{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import math\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "import seaborn as sns\n",
    "%matplotlib inline\n",
    "\n",
    "from datetime import datetime, date\n",
    "plt.style.use('ggplot')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Loading the New Customer Data from the excel file\n",
    "\n",
    "new_cust = pd.read_excel('Raw_data.xlsx' , sheet_name='NewCustomerList')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>first_name</th>\n",
       "      <th>last_name</th>\n",
       "      <th>gender</th>\n",
       "      <th>past_3_years_bike_related_purchases</th>\n",
       "      <th>DOB</th>\n",
       "      <th>job_title</th>\n",
       "      <th>job_industry_category</th>\n",
       "      <th>wealth_segment</th>\n",
       "      <th>deceased_indicator</th>\n",
       "      <th>owns_car</th>\n",
       "      <th>...</th>\n",
       "      <th>state</th>\n",
       "      <th>country</th>\n",
       "      <th>property_valuation</th>\n",
       "      <th>Unnamed: 16</th>\n",
       "      <th>Unnamed: 17</th>\n",
       "      <th>Unnamed: 18</th>\n",
       "      <th>Unnamed: 19</th>\n",
       "      <th>Unnamed: 20</th>\n",
       "      <th>Rank</th>\n",
       "      <th>Value</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Chickie</td>\n",
       "      <td>Brister</td>\n",
       "      <td>Male</td>\n",
       "      <td>86</td>\n",
       "      <td>1957-07-12</td>\n",
       "      <td>General Manager</td>\n",
       "      <td>Manufacturing</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>...</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>6</td>\n",
       "      <td>0.81</td>\n",
       "      <td>1.0125</td>\n",
       "      <td>1.265625</td>\n",
       "      <td>1.075781</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>1.718750</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Morly</td>\n",
       "      <td>Genery</td>\n",
       "      <td>Male</td>\n",
       "      <td>69</td>\n",
       "      <td>1970-03-22</td>\n",
       "      <td>Structural Engineer</td>\n",
       "      <td>Property</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>...</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>11</td>\n",
       "      <td>0.75</td>\n",
       "      <td>0.7500</td>\n",
       "      <td>0.937500</td>\n",
       "      <td>0.796875</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>1.718750</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Ardelis</td>\n",
       "      <td>Forrester</td>\n",
       "      <td>Female</td>\n",
       "      <td>10</td>\n",
       "      <td>1974-08-28</td>\n",
       "      <td>Senior Cost Accountant</td>\n",
       "      <td>Financial Services</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>...</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>5</td>\n",
       "      <td>0.71</td>\n",
       "      <td>0.7100</td>\n",
       "      <td>0.710000</td>\n",
       "      <td>0.710000</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>1.718750</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Lucine</td>\n",
       "      <td>Stutt</td>\n",
       "      <td>Female</td>\n",
       "      <td>64</td>\n",
       "      <td>1979-01-28</td>\n",
       "      <td>Account Representative III</td>\n",
       "      <td>Manufacturing</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>...</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>1</td>\n",
       "      <td>0.50</td>\n",
       "      <td>0.6250</td>\n",
       "      <td>0.625000</td>\n",
       "      <td>0.625000</td>\n",
       "      <td>4</td>\n",
       "      <td>4</td>\n",
       "      <td>1.703125</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Melinda</td>\n",
       "      <td>Hadlee</td>\n",
       "      <td>Female</td>\n",
       "      <td>34</td>\n",
       "      <td>1965-09-21</td>\n",
       "      <td>Financial Analyst</td>\n",
       "      <td>Financial Services</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>...</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>0.99</td>\n",
       "      <td>0.9900</td>\n",
       "      <td>1.237500</td>\n",
       "      <td>1.237500</td>\n",
       "      <td>4</td>\n",
       "      <td>4</td>\n",
       "      <td>1.703125</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>5 rows × 23 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "  first_name  last_name  gender  past_3_years_bike_related_purchases  \\\n",
       "0    Chickie    Brister    Male                                   86   \n",
       "1      Morly     Genery    Male                                   69   \n",
       "2    Ardelis  Forrester  Female                                   10   \n",
       "3     Lucine      Stutt  Female                                   64   \n",
       "4    Melinda     Hadlee  Female                                   34   \n",
       "\n",
       "         DOB                   job_title job_industry_category  \\\n",
