpmtJmgvndXBOpFb+nfwD3evdvdVwHKCcOgIWrL9VwFPA7j7u0AXgnGLUkWLPivCJVMYpPpQFs1uf6iJ5M8EQdCR2onr7XUfuPs2d89192HuPoyg3+R0d1+QmHLbREv+Dp4nOJkAM8slaDZaGdcq205Ltn8tcCKAmY0mCIPSuFaZWLOAy0JnFR0JbHP3L5tbKGmaiTzFh7Jo4fZPB3oAz4T6zde6++kJKzrGWrgPOrQW7oNXgJPN7FOgFviZu29KXNWx08Ltvwl4wMxuIGgeubwDfSnEzJ4gaALMDfWL3A50AnD3PxH0k0wCCoGdwBUtWm8H2kciItJKydRMJCIibURhICIiCgMREVEYiIgICgMREUFhIB2EmV0eGqW0/qfczBab2ZTQBYjxqmOamUV1ip6ZzTWzuW1UkkiLJM11BiItdB7BFZg9Q4//APQFbtvbQjH0F+DlKJf597YoRCQaus5AOgQzuxz4KzDS3QsbTX8D+Ka794ywjAGdQqNfiqQ0NRNJR/cBkGVmfc1stZk9ZmZXmtkyoAqYDGBm3czsbjNbZWZVoX+nhga/a2BmeWb2RzNbZ2a7Q//ONLPM0Ot7NBOZ2fVm9pmZ7TKzLWa2wMzOavT6Hs1EZjbKzJ4zs62h5fYYfbT+vcxspJm9aGY7zGyNmd0WXrdIc9RMJB3dfgRDMuwIPT8eGAfcAZQAq0N9Cq8Q3Ajll8DHBIPc/QLoQzC8AWbWG3gnNO1XwBKCJqgzCG60ssfAgGZ2MfBb4E7gLaArcHBoHRGZ2UDgbaAcmEIwFPsPgRfN7DR3Dx+a/DmCo6L/Br4b2rZ1oWkiLaIwkI4mPfThngV8DzgbmO3uO0PjNfUmaDbaUL+AmV0KHAN8O3TjEIDXQvPfbmZ3hwb+u4HgDlsF7r6o0Xs+sZd6jgKWuPudjabNaWYbbgzVeVR9k5eZzQE+Bf6LPe9T8Vt3r//gf9XMTiAYxllhIC2mQ0npaJYB1QQDFf4R+BtwZaPX5zcOgpBTgDXAO2aWUf8D/JNgALAjQ/OdDHwQFgTN+QAYZ2Z/MLOTzKxbC5Y5NlRnQ9+Hu9cShM44Mwvv/3gx7PknwJAoahTRkYF0OGcRnE1UDqxx9/BbX0YayrcvMJQgRCLJafTv4ijreZRgCOWrCM4aqg59y7/R3Vc3sUwfgnsYh9tAcOOS3sD2RtPD79mxO/SeIi2mMJCO5pPG36gjiHT63CZgFUGzUiSrQ/+W0YLbB37tzYLT9f4M/DnU53AyQR/CU8ARTSy2GegfYXp/gvo7yg2bpB1RM5FIcF1APrDD3RdE+CkLzfdPYLyZHdKaN3H3Le7+FMFduA7ay6z/Ao40s2H1E8wsHTgfWOTu5a15f5G90ZGBSNCvcAVBp/FvCZqCOgPDgdOBM919J8HZOhcRdNL+iuCso1yCs4n+LdKHtJnNIGiyepfg7KUDgEsJgqUp9fdx/j8zu52gSejfQ8tO3teNFYlEYSApz92rzew7wM3ANQSno1YAKwg6Z6tC8201swkEp5XeTNCHsBF4vX6eCOYRBM2lBPfkLgYeI7g7VVP1FJvZMcDdwP1AJvARMNndo726WaRFdAWyiIioz0BERBQGIiKCwkBERFAYiIgICgMREUFhICIiKAxERASFgYiIoDAQERHg/wOErwx18eSfugAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "from sklearn.metrics import precision_recall_curve\n", "\n", "y_scores = LR_clf.decision_function(X_valid)\n", "precision, recall, thresholds = precision_recall_curve(y_valid, y_scores)\n", "closest_zero = np.argmin(np.abs(thresholds))\n", "closest_zero_p = precision[closest_zero]\n", "closest_zero_r = recall[closest_zero]\n", "\n", "plt.figure(figsize=(6, 6))\n", "plt.xlim([0.0, 1.01])\n", "plt.ylim([0.0, 1.01])\n", "plt.title('Precision-Recall Curve', fontsize=18)\n", "plt.plot(precision, recall, label='Precision-Recall Curve')\n", "plt.plot(closest_zero_p, closest_zero_r, 'o', markersize = 12, fillstyle = 'none', c='r', mew=3)\n", "plt.xlabel('Precision', fontsize=16)\n", "plt.ylabel('Recall', fontsize=16)\n", "plt.legend(loc='lower left', fontsize=12)\n", "plt.axes().set_aspect('equal')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### F1 score\n", "F1-score is used when you want to seek a balance between precision and recall. It is the [Harmonic mean](https://en.wikipedia.org/wiki/Harmonic_mean) between precision and recall. \n", "\n", "$$ F1 = 2 * \\frac{1}{\\frac{1}{Precision} + \\frac{1}{Recall}} = 2 * \\frac{Precision * Recall}{Precision + Recall} $$." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy: 0.86\n", "Precision: 1.0\n", "Recall: 0.2631578947368421\n", "F1: 0.4166666666666667\n" ] } ], "source": [ "from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score\n", "accuracy = accuracy_score(y_valid, y_predicted)\n", "precision = precision_score(y_valid, y_predicted)\n", "recall = recall_score(y_valid, y_predicted)\n", "f1 = f1_score(y_valid, y_predicted)\n", "print('Accuracy:', accuracy)\n", "print('Precision:', precision)\n", "print('Recall:', recall)\n", "print('F1:', f1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Area Under ROC curve:\n", "\n", "ROC (Receiver Operating Characteristic) curve tells us how good is a classifier in **predicting the difference between two classes**. The binary classifier usually outputs the probability that an observation belongs to the positive class. If the probabilities for most observations are closer to 0 or 1, it is considered good in distinguish the two classes, whereas it is said to perform poorly if most probabilities are closer to 0.5. \n", "\n", "$$\\text{True Positive Rate (TPR)} = \\frac{\\text{True Positives (TP)}}{\\text{True Positives (TP) + False Negatives (FN)}}\n", "= \\frac{\\text{True Positives (TP)}}{\\text{Total Actual Positives}}$$\n", "\n", "$$\\text{False Positive Rate (FPR)} = \\frac{\\text{False Positives (FP)}}{\\text{False Positives (FP) + True Negatives (TN)}}\n", "= \\frac{\\text{False Positives (FP)}}{\\text{Total Actual Negatives}}$$\n", "\n", "* True Positive Rate (TPR) is percentage of positive observations that are classified correctly and we want to maximize it. \n", "* False Positive Rate (FPR) is percentage of negative observations that are classified incorrectly and we want to minimize it. \n", "\n", "Note that True Positive Rate is same as the recall above, but False Positive Rate is entirely different from the precision, as discussed below. \n", "\n", "ROC curve is calculated by plotting the True Positive Rate vs False Positive Rate for various threshold values for the probability. The area under ROC curve is used as a measure of how well the classifier distinguish between positive and negative classes. The greater the area, the better is the classifier. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The lesser the overlap, the fewer the false positives and false negatives and higher the AUC ROC score. \n", "\n", "![](https://cdn-images-1.medium.com/max/2000/1*AgDJbm6d8qr8ESHNv6VvKg.png)\n", "![](https://cdn-images-1.medium.com/max/2000/1*KNhNw8BsjbIETPF_BH8Qpg.png)\n", "\n", "Note: In all the examples illustrated here, the positive and negative classes are more or less balanced.\n", "\n", "The points on the ROC curve represents True Positive Rate and False Positive Rate for different values of the threshold for probability. When we decrease the threshold to correctly classify the positive observations and thereby increase True Positive Rate, we end up increasing False Positive Rate by misclassifying some negative observations as positives. The following gif illustrates how moving the decision thresholds corresponds to the points in the ROC curve. \n", "\n", "![](https://www.spectrumnews.org/wp-content/uploads/2016/08/fig-2-1.gif)\n", "\n", "The area under the ROC curve is inversely proportional to the overlap between the probabilities for the two classes as predicted by the classifier. The following gif shows how the curve changes with the overlap in the classes." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![](https://www.spectrumnews.org/wp-content/uploads/2016/08/fig-3-1.gif)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbkAAAHACAYAAAA/eRYhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XeYVPXZxvHvw9KbCywoUkSlCBgbiBoVEDFBUIhKFBUUu2IJxt5RE2PU5DVFMWIUscYSEQtFRMQkoqBiQUURQapSpAgusOzz/nFm19ndmd3ZZfrcn+uai51zzpx59gB77+/Mr5i7IyIiko1qpboAERGRRFHIiYhI1lLIiYhI1lLIiYhI1lLIiYhI1lLIiYhI1lLIiYQxs5Fm5mGPbWb2lZndYWb1o7zmYDN73sy+NbOtZrbYzO43szZRjq9jZqPM7L9mtj70mq/N7GEzOyix36FIbqmd6gJE0tSvgWVAE+AE4LrQ15eGH2RmI4BHgP8AvwFWAF2Bq4GhZtbf3T8KO74RMBk4GHgAuAP4AegIDAdeB5ol8hsTySWmweAiPzGzkQSh1cndF4Ztfw04HGjs7sWhbV2AD4GXgZNLtof2tQDeAYqB7u6+PbT9IWAE0Nfd347w/ie4+wsJ+vaqZGb13H1rqt5fJN50u1IkNu8DDYCCsG2jgTzg0vCAA3D3tcD1QCfgRAAzaw2MBMZFCrjQ66oMODPrY2avmdkGM9tsZh+a2Tlh+93MxpR7TYfQ9pFh28ab2TIzO8zM/mdmPwJ3mdmrZvZehPdtbWZFZjY6bNueZvaEma0O3XadZ2YnVPU9iCSLQk4kNh2ADcDasG1HA3PdfWWU17xC0JLrF3p+FEEoTqppEWY2hOCWZl3gAmAI8DCwRw1PuQvwNPAUcCzwJDABOMjMupU79rTQn0+FamlH0FrdH7gcGEzwy8DzZja4hvWIxJU+kxOJLM/MavPTZ3InAaPdfUfYMe2ACi2eEu6+2cxWh44j7M8lNSnIzAz4CzAPOCqs9Ti9JucLaQwMd/cXw97nI2AjwW3V68KOHQFMc/dvQ8/HAAb0CbVcAaaGwu82diLMReJFLTmRyD4HtgPrgH8C/3D3v9fgPBbHmroQtNgeKn97dCcUEXymWMrdfwSeB04PBStm9jOCFtuEsEMHAK8CG8ysdskDmArsb2ZN41SjSI0p5EQiO4GgB+RAgpbSKDM7o9wxywhuY0YU6klZACwNbSr5s6a3FluEvW+8fFeudVpiAkHLs2/o+QhgE/Bi2DGtgDMIfhkIf9xdrl6RlNHtSpHIPinpXWlmM4CPgLvN7Hl33xw65nXgHDNrHeVzuUEEv0jOCD2fCewAjgem1aCmNaE/I46/C7OV4DO7cNECJ1r36jeBb4DhZvYmcCrwXKiVV2It8BbwxyjnWFFFnSIJp5acSBVCXeqvImi5jArb9ReCjiV/M7My/5fMrDnBGLiFwL9D51kBjAfON7PDIr2Xmf2qklK+ABYD55bcRoxiCbBvuW2DKjm+Ag/GFj0BDCVozbal7K1KgCnAfsB8d58b4aGhCJJyGicnEibaOLnQvncJbjV2KGnRhI5/iKBF8wCwEtiHYDB4PnCMu38Qdo7GBJ9j9QwdP51gMPhewOlAT3ePOhg81Lvy38Cs0OtXEww+b+Xut4SOuRW4EbgZmA0cSdAS6wyc5e7jQ8eNB/q7e9so77UP8BmwnCDM9/CwHxhm1h54l+A27N8JArgZQcDu5e5nR/s+RJJFLTmR2N1I0Jq7sGRDKDCOANYT/KCfDtwQ+vPA8IALHf8DwdCDq4BDCbrvTwduIWiB9amsgFAvyGNCT/9J0IPxfIKAKfGHUC2XABMJQnBE9b5VcPfPgbkEt0cf93K/Ebv7NwRh/SFBq/U1YGzoe5iBSBpQS05ERLKWWnIiIpK1FHIiIpK1FHIiIpK1FHIiIpK1smIweEFBgXfo0CHVZYiISAK89957a9y9ZU1em9SQM7OHgeMIphIqP1g1fALagcAWYKS7v1/VeTt06MDcuXPjXa6IiKQBM6vRpOaQ/NuV4wkmdY3mWIL1tzoRjP0Zm4SaREQkDcVjiFtSW3LuPsvMOlRyyBBgQmjQ6Wwzy69kXkAREUmycbMWce/0L9i8LdK83vHjRcWsfuErGnaNOgFQTNLtM7k2/DRTOwSzrbchmCqpDDM7n6C1R/v27ZNSnIhIrktWwH3374UUfr2RHxdt2KlzpVvvykiTzkZsr7r7g+7e0917tmxZo88jRUSkmhIdcCWsVnyWYky3ltwyflo9GYKZz7Vch4hIGlp8Z7UWt6iWrb8vYujQZ+nRozW33lrz86RbS24ScIYFDgU26PM4EZHcU69ebV544RTGjOm7U+dJasiZ2VPA20AXM1tmZueY2YVmVjKr+6vAIoI1uMZRdu0uERHJQoWFRTz55McVtteuvfMRlezeladWsd+Bi5NUjoiIpFhhYRG/+tXTTJ36FQsXruPmmytdbara0u12pYiI5IjwgAO45ZaZvPnm4ri+h0JORESSrnzAAdxySx/69OkQ1/dRyImISFJFC7id7WQSiUJORESSJpkBBwo5ERFJkmQHHCjkREQkCVIRcKCQExGRJPjkk++YNeunFXOSEXCgkBMRkSTo2XN3Xn75NBo0qJ20gIP0m7tSRESyVL9+ezJ//ij23HPnls+pDrXkREQk7goLi1i2bGOF7ckMOFDIiYhInJV0MjniiIdZvHh9SmtRyImISNyE96JcsmQDffuOZ/36wpTVo5ATEZG4iDRMYOTIA8jPr5+ymtTxRERy0rhZi7h3+hdJW+k626VqHFxV1JITkZykgNs5jermlX6drgEHCjkRyVEKuJprVDeP0f07A+kdcKDblSIiLL5zUKpLyEjpHnCglpyIiNTQn//8dloHHCjkRESkhq688ueccMI+QHoGHOh2pYiI1FDdunk8/fRQXnjhM045Zd9UlxORWnIiIhKT7dt34O5lttWtm5e2AQcKORERiUFhYRHHH/8UN9/8RoWgS2e6XSkiIpUK70VZ0tHkttuOwsxSXFnV1JITEZGoIg0TyMurlREBBwo5ERGJIhPGwVVFISciIhVkQ8CBQk5ERMrJloADhZyIiITJpoADhZyIiIQZMeKFrAk4UMiJiEiY3/zmEBo1qgNkfsCBxsmJiEiYI45oz5Qpw3nrrSVcd92RqS5npynkRESkjCOOaM8RR7RPdRlxoZATyUHjZi3SythCYWERo0a9wvXXH0nHjs1TXU5C6DM5kRykgPtJo7p5qS4hJUp6UT7yyDz69h3PwoXrUl1SQijkRHKQAi7QqG4eo/t3TnUZSVd+mMDy5Zt46aUFKa4qMXS7UiTHLb5zUKpLkCSKNg7u8ssPS2FViaOWnIhIjsi2gd6xUMiJiOSAXAw4UMiJiGS9XA04UMiJiGS1XA44UMiJiGS12rVrkZ9fv/R5LgUcqHeliEhWq127Fo8/fiIA++xTkFMBBwo5EZGsV7t2LZ588iRq1bJUl5J0ul0pIpJFCguL+Oc/38fdy2zPxYADhZyISNYo6WRy7rkvcfXVr1UIulykkBMRyQLle1Hec8/bTJ++KMVVpZ5CTkQkw0UbJnDMMXunsKr0oJATEclguT4OrioKORGRDKWAq5pCTkQkAyngYqOQExHJMAq42CnkREQyzMKF63j77WWlzxVw0WnGE8lJ42Yt4t7pX2iFbMlI++7bimnThvOLXzzO5ZcfqoCrhEJOcpICLtCobl6qS5AaOuSQtnz66SjatGma6lLSmm5XSk5SwAUBN7p/51SXITEoLCxi0aLvK2xXwFVNLTnJeYvvHJTqEkSiKulkMm/eKmbOHMk++xSkuqSMopaciEiaCu9F+e23m+nbdzxr1mxJdVkZRSEnIpKGIg0TuPDCnhQUNExhVZlHIScikmY0Di5+FHIiImlEARdfCjkRkTShgIs/hZyISBpQwCWGQk5EJA3cf/8cBVwCKORERNLAb35zCMOH7wco4OJJg8FFRNJAXl4txo8fwokn7sMJJ3RNdTlZQy05EZEU2LZtB+5eZlteXi0FXJwlPeTMbICZLTCzhWZ2bYT97c3sDTP7wMw+MrOBya5RRCSRCguLGDz4KUaPnlIh6CS+knq70szygPuAY4BlwBwzm+Tun4YddiPwjLuPNbNuwKtAh2TWKSKSKOG9KEs6mtx77wDMLMWVZadkt+R6AQvdfZG7bwOeBoaUO8aBkqm1dwFWJLE+EZGEiTRMoFmzBgq4BEp2yLUBloY9XxbaFm4MMNzMlhG04i6NdCIzO9/M5prZ3NWrVyeiVhGRuNE4uNRIdshF+nWl/A3pU4Hx7t4WGAg8ZmYV6nT3B929p7v3bNmyZQJKFRGJDwVc6iQ75JYB7cKet6Xi7chzgGcA3P1toD6gBZREJCMp4FIr2ePk5gCdzGxPYDkwDDit3DHfAEcD482sK0HI6X6kxGzcrEXcO/0Lrf4tKaeAS72ktuTcvQi4BJgKfEbQi3K+md1mZoNDh10BnGdmHwJPASNdfWylGqoTcI3q5iW4GsllZ531ogIuxZI+44m7v0rQoSR8281hX38KHJ7suiR7VCfgRvfvnOBqJJddeeVhTJmykPXrCxVwKaJpvSSrLb5zUKpLkBzWo8fuTJ8+gunTF3HNNUekupycpJATEUmgHj12p0eP3VNdRs7S3JUiInFQWFjEiBEv8Mkn36W6FAmjkBMR2UklvSgff/wj+vV7VEGXRhRyIiI7ofwwgdWrtzB58pcprkpKKORERGoo2ji4q65SB/F0oZATEakBDfTODAo5EZFqUsBlDoWciEg1KOAyi0JORCRGW7cq4DKNQk5EJEZ16uTRtm3T0ucKuPSnGU9ERGJUq5bx4IPHA9C2bVMFXAZQyImIVEOtWsa4ccdjFmkNaEk3ul0pIhJFYWER9933LsXFZVf7UsBlDoWciEgEJb0oL7lkMqNGvVIh6CQzKORERMopP0zgH/94j1df1VRdmUifyUnCjZu1qFqrdYukUrRxcMcdpwV2M5FacpJwqQq4RnXzkv6ektk00Dv7KOQk4VIVcKP76zdviZ0CLjvpdqUk1eI7B6W6BJEKFHDZSy05EclpCrjsppATkZz2zTcbmDt3RelzBVx2UciJSE7r3LkFM2acSYsWDRRwWUifyYlIzttvv12ZP38Uu+7aONWlSJypJSciOaWwsIjPP19TYbsCLjsp5EQkZ5R0Mjn88If54IOVqS5HkkAhJyI5IbwX5bp1P9K//2OsWvVDqsuSBFPIiUjWizRM4NJLe7HbbrpFme0UciKS1TQOLrcp5EQkayngRCEnIllJASegkBORLKSAkxIKORHJOg8//IECTgCFnIhkoYsu6slFF/UEFHC5TtN6iUjWMTPuu28ggwZ1YtAgrSuYy6oVcmbWBTgSaAGMd/dvzawdsNbdtySiQBGRqmzdWkTt2rXIy/vp5pSZKeAktpAzszrAw8BpgAEOvAZ8C/wdmA9cn6AaJU2Mm7WIe6d/kZKVvkWiKelk0rp1Ex566PgyQScSa0vudmAwcB5BuC0J2/cqcD4Kuay3swHXqG5eHKsRidyL8uGHB2NmKaxK0kmsIXc6cJO7P2xm5X9SLQL2jG9Zko52NuBG99etI4mfSAG3xx67KOCkjFhDriXwSSX768ehFskgi+8clOoSJIdpHJzEKtab10uAg6Ps6wl8GZ9yREQqp4CT6og15B4HbjCzk4CS25VuZocBvwXGJ6A2EZEyFHBSXbHervwDcBDwLFCyANMbQBPgBeDe+JcmIvITBZzUREwh5+5FwAlmdgzwS6AVsBaY4u5TE1ifiAgA5533kgJOqi3WcXKtCAZ8v0YwhCB8Xy2gwN2/S0B9IiIAXHvt4Uyb9hXffbdZAScxi/V25UrgMODdCPsODG3XICgRSZju3VsxY8YZTJ68kCuv/Hmqy5EMEWvIVTbwpDZQHIdaREQq1b17K7p3b5XqMiSDRO1daWaNzWx3M9s9tKmg5HnYY2+Cqb6+TUq1IpITCguLGDbsOebOXZHqUiTDVdaSuwK4OfS1Ay9FOc6A38ezKBHJXeG9KKdMWcj06WfQs+fuVb9QJILKQu5lYBVBiN0P3AV8Xe6YrcCn7h7pszoRkWopP0xgw4atvP76IoWc1FjUkHP394D3AMzMgefdfU2yChOR3BJtHNw11xyRwqok08U6Tu4fiS5ERHKXBnpLosS8aKqZdQbOArpQcUJmd3fN2Csi1aaAk0SKdTB4D+Atgl6U7YEFQHOCmU9WAN8kqkARyV4KOEm0WCdovhN4BehE0BFluLvvBhwXOsc1iSlPRLLVtm07FHCScLHertyf4FZlyaDvPAB3f9XM7iDoeXlY/MvLDuNmLdrpVbVFsk2dOrXo2rWgNOQUcJIIsYZcPWCTuxeb2Tpg17B9nwL7xb2yLJJtAdeormZwk51nZvz5z78EYJdd6ivgJCFiDblFQMlAlfnASIJxdADDAU3OXIlsC7jR/TunugzJEiVBZ1bZzIEiNRdryE0GjgGeJlhb7qVQi64IaAFcmZjyss/iO9UJVXJTYWER9933LqNHH0pe3k/dARRwkkixjpO7PuzrKWZ2JDAUaEiwptykBNUnIlkgvBfl+++vYsKEX5UJOpFEiXmcXDh3nw3MjnMtIpKFyg8TePLJjznppK6ceGLXFFcmuWCnf5Uys25m9lQ8ihGR7BJtHJwCTpKl0pacBTfLf0YwAPwrd/8sbN/PCFYpOAH4MZFFikjm0UBvSQeVrSe3G/Bf4APgReATM3vUzGqb2d9D248jWKGgYzKKFZHMoICTdFFZS+5O4ACCteLeB/YErgbeJBj4/S/gKndflugiRSRzKOAknVQWcscAt7n7nSUbzOwTYCrwgLuPqskbmtkA4C8Es6Y8FH7+sGNOBsYQLNb6obufVpP3EpHkUsBJuqks5FoR3K4MV/K8Rh1NzCwPuI8gQJcBc8xskrt/GnZMJ+A64HB3/97MWtXkvUQk+Vau3MRHH31b+lwBJ6lWWe/KPIKVv8OVPN9cw/frBSx090Xuvo1gcPmQcsecB9zn7t8DuLtmUxHJEHvu2YyZM0fSunVjBZykharGyf3CzMI7ldQiuIU4wMz2CT/Q3Z+M4f3aAEvDni8DDil3TGcAM/svQdCOcfcp5U9kZucD5wO0b98+hrcWkWTo3LkFH398ES1aNEx1KSJVhtxtUbb/rtxzB2IJuUjz93iEmjoBfYG2wFtmtq+7ry/zIvcHgQcBevbsWf4cIpIEhYVFfPHFWvbbb9cy2xVwki4qC7lEjNZcBrQLe96WYNHV8sfMdvftwNdmtoAg9OYkoB4RqaGSTib/+99SpkwZzs9/3q7qF4kkWdSQc/cFCXi/OUAnM9sTWA4MA8r3nJwInAqMN7MCgtuXixJQi4jUUPlelAMGPM78+aNo126XFFcmUlZSZ0h19yLgEoJhCJ8Bz7j7fDO7zcwGhw6bCqw1s0+BNwjG4q1NZp0iEl2kYQK//e1hCjhJSzWaoHlnuPurwKvltt0c9rUDvw09RCSNaBycZBqtdSEiMVHASSZKeksuHYybtYh7p3+RVSt2iySSAk4yVU625FIVcI3q5iX9PUV2lgJOMlm1Q87MOprZIWaWsQNhUhVwo/t3Tvr7iuysp5/+RAEnGSvm25Vmdg5wK9A6tOlg4H0zew6Y7u4PJKC+hFt856BUlyCS1s48c38WLFjDnXf+VwEnGSemkDOzkQSzizwBTAMmhO1+BzgFyMiQE5HKmRl33HE0/fvvxdFH75XqckSqJdbblVcBf3H3M6i4AsFnwD4VXyIimaiwsIjt28ve0jczBZxkpFhDbm/glSj7NgHN4lOOiKRSSSeT0077d4WgE8lEsX4mt46yc06G6wysjE85IpIqkXpRPv30SeTl5WQnbMkSsf7rfQW40czCg87NLB8YDbwY98pEJGkiBVz37i0VcJLxYv0XfEPo2E+BlwmWx7kn9LwOQa9LEclAGgcn2SymkAutzn0Q8FegJcEKAs2BR4FDSlbxFpHMooCTbBfzOLnQoqU3hB4ikuEUcJILYmrJmdkdZqZhAiJZQgEnuSLWz+QuBeab2Vwzu9TMWiayKBFJrFGjXlHASU6INeRaAWcAq4E/A8vN7GUz+7WZ1UtYdSKSEDfccCRt2zYFFHCS3WL6TM7dfySY0usJM9sVOD30+Bew0cyedffzElemiMTT3ns3Z+bMM5k0aQGXX35YqssRSZhqD4Jx92/d/c/u3gM4mmDGk7PjXpmIJNTeezdXwEnWq8lSO/XM7BQzewmYAuxK9Cm/RCTFCguLGDr0Gd58c3GqSxFJuphDzsz6mtk/gW8JJmneFbgS2N3dByeoPhHZCSW9KJ9//jMGDnxSQSc5J9aldr4B2gBLgfuACe6+IJGFicjOKT9MYMuW7fz3v0vp06dDagsTSaJYB4O/RhBsbyaymEQYN2sR907/IiWrgYukSrRxcNdff2QKqxJJvlh7V56T6EISpbKAa1Q3L8nViCSeBnqL/CRqyJlZL+ATd98S+rpS7v5uXCuLk8oCbnT/zkmuRiSxFHAiZVXWkpsNHAq8G/raoxxnoX1p3yxafOegVJcgkjAKOJGKKgu5Y4HPQl8PJHrIiUiKFRUVK+BEIogacu4+NezrKckpR0RqIi/POOSQNqUhp4ATCcQ6hOBT4BR3/zjCvm7Ac+7eLd7FiUhszKw01MK/Fsl1sQ4h2AdoEGVfQ6BLfMoRkZoyM2699ahUlyGSVqozrVe0z+T2AzbEoRYRiVFhYRF33PEW2zT+U6RSlQ0huJRgHTkIAu45M9ta7rAGwO7Ac4kpT0TKC+9F+e67y3nmmV9TV2M+RSKq7HblCuC90NcdgQXA2nLHbAU+BcbGvzQRKa/8MIEXX1zAv//9GcOG7ZviykTSU2W9K58HnofgXj9wg7svSlJdIlJOtHFwCjiR6GKd1uvURBciItFpoLdIzVT2mdzVBJMyrwp9XRl397vjW5qIgAJOZGdU1pK7E5gJrAp9XRkHFHIicaaAE9k5lYVcA3cv6U0ZbYyciCSIAk5k51XW8WRrpK9FJDnWrt3CggU/dWhWwIlUX0yDwc1sLzM7IOx5PTO7xcyeNbNzE1eeSO5q06YpM2eeSYcO+Qo4kRqKdVqv+wnGw80LPb8duBz4AjjBzPLc/R8JqE8kp+2xRz4ffHAB+fn1U12KSEaKdVqvA4BZABYMmhsJXO/u3Qk6pVyYkOpEckhhYRFz5iyvsF0BJ1JzsYZcPrAm9PUBQAvgmdDz14C941yXSE4p6WTSu/d4Xn9dcy6IxEusIfcdsFfo62OAr919Seh5I0CzxIrUUHgvysLCIo477ikWLfo+1WWJZIVYP5N7Gfi9mXUGzgceDtvXHfg63oWJ5IJIwwSuueZw9tqrWQqrEskesYbctUAT4BRgOvC7sH0nAzPiXJdI1tM4OJHEi3Xuyo3AiCj7Do5rRSI5QAEnkhyxtuQAMLMmQC+gOcGyO3PcfVMiChPJVgo4keSJOeTM7EaC25YNAAtt3mJmf3D33yeiOJFso4ATSa6YQs7MLgZuA54AHieYtHk3YDhwm5mtc3ctnCpShYkTP1fAiSRRrC25S4D73f2SsG0fAlPNbANwKVodXKRKw4bty6JF33PDDTMUcCJJEGvI7QVcFmXfi4DmrxSJ0fXXH8mRR7bnyCP3SHUpIlkv1sHg64AuUfZ1Ce0XkXIKC4soLCyqsF0BJ5IcsYbcRILB4L8OzV0JgJmdQDBZ88REFCeSyUo6mZx44r8iBp2IJF6sIXct8DnwL4IelUvMbAvwHLAgtF9EQsJ7UU6evJATT/wXRUXFqS5LJOfEOhh8g5n9HDgBOJJgnNw64E3gRXfX3JUiIZGGCfTq1YbatWP9nVJE4iXmcXKhIHsu9BCRCDQOTiS9VPqrpZkNM7PZZrbGzBaa2e/NrFqzpIjkCgWcSPqJGnJm9mvgSYJB3/8FthB89va7aK8RyVUKOJH0VFlL7rfAK0Andx/i7vsBfwQuNTN9uCASooATSV+VhVUXYKy7bw/b9leCuSs1yEckZPToKQo4kTRVWcjlA2vKbVsd+lMrOoqE3HRTbzp2bA4o4ETSTVWdSLya20VyTps2TZk580z+/e/PuPTSQ1JdjoiEqSrk/hs2wUm4d8ptd3evF7eqRDJMmzZNFXAiaaiykPtj0qoQyRCFhUUMG/YcF1zQg2OP7ZTqckSkClFDzt2vS2YhIumu/FRdEyeeoqATSXMaCiASg/LDBLZt28F7761McVUiUpWkh5yZDTCzBaEZVKJO7GxmQ83MzaxnMusTKS/aOLgbb+ydwqpEJBZJDTkzywPuA44FugGnmlm3CMc1IVik9Z1k1idSngZ6i2S2ZLfkegEL3X2Ru28DngaGRDjuduAuoDCZxYmEU8CJZL5kh1wbYGnY82WhbaXM7ECgnbu/XNmJzOx8M5trZnNXr15d2aEi1aaAE8kOyQ65SIPuSgeWh+bE/D/giqpO5O4PuntPd+/ZsmXLOJYouW7HjmJOOOFfCjiRLBBzyJnZrmZ2h5n9x8w+LfkszcxGVaNzyDKgXdjztsCKsOdNgH2BmWa2GDgUmKTOJ5JMeXm1OProPUufK+BEMldMa8OZ2T7ALKAOMAc4DKgf2t0F+DkwPIZTzQE6mdmewHJgGHBayU533wAUhL3vTOBKd58bS50i8XLllT8HYPPmbdxyS9/UFiMiNRbrAqj3AF8DvwR+ALaF7fsv8IdYTuLuRWZ2CTAVyAMedvf5ZnYbMNfdJ8VcuUiClQSdiGSuWEOuDzDc3deHhgGEWwW0jvUN3f1V4NVy226OcmzfWM8rUlOFhUXcccdbXHvtETRsWCfV5YhIHFWn48mOKNtbAD/GoRaRpCvpRXn77bMYPPgptmzZXvWLRCRjxBpyc4ERUfadBMyOTzkiyVN+mMDrr3/Nc899muKqRCSeYr1d+Xtgipm9BDxB0O2/t5ldAJwMHJWg+kQSIto4uDPO2D+FVYlIvMXUknP36QRhtj/wJMF4tz8Dg4CT3f2/CatQJM400Fskd8TaksPd/21mLwDdgVbAWuBjdy+STUumAAAgAElEQVROVHEi8aaAE8ktMYccBMt/A58kqJa4GDdrEfdO/4LN26L1k5FcpYATyT2xDgY/uapj3P2ZnS9n50ULuEZ1y498kFyigBPJTbG25J6Ost3Dvk6LkIsWcKP7d05BNZIuNm7cypIlG0qfK+BEckOsIdc1wrYWwHHAUODMuFUUR4vvHJTqEiRNtGrViBkzzqBfvwmcckp3BZxIjogp5Nx9QZRd/zOzHcBFwNtxq0okAVq3bsKcOefRuHHdVJciIkkSj6V23gAGx+E8InFTWFjEf/7zTYXtCjiR3BKPkOsJbInDeUTioqSTSb9+jzJpUrSbECKSC2LtXXl1hM11CdZ+OwEYF8+iRGqqfC/KoUOf4eOPL6JLl4IqXiki2SjWjid3Rti2g2BNuP8Dbo1bRSI1FGmYwPXXH6mAE8lhsYZcgwjbtmu2E0kXGgcnIpFU+ZmcmdUFxgD7uvvWsIcCTtKCAk5Eoqky5Nx9G/AboFHiyxGpHgWciFQm1t6VHwLdElmISHUp4ESkKrGG3NXANWbWP5HFiFTH1KkLFXAiUqlYQ+5hIB+YamabzOxLM/si7KHBSJJ0Q4bsw9/+diyggBORyGLtXfkeZSdjFkkLl1zSi1692tCrV5tUlyIiaSjWuSuHJboQkaoUFhaxY0cxjRqVnZpLASci0US9XWlmi8xs/2QWIxJNSSeTgQOfZPPmbakuR0QyRGWfyXUA6iWpDpGowntRzpq1hIEDn2SbVn4XkRjEY4JmkYSJNEzgqKM6UFcrvYtIDKoKOXU2kZTRODgR2VlVdTy51czWxHAed/e0XB1cMpMCTkTioaqQOwDYGsN51OKTuFHAiUi8VBVyv3L3d5NSiQgKOBGJL3U8kbRy9dWvKeBEJG4UcpJWbrqpN/vu2wpQwInIzot1Wi+RpGjZshEzZpzBc899ykUXHZzqckQkw0UNOXdXK08Szt0xszLbWrZspIATkbhQkEnKFBYWMXjw0zz33KepLkVEspRCTlKipBflyy9/wbBhzynoRCQhFHKSdOWHCezY4Xz22eoUVyUi2UghJ0kVbRzcTTf1SWFVIpKtFHKSNBroLSLJppCTpFDAiUgqKOQk4RRwIpIqCjlJqOJi58QT/6WAE5GUUMhJQtWqZZxwwj6lzxVwIpJMmtZLEu6883oAsGLFJm65pW9qixGRnKKQk6QoCToRkWTS7UqJq8LCIq655jU2boxlrV0RkcRSyEnclPSivOuu/zFgwOMKOhFJOYWcxEX5YQJvv72MZ5+dn+KqRCTXKeRkp0UbB3fOOQelsCoREYWc7CQN9BaRdKaQkxpTwIlIulPISY0o4EQkEyjkpNoUcCKSKRRyUm1btmzn2283lz5XwIlIutKMJ1JtzZs3YPr0EfTv/xhDhnRRwIlI2lLISY20aNGQ//3vbBo0qJPqUkREotLtSqlSYWER06cvqrBdASci6U4hJ5Uq6WTyy18+zpNPfpzqckREqkUhJ1GF96IsLnZGjHiBjz/+NtVliYjETCEnEUUaJnDTTb352c92TWFVIiLVo5CTCjQOTkSyhUJOylDAiUg2UchJKQWciGQbhZwACjgRyU4KOQFg5szFTJumgBOR7KKQEwAGDOjIww8PwUwBJyLZI+nTepnZAOAvQB7wkLvfWW7/b4FzgSJgNXC2uy9Jdp25aOTIAzjggN044IDdUl2KiEhcJLUlZ2Z5wH3AsUA34FQz61busA+Anu6+H/AccFcya8wVhYVFbNhQWGG7Ak5Eskmyb1f2Aha6+yJ33wY8DQwJP8Dd33D3LaGns4G2Sa4x65V0MjnmmMdYv75i0ImIZItkh1wbYGnY82WhbdGcA0yOtMPMzjezuWY2d/Xq1XEsMbuF96KcM2cFv/jFYxQWFqW6LBGRhEh2yFmEbR7xQLPhQE/g7kj73f1Bd+/p7j1btmwZxxKzV6RhAgMHdqJ+fa24JCLZKdk/3ZYB7cKetwVWlD/IzPoDNwB93H1rkmrLahoHJyK5KNktuTlAJzPb08zqAsOASeEHmNmBwD+Awe7+XZLry0oKOBHJVUkNOXcvAi4BpgKfAc+4+3wzu83MBocOuxtoDDxrZvPMbFKU00kMFHAiksuS/mGMu78KvFpu281hX/dPdk3ZSgEnIrlOM55ksRtvnKGAE5GcppDLYjfe2JuDD94dUMCJSG5S3/Eslp9fn2nTRvDss/M577weqS5HRCTp1JLLIu4Vhxzm59dXwIlIzlLIZYnCwiKOO+4pxo+fl+pSRETShm5XZoHwXpSTJ38JBCsKiIjkOrXkMlz5YQLu8M03G1JclYhIelDIZbBo4+BuvrlPCqsSEUkfCrkMpYHeIiJVU8hlIAWciEhsFHIZRgEnIhI7hVwGcXeGDn1GASciEiOFXAYxM04//WfUqhWsPauAExGpnMbJZZhTT/0ZAF9+uU69KEVEqqCQy0AlQSciIpXT7co0VlhYxOWXT2Ht2i2pLkVEJCMp5NJUSS/Ke+99h/79H1PQiYjUgEIuDZUfJjBv3iqee+7TFFclIpJ5FHJpJto4uAsu6JnCqkREMpNCLo1ooLeISHwp5NKEAk5EJP4UcmlAAScikhgKuRRTwImIJI5CLsW2b9/Bpk3bSp8r4ERE4kcznqRYkyb1mDLldAYMeIJjjtlLASciEkcKuTTQpEk9Zsw4g3r19NchIhJPul2ZZIWFRbz88hcVtivgRETiTyGXRCWdTI4//in+8Y+5qS5HRCTrKeSSpHwvygsvfIX33luR4qpERLKbQi4Jog0T6NFj9xRWJSKS/RRyCaZxcCIiqaOQSyAFnIhIainkEkQBJyKSegq5BFDAiYikB4VcAsyevYzp0xeVPlfAiYikhkIuAfr27cDTTw8lL88UcCIiKaRpNhJk6NBufPTRRXTr1jLVpYiI5Cy15OKgsLCINWu2VNiugBMRSS2F3E4q6WRy1FGPsnr15lSXIyIiYRRyOyG8F+Unn3xHv34T2Lx5W9UvFBGRpFDI1VCkYQInndSVRo3qprAqEREJp5CrAY2DExHJDAq5alLAiYhkDoVcNSjgREQyi8bJxUgBl36Ki4tZtmwZmzerV6tIJqtTpw6tWrWiadOmcT+3Qi5Gt9/+pgIuzaxZswYzo0uXLtSqpZsSIpnI3fnxxx9Zvnw5QNyDTj8ZYnT99UfSu/cegAIuXaxfv55dd91VASeSwcyMhg0b0qZNG7777ru4n18tuRg1alSXV189jWef/ZSRIw9IdTkC7Nixgzp16qS6DBGJgwYNGrB9+/a4n1e/AkdRXOwVtjVqVFcBl2bMLNUliEgcJOr/skIugsLCIgYNepK///3dVJciIiI7QSFXTkkvyilTFnLppZMVdCIS1XXXXce9996b6jIywl//+leuvfbapL+vQi5MpGECa9dWXF1ApCodOnRg+vTpcT3n+PHjycvLo3HjxjRt2pT999+fl19+Oa7vUZmZM2dSq1YtGjduTJMmTejSpQuPPPJImWPcnbvvvptOnTrRoEED2rdvz7XXXsvWrVvLHPfuu+8ycOBA8vPzad68Ob169apwrnS3evVqJkyYwAUXXJDqUnbKvHnz6NGjBw0bNqRHjx7Mmzcv6rGLFy9m4MCBNGvWjN12241LLrmEoqKi0v3nn39+aW/n8ePHl3nt+eefz+OPP56QziWVUciFRBsHd8stfVNXlEg5hx12GD/88APr169n1KhRDBs2jPXr18f9fcJ/cIXbfffd+eGHH9i4cSP/93//x3nnnceCBQtK91922WU8+OCDTJgwgU2bNjF58mRmzJjBySefXHrM22+/Tb9+/ejTpw8LFy5k7dq1jB07lsmTJ8f9+4jle6qp8ePHM3DgQBo0aFDt17o7xcXFca2nJrZt28aQIUMYPnw433//PWeeeSZDhgxh27bIE82PGjWKVq1asXLlSubNm8ebb77J/fffX7p///335/777+eggw6q8Nr69etz7LHHMmHChIR9P5Eo5NBAb0mucePG0bFjR5o3b87gwYNZsWJF6b5p06bRpUsXdtllF0aNGkWfPn146KGHKpyjVq1ajBgxgs2bN/Pll1+Wbp89ezY///nPyc/PZ//992fmzJml+77++mt69+5NkyZN6N+/PxdffDHDhw8Hgt/QzYx//vOftG/fnn79+lX6PZgZAwcOpHnz5nz00UcAfPnll9x///088cQTHHbYYdSuXZvu3bvz/PPPM2XKFGbMmAHAVVddxZlnnsk111xDQUEBZkaPHj145plnKr1mXbt2pUmTJnTr1o3333+/tI6FCxeWHjdy5EhuvPFGIGh5tm3blj/+8Y/stttunHXWWXTt2rVM67eoqIiCgoLS81V2/cqbPHkyffr0KX3+/fffc9xxx9GyZUuaNWvGcccdx7Jly0r39+3blxtuuIHDDz+chg0bsmjRIjZs2MA555xD69atadOmDTfeeCM7duwA4KuvvqJfv360aNGCgoICTj/99Lj/QjNz5kyKiooYPXo09erV47LLLsPdS/+uyvv66685+eSTqV+/PrvtthsDBgxg/vz5pfsvvvhijj76aOrXrx/x9X379uWVV16J6/dQlZwfQqCAyw4drk3ef5zFdw6q8WtnzJjBddddx7Rp0+jevTtXXnklw4YNY9asWaxZs4ahQ4cyfvx4Bg8ezH333ce4ceMYMWJEhfPs2LGDRx55hDp16rDHHsH4zeXLlzNo0CAee+wxBgwYwOuvv85JJ53E559/TsuWLTnttNM4/PDDmT59euntwsGDB5c575tvvslnn31W5djD4uJiXn75ZdasWUPHjh0BeP3112nbti29evUqc2y7du049NBDee211zj00EN5++23uf3222O+Zs8++yxjxoxh4sSJ9OzZk6+++irmoSOrVq1i3bp1LFmyhOLiYu6++26eeuopjjvuOACmTp1KQUEBBx10UJXXr7yPP/6YLl26lLkmZ511Fs888ww7duzg7LPP5pJLLmHixImlxzz22GNMnjyZLl264O78+te/Ztddd2XhwoVs3ryZ4447jnbt2nHBBRfg7lx33XX07t2bjRs3ctJJJzFmzJionwHut99+fPPNNxH3nXbaaWVaXCXmz5/PfvvtV6Zn43777cf8+fMZMGBAheN/85vf8PTTT9O3b1++//57Jk+eXK2/y65du/Lhhx/GfHw85HTIKeAk2Z544gnOPvvs0ts5f/jDH2jWrBmLFy9m1qxZdO/enRNPPBEIbv3dc889ZV4/e/Zs8vPz2bx5M7Vr1+bxxx+nVatWADz++OMMHDiQgQMHAnDMMcfQs2dPXn31VY466ijmzJnD66+/Tt26dTniiCMqBBzAmDFjaNSoUdT6V6xYQX5+Pj/++CNFRUX8+c9/5sADDwSCGWhat24d8XWtW7dmzZo1fP/99xQXF0c9LpKHHnqIq6++moMPPhigNFRjUatWLW699Vbq1asHBD/sDzzwQLZs2ULDhg158sknOe2004DKr9+ZZ55Z4dzr16+nSZMmpc9btGjBSSedVPr8hhtu4KijjirzmpEjR9K9e3cAvv32WyZPnsz69etp0KABjRo14vLLL+fBBx/kggsuoGPHjqXfa8uWLfntb3/LrbfeGvV7LWlRV8cPP/zALrvsUmbbLrvswqZNmyIe36dPH8aNG0fTpk3ZsWMHZ555Jr/61a9ifr8mTZqwYcOGate5M3L2dqW7c8opzyngJKlWrFhR2vICaNy4MS1atGD58uWsWLGCdu3ale4zM9q2bVvm9Yceeijr16/n+++/Z/Dgwbz11lul+5YsWcKzzz5Lfn5+6eM///kPK1euZMWKFTRv3pyGDRuWHh/+XpVtC7f77ruzfv16Nm7cyGWXXVbmtlZBQQErV66M+LqVK1dSUFBAs2bNqFWrVtTjIlm6dCl77713zMeHa9myZZlbZx07dqRr16689NJLbNmyhUmTJpWGXGXXL5JmzZqVCYMtW7ZwwQUXsMcee9C0aVN69+7N+vXrS28/Qtnru2TJErZv307r1q1L3++CCy4o7Zjx3XffMWzYMNq0aUPTpk0ZPnw4a9asqdF1iKZx48Zs3LixzLaNGzeWCe8SxcXF/PKXv+TEE09k8+bNpb+0XHPNNTG/36ZNmyqEaqLlbEvOzDjnnAOZPPlLtm8vVsBluJ25hZhMu+++O0uWLCl9vnnzZtauXUubNm1o3bp1mc9w3L3M83CNGzfm/vvvZ++99+bss8/mwAMPpF27dowYMYJx48ZVOH7JkiWsW7eutAUDQXiUF+uA3Hr16vHHP/6RLl26MHHiRH71q1/Rr18/Ro0axbvvvlvmluXSpUuZPXs2N910Ew0bNuSwww7j+eefr9DKiaZdu3Z89dVXEfc1bNiQLVt+6gG9atWqMr8YRPp+Tj31VJ566imKi4vp1q1baWupsusXyX777ccXX3xR2sL805/+xIIFC3jnnXfYbbfdmDdvHgceeCDuP00sEV5Pu3btqFevHmvWrKF27Yo/iq+77jrMjI8++ogWLVowceJELrnkkqj1dO/evcy/rXDDhw/ngQceiPiaP/3pT7h7aW0fffQRF198cYVj161bx9KlS7nkkkuoV68e9erV46yzzuLGG2/krrvuilpXuM8++4z9998/pmPjJWdbcgCDB3fhuedO5vbbj1LASdxt376dwsLC0kdRURGnnXYajzzyCPPmzWPr1q1cf/31HHLIIXTo0IFBgwbx8ccfM3HiRIqKirjvvvtYtWpV1PO3aNGCc889l9tuuw0IfpC99NJLTJ06lR07dlBYWMjMmTNZtmwZe+yxBz179mTMmDFs27aNt99+m5deemmnvr+6detyxRVXlL5/586dufDCCzn99NOZPXs2O3bsYP78+Zx00kn079+f/v37A3DXXXcxfvx47r77btauXQvAhx9+yLBhwyK+z7nnnss999zDe++9h7uzcOHC0h/mBxxwAE8++SQ7duxgypQpvPnmm1XWPWzYMKZNm8bYsWNLW3FVXb9IBg4cWOb9Nm3aRIMGDcjPz2fdunWV3lqE4BbuL37xC6644go2btxIcXExX331Vek5N23aROPGjcnPz2f58uXcfffdlZ5v/vz5/PDDDxEfkQIOgo4geXl5/PWvf2Xr1q38/e9/B4jY8aigoIA999yTsWPHUlRUxPr163n00UfLhNa2bdsoLCzE3Uv//Yf3In3zzTc59thjK/0+4s7dM/7Ro0cPL7HHNS+XPiS7ffrpp6kuIao99tjDgTKPG264wd3dx44d63vttZc3a9bMBw0a5EuXLi193eTJk71Tp07etGlTv+iii/zQQw/1CRMmuLv7I4884ocffniZ91m6dKnXrVvXP/zwQ3d3nz17tvfu3dubNWvmBQUFPnDgQF+yZIm7uy9cuNCPOOIIb9y4sffr18/PO+88P/vss93d/euvv3bAt2/fHvV7euONN7xNmzZltm3evNlbtGjhkyZNcnf3HTt2+J133ul77723169f39u2betXXXWV//jjj2Ve98477/iAAQO8adOm3qxZM+/Vq5c/+uijUd977Nix3rlzZ2/UqJF3797d33//fXd3nzNnjnfr1s0bN27sw4cP92HDhpVe50j1lujXr5/n5eX5ypUry2yv7PqVt3r1am/Tpo1v2bLF3d2XL1/uffr08UaNGnmnTp38gQceKHNN+/Tp4+PGjStzjvXr1/uFF17obdq08aZNm/oBBxzgTz31lLu7f/LJJ37QQQd5o0aNfP/99/d77rkn6vezM95//30/6KCDvH79+n7ggQeWXlt399///vc+YMCA0ucffPCB9+nTx/Pz871FixY+dOhQ//bbb0v39+nTp8K/+zfeeMPd3X/88Udv06aNr1q1Kmot0f5PA3O9hvlg7hXnaMw0PXv29Llz5wJle9mF38IqLCziiiumcuONvWnduuL9Zsk8n332GV27dk11GQlTXFxM27ZteeKJJ2K+tVcdp5xyCvvss0+VLQ6J7vrrr6dVq1aMHj061aWkvb/97W8sXbq00lub0f5Pm9l77t6zJu+bE5/JhfeinDFjMTNmnKGgk7Q0depUDjnkEBo0aMDdd9+Nu3PooYfG5dxz5syhefPm7LnnnkybNo0XX3wxJdMsZZM77rgj1SVkjEsvvTQl75v1n8mVHybw+edr+Pe/P0txVSKRvf322+y9994UFBTw0ksvMXHixBrNqBHJqlWr6Nu3L40bN+ayyy5j7Nixpd3/RbJVVrfkoo2Du/jiXpW8SiR1xowZw5gxYxJy7uOPP57jjz8+IecWSVdZ25LzomIN9M4B2fCZsogk7v9yVrbkvKiY7/69kG++/mmQowIu++Tl5bF9+3bq1q2b6lJEZCf9+OOPMU/XVh1Jb8mZ2QAzW2BmC82swqfeZlbPzP4V2v+OmXWozvlLAq5QAZf18vPz+fbbb9NiNncRqRl3Z8uWLSxfvrx0irp4SmpLzszygPuAY4BlwBwzm+Tun4Yddg7wvbt3NLNhwB+BU2I5f2FhkQIuhxQUFLBs2bIyS72ISOapU6cOu+66K02bNo37uZN9u7IXsNDdFwGY2dPAECA85IYAY0JfPwf83czMY7hh6+5Q/NNhCrjsVqtWLdq3b5/qMkQkjSX7dmUbIHzCvGWhbRGPcfciYAPQovyJzOx8M5trZnNXr14NQIMGdWh5Uifq79GEXQ5vrYATEclxyW7JRZr9tXwLLZZjcPcHgQchmPGkZHutOrVo9etOWF7WdhwVEZEYJTvklgHha3m0BVZEOWaZmdUGdgHWxfoGmTIbvYiIJF6ymztzgE5mtqeZ1QWGAZPKHTMJKFmhcCgwI5bP40RERMpL+gTNZjYQuBfIAx5299+b2W0Es0xPMrP6wGPAgQQtuGElHVUqOedqIHwhpQIgvqsLZiddp9jpWsVO1yo2uk6x6+LuNZpwOCtWISjPzObWdMbqXKLrFDtdq9jpWsVG1yl2O3Ot1DtDRESylkJORESyVraG3IOpLiBD6DrFTtcqdrpWsdF1il2Nr1VWfiYnIiIC2duSExERUciJiEj2yuiQS/SyPdkihuv0WzP71Mw+MrPXzWyPVNSZDqq6VmHHDTUzN7Oc7AIey3Uys5ND/67mm9mTya4xXcTw/6+9mb1hZh+E/g8OTEWdqWZmD5vZd2b2SZT9ZmZ/DV3Hj8zsoJhO7O4Z+SAYTP4VsBdQF/gQ6FbumFHAA6GvhwH/SnXdaXqdjgIahr6+KBevU6zXKnRcE2AWMBvomeq60/E6AZ2AD4BmoeetUl13Gl+rB4GLQl93Axanuu4UXavewEHAJ1H2DwQmE8xvfCjwTiznzeSWXOmyPe6+DShZtifcEODR0NfPAUebWaQJoLNZldfJ3d9w9y2hp7MJ5hTNRbH8mwK4HbgLKExmcWkklut0HnCfu38P4O7fJbnGdBHLtXKgZCG1Xag4n29OcPdZVD5P8RBgggdmA/lm1rqq82ZyyMVt2Z4sF8t1CncOwW9LuajKa2VmBwLt3P3lZBaWZmL5N9UZ6Gxm/zWz2WY2IGnVpZdYrtUYYLiZLQNeBS5NTmkZp7o/y4Dkr0IQT3FbtifLxXwNzGw40BPok9CK0lel18rMagH/B4xMVkFpKpZ/U7UJbln2Jbgz8JaZ7evu6xNcW7qJ5VqdCox39z+Z2WHAY6FrVZz48jJKjX6eZ3JLrjrL9lCTZXuyRCzXCTPrD9wADHb3rUmqLd1Uda2aAPsCM81sMcHnApNysPNJrP/3XnT37e7+NbCAIPRyTSzX6hzgGQB3fxuoTzB5s5QV08+y8jI55LRsT2yqvE6hW3D/IAi4XP3sBKq4Vu6+wd0L3L2Du3cg+PxysLvPTU25KRPL/72JBB2aMLMCgtuXla4mkqViuVbfAEcDmFlXgpBbndQqM8Mk4IxQL8tDgQ3uvrKqF2Xs7Up3LzKzS4Cp/LRsz/zwZXuAfxI0/RcSWrYndRWnRozX6W6gMfBsqF/ON+4+OGVFp0iM1yrnxXidpgK/MLNPgR3AVe6+NnVVp0aM1+oKYJyZXU5w+21kDv4yjpk9RXB7uyD0+eQtQB0Ad3+A4PPKgcBCYAtwVkznzcFrKSIiOSKTb1eKiIhUSiEnIiJZSyEnIiJZSyEnIiJZSyEnIiJZSyEnacPMRoZm9o/06F/Nc50bel1S5uE0s9+Vq/f70MoXcR+2Yma1Q+9xY9i2E81sdIRj+4eOPSLedVRSX8dy12KHma00s8fMrMppmKKc8yAzG2Nm+fGuV7Jbxo6Tk6z2a4LZDcJ9mopCauCw0J8tgAuAp8ysrrtPiNcbhMZeHUbZefxOBI4A7i13+LuhmubH6/2r4XfAK0C9UA03A/uY2WGhuWSr4yCCcVPjgVybGkx2gkJO0tE8d1+Y6iJqIjQ7OgBmNo1gOqvRQNxCrvz7VHHcRoKZWVLhq7A63zSzegSTER8A5NosMZIiul0pGcXMGpjZX0ILcW4O3QabZGZdYnjtCDObF3rdhtDCi+eWO+YoM5thZj+EHpPNrFtNanX37cA8oGPY+Xcxs/tDdW+zYDHN35SroamZ/d3MlprZVjP71sxeM7POof1lblea2ePA6cAeYbcIF4b2lbldaWYPmtkKM8sr9571Q9fknrBtrczsH6Hjt5nZZ2Z2Tk2uRcj7oT/bl3vv31mwYOhGM1tjwcK9vcL2nwuMCz39Oux7bBt2PW4IXcutZrbczO4OharkOLXkJB3lWTChdgl39x2hrxuEHrcBqwhuC14MvG1m+0Sbe9PM+hCsLXgvwTRKeQQLVDYLO2YI8DzBHHmnEfwSeC3BDPr7ufvyGnwvexK6vRYKlsnAfsBNBLcQBwP3mlkLd7859Jq/AAMIJsxeSDBZ7xEEE4xHckvomP2BE0Lboq11N4FgrbejgWlh24cQrGn2WKjWfOC/BNMq3QwsJphSaVzo9uvYmN4Zvp8AAAWfSURBVL77sjqE/vyq3PbdgT8R3KJuTDDf7FtmdpC7zwdeJFh09DqC27Il8xWW/F0/BRwL3EnQau1O8O+jPXBKDeqUbJLq1WD10KPkQbCEjUd4/KeS1+QBjQjmsrs0bPu5ode2DT2/FviukvMYwQ/yqeW25xPMe3pPFbX/LvR+tUOPXQkWV/WS1wK/Cj0fXu614wlCqXno+efAXZW8V+3QeW4M2/Y4EVaUBvqHjj0i7PtcBDxW7riXgY/Cnt8K/AjsXe64R4BvgbxK6usYes+zQ7U2IgjVFcDTVVzHPIJg/Qr4U4S/zw7ljj8qtP20ctvPDG3/War/XeuR2oduV0o6OgE4OOxR5haZmQ0zs3fNbANQBPxA0Lqr7JblHKClmU0ws0FmVr5VtA+wB/BE6PZX7VBr8gfgHaB3jLVvDz1WAVcBfyZokRE6RxHB6tDhHifonHFIWK3nmNm1ZtbDgnXs4sLdPfR+J5hZIwAzawn8krKfGw4A/gcsKXc9pgKtqPxal/gnwbX4AZhO0FI7s/xBZvYLM5tpZmsJrs82gpZbLO8xgOAXhBfK1VnSSj0yhnNIFlPISTr6xN3nhj0WlOwwsxMIbk99QrDY5CEEQbiOYImSiNz9dYJbVx0IloFZY2bTzGzf0CGtQn8+yk9BVfIYQOwrypcEc0egibtf4T+tz9ccWOMVexauCtsPMIrgM6jzCDpofGdmfzKzBjHWUJUJBK2rE0PPTyX4WfBk2DGtgH5UvBZPhfbHcj1uJbgWfYGxoa//Fn6AmR1M0ANzA0HL79DQcZ9Qyd9nuTrrE7Tkw+ssWWcs1r83yVL6TE4yzTDgc3c/u2SDmdUnuK1YKXd/BnjGzBoT/AD/IzDZzNoDJcvAXA28EeHlMS0k65WvLbeOYBmR2uWCbrfQn2tD59hEcHv1WjPrQDCk4g8ELZYb2EnuvtDMZgPDCT6DGw687u7hC1CuJRii8Nsop1kQZXu4xWHX400zawqca2YPuHtJJ5ShBN/XSeHXxMyaE9wWrcpagoCLtpp9lYtqSnZTyEmmaUhwSyvcGVTjroS7/0CwondHgg4PzQjG4S0Furn73f/f3rmDRhVEYfg7pJQoWMhWVnYWWkqs0liICGIpAbGw8YIRCxtB8AViMCgiFoKojRJMGsEtAhIVJJUaREFEF0QEEVeFGFTkWJxZcx13NwYDizf/B9PcedwzzDJnz8w/d5bI1pwp4ACwE7hRer6LmOin29jaAE6b2RBxK3knvhJLtn/LNeCcmQ0SkdNQll8nzvk13P39ItrtxiGi70cIoQvMj+evO7/MbAshRnlWqtv6k5H3sU4IiVa4+9QS2SkqhJyc+N+oA+eT1P02MUHvAz53q2RmJ4ilqzuEOm8tUBAXV35IZQpgPEWGY0SUUAMGgJfufvYfbb8FPCAUijViEt9GCG6OuXsz2TENjBNLdrOEuGI9cXt7J54Ce8xsL/AQmHP3J13KXwdGCWc3C0xk+SNEBHnPzEaB50A/sXc54O47WCTu/sbMLgLDZrbR3R8R41kAl83sSmr/MH9GYK2PARTpyMR34LG7T5rZGLEnd4Y4/A6xLL0VOOjuuZpTLCd6rXxRUmol5tWV67qU6QNOEpPgF8JpbSBEDZdK5XJ15XZCjPCWiApeE/tetaz9zcQeUZOIrl4R+1CbFrD9OEnXsUC5VcCFZMc3Ytlvf1ZmhHBUnwjRxgxQlPLbqSv7ieiwmfJepOe/qSuz90ykvKsdbF1NHGdoJFvfAXcpqVg71GupK3e3yVuT+nSz9Gw4vWOOcFKDwH1gMqt7NI37j2xs+4gIeSaN2UfifOIpYGWvf9dKvU26GVwIIURlkbpSCCFEZZGTE0IIUVnk5IQQQlQWOTkhhBCVRU5OCCFEZZGTE0IIUVnk5IQQQlQWOTkhhBCV5SdJIJTBUnp3FQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "from sklearn.metrics import roc_curve, auc\n", "\n", "fpr, tpr, _ = roc_curve(y_valid, y_scores)\n", "roc_auc_lr = auc(fpr, tpr)\n", "\n", "plt.figure(figsize=(7, 7))\n", "plt.xlim([-0.01, 1.00])\n", "plt.ylim([-0.01, 1.01])\n", "plt.plot(fpr, tpr, lw=3, label='LogRegr ROC curve (area = {:0.2f})'.format(roc_auc_lr))\n", "plt.xlabel('False Positive Rate', fontsize=16)\n", "plt.ylabel('True Positive Rate', fontsize=16)\n", "plt.title('ROC curve', fontsize=16)\n", "plt.legend(loc='lower right', fontsize=12)\n", "plt.plot([0, 1], [0, 1], color='navy', lw=3, linestyle='--')\n", "plt.axes().set_aspect('equal')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The different points in the ROC curve corresponds to the TPR and FPR for different values of the threshold for probability." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Comparing Precision-Recall and ROC curve:\n", "\n", "Both the Precision-Recall and ROC curves try to capture the trade-off between false positives and false negatives. True Positive Rate is nothing but the accuracy of the positive class whereas False Positive Rate measures the inaccuracy of the negative class. Thus, ROC curve studies the trade-off between the accuracy of two classes without weighing one class over the other. Precision-recall curve is [preferable](https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/) to ROC curve in case of imbalanced classes. Precision-recall curve focuses on two aspects - how accurately and completely do we classify the positive class? Precision and/or recall are useful when our dataset contains fewer positive examples and we are more concerned about accurately and/or completely classifying them. \n", "\n", "In the confusion matrix, the two horizontal ellipsis corresponds to TPR (or recall) and FPR whereas the vertical one corresponds to Precision.\n", "\n", "![](https://github.com/AashitaK/ML-Workshops/blob/master/Session%204/figures/Binary_confusion_matrix.png?raw=true)\n", "\n", "* Black: Precision\n", "* Purple: Recall and True Positive Rate (TPR)\n", "* Pink: False Positive Rate (FPR)\n", "\n", "Note: The arrangement of rows and columns in this matrix is different from the one at the top. Scikit-learn follows the convention of the matrix at the top.\n", "\n", "The formulations for quick reference:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\\text{Precision} = \\frac{\\text{True Positives (TP)}}{\\text{True Positives (TP) + False Positives (FP)}}\n", "= \\frac{\\text{True Positives (TP)}}{\\text{Total Predicted Positives}}$$\n", "\n", "$$\\text{Recall} = \\frac{\\text{True Positives (TP)}}{\\text{True Positives (TP) + False Negatives (FN)}}\n", "= \\frac{\\text{True Positives (TP)}}{\\text{Total Actual Positives}}$$\n", "\n", "$$\\text{True Positive Rate (TPR)} = \\frac{\\text{True Positives (TP)}}{\\text{True Positives (TP) + False Negatives (FN)}}\n", "= \\frac{\\text{True Positives (TP)}}{\\text{Total Actual Positives}}$$\n", "\n", "$$\\text{False Positive Rate (FPR)} = \\frac{\\text{False Positives (FP)}}{\\text{False Positives (FP) + True Negatives (TN)}}\n", "= \\frac{\\text{False Positives (FP)}}{\\text{Total Actual Negatives}}$$\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The following are two important concepts in machine learning that are useful for building classification and regression models, no matter the choice of the algorithm. The k-fold Cross-validation is useful to check the overfitting while tuning the hyperparameters. Similarly, dimensionality reduction is useful to address overfitting when there are too many features." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## k-fold Cross-validation\n", "\n", "**Cross-validation**: \n", "\n", "As we learned in the previous session that to address overfitting and underfitting to the curve, we hold out a validation set to evaluate our model. This valiadation set gives us an estimate for how well our model will generalize to unseen data. We similarly use this validation set to tune the hyperparameters, for example finding the optimal value for the regularization parameter alpha. This cross-validation method has a shortcoming similar to overfitting. The overfitting happens when our model captures noise and patterns present in the training dataset that are not present in the unseen data. It can also happen that our split of the training and validation is not entirely random, and that one of the subset has patterns/characteristics not present in the entire dataset. More commonly, it happens that when we use validation set to tune our hyperparameters, they often overfit to the validation set. For example, we find an optimal value for the regularization parameter using a validation set, and it turned out to be not-so-optimal for the unseen test data. To solve this problem, it is a common practise to use k-fold cross-validation, especially for tuning hyperparameters.\n", "\n", "1. Randomly divide the dataset into k-groups\n", "2. For each group, we train the algorithm on the remaining k-1 groups and evaluate its performance on this group treating it as the validation set. \n", "\n", "Thus, we train k different models and have performance scores for each one of them. At the end, we take the median of the scores and also make note of their standard deviation.\n", "![](https://i.stack.imgur.com/nFkpn.png)\n", "\n", "Scikit-learn has a built-in function [`sklearn.model_selection.cross_val_score`](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html) to calculate the cross-validation scores. We can set the number of folds using the parameter `cv` and choose from various scoring methods. We initailize a classifier and use it with the entire dataset." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cross-validation (accuracy) [0.85185185 0.85185185 0.875 0.86075949 0.88607595]\n", "Cross-validation (AUC) [0.54621849 0.70588235 0.68398268 0.9047619 0.67532468 0.72294372\n", " 0.41125541 0.94805195 0.66161616 0.88383838]\n", "Cross-validation (recall) [0.2173913 0.17391304 0.45454545]\n", "Cross-validation (precision) [0.83333333 0.8 0.83333333]\n", "Cross-validation (F1-score) [0.34482759 0.28571429 0.58823529]\n" ] } ], "source": [ "# First we define a classifier, we do not need to train it\n", "from sklearn.linear_model import LogisticRegression\n", "clf = LogisticRegression()\n", "\n", "# cross_val_score method makes k-folds and train the \n", "# classifier k times and returns k scores for each run\n", "from sklearn.model_selection import cross_val_score\n", "# accuracy is the default scoring metric\n", "print('Cross-validation (accuracy)', cross_val_score(clf, X, y, cv=5))\n", "# use Area Under ROC as scoring metric\n", "print('Cross-validation (AUC)', cross_val_score(clf, X, y, cv=10, scoring = 'roc_auc'))\n", "# use recall as scoring metric\n", "print('Cross-validation (recall)', cross_val_score(clf, X, y, cv=3, scoring = 'recall'))\n", "# use precision as scoring metric\n", "print('Cross-validation (precision)', cross_val_score(clf, X, y, cv=3, scoring = 'precision'))\n", "# use F1-score as scoring metric\n", "print('Cross-validation (F1-score)', cross_val_score(clf, X, y, cv=3, scoring = 'f1'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The result is the validation score for each fold." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Dimensionality reduction:\n", "\n", "Many a times, our real-world dataset contains too many features. Using all the features can lead to a very complex model that would be prone to overfitting if we do not have the sufficient number of training examples in our dataset. A simple way to address this is to discard features.\n", "\n", "Q: How do we know which features to discard? \n", "\n", "Sometimes, the features that do not seem to have much impact on the target variable individually might prove to be very useful in conjunction with other features. If we do not want to risk losing information by discarding features, we use dimensionality reduction techniques. The most commonly used one is Principal Component Analysis (PCA).\n", "\n", "\n", "### Principal Component Analysis (PCA):\n", "\n", "If we have 100 features, we can think of having 100 dimensional feature space with an axis for each feature. In essence, we transform our 100 old features into 100 new ones, ranked in the order of importance. To accomplish this, we rotate the axis of the features to capture the most variability of data in our first principal axis and then try to capture as much from the remaining variability as possible in the second axis and so on. We ultimately keep only as many features as we want, discarding the least important ones and thus, reducing the dimension.\n", "\n", "![](https://www.researchgate.net/profile/Nicholas_Czarnek/publication/320410861/figure/fig7/AS:551041819447302@1508390015760/Example-application-of-principal-component-analysis-to-simple-synthetic-data-The-black.png)\n", "\n", "In the figure, we have transformed the two dimensional data using PCA. If we want to reduce it to one-dimension, we will simply discard the principal component 2, having captured most of the variability in the principal component 1. The downside of PCA is that the new features are no longer as interpretable, and unlike the old features, we cannot explain what they exactly represent. The upside is that we have captured as much variability as possible in fewer features.\n", "\n", "PCA is useful in machine learning for purposes other than dimensionality reduction. The linear models rely on the assumption that the features are independent of each other. In general, features from real-world datasets are not entirely independent, but if we transform them using PCA, the new features become independent of each other. This makes new features much more suited to build linear models such as linear/ridge/lasso regression and logistic classifier. Other uses of this technique involves data compression and visualization of data (when the number of features are reduced to 2 or 3).\n", "\n", "The steps in PCA are outlined below. It would be Okay to skip this and revisit later after learning/revising linear algebra, especially eigen-values and eigen-vectors.\n", "* First create a matrix for which each row is an observation and each column is a feature (similar to our dataframe, but all columns must be numerical values). \n", "* Center each column around zero by substracting the respective mean from each column. \n", "* Compute the covariance matrix\n", "* Find the eigen values and the eigen vectors for the covariance matrix. \n", "* Normalize each of the eigenvector to become unit vector.\n", "\n", "We pick the largest eigen value and the corresponding eigen vector becomes our first principal component (or first new axis). The eigen vector corresponding to the second largest eigen value becomes our second component and so on.\n", "\n", "Note: We must always normalize the data before PCA. \n", "\n", "The following is the implementation of PCA using [`sklearn.decomposition.PCA`](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAFgCAYAAACmDI9oAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd0lEUXwOHf7Kb3kAQSeui9SOi99w6CoIAoHUVExfKpWAALooAiYkFERbogPfReQif0FiAJECCF9OzufH9sDCAtwCah3OecnMO+O+W+ASY3s/POKK01QgghhBBCCCtDTgcghBBCCCHEo0QSZCGEEEIIIW4gCbIQQgghhBA3kARZCCGEEEKIG0iCLIQQQgghxA0kQRZCCCGEEOIGkiCLx4pSapBS6qJSKl4p5ZPT8QghxNNAKeWslPpHKRWrlJqT0/EIkdUkQRbZSil1RimVlJ7gRiulliilCmSyrj0wHmimtXbTWl/J4lhHKaXS0mONUUptUUrVvOH9AKXUz0qpSKXUNaXUEaXUR0op1xvKKKXUKaXUoayMVQghbEEptS59bHb8z1tdgDyAj9a6q1Kqj1Jqk4377qOUMqePuXFKqb1KqTY3vO+hlPpGKXU2vcyJ9Ne+mbwHITJNEmSRE9pqrd2AAOAiMCmT9fIATkDo/XaYnqg+yL/3Wemx+gGbgPnpbeUCtgLOQE2ttTvQFPACit5Qvx6QGyiilKr6AP0LIUS2UEoVBuoCGmj3n7cLAce01iYb9WV3h7e2po+5XsDPwGylVC6llAOwGigLtAA8gFrAFaBaJu9BiEyTBFnkGK11MjAXKPPvNaWUo1JqXPoMwUWl1JT0j/ZKAEfTi8Uopdakl6+llNqZ/rHfTqVUrRvaWqeUGq2U2gwkYk1SPW+Y9Q1XSn2qlDJmItY0YDrgD/gArwPXgOe11mfSy5zTWg/TWu+/oWpvYCGwNP3PQgjxqOoFbAN+5YbxSin1EfAB0C195nYIMAWo+e8nbOnlbjt+p7/XQCl1Xik1Uil1AZh2t0C01hbgF6yTEEXSYysIdNRaH9JaW7TWl7TWn2itl97rHoS4X5IgixyjlHIBumEdzP71OVACqAQUA/IBH2itj2GdOQDw0lo3Sp/FXQJMxJq0jgeW/Gdt8gtAf8AdCMOa5JrS264MNANezkSsjkAf4LzW+jLQBJifPojf7f66AH+kf3VPnwURQohHUS+uj1fNlVJ5ALTWHwJjSP9ETWv9HTCQ9NlerbVXev3bjt83tO8P5MI6G93/boGkzzC/DMQDx7GOucu11vEPcg9C3C9JkEVO+Dt9xiEO67KEL8G6DALoBwzXWl/VWl/DOih3v0M7rYHjWusZWmuT1nomcARoe0OZX7XWoekfC+YCWgKvaa0TtNaXgK/v0j7As+mxngOqAB3Sr/sAkfe4z05ACrASWAzYpccshBCPFKVUHayJ62yt9S7gJNDjPupnZvy2AB9qrVO01kl3aKpG+ph7AXgO64xxLJkYcx/2HoS40Z3WAAmRlTporVelL21oD6xXSpXBOni6ALusYy0ACrjTEoi8WGeFbxSGddbiX+du+HMhwB6IvKF9w3/K/NdsrfXzt7l+Besa6rvpnV7fBJiUUvPTry24Rz0hhMhuvYGV6Z+QAfyZfu3rTNb3497jd1T60rq72aa1rnOb65kdcx/mHoTIIAmyyDFaazPWh95+AOoA84EkoKzWOjwTTURgTXpvVBBYfmM3N/z5HNYZXV8bPGiyCuiolProdssslFL5gUZANaVU5/TLLoCTUsr3hgFcCCFyVPo64WcBY/r6YABHwEspVVFrve821fR/Xl/m3uP3f+vcj1XAp0opV611wn/ffMB7EOKOZImFyDHpu0G0B7yBw+mJ5o/A10qp3Oll8imlmt+hiaVACaVUD6WUnVKqG9YH/hbfrrDWOhLrcoev0rcLMiiliiql6j9A+OOxPkU9XSlV6IZYxyulKmBd+3wMKIl1PV4lrGvzzmP92FAIIR4VHQAz1vHz3/GqNLAR65re27kI5P/3uYoHGL/v1wyskxzzlFKl0sdvH6XUu0qpVg94D0LckSTIIif8o5SKx7oGeTTQW2v979ZtI4ETwDalVBzWWYOSt2skfR/kNsAIrB+/vQW0ucfsbC/AATgERGPdReNeH9vdru+rWLcYSgO2K6WuYd2CKDY9/t7AZK31hRu/sD75LU9WCyEeJb2BaVrrs/8Zr74Fet5hS7Y1WLfcvKCU+nfMzfT4fb+01ilYH9Q7AgRj/fmxA/AFtj/gPQhxR0rrh/nEQwghhBBCiCeLzCALIYQQQghxA0mQhRBCCCGEuIEkyEIIIYQQQtxAEmQhhBBCCCFukCNPdfr6+urChQvnRNdCCJFjdu3adVlr7ZfTcfxLxmIhxNMms+NwjiTIhQsXJiQkJCe6FkKIHKOU+u/JjzlKxmIhxNMms+OwLLEQQgghhBDiBpIgCyGEEEIIcQNJkIUQQgghhLiBJMhCCPEEUUoZlVJ7lFKLczoWIYR4XEmCLIQQT5ZhwOGcDkIIIR5nkiALIcQTQimVH2gN/JTTsQghxONMEmQhhHhyfAO8BVjuVEAp1V8pFaKUComKisq+yIQQ4jEiCbIQQjwBlFJtgEta6113K6e1nqq1DtJaB/n5PTJnlgghxCNFEmQhhHgy1AbaKaXOAH8BjZRSv+dsSEII8XiSBFkIAUBYWBjDX3uddq3b88MPP5CWlpbTIYn7oLV+R2udX2tdGOgOrNFaP5/DYQkhxGMpR46aFkI8Ws6cOcMzlargnZgH5zQ3Rq37lKX/LGPh4r9zOjQhhBAi28kMshCCr7/6mlyJ/hQxlSVAFaJMYlXWrV1HaGhoTocmHoDWep3Wuk1OxyGEEI8rSZCFEBw/ehznNLeM1wZlxNPOmzNnzuRcUEIIIUQOkQRZCEGrdq244hKJRVt3B0vQcVxJjaJGjRo5HJkQQgiR/WQNshA2Fh0dzYIFC0hLS6N9+/b4+/vndEj31L9/fxYvXML2rWtxN3pxJfUik6dMxsfHJ6dDE0IIIbKdJMhCpIuPj2flypU4OTnRpEkTHBwc7ruNffv20axZfepWd8TJEd59dwRz5iyiUaNGWRCx7Tg4OLA8eBl79+4lLCyM2rVr4+vrm9NhCSGEEDlCEmQhgO3bt9OiWUvc8cSMGeWi2bhlA4GBgffVzptvDGbUCEcG9PIEYHGwkVeGvsTB0FMopbIidJuqVKkSlSpVyukwhBBCiBwla5DFU09rzQs9elEgrgQlrwVR5lp1XKK8eHXIq7eUtVgsnD17lsTExNu2tTNkL51auWa8bt3ElRMnz5GUlJRl8QshhBDCtiRBFk+9uLg4zp4LIzf5M67lMRdk06ZNN5XbvHkzJUsUpHq1MuTL58cnn3yA1vqmMuXKlmD1puvJ8KbtyeTL64ezs3PW3oQQQgghbEaWWIinnpubGy7OLiSkxeGGdWlEHNEULnR9eUViYiIdO7Tihy9dadc8gPBIEy2em0i5cpXp2LFjRrmxn02iY4eWbNlpwskRfpuTxPdTpj8WyyuEEEIIYSUzyOKpZzQaGf3ZaI64hBDGMc4YjnDaJZQvxn+eUWb9+vWUKeFI+xZuKKXIn9eeYf0cmTdnxk1t1alTh50hB/APfBVXv0Gs37CTzp07Z/ctCSGEEOIhyAyyEMCgQYMoU6YMv/4yHRcXZwYMGkCFChUy3nd3d+dKtAmtdcZs8NVojZuH5y1tFS5cmP/97/1si10IIYQQtiUJshDp6tevT/369W/7Xq1atbB3zMOw/12m/wsu7D2YwtdTE1kZPOyh+jSZTOzatQsPDw9Kly79UG0JIYQQwjZkiYUQmWAwGFixcgNpdm3o2t/M7wuLMmfukofaEm3Pnj0ULZKP/i+1olmTajRtUpu4uDgbRi2EEEKIB/HQCbJSqoBSaq1S6rBSKlQp9XBTakI8ovz8/Pjhh2kcPXaelcGb7zjbnBlaa3r26MQnbyn2rPLh1A5//L2PMmrUezaMOHNOnTrFgP4DaVi3EV988YVsSSeEEOKpZ4sZZBMwQmtdGqgBDFFKlbFBu0I8sc6ePcvVq1H07OwOgNGoeK2/C8uXLcrWOMLCwgiqHMSaaZu4uimZiaMm06Jpy1u2rxNCCCGeJg+dIGutI7XWu9P/fA04DOR72HaFeJJ5e3uTnGLhylVLxrUTZ9IICPDP1jgmTZiEd5I/hc2lya3yUSopiIN7D7Jz585sjUMIIYR4lNh0DbJSqjBQGdh+m/f6K6VClFIhUVFRtuxWiMeOh4cHffv2pV3vaOYviWfqjFheez+et0Z+nK1xnD51Bsc0l4zXSincjJ6cP38+W+MQQgghHiU2S5CVUm7APOA1rfUtTxppradqrYO01kF+fn626laIx9a4cRN5acDn/DynCMs3V6Lrs31YvTqYNWvWZHqJg8ViITg4mAkTJrB169b7XhrRvlM7rrpGYNYmAOJ1LJdTL1KvXr37vh8hhBDiSWGTBFkpZY81Of5Daz3fFm0K8aQzGAz069ePn36exZ7de7kSMQs3fmVAv468995b96xvMplo17YpI17rxrF9o+n5XAsGDux7X0lyz549adi6ATudV3PYYwcHnLfww49T8PX1fZhbE0IIIR5rD70PsrKemvAzcFhrPf7hQxLi6TJu3Fg6t9KMG+UFwKA+ZkrW/o6hQ4eTN2/eO9abN28eV6P2ErLCBzs7RXyChYqN5rNjx0CqV6+eqb6NRiMzZ/3JyZMnOX36NFWrVsXT89bDT4QQQoiniS1mkGsDLwCNlFJ7079a2aBdIZ4Khw7upmEd+4zXPrmMlC3lxrFjx+5ab/v2zbRrprCzs57s5+ZqoHkDpwd6wK5o0aI0adJEkmMhhBAC2+xisUlrrbTWFbTWldK/ltoiOCGeBlWr12fe4tSMpRFnzqVx8Eg85cuXv2u98uUrs2YzGfXS0jQbtqVStmzZLI9ZCCGEeJLJSXpC3MBisTB16lSaNKpOuzaNWbZsWZb3OWLEW+w55E2jzjH0fyOW6i0v8fHHY/Dx8blrve7duxOXmI/mz0UzdsJV6ra/SsnS1WnQoEGWxyyEEEI8yR56DbIQT5L33nuL1St+4d1hTsRdszCgXze++vpnunbtmmV9ent7szPkIEuWLCE8PJy3PmhGiRIl7lnP2dmZdeu3M2vWLA4e3M/I92rRoUMHlFJordmxYwcRERHUrVtXHroTQggh7oPKiROzgoKCdEhISLb3K8TdJCcn4++fi9D1/gTksf7uuHxNAh9948X2HaE5HF3mJSYm0r5dU8LOhFIs0ImtIdf4/vuf6N79uZwO7amnlNqltQ7K6Tj+JWOxEOJpk9lxWJZYCJEuISEBi8VCbl9jxrXAgvZcvGi7g22Cg4OpVrUsnp4utGhel9BQ2yfeEyd+g4v9UULX+7F4hgdr5/kyeHA/4uJu2Z5cCCGEELchCbIQ6Xx8fChdqjhTpsehtcZk0oz7Pp5Wrds9VLunTp0iLCyMw4cP0+O5jrwzJJoTWwNoXf8YTZvUIz4+3kZ3YLV+3VJe7O6A0Wjd3aJCGUdKF3dh9+7dNu1HCCGEeFJJgizEDX6bMZfJvzlTuu5lAqtd4OzFkowZM+6B2oqMjKRO7WeoXasC1aqWpU3rJrzUw5n2LdzwyWVkSF9PKpY1smTJEpveQ+HAEuw9aMp4nZBo4djJBAoVKmTTfoQQQognlTykJ8QNSpYsSeihU+zfvx9XV1eKFy/+wG0NGtibOs+cY+3sALSGWq3DsbdzvqmMo4MiLS3tYcO+yeuvv0Od2vNITIqhRFHFT3+k0a59RwIDA23ajxBCCPGkkhlkIf7DYDBQqVKlh0qOzWYzS5au5r3hnhiN1sM8xr7nzcQfY9gakoTFopm96BqbdybRpk0bG0YPxYsXZ9v2vWjnHqzbWZvBr37D1KnTbdqHEEII8SSTGWQhsoDBYMDT05XIiyaKBToA4JPLDkcnN54fmsb58AjKlyvGokXz8fLysnn/gYGBfPnlNzZvVwghhHgayAyyeGxFRkayefNmrl27ds+y8fHxXLlyJRuislJKMXz4CLoPiGXZ6gQWB8fT65VY/vf+KE6djiQ+PpHde45Ss2bNbIsps44cOULHdh0pnD+QLp26cuLEiZwOSWSCUspJKbVDKbVPKRWqlPoop2MSQojHlSTI4rGjtWbEiFcoW6Yow1/pQKFCAfz++4zblk1LS2PgwBfJm9ePwMB81K9XlbNnz97S3ldfjSePrz/OTi507tiFy5cvZzqeS5cusWLFCsLCwm66/u67HzBw6Od89r0f43/Ky5tvT+CVV15DKYWjo+P933g2uHz5MrVr1CZ0ySn8w4uxb+FRalavRWxsbE6HJu4tBWikta4IVAJaKKVq5HBMQgjxWJIEWTx2Fi1axIqlv3N8awDblnqzfoEPr7wygMjIyFvKfv75WE4dXcSp7XmJCi1A4xph9Hiuw01lfv31V8Z++BmBV8pTLaUJu5ccoEmjpuzbt49/D9JJSUlh6tSpvNinG2PHjubq1asAfPXVeAILFeHlbgMpW6ocQwcPzaijlKJ///5s3LSXdetD6N27N0qpLP7uPJyZM2finpqLQroE7sqLwrokLikezJkzJ6dDE/egrf7dM9A+/Sv7T4ISQogngCTI4rGzdOnfvNzDDm8v64EeZUs60riuO6tXr76l7JzZ0/lwhAu5vI3Y2yveGebJkSNHCA8Pzyjz7YTvKJBgTQgtWLiSdonDB47QoFYjypQsy9mzZ2nXtimzf3+XGuXWcXjvBKpXq0hISAij3h/FM8n1KRUXRNXkxvz122xWrFiRbd8LW4uNjcWQZrzpmtFkR0xMTA5FJO6HUsqolNoLXAKCtdbbb1Omv1IqRCkVEhVlu0NwhBDiSSIJsnjs+Pvn58SZ6zOxWmtOnzXh7+9/S1lXV1di4ywZr5NTNCazxsnJKeOaxWIBrO0dZQ8++FOX1lRJbIjplIGO7ToSfu4Ay2Z60+95T36d4EX5krEMHjwIX+1PIvGccN7GaZcQ7BNcWLZ0WdbdfBbr0KEDl+0jiNfWJRXXdAxRhgjat29v874iIiLYuXMnycnJNm/7aaW1NmutKwH5gWpKqXK3KTNVax2ktQ7y8/PL/iCFEOIxIAmyeOz06zeAeUvS+GhcNCvWJtDrlWiM9nlp2LDhLWUHD3mL4R/Es2ZTIgcOp9D71Rhat2qJj49PRpkBg/sT7nqCRB3PFS5QmJIopVBKUcBcnD379/BMBceMk+kA6lZ3JOz0PqIs4YR5buX191J49+M08AsnIvJcpu4jISGB2bNnM3PmzEfmGOhy5crx9cSvOeS2gxCX1Rx1D2HyD9891JZ3/2WxWHi5bz+KFylB2ybt8c8dwOLFi23WvgCtdQywDmiRw6EIIcRjSf27XjI7BQUF6ZCQkGzvVzw5Tpw4wZdfjub4sYPUrtOUN94Yiaen523L/vrrNCZN/IzY2Gt06tyNjz4ag7Pz9QM7tNZ88vEnfDVuPAnx8VShAR7KG4B4HcsRjxDsHVLYtyYPefzsSEmxUL/Dedo0c2P899HMmxZAw9ouABw8kkKzbrFEXoi+63rjgwcP0qxpfSqWtcPODrbvSmbJ0lVUrVrVht8l637M8+bNY9XKVZQoVYKXXnoJb2/ve9ZLTk4mPDyc/Pnz2/yBwhkzZvDGoJGUSaiGnbInRl/hiMtOzkecv+Pf4ZNCKbVLax2URW37AWla6xillDOwEvhca33H3z5kLBZCPG0yOw5LgixEOq013333HR+MHEW+xKKAIsL1JB98+j9iYi7x5ZdjadHQhZB9KdQIcmL02z6UrXeWsF2F8fO1bimelqZxK3KKhIQkHBwc7thX0ya16NDkJIP6WBPCP+bFMelXH3bsDLXpPXXt1JUNKzfhlZCHFOcEzF7J7D2w96YZ9OzWoU0Hji8JJ68qnHHtqHsIk/+YZPNDUx41WZwgVwCmA0asnw7O1lp/fLc6MhYLIZ42mR2HZYmFEOmUUgwdOpSfZkwldz13/Oq6MmXaZIa9NowPR42mSpUgzBYDs3/059cJ/oydlEChQnmZ/Ov1fZh//D2OmjUq3TU5BtiydRc9OrllvO7ewZ2QXYcxmUw2u599+/YRvGIVZRNqUlAVp3hyJYzRzkyePNlmfTyIgHx5STVeX3estSbBEk/u3LlzMKrHn9Z6v9a6sta6gta63L2SYyGEEHcmCbJ46mmt+emnn6hf7xka1A8iLi6OVeuCWbNhNV27ds0o98ef87kUU5R2vaPJXzmcyKvlmDtvGX8tcqF4zQtUahzFVz8Y+GHq7/fss2SJwmzeeT1J3BqSTGBhf4xG411q3Z8jR47gbfTFqK636ZLswf49B2zWx4N47fVhXHI6x1l1nCv6IsecdlOidDGbLy8RQgghHpQcNS2eep9/Ppo/Z4yjc2sjHu4Gxn0+jJiYK7z22oibyuXPn5/NW/Zw+vRp7O3tyZ8/P3/88TuXoi5TPNCRE6eTePbZ9pQsWfKefY4e8w29e3WlX89U7O0VU35LZOKkX2y6T3L16tWJSoukgC6Fo3JCa02syyUaNX3JZn08iJIlS7JxywY+/Xg0J4+fpHfbnox8e+Qjv0e0EEKIp4esQRaPjatXr+Li4nLTFm0PS2uNt5cbBkMyFUo7ci7ChJ+PkfMXXDkffvfT9C5evEipUoGsX+BHuVKOXIu30KjzVd5693u6det2z74PHjzIb7/9gtlspmfP3jzzzDO2uq0Mn3z8KV+M/QJfYwAJKoaS5UsSvGZlpr6HMTExbNu2jQIFClC2bFmbx/Y0yso1yA9CxmIhxNNGHtITT4xjx47Ru1dXQg8dRSkDgwYNYsyYLzEYHn6FUEpKCl5eziz9Iy/1a7lgsWh6DrrAohWJJCWb71jv6tWrdO/eBUvydlbOzpdxfcr0GHYeacy0aTMfOjZbOXr0KJs2baJIkSI0aNDgrjO1Z8+e5bVh/Vm6bA2mVAu+TnlIUgnUrVeX+Qvn3XNttbg7SZCFECJnyUN64olgsVjo2KEF3dtc4MrhAhza4M/a4Gn8+OOPNmk/NDSUgDyO1K9l3abNYFD07+VJbj/3O9bRWtOubRMc1W7CI9OwWK7/knn8NOTNW9AmsdlKyZIleemll2jYsOFdk2Oz2UyL5vUpUSAEIxaCdEPKJ9ciKLExuzfsY+rUqdkYtRBCCJFzJEEWj7SDBw+SknyVoS95YDQqAvLY8e4wJ2b99ZNN2s+bNy/RsRAbd322eP+hVKoE1QQgLi6OceO+pE/vZ5k4cSIJCQns27ePyIiTzP/Fl9y+dnQfcIHFwfG8/9kVZi5IZeDAoTaJLbtt27YNe2Mc9Wo4ksvBE3flBYBBGfBJzMs/C+QwDyGEEE8HeUhPPNJcXFxITDJjNoNd+r/Wa/EWXFxcbdK+v78/PXr0pMVz8xnyogNh5y1M/CmJFStHk5iYSN06QZQIjKZpPQP/LF3DXzOnMXrMeNzd7FBK8c/veZn4YwwfjbvKtUQfNm1eT4ECBWwSW3Yzm83Y2SkK5LMjzpSARVswKOvv0Ml28RQpZvs10kIIIcSjSGaQxSOtWLFilCtXkYFvxXD0RCor1yXw3thEBg1+02Z9TJo0lcGvfs0/6yoTEduGdeu38cwzzzB79mwC/KL5a4oXL/f05O9p3sTFnOLFPt04dDSafBVPsyQ4nhef88BkduKDDz+nWLFiNosru9WqVYvoWAfWbEymTnUHQh3Xc0Gf45ThEFHO4Yx48/WcDlEIIYTIFjKDLB55s+cs5t1336BFj0Xkzu3DF+PG07p1a5u1bzAY6N27N717977p+okTx6lWyZKxbvfyFTNnz8fz+2RXWjcpyvbdybToHk5KMtg72NvkocGcZGdnx7Llaxk44AU2bAzBzdUJXTie5g0aMOLN1ylatGhOhyiEEEJkC9nFQog7WLlyJcOGPsv2Zb64uRqY9FM0qzcm8ff0vBll3vnkCnOm+JDbUogj7ju5cOkCTk5OxMbGkpiYSEBAAAkJCWzatIlcuXIRFBT0WOz3azKZMBqNj0WsjxPZxUIIIXJWZsdhmUEW4j+ioqIY8fpgFi9ZhoM9FK8ZTt0anqxcF0etqjfvHxyfqDFgj7vywg4Hjh49ynffjWfWrNnYGRW5c+fhUtRlypV0JvJSKnn8i7J4yRo8PT1z6O4yx85OhgYhhBBPr8f7M2EhMiE5ORmTyXTPclprgoODCapSnvNnlrPlH1/m/uSNo6ORAkWfY+3aLew/ZMe3P8dy4ZKJmQuu8dtf18hjKUiSTiDZlMj8eXM4fWwxp3fk5fyevERdOsufkz1YO9+LQxv8CMwbxujRH2XDXQshhBDiQUmCLB4JCQkJJCUl2bTNiIgIWrVsgJeXOz4+Hrz99gjM5jsf/jFs2ECGDOpMn2fT8HDTdOgdQcmiDnz+P3eOHtlFlSpVCF61gRWbS1OuwUWGvn0FN4s/Fw3nOOiylQ8+/IDFi+fw/nAXvDyNnDyThreXkab1rTtuGAyK/i84s2b1Epve5+PEYrGQE8u6hBBCiPshCbLIUTExMbRt1ZZc3j54e3nzXLceJCYm2qTt7t3aUanEIa4eKcTBdf5sWjuNiRO/uW3Z48ePM+uvP9ixzI8P3/Bh/rS81AhyYsr0WBwdFGmpqQCULVuWJUvXcfVqAoeOhPHqqMF0eK0FS4OX8NbIt3B3d+dKtDUJz+NnR9QVM1euXk/KDxxOpWDBwja5v+ymtSY1NfWBEtyIiAiaN2mBg70DubxyMXbMWEmUhRBCPLIkQRY5qm/vlziw+ii101pSI7U5mxZtY8TwETeVuXr1KidPnryvhOr8+fMcPnyYUW964uRkIF+AHR+PdOHPP25/wEhoaChBldzwcDdmXGtc14Xte5L4eHwSPZ4fcEudgIAA3nnnHcZ9NY5atWoBMPSVtxkxKp6lqxMIO59GQB4HGnSK5LfZcXw2MZYPvkhg5NsfZ/o+HhVr1qyheJESODk5UbhAIEuXLs10Xa01rZq34uT6c9SztKV0XDXGj/mG6dOnZ2HEQgghxIOTBFnkGJPJxOKl/xCYWgajssNeOVAouRRsJG3bAAAgAElEQVR//jkz4/1Bg/pSpEg+6terRJnSgezduzdTbdvZ2WE2a8zm60l1crImJiaat99+kz179txUvnLlymwLiePSZetaZa01MxdcY90WE127v0afPn0y1W+XLl0Y+/mPjPnWh17DFB06D+WNkd+xdGMVzl5txeo1W6hevXqm2npUhIeH06FtB9zO5KaR7oRPeEG6denGyZMnM1X/+PHjnD4VRmFTaYzKDlflQb6EYnw/aUoWRy6EEEI8GJs8qq6U+gVoA1zSWpezRZviyaeUwmi0w2wyY4c9AGZMODo4APDdd99yeP9CTm3Pi6eHgd/nXqNzp1YcO34Oo9F4t6bx9/enbt3aDBq5lw9GuHExysyQt6MoVsQRu5RfadVyCp9/8S29eln3Pi5UqBCvDnudKs0m0L65M/sPW0gxFSY8fMt97zjRrVs3unXrdtO1F1988b7aeJTMnz8fH+2Pn7Jub+dDHmJM+Zg1axbvvvvuPesbDAb4z+y/Rj/2+0YLIYR4ctnqJ9SvQAsbtSWeEkajkb4vvshJ5/3E61jidDSnXUIZ8soQAP5e8DtvDnbCy9O6H+8LXT2wt0ti//79t20vLS2NDz98jyKB/hQvlg8f33wcPVOAoGaXaPP8JerWcGL5TH8+HunNP7958/bI4Tc9tPfhh5+yZOlGild4hxEjf2TL1r05sh1bQkKCzdZh301MTEym+rGzs0Or/yS4SmNvb5+pfooVK0aJUsU5bR9Kqk7hmo4h3PUErwwf+kBxCyGEEFnNJgmy1noDcNUWbYmnyzcTv6HXqz0543eAcP+jvPrOEN7/4H0AvLxycSHq+vZsqama6Jg0vLy82L17N00a1yRXLjca1K/Ktm3beOedEWxeN4UFvzhS+5kE/pz+F5E7EnA1+XEtzsKIgV4ZB19ULu9IQmIiMTExN8VTqVIlhg8fTseOHTOdANpKbGws3Z5tS+7cucid25vevZ4lISHB5v1ERkZSr3Z9/HP74+Ptw4u9XyQ1/SHE2+nSpQvRhigi9BnSdCoX9Dmu2EXSvXv3TPe5ZPkSKrQozXaHlZz2PcD7n77Hc889Z4vbEUIIIWzOZifpKaUKA4vvtMRCKdUf6A9QsGDBKmFhYTbpVzy51q5dS88e7fhqlBuFC9gz/odEUnVlfv5lJmVKF+XTt51o19yVFWsTeeOjBJKS0zi8MS9ms6ZsnfMEpbTEQTkCcFDtoHydKyyflZfYODMbtyUx4mPFsePns+y0uNDQUD4aNZKDB/dTtWoNRn30OYGBgXcs/3zPzjiyga8/9sRs1gwaGUuugPZMnvyzTeOqU7MukSFXKGwqhRkzx5330ue15xk9ZvRN5SIjIxnYbyCrVq/Czc0dNxc3Ii5GUKpEKSZNnkidOnVsGtfTQE7SE0KInJXZcTjbFgFqradqrYO01kF+fn7Z1a14jDVs2JBpv85l2txABr5tT/Gyfflz5t/MmTOHpvUdebmnJ7l97XihqwcdWjqRnJyGq4ti/+EUfBy8MpJjAD9LABu3mihY+QwB5U/zbL8LVK1a86G3Gjt48CAv9ulOk0bVGTt2dMZezhcuXKBRw9pUL7uDP79TBOZZR/161YmPj79tO2azmbnzFvHlBx64uRrw9DDyxfvu/PXXrIeKz2w2M3/+fIYMHsLEiRM5c+YMu3bvorCpNAZlxF45kD+pODOm/35TPa01zRo3I3TFCYKSG1HwcmmuXo5mztzZ7Nm/W5JjIYQQTzR5SkY80po3b87K4C3s23+SMWO+wNXVlbS0NJwcby7n5Ajly5XmjY/iKFrYnispMaTqlIz3Yx0v45fHjSF9PYk9UZQT2wtz+sQavv/++weO7fDhwzRqWIvSBdfw2kvn2br+a7p0bgXAjBkzaNvMgeEDvahQxpEPRnhRoQwsWLDgtm0ppXBwsCMx6XrCHp+gcXJ0eOD4AJ579jkG9RpC8Pcb+eqdCdSrUx/QWLi+9tqMCWcn55vq7d+/n4hzkRQ2lcZBOeGlfMmbWJRJ33z7UPEIIYQQjwNJkMVjp1OnTvy9LJEVaxPQWrNuSyIzFyTyy7QZJJhqUq3FBUwW2GlczUnDQY647sTim4rWKbw11At7e0Vefzs+eN2Zv2b++MBxTJz4Ja/0deKNwV60auzK3J+8OXhgF/v37yc2Nhq/XJabyuf2sa4zvh2DwUC/fi/TZ1gs+w+lsHt/Mv3fiGPAwCGEh4ezatUqLl26dF/x7dmzh5XLgnFP8OUyF0hNTCPtsoVSJUtx3Gkv8TqWaB3FGZdDvP7W8Jvqmkwm1H+GBwMGTGn3PrJbCCGEeNzZJEFWSs0EtgIllVLnlVIv2aJdIW4nf/78zPxrPsNHGXENPEP/Ny1M+/UvKleuzKzZi7h06SrRsbGs3riKvqN6Mvq7j1m1OpiUFAumG/K7+AQLTv+ZOb0fFyPPUzTw+nZzdnaKwgWcuHDhAh07dmb6nBSOnrA+/BayN5mFyxNo27btHdvr06c/rl41adXzGt0HmWjVfjjX4pIpUbQkL3Z5mcBCgXz+2eeZju/IkSOYUy3EEEUhSuCJD5dTLuLj60O3QV0I8ztITOFwPhn3Ef3797+pbuXKlfH08eCs4TgWbSZBxxHpeooBQ/rfoTchhBDiyWGTfZC11vI4urgti8WCyWTCweHhlgr8V7NmzTh8JIyIiAhy5cqFs7M10Q0LC2PevHnY2dnx7LPP8r///S+jTpUqQQx8K5R3XnXjXISJkZ9c48vxbzxwDC1adeH7X3bRrpkFFxcDW0OSOHg0ieLFi5OUlMT7H3xG3fZv4+qiSEk18P2UaeTJk4eJEyeyfPFySpQuyesjhlOwYEHef/9tpv7wLU3ru+HmaqFc+YrUqFGbLu26EpTSCIdUR5J1EqM/HkPrNq0pV+7e240HBASQZE6kKo0xKmsir7Xm6pVovho/jq/Gj7tjXYPBQPCalfTq2Zv1Oxbh5urOu++9Q9euXR/4+yWEEEI8LmySIAvxX1prxoz5mPHjx3HtWhKNGtZi6o+/U7BgQZu0f+rUKfr07sruPQcxGo0MGNCfhg2b82yXbviaA8Cgef+99wleHUy1atUA+GvWIpo0rs0zTQ/j4WbEou34a+Y0OnTocM+DR26