       "0 1957-07-12             General Manager         Manufacturing   \n",
       "1 1970-03-22         Structural Engineer              Property   \n",
       "2 1974-08-28      Senior Cost Accountant    Financial Services   \n",
       "3 1979-01-28  Account Representative III         Manufacturing   \n",
       "4 1965-09-21           Financial Analyst    Financial Services   \n",
       "\n",
       "      wealth_segment deceased_indicator owns_car  ...  state    country  \\\n",
       "0      Mass Customer                  N      Yes  ...    QLD  Australia   \n",
       "1      Mass Customer                  N       No  ...    NSW  Australia   \n",
       "2  Affluent Customer                  N       No  ...    VIC  Australia   \n",
       "3  Affluent Customer                  N      Yes  ...    QLD  Australia   \n",
       "4  Affluent Customer                  N       No  ...    NSW  Australia   \n",
       "\n",
       "   property_valuation Unnamed: 16 Unnamed: 17  Unnamed: 18  Unnamed: 19  \\\n",
       "0                   6        0.81      1.0125     1.265625     1.075781   \n",
       "1                  11        0.75      0.7500     0.937500     0.796875   \n",
       "2                   5        0.71      0.7100     0.710000     0.710000   \n",
       "3                   1        0.50      0.6250     0.625000     0.625000   \n",
       "4                   9        0.99      0.9900     1.237500     1.237500   \n",
       "\n",
       "   Unnamed: 20  Rank     Value  \n",
       "0            1     1  1.718750  \n",
       "1            1     1  1.718750  \n",
       "2            1     1  1.718750  \n",
       "3            4     4  1.703125  \n",
       "4            4     4  1.703125  \n",
       "\n",
       "[5 rows x 23 columns]"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Checking first 5 records from New Customer Data\n",
    "\n",
    "new_cust.head(5)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'pandas.core.frame.DataFrame'>\n",
      "RangeIndex: 1000 entries, 0 to 999\n",
      "Data columns (total 23 columns):\n",
      "first_name                             1000 non-null object\n",
      "last_name                              971 non-null object\n",
      "gender                                 1000 non-null object\n",
      "past_3_years_bike_related_purchases    1000 non-null int64\n",
      "DOB                                    983 non-null datetime64[ns]\n",
      "job_title                              894 non-null object\n",
      "job_industry_category                  835 non-null object\n",
      "wealth_segment                         1000 non-null object\n",
      "deceased_indicator                     1000 non-null object\n",
      "owns_car                               1000 non-null object\n",
      "tenure                                 1000 non-null int64\n",
      "address                                1000 non-null object\n",
      "postcode                               1000 non-null int64\n",
      "state                                  1000 non-null object\n",
      "country                                1000 non-null object\n",
      "property_valuation                     1000 non-null int64\n",
      "Unnamed: 16                            1000 non-null float64\n",
      "Unnamed: 17                            1000 non-null float64\n",
      "Unnamed: 18                            1000 non-null float64\n",
      "Unnamed: 19                            1000 non-null float64\n",
      "Unnamed: 20                            1000 non-null int64\n",
      "Rank                                   1000 non-null int64\n",
      "Value                                  1000 non-null float64\n",
      "dtypes: datetime64[ns](1), float64(5), int64(6), object(11)\n",
      "memory usage: 179.8+ KB\n"
     ]
    }
   ],
   "source": [
    "new_cust.info()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<b>The data-types of the feature columns are fine. However 'Unnamed: 16','Unnamed: 17','Unnamed: 18','Unnamed: 19','Unnamed: 20' are irrelevent column. Hence it should be dropped.</b>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Total Records"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total records (rows) in the dataset : 1000\n",
      "Total columns (features) in the dataset : 23\n"
     ]
    }
   ],
   "source": [
    "print(\"Total records (rows) in the dataset : {}\".format(new_cust.shape[0]))\n",
    "print(\"Total columns (features) in the dataset : {}\".format(new_cust.shape[1]))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Numeric Columns and Non-Numeric Columns"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The numeric columns are :\n",
      "['past_3_years_bike_related_purchases' 'tenure' 'postcode'\n",
      " 'property_valuation' 'Unnamed: 16' 'Unnamed: 17' 'Unnamed: 18'\n",
      " 'Unnamed: 19' 'Unnamed: 20' 'Rank' 'Value']\n",
      "The non-numeric columns are :\n",
      "['first_name' 'last_name' 'gender' 'DOB' 'job_title'\n",
      " 'job_industry_category' 'wealth_segment' 'deceased_indicator' 'owns_car'\n",
      " 'address' 'state' 'country']\n"
     ]
    }
   ],
   "source": [
    "# select numeric columns\n",
    "df_numeric = new_cust.select_dtypes(include=[np.number])\n",
    "numeric_cols = df_numeric.columns.values\n",
    "print(\"The numeric columns are :\")\n",
    "print(numeric_cols)\n",
    "\n",
    "\n",
    "# select non-numeric columns\n",
    "df_non_numeric = new_cust.select_dtypes(exclude=[np.number])\n",
    "non_numeric_cols = df_non_numeric.columns.values\n",
    "print(\"The non-numeric columns are :\")\n",
    "print(non_numeric_cols)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 1. Dropping Irrelevent Columns"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<b>'Unnamed: 16','Unnamed: 17','Unnamed: 18','Unnamed: 19','Unnamed: 20' are irrelevent column. Hence it should be dropped.<b>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "new_cust.drop(labels=['Unnamed: 16','Unnamed: 17','Unnamed: 18','Unnamed: 19','Unnamed: 20'], axis=1 , inplace=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2. Missing Values Check"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Checking for the presence of any missing values in the dataset. If missing values are present for a particular feature then depending upon the situation the feature may be either dropped (cases when a major amount of data is missing) or an appropiate value will be imputed in the feature column with missing values."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "first_name                               0\n",
       "last_name                               29\n",
       "gender                                   0\n",
       "past_3_years_bike_related_purchases      0\n",
       "DOB                                     17\n",
       "job_title                              106\n",
       "job_industry_category                  165\n",
       "wealth_segment                           0\n",
       "deceased_indicator                       0\n",
       "owns_car                                 0\n",
       "tenure                                   0\n",
       "address                                  0\n",
       "postcode                                 0\n",
       "state                                    0\n",
       "country                                  0\n",
       "property_valuation                       0\n",
       "Rank                                     0\n",
       "Value                                    0\n",
       "dtype: int64"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Total number of missing values\n",
    "new_cust.isnull().sum()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "first_name                              0.0\n",
       "last_name                               2.9\n",
       "gender                                  0.0\n",
       "past_3_years_bike_related_purchases     0.0\n",
       "DOB                                     1.7\n",
       "job_title                              10.6\n",
       "job_industry_category                  16.5\n",
       "wealth_segment                          0.0\n",
       "deceased_indicator                      0.0\n",
       "owns_car                                0.0\n",
       "tenure                                  0.0\n",
       "address                                 0.0\n",
       "postcode                                0.0\n",
       "state                                   0.0\n",
       "country                                 0.0\n",
       "property_valuation                      0.0\n",
       "Rank                                    0.0\n",
       "Value                                   0.0\n",
       "dtype: float64"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Percentage of missing values\n",
    "new_cust.isnull().mean()*100"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2.1 Last Name"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<b>Since All customers have a First name, all the customers are identifiable. Hence it is okay for to not have a last name. Filling null last names with \"None\"</b>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "first_name    0\n",
       "dtype: int64"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_cust[new_cust['last_name'].isnull()][['first_name']].isnull().sum()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>first_name</th>\n",
       "      <th>last_name</th>\n",
       "      <th>gender</th>\n",
       "      <th>past_3_years_bike_related_purchases</th>\n",
       "      <th>DOB</th>\n",
       "      <th>job_title</th>\n",
       "      <th>job_industry_category</th>\n",
       "      <th>wealth_segment</th>\n",
       "      <th>deceased_indicator</th>\n",
       "      <th>owns_car</th>\n",
       "      <th>tenure</th>\n",
       "      <th>address</th>\n",
       "      <th>postcode</th>\n",
       "      <th>state</th>\n",
       "      <th>country</th>\n",
       "      <th>property_valuation</th>\n",
       "      <th>Rank</th>\n",
       "      <th>Value</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>12</th>\n",
       "      <td>Olag</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Male</td>\n",
       "      <td>60</td>\n",
       "      <td>1990-05-13</td>\n",
       "      <td>Human Resources Manager</td>\n",
       "      <td>Telecommunications</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>9</td>\n",
       "      <td>0484 North Avenue</td>\n",
       "      <td>2032</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>11</td>\n",
       "      <td>13</td>\n",
       "      <td>1.609375</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>58</th>\n",
       "      <td>Whittaker</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Male</td>\n",
       "      <td>64</td>\n",
       "      <td>1966-07-29</td>\n",
       "      <td>Media Manager III</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>8</td>\n",
       "      <td>683 Florence Way</td>\n",
       "      <td>3156</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>5</td>\n",
       "      <td>57</td>\n",
       "      <td>1.375000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>87</th>\n",
       "      <td>Kahaleel</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Male</td>\n",
       "      <td>5</td>\n",
       "      <td>1942-11-01</td>\n",
       "      <td>GIS Technical Architect</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>13</td>\n",
       "      <td>12 Arapahoe Park</td>\n",
       "      <td>2035</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>12</td>\n",
       "      <td>88</td>\n",
       "      <td>1.314844</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>155</th>\n",
       "      <td>Bill</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Female</td>\n",
       "      <td>74</td>\n",
       "      <td>1963-04-24</td>\n",
       "      <td>Human Resources Assistant II</td>\n",
       "      <td>Property</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>19</td>\n",
       "      <td>6704 Pine View Lane</td>\n",
       "      <td>2170</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>155</td>\n",
       "      <td>1.200000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>202</th>\n",
       "      <td>Glyn</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Male</td>\n",
       "      <td>47</td>\n",
       "      <td>1945-02-13</td>\n",
       "      <td>General Manager</td>\n",
       "      <td>Manufacturing</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>21</td>\n",
       "      <td>67 Bluejay Plaza</td>\n",
       "      <td>2300</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>202</td>\n",
       "      <td>1.140625</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>326</th>\n",
       "      <td>Haleigh</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Female</td>\n",
       "      <td>17</td>\n",
       "      <td>1952-05-19</td>\n",
       "      <td>Senior Sales Associate</td>\n",
       "      <td>Financial Services</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>18</td>\n",
       "      <td>49 Jana Point</td>\n",
       "      <td>4503</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>4</td>\n",
       "      <td>326</td>\n",
       "      <td>1.009375</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>330</th>\n",
       "      <td>Alon</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Male</td>\n",
       "      <td>17</td>\n",
       "      <td>1999-06-23</td>\n",
       "      <td>Accountant IV</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>9</td>\n",
       "      <td>770 Crest Line Parkway</td>\n",
       "      <td>4218</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>3</td>\n",
       "      <td>329</td>\n",
       "      <td>1.000000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>357</th>\n",
       "      <td>Otis</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Male</td>\n",
       "      <td>59</td>\n",
       "      <td>1971-01-11</td>\n",
       "      <td>Electrical Engineer</td>\n",
       "      <td>Manufacturing</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>12</td>\n",
       "      <td>04 Oakridge Plaza</td>\n",
       "      <td>2075</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>11</td>\n",
       "      <td>358</td>\n",
       "      <td>0.980000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>419</th>\n",
       "      <td>Sherill</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Female</td>\n",
       "      <td>33</td>\n",
       "      <td>1991-12-18</td>\n",
       "      <td>Information Systems Manager</td>\n",
       "      <td>Financial Services</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>3</td>\n",
       "      <td>53 Moulton Avenue</td>\n",
       "      <td>2880</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>1</td>\n",