nb9++bN26lsBqiyiU35mw86lUrVqNZyqXwSeXI2aLM/PmLyZ//vwUKFAAe3t7mjRsypGdx8mV6M/RdSuY8dsM5sybzY9Tv+XA2jz4+hhJTXWnYeftTPhmAt6J/hkPGzopZ3wtAQQHB2cqQXZ2dsbNwR1j2vV7c8ENe7vMLZMoUqQIm7ZuJC0tDTs7uyzb7UMIIYR41MgaZJElpk2bxtxZ37B9qS8xxwpTq+IROnZo/tC7RoA1+e7cqSWtG5znyuGCHN7oz8a103mhRy+KJ1akWGoFiiVXJH98SYYOeiWj3pkzZ4iMDCMspDDn9xbmzM58hJ3awvz58x8oDjs7O6ZNm0nIrkNMnLyIt9/5kKS4PZwJycexLbn58n1Fzx6dKViwIA4ODoSEhLA3ZB+lEoPwVwUpYiqLV6IfX37+Jc0buuHrY01kHRwUz7Y1EhN7GZPz9QcNtdakOCSRP3/+TMVXuXJljM6KK/oCAGZt5qLzWbp273Jf92lvby/JsRBCiKeKJMgiS/wxYwqj3nCmSCF7nJwMvDfck8tR4Rw5cuSh2z527BhXLkfyxmAP7O0V/rnteHuoM1djrpCLPBnlfPEn9NDBjNdbtmyhRUMXvL2uJ6Jd2hjZvHk9YE1At23bxqxZs4iIiLil36ioKMaOHUu/l/oxf/58LBbrQ3iFChWiVq1arFg2l+EDnHB3s/636tTaDR9vze7duwE4e/YsbkYPDOr6fzvHVFeSEpPZviuZtZsSCT1qTYi37IKWLdtick/mhP0BLukITjjuw9XPiXbt2mXq++Tg4MD8hfMJ8zzEfvfN7HRaRfWmQbw67NVMf6+FEEKIp5EkyCJL2Nnbk5J6fbbYYoE0U+aOJw4NDWXjxo13PN3NycmJ5BTzTQ/cRVxMw9HegTCOckVfwKLNXOECZUqXzShTsmRJtu9OxWS6HtfmnVCyZFmio6OpUimIVo1bM7L//yhetPhNW8BFRERQvkwFpn48jfW/7GBgr8H07XPzs6g+vrkJv3B9+7TUVM2lyyn4+PgAUKdOHS6nXiRBXwOsM7rRrheoWacGp88k0bF7HDWbXiSgzDkOHHFh8ODB7NobQuchbfCu7cALb3Rne8g2HB3/s8fdXdSvX5/IS5EsWrmAA4f3s2DhfJuvBxdCCCGeNLIGWWSJfv2H8+7bL5E/wI5C+e35bNI1SpQoTbFixe5Y59q1a3Tu1JIjh/eTx8+R8AsW5s1fTM2aNW8qV6hQIapWrUb/Nw7Qq6sTw/4XxZlzaZhMBiI4gxE7kkjA0cmBVZNXZdRr0KAB+QtWpOmzB+jUysi6rZrT570ICAigQP4AHJPdqWxpgEEZyKeL8cbrb9K5c2dy587N1+O/xiXOk6Jp5UFB/oQizJs7j/fef5fixYsD8MqrI+nYoRnOToqiheyZ8FMSVavWzLjnPHnyMHHSBF595VV8HHITa4qmUeNGTPtpGmVMVfFVAVjMFg5fC6Flr054eHjg4eHBuLs8TJcZDg4OVK9e/aHaEI8+pVQB4DfAH7AAU7XWE3I2KiGEeDxJgiyyRJcuXYiOvsKLwz8l6vIl2rRuydx5dz+UY/Toj/BxP8LJ7XkwGhV/L4unZ49OHD9x/paH6Gb+tZB33hlB15enM3yAB9t2pnJ0fT4CsT68Fs5pKJBIjRo1MuoYDAYWLlrJzJkz2bZtPQ2bV+Ljhg2pV68G5YrbkbCvSMbyBxflho9DbrZv307btm3Zv/cAbqlekL4U16js8Lb34dixYxkJcq1atZgzdynjvvyICxciaNGyF+3adWTUqFE4Ozvj4uLChnUb6ftSX6oEVaFatWporalfowG+KsAaozKQz1SEfxYupmKlihQsWJAGDRpgMMiHPeKeTMAIrfVupZQ7sEspFay1PpTTgQkhxONG2eKhqfsVFBSkQ0JCsr1f8Wh7pnJxJn2STM2g63sTF61+kWUrtlOqVKlbyl+8eJFSJQtzKTQ/uYqfoXJScxyVta7WmnWGhXz08SgAunXrdtPstdlspv/LA/jzzz8xmBQWYwoeZl/KW+pwmUgucp5o4yVmz59Fu3bt+OKLL5g46ntKJVVBKUWSTmCP0wZOnTlJnjx5bokN4Pfff2dw/yH4puXlsuUC2qIpQDFSHBKJdr7Irj0huLm5UbhAYaqlNMVOWZefHNDbuWq4QD7nwiSoOAqXKMTaDWtwdXW9pQ+tNevXr2f79u2UKVOGVq1aPdCOHCJ7KKV2aa2DsqmvhcC3WuvgO5WRsVgI8bTJ7Dgs01LikZEvbwGOnkzLeB0dYyY6NhU/P7/blnd2dsZs0VyLt5Df355rXD+l7gJnwaL56ZPf+PmjGVSu8AyLFy/OeH/69OksmbOU6qlNyW0pQFqaIspyiQ38wzH24Uku8loCef65F9i2bRtDhgwhb+ncHHDfzAmXfex12sDoMZ/ekhwnJSUxdMgr+Hj58GKvvngl5cbfVIgUSxJVaUg+FUiRtLLkSgjgi8++xM/Pjx49e3LYZQcX9XlO60NEEUE1SxOKJVakQnwdIg9fYvLkybfcv9aal156ngH9OnDx9Dg+/qAPzZvVu+PabfH0UEoVBioD22/zXn+lVIhSKiQqKiq7QxNPCIvFwoQJE6hQpiJBlavyxx9/5HRIQtiUzCCLR8aGDRvo2qU1777qgn8eA99MTSGoRhcmTZp6xzr9+vXi7MklNKyl+OTLOPKllsKAHafVIYrrigQo677LV/UlLgWc5mx4GEopWjRpSfjqq6SRygXOUoGaKIxsZik1aYaTcgEgXJ8mb30vVq1bhcViYe3atYSFhdGwYUMCAwNvief5555n/d+bKZhcEjNmDrMLN7xI5BpBqkFGuUs6HJ+6zqzZsBqz2czPP//MX3/MwmQxcXLvacokXF8zfFGfI6CRJytWr7ipr61bt/J8jxbsW+2Hi4sBs1nTpOtV+g2ewPPPP/8wfxUii2THDLJSyg1YD4zWWt91D0MZi8WDenPEm8yY8gf5Eothxsw5l2OM+epTBgwckNOhCXFXMoMsHjv16tVj0T+r2HW0HjP+Lknf/p8zYcKUu9b57rufqNPwFWYu8qRoyUL41/amYufiGOwVPjds+eaNH5EXI0hOTgYgT0AeUgzJXOAcRSiLo3LGRCp22GckxwAeeHPi5EnAuoa5cePG9O3b97bJcVJSEnPnz6VocgVclDvuyotSVCaaS8QTS4KOA6wzv1ecI2jRpjkARqOR/v37s2b9an7+5SfizDGY9fUtOhIcYilfsfwt/e3evZvGdZ1wcTGkt6No3cTArl3bMvX9Fk8epZQ9MA/4417JsXh0WSwWli5dyujRo1myZEnGlpJZ6fz587Rv0x4PNw9KFC3JnDlz7lg2LS2NyZMnUzzxGXKpPPipvBRJLMdnoz/P8jiFyC7ykJ54pFSvXp3q1e88MP+Xg4MD778/ivffH3XT9ZrVahG1M4J8WBPZK1ygQL6CODk5ATDizdepM78OlkSFGevWbM64olBc0RfxUXnQWnPR/hyNmzTOVCwWiwVt0Rhu+L3TgBETaXg6eLM9dTV5XQuQRDxlKpRm6NCht7RRvHhxOnXuxPK/V+AVn4dUpyQS3WJ5/Y3XbylboUIFJn6TQkqKBUdHA1prVq7XPP9itixxFY8YZT3N5WfgsNZ6fE7HIx6M2Wymdcs27N66F7ckL+Kdv+WZmpVYsmxxlj1fYLFYaFivEfqsA5XM9Yg/FUe/Pv3JnTs39evXv6V8WloaqWlpOHB9y0hHnImJi7FZTKGhoUz75VcsFjO9eveiUqVKNmtbiMyQGWTxRPr2+0lEuJ/guPNeTjjt44TLfqb+/ANKKU6fPk1UVBQLFy+kVOUSHFd7idZRJJGAh50XBwzbOOy6k/2um3AoCGM/H5OpPl1dXWncqDHHDfsxaROpOoVj7AcFbXu04ujxI3w97UsWB//D+k3rcXFxuW0706b/wuRfv6VOnyr0+19vDoTuJ2/evACkpqYyc+ZM3n77LSIjI6lcuT41Wl/lwy+u0KhzNMmmQnTv3v2hvndbtmyhbat2VK1cjU8//ZTXX3udAnkLUrZkOaZPn/5QbYssVRt4AWiklNqb/tUqp4MS92fZsmXs2bqX8vG1KGopR/n4Wuzeupfly5dnWZ/btm0j9nIchc2lcFTO+Kg8BCQF8u2Eb29b3sXFhZrVa3LWeBytNRZt4bzDcTp06GCTeJYvX07NajX5e8JSFk1cSb3a9Zk7d65N2hYis2QGWTyRqlSpwolTJ5g7dy5paWl06tSJgIAABg58kXlzZ1OmhBv7D8fz1VcT0Fox5pOxxMTE0LJVS44cOUJo6EEMykiAU577euht8g+TKV6kBBGcQaHwxBeDNjL91+mcPHaSn6b9RIkSJe7ahsFgoHPnznTu3Pmm62lpaTRvVg9zygma1oOvv/wZL5/yfDp2Ojt27GDQq2Xp1KnTQx0EsmXLFlo0aUG+pOI448I3B74lSSdS3lKd1MgUhg8egZ2dHT179nzgPkTW0FpvImMjQmFrSUlJhISE4O/vn7G1Y1bYs2cProneGVtOGpQBt0Rv9uzZQ+vWrTPKHTp0iLGjx3LqxGnatG/Na8Nfw9nZ+U7N3lVaWhpGZbzpSHmlDaSk3Hns+3PWH7Rp2ZYdJ4OxaAvVq1fnm4lfP1D///XaK8MpmlghY/tLr0RfXntlOF26dLFJ+0JkhswgiywXHBxMUJXSuLg40qhhdfbu3Zst/fr6+jJw4EBeeeUV8uXLx7x589ix5W9Obg9g7XxPti72Y8SIV2nZsiUnz5zgSsxlLGYzl0PjqJXaipopLUg8YuGFHr0y3aeLiwv29nbUpS0VqEUCcZSnOg1oz8VtcTSo15C0tLR7N3QbCxYsIC3pOGvmefPe8FysX5CLixH7MRqNfPLJJ3Tv3v2hT8kb88lY8iUVJ78qgo/yp4K5FmmWFOxxwEfloVBiKb787O4Hl6xbt45G9RtTqlhpRr41koSEhIeKSYictmrVKgoV9GfEsE7Uq1uZrl3akJKSkiV9VapUiQSXaCzauu7Yoi0kuERTsWLFjDJHjx6lZvVabP9rP4k74LtPp9KmZZsH7rNWrVrgpAnnlLU/HcdF1zO8POClO9bJnz8/ew/sYV/oXo6eOMLqdavw9PR84BhudCbsNF74Zrz2wpeIC+GYbjw+VYgsJgmyyFIffvg/OnZowf4DR2hUx47mdU/RonlD4uLisj2WFSsW0fc5e9xcrf/sSxR1oFEdD9atW5dRZvGSxRRILY5BGVBKUcBcnI2bN2T6h2Hu3LkpX74C4caTXOAshSiBl/LFqOwoqItDkmL9+vUPFP+BAwdoWBsMBussj52dokEtIwcOHHig9m7nQuQFnLm+9MOojDjgSCrW+7fHgYT4Oye8W7ZsoV3r9lzccA33k/78OWkO7Vq3s1l8QmS35ORkejzXmb9+cGfbUm9ObffnWvRWJk2amCX9tWrVivJVy3HQbSsnOchBt62Ur1qOVq2ur5YZP248uZMLUEiXwFcFUDLpGXaH7GHfvn0P1Ke9vT2r167CuTxsMC7ikPsO3vv4Pdq1u/f/3cDAQPLly/dA/d5JlcpVuKDOZby+yDnKli6HnZ186C2yjyTIIsvMmTOHGdPHs3FRfi6FFqFiGUfmLLxGtcr2LFy4MFtjWbduHZs3bWL/4esfGVosmmMnU28a3D09vEghKeN1Ksk4Oznf18A87++5+FR247KKvM27igfdWrFq1aosWaVJTbXWT062sGxNGlWrVn2g9m6n87OduOh8FrO2PrgYpSNIJQUX3EnTqYQ7n+T53ndeXvHF2C/Jl1SMvKoQXsqXEsmVCdm5i6NHj9osRiGy0+7duymQz54Gtay/ODo6Ghjcx5EVy+ZlSX9Go5EVwcv58Y8p9Bn1HD/+MYUVwctvekDv3NnzOJmu/yJrUAbc7DyIjLzdmJM5ZcqUYde+XcRdi+NqzBVef334Q93Hw5jy0xQueZ7hqNsujrnt5pz7MX7+9acci0c8neTXMZFlfp32LaPf8aRiWUcAPh7pw8wF1/DyMmfLtkX/Wr9+Pd27teWtoU58NiEeTzdFzarO/D4vFW+fItSrV4/IyEjmzp1LzTo1CF68moJJpTBgINzlBMNeG3ZfT4/nz5+fbTu3snDhQno91xvPpFy44UWE4TTayUyDBg0e6D5at27Nr9OqE9R8Gw1r2xO8IZWgqk1o2LDhA7V3O6+PeJ0d23cSvDIYF3sXLEYzRXMXZfuZFWige9duvPPuO3esfznqMg7aMWMlrEEZcLJzJjo62mYxCpGdAgICOBeeRHKyBScn65zS8ZMm8uYrmGV9Go1G2rVrd8cZ3I5dOvDB5o/wS8iLUdkRq68Sk3bFulTiDrTWHD58GJPJRPny5W9ab3yjB13HbEvly5cn7FwYixcvxmw206ZNG5st3xAisyRBFllKKbh8xcxff1/jaoyZxCTNrv3JzMnER3e2MuGbMXwy0oWXenjSoYUbX30fTf8RUbzcfzgz3v+QjRs30qlja9o0c8bZANohkbSCMTg5OPHRoA8YOHBgpvrRWnPu3Dk8PDzw8vKiffv2TJoykXfeeofISxeoWbUmC6evxd7e/oHuw2g0MnfeEtauXcu+ffv44YUq1KtX744/6B6Eo6MjCxbO5+zZs0RFRVGxYkXs7OyIiorCyckJd3f3u9Z/7oXufHJgDLkSc2PEjkuEY7EzU6VKFZvFKER2CgwMpEmTZrTrtYEhfR05ecbE598msTL4zr8oZrUXX3yRtavWsmjRP3g4eBJvvsbvf/yOh4fHbctfunSJFk1bcvrkaQzKgG8eH5YHL7/tfu6PCjc3t4fekUeIhyEn6YksM2fOHN5+sy/xCUk0qedCHj8jP/+fvTOPj+lqH/j3zmSZ7PsmkSCRCBKCxL7v1N5FKYpW0QVd0PbXvah621KtFqVo1VK0ithr32InIkhIInsi+0xmJjNzfn/kbTSvLSER2vv18cdMzvOc51xy7nPPfZZfChg/YQqzZ9890auymEwmtm/fzrFjxwgODmbQoEFlCWsdOzRj+oQMena2KRvfsEMWq9fuoWnTpjRv1oC3Xy5gcF9bANZsLGTeUleOHqt4bG9MTAyD+g8iNSUNozDw7LPDWLj4+7LQDCHEHR1ZIQQGg6FSjrNarWbt2rWkpKTQs2fPKg2zeBCMRiPjXniJVatWoTJTYWVnxW8bNxAREVHTpj0SPIxOepVB3osrhl6vZ8GCb9m2dR1eXrWZNHn6I1GXNyEhgeTkZJo1a3bHspEAQwY9yektF6hX0giAJOVl3MMdOHjkwMMyVUbmkaGi+7DsIMtUK61bN6V3h+v83xQXAC7F6Wk3IJvr1zPvuqFXBiEEzw0fwvmze+jfQ8H+oxImhR+7dh9CpVIxZ87nbN88m99+dMLGWsHaPwqZPkMQfzUFhUKBUqmkONEfc/NSB7a42IRTUAJ6fcUypk0mE/51ArBKdqKWqIuBEi5Zn+LNjybzxptv3FV2/tfz+fD9D8kryKNFs3BWrFxOUFDQXWUyMzMJbxaOyFNiprUkxzKd16dO4f0P3q+QvQ+D7OxssrOzCQwMRKGQUx3+QnaQZWoCW2s7mhV3xFIqDZ8wCSP7FH+g1qixtLSsYetkZB4ucqtpmUcCjbqQPl1vntwGBVjg5GBGUlJSlc1x+PBhoo7t5ugWFz6e5sKeDU6ozBNZvXo1AJMnT8GnTjf8mqcS2CaTd2ZJrFtf2pVKkiRCQ/zZtudmZYZtezSEhlS8zunFixfJz8mnlqiLJEmYSxZ4aery8/KVd5XbvHkzH7zzEXugvoAAACAASURBVIH5zekkBpJ/WkfXTt3uWcro888+R5GlIkjTHH9TY0I17Zj92WwyMjIqbHN14+rqSoMGDWTnWEbmEcDF2YVibu5xWoqxsbK573AvGZl/A/LdS6ZaadYsgj+236wKER2rI7/QRJ06dapsjrNnz9KpjaosgUaSJHp2lDhzpvRkzNzcnGXL13AhJp6Nmw5xJe46LVrcfHj84svvGTulgJen5zJhWi4vvVXAf774rsLz29vbozfqEdxMPCxBh6OT413lFn//A57qOthKDigkBbVFAAaNkSNHjtxV7tiRKBz0N2uEWkoqnCxdiYmJqbDNMjIy/x7e/+g94m3Oky6SyBDJXLY5xdTpU6vtAbakpIS4uLhbaqBfu3aN3j36YGdjR4P6wQ+9mpGMTGWQHWSZauX9D2aybK3E4DF5vDw9j65PZvOf/3yNSqWqsjmaNWvG7gNaNJr/FtY3CbbsMtG8ecty47y8vGjUqNEtFSm6du3KyVMXqNvwLQIaT+XU6ZhKVZqoXbs2HTp04LLqDAUih0yRwnXry0x7Z+pd5ZRmynJO9V8tW+9VUq5V25bkW2SXfdaJYnJ12TRs2LDCNsvIyPx7GDt2LD+uXIJ7BzscWpvz1fdf8M6771TLXJs3b8bLoxbhTVvi4ebJ57M/B8BgMNCxXUfi/0wmTNMJqzhXRg4bRVRUVLXYISPzoMgxyDLVTkFBAevXryc3N5d+/fpVeZtWIQRjxz7HoQNbeKKbGQejBLYOQWzdtveBO8tVFI1GwwcffMj6NetxdXXlvY/+j379+t1VZvfu3Qzp/yQBmibYYE+q8iqito7L8ZfuerKTlZVFeLNwTHkSZloVNyzSeXPaG7z3/v9V9bJkqhg5Blnmn0xmZib16vgTXNwCR8mVYqHmgs0xftu8HoPBwMghz9OosHXZ+ETpMm2fa86Py5fWoNUy/zYqug/LZd5kqh17e3tGjx5dbfolSWLJkp/Zu3cvx44do7+Pkf179tMmoi1Dhz/DpMmT7hhrp9VquXjxIr6+vri4uNy3DdbW1syZ8zlz5nxeYZmuXbvy7aJveO/t94jJTKdzp858t+i7e772dHNzI+ZSDL/++mtZFQu5jJqMjExNs23bNlyVnjhKpSFgVpINbhpv1q5eyxP9n0Ci/Ns7hVCgr6aW3TIyD4rsIMs8cgghOHDgAPHx8bRr165CJ86SJNG5c2eEEAzqNxhvTQAqrPjyyjzOnDrDz6t+vkVm3bp1jB39ApaSiiJ9Ia+99iqzZs+q0rrC92L48OEMH37nznR3wtramlGjRlWDRTIyMjL3h4ODAwaFvtx3RnMDzi7OdOnSBb1SQyoJeAk/isgnwzqRMS9WbclPGZmqQo5Blnmk0Ol09O7ViQnjBrA78m3atmnKrFmfVFj+kw8/pbYmEG+pLi6SJ0GaFvz2229kZmaWG5eZmcmoEc/ToKgFTYraE67rwuIFS4iMjKzqJclUkKtXr/L0U0/gXcuZzp0iOHBArtEqI/M40bt3b5R2EleVFygUeSQTT7ZFKi+8+AIqlYqdf+7ELLiEfcqNXHE8zawvZtK1a9eaNltG5rbIDrLMI8WyZcswFEdzZrcrK+bbc2a3B1/85zOuXbtWIfmM9AxU3KyvrESJpZmKGzdulBu3c+dO3Mw9sZecALCQVLiqvVm3dn3VLeYRpaSkhOzsbGoi/+BOaLVaunRuQ6h/FAc3OjD26SQGD+rDpUuXato0GZl/LCaTiX379rFp0yaKiooeWJ+FhQVHog7TbmgEGT7x1O3uxb4De8uqFjVt2pSzF85QUFhA1o3MW7qUGo1GEhIS0Gg0D2yLjMyDIjvIMo8URw7v5ukBZiiVpWEOnu5mdGxjx7Fjxyok/+QzQ0i3SsQkjABkkIyNg80tzTfc3NzQUVzOSTRY6PH08qiilTyafPnlV7g6u+Hr7UtA3focPXq0pk0CYOvWrfj7mXhnsiN+tc0ZNtieF4ZZ8eOPP9S0aTIy/0gyMzNpGNSIp/sNZeJzr+Lt5cP+/fsfWG+tWrVY/tMyrl2/SuT2LbftOGhlZXVLrsWOHTvw9vSmaaMwPFw9mP3Z7Ae2RUbmQZAdZJlHivqBIRw5cdNp1elMnDyruWd3ub94+523adqxEVGqXZy22ccN9yR+/+O3Wzbjrl274ujpQJzFOXJFFonSZW5YpjF+wvg7aH782bFjB5++/ymNilrRRt8Hm0Q3evfsc0ut0pqguLgYW5vysd92tqDRPPiploxMZdDpdMyaOYsWTcPp33dAhR/OHzemT52OLlEQUtiWBoXh1CtqzLPPDMNkMt1b+B7odDpOnDhBWlpahcbn5OQwZNCTeGcHEV7cjSbF7Zn96efs3r37vuY/duwYPbv1on69QF59+VVyc3PvS4/MvxvZQZZ5pBg/fiIHoiwY8UoeXy/OpdPgHFq36UJYWFiF5K2srNi8dTPRsefZuX8711Ov37bCg1Kp5OCRAwx4qQ/64FyaDAzi8NFD+Pn5VfWSqpyUlBTmzZvH/PnzSU9Pr7Dcih9X4Kb2xUayQ5IkPCQfbLG/75tQVdK7d28ORWnYvLMIIQTRsToWLC9m6NARNW2azL+MpwY/zTeffo/prIorW5Pp3qXHP7JW764du/As8S1LSnbBk6L8Iq5fv/5AeiMjI/F096Rv134E1KvPi2PH3dPp3rFjB85KN5wld6C0+oWrxodVK1dVev7o6Gi6d+nO9d1ZOF2rzaYfttO5Q+dHKqRM5vFAdpBlqpW9e/fSODgEC3NLmjVpfs/TGBcXF46fOE9Yq7e4lNqPKW8t4OeVlY8L9vPzIyws7JamIP8717yv53Iu5iy/rl97X4021Gr1LfHNJpOJb775huZNWtChTQd+//33Suu9E3v27CE4MJi50xfw5bT5BAUEcfjw4QrJ2tjaIJTGct8ZMGBlZVVl9t0vTk5OrN+wmamfmuESnEyPZ/L54MP/0KZNm5o2TeZfxLVr19izZw8NipvjInniQz28i/35bMZnNW1alVOnbl0KySv7rKOYEpOen3/+mfnz59+S2FwRCgoKeOapZwgoaEpoYTsitN34Y80mVq5ceVc5e3t7Sihf/cJkZrhnN9Lb8fXcr/HU1cFbqoeD5EyAPpSUhLR7dii9X3Q6HevXr+e7777j6tWr1TKHTM0gO8gy1UZCQgL9+vZHGWtHW0Nv9OeU9OjWk6ysrLvKOTk58eabb/Hdd0sZOnQomzZtomnjMLzcazHuhXHk5eXdVf5hUFJSwrix43B1ccOnlg8tW7QiKSkJgNcnv8Gn02ZiOmdF3pESRg8fwy+//PLAc2o0GkaPHEM9TQgBulACtE3wVTfg5fGvVEh+wssTSLdMIEMkUyzUXFNcROVgTufOnR/YtqqgY8eOXIxNJC7uOskp2bz44ks1bZLMv4zMzEyszW1RSDcfrFXCmtSUioUKPE7MnD2DJOtLJCoukSziOWtxAJNR8MPHK/hi2nwCA4I4c+ZMpXQeOHAARzPXsjrIZpI5rmoffl297q5y3bt3x9LRjKvKCxSJfFLEVTItknlpfOX3gOysG5gZbzaIkiQJlcKqWsIsMjMzCQ4MZtLo1/n8jbmENgpl6RK56ck/BdlBlqk2fvnlF1wNtXCXvDGTzPGS/HAyubF+fcVPhHfu3Mmo4aPhgjV1s0LY/tMe+vTqW202m0wm9u/fz+rVq8nIyCAqKoqpb01l5syZpKSklI2bPXs2m1dvJULXjTb6PuSeUTPgiYEUFxezaNEiAjXNcZU88ZB8qKtpzKcfznggu1asWIG7qweJyQm44lX2vSu1uHDxQoV0NG3alN/++A2LpgZinY7TtH8wBw4fuGdr64eJJEm4uro+UjbJ/HsICwvDqNCTLUodYqMwkmGVxJNDh9SwZVVPu3btOHjkAJ1Ht6bxoADMVOaEGFoRUBJKfW0TvIrqMfnVKZXS6e7ujsZYVC6cQW+mpZZPrbvKmZubc+joIdo83YKUWpeo1dGJXX/uvK+uq88+N5Qsm2T0QgvADZFBgTGXjh07VlrXvfjk408QaeYEF0UQoA0lVNuWSa9OqpKKIDI1T5XchSRJ6gXMA5TAD0KIf977KJlKYzKZkP4n7EuYTBw6dIgrl6/Quk1rBg4ceFdn6Ms5X+KjCcBNKt1g6+ubcPz8bmJjY2nQoEGV2ltYWEiXjl1IvHIda8mWtOJkzBRmeBr8EOZG5nw2h/2H9hMSEsJPP/6MtyYAC8kSAF9jEMeu7CAuLg6TyYQ5N08wVFiTmnv5vu1KSEhg4ksvE6JtzXmOcYP0Mif5Buk0CKz4dejatSsnTh+/b1tkZB4V4uLimDN7DnFX4unbvw8vv/wylpaWD6TTwsKC3/74jcEDBpNqjEetL6JXr15MmjSpiqx+tAgNDWXh4oXk5OTg7eVTdvIL4Co8OXeuclVuWrRoQWDDAC6dP4W71ge1VECGZRKTp9z7+tWqVYufVq6o9Br+lyeffJKoo1EsWLAASzMrzC3N+G3tb9ja2j6w7v/lwN5DuJR4wX/zi20ke2zM7bh48SLh4eFVPp/Mw+WBT5AlSVIC3wK9gYbAs5IkVT6YU+Yfx7PPPku2eSrZIh0hBOkiiTTddXZv2MfGr7bzyujX6Ne3/12TJwoLijDjZptoSZKwUFqQm5vLxYsXKSwsrDJ7v/ziS9Iv3iC0qB31CkMxGUw01bejnmiIvz4E9yI/3p76DgDW1lYYKCmTNWHEKIx4enrSMLghyYp4hBCYhIkUyzgGDBxw33b99NNP2AoHLFARSBMucJwYcZJYxSkSbGL49vtvHnjtMjKPE1evXiW8WTi7fzxE1j41X7w3j/59+1eJ7vbt25OakUrkn5u5eDmGdRt+vWOr+seNO+21jo6OONg7kCeyy767IaUTGhpaKf2SJLFj9w5GvT4MEaKm8cD6HDi0v8oPM+5lw5wv5pCSlsKRE4dISU+mS5cu1TJXk7BQ8pU3r5lOFFOoy6devXrVMp/Mw6UqQiwigDghxFUhhB5YDdy/NyDzj8Hf35+169dS4JfGbtaT7Z6Ei6U7DTUR1JWCaVTUmuOHT7Bv37476hg1diTpNgnohBYhBClcRZgZGTSwN/2faIOvrydz5syqEnt3bN2Jq7YWkiShoxgzzLGW7Mp+7iTciD4fDcCb098k0TqWHJFJkcjniuosPbr3wM3NjV83rEXUKeakzR6iVDvxb+nLnC/mVNoek8nE2NEvMOvTz9DqijnMNoopIoKuFJsVEtqzATGxF2jfvn2VrF9G5nHhqy++wqXYm7qmYDwkHxpoWhB19Dhnz56tEv3m5uY0b96c2rVrV4m+qqakpISZM2cSHNiQ8LBw1q5de8exQghmfDoDJwdnzM3M6dvrCTIyMsqNUSgUfLdoAbFWJ4gzP8cV1VnSbK8yd/5XlbbNzs6OT2d8yqlzJ1m34VeaNGlSaR1VgaOjI0FBQdUarvXBR++Ta5dOnOU5rnGR89aHeXPqW7i4uFTbnDIPj6r4n+MN/L0uTDLQ8n8HSZI0DhgH4OvrWwXTyjwO9OrVi/iE0rCDKZOnEDn/z7KyQgpJgb3BmejoaDp16nRb+bFjx3Lp4iW+++47hABvb2+MN9RsWe5GeFMVSckldB7yGRERbR44xiy4UQP2nTyKq8kLFdaYMJIvcnCQnAHIVqbRpm1rAIYPH45er+fzmXNIK8jn6WeeYuZnM4HSB4NLcbHExsZiZWVV1kXqbhgMBk6ePFm2qQNs3LiRP37dREt9d8wkczSiiCh2o1WokWxMLF26FA+Pezc2ycjIICEhgcaNG2NjY3OfV0dGpnowGo0IISrlyFy7moDKYF32alshKbBTOpCcnFxjDtnDZMJLE4lcs41aGn9KKOGl0RMoKSlh+PDht4xdsmQJcz+bT7A6AktUxP55mSd69+P4qfKl6wYNGsTZ6LOsX78eKysrnn76adzd3R/Wkh5L6tWrR8ylGJYtW0ZGegb9B/SvllhnmZpBetDagJIkPQX0FEK88N/PI4AIIcSrd5Jp0aKFOHHixAPNK/P4sXr1aia/8AaN1K1QSAoMwsAZm/1s/3MrERERd5XVaDQUFRWxadMmdkW+w8pvHcp+NmteLlnFzzB37oOFGsTHxxPeLBwnrQfmeivSLK5SbCzG29IPg7IEg5WOo1FH7lkr+dy5c6xdsxZrG2tGjBhx21Mog8HAnj17yM/Px83NjWeeGorQgtZYTFjzMDZt+YPXJ7/OvqVR+EmBN3VLR6jXojYrfl5xzwQWIQRTJr3O4kWLsLN0QG0oYvGSRQwdOvT+LpDMAyNJ0kkhRIuatuMvanIvLikpYcqkKSxZuhSj0UDfPk+wdNkSnJyc7im7cOFCPnzjE4LVESglJYUij2irI1xPuV4h+ceZoqIi3FzdaanrjrlUmutwQ6SjD8ojOvb8LeObN2mB6ZwKV6k0b0EIQZTVTs5eOEPdunUfqu0yMo8CFd2Hq+IEORn4uwfgA6RWgV6ZfxhDhgzhh0VLOHf8ELYljuSZZTH4qYEVSmawtrbG2toaFxcX0jPKP9SlZUq4+7neVm7z5s28OeUtricn0apla75f/N0dHUt/f3/ORp9lwbcLSEq8zsDBb9OyZUsiIyNxcHBgwIABWFtb39XOFStW8Mr4V3DT+yDMTMye9Tm79+yiRYubv4vp6em0a9MedbYGc8mS1MIkaosAAqQQTMLElagzfPj+h9SpW4ddqv2gK5UTQoCtkU9mfFKh7O4//viDlUt/IVzXDXO9BYUij7GjX6Bz584VOnmWkalO3n/vAzYs+4NwXVeUKDm9LZqRw0eyKXLTPWXHjh3L9q072LVjF/bmjuSV3OCHpT/8451jKD0skAQo/3b7tkBFVv4dyl+Wb1CJoDQ3Ijo6Gh8fn39MfPWdyM/P54cffuDc6XN07taZYcOGYWFhcW9BmX89VXGCbAZcBroCKcBxYJgQ4o61p+QT5H8vJpOJ3bt3ExMTQ0REBK1atSoLuagIOp2O0JD6PNG1mGcGWHHwmJbZ3+o4cTL6lpPakydP0rlDF/w1IdjjTLoikQLXLBKSrj1wtvvtMBgMeLh5EpDXFHup9EadIq7h1taWfQf3lo17fuRo9q86ir+xMVBahugiJ2lLbyRJIl/kkOOXxOGoQzRuGIJdgTM2JY7kWqXjEeRK1Mljt7TOvh3PjxzNkZ9O4yvddKav2J5m5vcfM2zYsKpdvEyFkE+Qb1LLvRZ+WY2xlUrfBhmFgUPmW8nJvVHhUKBLly6RlJREREQEDg4O9xaoJBkZGbw4Zhzbd27D0cGJd959m9cmvVapPas6aNakOUXRBnxN9TFh4orqDE+NH8SXX31xy9ilS5cy7bW3CVA3wRIrrkoxpJOEo60TJjMj639bV+VhAWq1ms2bN6PT6ejbt2+NxeQWFBQQFhqGIROsiu3Jt8kmuHkgu/fuqvF/Q5mao6L78AMn6QkhDMArwHbgIrD2bs6xzKNJZmYmL4x5Af86AfTq3ovqumkqFAq6d+/OpEmTaN26daU3KUtLS/buO4ZaPMG4aRZExbRi95+HbhvGsGjhYjy1frhKXlhIlviKQBRaM3bt2lVVyylHTk4O2uLiMucYwBl3YmJiyo3bs3sPHoab9rpIHpgwoUUDQDFqPD09cXd359SZk/Qb3xO3DjZM/L9x7D2wp0LOMYBXLU8MFrqyz0IIitHIp8cyjwRKMzNM3GxBLBBIEpXaE4KCgujevXu1OMdCCHr36MOFHVdoXdKLutkhfPJ/M1i9enWVz1VZ1v++DotAE1FWOzlquZ1mXUP4dMYntx07evRo3nrvDeKdz3BIGckNKY0I0ZUmRe3xzW3AoAGD0el0t5W9Hy5dukRd37q89eJ03n/5Y+r61btrInZ1smzZMkqyIFDbjNpSAA3VEZw/FV1j9sg8XlRJeqcQIhKIrApdMg8fo9FI29btMFxX4F5Sh8TETLoc6cqJU8cJDAy8t4KHjJeXF99//+M9xxlKSpBE+ZutAgUlJSV3kHgwXF1dsbd3ICcrE2epNLklS0opF14BEBDgT1pqDraU3tS1QoOBEvK5wQ2RQYpVHBs+LW2m4uPjw9yv596XPRMmTuD7Bd+jNJpjZ3Qk2zIVj9puj0znPJl/NxNemcDXM+ZTV9MYJWYkqWIZ2G/QPcOYHhZXrlwhPu4q4YauSJKEUijxUPvxzdxvePbZZ2vUtrp163I+5hyJiYlYWVnd9aFXkiSmTpvK1GlTad+6AwVHjVhJpSf0LpInaeIqJ06coG3btlVi22svT8IpzwtfUXrvyBKpPD/iea4mXn3op7YxFy6i0tiWT+Y0OXL58uU7JobLyPyF3ElPhj///JOiLDUBhhDsJSd8JH/cdT58v+D7mjbtgRg9djTpVkkUiByEEKSKBDSKQnr06PFAeoUQt60nqlAoWLLsBy5bnSLO6iyXbU6R45jKV19/WW7cjNkzSLa+QoLyIkniChdsjvFEvydwaGlB/T4+bNm+mW7duj2QjVBaLebo8aNEPB2K1KSYoa8NYf+hfRU+gZZ5vJAkaakkSZmSJEXXtC0VYfr0aUycOp54l7Octz1MnxE9WLpsSU2bVYYQAonSk+2rIob9bCaW05w7d/6Wt0IV1XfhwgVOnDiByWS67ZjMzExee/U1moU2Z/SoMSQkJNxRnyRJ1KlTp1JvhDy9PNFJmrLPJmFCXVJ022oVOTk5bNmyhQsXKvdC+FjUMdxNN9+QueJFWnoa+fn5QOmBzIcffIiXuxduLu689eZb6PX6Ss1RUTp36USBTTYmUXq99UJHtkivsocBmX84f93sH+bf5s2bC5lHh7Vr1wpf+3qim/Rk2d9AmoiRz42qadMemB+X/ijcXdyFQlKIkOBQcerUqfvWpdFoxJjnxwqVhUpYqazE4IGDRddO3URAnQAxcfxEcePGDSGEEMnJyWLBggVi2bJlIj8//7a6Ll68KF595VUxYvhIsXXr1vu2SebxAjghqmlfBToAzYDoisrIe/GdMZlMIrRRqHBX1BK2OIh29BFdGSIaSGHC29NHGAyGCuvKzs4WLcLChaONk3C1cxe+3r7i4sWL5cZotVpR17euqGMeKJrRQfgrGwkXJ1eRlZVVZWs6fvy4sLO2Fw2kMNGENsLdspbo0bXHLeOWL18urFU2orZ9HWFv7SD69e0v9Hp9heZoERYuGtOy7F4SQVfh4uhadr3+7933hKe1t2hFd9GaHqKWla+Y8NKEKlvj3zEYDKJ/3/7CycZF1LGtL2yt7MT0qdOrZS6Zx4eK7sMPnKR3P8hJeo8Wubm5+Pr4EqhphrPkjlYUE2NzlJ9//YnevXvXtHkPjBCC9PR0IiNLo4AGDRqEs7NzpfWMeX4sO9fsoa62ESC4wHFAIoBGZFhcxz7AijPnT8sntDJ3pLqT9CRJqgNsFkI0rsh4eS++O6mpqTRp2BSv/Hp4SDdPRc/aHmDTzo20bHlLyf/bMvK5Uexfe5SAkhAkSSKZeCwbCc6cP102Zt26dUwe8wbBRTdLXsapzvLKJy/xxhtvVNmaoqKieGHMOC7GXMDSXIWZpRnfLVxQFjaSnZ2NX+06NNG2xUayxySMxFgf58Mv/4+XXnrpnvrXrFnDyOdG4Wn0xQwzslQpzP/ua0aNGgWAq5MbgXnNsJHsAdAJLcctd6PWFJXbO7VaLYsWLWLntl00CmnI5CmT8fT0rPR6hRBERUURGxtLq1atyurMy/x7eWhJejKPP05OTqzbsI4k54ucsP6T06q9vPrGq/Tq1aumTasSjh07RoPAYD6ZNItPJs2irl89oqKi7i34N4QQ/LJqJfW0jbCUVFhKVgTTnEJysZecCdCHkn49ncOHD1fTKmRkqgZJksZJknRCkqQTWVlZNW3OI02tWrVo2bolBgxl3wkhKDGVVCpWOjIyEu+SemUxuN6iHrGXLpKbm1s2JiMjAwuDqpycUmtOWmraA66iPGZmZiReSyBcdKV1SS+CCpvz4phxZeEchw8fxsXCvcyBVUhKXDRebN645Z66MzIyeHnCK3gIH3RCS7aUjrOrc7kGJiWGEhQoyz4rUGA0GsqFnQgh6N6lB5+//QXXtqazdu7vNA0J437+v0qSRMuWLRk1apTsHMtUCtlBlgGgZ8+epGWkEnX6KGmZaXz40Qf/mDI448aMw7eoAfU1YdTXhFG7KJDxL06otB4JiTu9b5EkCUvJmry8O9QifUAKCwtJTEy8beyzjExlEEIsEkK0EEK0cHNzq2lzqoVVq1ZRv14g9rYODBn0JGlpaeTl5TFnzhyee/Y5fvjhhwpXbpj8xiRSrOPIFmloRBHx5ufxr1+Xxo0rdEgPgLurO8UUlX3WUYyZmVk5J7tXr15kilTUorB0jNBywzqd/gP6V3ieirBhwwZctbWwkewAsJeccKMWmzaV1p/29fWl0JhXFrcLUGxehHdtbzZt2sT587c2I/mLJUuWYFfsTJApjBCpJeGmLujySti+fXvZmGHDniVRFUuJ0GMQJVyzjGHggEHlOikeOHCA2POXaKAJx0vyw78kBKsiOxYuXFil10JG5m7IDrJMGWZmZtSvXx87O7uHNmdhYSHXrl27Y9LKgyKEIDo2Gne8y75zx4dzF87dVe7atWssXLiQjRs3UlJSgiRJDB/+HNesotEKDVqhIYYTuOMDlNYyzjfmVHlmtMlkYvJrU/B09yQkOBT/OgGcPHmySueQkfknsXPnTia8MBH7a140UbfnzOYYunbqStPQML75YCEnV8fw/uSP6dG1Z4X2nW7duvHjT0sxNCjgstNJOjzTmu27tlfqAOGjGR9y1TqaVJFAhkjmks1JJk2eVK4eu7+/P1/N+5JzVoeItjvMSdUeJr3xGh06dLiv63AnHB0dMVkYy31nNCvB0dERgKZNm9KydUsuWh8nXSRxzSyGdGUSK5av4OXnXqN9qw70JKnovgAAIABJREFU69P/ttWAUpJTMNPeXJMkSahM1qSl3TwF/3Lul3Qe3I6j5ts5bL6V5j1D+WHp4nJ6EhISsMWh3DW21NoQdzmuSq6BjExFkGOQZWoEIQRT35zKggULMFOYY+9gz68b1tKqVasqn8u/TgAOiV64SKXxa9kiDY1/NpfiYm87fvGixUyZNAU3hTc6pQZbd2uOHDuMjY0NUyZNYcVPP6GQJIKCGhATcwGVmRXmKnNWrf2FLl26VKntP/74I9NffZcG6haYY0EG18l0TSQ59fo/vgPWPxE5Brn66d+3P3GRqXhLpW2UhRBEWezCRmFLY13rsu/O2h5gzcZVVf47eye2b9/OV/+Zi0ajYey4MYwcOfK2TnZBQQGxsbH4+/tXS4ONjIwMggODcSusjZNwJ1uRRpFzNnHX4rC1tQVAr9ezaNEiIv+IxNvXm5U//0JTXXtsJDtMwsRF6yg+uE1M8rZt2xj+5AhC1G0wlyxQi0LOqQ5xITYaPz+/cmP1ej0mkwkhBPHx8fj5+ZUdziQmJtKoQSPCtB1RSdYYhZELNkeZ98OXDB06tMqvyf9iNBpZu3YtkZu3Uj8ogPHjx9+20ofM44kcgyzzSLNq1SqWL/yJ5touhGu64ZzmQ99efdFqtbcdn5+fT2Fh4X3N9c1387lifZarygtcNYsmzvoc8xd8fcd5pkyeQqi2HQHFoTQsbIk+WfDZrM/QarUENwpmwoTx/LbxN46fjCItI42jp46Qkp5cLTfaFT/+hIfaDwvJEkmS8JR8kfQKjh8/XuVzyTzeSJK0CjgCBEmSlCxJ0tiatqkm0On0KP52a5MkCQSYaVXlvrMzORIX9/BOJHv27Mm2nVvZf2gfo0aNuuMJtL29PREREdXWfc7Dw4ODRw4S3LcumbWv0mJICEePHy1zjgEsLCx45ZVXiNwRSb/+/XC19CgLyVBICpw1Xmz549bWBz179mT0uFEcV+3mgv1RzlkdZO7XX93iHP81x5o1a3B39aB1szY4O7rw4gsvIoTAz8+PT2Z+yinVXi7bneKk1Z906tWep556qlquyf8y7JlhTHnxDY7/Es2PM1cS0ii03Cn4P4Xc3FxGjXgeF0dXAurWZ/ny5TVt0iNFlTQKkZGpLD8t+xl3tS+WkgqdKCaXLIoLtTz7zLMs+H4BXl5e3Lhxg4kTx/DHxi0olQKDQcETfQayYuXySiXI9O7dmxOnjrPy55VIConhw4ffsQHKhQsXsDd3xEZbejOQJAlnnSe7tu9i5U+/YF5khXmxih8XLmPEmBHM/fqrauni9ReOjo6kS/lln4UQ6Axa7O3tK60rLi6OQ4cOUb9+/fvqYijzaCOEqNnuFY8IL45/gfFHJ+KgdkaFDamKa1jamqPTFWHSGFFIyn9cPVwhBMePHycmJoaWLVsSHBx81/ENGzbk902/V0i3n58fhYbSmGSFVPrgUWxeREBgwC1jJUniP1/+hzfeeoP4+HhCQkLuuD/Gx8cz4aWJNNG1xVZyoFioWbZkOckpKWzdGsmUKZMZOvQZoqKiCAgIoFGjRhWy90GJiYlhW+R2mhd3QSkpQQ/xBeeZN3cen83+7KHY8LDo16c/yacyCNZHoM3XMGXi6zg4ODBw4MCaNu2RQD5BlqkRnJ2dMEilSRon2AtAA1NzzkTGEN4sgqKiIp4dOgAHi/1cPe7Lvt+98fEw488te3l98uuVni8oKIiPP/mYjz766K7dAf39/cnX5aIXNxN4CpQ5GIURVZ4dgcVh1CWYEHVbfli8mKSkpErbUhnemPo6qVbxZIjrFIo8rlieJbhRg0olCAF88vGnhIWE8eErM+jXYwA9uvastuL8MjI1yZAhQ3jr/94g2vYo+5WbsAlVsu/gPtp1a8Mpm33E2ZzllGovr0x6+aE5XdWJ0Whk0IDB9OrSm49emUnL5q148/U3q0x/kyZNaN2uNReto0gTSVw1u0CedQaTp0y6o4yXlxft2rW7xTnWarVs376dffv2sWnTJhz1bthKpWOsJBu8qcf2bdtITU0t0zNgwICH+u905coVHM2dS53j/2Ktd+DC+co3h3mUiY+P59zZc/jrQ7CSbHCS3PDW1OerOffXufWfiOwgy9QIk9+YTKrVNS5zDhvsCZKa4iJ5EGAMRVFkzsKFCzl9+hTzZ7ri4WZGWIiKr2Y6o1KVsGb1mmqzy8PDg1dee5Vom8MkEEuc5Tny7DOwtbbDTn+zdrK5ZIGTpSuxsbePY64q2rVrx7rff8U2XEm6dxz9xvRk686tldJx9epVZs+aTZi2EwHqJjRVdyA66iI///xzNVktI1NzSJLEtOnTyMm7QX5BHidOH6dhw4Zs2LiBnXu38/GC9zh59gQzZ82saVOrhN9//50jfx4lTN2RAE0TmhV3YvH3P3D27NlK6dFqtdy4cYMtW7bQomk4Pl61eWncePLy8vh902/835y3qdPLnf4Te3H63Gl8fX3vqk+v17Nu3To+//xzjhw5wsmTJ/Hx8mHM0y/ydL+hzJr5GcVCXU5GRzEKFMz5fE6lr0NV0bJlS7L1GWW2CSHItU6ne68H7276KKHT6VAqlEjcfJOoRElxcXENWvVoITvIMjVCeHg4f2zZiHltE1bYlvuZmdaCjIwMFAqJv/fcMFOCCRNWVlaVns9oNPLO2+/gYOuApYUlQ59+tqz16f/y2exZrPl9NX1e7sL4D8cQE3uBHr27k6fKLCuzphUabmizaNq0aaVtqSzdu3fncNQhEpKv8c2Cbyod0nHkyBHczDyxlEpjMBWSAke1O7t3/Fkd5srIVDt/JVG9NG488+bNu+3vslKpvCUUq0WLFowYMeKub5EeN/bt2Ye92g3Ff088zSULXPDk4MGDFZIXQvDu2+/i6uyKt6c3g/oNpvBsCbXTg9m2fDe9e/TGwsKCiRMnsnnrJr6a++U9neOioiLCm0Xw2ugpfP/uj/Tp1pceXXvimedPw8KWhBa1wzrHkULyuCzOki9ucE1cJIdMGtOS9b9uuK3erKwspk2dRqd2nZk+bTrZ2dmVu1h/w2g03rYSh6enJ7M+m8Vp1X7ibM5wxnY/9Zr4MW7cuPue61EkODgYd093khRXMAkTWqEh1foqY18aU9OmPTLIDrJMjdGpUyc2/L6BfOtMtEIDlDqe2eZpDBo0iMDABrw9Iwe1xkR8gp43389Bo5N4bfJrd9WbmJjI3r17y900Z8/+nKVfL6exug2tSnpydOMJhg8dflt5SZLo1q0b8+bPY9q0abi7uzN5ymRsfC2JsTtGvOV5zlgd4MOPPngsMpvr169PvsgpX9dUVUjj0If32lKv13PmzJn7KvQvI/N3hBAMHjiE18ZMZs/iI3zx9jyaNG5a6RrkSUlJHD9+/LZO0sNGCMHSpUtp1qQ5YSHNWLhwYYVrnjdo2ACt9c0ay0IIipR5FW6K8fPPP7No/hLCijvSzvAE/qIx14nDBnvq65sQG3OJCxcuVGo9ixcvJudaAQ2LWuJvbEwTTXvy8/Oxx7FsjLexHhYqc5KJJ5bTaCiiBR2xw4m8/NxbdKrVasKbhbN23u/kHdKzZt4GwpuFo9FoKmWbwWBg8mtTsLOxw9rKmn59+nHjxo1yY16b9BoxsRf45LsP+C1yPfsP7UOlUt1B4+OJJEls3RGJU5gVB8w2c0q1j7GvPP+PexB4EGQHWaZGadasGe+89zanVPs4b3uYo9IONDoNXTp1wbd2MJeSmuIUeJXQTtfJylXx/oz3mDZ92m11mUwmxjw/lkYNGvPcwJF4e3mzYsUKABZ9twhfTQOsJVssJEvq6Ruz68/d5ZzonTt30rFdJ4IDG/L+e++Xq6jh6OjI2egzfLv8a6Z8/jJRJ48xddrU6r04VUR4eDit27fmgs1Rros4rqjOYHQq5qXx924bWxVs27YNTzdPenToRZ3adXh5wsvVVvda5p/PiRMnOLDnII3UrfCTAgnSNkeTrGfkiBEVktfr9QwZ9CQNgxrRt2s/vDxqceDAgWq2+u785z9fMO3VtxHnrJCibZj+2jvU86vH0Kef5fTp0xQWFqJWq28rO3LkSFQeZlxSneK6iCPGJooGoUEVrqrz4+JleKnroJKskSQJH6keCpQUkIMkSVgoLCtdQejwgSPYaZzLEoHNJQsccOEG6WVjCsknMCCIxo1CcJe8aUgLrLAlxTyO3r1636Jz7dq1GHMlAkpCcZNqEaBvgiG3tEV3ZZg5YyZrlqyjha4L7YxPcGHXFZ558tbScX5+fjz33HO0b9/+sUhoFkKQmZlZqRCJevXqcezEUW7kZJNXkMus2bMei7U+LOQqFjI1SnZ2NpdiL2FvZ09hQQEueNDIFIFBb2DPxv2Me2sMv2/cgUKhuOcv7tq1a9m8LpJwbVfMdOYUiQImvDSRHj163NOO3bt38+TAp/DVBGGLB0u/WMHZ0+fYuPlmpre5uTmDBg164DU/bCRJYuOm31m1ahW7d+4muFEwL774Is7OzvcWfkAKCgp4asjTBGma4SS5USL0/PrTBtp1aMezz8pFF2QqT2xsLA44l4UUALjgwb4/d7Fz5066d+9+V/mv533NkR1RRGi7o9QpyRZpDOo/iNSMVCwsLKrb/Nsy57PPCdA0LUtYU+ltOH79T5TJ52m1vjVCIVBIEoMGDWbpsiXlwsxsbW05eeYES5Ys4ezps3Ts3JFhw4ahUFTs/MvG1oZ0Sg8KhBAkE4+OYs4ThZ1wQKEqDU2pDBGtwzm46Si1DHWQJAmDKKGAHEosi1HozDApDKRZJbDm89U0aNCAXt17cyp9LyZhpH5QAOMmjOPJwU+SeC2Jps2bYGlpyYYNG1CrtSQRRy38MJPMMdeqSElJqZRtSxcvpbYmEEup9BrWKWnIocNbyc3NxcnJqVK6HhWio6N5avDTJCYlIkkw8eWX+XzO7Ao7uw+zOdjjhNwoRKbGEEIQ2iiUojg9niV1UJNPLGdoSlscJGfyRQ5Zta9xLekqGRkZZGVlERwcjFKpvK2+YUOHc3rNRXwk/7LvrtieZvbiGcTHX+XrGd/grwnFDHMSLC8S2qUBmyJL26t27dSN9H0F1JJK63UahZEo1U5ir1zEx8fnjmtISEjg8uXLhIWFcae2vcXFxeh0urJOVf8mNm/ezMThrxJUePMGmyKuEdTPl9/+uH2c4T+Z6m4UUlkex7348uXLNA0JI1zfFQvJ8r+NK/bSsYceG5eB/PDDT3eVb9WiNbqTSlwlr7LvztkdYu0fqzh27Bibf99C/aAApr09rUpildVqNQcOHMDZ2Znw8PDbOi0qSxUt9T2wkEq70BlECfv4AzdqYY4FgTRBIIhTnaP/83349rtvHtiuv9i9ezeD+w+hnqYx+dwggxQa0hwFSq5I5+jcvz3rf19fKZ2JiYkE1A3AXjhjjzOZJGOOiibtGuLu5o61jQ0vvzqRiIgI4L8dT6OjMTMz4+u5X7N40Q944os7tcgklXSSUGFNLepwg3QKyccORzTmBezZ/+cdG0zl5+cTGxtLSEhIWTy6f50AnBNr4yi5AmAQBo5YbCMjM71aS3ZWF0ajET8fP+wzPKkl6qBHS6zNSWbPn8no0aMfig3r16/n23kLMAkTE14Zz9NPP/1In0TLjUJkHnmOHTtG+vVM/EtCsJXs8ZBqU4dAUrgKgBEDKksVI4ePpJ5fPTq17oyPV22OHj16W32+frXRW9x8vSSEQC0KMRqNRESEM2LCcC7YHeWYxQ7aDgjn51U3qzjk3MjBkpsxZgoUWJpZkpt7ayzcX7onvDSBxsEhjH36Jer41mXu3HnlxhiNRl6Z+AouTq54unviXyeAFs3C6dOzL7t27brv6/Y44erqisakLhdPWWKmw9PLswatknnU0ev1HD9+nMTExFt+FhgYyMBBAzgibSNedYxzNtsJbKwnoJ4Ka2vb22grTy1vL7TSzbhVkzBSoMmlT48+zJ72BflHDOz/KYqIFi2Jj49/oHXs2bOHWp7evPDMS/Tp2pfwZuG3TSjs06sv180vYxImTMLENS7iihfZpFGfJiglM8wkc3y1QaxateqBbPo7xcXFLFm8FI1eTTRRXCeeRrTAUXLFXnIiRLQicmvkHRs43Y7k5GTee/c9zCRzLP67pwbRlAAakZOdy68bfmX5T8vKnGMofcsVEhJCQkICPy1biROuBEvNcJE8CZaa4YAzPvjjggeF5ONDPWrhhzW2zJ87v0xPTk4OS5YsYdGiRQx/djguji50bNUZe1sHXp9SWh705dcmkmgdS6HIQys0XLU8T68evR5L5xjg5MmT6NUGvKmLJElYSlZ4quuwbMnDafrx7bff8uLIl8g6oCbnYDETx77CV1/9M0rFySEWMjVGUVERFgqLck+a5liiI4s8kU2izUW6NevCzt//JELXHTO9OZlFKfTr25/U9JRbWi137tKZuV/M47q4ijV2WJpbYlIaGf/CBOzMHSg05LFi5YrbFkGv3yCAndF/4iBcUKIkjSRUNpZ3rL8ZGRnJupUbCNd2RastxgxVaXZ1p45kZmaiVquJuRDD+uW/E67rghkWJCTGcjHxEhoETx58ip9Wr6Bfv35Ve1EfMVq2bEnd+n5cjjmNu642RVI+GZZJTJpy90RLmX8v+/btY8jAIShN5qj1RfTq3YtfVq8sF/6w4ucVHDm6lwb+uQwbYotCAZPfK2LX7gn31D/93el029UdikElbEizvIZRbwKDgjD+G29qqoUoFsz9ci7zv51/T523w2Aw8MxTQ/EvCsVF8kAIwZWLZ/jwg4/4au6X5cYuWrKQ/n0HcOzcDnRaHVbYEEobjrIDEwb+ulWXHhpY3pc9t2P61Okc2HiYtoY+KFBykC2YcXNfVWKGyWTCYDBUSF9aWhphTZphX+RCgCmEa8SSTRoJxGIl2TKoaf+7ym/ZHIml3hpryr/yt8WBEvQkcgU/AqkjlSYgupXUYuPGP0hMTCQ7O5tunbvhYHJBXaImX59Da3qikqwpFHnMm/s1AwYOYPLkyWiLtXw9dz6aYg1PP/0Uc79+fB06Gxsb9EYdQoiye6mBEuzsXB/K/J9+NIP6mqbYS6XhKTZqe2Z8MoPXX5/yUOavTuQTZJkao127dmgVGjLEdYQQaIWG62ZXKLEt5oZvEq+8MZETx07ioSmNNwNwl7xRGJScOnWqnK6MjAyGPjWUuqZgwumCO97kixuY6S0JL+5Kw8KWNNCEM2L4CGJjYzl8+DBqtZpNmzbRoW1H1q/bgDmWHGQLh9hKHOdwcXW5Yxxf5JZIHNUepJHEKfZhoASbEnvCm0Xw3OBRTHr+dT56/2NqafyxkFQoJAV1CcaAHmfcqaNpyAfvfljdl7jGkSSJ3Xt38+xrT6IPziX4iTrsO7CXBg0a1LRpMo8ger2ewQMG45sXTGhhOyK03Tm8/RjffFM+pMDMzIwDB6Nw8erJO7OMLF5dmzVrNxEaGnrPOSIiItj55w6C+vphHqbH0dcWd+GDNXblHtYtDdYkXLv1BBsgJSWF999/lzFjhrFmzZrbJp1euXIFo86Ei+QBlP4ueOh82br51jrmrq6uHD52iAux0SxfuQylvUS8/VnMlGZcUERRKPLIFzlcs45m+IjhvP/++0x9ayqnT5++53rvxi8rf8FHW580EjnDQSxQcYETGEQJJmEk0TyW9u06lGtDfTcWfLsAO7Uz9UoaY44FRgw0owNdGISPqMefu/fc1dmu7euDpaUF6Vwvq2ykE8WkkoADzujQYMvNLqJKyQw7CweSk5OZMG4itQoDqK8Jw6Q3UZsAVFJpWIWd5Igbtfjiiy9QKBS88+47pGelUVCUzw9Lf6jw+u6HnJwcRo14HldnN4LrN2T16tVVqr9hw4Y0aBhEnMVZ1KKALJFKinUcU96cXKXz3ImcvBtYYVP22Qob8gpyK1yF5VFGPkGWqTFUKhVbt2/lmSeHcjXrAkiC1994nY8+/oivvprLB+++D3olZn87TTAJE8UlGlxcXMrpWrVqFY4lbvjgDxL4EUiBKQdlsXlZMo89TqBXENakGY4qZ/J1uUhCwkvvhzkWNJHaoBdaSiihBB3nY4/d0Xa/On7oLLeRprtOBF2xlko32FhxGkktESQ1JVfsxMjNm4Hpv38UKLDChqTMRAoLC0lNTaVu3bo1liBU3djb2zP789nM/nx2TZsi84hz6tQpzIUlLlJpCI5SUuKuqc261et5/fXyHTR9fHz46efKVTD4i5YtW/L7pt8A6N65OylXcsigtFulneSIURjIUl3njSfH3yKbkJBAm9bNGNLXjOZBMGfWNnbvjmTRouWYTCYuXryIo6MjHh4eFJdo0AtdWWxxIfnUqet3R7v8/Pzw8/Nj8ODBHD9+HCcnJ1b+/AvLf1yOuZk5Tw4YzPffLcS9xBvJqGDhgoV88/03jKhgBY//xdJSxVVi0KOjDkHo0HKZsxwyi0SpUNIyohUrV1e8oVDc5TgsdTYgQRpJ1CGo7GTRj0CiddkcPHiQTp06lZPTarWsWbOGhGsJaMwLsCux54hpB1bCFg2FSEhcIApLrEkiDmfhgUJSkC9uoDYWEhYWxtnzZ2hDafULJWYUczOMRieKKSL/lrrY92LHjh18+/UCTCYTL00cxxNPPFEpeYA+PfuSfu4GQfoWFOeqGT92Ivb29vTp06fSum5Habm2rUx9cyqbN23Bw92Dn2auoGvXrlWi/15069KNS7vjqGMobW9+XXmFzu27PNIxyBVFdpBlapSIiAiuJsaTmpqKk5MT1tbWZGZm8t6779FM2xEtxZzlMAqhwBpb0lWJtGnbmoCAgHJ6NBoNkqF88p65ZFEu1jCNRIQBWtEDsxJzCkQuJ9mHHc7ouUiSuII3dbGQVFwTyUjSnZ+Aw8LCSNUlosK6zDkGcMebq5S2JPUjiFhOoxRmWFJ6I3LCDQtUJFpcwqe2D14eXlgqVaAULF2+lAEDBtx2vpSUFOZ8/h/OnzlPl+6dmTR50h1PPaKjo3ln+rvERMfQtn1bZn42A29v77v/QzwgQggiIyPZtnU7der6MXr06IdSJUPmn4W7uzvqkiJMwlj2YKuTNAR4+99D8v55YfwLvHz8VeqpG3GSfVgJW4opYsgTgxk5cuQt47/88jNGPWXGjHdKk25HPGnCv+U6+vd/iimTx2MyFpGXr6dHjx6MHvM8v65Yj5u6NiVKHemWCSz7dME9bVKpVLRv3x6AWZ/NZNZnpV3/WoW3xk/TAK//JhO7aLx4fdLrDBs27I7Jy3dj7LixfPrxp3TgibK3dEqhRNVYsHbDGurWrVspfX369WFP5H681KX2/e8O+vcwgL/QarW0admWjPgsrNQOmFupsPay5P/ZO8/wqKqtAb9nUmYyM+mNVNJDTSAJvfcuvQgWsKAoWLCiYsOCXcGOUlTERlGQLtJBSiCUhNBLOiGkTqav70f8BnNpoYnem/d58iNnzl577Z3MPuvsvUpMnRTqNYrHZrWzde4u/AiiiNPkcZKNLMVL7Y1BVca87+ah1WqJrBtF4eFc6hBONI3Yxm+4iY4KSikkF1c0LPllCd9//z3Dhw+/7Fhmz57Now9OJMgQCSjcse5OXnlrCg888ECN5+PAgQNkpGfQzNwVRVHQosdsMPLe2+9fNwMZwNvbmxlfzrhmOWazmVWrVmGxWOjWrRs6ne6ybWbMnEGPrj3YefJ3FBQCgwOY9dXMa9bln0Cti0UtNx1FUQgJCXG83aempuKr9kejaPFSfEmgJdkc45DbbsY8dhsLf1l4noxBgwZx2iWbUikCoFjOUOSSj9GtghOqAxRINsdVBwgn1vEg8FC80aBlH38QSBgFZLORZeyVrZzgIP0HXthYtdvt3HXn3UTRECMGx1EgwBny0FMV7OGJD4qrUBqZS6bnToqdT1NMIRtUS5AAMwfTD9K0sgNJFZ2ILklk1K23kZ+ff15/p0+fpmliEos/WUHhegOfvvol7dt0wGazUVBQwPvvv8+UKVNIT08nOzubdq3bcXDpCXxP1GXjd9to2azVFQXZXA3j7hvH6OF3sfyj35k++VMa1W9MXl7e5RvWUstfiIqKolOnThxw20mh5JHFEbLdjvLUMxfOfX49GDZsGI898yi5uqOIyk5wbADLVy/jux+/w9n5/D2kI4fTadb03HW9TkWDOB3j7r+L5x62cnCzPyd3BlNWtIE6Qf58MOM9onoF0e72ZmzcspEWLVpcta6ZBzPxpipbTq6cIJ0dnD17ltF3jL5oZdBLMXLkrbi5uuH0l70yDTrS0tJoWL8h948dh81mo7S0lPvvG4efjz96jTsuzq40bpDAunXrqsm79dZbadu9NTu1a7BpzRxlP8VSiFUsnFAO4qJ3YuOGjdw6fCQzZszAZDLxww8/kH/kNPUrmhOp1COhsg2VJSZemTqF2bNn06RpIhY3I3rFk3AlhmZ0Qq9158FJ95OTl0NsbCyJjZpw/Pgx0tnBDn4n3+kkLi4u5GmOU0oRbelNG6UnjSpbcdfou2tUsGjyM88TY2hCiBJFiBJJnCGJF5578Yrm12g04qKqHivjhDOGiisrbvJ3cOTIESLCIxk7chwT7nyEsJBwdu7cedl2wcHB7Nm/h/Vb1rJ28xrSM/cTFhb2N2h846k1kGv5xxEfH0+RqWpRBfBW/PF1DeDe++9hyitTLlhqul69enz+5Wcc8drDFvUyTvru5+u5X7Ftxx+0GdUMn7YaklsnYXY+l+XCKlYqqSCZDjRSmpOidCSIuhSSS9fuXfly1pcX1O/YsWOUlZQRTiyRNGA7v3NI9pLGZrI4ipPKiZNyiAzdNqa8MoVDRw/Stm1b/JzrkEhr4uxNOJ13Gq3B0+Ej56n44udUh+XLl5/X3xdffIGuwpMoa0MClBDijUnkHMvliy++ID4mng8mfcysl7+lRUpLHprwEN7mQMKIxUPxJsrWEMpVLFmy5Hr8aS7I0aPy3KQxAAAgAElEQVRHmfv1tzSqaEWEUo9YYxM0xe688867l29cSy3/wY8LfmDC5HG4NDUT36cuv61dTbNmzW5Yf4qiMOmZSZwtKaKsvIwDBw9c8ni6XfuefP2TGbu9an8087CZtP1lKIqR24ZU+TG7ual4fJyWxb98z6233sripb/w5awva+QjfSmapTSjQMkmX7I4SjpxJNKCbqz/aSv9+50ffHw5YmNj8fHzIZ9TQJUL2wkyCZEompu6sWjuL3z66afc0rc/S2Yvp/RsKXVN9Wlr642SoaNv734cP37cIc/Z2ZmfFvzIlu2b+fK7z3n/w/fIDz7KJudlBLXyxm63M+PV2ez+IZMXHnmZnt16sSdtD24VHo6dZZWiwt3ixb59+wAYM2YMJvcKDrvsJV+yyNSkEhYVzLPPPotOp6NX996Y0xXaWvvSht4ozgr1ukeStnc3AwcOJJxYXJQq9zV3xQt/lzqsWbPmsnNTUJiP7i/ufVrcOVNceEVFjhISEnD3cSdLdcRRzjlXe5S7xlZPv5aens4333zD3r17ayz7evPAfQ+iP+1XFa9T1ozgkmjuvG10jdr+fxaShISE/wrXiv+n1kCu5R9HZGQkt99xG3t1mzkuBzik2Y3Bs5jHnnjsgvcfO3aMOXPmEBISQm5BDkeOHyEnP4dBgwZRv359Zs2Zye8b1jBr9kwKNdmcUDI5I3mksREXXHFXzuUnrkMoEXUjWbZi6UWPl3x9fbHYzFgwE6HE04jmnKUApwA7q9aspM/YrrQYmcD3C7/j8SceJzs7m99++404YxJeih91lDCirY0ppnp5U4vKdMFE9cePncDFeO6lQFEU3Ox6pn8wncDyCGJMiUTbGtGgsjlLf12Gylx918vZ7nrRdHXXgwMHDuCt9nXszAPozd7sSU27YX3W8t+LWq3m6UlPsy31DxYtXnhDjeO/4uTkdMGX7/9kwoSHOVseTWLnQobcU0rrfgW89PJrlJVZMFSecyo4lWPBz+/CudGvlmkffUCRVzaHVXuJoTE+SgBaRU+MOYGd23deMC3epVCpVCxavJDCgFPsdPud9VTlhQ8likJy0Rj0fP7JDFJ3pKI3e+FLIMFKVdB0oBKKnzW4Wtq5kydPsmPHDmJjY+nXrx8PPPgAJ7NPYLaY6DegLy6lWmJNTQhVoqhvaM7eXfvw9PKkTFeEXaoMT5tYOet82pEGzsfHh11pqQx56BYCOui564nb2bB5A05OTuzbt4+SohJCJPrPFGcawi1xnMkvIj4+npDQYCwuJod+IoKBcgIDAy87Nx3adSTH6agj2CxHdZQ2LdrWuADL/8/vilXL0TZSscnlV3a5reOeCXdx1113OfQZ/8B4Wqa0YvIDL9O2ZTvG3HnXTQlw27xlE0H2cMfvdQgn89CBK6rM999GrQ9yLTeUgoIC5s+fj91uZ/DgwdSpU7P8tx9/+jH9+vdj6a/LHD6t/xmYB1UlWl+c/CL+zkGUU0K9xvGsWrPygv540dHRbNm2hddeeY2FPy1Cb/amjBIMUu7wIz6rOk2TpCZYrVa+/fZbli5eSmx8LA88+ABBQVWFBby8vLjrnrv5YfZPeFT4cpzMqp2GMieGDx3Bug1rqV+/vqPf4uJiXJ1cUf3lfVSNGjNGTshBvPEnl+PgZqNnz57n6d27Ty8WfLuQkIpInBUXKqWC07YcyvO1xEkS/PnC7qF4owCnNdnUqQzHTdFRKkWctuVcV3+3/yQpKYkzpgKMYkCjaBERzmryGdH5vzuFXS03n8rKSvbs2UNYWBjBwcF/S586nY7f125l48aNZGVl8dGMjgQFBbErdStD7lnNEw+4kZ1rZdJrFcz5avJ17btevXocO3mMhAaJOJ869/hWUHBSOV+VK1VSUhJZOadYvHgxt424nTBTDH+wGi/8sGIhO/0YTorzn/1UNw6tFiupqamYzWZGjhjF8mXL0brosDvbWLBoPu3bt3fceyD9AOpKnWO9Uikq3MWLOnXq0LR1Iju3bMTd4kOxcwH9BvajVatWjrbe3t6czi9g05aNbNi8gd9/W0vHzh04mHmQcmM5JRRRIoVo0GHFiq97lZvbAw8+wOeffo6TwRm9zYsz6hxCIoKr6eUYy5/ZNf7frWbGzM/p3KELe4o2oqCg8XBl1tdXHhQaFxdHatpOSkpKcHNzqxaMvXXrVubO+Zbkyk44Ky7YxMri+UtYfdvqy1aEvN6Eh9WlNPMsflQ958ooxtPDC/V1TCv4r0NE/vaf5ORkqeW/ny1btoiH3lPqamMkwi1W3HXusm7duquWZ7FYZPXq1bJ8+XIxGo2SlZUlWo1O2tJbuipDpAuDJVgbLtOnT7+srMiwKGlGZ4mjiahxkwjqSSBh4uXhLQcOHJCB/QdJoC5Y6pMkkep48fPxl6ysLCkoKJAXnn9BBg8YLLfffrvo3TwkgFCpS7wk00HqKU2kbat21fqy2WwSHlJXGigp0oXB0pH+4oWvhBItAYSKHk/xxk969eh1QV3tdrvce9e9otPoJdSzrmg1Opk+bbr07tFH4pQE6aoMka7KEGlGJ/Hz9pc3pr4hOje9+Oh9xdvDW3788cernvOa8uYbb4rezV0itXFSxz1YEhs1kdLS0hve778NYIfchDX3Yj//5rV40aJF4qH3lECPINFpdHLPXfeKzWa7afqYTCaZOvU1adWykfTt3UlWrVp1w/qaPn26BGiDpB19pDODJFaVIPVi64vdbr8muR3bdRRXNJJAK8e6EktjccFVomggLrhKAq2kC4OlKW3FGRfx1HjJ0KHDJEgbJp0YKF2VIdKEtuLj5SMmk8khe968eRKoC5bOf97Tjr6i17hLZmam2O12Wb16tXzwwQeyefPm88bx+GOPS7BbuHTgFmlDL3HBVYJU4RJLgrihFydcJJRo8cJPnHCW77//3tH2wIEDctvI2ySlSTN5+qmnpaSkpJrssrIyGTHsVnF1cRW1i1ruvP1OMRgMIlK1dm/ZskU2bdokVqv1mub2QrzxxhsS6VzPMdddlSESSX157rnnrntfl+PXX38Vd62HxKgaS5ySIJ5aL/lixhd/ux5/BzVdh2tLTddyw2iakIRlrwtBStWxTb5kYYkpJuNQxhXLOnbsGB3adsBSbkOFExZnI5Oem8T7L35IXFmS474cOUFMn2B+XrLokvKmvDyFT974nBhDEwyUcUTZh8bflVdem0K9evXo070vyYZOjkj6oy776H1vVxb8tBCXYi1akweF6mzOmE4TQAha9ORygkDCyHY+itliqtbf3r176d93AEWFRZisJlR2FS2tPVApVTsyhZKLa5KVP3ZeuErg/8/BoUOHSEpKws/PjwMHDtC2VVt0Fi9UVidOq3KY/dUshgwZQkVFBVlZWX9r+riDBw+yZs0awsPD6dGjx1VF1f+3879aarqwsBBXV1c8PDwuf3MNKC4uJjQ4jAaVzfFUfLCKhXTdH7z72duMGjXquvRxoykrK+PIkSNER0fj7u5++QZ/wW638+TjT/LJJ59itVpoktiU736cd8VZJ/6Tjz/+mPEPjqczgxy+pCapZAsr0aKnnBIUVNiwosWdOBJwwpkDrjuJMSfgr5zbxd/rvolFKxY4ykDbbDYGDxzCujXr8VL5cNqSx+NPPs6LL71wWb2CA4Kpe7oResWTI7IPM2bqK1Xrvk2sbGIZyXRAizt72MqwBwbw4Uc1K8d9+6jbWbdgC1HGhgjCUc0++tzenU8///RKp++KWbBgAQ/e+RANy1uiKAoiQoZuO1M/eeWqU/ddC7t27eKzTz/HbDIx5u4xjkwq/23UdB2uNZBruWG4urjSxtoH5z+P50SE35iPzWZz+HHl5OQwbdq7HD60j9ZtujFu3AMX9APs0LYj2ZsLiaTKdSFbjmKJLKMgv4BkQ2ec/jRkj7juYeRjQ3nl1VcuqZvVauXhCQ8za9YsrDYrGhc31Co1bk56Thtz8Xb2p2HluWjzXDmBxBmoOGkm1pQIQIbsxBkXYpWqwBuTGNnMcsLDwjh68uh5fYoIR44cQaPRkNgokbolDfFVArGLjQNuO3nohQd46qkri9YvLi7mxx9/pLy8nAEDBlzzA7KWG8v/moGck5PDkIFD2bW7qqDFgAEDmDVnJhqN5jItL80vv/zC+NsfJr7s3FRmyzHq3VKXBT/PvybZV4qIsHHjRtauXUtkZCRDhgy57PimT5vOpKcnoXNxp8JSzhtvTeXBBx+84r5NJhNGo/G6lUkOqRNCYX4RTWiNh1KVpjFfsjjJIZopnTjomkqW+TgdpL9jza2QMna7bCDcGkcYVek37WJjm9tq0vbtJioqqlofO3fuJDMzk5YtW573GVTNZ2pqKnl5ebRt2xZPT08iw6PwOxWBl+LLHtlKAMHUUc75y+6SjYQShb8STL6cQt/Mic3bNl10nFarlTfffJM5M7/i6JGjRNOIMKUqlaBRDOxyW0+5oew8vT755BM+eGcaRpORO0bfzuTnJ1/TBoTFYqFFSksKDp/B3eBLhfYs+lA3UtN2XvN3pJaLU9N1uDZIr5YbRmx0HEWcS1t2hjyi68Y4jOOCggJatmiC4cxXDOqWxpoVr9Ond+fzAhQWLlzIhk0bCJFzi2kQERw5dpiu3bqwX7eVk3KYw+o0Kj3KmPDQhMvq5uzszEeffERxaTF33303PrZAEivaE1+WTLw5iXxDDgYpB6oiu4u0ebh76VEbzwXuVVCGL+eCPdSKBjVu3PfgfRfsU1EUYmJiCA0NZf6i+Rz33M9e901sc1tNcqcmPPLIlVc+8vLy4t577+XRRx+tNY5r+ccxdNAwClJLaG3uRUtzdzb8spnJz167X25gYCAGe3m1tcLibCQk9Mb4IaempjJs8HDatGjLO++8g9lsdnz20PiH6N9rILNe/Janxz1Lk8ZNL5lyLS0tjWeffo7EynYklLUlsbItTz8xyZG14UpQq9UO4zg9PZ05c+acV2W0ptjtdnLyc4ihEbvZzFFJ55DsYT/biaYhJqnkrKqQRg0bk+V0CBHBJjay1Ifo1rMbJ10OckqOcEbyOOC2k44dO17QAE5OTmbkyJGOz9LT07n/vnEMHjCEuXPn0qFtB7p16MH9I8cTGhzKzz//zMMTH+K4Np0SqaralsMJx9/eKAZKOFNVCAooJI9OXTtecqwPjhvPh69+gseRIBrRnFMcIkeOV80D9gum95s+fTovPPES7kfrUCc7hi/fncP4ByZw7Ngxli9ffsEUnZfDxcWFjVs2MOnNJ0gaXp9HX5nAHzu21hrH/xBqd5BruWGsXbuWfn1uwc8aXBU85pTDTwt/pEePHgC8+uoUjmVM5/O3q7JI2O1Cky6FfPTpIjp06PDnNTvuWg8sJguNaOEo21omxexgLbv2pLJ//36WL11BXHwsY+8bi5/fldWgrx/bAP3hOngp54IA18kv2LHjjT9lFBMcHsSLU17gyQeepmFFS1SKExmSimCngVL1ImqQcnap15Gbn1ujHR2TyURqaioBAQFER59fCKGoqIgXX3iRlctWER0TzcuvvkRycvIVja2Wfxb/SzvIRUVFhASF0Nrc2+FKVCbFnArMIDsv65pkiwitmrcie18B/sZQylUl5GtPsCN1O7GxsddDfQc7d+6kU/tOBFdGoREdBdpTtOiawsKfF1S5PCUmk1LZGWfFBRHhoNsuHnxh7EVPg1599VW+fPFrom2NHdcOO+/l/iljrvgE6f95eMIjzPpyFr5OgRTbC+nZtydz531zRRkXAJITkzHuVaEXD/I4RTmllFJEsGcohaYCnp70NHeOvoNb+txCZuZBbFYbarUrbm5u2AxgMVmwKCZCIkLYu3/PZbOCbN++nS4duxJoCsfFpuaEywHcxYtG1iqXgxI5wwHdTnLzc/j888+Z9u40DJWVODk5YTXY0IknWYZjIBBKNOWqYlz9ndizP+2CQd1QVVTK18eP5qaujgqHRVJAJrtJoBXHtfsZNW4Eb739VrV2EaGRBGRH4vnnc8IkRraqVuDqqsZH7ccZUwEvvzKFxx6beF6ftfyzqN1BruWm07FjR/bu38PYF+/knhfuIG3fbodxDHDixGESziV7QKVSaFjPtVqqooyMDEwmI/E0YT/bOSEHOSWH2cUG1K4aTp06xc4dOzGbzcTXi7/oongpYuNiKVPOpUEzixFBaEbnP6syNcRitjBixAiad2zGTu1aDrnv5qw6D5NXGRn6bRzR7GGP20beff/dGh93qtVqWrVqdUHj2G6307FdJ375fDkeR4I4ujKXTh06k5Fx5f7bUGVQzJ49m6TEZBIaJDJ9+vQa5fM8deoUo+8YQ/3YBoy6dRRHjhy5qv5r+e/BarVisVgue9//Hz3/tdy6FUuNqnNdDkVRWP37asY8fhtOTYwkDW7A5q2brrtxDDD11TcIrowmjFj8lWDqGVJYvXI1x44dIy0tDV+XAEeKQ0VRcK/0Zeumi5ep9/Pzw6a2Vrtmd7XU6MXeYrGwaNEipk2b5thx3r59O3NmfkVSZUdiKhJpaujI6qW/sXTp0nPy7fYaZbiY+dVM8j2PkeN+BJuHGScfO4uX/cJH30zj4OFMJj//HOHh4Xz2xWc4OzkRJ01oYGyB6qwGuwma04XW0ovS02Vs2LDhsv09/+zzhBhiiLDXI0SJxNXiRpA1wuH/7Kn4onPSk5aWxqOPPsqxU8fIL8wjK/cU8xbN5bkPniTjYDrLVi1l8GN9ee3Tl8k8fOCSzwGTyYTYBWfOpaV0RYNJqeSg1w7uGD+K16e+fl47Q6UBZ865UxRzBie7C82MXYgvTSHJ2JEXn3uBQ4cOXXbcl8Jut/Paa68THlyXkDqhPD/5eUeGjVr+XmrTvNVyQ4mIiGDSpEkX/Kxr1z68+dpi7rrVjlar4vgpC6vXlfPm+1W7xwcOHGD58uU440IdJRyNaMnhBCYMKCj4B/gycsQofI1BKBYVi+b/zP36cfTu25uXX3mJunXr1kjHl199ifbrOmA1WXC2unKCTIKJRK94oMeDIikg31iJn48/lUYD9eLqc+/99zBgwAACAwNZvHgxeXl59OzZ87wS2DXBarXyzTffsHjREqKiI5nw8AROnDhB3ql8EsxtURQFT3yxGs18NP0jPvy4ZsEnf2XatGlMeeZVwgxxOKPiladfJzc7l9f+LGF7IcrLy2me0gLtGW98bXXYdmwPLVa05ODhzNoy0v+DmM1mHp7wMLPnzMFms9K3dz9mzvkSLy+vC96v1+sZNnQYqxesJbQyFisWTmgzePXJKZfty2q1UlhYiL+//0WDPfV6PS9PeZmXp7x8TeO6HFmnsnCTc+nJnBQndK568vLyaNKkCWfM+USIGRfFFRGhzO0MrdoOuai8ESNG8PxzL3DMmI63LYAipwJMWgNDhw69pB6lpaW0admWM1lFaCx6nlMm88TTT6B31+FjC3AUw3BSnPAo92P