       "      <td>420</td>\n",
       "      <td>0.913750</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>442</th>\n",
       "      <td>Theresina</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Female</td>\n",
       "      <td>30</td>\n",
       "      <td>1987-03-01</td>\n",
       "      <td>General Manager</td>\n",
       "      <td>Argiculture</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>14</td>\n",
       "      <td>253 Katie Junction</td>\n",
       "      <td>2650</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>2</td>\n",
       "      <td>441</td>\n",
       "      <td>0.901000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>455</th>\n",
       "      <td>Laurena</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Female</td>\n",
       "      <td>21</td>\n",
       "      <td>1961-07-31</td>\n",
       "      <td>VP Sales</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>10</td>\n",
       "      <td>7 Messerschmidt Crossing</td>\n",
       "      <td>3810</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>6</td>\n",
       "      <td>455</td>\n",
       "      <td>0.892500</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>474</th>\n",
       "      <td>Laurie</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Male</td>\n",
       "      <td>31</td>\n",
       "      <td>1979-07-28</td>\n",
       "      <td>Assistant Media Planner</td>\n",
       "      <td>Entertainment</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>15</td>\n",
       "      <td>94 Barby Lane</td>\n",
       "      <td>2210</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>10</td>\n",
       "      <td>475</td>\n",
       "      <td>0.881875</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>477</th>\n",
       "      <td>Blondie</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Female</td>\n",
       "      <td>43</td>\n",
       "      <td>1995-10-03</td>\n",
       "      <td>Actuary</td>\n",
       "      <td>Financial Services</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>11</td>\n",
       "      <td>780 Norway Maple Hill</td>\n",
       "      <td>2565</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>478</td>\n",
       "      <td>0.880000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>484</th>\n",
       "      <td>Georgi</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Male</td>\n",
       "      <td>29</td>\n",
       "      <td>1970-01-14</td>\n",
       "      <td>Assistant Manager</td>\n",
       "      <td>Manufacturing</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>11</td>\n",
       "      <td>59 Garrison Terrace</td>\n",
       "      <td>3215</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>4</td>\n",
       "      <td>485</td>\n",
       "      <td>0.875500</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>487</th>\n",
       "      <td>Lucien</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Male</td>\n",
       "      <td>83</td>\n",
       "      <td>1966-09-14</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Financial Services</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>19</td>\n",
       "      <td>777 Fairfield Court</td>\n",
       "      <td>4305</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>3</td>\n",
       "      <td>486</td>\n",
       "      <td>0.875000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>494</th>\n",
       "      <td>Park</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Male</td>\n",
       "      <td>39</td>\n",
       "      <td>1977-11-08</td>\n",
       "      <td>Nurse Practicioner</td>\n",
       "      <td>IT</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>14</td>\n",
       "      <td>07 Boyd Drive</td>\n",
       "      <td>4350</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>7</td>\n",
       "      <td>495</td>\n",
       "      <td>0.863281</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>502</th>\n",
       "      <td>Cariotta</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Female</td>\n",
       "      <td>10</td>\n",
       "      <td>1974-08-19</td>\n",
       "      <td>Assistant Media Planner</td>\n",
       "      <td>Entertainment</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>17</td>\n",
       "      <td>2336 Continental Point</td>\n",
       "      <td>2527</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>7</td>\n",
       "      <td>502</td>\n",
       "      <td>0.858500</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>531</th>\n",
       "      <td>Amabel</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Female</td>\n",
       "      <td>71</td>\n",
       "      <td>1981-09-14</td>\n",
       "      <td>Chief Design Engineer</td>\n",
       "      <td>Financial Services</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>9</td>\n",
       "      <td>3128 Mallory Pass</td>\n",
       "      <td>2144</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>6</td>\n",
       "      <td>530</td>\n",