9+vX06dOHt996m1dfeY3yijKSmiTzzbyviYuLA6penE+cOIFWqyUgIIDExEROZp9kxYoVqFQqunfvfsFd4HfefJdQU4wjALuRNGcTyyjhDO54o7d4k56eTvfu3S85piOHj+JFqON3N/SUUexINWYVK2Xm0vMqs6lUqmrFXGJiYujatesl+/p/vL29aZLYhFO7DhJui8eOjWzNIcbdfT/TPpx20XbDbx3Ooi+XEGNMQIUTJ5VMQiXK8XKkUbT4qYJZs2bNNb2ovfTiS3z2zhfUNdRHQeGLd2dRWlLG+9Peu2qZtVwdtTvItdwQRITFixczcsQoJjw4gQMHDpx3z+DBg0lI6kls6zx6jSohuXs+kye/zNKlS4mJiCUpIZkPXvoIKxb2y3a8FD/q0aTK9SHAm4TERAIqwgm3xJHNMQKtoUQUN2LjvO00T2lR49KrTZo0YeeuHfR9oBtJw+uT3DoJm9pMhZRSImc4pN6N1WCjcUVr2ttuwZyp4r133ic0NBS1Ws2QIUMYP378VRnHACOHj+Tp8c+S8fNxFkz/lSYJTcnIyECjuFWrSuRsc6Ugv+Cy8lJTU+nbqx/1Yuoz4cEJFBUV8ebrbxFtSMBPCcJXCSTW0IRp0y69izx//nxcDBqi7A3wVHyJsNdDb/Li22+/vapx1vLv5rlnn+OXr5fSzNSFNtbepC7fy5233XnJNp9/+Tl3PjyKvOBDGGJO8/r7rzJ27NhLtvn227mEhwXQqGEUkRF1WLTo0hlpbjQDhw6gwO0UdrEBUCT5GGwVnDx5kszMTKw2G1tYyUHZTapqHW4hLtx///0Xlefp6cm2HX/QdmRzKuML6XBbC7bt+OOyGT4+nP4hJccqaFDWkmhTY5pUtmPq61Px8fHB4FLq8MkVEUy6CurVq8eCBQuY+vKbNChrQQd7f0p3m+nauRs2m40jR47QqH5jEhokEhkeycD+g6isrESr1TJw4ED69+9/UReJs0VFOMu5/LiKoqDCiZ2sZz2LybOdrJE7WI9e3SlwPeXQ3YuqvPLHVQfIkRNk6P5g8OBB17108Q/zv0fXwIWtmhVsVP1KkZxmy6atrFix4qJt3nhzKq36NGOr60o2uy7DJ9wLs+ZcEQ0RwehUfs26fjj9I6IMjfBQvHFXvIg2JPL5jM+q+dsXFRWRmpqKwfDPK1n930TtDnItN4TnJz/PJ+9/il9FGFYnM3Nmf+UoGZuenk5mZibNmzdn5sxvyczM5NChQyQnJzN00DAydh3AaDLRku44WZ2JoAGbWUGZ81msWGjdujW/Ll9CSpNmuNt9yCcLd7yJUap8+rzsvuwp2syHH37Is88+WyN9Y2Njef+Dqjf0yspKJj01iW/nzkPrpiVIHYTrUS9HMZEwewxpRetJTU0lJeXa3EkzMzNZvmwFKZVdqqLCrXCsQmH7th0UW89QJAX4KAGYxUihLovhI5+5rLyO7TsRYojGQ4JY/MUKfl+zlpLSYqI4F/jhihqjqbJaRpH/5MyZMzhbqkdoq0zOFBYWXtOYa/l3MmfWV0RVJqJWqv6PIs0NWb5iKQaDAa1We8E2arWa115/jddev/hJxV9JT0/nkYfv49dvfEhO9GPTtkoGjB5F06bpNT4Rup7YbDaSk5OJSAhjW9pqtC56zlYUEuavYeZnE/htbRGNpAUuuHKW0yhOCrf073dZY7du3brM/mrWFemyfu0GvIz+jpdmteKGnzoALy8vIurVJSN9Gx4GPyq0xeiD3BgxYgSD+g8mqCISneJOpVSgtbtzpiSHbdu2cf+947Aecqa5vRt2bGxfuYvnn3+Bt95687K6jLpzFE9tn4RPRQAuuFJANmaMdOAWbFjZJ1vZtm3bZdOEvfzKy6xft4E9JzegUbQU24p459W32Zu2j/y8fJ4Y9sANSXcWHh7Orj2ppDRtRl56IaGmGAy7yxk2aBhLli+5oN5arZYffvqekpISrFYriqLQsH4jjhTvRW/25qwmn4Bw/2puhFeDyWTC6S/uH044YbFYHAby5Ocm894776FXe1BpM/Dp558wcuTIa+qzlgtzTTvIiqIMVRRlv6IodkVR/jGBJ7XcXMrKynj3nfdoUNGCMCWaSHt9QgwxPPv0c4wcPpJWzVrzyOjHiYuJ58033iQ+Pp6+ffuyb98+Du47jM7kRTARjupNasUNf4Iw2Mro0KkZ334/F7VaTU5uDtkcw4wJDdV3OtR2Le+8/W6N/Gz/Ezc3N96f9j4FZ/I5nnWMyKhI7Niq3WMTOy4uLheRUHOOHz+Op6u3I2USgNbqwfGjx/lp4U+c8E5nl24tO9RrGH3fHQwaNOiS8j768CMCTWGEEo2n4kuMOYHT2YW0bNmSU64HsYu96ljVOZNOHTpfcgx9+vThtCqbCikFqoIQz7jmcsstt1zzuGv59+Hs5IRw7vsk2Kt2Dq8wEOxS/PTTT9w22I3kxCojvE1zNwb21t2UXeSsrCwSE+KY+PAwbNZM9J7ONG3dgNuGu3NwcyBvPe+Gu9oVfyUYL8WPSKU+kZYGLFuy/Ibok5TSlDL1uVgJq1g4YzpN48aNWbvhd1547zmajWrMxFcfYnvqNrRaLS4uLtiwkSm72cZvHCODovIzfDv3Ww4fPkyYPQZFUXBSnAkxRvPDvB8uqUNpaSlGo5E77riDEWOGsUPzG9vcVpHBDprQFmfFGbWiIdLWgNlfzLmgDLvdzoIFCxj/4ATmzp3L+k3rWLhsAc+++TRhoWFMeuoZvv12LqFhIdx+++3VXGxKS0uZM2cOH3/8MVlZ1xbomZ6ezuGDh6lnTsZd8SJQCSXYEMPbb7xzyXaenp74+vri4+ND6u6dDJ7Qj8BO7ox77h42btlwzfnfhw0bxgnNAaxiwSZWjrtm0P+WAahUKlavXs0nH3xKsqkzCWVtaVDRnLF3jyU7O/ua+qzlwlzrDvI+YBDw2XXQpZb/EvLy8nB1UqNWzhmtHnizd89e7JXiyFscLgZefnEKg4cMJjo6mkOHDqG3eeKChhKKHG1FBJu2hB+n12HzjnSGD+vHB9NmIDahkgpKOYsFE2ESg1bRY5By8jmFm0nL7t27SUpKupCaNeahRycwavNtuBl0aNGT7XyEsIgQEhISrkkuQPPmzTlrKqRCStEpHtjFzhltDqP7Pkz37t3Jzc/h0KFDBAUF4e3tfVl5pwsKcba6OvwlFUVBrbhxx+g7mGmZxR87VqIoCvXq1WPON7MvKSs+Pp73PniPRx+ZiJuTGwargVdfe+Wa57OWfyfjxo/jw6mfEGloiBPOnNAcYMiAy+f8vRL0ej0nypRq10rKlOsS2HelPP7Yg/TvVsrLT/mgKApfflvKc69v4vnZfiiKQoCfE2axYBWLww+1gjIiwi99xJ6Xl4dara7R9/mvPDrxUb6e8zUHS3bhUqnhrC6fwQMHkZWVhbe3N2PHjj3PfWXCI+MZ+NsgFLOKNvTCWXHBIOXM/HIWNrFixYLLn4FnZowX9Sffss+Bs+wAACAASURBVGULg24ZxJnCIlAJgwYPIjIqivZt2xNTL4YvPvsSD8u5tlasuGkv7J4xYugI1q7YgGeFP79ol/LOW++SunsnY+4Yg+q4jtb2Xlgws+ibxcTGxTLxz6wQBw8epE3LNmgtHqhszjz1+FPM/a5qs2TZ0uXUjQjnzjvvrHF8RGlpKWonTTU3NhdcKS4urlF7gKCgoPOyXVwr0z78gNGlY1iyZDECdO/SjS9mzgBg4fyF+BqCHac47ooX/k7BrFy5kjFjxlxXPWrh+pSaBtYCKTW9/99c3rSWy2OxWMTfJ0CSaO8oAR3hEif14upLHInVy2rq4mTmzJkiIrJnzx7xcPOUVvQQN3QSTIQ0pLkEuQZKUkOtmLNixHQqRvz9tLJq1Srx1HpJZwZJMh1Eg1accBYdHuKMi8TTRLx1PpKWliYiIpWVlfLll1/KuPvGyaxZs8RoNF7RmL766iuJCo8Sd527DB44RPLy8hyfFRUVyY8//ihr1qy5qlK3s2fPFq1GJ+EeUeKj85VO7TtLZWXlFcsREVm4cKH46vylHX2lqzJEkukgeq1ezp49KyIiWVlZcvz48SuSWVFRIXv27JGysrKr0qmWc/AvLjVttVrlxRdeFH/fAPF095Jx9z3gKMl7vcjNzZUAfw/5cKq/HNoaIe+86C91Ar0d/79/J/5+HnIyNVJsubFiy40Vc1aMuOtVMu21AMe1kQM8RY+nNKaFxKkSxV3rIRs3bpQlS5bIU08+JbNmzXLM0cmTJyWlaTPRqrXipnaToYOHXfH3vLi4WKZPny4TH50oQwYNFa1GJ8GeYaLV6OSjjz66YJtO7TtJLAnV1t0Ifay0btVagtzCJIWOkkBr8dL6yLx58xztcnJy5J677pG4qHhxxkVCiJQk2ksQdcUJJwl1ipJGNBc/pY44Ky6iVzwkhU6SRHvx1vrKd999d54uqamp4qn1dpSk7qoMkXC3aJk4caJ46bylC4Md15vSThIbNnG07durr8Sqzo0jmQ6i0+jER+sn0TSUum4xUicgSHJycmo0lxaLRQL960hDmkkXBkszuojOxV2GDx8uubm5V/R3uRGUl5eft+a+8MILEqWOd8xBFwZLkHuoLF68+CZp+e+kpuvw32YgA2OBHcCO8PDwGz4BtdxcVq5cKXqtu4R5REqAe5DUi62qL19XE1vty+2vD5Q1a9Y42j31xFOi17hLmC5SNM5uolNr5O6RHlJ6JFpsubFiPBkjfr5aOXHihCQlJkukS7y0o4/E0EhcUEsDUqQVPSXKub40btBY7Ha7mEwmSWnaTIJ1YRJLggTpwqRFSkuxWCzXPM4lS5aI3k0v4R5REuBeRxrWaySFhYVXLKegoEDmz58v27ZtE7vdftX62O12efKJp0Sr1oqv3k98vHxl2bJlVy2vluvLv9lA/rvYtWuX9OndUcLD/GTggB6Snp5+U/RIToqXX+cGO4zh/evripeXTvx89fLMw/4y/XU/qROgEU+9p3jqvKVFs5ayY8cOGT50hPjrAyWKBhKiqyv14xpIWVmZtEhpKTFODaUzg6Qj/SVEEyGPT3z8qnRbuXKl+Oh8pT39pKsyRFrTU3QavRw+fPi8e1+Z8opEaOKqrbuB7kGydOlSGX3naHFz1oozLhIRHiFbt24VkaoNhfCQcIl0ricpdJJoGogrGmlHX4klQQIIqSZPj6f4KUHi6qSWmMhYx6bHfzJ37lyJcI+pZqzXJ0n69eknOo1eOv/FcG5MSwkPritr164Vu90ugb6B0pqe1do64Swt6X5uw8U1XiY+MrHG85iamipRdaNE4+pWZfSroiVCEyueek/Ztm3bVf1tbiRZWVni7eEtsarGkkwHqesaJzGRsWI2m2+2av8qaroOX9Z5TFGU1Yqi7LvAT/8r3Kn+XERSRCTF39//SprW8i+kW7duZOWc4v1Zb/Pdz3PZl7GXRx55BLNHBYdd95ArJzig3UFMg2hHURCAqW9OZWfaDl779GU2bt3ABx99yLbdCkeOWzhdaGXiC8U0bdqU8PBwlq9aRrNbEtmtW48trILbxoyiPOQ0aW4bSOhVj5W/VbkTLFq0iOxDudSvaE5dJY4GFc05ceAkixcvvqYxms1m7hh1B/UqU4grS6JxWRvKj5p46cWXrliWv78/gwYNolmzZtWO/K4URVF4482pZOdls/6PdeQV5NKzZ8+rllfLvwtFUXoqipKpKMphRVGevtn6XCklJSU0aNCAJb/+zomTp1mwcDn169e/fMMbwHOTp3LPY6VMm1HMjG9K6D/6LC+++DKbNu/E6DSC2T8EYyrREVneiMiKBhxJP8qsmbNYsXQljcpbE6U0oF5FCiUny5k+fTppe9IIt8WjUlQ4Ky6EGmOY9+13ABQWFjL6jjEEBQTTrGnzS2ZTAFiyeAk+hiBHoQutoidAFcyqVavOu/eee++hXHuWo877KZBsMjWpBEcGERMTw/wf5xNnbUI7+qA7GUD3rj0oLCxk8eLF2EoVom2N8FJ8iVQa4EcQuZzAiAFPzrkxKIqCO174SR30Gne++3HeRY/7mzVrRqElH7OYgKoNuhJdIb379qZt2zYc0qRRLiUUSi6Z7MaUY2Ngn0E8PvFxGjZsSBHnsviUSTEKoEXvuOZu9mHXzt01+wMDTZs25dDRQ3h5epFIG+pJU2JMiYSUx/LQgw/XWM71wGQycfz48UvmGA8JCWHLti0kD2mEuf5Zbhnbg81/bLou8TC1nM9lfZBFpGbJBWup5T/w9PSsFlTm6+vLrj2pTPtgGnvT9tGl+yjGjh17XpBPXFycI09nUlISJSVF3HLnm5wtLmdA/z7M+67K5d3f35/vf/r+snpkZGSgqdA7DE9FUXCr9CAjI4OBAwde1disVitTp07FUG4knyxcRYNW0eNvDmXV8tVXJfN64uXldVF/wlr+O1EUxQn4COgGZAHbFUX5RUTSb65mlycjI4O7xgxn775MXF1deOSRR5k8+eVrelm8VgYMGIC//3K+mDEdk8nI+9PupU+fPgC88840fL18qWdKQadUZazQVOiYPWs2AaoQR9Ctoii4G3147+33MVvM2LCi+tPn14IZd707IkKXjl0oPWgk0tKY8tOlDB00jBWrl9OqVasL6hYaFopFbYIqOxMRwehkIDj4/FLbgYGBpO7eyZtT32Rv2j6G9BjDI488wnvvvYefJQR/papNEOGUSxELFizAbrfjYlNXk6NGgwUTOtw5wUFCJRonxRmTVFJIHhHUo9ipgLKysovOaWxsLBMeGc+HH3yEH3UodyoltmEUo0eP5rbbbuOZSc8wc8ZMzCYrftQhjkSogE8//YwffvqeUamjMFrKUVmdKHDNQmVRYbYa0aBFRDiryWdg5yvLemEwGDhztpCGtHZc86UOu/evuyI518Jbb73FC8+9AKLgqnbhsy8+Y/jw4Re8Nz4+nnnf16ba/DuoTfP2P4jFYmH9+vUoikL79u0vWHf+epGRkUFOTg4tWrRAr9cTGBjIq6+9WuP2iqIwceITTJz4xFXr0LJlSz7UfYyt3IaT4oRNrJRqCi/68KkJt428nbW/rifa1pAKStnB7yRLR0opwsNdj9lsdlQSq6WWv4nmwGEROQqgKMp3QH/gH20g22w2bunXjUfusTB2fjjZuVb6j/6Q6Oh6jBo16qbq1qZNG9q0aXPBz0rLS3H9S+pENRqMJiOF6jzqSn1H6el8sjAWVRU32s1G4qQJVixksIPXH3yNHTt2kH0ilyaW9iiKgg4PzJVGPnhv2kXXqDFjxvDWG29z1LofD6sPRep8POro6dWr1wXvDwsLY/pH06tdqzpp/g/+dLvs1asXjz/6BHWkLnrFE6MYyOIICk5YMOKKhg38il68KKUIDVpKOIPV2Uzr1q3Pl/sXXnv9NW4deSsbN24kOjqarl27OjZJis+WoFicqEsUZRSzjd9oRmd81f6oVCr2H9jP119/TXlZOUOHDWX16t94cfKL+BOE0dmAd7Anjz766CX7/090Oh2B/oGczS3Ah0AACsmlcaPGl2l5bh737duH3W4nISHhil/q5s2bxzNPPksKHdErnpRaihh9+xiaN29OZGTkFcmq5fpyTZaRoigDgemAP/Croii7ReTakgDWckPJzMykU/vOYFQQwEmrsHbD71dd5OJimEwmBvQbwLrf1+NsdaGCcvr168v3P36PWq2+vIAr5LvvvuPdt97DZDRx19gxTJgwwbHoduvWjc49O7Fq2Sq87P6cVQro3a83HTt2vKzcwsJCPv/scw5mHqJn7x4MHTqU48eP8+uSX2lW2fXcTpE4sY8/qKQCzwwvGtZvRM+ePQiPCGfMmDE1KiNbSy3XSAhw6i+/ZwEt/vMmRVHGUhUTQnh4+N+j2SXYuXMnahcD40ZXfUfCQ12Y9JCGb76dcdMN5EvRu2dv9q48SKSlAQAnXQ7Sp3sf1Go1Py/4hUAJ4ywFVGLAl0DUuJHHSfawGTVuuGl0NGjQgPLyclxUrtUMKydxobSk9KJ9+/n5sXPXDqa+NpXdO3fTs/MQ2rVvR4uUlhw8dJDkpkl8+OmHNG58cSNv1KhRvP3mO3hafPEhkNNkc1ZVwKBBg/D39+eTzz/mwXHjUas0GCwVPP3YU2zevIU9m/dTZDpNAq2wYcMdL/azjQKf4yxfubxGGwMigpOTExrNuSwS6enpLFqwiGb2zo4Un+myg+NkcsZYQEJCAiEhITz99DnPocTERPr168vq1asJDQ2ld+/eV7zhoyhK1Y7tkBH42YMQlVDsVMBXH63GarWycOFCNq7fSKOERowaNapazu/c3Fx6dO1B1olsFEXBv44fK1avuKKc3U8/+TTBRKBXPAHwUHzwtgSwcOFCJk6ceEVj+TeQm5uLi4vLv+OZWBNH5ev9808MDPlfoVXzVhKvNHEENcSpEqRju07XvZ+33npL/J2DpDODpKsyRJrRSZxwkrvvuvu6yLfZbJKXlydms1lmzJghPlpfSaS1NKWdBGqD5LFHH3Pca7FYpLKyUjZv3iyffPKJbN261REIV15eLhUVFRfsIy8vT+r4B0mEJk7iaSIBuiAZOmiorFmzRoI9w6oFiyTQWrTopTU9pC7xosFNopWGEuEWK/6+AXLixInrMu6bjd1ul40bN8r8+fOvKhjxfx1uYJAeMBT44i+/3w5Mv1Sbf8JanJaWJhHhHmLJjnEExM14N0CGDO51s1W7JPn5+dIipaXo3dxF7+YuLVJaSn5+vmRnZ4vGVSPRNBQfAiWS+o51ojU9xBkXaUtv0Wn0cvz4cTEajeLn7SeNaC5dGCxt6S1+uoALZoG4GEeOHBF3rYc0ooW0p5/UU5LEx9NHiouLL9lu2bJlEhMRI4qiSMN6jWTTpk3VPjcYDJKWluaQYzKZZNTIUeKjCqi2/jWkmdzSp3+NdB3/wHjRq90lwi1WfPX+0qNbT7FYLDJ//nwJ94g6T64LrtKhXQfJysqq8XxcDceOHZO3335bpk2bJvn5+WK326Vn914SqA+WGBpLsDZcGsQ3qPa86Ne7n0Q515cuDJYuDJZYp8ZX/DzVarQSRN1q4/YhUKZNm3a9h3hTyc7OlubJLUSr1ombWit9e/W9aZmRaroO15aa/h9CRNi6fSshcu7YJtgeyaYtG697X78sWEyQNRKVUvUv5qn4osODr7/6+sJHe1fAmjVrqBsaQVTdaPx9/XnmyWeJMjTGXwnGVwkkzpDEx598QkVFBeMfGI+H3gMPvQevvPQKQ4YMoUWLFpSVlTHwlkH4ePvi7eXD4AGDz/Od++D9D3ArdSfGlECYEkPDipasWL4SrVZLqeUspVKVtN8udrI4QgiROOFMNkdpTlciqU+MMRH3El9ef3XqeeNIT0/n8ceeYPyD4/njjz+uaU7+DkpLS2me3JwBPQfx6JjHqRtWlwULFtxstWo5Rxbw1yS8oUDOTdKlxjRu3JjgkCgemVzMsZMWVq6t4KW3Ddx3/z9z90xE+OGHH5j4yP20aN2URYsXsjd9D1u3b0Gn05GTk8OggYMo0xVRSQV+1HG01SruuODKHrfNjLlrNHXr1kWtVrN81XIqI86wRb2cXW7ruP+RsQwbNqzGOn391df4WYKpo4ThqqgJJQqd1euyBVZ69uzJoWOHsNls7MvYe557hJubG76+vsybN4+5c+disVh4etLTWDUmbHKueJJBXUqDRpcPpnxm0jN8/PEnWExWcipPEVQexe7Ne/jpp5+qAvhM+Zik0jHPOZxAjyentuXTuGECR48erfGcXCkRERE89thjTJgwgYCAANavX8/2zTtoWN6SCCWe+oZm5B0sZPLkyY42q1avItRaVWxFURRCbTGs37QOm812iZ6qk5LSjNPkcEIOUi4lHJUMSpUzN6SC4M1k5PBRnEkro6WpBy1NPdizJoPHJz5+s9W6JLUG8v8QiqIQ4BtIGSWOa+WUUCcg6Lr3VTcynPK/9GMTG5UYsJ/b3boqioqKGHDLQPxy69LK1JP6ZS0oOltUzRfQBTVGYyX33HUPC2b/QoqpC21tfchYc4Rbh90KwH333k/qyr20tvSitaUnO5anMf6BCdX62r83Ha3J0/G7k+KEl7Mv2dnZzJozi/1uW8l038EOzW+Uq4oJIgID5ehwd0SXA3hYfdidmlZN9po1a2jRrCWLpi1lxafr6N65B7Nnz77qefk7eGPqG+SnF5FY3o64smQaVrZg9B1jMBgMN1u1WqrYDsQqihKpKIorMAL45SbrdFkUReHnX1ZhkO60H1DCc2+58+77M+na9Z8ZH/7EEw/z2pT7aJ+8CU/nnxgxfABnz57lm2++Jjw8kHvG9OTX5Qto2SUJ3zreFCq5jrYVUobN2crX381h2ofTHNeTk5M5dPQQR44f5vSZ00x5ZcoV+bKazCYUqX6/saKSd99+75JBc//Pxfr6+eefiY+N543H3mXSuMlERUSj1WoJDQtlO7+RJUfYL9vJ5xQPPfzQJfvYvn07H7wzjRZ0pZ3Sh0Rakcku3Co8WPzzYsLCwpj07CR2ua3nsDqNLazAjo0mtCHK3Aif8iBef+X1Gs/JtZKRkYHe4unY5FEUBV+pw0fTPqK0tJSdO3ei17lTSYWjTSUVeOg9efvttxk6eCifffYZRqPxkv188tnHaN3dyHE6RiobyFId5pPPP/mvCrKuqKhg89ZNhFursrg4KU6EmmL56cefbrZql0S51t28qyElJUV27Njxt/dbC8z8ciaPPfQ4gYa6oECe23E++vzD6+7rt3//fpKbpBBqjUKLB1kcwawy0X9oX+Z+N/eq5c6dO5dn7n+BuIqmjmvb5Xe0io76koKCwjEyKCQXg1JOkrTHQ6mqWGUTG5tdlpGbn0NgQB1aWXs4DFmTGNmu/o1K4zljb/r06Ux9+m3qG6pSrxnFQKpmHQcPZxISEsLZs2fZtGkTISEhvPPWuyz/ZQW6Si+y7EdpSTe0ih4R4ZA6jZGPDOH1qecW96aNk7DtUxOohAJQKmc56r2H/MK861q693qS0qQZ9jQ3fJVAx7W97pv4eeVCWrQ4z9W1lgugKMpOEUm5gfJ7A+8DTsBMEblkROz/wlpsNBrZvXs3QUFBNfYNNZvNHD58+LwKloWFhcTEhHFoczC+PlXxB9O/KOG3PxLYuHETaxf606iemvzTVtoPOMOLL3/MxEceQ1Opw8nsQqFzDm+/9zZj7xt7sa6vin379tG6RRviDUl44kshuaSzgwDXILrf2oWZs7+8YplWq5WggGAizjbES6nyFz2uHCCiYxBbN28lxBhNGcW44kap9jRf/TDbkeXjQjz5xJP89M4Soml4Tm/5gzJKsLqY+X3dGlq1asWBAweYMWMGsz/9iqaGDg7jvVBy0TYTNm3bdFndRYS9e/dy5swZWrVq5aj2eOjQIY4fP05KSsplKxmmpqbSpnk7Wtq64ay4YBc7O1mHohH8gn0pyi/CZrVjNBmJpTEKClluhzGLCaOxEgUVKkVFfIN4dqWlXrIEdUlJCQsWLMBgMDBgwABCQkIuO8Z/E2azGS8PL1JMXRxVAEvkDAUhxziedexv16em6/A/80lcyw3jrrvv4qdffiRxSDxNh9bn56WLbkggTMOGDdn8xyZUUVYOKKmUKEX0HtiTT2d8ek1ytVotNpW12jVvZz9KXM6wnsVs4FcK/4+98w6Pqtr68Huml/TeCyEJvQQCIUDoXUDpoAiCiIJKURAFERAVRBQFu6KAqFdQRDoiJZQQCD1ASEgChCSk9zKTmdnfH/EO5hIgqFy/q3l9eB7D7L323ofMPuvss9ZvkUkLOiBDhgWLtZ3AgiSBXC5HpVRh5qYdMybUqprJg5MmTaJBS3/O2Bzksv4MpzQHWPjqQuvm5ejoyAMPPEDr1q1Zt34tG7b8iwnzHyaqS2fi5Pu4pDzFBdtYNL5yZs2uqcKRnJqMAzeTFGxxoLC4gOdmPkf3qB7MmzuP/Px8/j8RHBpMqezmW4EqYaTEWPz/ItGrnmqEENuFECFCiKC7Ocf/BHbv3o2/nwdTJj9A2zZNGPfoCEwm0x377NixgwB/Dx4c1JHAQG/mzp1tfeuVkZGBp5vW6hwDtG6uIj7+PH2729GsUfUe4u6qYOJoFceOHSEpOZGXV7zI5Fcf42jc0T/dOQZo1qwZn67+hFMcZC+buEw8zYkg0NiUjRt/3yldRkYGRoPR6hwDuFq8OHH8BK544Ss1pInUloZSUxzL3fl5953lLfU2NtbwiX9TSTlGDARWNWb2cy8A0KhRI1555RUMopIyqk+/hRDkaTLp0afHXeddWlpKpw6diAjvwMA+g3FydGbnzp2MGjGaNi3bMmH4JHy9fFm7du0d7YSFhREcGsQRdnFRnCCWPShRUmUyUplmpnVZV8KNPfDEj2RlPE4dtbTu0BJRCR3oSxcGESxacvH8BbZv337Hsezt7XnssceYOnXq3845BlCpVEycOJEk3WkKRS55IosUXTyz5vz/DrGoP0Gu575jMpkQQvwpYuaVlZU0CAhCn+uEm9mHIvK4prtEt+7dOLctEU/hjxY9AsER5Q5sFLYEVbRAgZJrmgTa9WvDvzZ8y8AHBnJg90EcLC644c0N3RXGPzO2xikvVG/MBw8eJDU1laioqDvK7lRUVNChXQdyUguQl6kpVGfRqFkoh44cuiWzu3ePPlzdfwM/Ua33nCGucll+Fi+5P3ZGZ4rUuSi8BPEXzllPP/5qLly4QIf2kbgavFFWacjTpzP04Yf48OMP/+qp/c9wv0+Q75W/815cXl6Ov78HGz6xJ6qDlvJyCw+MLWD4mEVMnTq11j6FhYU0aODDptWOdI7QkpVjoufwfF5fuobBgwdjNBrx83XnXx/b0DlCixCCx6YVUGrqSHbGEQ5scrCeeE6dU4h3w6eZN2/+f2W9ZrMZW70trQxd0KFHkiRKRCFXXOK5kZN51/4JCQmcO3eOsLAwgoKCMBgMuLm407S0vVXr+TrJaJtLZKTeoFlJtQRdDhmkyi/QrX8XPl/9OS4uLggh+Pbbb1n17vtYLBamPjsFg8HA5MefJIimOOFGFte5TjIueBFII5KdT3Ej94Z1PmvWrGHKk1NxVXhSIZXiHejF/oP7sLOzu+M6Zj0/i1Vvf4BO2OCMBzlkUCoV4qx1pUl5BHJJTqko5qzmMFeupXKnwmXnz5+nXdv22FU644QrFfIyMrlCc3Mk9tLNYilxul84diqWvj37or3mgqd089AgRuzmsacfZeXKlbUN8Y/BZDLx1rK3WP3pF6g1aqY/N40JEyb8JVrn9SfI9fy/QaFQ3OIcnzt3jl27dlFcfHspo9rQaDQcjjlE034NSXI6iV07JTt2b2fR4oXkatPJk26QTxaXtCfo1Kkjz82fyTW385y3jaH/2N6sWfclY8eM5cTB0/hZQpAhI16KZdSk4Sx+bXGNscrLy/n888/Z9MOP2NnZ3fWk9OuvvyY3tZDGZeGESi0JN/QkJeFKrQl4qz5cSaHjDRJsjpNoc5IUdTwuSncaVrXATfIm2NiSypyq/1dJcE2aNOHUmZMMnNKHFkMbsvLzd3n/w/f/6mnVU0+txMbGEhyoIaqDFgCdTsaUx1Ts3L7htn1++eUXItro6RxR3cfdVcGU8So2blgHVJ+EffHl1zw0oYA+o4to0S2Py2k+vPDCS1zPVPDYtDz2Hyln8duFbNpRxYQJj9//hf6KXC7niScmk6o7RzH5FIgcUnTnmP7c9Dv2E0Lw5BNP0i6sPbMmvkjLZq2Y9dws1Go1y956k/O6WFKlCySrzpGpT2HM2NGYZAbOKWI4STTJxONh9ufMzxdp1qQ5mZmZvPfuezwzaRqlsRbKj8P0J58j+kA0Lno3CsnlLEeppBxP/FGgIFueRuR/6E2PGzeOyylJvPbRAr75cT1xp47f1TkG+Obrb1ELLa3pjL8UQhu6IBMKnMq9rLKcNpIdLip3Dh48eEdbTZs2ZdfPO2nYwZ9C9xtEjmhLm/C2lHHzvmUUBowmA66urnh6eVGFsca1NWG8ryFoQgji4uKIjo6+YxW+vxqFQsGcF+eQmHKJcxfOMnHixL+0EFBdqC8UUs9/lcrKSgYNGMSxo8exVdpTWJXHuvXrePDBB+tsIzAwkB+3bLrl7/cf3Mfrr77OtatpPDVkEjOfm4lWq2XOnBesbZKSkti6ZRttK25qbarlGqqqTDVixEpLS2nXpj0l6WWoy2z5+rNvWNN9LZs2/3DbL/Wpk6fRltlZP5dJMuwsTpw7d47OnTvXaBsSEsKVtCts374dg8HA2bNn+e7NzTXaqAxarl+/Xufr8t+gQYMGvLPi7b96GvXUc1c8PDy4ll5BVZU9SmX1dzLlihl3T9/b9nF2diYzq/qN17+/x9fSTfy0ZQvR0dFERUXRr18/UlPTOXDgAE5OTqxb9xmDBvagWWMdm7aXEHNSQ+eoXQZ8EQAAIABJREFUXhw8tKDWynb3k+XvvIWrmwufffI5SoWSedNe4plnn7ljn71797Lh6+9pU9ENhaQkQBj59KPPGD5yOE9MfoKwNmFs+G4DdvZ2ZKRnsGTBmziXeZNDBiUU0ZkB1XupAZIt53j77XdY+8VaGpa1xFaqTjTTldmyZfNWZEoJNymAZqI9ReRxlhgc9E5Uaopxcm3DI2OGMGDgcEaOHIlMJsPT0/OeQwC1Wg3KX0/QoTq5TiN0lMtL+HfEnRCCUnMxPj4+d7XXqVMnDh6Jtv586NAh+vcZgKmyCqVFTbb+GpMmTMLBwYE33nydXt16ozFrf604mIS9s/190/POzs6mZ7depF/NQFgsGCUDCxYu4Mknn8TGxubuBuq5I/UnyPX8V3nvvfc4H3OJNuXdaVQcTuPydjz6yKOUlZXdvfNdCAsLY+OmjRw7GcvceXPRarW3tElNTcVe5Wh1jgF0JjsSLiTUaLdmzRpKrpcTWtaWQKkRzco6cHDvQY4ePXrb8SM7dqBUn49FVO/CJmGiQMomPDy81vZarZahQ4cyZswYBg4cSIEuG6Oorh1rEJXkKTPp1avXPV+Heur5uxAfH8/s2TN57rlpnDp16p76Nm7cmDZtIhg6sYAdv5Sx4uMiln9UwbRps2/bJyoqCrnSg8dn5nL0RAWrPi9g9dfFLHvZgbGPDLfKd9nb2zNo0CCys7M5FvMTSTEe/PwvB87s8yE/v5D5818jODgYk8nEi3NexNHeERudLZMmTPpT9rrf8ltJMblcztx5c0m9lkJiyiWenfbsXU/p9u/fj32ZKwqp+i2fUlLhVOXBgQPVpZbbtm3L0jeX8vTTT/PlF1/SpKw9flIIfoRgi0ONvVRvdCD+dDwFRQVouFlQQ4OO4tIipj83nUx9Cnv5gWtOF3liyiReWvwCSBW42+wgqs1hlr0xhRkzptzzdbBYLCxauIj09AxukGaVoTMLE1VyAzekqySJs2SJ65xXx9K8ddPb7s13olOnTuw/uI92o5rj28uZtz9axjvvvgNA586d+XHrJkwhxSTYxdF+cGsuXDp/305KZ06fSUFiGZVlBgwVRuTlKubMmoO7mwfR0dF3N1DPHal3kOv5r7L1x224Vvj8Rh/ZCb3Mjl27dv1h20ePHqVdm/bY6m3pGNGp1htq27ZtyTfkUiZuJn/kazPp0793jXanT5xGV27/m9NgOfY4c/78+duOP3z4cBqFhRBvc4Rk5TnO6KMZMuKhOm3CHTt25MmpTxCn3kuC3XFOqPfy/OznaN26da3tExMT6d6lB1qNjpCgUDZv3lxru3rq+V9lx44ddO8WgapqHTbS1/TrG8WGDbcPj6iNf323hU7dZ/L2Z96cvhzFz3sO3rG6nEwmY9fuaHYfEEyamc3B2Ep2fuvF44/YI5dVkpSUVKP9nj3beXSYHBt99X4W4KukTzc79u3bB8CihYv4cuU6mhRH0LqiC7u+2cvjEybVOnZWVharVq1ixYoVpKWl1drmtxw9epRmjZujVCjx8/Zn06Zb36rdqe/sWbNZsmQJTk5OVOlvJs8JIajUlNKgQYMafTIzM9EodFYVAjucKKaASlFu7VeozaJ772707d2HNEWSteBCmjwRjVLLyy/Pp6S0BAVKcvKz2b1jN/v37WD2VA2vznHg8Yft2bPBibVr13Ljxg3uhZXvreT9Nz+kpaETWmw4yDYOi53EKHait9PhhDsGKrlGIgXmXF56+aXf7biGhYWxbv06duzeziOPPFLDTt++fTl/KZ78ojx++PF7nJ2df9cY/0lFRQVr1qxh/vz57N27FyEEu3buxmiqxAVPIqW+tJN60IRwLBWCUcNHY7FY7m64nttSn6T3D6S0tJTs7Gz8/f3vKD1zPxg3djwx35zE3xIKVEuvRbMFpUpBp46d2PDDht+l/5ienk6T0Cb4loXijDs5ZJJpm0xSStItJS2/+OILnp7yDK4qD0otxTRu3ojdv+yqceK8Zs0aXpw6jyZl7ZEkCZOo4qR2PwePRtOiRYta53D58mXKy8v5+uuvOXjwIC1btmTmzJn3VMY7PT2d8+fP07x5czw9a9enNhgM+PsGYJ/njqfFn2Lyuaw7y77ovbRp06bOY9Xz36c+Sa/uhLUOZdHzpfTvoQfg4NEKJj5n5nLyzdonKSkpLFu2mMuJF+jYuRczZ86qU5zq3Rg8qCcPdD3HxDHVOuh5+WaCIzNISUnHyelmctYbb7zG5fh3+XR59Z5lsQjC++bz1jvf0aNHDzxcPQnMbW4tI1wljBxV7qKopAi1+qZqTmxsLL179sbJ7A5CIlfK4IfNP3D9+nXWfPk+kiQx/rGnefTRR5EkiYKCAgL8AvErbYQ7PhSQQ5LuNIePHrrjAwDA22+/w6KXF+Fc4YVFbaJQlYOdrS3kKbGpdKRYm4tjoB1xp47XSC6uqqrC071a9s1RckUIwSlZNKVSMV4af8qlYvxD/NgXvZeSkhL69+lPyuVUQKLKbMTR4EEIzTFQyVli8CYQCxZy7S8wdoQNZpNEVKSah/rZ0LZPPp9/uYu2bev+VWkc3Bj9ZXcEFs5xjABCUKImXZWMURiIrOpndWSvixSC+/vw07b/jYOFoqIiwsPaUZ5lQFWuo0iXzfAxw4g5fJSEC5doS1d0UnVIhRCCA/yERqMhPuHcPZW9/qdQ13243kH+ByGEYNHCV1m29E0UMiUanZr1366nR4+7S+fUleLiYhQKRY169b/l4sWLtA+PQFWuxSAqqcKIDXa0JJJkVTydh7Vn3fp19zzusmXL+ODlz2hovOm8JmlPM2f5czz55JO3tL9x4wbR0dH4+voSERFxy0mC0WikV/feXDxzCRuTPfmyLEaMGc6w4cNwc3OjZcuW1j7Z2dkM6PsACRcTqKysxIIFJ1xRoqZQlcPqNZ8zatQoq+1du3bxxqtLyMvLY+TDI5g9e/YtKhd3YuvWrUx+eApNSm4mflyVLtFtYiQff/LHZPTqub/UO8h1R69Xc/2UD/Z21Q/xZrNA7ZuM0WhEoVCQnp5O2zbNeHyMkog2Sr763kBqujdHYk79YS3xmJgYBg3sxfNP6fBwk/HeZwa69nyE5ctrKhHk5OTQJqwpD/UTRIYr+PbHKnKL/DkQfRyZTIabiztBea2w+VUFwiSqOKLcQVFxEWazmbi4OHx9fRkxdCSVpyU8pWpnJldkku6SgKe7mVdf0CIEzFtSzoRJ85gx43nWrFnDK0+/SvBv9OBTZRcYMmMAby5787brKisrw93Vg5YVnawO1TUSCenrT2SnDsTFxhEZFcnkyZNrjWHdtWsXw4YMx1HhgkFU4OLlzNr1azhz5gx+fn50797deu2FECQmJpKamsrwB0fQ3tC7hqbxFS7Rio4cYhuOcifsze4U664R0tREQoqMtOvZdVbwqaqqws/bH1MOlFNKA5rgIVXHmleKCo6wky4MtIaDZInrOHVUs//Q/jrZ/6tZunQpHyz8lOCKVtYDmxPafSxdvoTpU2cQKlrh/ut6y0Upx/gFlUZJTl7Obe/F/2Tqug/XJ+n9g9i+fTvvvbWS1pVd0Eg68sqzeGjwQ1zPuP6HT12ysrIYOWwUR2NjkCSJUaNG8dEnH9U4JYHquMCmTZqSfPIqDc3NKKWIqyRRQRm+xpC7lka9HUajEclS08mVhAyj0Vhrew8PjzuWclWpVOyL3suePXtISEhAJpPx0py5bP9uF2XmUpq3asaOXdvR6/U8MXEyefEltK/qzTliscWBQKkRAMXGfKY8OZWhQ4eiVCrZtWsXI4aMxK88FBWOfPj6p5w7E8+/Nnxb57WazWZk/xkdJSTM/6HvWlZWxvHjx/Hy8iIkJKTO9uup56+isrKSH374gdTUVJo3C+HrTdk8Na769PXbH0sIb9sEhaL6tvXppx8xdICShbOrT2/7dtfRts919u3b94cf+jt06MC27Xt56aXnSE+7Snj73rzyyq2y0q6urhyNPc277y7nmy1niOzSi6lTn7Y6iY9NGM+6Vd8QVNECOXJS1ed5oN9Adu3axdiHx2KjsKfEWITBUEkH+ljtOuPBpdIjrN/oS5PQ6j00wFfJgEeWMGPG88jlcgQ1D7eEJO76RjAtLQ21XGN1jgEchCsJFy+yZfvdiy726dOH6xlp7N27FycnJzp37oxMJqv1zZUkSYSGhqJUKpFkIBBIVO/Rll//P5Or2ONMC3MnJEnCUh7M4ePb8Q/2rvNDjhCCB/oPpKrIjCveJHMeG25WQFWjQYaMdFLxFQ0xYiBLf4UZE1+vk/3ayMvLY8H8Bfy8aw/BIcEsem3hbcPh/gyOHTmGTYWj9QFDISlxUrrh4uLC0reXMPu5FyizlKJExVUuoVKqmf3CrHrn+A9SH4P8D+Lrr77BtcwHjVT9pXGW3HGQu7Bnz50F3uvCiKEjSTuaRceq/rQ39mb3hr0seGXBLe3Onj1LwvkEmpsjcJE8CZAa4UsQaSRjoAK9Xn9PUjXp6ek8P/N5dm7fRSZXKRA51aLy4ga5UiZDhgyptV9ubi6PjBmLi6MLTUKa1hrbKJPJ6N27N5MnT2bei/NQlKm5UZyBscxIfOwFlr25DICdu3fgWxVcrTtKIW7czFy3k5wwGU1kZlbrkL628HX8yhvhIfnhJLkRWhHG1i1byMrKqvOae/XqRbmshAyuYBEWikQ+2dprPDbxMWubbdu24enuxcODx9K2VTgD+w+67cPC3RBC/O6+9dRTV4qLi+kQ0YrVH0+jMOMdrqelMu+NYgY8UsTg8UU8v7CSVe9/YW2fmZlG8G9kySVJwsfTxPhxo3h07HCSk5PrPHZZWRnnzp2jtLQUqP6df+mFuZw/mool0Yn93x+iTeu21s9/i5eXF0uXLufHn/Ywe/YL6PV662eLX1vMsAkPckKzlyOKnUQObse7K1fwyJhHaFQWTtPiCMIreqITtlwm3tovjxsYjQJf75vymD6eCvLyq+XFBg0aRIm8gHRSMYkqckQGOap0xo0fd8d1BgYGYpFMFIsC69/lyjPo0DGyztfK3t6ehx56iC5dutTJiW3QoAFNmjYlWRGPQVRSLAq4zFk8CSCLdJzxqKH844gbWVdzWL16dZ3mc/ToUeJiTtDS2AkfKQg3fEgjyVrcJZt03D3cMQeUcVSzixOavTz8+BjGjx9f5zX/FovFQpdOXdny2S7skj1J2nmdLp27kpiY+Lvs1YUOnTtQrM2zrqlKGMkzZtG6dWumT59ObNxRWj3YCEtgKeEd2/Dt918z/5WX79t8/inUO8j/IBydHDHJbzqfQgiMohJ7e/s79KpJZWUl77//PsMeGs6iRYvIzc2loKCA2GOxBJgaIZPkKCUVvhUhrFvz1S39MzMz0SttrUl6ADpsKCSXUxwkOycbrUpLcIMQ4uPjb+n/W7KysmjdMoxN72+j8IgRnWTLeUUsB+Q/keedxvebNtYq4yOEoG+vvhzeeIzQwnA0SU5MGv8Eu3fvrnWcs2fPUlFeiT1OdKQfTQinwlTOV2urS2bb2zlgoDrJxRZ7crmZXFIiCpHkEh4eHkC1Y67m5mtDGXJUCjWFhYV3XOtv0el0/LLvF5RNqtgv/chV53je/WAFHX/VES0rK2P0yDGElrWhSUkE4RU9OHHgNKtWrarzGP/mww8/xNXZDa1GS9vW4XdMUqynnj/Cxx9/REP/XHZ968DSl504u88dhUKizwMvMmbcCpIuX6uR8Nqv34N8/k0VRcXVagUXE40cOFLKp2+paOh5gC5R7ev0vfrss0/w83NnxNAu+Pq6M3TIQzz66CPExZ6gcVk7nHDDs7wBlZlVrFmz5p7WpFQqeW/Ve5SVl1FpqODtFct54YUXUFVprYUm5JIcX9GQHCmDJOUZLivPcVl7lo4d27L4nSLMZoHZLHhtRTEDH6hOJrazs2Pv/r3Yt1FyRLkDQ3ABGzdtoFGjRnecj1qt5sNPPuS8NpbLmrMk2MRR6VLMa28svmO/upCamsqoEaNp4N+QYUOG13AYt+7YQtuBLTim2sMJDlBJBRc4jsXGSJ7qhlX5p0oYyScbZ6MXO7furNO4ly9fxk5ytN5TgmhKPtkcVezmvO1R0h0S+WHz9ySlJHLpcgJZOVm8vWL5707Qi46OJic9l4bGFthLzvgShLvBl/dX3j9N+MmTJ+MQYMMFm1iS5fGc1h1k0uTHrfktrVu35vtNG0lMSST6UDQDBw78f68x/L9AfYjFP4TTp0/z048/kWFOR4UGOxzJUqZh52pL165da+1TVFTE9GdnsHnzZhzsHXhx3hy+/HwNV86l4VDuxomdZ/j0o085EnsESQILFmT8Gi+ICa3mVpm1yMhIiqsKKBR5OEjOmIWJa1ISZaKE1nTCEVfyyeZc6lG6dOpCRlbGLWEa/+bjjz9GX+pAg6pmIIG70Ycz+oOs27iGPn363HaDOH/+PMlJKbSp6o4kSeiwwVBeyYrl79K7d2/y8vL48MMPOX/uAr369MTd3R3JIhFEMyRJQoWaBqIJBWXVyUIvvjSHV+e9hk95MI64ksQ5ikUBKtTckK7y6apPrTHGI0YP59NlX2BX4YgMOZnSVRycHO45BKJVq1acjj9NVVUVCoWixlrj4uKwkdvhIFVnT8skOa7lPmz+/idmzpxZ5zF2797NS8/PJbS8DXrsyDxzhR5de3At/do9xUzXU09dOH3yCAN63PxddrCXE9nODh8fH4YNG3ZL+8GDB7N//2gaRnyJv6+SS0klfLDUjd5d9fTuCucuFbJhwwYmTaqpGpGdnc2PP/6IXC6nSZMmvPTiTA5tdiG0oYrkK0Yi+v3E4H42oCjljG4XKq0JlVJGcZGFw4cO37YK352QJIm0tDTCWrVBU2pDaVVJ9X75q1NXRgkquRrcqpj01CRGjx6NVqtl2ND++LetPg0NDm7Eho2fW222atWKmOMx9zyXUaNGERkZybZt23B0dGTw4MG1SmLeC8XFxbQPj8C+0BVXcwBnr1+i1bbWeLi74+fvz8LFC9j4Q/VbOpPJRGJiIq6urtjb29OxQydiTu7CUbiSRxae+CFUZkKbhNZp7MjISHJNmfiKUNSSBgVK7HT2PPHcRKKioujcubP1HnKvZZxLSkq4cuUKDRs2tF6jvLw8NJK2xp4rN6nIzs65J9v3gq2tLSdOx7F582ZSUlLo2rXrfS0+Uk819Q7yPwCTyUS/Pv1xyvahNUGkcIFkKZ524eF8v+n728atPTjwIVJj02hibI+hqIJZz8zGgqCdoWf15mCApMLTbNiwgYceGkL05sP4VoZgooorugsseP7WEqu2trbMXzifl+fORye3wSAqCAkJJudcEU64AeCMO+7Ch5LKAvbu3Uu/fv1qnV/K5RRUBh2/hrUhSRI2kj3Z2dm3dY7z8/N5ee58ysrLOEk0ASIUZ8kDOQrKy8vJy8ujZbOWKAt1aCpt2b/tIGonBdZBfkVChr9/dWW9adOn4ermysp3VpGbloMiT0GuJYPAwEAOfHWADh06WPu9+NKLnDsbz84dO1Er1Ng52rFl20+/+2m/tvLdnp6elFYVYxFmZL9WjqqQldEyMPiebH/28ee4lwdYxf69aUChMZvo6Gh69uz5u+ZbTz23o2XrDmz/5RBjh1cX6SgsMnM0rpS33m1Za3tJklix4gNmzZrLwoULiQjbyNjhN3Mp3F0EBQUFNfrs3r2bMaOH0LurHpMZpj1bxLiRNoQ2rH7gCwpQ8dhoO+xsZHTvrMXDTcF7r3khSfD2R4Ws+/7Wqph1ZdnSZdiXutLA1BQDhznNYXxFEKUUcZ0U2pi6cLXgAn5+fnh5efHTTz8xYuR4GjVqRFBQEAEBAX84+fDf+Pn58dRTT/0ptgA2bNiAttKGAEtjkMBOOFJkLMCcpiAnrYyB/Qfxy/49hIeHo1AoaNKkibVvTOwRIiM6culcIt7GQITKQolNHs9Oe7ZOYwcFBTH7xRdY+sZSXJWeFFnyad+xHS+//HKt+2NdWfbmMha+shCtUo/BUsn7H65i7Nix9OjRg3xTDgUiB0fJFaOoJFd/nVFjXvndY9UFlUrF8OHD7+sY9dSkPsTib0xaWhrDhgzH3cWdwtxCtOhwkJwJkzrTSIQhIcPNza3WvteuXeP48eMEGVuglfQ4SC74GxpjrjLXcOZUFTouJSSy+svPGfnUMK64niPP7xqvLHmZKVNuFXufPesFXnvlddyrfJEjx8nZkaEjhiJkNfUazZjhLkkn/Qb0o1B/A7OoTk6rEGVkmzJueyIuhKBX996c2hlPG9EFH4I4z3GyRTqZ+hQmPjGBTz7+BEWhjoaGlvhIDQgqa871tPRqp58ELMJMqSgmXXuZ5+c8D1TfqB9++GGOxsWQnnUdg6kSk8VEUnJSDecYql9xfr9pI5dTkzh8/BApV5PvKst0r4SEhNCtezcu6uLIFulclV3ihvYKs+fMuic7CqUCpJqJQBYs1iSpeur5M3nyyadIvOJMn9GFvPhaPuF9c3n4kccIDr7zg523tzfTpk3j+21GLlyqLrQTn2Dgu58qGDRoEFCtITt65BiGDe3HR2/a8dX79nz7kT3DBqpIvmKoYe96pglnJzmHYiuZ84wjMpmEJEk8+7gDiZev/e5CH+fPXcCmqvphszkRSEgkcoZKymlLF2wkO3RlDhw+dJiw1o35aOUU4uMW8/CYhxg5cjBarRonJxvmzp1dozjIv6msrGTz5s1s2LCB4uLiWz7/s8jIyGDBggVMmjiJrVu3VusfFxYiN9V0RjVoUaDES/LHqyKQt996p8bnFouFl1+eg6urPafPnqBhUw9Ce/szYvpgzpw7jbu7O3FxcaSkpNx1Ti/Pn8fZ82d49YP57PhlG9t3brvFOa6qquLEiRN10piOiYnhtYWv06oyilalUTQta89TT0zhypUrODg48N3G70h1iOeUfj9x6r1MnDLB+rtWz9+Ifwt5/zf/tGnTRtRzfzEajcLXy1cEyZuISPqKZrQTSlQigt6ipzRMNCZMDOw/6Lb9k5KShJ3OXvRgqOgpDRM9pWGiNZ2FUlKJzjwgekrDRDceEm56D7Fhw4Y6zenq1atCr9GLKAZabfqpG4oZ02cIvdZGNKGtiOIB0Zg2QoFSuLt6CKPReFt7ZrNZPDz6YWGrtRO+9oFCp9GLle+tvG37kydPCicb5xprCqGlUMlUYt7cecJisYhHxowVobQWPaVhojtDhA4b4UeIaEVHYYOdAIQcuZg6ZWqd1vxXYTAYxIoVK0SXjl3Fo4+ME/Hx8fdsIzo6Wtjp7EUYUSKKgSJY3kz4efsJk8l0H2b8zwCIE3/Bnnu7P//f9uKKigrx1VdfiUWLFono6GhhsVjq3Pezzz4Rzk42ItDfXri42Iovvlht/WzqU1OFtzpASCCq0hsKc2awMGcGi6snAoROK4kXn3URR7b5inkzHIW3p0LkXmwgQoOU4pfvva1tk44GCCcnG1FVVfW71vb6a68LL7Wfdf9xw1eo0YpuPCR6SsNED4YKWxxEly6dxaSxLtZxL8cGCL1OElfiAkTKsQDRsZ2jWLZsaQ3bSUlJwsPNU3jb+Qlf20Bhb+sgYmJiftc870RycrJwtHMUzgpX4WZrIxxsNGLUyNEiMTFR2GhtRQS9RE9pmOhAb6FCLdrTU/SUholmtBO9uvWuYevdd1eIiLaOIvV4gChNCRIvPO0qojq3FUIIERsbK9xc3IWrrbuw0dqKfr37i/Lycmtfo9Eovv/+e7F48WKxZ8+eu/6eHDhwQDg7ughXW3eh19iIEUNH3PHeMuv5WaKB1MR6n+gpDROB2hCxatUqaxuDwSDi4+NFfn7+77mU9fyF1HUfrt+U/6Zs27ZNeNn51PiCB9BIeOAnmhMh7HT2Yv/+/bftb7FYRLPGzUSwvJnozhDRiQHCResmwlq3ERqVRvjbBgl7nYMYMXREnR2mrVu3Cl/7wBpzakZ7ERrcSIQGNRI2alshQyYUklK0DQsXSUlJdbKbkJAgtm7dKrKysu7Ybu3atcJO7vAf47cTPbv1srZZs2aN8NB7iygGCi8ChBqdaERr603Ml2ChVejqdPMpLCwUly5d+p92KL/77jsR5B8ktGqt6N2jj0hJSfmrp/Q/Tb2DfH8pLy8Xly5dEhUVFTX+3sneWXSgj3DW68Tu7246vRs+8xSNQv3E44+PFS2aNxDOTlrRtaOTeGy0q7DRq4S7q0KsftddfPuJh2jgrxQPPthfvPfeO6JhkJdwdbETkyePF0VFRXWaW2lpqQgPCxdaSS98NJ5CKSmEPc5Ch63wI1jY4ii0cr1o0jhQbP/ayzpHc2awaB+mFgd+9BHmzGBx8Ccf0aJ5gxq2+/TsK4JlLaz7WnPai5Cg0Ds6jhkZGWL+/Lli3KMjxNq1a+vk+D82boJw1TqIDq314ocvPMVbC1yEXicT27ZtE59//rnQafTCVm0nZMiFNw1ED4aKKAYKN72H+PLLL2vYahfeRPy84ea/hSGtoXB10YmUlBTh5e4lmhNhPajw1viLl+e9LIQQorKyUrRq0VroFbZCh43QKnRiyINDbrvWyspK4eTgJFrR6deDnQeFp85HvP3227W2v3r1qvDy8BYe+NW4V/jY+Itvvvnmrtfoz8RsNt/TQ2I9daOu+3B9iMXflPLycuTUfMWkREWptoBCz3Sat2xGXFwcJ06cYMTQEfh5+zOg7wNW5QhJkti2cxuube05qNjCMcUeio2F5CYXoJZrcG7gwC/Re/jXxn/VuRpfixYtyDdkYxQ3X2lekyeScyUPXbILgYYm2Ons+eqbdRw/cazOFehCQ0MZMGDAbcNFAPbs2cNj4yZQbi7jhriGEAKDqCBTe4XxE29KI40ZM4aWkc2JkXZhpJJAGpFDJqeIxiIsqFEjybnj3IQQzHp+Fl4eXrQP64C3hw8HDhyo01r+KMePH2fU8NH07NqL1atX/+Htk36DAAAgAElEQVRSo8OHD+fylcuUV5aza89OAgMD796pnnr+IrRaLSEhIbcUmNCo1Zgx4VPWiqHjspg+L4cpL2Tz2LQsCgpySU1J5vCRM1y9lsPjT71HWOR8XnzpFdxcNfy4vZQ1/ypm6gR79vz8Mx+snM/6VXJef1HDnl1f06KZP59++mn1idMd0Ov1xMbFsmTF6xSrinByUSIhEUorVKjxIxhJAW3DI9h76KbaUHauiUuXqwgJqt7PTSZuiUU+EnMED4uv9Wc3fEi9mnLbcJDr168T3rY5uWmfENFsPx+unM74cSPven1PnThJhVTC7o0eDO5rw4zJjrw+14llby5iyWtLsVM4YCdzQKlUUGFfSJx+L3HqXxg5fjhjx46tYUuhUGA03rxmFkt1MZirV69SUWbAXapWIJJJMjwqA/hhQ3Up7c8++4z4s/G4mDwJpRWOJnd+2ryFgwcP1jrnkydPorSocZGqlYTkkgK3cj82fLOx1vZDHxyGOtuWfLJJFRcpEnkkSWfB1szgwYPveo3+DG7cuEG/3v1RKVU42jvx6qLFd/39qufPpz6Y8G9K7969KTRPJEdk4IIn5ZSSrb2GRqtGyldyLvMiMTExCMAGOxrRmuTMdDpHduZi4kU8PDzw8/Pj8NFDJCcn06JZC1pVRqErscEiLFxIOsbJkyfvqbSxr68vz057lg9WfoiT0YNKdRmlZcV0MvdDJVXf0OTlShYvWMzIkXffrO+FieMep5lohxoN5zlOAqexYMJe4cCJ4yfo0qULPj4+KBQKRo4ewdlD52lS0Q5JkvAWgcSxjwxSucZl7IUjIUEhRB+OplmzZreMtWHDBr78aB1tK7ujkjTklt1g0AODybiRXkMj9c/m4MGDDOg7AK+KIFRCzYvH5xF3LI4PPvrgvo1ZTz3/Czwz41neeXUF/uVN8K9ow0drYmnWSMWMyQ48Nd6e6S9fYsmS11i8+A0efvhhAB4Z8xDTJul4bNRNGcytP1fQsZ2Sy1eqWPxOPotfdMZGL2PxO7O5evUyixcvveM8vvvuX7z37hKKi8sJaB5EuZ2MjKzL6Ex2pEmXmD59Gk9NeYrIDmGk3ygkONDCp1+VEBSowWyujq1+fmEpEyZW5z9UVVVVl532D6DoQj5uVKs0lFCInY39bQtFrFz5DsMHyli+oDom+tHhFoIjd3PhwoUaCXT/Sas2rSgsvIBOd9NBDw1Sce1qCpYMR5pVVedc5IpMLlacYOeuHbRq1QoHB4dbbE18fBqzX52Jq7McDzcFC5eXEBHRnsaNG2OoqsAkqlBI1Q8FFZTh5Vnt4H7z9Tc4406wVF011RkPykQx69atIyoq6pZx3NzcKK8qq5G0bJDKaegdhMlkwmw2W1UuEhISOHP2NL6WYBrThmyuc4M0JLUg4fjFP6z2UVcG9htIfnwZnS0DMZZU8N7SVXh4ut+iyFLP/aX+BPlvip2dHVu3b6HA+zox6p2ctzlK155d0Fc4UGUwY4MdXRhEFwZhg311lSEa4lDlxrp1NUs9nzlzBheVh7X6kkyS4VTuwfff/XDP83p9yevs3reLxxeOZd6bc1CplCi5KeOmQUdeXt4fW/x/IITgWsZVnPHATnIigt6E0w0LFrxLgtn84Q5atwzjxo1q/eLExEQ0FTbWZERJkrDBgUTO4E8ILas64lbiz4xna5dM++arb3Et87E6/S6SB7Yye6Kjo//Udf0nC15eiG95KL40xF3ypXF5OF9+uYb8/Pz7Om499fx/Z/bsWcxa8BzZ3ilcs72AViujS6SOlKtVhPW8xoCeCvb8XLOSXECDRpw6d/PUzmgUnE8w4O+j4K33C/j0bXfGDLFjUB8bfljtwKpVK+9YUOf48eNMnzaJL96RY0hryLSJpZSU5PDBmlXMXPY0B49G89rrryGTydi2/RfaR83FoJjAZ6s30bLNQzTtksWAR8oYNup5nn76WVav/gxfH1cahfpTWJxOkvoMV2QXucolEnQnWLpsyW1VL1KSL9Cmxc3PNBoZzRrp7lpcZembS8nJt7B7f5n1mrz7aRmVlXKcjZ4IIbgoTnKBODRGHf369Oerdbfq4QM89thjTJ6ygNFTTLTqmYNF1Zv1X2/C3d2dIUOHkKA7QY7IIEmc46rmIvMWzAPA1s4WHbY1bGnRY2trW9swBAUFEdWlMwnak+SJG1wnheuaZGRyGXY2dtjqbenbux+HDx8msn0kjmY3qjBygTiccCOUlvj5+tUqEVdUVMT0aTMIaRBCz649OXz48B2vX11ISUnh0qVEAk1NUEgKdJItPuUN+WjVx3/Ydj33Rr2D/DcmKiqKK2lXSLmaTE5eNm5ubigrtGSRRjAtkEsKFJKChjQni+sAyIxyCgtqiusHBARQbC60irkDFFPAvn17mTN7zj3Pq127drz00ktMmTKFkOBQrsuSEUJgERbS1ck8NPShP7bw/0CSJBoGBpNLpvXnEgqxwwkPyZcGVc2wLXPkww8+BKBLly6U2ORZ1TGqhJFs0mlFZ/ylar1iV+HFqVMnax3P2cUJk/zmjVIIgcFSWespyp/J9bTr6H9z41BKKjQKDTk590+fs556/heQyWQ8P+t5Ei5fRKkUHNriw/KFrqxd5cH0Jxz44ItCfH0DavSZMuUZNu8SPPNSIV98W0Tf0fl4eQex9rsqbuSYCPC9+QLWw01BVZWJioqKW8bet28fTz01gSlTJjJsgJKO7bQoFBLjR9rRqpkSs9nM008/ja+vL12juhHcIIQO7SL55qtvmTHjOfr378/nn39FYWEZaddzmTNnLnFxccybO4Od39iTc8GHT99So9YKuo6PpNvjkez4eRsTH5942+vROaofX31vwmyufgBIvmLk2KmSu2rrurm58dOWXTwytZhWPbLwDbvOpcv2WEwSV7hEFmkUkUck/QiXutPG2JU5s+dw5cqVW2xJksQzz0zncnIGeXklrF693rpHfrHmC8Y8OYIExQly5RlIQsYr816hpKSEmTNnkim7glFUAlAuSsmX3WDy5Mm3nffGTRuZOvcJZC0rCe7nw6gxIzm0I4a2hh50Mg8gcf8VHho4BNcSX1pIHQiVWhFGZxI5Q6r2PLNefP4Wm0JUqyJt+ngLDqm+ZB4ool/v/pw8Wft9oa7IZDLEr/9Zx0IgyeoLf0C1jvnUp6bSvHELRo0YfV8rGNY7yH9zJEnC3d0dlUpFrz69KNLlIEOOiZsxbmaqkCOnTBSTq8lg6LChNWyEhYUR0bE98ZoYMsQVEsQpckintTmKj97/hNjY368NunHTBsz+ZZzQ7+WY5mdCOgSw5M0lv9ve7fh09SckqU8TL44RL2K5SBwhtLB+rjbouZxYfXrSp08f+g7qw0ndfi7rz3BSux+lWoH8N1+XPG7QrOmt4RUAz05/lhvqq6SLVIpFPpdVZ/AO8CQiIuJ3zb2qqop5c+fh4+lLoG8gby17q9bY4oGDH+CG+qo1Vi1HZKDRq+scy11PPX8FQgg2bNjA2EeGMm3aFC5evHjfxkpPT0evk2gaevOtVZ9uehIum5g1u6aOrZeXF7HHzuDk/Tj7jkXy8PglxBw9TYeocZSWSby2Ih+zuTqZZ9XnxbRu1eyWqqSrVr3LY+MGE+S+hV4dM1i3sYiDR2860WYL1hyOKU9O5WpsBhGGPrSv7E3OmSLGjR1f6zq+++4bJj2soUUTNZIk0auLnt5dbekQGcHHn3xEZOSdS0d7enpyPgGC2qUxeHw+7fpls2TJ8jvmcfyb7t27k56RyyuLVmM0qJHSbXDLDUBgIZEzeOKPQqp+eNBKelzlXuzfv/+ONi9dusTp06et+5pcLmfTxh9paGpBB0sf2hl6kXI8jZfnzadXr17MmDWdWOUeTqr2c1J1gOXvvk1o6O0Li2g0Gl6a+xJxp4/z07bN7N75M77lIaglDXJJQWBVYwoKCnASHtY+tpIDkiTx8mvzai1LffLkSZIvJRNsaIW95ISXFIBHZQArlq+46zW8EwEBATRv1oxU5XmMwkCJKOS6Pomnp917gZq/G0ajkYjwCHZ8/guaBGdOfn+eiPAIMjMz78t49Q7yP4ghQ4bQtW9nFAoF54ilWBRQJPI5RywyhYx4/VGWLl9CWFjYLX03b/mR9r3aco3LKFASTg/02KGttGX9+vW/O4EgODiYxORLHDl+mPiEc+zZt+e2r8r+CF27diUpOYlpbzxF3/E9UKpUqH4t+WwWZvL1N/D282LXrl1UVVWxbv1aDhzZz6sfzif2xFG+WLuaBG0cyfJ4LqvPkGGTzNvvvV3rWC1atGDXnp14d3UkP+AaD0zsw94De393MZDpz05n9Ttr8bnRCNfrgSxbsJwlb9z6EPHKwlfwa+3JCf1e4m1jSHNIYOOmjXVOoqynnr+CF16YweKFT9Cp1SEclBuJ6tyOEydO3JexfHx8qKiUOHP+ZqLwT7vKaNu2PW3btq3R1mQycerUKQwGI42ahNG7d280Gg1Ll75DckoGV280JiD8BqEdc/j8X3q+XPOdtW9ycjJff/01r8yfy46vnZj5pCOL5zix8nVXnnslh+ISMx98UcSFSxb69u1bPY8tP+FrDEEmyZBJMvyrQtmzdw8mk+mWdeh0eopLa+4nxSWiTjkO77yzgicfewrbjADkGQH8sq+CRYuWMnly3QuHqNVqjsYcxcXgRaC5CW6SN63pjFyuoFB2842VEIJyqQRfX99a7eTn5xMR3oF2YRH07NyLoICGJCYmcvXqVfJy8vCguhiTTJLhaQjkp03VYTCvL3mda9ev8tMvP5KZlcHTT9+b86hSqrBgsc4xlywEglzppqNVLArQ2+puWzkxLy8PySyvWRfAoiYnJ/ee5lIbm7dtplW/psSqdpPqfJYXF85h3Lhxd+/4N2fbtm0YCkwEmZpX12YQodgbXFm9evX9GbAuUhd/9p+/m7TQ/xonTpwQI4aPEF5uXsLPy18sWrhIJCUl3SKN9J+sWbNG+Nj4i57SMBFOd6FGI/TYCRu1nYgIjxCFhYX/pRX8cd5//32hU+uEr12A0KtthFapE562PsLTzkd4unvVKjGXkJAgXn31VbF8+XKRkZHxX5lnVVWV0Ki1Vu3pntIw0Z6ewsPV87Z9zp49K/bv3y8qKyv/K3Osp+5QL/NWg7y8PGFvrxFZ8Q2scl/vveYqhg8bcN/GXLdurXBx1ounxruIgb3thVYjCRuNrfDx9LXKN+7cuVM4O9kKOxuZeH6Kg3hynJNwcbYRR48erWHr0qVL4syZMzWkuObOnS1cnHWib08XoddJwpRxU3c5McZf2NkqhEajFD17dKihT+7h6mnVDe4pDRMd6SdsdDa1ynylpKQIF2cbsfpdd3E5NkC8/pKr8PVxFWVlZXdcu8ViEY52jlY9/J7SMNGGLiLAN/CerqHFYhEtmrYUjWlTQwrN1zZA2NnYi0BlI9GcCOGjDRBtW7cVZrO5Vjvjxo4X/qpg0YOhogdDRaislWjdIkwUFhYKrVpbQzO/Oe1Fh/DIe5rn7Xh3xbvCVecuwukunPEQWvTCEz8hRyHc5d4iQBUq9FobsX79+tvamD17hlDK5KIVHUVPaZiIYqBwUDmLdevW3bZPZWWlOHLkiEhOTv5T1vFP45NPPhEB+pAav3MNpWbi2aefvSc7dd2H/5Gbcj2/j/LyctEgIEj4qYOEGq1Vp7IHQ4WfOkg88/Qzf/UU74msrCyxdetW0TS0qWgs3dzoQ2QtRbeo7n/19IQQ1WL0SoVSdOXBGjdOB1uHv3pq9fwO6h3kmpw7d06ENHSoofl78Ccf0bZN6H0dNzExUYwaNUrYqOxEJH1FD4aKFnQQTg5OIiMjQzg46ISbi1wc2+lrndfnK9xFzx4d7mj3xIkTwtvLRmSfbyCq0huK4ECl2LzW02pj3gwX8fCYITX6/FsnfdLjk4ReZita00mE0Vm46jzE3Jfm3nasmJgY0atnpPDxdhbDhvavk2680WgUMkkmujPEup9EMVDoNLo6XLWbfPfdd8JGZSvscBTdft2bIugtdBqdOHPmjJgxfabo2a2XeOONN0Rpaelt7bg4uopI+lrn0p0hQq1Ui4KCAvHU5KeEu85TtCBSNCZM2OrsxM6dO+9pnrfDYrGIpUvfFE4OTkKLjfV6dOYBYaO2FRMmTLjj9bRYLMLBQSf+9YmH8HBWCUedRmiUcmFno7+tbvG+ffuEo72TcLfzFDZaW9G5Y5Ro06qtUKs0omWzVuLgwYN/ytr+zly7dk3otTbWgjSdGSAc9U5i375992SnrvtwvcxbPXVGq9Vy/MQxFi5YyMfvf4KbpTqrV5IkPAwBbN28jfdWvvcXz7LuuLm50adPHwYOHEg38RD8+qbM0+LPkZhdf+3kfkWlUtGnVx/if7lAoLEpAgvXNAmMHPXnyuDVU89fQWhoKCWlEgeOlNMlUocQgs/WV9Cl69C7d/4DBAcHk59dQICxkVWdxw1vcizX+OCDD2gfpiPmeCVhLW7GKnfvqGXekoQ72j1w4ACD+2hxdqoOa/pkuTsDx6bTpoWO0nIZ+UV69h+oLrkcExPD4+Mf50LiBdxc3CkpKsHJ4sFl4qnCiLOdIwsXLbztWBEREez++d5UE5RKJeFt2pF+MgVf0RAhBOnyFLp3635Pdj5a9TH+xkbkk81hdqATthRTwCtz5tOiRQvefmd5ney4urhSUVCGjup/AyOVKBQKtFotK99fSfOWzfnqy/U4Onnx4Zy36dKlyz3N83ZIksTs2bMwGg2sfmU9MlEdbaqWNLgavfH3979j7obFYqGszEDf7nqunbHhcmoVZoug06DcWkPpDAYDQx4cQkBRM5wldypEOUcO7yaU1kTQm7z4LPr36c/5hPO3DUepp1oq9qNPPmTKk1PRyLWUGUt5YdZsunbtel/Gq49BrgcAs9l8W1H53+Lk5MSiVxchV8qo4qZSQxkl+Pj63M8p/imUlZWxfv16Vq1axZUrV5DL5TjYOnCCA5wShygQuZRQiI/X/5+1rPlqDaFRgRxRbidGuZOIAeG8vaL2+Od66vlfQqlU8sWX3zBsUiF9RhfRsnseCanezJu34L6PrdaoMVBp/VkIQYWpAjc3N4qKLbg6y9kTXW79fMOWUtq1a1ubKStubm7sPlDBv34spqzcwoVLRozlCi7GOJJ+3p6c7DKysrLIz8+nb+9+yBJt6cFQzLng+3/t3Xd4VEX7//H3bPpueiEkhISQ0DuEIk0pFiyoYBewgg0BAQXkZ68I2B5URBTro48oIKBSlKaAEUGq9B5qaElI3+z9+yMYwpdAAtmwG7hfXrkud3POmc/GOHtnds5Mfi3qmea0Nl1pRzcOHzhy2pKb5ZGens6+ffv4/KvPyKp6mNX+v7Mq4Dcscfl8MOGDc7qWp1fh2FoD05IkOlGDugTaAul+Y/dzus5zLz3LNuta9slODsoeNtpW8Pjjj+Pj44OHhwePPPIIi5N/Z+bPM5xWHBfXuHFjsqxpRSs0iQhZtjQaNy68gTsrK4tPP/2UZ555hl9++aXwY3cKbyLsfsNVPDMqjYICiIvx5M3xWfQ8wwpMf//9N97iS5iJBOAw+wgnimgTh5fxpqqpTpg9iq+//trpr/Fi06tXL/Yf3MechbNI2bubZ597tuIaK8sws7O/XP2x3sVm37590uOmnhJgC5TE+Fry3//+95zOHzfuHakSESQ+Pp7SqmUDWblyZannDOg/QKrYqkpDWktd01QCrIEyb968830JF8TOnTslqkq0VA+Ilxp+tcXm6y+9e/UWCx4SRZzEUks88BQfTx+ZPHmyq+OeJi0tTTIyMlwdQ5UDOsWiRGlpafLDDz/I77//fspH1Lm5ufLTTz/J9OnTJSsr65yu+euvv0qvu3vI3XfdLHPmzDnt+00aNhVPvKQBLaUVXaQqsRIeHCG5ublSt06c9LwuUIKDLHJbd3/p0sEqkVWC5J9//jlje0uWLJHwsADp2tEml1/mJ2EhFvHysMhlxeb71qOFXNGhk0yaNEni/BOKno8gWhrQ6pS5lWG+ARIeFih5eXnn9Lr/r/z8fHnkkfslMNBXQoJ9pVXLhrJhwwZZvHixJCcnn3F+8NlMnz5dgq2hkkQn6cgNkuBZXxrUbXBe2yL/9NNP0rXTldK2VTuZOHHiBd1a2W63yxUdOkmkf7TEU08i/aOlY/vLJT8/X9LS0qR2Qh2pZouTeOpJqC1cHrzvwaJzDx48KFdd2V6Cg3wlKMhXbux+5Rnvw9m2bZv4+wZIJ24unMZH09O2so73riOvvPLKhXrpl7Sy9sOXdKd8MXA4HNKgbgOp6VlP2nOdNKejBFmDS3xDKMmsWbMkPi5Q1iyIlbyURJn4VqRUiw4r9QavgoIC+fTTT6XL5V3l1h63Fd3c4ixZWVkyevRoubLTVTLw8YGya9cuERH5/PPPpXGDJlK7Zm15+eWXJT8/X0ROvpHOmDHjjG+kve7qLQke9U+52c2Ch9SmadFzregiXhbvousq5UxaIJfd5s2bpUZcVWnfJlw6tY+QqKqh8vfff5fp3M8//0yqVwuQca9HyHuvR0hc9QCZOHFC0fdzcnLEw+IhzWgvYUSKjUCJJl78rf4iIrJ371554IFeUisxWho1qiPPPfecpKenn7XNZk1ry9cfVi2ab/zWSxES6O9xShF0GVdLoDVQPv/8c4n1r1n0fENaiRV/ac910oWe0oBWEh7iJY0bhMqSJUvO/4coIqNGvSadO4TKofU1JS8lUcY8V0WaNqld7kL0448/lurRseLn4yc3XNtd9uzZU67ruUp+fr58//338vTTT8t3331X1PePGjVKqvvVlM70kIa0klAixdviI+PHjz/l/P3798vBgwdLbeem7jdLlLW6NKGtJNBALHhIE9pKF3pKMzqIv1+AbNmypUJeozpVWfthU3jshZWUlCR//fXXBW/3YrR8+XKuvuIamh6/vGju0x7ZTuK11Zj+4w+lnn9Pn9to1WABj9wTTEGB8NrbR3n9nQwCA0MZMHgAw4Y9dcGXCRMR2l/Wnp2r9xCaHUWmVxpp/qmMGDmcV599ndisunjiyR7rFq6/81qeHDaUju0vx5LjicGQ45HJr/N/pUmTJqdcNzG+FmE74gg0IUXPLZIZNKBV0UdfAPNlGnsP7CnTmqBKnQtjzHIROfvn9BeQO/fF3W/oSvtmaxj6aOHawpO+SWfiN1VY+sfqUs+tlViNSW9ZaNuycGvgv1bmcNtDuezYeQAonFIWHBhMk6wO+JnCpdGOyWEOVtvGzpQd55w1JyeHgAAb2TtrYjmxocPhIwVUb7adBnkdCDWFfcl2s44DPtv4+tvv6HN3H6pm1CRSYjjCQTZ4JIMxeHkYIqt48tX4cHo8cIwFC5dTu3btc870r1Yt6/P6iHSuaFu47bTDIcQl7Wfhor91jfSzuLXHraybup18ctnHLuKph4MCdnlv5MNJ47nrrrvO6Xp5eXm8++67TPl2KtVioulyVRfGvvEmW3dsIbZaHO9/+B7XXnttBb0aVVxZ+2Gdg1zJ5efn42E8T7kxwIKF3Nzcs5x1kqeXNzkn1q0f8dIRPnhPaJTfgdjD9Xn3lXE8/9yZbxKpKIsXL2bTus3UzU4i0sRQ096AwKwwXn35NeKzGhBuqhJswqmV1YwvvvyCvvf3I/BQBPUzWlMvoxWRx+K5r/f9p123SZPGHC22RmeWHMeOnXSOFj13VFLx9PQkLCzsgrxWpVTJFi5awr23+xc97nNrAMv+WnfW7Zz/tTvlII3qnbzBrmFdb3anpPLvgJCHhweDhwxhk20FqbKXA5LCVutq/t+zI88rq4+PD9Wiw/nz75Nzmn9LziYyMoQ1HovZ7LeEDbYFZIZupW9vKwsW/Mq8hfMIbOHFIjODPYEreGF4CIGBwgsjgvj4nTBGf5BNixatylUcAwT4B3D02MmNhfLyhOzsgjOumXz8+HEWLFhQ6rbTF7u2HdqS7nuIHWyiCW2paqoTbWpQO68ZTz917r8n3t7eDB06lCV/LmbylMk8/PDDbN62idzcXHbs3q7FsRvSArmSa9myJT4BXqSwBYc4yJIM9tt20PfhB8t0ft++/RkzPpuffjnOB5+lkZjdhkATQpAJpWZWI977z7iznr9hwwZWrFhR4s5uZ7N582b+/PNPfvrpJ+bPn09BQUHR93bt2oXNBJ26AHuulZysHLw4+abniRfiEJL//IMoR42i56tKLCvX/k1+/sndAgFeef0VDvnvZovPKraZf1hrXUqPnjezg/WslMWslT9Zye+8OuoV3VxDKRerGR/D8tUnC86Va3OJqhqCl5dXqed26dyODz5NL3o8/rMMunS+7JQ+5fkXnuO1d17Bt4WD4Mu8+OjzD+nbr+95ZTXG8Nrrb9Hj/qO8OPYYI189ysNPZXDvff1JahbEM6/YGfOmJ1v+rM7BwxYcjsIVPKZOn0JwsA971lbnqf6hTJ4YzQ+zMrn9oUM0aPYQ//t2xnnlKa7/gOEMfeE4P/+aycq1ufQZcIwuXToRFRV12rFTp04lKjKau2/qTdNGzbilx60lblRyKejXrx8h8QEUkI8v1qLnrfizZ98ep7VTlt/ni92mTZvo92A/una6knfffbdMfwRfEGWZh3GmL2A0sAFYDUwFgstynjvPe6uMNmzYIC2aJomnh5cE2ALltVdfO6f5ZdOmTZPmzWqLwcjldC+aF9eB68XPx6/Ec44cOSKXtWorgdZgCfOPkNhqcWe9geVfR48elXZt2onVxyYeeEqgCZYIW1WpUb2G7Ny5U0REUlJSxOprK1ofsxM3SRVblFx95dUS4xsvnbhJutBTEj0aSpuWl0lifC1pRodi84g7S5WwKiX+DPbv3y+jR4+WEcNHyJ9//ikiIitWrJCePXvKzTffLH/99VeZf26VTWpqquzfv9/VMS5pVNAcZOBWYB3gAJLKep47956MUGQAACAASURBVMXTpk2TyCr+8urTETLmuQiJifaXTz6ZWKZzt27dKrUSY6RZ4zBp0SRMasZHy6ZNmyo4ceE6yIMHD5Bhw4bKP//8I7m5uVK/Xrz06xMucydXk64drOLra6Re7WAJC/OX999/T4KDfCVrR0LR3OU531aTlkn1nJrrm2++kTatG0rtWtXkySefKHFDkWPHjom/1V9a0flEv3uzVLVWkw8++MCpWSqTvLw88bJ4Sy0aF21mUp1E8TRecuTIEVfHuyhs2rRJgvyDJNGzoTSijURZq8t111TcRkEiZe+Hy9spXwV4nvj3UcCospznzp1yZZaZmVm06Pz5uKXHrRLnXUs6cZNcwU0S65Mgve/uU+KxD9z3wCk7INU1zaRhvUaltvHAfQ9IrHeiBBAs9Uk6uRuORwPpfl33ouPGjx8vVl+bxATVkAC/QLnr9rskLS1Nul93o/j5WMXm6y/NGjeXXbt2yZQpU8TfN0ASaCi1aCReeEvrlq3Lfff3xSItLU26XdVN/Hys4udjlXZt2suBAwdcHeuSVIEFcj2gDrDgYimQRUSWLVsmjzzygPTt20cWLlx4Tufa7XZZsGCBzJ8/v0w33c6ZM0c6d2oldWrHyOOPPyxHjx4939inSE1NlaFDB0rjRokSXdVHdq2Il4J9tWTFL7ESEmyVrp3bSt/e4bJ3dbysnBcrzRoFy/vvv+eUts/Fzz//LNUC4065qbAhreTqLtdc8CwXWlpamowdO1Z63dVbJkyYIHPmzJGO7S6XmrEJEuwfLD74iY0A8cMmAQSL1c8qubm5ro59Uej3YD9J9Gh4ymYxgdYgWbduXYW1WdZ+uFwbhYjInGIP/wBuKc/11EkpKSk8MXAwC+YvoEZcHK+PeZ0uXbqc9Ryr1XrW75fmo48n0OvOXvzy688AXHNlN977oOQpFjNnzKRmXtOijyyrSU0Wb/2JQ4cOER4efsY2Zs6YSVxeQ1LYThRxRc9XLajBwoULix4/9NBD9OzZk2XLlpGQkFA0D++HmdNITU0lNzeXmJjCtYqrVauG1d+PozkH8cVGA1qxa91O3nzzTYYNG1aun8nFYED/gaxbuJk2uVdjMOz46x/69LqHWXN+dnU05SQish4ocZOCyiwpKYmkpInnda6Hh0eZ185dsmQJfXr34K0X/amb6M27Eydz043Lmb8gudw/0/DwcEaPfhuHQwj2/C/Vogrfdps08OHarv4ktbuVlX8vpU676QQF2hgwcBgPP/xIudo8H9WqVeO4vXBNYIspnH2Z45FFXHzTC57lQjp+/DgtmiaRe6AAW1YQc6fO40huKrUcjQmnBnmeQga7CKMqftg4Zj3Ao4Mfx9vb+4zXzMvLY9GiRXh4eNChQwc8PXVPtjPZsW0HvgW2oo26LMZCgGcQKSkp1K9f36XZnDkH+X5A33GdwG6307FdR/7+YR21j7Ygd6UnN3e/mZUrV1Zou8HBwcz8eSYHDx0k9XAq02ZMJSAgoMRjI8KrkM3xosd55GCxmBJv/BAR/vnnHzZv3kx4WEThbkl4kkVG0THHOUZMtVN3EAoPD6dbt26n3aQSERFRVBwDrFu3DntOAc3oQH3TgnBTlapZNfjmy/+V6XVnZGTwUN+HiAirQmJ8LSZOPL83ZHc1ZcoUYnNr42E8sBgLcfa6/DrvF/eZ56UuKGNMP2PMX8aYv1JTU0s/wcVEhOTkZP7zn/8wb968ohvtnOn998YwcqCV27oH0Li+DxPGhLBzx0bWrFnjtDbCwqqQsv/UYnvPPgexsbF8+tn/SE/PZnfKIZ58crhL/tAJCAggIDCAlZbfOSh72GHZyEG/3Qx5csgFz3Ihffnll+QczKdOdnNiTAINs9vg7fDFB18CCMbYLQjCEct+9nht5dEhD591h8P169cTV70GfXrey5039iKhRgLbtm27gK+ocrnh5hs4bN2DQwrvQ0qXo6TZj9CmTRsXJ6P0EWRjzC9A1RK+NVJEfjhxzEjADnx1luv0A/oBxMbGnlfYS8WCBQvIPpZLQ0cLMIU3BeTkZvL+uPeZMHFChbcfGBhY6jHPv/wcD/R5kLysXDzxYr9tO48+/Bh+fn6nHLdz5066XdWNfXv24xAHkVUj2eW3htDsSP7mN+KkLg5j54B1F1+N+fK88oaEhJBrz8WBAw8Kb67LJYeo8LKtRHFrz9tYv2gztXObk3skh2EDh2Oz2bjzzjvPK4+78bfZyMvMLbrRJJ88vL289UbESqYsfXFZiMgEYAIULvPmpHgVQkR44L4HmfrdNEIKIsjwPErzNs348eeZTh2VS087RljoyfEii8UQGuJFenr6Wc46N/feex/Nm42mRswxOl7mw7fTc9iXauW666474zl2u53Ro0fx5Rcf4enpwf0P9GfAgEFOL6BTU1NJat6SwLQI/ByebDVr8fC1sOj3heVeRcPdbVi/Ed9M/6IRTGMMQRJKFsfJJYc0DtOB6/ASb1Lz9/Lef95j5MiR+Pj4lHi9e3vdS3BqVWJIAGBn1kYeevBh5s6bU+Lxl7p+/foxZ9ZcFs6fR4BXEGn5R5j02aQy1SEVrdQRZBHpKiINS/j6tzi+B7geuFvO8qe9iEwQkSQRSYqIiHDeK7gIZWVl4cmpd7aaAg+OHy99K+gLpWfPnnw79X/EdAnDv7WFV95+iTdGjzrtuF539sa+1YMWmZ1pmdWV/N2GZs2b0eCK2tSoVYOAZp5cdlcz5sybzfXXX39eWWJiYujSpQubfFdwTA6xX3aRYt3EiP83vNRz9+3bx2+LFpGY2xirCSDERFA9qw5j3zi/rZzz8/P5/fffWblyZYWMdJ2PwU8OYZt1DUfkIMfkEJutK3n00Ue1QK5kSuuLL0bJyclM+24aTTM7kpDbiMbH27Pqj9VMmzbNqe30vPUexn6Qy4FUOyLC11MzOHjI0Lp1a6e1ER0dzcJFyWzYfQVPvOBPgffNLFiYfMZCC+Dpp59k9syxfDzWwbiX8/jy0xd5443XnJbpX59++ikBOSEkSAPqmRZcxtX4WwIr/VJvOTk5fPHFFzz77LOnbBVd3BWdLifd/xAFJ0Yw8yWPVPZiI5CD7CGW2niZwukUESYaH4cff/zxR4nt2e12lv29jGiJL3ouuiCe3xb/VgGv7lRpaWk83O9hoqpE06heYyZPnlzhbTqDt7c302f+QPLyP5g0eSJ79u3hllvcY7Zuuf4EN8ZcAwwDLheRrNKOV2XTpUsXjpPOAUmhCtXI5jiptl3ce//pBWhZiAgfffQR74x9l9zcXO594B6Gjxhe7hGYq666iquuuuqM38/NzWVp8hIud3QvGvGIyU/k75WLSD/uvJEZgP999w2vvfoa334zmYiICMY+922pc7b/zehh8cQU+1vRA0+ys9POOcOKFSu45qpuWPI9ySvIIaF2Teb8OoeQkJDST65AQ4YMxmazMu7tceTn2xn80ECGDL24PzZVF4fk5GSC7VXwNIV9lcVY8D8extIlS536JtqnTx/Wr19FvQ7j8fWxEBoazrQfZjp9Ca7Vq1ezceM/HDp0FIvF46z3jTgcDj788EPWLqhaNG954psWut/zNsOGPe3UXPv37ccj59Q5td52Pw4cOODUdi6k48eP06pFa9L3HMc708b7tvHc0PN6Jn32ySnHde/ena+u/Ipf5swj2IRxuOAAjes0Zv2GvyjIdxBScHJAT0TILsg6Y5/u4eFBWHA4x4+mEUjhMRkcIzoyuuJe6L+v4/ob2bEshfjcRmSnZtL33oewWs/+CYU7qVu3LnXr1nV1jFOV5U6+M30BW4DdwMoTX+PLcp673zntDpYuXSo142qKn49VAmyBMmbM2PO+1rvvvith1ghpTkdpSSepao2Rxx55zIlpS2a32yXAFiDt6FZ0h2oSnSQupkaFt11WDodDGjdoIrU8GkpnekgHrpdIazUZM3rMOV8noUaCNKCVdDW3SBd6Spx3Len7QN+znjNv3jx56qmnZNy4cXLs2LHyvhzl5qi4VSxuBlKAXOAAMLss57l7Xzx37lwJ968inelR9P9VtC1WJk2aVCHtZWRkyM6dO8u9DXNJZs6cKbExATLzy2hZsyBWet8aJt2uufyMx+fn54u3t6cc23xyCbgdf9WQ0FD/c2p37969smrVqrOu5DFv3jwJsYVKB64v2hLb5muTrVu3nlNb7uTNN9+U6tZ46ULPouVCA61Bsnr16hKPX7ZsmXz22WdFy5UeO3ZMpkyZIgHWQKlPkrSkk1T3qSltW7c96+/HhA8nSLA1ROrQTOqYphJkDZavv/66Ql7jv7Zs2SIBfoFF/5/8uwJJp46dK7Tdyqqs/bDTO+qyfLl7p+wuHA6HHDx4sNzLycRWi5OWdDptfeMLsUzNs888JxG2SGlCW2lEGwnwDZI777hT5s6dKwUFBRXeflns3LlTLmvVVry9vMXP1yqPP/b4OS+Xl5KSIjZf/6LOuKu5RdpwpVSrGnPGc4Y8MURCbWFSk/oSa02Q6Mhquk7xRa6iCuTz/XL3vrigoEC6dr5SIm1RkkhDibbFSpOGTSU7O9vV0c7Ztd06ypfvVy0qdnN2JUqVCJts27btjOfc0vNaeez+cMncniDpWxOk1y1h0q/fvWVqLy8vT+6953YJCfaTWgnBEhcbKUuXLi3xWIfDISOfHilWX6tUDaomNj+bTPhwwnm9Tndx5213SV2an7JsXY2AWvLll1+e03UWLVoknS/vIrUT6siQJ4ZIenp6qefMnTtXbu1xm9xx252yaNGisx6bl5dXrvdCh8Mhv/76q4TYwk55/2lKO2nZrNV5X/diVtZ+WNcecWPGGJwxXzs9I40ITu5054kX9gI7+fn5Z12qxhmef+E5YuOq89EHE0lJScFxtIA/pq3gl5nzaNCsPrN/mVUhGfbv389vv/1GjRo1SEpKOutNLbGxsSxJXkx6ejo+Pj5nnRN4JsHBwQgO8sjBh8IbFTPJIDqq5I/Wdu/ezfgPxpOU06Vwfls2bLGvZswbYxg9dvQ5t6/UxchisfDz7J+YMmUKSxYvoWmzptx+++34+vpekPaPHz9ORkYGVatWPWsfkpyczBdffIzF4sE99zxIixYtTjsmM/M4wYEnp3J5eoK/zZPMzDPfWzL+w8+5p8+tVG28BIBu11zJ+2PePePxR44c4e23x7Lsz4WkZxTgY9nAzuXR2KwWpv18nFtvuYFt2/eeNnXEGMPLr7zMwEED2bp1K/Xr13eLm6TKo22Hy1g0cwmSFY8xBrvkc9h+gGbNmp3TdTp06MCvC345p3O6du1K165dz3rMgQMHuKf3vfwyby4+3r489thjvD7qNSyWsi8ulpyczJ233smBgwfIy81jt9lKdUkgj1z2Wrfx3IP/75xyq/+jLFW0s7/cfdTiYnHgwAFpndRGfDx8xBMvCSZc2nOdJHjWr/CPXux2uxw9erToo6hVq1ZJoF9Q0U59nekhUbYY+eyzz8p8zUOHDsltt9wu/lZ/iYmqLh+8X/IOTxM+nCBWX5vEBSZIqC1MulzRVXJycpzyus7myaFPSYQtUhrSSuqaZhJoDZRZs2aVeOzs2bMlJujURfkbc5l06qAfiV3M0BHkSqGgoECGDh0ggYG+EhriJ00a15I1a9aUeOx///uVRFX1l1dGRMhLwyIksoq/TJky5bTjxo0bJ21bhsi+NfGSl5Io77xcRerXiy/TdI7Dhw+XunFJTk6ONGyQIN2vCZbEeC8JCbbIjC+ji0asC/bVkob1Qot2EL3YZWZmStNGzSTKP0biPetKiC1UHn34UVfHKtK2dTup6VlPOnGTtOdaibRGy9hzmEqZlZUlIUGh0og20oWe0owO4m18xMfTR6y+Vhn4+CC3+ZTW3ZS1H9YR5IvYg/c9yMFVx2hXUDhJfyMrSbbMJal5El99c35LqpXFRx99xOBBQ8jOziLAFsB7H75HVlYWYSay6G5gi7EQkBnGbwt/o0+fPmW67g3Xdmff34dpln85OVnZjHzyGUJCQ7j99tuLjklNTWXQwCdomtMBa64/DnGw/s9lfPTRR/Tv379CXu+/Rr3xOo2bNOKzjz8nKDiQj4a8S/v27Us8tkmTJhzJTSVHsvE1fogIx3wPcuPld1VoRqVU6T766CMWzfucjYujCA/14JOv07npxqvZuGnXaau//L+RQ/nfh8G0a1X4yVGr5t4MeWYIN9988ynHPfLII2zfvpE67T7CGKhTO5EpU78r05JtoaGhpR4zffp0woOPsX5TJkMeCWHeb1ns3pNf9P3cXAcHD+WedSOni4nVauXP5cnMmDGDzZs306FDBy677DJXxwJg7969rFy5kjb2q7EYCx54EpNVi4/GT2TwkMFlusbChQuxij+RpnBPgDAiSZAGxHeNYvL335Z74zBVzlUslPsSEX6a/TMdCq4r2hUpURpy0LKbJcmLK6zdJUuWMPDRQTS2t8WfIFKP76X33X14d9w7pJnDRbs0iQhZ1nSaNGtSputu27aNtWvW0jK/KxZjwQc/YjJr8c6b755SIP/xxx+EeVfBmusPFBbiIVlRzPpxdoUXyMYYevXqRa9evUo9NjIykmeefYZXX3qNcEcUud5Z+Eday9w5KqUqzveTP2X4435UCS98i3zw7kDe+jCVlStXnjJ9wuFwsH3Hflo1Syh6rnVzX7Zs3XXaNS0WC2PGvMuLL77OunXrOHTokFNXuNmzZw/hoQ727IO+vQJpWNebnvfvw9PTUDPOi7cnZNOhQ0fi4+NLv9hFwsvLix49erg6xmk8PDwQBDi57JwDBx6eZV9602azkSe5iEjRH1l2i52IiAgtjp3EmTvpKTdijCHQFkAu2UXP5ZJNYEBQhbb70YcfEW2vSYAJxhhDFVONYML4ZOIntLu8LWttS9khG9hoW44t2od77733rNcTEf744w8WLVqEOfHPvyxYyM/LP+X4+Ph40uxHinblAcj2zqBuvTpOfZ3OMHzEcJYuW8LAUY/wzidvsmbdaoKDg10dS6lLnn9AIEeOnexD7HYh/bj9tJ1FLRYLbS9rwhffndwV9PNvM2jfLqnE64oIgx4fROeOXXjozkeJj6vJW2+97ZTMV155JfOX5JCW7sBuh7Yt/Zg8MYqJX6Zxz4B0WrUfwJdfTXFKW6p8IiMjadeuHVu915Aj2aTLUXbbNvL4oLIP4rRr147QyBC2ea4jU9LZL7vZ77uDxwdW7EDQpURHkC9iQ54cwjuv/4eYzFoIQoptM0MreNtQe0EBBZxatDpwcPBAKn/+9SdTp07lt0W/Ub9BfXr16lXi1tT/Sk1NpfPlndm/+yDeFh+yc7PYaFlBLUdT8shhj20rrzz64innNGzYkM5dO7P012RCM6PI8c4k3XaIQYMHlZo9KyuLr776irWr19K+Y3tuvvlmp+7WVZIGDRrQoEGDCm1DKXVuHn3sSe7pczOhwR7UjPPizfGZNGjQpMRd5ca9N4lu13Tmf9PTcBQIG7cKc+aWvF39jBkzmPrtDyTldMYz14scyeLZkc/QvfsNJCQklHhOWTVo0IARI57npRefptej+xkxMJTDRwvYc8CLTyZ9d9Y169WF992UyfR/9HGmTZuKvy2AYU89Rb9+/cp8vsViYeHvCxg6+El+mfsLcbFxTB01pcQbRNX5MYXzlS+spKQk+euvvy54u5caEWHChAmMH/chGHhswKM88MADTt+mtLhVq1bRomkS9UkiiFD2sZNdbObhxx7i3XFnvvu6JPf2uY+F3ywlIb8hxhgOyG62+qwlJy8bq5+VJwYP5oUXnz/t9djtdr788kt+nP4TibUTeHzA40RHn32h9szMTFo2b0X6nkz8MgPJsB2iefvCLW0r8uelLi3GmOUiUvLwogtoX3xmM2bM4I1Rz3LgwEG6XXsjL774GkFBJX8Cl5WVxezZs7FYLFx11VX4+fmVeNyjDz/KLx/+Tpw5+YnWFutqnn5rKH379nVK7m3btjF8+BD+XpFMVFRVhj75PN27d3fKtZW6GJS1H9YCWTndqFGjeGbEs4g48PTwIj4hniXJi895+kC1qjHEHWiAzRQuNyQi/OE7m7Xr1xAbG3tOy+GUZvz48bwydBR1MltgjMEhDlbZFjHlp+/p2LGj09pRlzYtkC9tb7zxBu8/N5FauYX3XogIawOW8NnkSVx99dVnPO/QoUMMHNCPaT/8SGhIAE8MHsYTTwzVP96VOg9l7Yd1DrJyumHDhnHoWCrf//A9vyycy7oNa89rbm1MtRiOc3LL51yywQiRkZFOLY4BVq9cjV9mYNEbjsVYCHSE8s8//zi1HaXUpeuBBx4gJyCDrV5rOCApbPRbQXR8VKlr5t5xe3dC/H5j+58xzPzCxmefvMqkSZMuUOqyycjI4J7e92Kz+hMeEsGLL7yIw+Eo/USl3JQWyKpCBAYG0r17d9q1a3feoxyvjHqZHdb17GIze2UH623LGDxk8Bk/viyPdh3akWErXGUDwC75HDEHad26tdPbUkpdmsLCwvh71Qp69r+ByE4BPPpMXxYtXnja0nHF7d69m1WrVvHmC8GEh3nQqJ4Pr46w8snH5zZlraL1vqs3Cyb/TovsK6h9rDnvvTGesWPGujqWUudNC2QXycrK4vnnnqd54xbceMNNLFu2zNWR3E7Xrl35Zf5cWt7ekJrdohj/6fu88OILFdLWbbfdRoOW9Vjt/ztbfdbwt3Uhd/W+85x3XVJKqbOJiopi9NjRzJ03hxEjRuDv73/W4x0OBxbLqYMMHh4gbjQ6m56ezqw5s0nIbYSP8cNmAonLqsv74z5wdTSlzpuuYuEiN1x7AxuTtxGZU51Na3fRZV4XFi1eRNOmTSu03U2bNjF//nxq1KhB165dzzpy4Q5atWrFl19X3KYm//Ly8mLuvDnMnz+f9evX06ZNG70bWCnlcnFxcdSrV5+nX93Os0OC2HfAzsjXsuj36DOujlbk5FSKk4W8wegUC1Wp6QiyC6xbt47ly1ZQJ6c5oSaSGBKIyolnzKgxFdruqNdH0aJpEqMGv8k9t95H66Q2ZGZmVmiblYkxhs6dO/PYY49pcayUchv/+3YG2/cnEVZ3O+1vPELP25+gX7+HXB2rSHBwMFd0vJzt3uuwSz45ksUu60b6PvSgq6Mpdd50BNkFUlNTsXr6F+1wB+DjsLJ3774Ka3PPnj28+MJLtMi5Ap8TWxtv3LicDz74gKFDh1ZYu0oppconMjKS76f8jMPhwBjjlqtXfP3t1zxw74PM+HE6Pt4+PPzQwwwfMdzVsZQ6bzqC7AKtW7cmS45zWA4AYBc7B627ue3OWyuszeXLlxPuHYmPKbzBzRhDcHYVFvyysMLaVEop5TwWi8Uti2OAkJAQpvzwPbl5uWRkZjDmzTEVvtGSUhVJC2QX8PPzY8q079kV/A+r/H9jqefPOLzz+M9b4xg9ejQFBQWlX+Qc1alTh6P5hygQe9Fzx32O0aR5Y6e3pZRS6tLkzkW8UudCC2QX6dy5M/sO7uOhAX3x87JR7VhtfDeFMfb5dxg8aLDT26tTpw49bunBWv+l7JCNbPZbSV5wJgMHDXR6W0oppZRSlZnupOdiCTUSCd1ZnWATDkCu5PCX7zyOHjuCj4+PU9tyOBzMnDmT2bNmUzOhJvfffz8hISFObQNg7dq1/Pjjj4SHh3PbbbcREBDg9DaUqox0Jz2llHKtsvbDOkHIxdLT06hKYtFjL7yx2+3k5eU5vUC2WCx0796d7t27O/W6xY37zzieGjoMS74HBdgZNGAQK1auoFatWhXWplJKKaWUM+kUCxfr0bMHKT5bKJACRIRdHpto2aJlpRx1zcjI4MmhT1KQV0ANqUdDaY1vlj9dO13p9LZ27dpFvwf70bJZKwYPGkxqaqrT21BKKaXUpUkLZBcb8+YY6nesRbLPHJL95mCr58k3k792dazzsnnzZkyBhUQaEWViCTbhNOYy9u7dy86dO53WzuHDh0lq3pJfP/udgpW+TP3gR9q0bENubq7T2lBKKaXUpUsLZBcLCAjg5zk/s2X7ZtauX8PKNX9TvXp1l+WZNWsWHdteToM6DXnxhRfPqehMTEzE7rDjg2/RcxbjgY+HL0ePHnVaxi+++AJrViA1CxoQZiJJzG9M7hE706dPd1obSimllLp0aYHsJqKiooiLi3NphtmzZ3N7zzs4ujQXv03hfDjqY3rd1bvM5wcGBtLt+m5sYz12yUdE2C+78A+20ahRI6fl3LtnLx453qc8553vy/79+53WhlJKKaUuXVogqyKvvPgqsVl1qGqqE2IiqJPdnJ9+/OmcCs/vvp9M+2vasMRzFsneczgWtZefZv+Ih4eH03Jef8P1HPHbR67kAJAlx0llL1dffbXT2lBKKaXUpUtXsVBFDh86jB/hRY8teODt6c2xY8eoWrVqma7h5eXFzJ9ncvDgQY4ePUqtWrWwWM7v7zC73Y7dbsfX1/eU5zt27Ej/J/rz5tixBPmEkJ57jFFjRlG7du3zaqe8Vq5cyapVq2jevLlTR8qVUkop5Ro6gqyK3H7Xbezz206B2BER9pmdBIcGU6dOnXO+VpUqVahTp06JxbGIkJ+ff8ZzCwoKeGLgYIICggjwD6RrpytPG8V+6eUX2bFrB9/99C179u/hscceO+eM5SUi9Ol1D1e068Tz/V+hfesOPNzvYVyxtrhSSimlnEcLZFVk2PBhtO3WmmSfuSy3zSMr5jDTf/zBqduGTpkyherRsfj4+FCvVn0WL1582jFjx4zl64nf0iKnEx0Krmf773vocWPP046LiIigbdu2BAUFOS3fuZg7dy4/TfuZ5llXkJjZhObZV/DtfyeX+JqUUkopVXlogayK+Pj4MPn7b9m2cyt/LF/Ktp1bnTplYO3atdzb+z6q7k+gs/TAa0sQ115zHYcPHz7luI8nfEL1rFr4GD88jAc17PVYtWoV+/btc1oW9xSM5wAAES9JREFUZ/j9998JzAzHwxTOVPI0XoTkVtECWSmllKrktEBWp1i+fDkvPP8Cw58cwRdffIHD4XDatb/84ksicmMIMREYY4g0MYQQcdrybF7eXjgoKHosCIIDT0/3mjJfu3Ztcv0zi6ZUiAhZvhkumwutlFJKKefQAlkBsG3bNhrWa0SrpFZ8OH4Cv81YytBHhnH/vfc7rQ1PL0+wnDo/t6TCd8ATj7PLupE0OUK2ZLLVZzWdruhERESE07I4wy233EJo9SA2WJezW7aywbqMaolRXH/99a6Opi4xxpjRxpgNxpjVxpipxphgV2dSSqnKTAtkhYjQrk17cjbAFdxEO7phJ4+grAi+m/w9u3btcko7ffr0IdUrhYOyh3zJYw/byfA4yo033njKcX379uX/vfo0+6I2sy5gKVfedQXfTP7GKRmcydfXlz+WLWX4qCG0ursRI8cM57cli/Dy8nJ1NHXpmQs0FJHGwCZghIvzKKVUpeZen1krl/jkk084nHqYBrTFGIMPvtSU+mxjPYHeQezevZvY2Nhyt1O7dm2mTp/KoP5PkLx9Jc2bNOPrCfMJDAw85ThjDAMHDmTgwIHlbrOi2Ww2+vfvD/1dnURdykRkTrGHfwC3uCqLUkpdDHQEWTH1u6kn5vmenP5gx46dfI7b02natOk5X3PmzJm0a92eurXq8fxzzxdtWd2lSxfWrF9Ndk4Wi5MX06RJE6e9DqUUAPcDP5/pm8aYfsaYv4wxf6Wmpl7AWEopVXlogawIDg7GFyvrWU6mZHBEDrCRleR5ZvPpF59is9nO6XozZ86k1+29yfizgIAtVflo9CR6392ngtIrdWkwxvxijFlbwteNxY4ZCdiBr850HRGZICJJIpLkbvP6lVLKXegUC8Uj/R9h+g8zsGfns4JFGAy+Nm+27thKeHh46Rf4P1576XVis+oSaWIACMgO5seZhbvrValSxdnxlbokiEjXs33fGHMPcD3QRXS3GqWUKpdyjSAbY146cdf0SmPMHGNMtLOCqQunXbt2TPriE4Jr+uPhZ+GKKy9n1dpV51UcAxw5egQfTm4PbcEDTw9v0tPTnRVZKVWMMeYaYBjQXUSyXJ1HKaUqu/JOsRgtIo1FpCkwE3jWCZmUC/Ts2ZNNWzeSmXWcn+f8RI0aNc77WnfcdTt7/bZhP7Fl9V6znSqR4SQkJDgvsFKquHFAADD3xIDFeFcHUkqpyqxcUyxEpPiQoA3Qj/UUw0cM559165k5YwaeHt5UiQznh5nO3bJaKXWSiCS6OoNSSl1Myj0H2RjzCtAHSAM6neW4fkA/wClLhin35ePjw/8mf0NqaippaWkkJCRocayUUkqpSqPUKRal3TktIiNFpDqFd02fcTVYvXP60hMREUFiYqIWx0oppZSqVEodQS7tzuli/gv8CDxXrkRKKaWUUkq5UHlXsahV7GF3YEP54iillFJKKeVa5Z2D/Loxpg7gAHYCD5c/klJKKaWUUq5T3lUsejoriFJKKaWUUu5At5pWSimllFKqGC2QlVJKKaWUKqbc6yArVVH27dvHrFmzCAsLo1u3bnh5ebk6klJKKaUuAVogK7c0efJk7rvnPiI8oskzOfiGerEkeQmRkZGujqaUUkqpi5xOsVBuJycnh74P9KNBdhsSM5tQ/3hrHHu9ePYZXWJbKaWUUhVPC2TldrZs2YIXXgSakKLnIvKjWTR/kQtTKaWUUupSoQWycjvVq1cnKz+THMkueu6Y5TD1G9RzYSqllFJKXSq0QFZuJygoiOHDh7POtpQdbGSr91pSbbt46dWXXB1NKaWUUpcAvUlPuaVnnnuGdh3a8d3k74ioEkHfvn2JiYlxdSyllFJKXQK0QFZuq3PnznTu3NnVMZRSSil1idEpFkoppZRSShWjBbJSSimllFLFaIGslFJKKaVUMVogK6WUUkopVYwWyEoppZRSShWjBbJSSimllFLFaIGsKlxWVhYFBQWujqGUUkopVSZaIKsKs2HDBlo0TSIoMJjQ4DBGvT4KEXF1LKWUUkqps9ICWVUIu91O105dyVrtoGPBDTQ83oY3Xh7DlClTXB1NKaWUUuqstEBWFSI5OZn8zAJiSMBiLFhNAFUz45n44ceujqaUUkopdVZaIKsK4e3tTYEUnDKlwkEBPj4+ZTrf4XAw6vVRxFWrQXRkNUY+PZL8/PyKiquUUkopVUQL5HLKyclh5NMjSYhLpEWTFnz33XeujuQWkpKSqBIdwXbPf8iRbI7IAfZZt/H4oP5lOv/VV17lzZfeIXJvArEH6zPp7S8YNGBQBadWSimllNICudx6392Hz97+irBdcRSs9qXvPf34/vvvXR3L5Ywx/LrgF5peX59Vtt/IqHmADz8ZT5cuXcp0/rh336NmVkOCTCgBJpjE7CZ8MmkSdru9gpMrpZRS6lLn6eoAldmhQ4f48ccfaZN7FR7mxI8yC15/+XV69uzp2nBuICoqiu+nnt+Iem5uDh7Ffj098KCgwI7D4XBWPKWUUkqpEukIcjlkZmbiafHEgkfRc154k56e7sJUF4c77ryDnb4bsEs+BWJnh/d6ul3dDW9vb1dHU8rtGGNeMsasNsasNMbMMcZEuzqTUkpVZlogl0NsbCzVY6uTYtmCiGCXfPb6beOu3ne5OlqlN/atsbS9vhVLvWax2Otn6l2RwKTPJ7k6llLuarSINBaRpsBM4FlXB1JKqcpMp1iUgzGGH2ZO46YbbiZ5xxwKxE6PG3sw4ukRro5W6VmtVv43+ZuiXfgCAgJcHUkptyUixT+2sgG6I49SSpWDFsjllJiYyJp/VpOSkoK/vz8hISGujnRRsVqtro6gVKVgjHkF6AOkAZ3Oclw/oB8UfgqmlFLqdDrFwgmMMVSvXl2LY6VUhTHG/GKMWVvC140AIjJSRKoDXwFnXE9RRCaISJKIJEVERFyo+EopVanoCLJSSlUCItK1jIf+F/gReK4C4yil1EVNR5CVUqqSM8bUKvawO7DBVVmUUupioAXyRSotLY0H73+Q8JBwEuISmDhxoqsjKaUqzusnplusBq4CBro6kFJKVWY6xeIidcvNt7BpyXbq5LYk91g2Tw0cjr+/P3fccYeroymlnExEdGcipZRyIh1BvgilpKSwdOkfJOY2wWr8CTERVM+qw5uj37qgOfbs2cP06dPZsmXLBW1XKaWUUqo8nFIgG2OGGmPEGBPujOup8snLy8PDeGAwRc954EFOds4Fy/DKy69QO7EOj/d+gmaNm9PvgX6I6NKsSimllHJ/5S6QjTHVgSuBXeWPo5whPj6eGjXj2OWxEYc4yJVs9lq3cn+/+y5I+//88w+vvzqKFjlXUDujOUnZnZnyv2nMmjXrgrSvlFJKKVUezhhBfgt4Ct25yW0YY5jx0wwikoL43XMmf/nO566+dzBgwIAL0v78+fOJIBof4weAp/EiOLMKs2fNuSDtK6WUUkqVR7lu0jPGdAf2iMgqY0xpx15yuzeJCHv37iU4OBibzXZB246NjWXxH7+TkZGBj48P3t7eF6ztuLg4sj0zEBH+/b3It+aQkFjzgmVQSimllDpfpY4gl7J700jg2bI0dKnt3rRixQpq1axFncS6VAmvwrCnhrtkDm5AQMAFLY4BrrnmGiLjqrDJbwX7ZTdbvFdTEJhLnz59LmgOpZRSSqnzUeoI8pl2bzLGNALigX9Hj2OAFcaYViKy36kpK5m8vDyuufIaIo/E04am5JHDJ+9/SqPGDenVq5er41U4T09Pfl/6G++99x6L5i2iaYsuDHpiEEFBQa6OppRSSilVqvOeYiEia4Aq/z42xuwAkkTkkBNyVWrJycl42L2oagqnkvjgR9XMOD7/5ItLokAG8Pf3Z9iwYQwbNszVUZRSSimlzomug1wB/P39yS3IPWVKRb7JJyg40IWplFJKKaVUWTitQBaRGjp6XKhp06bUrFWDLd6rOS5pHJAU9vpuZdCQQa6OppRSSimlSqEjyBXAGMOcX+dwVe8r2F11PX7NhclTv6Vdu3aujqaUUkoppUpRrmXe1JmFhoYyYeIEV8dQSimllFLnSEeQlVJKKaWUKkYLZKWUUkoppYrRAlkppZRSSqlitEBWSimllFKqGC2QlVJKKaWUKkYLZKWUUkoppYrRAlkppZRSSqlitEBWSimllFKqGC2QlVJKKaWUKkYLZKWUUkoppYoxInLhGzUmFdh5wRsuWThwyNUhykizVozKlBUqV17Neqo4EYmo4DbK7AL0xe76399dc4H7ZnPXXOC+2dw1F7hvNrfph11SILsTY8xfIpLk6hxloVkrRmXKCpUrr2a9tLnrz9Rdc4H7ZnPXXOC+2dw1F7hvNnfKpVMslFJKKaWUKkYLZKWUUkoppYrRAhkmuDrAOdCsFaMyZYXKlVezXtrc9WfqrrnAfbO5ay5w32zumgvcN5vb5Lrk5yArpZRSSilVnI4gK6WUUkopVYwWyEoppZRSShWjBTJgjBltjNlgjFltjJlqjAl2daYzMcbcaoxZZ4xxGGPcYimU/8sYc40xZqMxZosxZrir85yJMeYTY8xBY8xaV2cpjTGmujFmvjFm/Yn//gNdnelMjDG+xpg/jTGrTmR9wdWZSmOM8TDG/G2MmenqLBcbY8xLJ/rWlcaYOcaYaFdnAvfu992tn3fXPt1d+3B37a8rQ9/sTn2xFsiF5gINRaQxsAkY4eI8Z7MW6AEscnWQkhhjPID3gG5AfeBOY0x916Y6o0+Ba1wdoozswBARqQe0AR5z459rLtBZRJoATYFrjDFtXJypNAOB9a4OcZEaLSKNRaQpMBN41tWBTnDnft9t+nk379M/xT37cHftrytD3+w2fbEWyICIzBER+4mHfwAxrsxzNiKyXkQ2ujrHWbQCtojINhHJA74BbnRxphKJyCLgiKtzlIWI7BORFSf+PYPCDqSaa1OVTAodP/HQ68SX294NbIyJAa4DJro6y8VIRNKLPbThJr8L7tzvu1k/77Z9urv24e7aX7t73+xufbEWyKe7H/jZ1SEqsWrA7mKPU3CDjuFiYoypATQDkl2b5MxOfEy2EjgIzBURt80KvA08BThcHeRiZYx5xRizG7gb9xlBLk77/TPTPr0c3K2/dvO+2a364kumQDbG/GKMWVvC143FjhlJ4UcjX7kuadmyujFTwnNu8xdqZWeM8Qe+Bwb9n5E5tyIiBSc+Uo8BWhljGro6U0mMMdcDB0VkuauzVGal9VkiMlJEqlPYt/Z3l1wnjnFJv1+J+nnt08+TO/bX7to3u2Nf7OnqABeKiHQ92/eNMfcA1wNdxMWLQ5eW1c2lANWLPY4B9rooy0XFGONFYWf7lYhMcXWeshCRY8aYBRTOE3SrG2lOaAd0N8ZcC/gCgcaYL0Wkl4tzVSrn0Gf9F/gReK4C4xRx536/EvXz2qefB3fvr92wb3a7vviSGUE+G2PMNcAwoLuIZLk6TyW3DKhljIk3xngDdwDTXZyp0jPGGOBjYL2IvOnqPGdjjIn4d0UAY4wf0BXY4NpUJRORESISIyI1KPxdnafFsXMZY2oVe9gdN/ld0H6/zLRPP0fu2l+7c9/sjn2xFsiFxgEBwNwTSxGNd3WgMzHG3GyMSQEuA340xsx2dabiTtz00h+YTeGNCd+KyDrXpiqZMeZrYClQxxiTYox5wNWZzqId0BvofOJ3dOWJv7TdURQw3xizmsI317ki4vIle5TLvH5i6sBq4CoK71J3B27b77tTP+/Ofbob9+Hu2l9r33wOdKtppZRSSimlitERZKWUUkoppYrRAlkppZRSSqlitEBWSimllFKqGC2QlVJKKaWUKkYLZKWUUkoppYrRAlkppZRSSqlitEBWSimllFKqmP8PrPSeOemcieYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# First we create a dataset for demonstration\n", "from sklearn.datasets import make_classification\n", "X1, y1 = make_classification(\n", " n_samples=300, n_features=2, \n", " n_redundant=0, n_informative=2, \n", " n_classes=2, n_clusters_per_class=1, \n", " class_sep=1, weights=[0.8, 0.2],\n", " flip_y=0.05, random_state=0 \n", ")\n", "\n", "# We fit the PCA transformer and transform our dataset\n", "from sklearn.decomposition import PCA\n", "pca = PCA(n_components=2)\n", "pca.fit(X1)\n", "X_pca = pca.transform(X1)\n", "\n", "# Plotting\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "plt.figure(figsize=(10, 5))\n", "plt.subplot(1, 2, 1)\n", "plt.title(\"Before PCA\")\n", "plt.axis(\"equal\")\n", "plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=y1,\n", " s=25, edgecolor='k');\n", "plt.subplot(1, 2, 2)\n", "plt.title(\"After PCA\")\n", "plt.axis(\"equal\")\n", "plt.scatter(X_pca[:, 0], X_pca[:, 1], marker='o', c=y1,\n", " s=25, edgecolor='k');\n", "plt.tight_layout()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Another dimensionality reduction technique is [Linear Discriminant Analysis (LDA)](https://sebastianraschka.com/Articles/2014_python_lda.html). LDA is similar to PCA except that it tries to maximize the class separation instead of data variance.\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Acknowledgements:\n", "\n", "The credits for the images used above are as follows.\n", "- Image 1: https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/\n", "- Image 2: https://i.stack.imgur.com/W7I4r.png\n", "- Image 4: https://www.qualtrics.com/support/stats-iq/analyses/regression-guides/confusion-matrix-precision-recall-tradeoff/\n", "- Image 5: https://docs.aws.amazon.com/machine-learning/latest/dg/binary-classification.html\n", "- Image 3, 6 and 7: https://medium.com/greyatom/lets-learn-about-auc-roc-curve-4a94b4d88152\n", "- Image 8 and 9: https://www.spectrumnews.org/opinion/viewpoint/quest-autism-biomarkers-faces-steep-statistical-challenges/\n", "- Image 10: https://en.wikipedia.org/wiki/File:Binary_confusion_matrix.png \n", "- Image 11: https://tex.stackexchange.com/questions/434358/draw-customized-table-with-tikz\n", "- Image 12: https://www.researchgate.net/figure/Example-application-of-principal-component-analysis-to-simple-synthetic-data-The-black_fig7_320410861\n", "- Image 13: https://sebastianraschka.com/Articles/2014_python_lda.html\n", "\n", "References:\n", "- https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 2 }