       "      <td>0.828750</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>586</th>\n",
       "      <td>Raynard</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Male</td>\n",
       "      <td>32</td>\n",
       "      <td>1996-04-13</td>\n",
       "      <td>Statistician III</td>\n",
       "      <td>Health</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>14</td>\n",
       "      <td>20187 Loomis Court</td>\n",
       "      <td>4132</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>6</td>\n",
       "      <td>587</td>\n",
       "      <td>0.786250</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>616</th>\n",
       "      <td>Mariette</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Female</td>\n",
       "      <td>47</td>\n",
       "      <td>1956-07-05</td>\n",
       "      <td>Programmer II</td>\n",
       "      <td>Property</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>17</td>\n",
       "      <td>770 Farmco Point</td>\n",
       "      <td>2049</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>11</td>\n",
       "      <td>617</td>\n",
       "      <td>0.754375</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>755</th>\n",
       "      <td>Darb</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Male</td>\n",
       "      <td>80</td>\n",
       "      <td>1969-06-04</td>\n",
       "      <td>Food Chemist</td>\n",
       "      <td>Health</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>10</td>\n",
       "      <td>780 Bonner Pass</td>\n",
       "      <td>4034</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>5</td>\n",
       "      <td>755</td>\n",
       "      <td>0.640000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>767</th>\n",
       "      <td>Simonette</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Female</td>\n",
       "      <td>4</td>\n",
       "      <td>1990-04-06</td>\n",
       "      <td>VP Product Management</td>\n",
       "      <td>Manufacturing</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>6</td>\n",
       "      <td>66 Hoffman Court</td>\n",
       "      <td>2232</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>760</td>\n",
       "      <td>0.637500</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>779</th>\n",
       "      <td>Ashleigh</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Female</td>\n",
       "      <td>46</td>\n",
       "      <td>1996-04-05</td>\n",
       "      <td>Budget/Accounting Analyst III</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>6</td>\n",
       "      <td>922 Utah Avenue</td>\n",
       "      <td>3204</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>12</td>\n",
       "      <td>780</td>\n",
       "      <td>0.624219</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>786</th>\n",
       "      <td>Fey</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Female</td>\n",
       "      <td>48</td>\n",
       "      <td>1957-09-04</td>\n",
       "      <td>Research Nurse</td>\n",
       "      <td>Health</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>11</td>\n",
       "      <td>77 Paget Park</td>\n",
       "      <td>3147</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>12</td>\n",
       "      <td>786</td>\n",
       "      <td>0.616250</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>813</th>\n",
       "      <td>Dmitri</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Male</td>\n",
       "      <td>72</td>\n",
       "      <td>1991-02-06</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Financial Services</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>15</td>\n",
       "      <td>4 Mallory Pass</td>\n",
       "      <td>3690</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>4</td>\n",
       "      <td>810</td>\n",
       "      <td>0.587500</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>839</th>\n",
       "      <td>Ginger</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Male</td>\n",
       "      <td>94</td>\n",
       "      <td>1939-02-19</td>\n",
       "      <td>Human Resources Manager</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>11</td>\n",
       "      <td>160 Fremont Point</td>\n",
       "      <td>2259</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>840</td>\n",
       "      <td>0.571094</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>849</th>\n",
       "      <td>Leeland</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Male</td>\n",
       "      <td>66</td>\n",
       "      <td>1957-01-24</td>\n",
       "      <td>VP Quality Control</td>\n",
       "      <td>Telecommunications</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>12</td>\n",
       "      <td>9 Stephen Center</td>\n",
       "      <td>4122</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>4</td>\n",
       "      <td>845</td>\n",
       "      <td>0.563125</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>888</th>\n",
       "      <td>Antoinette</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Female</td>\n",
       "      <td>72</td>\n",
       "      <td>1980-07-28</td>\n",
       "      <td>Structural Analysis Engineer</td>\n",
       "      <td>Financial Services</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>5</td>\n",
       "      <td>9 Derek Alley</td>\n",
       "      <td>3058</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>888</td>\n",
       "      <td>0.525000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>952</th>\n",
       "      <td>Candy</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Female</td>\n",
       "      <td>23</td>\n",
       "      <td>1977-12-08</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Financial Services</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>6</td>\n",
       "      <td>59252 Maryland Drive</td>\n",
       "      <td>3500</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>3</td>\n",
       "      <td>951</td>\n",
       "      <td>0.450500</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "     first_name last_name  gender  past_3_years_bike_related_purchases  \\\n",
       "12         Olag       NaN    Male                                   60   \n",
       "58    Whittaker       NaN    Male                                   64   \n",
       "87     Kahaleel       NaN    Male                                    5   \n",
       "155        Bill       NaN  Female                                   74   \n",
       "202        Glyn       NaN    Male                                   47   \n",
       "326     Haleigh       NaN  Female                                   17   \n",
       "330        Alon       NaN    Male                                   17   \n",
       "357        Otis       NaN    Male                                   59   \n",
       "419     Sherill       NaN  Female                                   33   \n",
       "442   Theresina       NaN  Female                                   30   \n",
       "455     Laurena       NaN  Female                                   21   \n",
       "474      Laurie       NaN    Male                                   31   \n",
       "477     Blondie       NaN  Female                                   43   \n",
       "484      Georgi       NaN    Male                                   29   \n",
       "487      Lucien       NaN    Male                                   83   \n",
       "494        Park       NaN    Male                                   39   \n",
       "502    Cariotta       NaN  Female                                   10   \n",
       "531      Amabel       NaN  Female                                   71   \n",
       "586     Raynard       NaN    Male                                   32   \n",
       "616    Mariette       NaN  Female                                   47   \n",
       "755        Darb       NaN    Male                                   80   \n",
       "767   Simonette       NaN  Female                                    4   \n",
       "779    Ashleigh       NaN  Female                                   46   \n",
       "786         Fey       NaN  Female                                   48   \n",
       "813      Dmitri       NaN    Male                                   72   \n",
       "839      Ginger       NaN    Male                                   94   \n",
       "849     Leeland       NaN    Male                                   66   \n",
       "888  Antoinette       NaN  Female                                   72   \n",
       "952       Candy       NaN  Female                                   23   \n",
       "\n",
       "           DOB                      job_title job_industry_category  \\\n",
       "12  1990-05-13        Human Resources Manager    Telecommunications   \n",
       "58  1966-07-29              Media Manager III                   NaN   \n",
       "87  1942-11-01        GIS Technical Architect                   NaN   \n",
       "155 1963-04-24   Human Resources Assistant II              Property   \n",
       "202 1945-02-13                General Manager         Manufacturing   \n",
       "326 1952-05-19         Senior Sales Associate    Financial Services   \n",
       "330 1999-06-23                  Accountant IV                   NaN   \n",
       "357 1971-01-11            Electrical Engineer         Manufacturing   \n",
       "419 1991-12-18    Information Systems Manager    Financial Services   \n",
       "442 1987-03-01                General Manager           Argiculture   \n",
       "455 1961-07-31                       VP Sales                   NaN   \n",
       "474 1979-07-28        Assistant Media Planner         Entertainment   \n",
       "477 1995-10-03                        Actuary    Financial Services   \n",
       "484 1970-01-14              Assistant Manager         Manufacturing   \n",
       "487 1966-09-14                            NaN    Financial Services   \n",
       "494 1977-11-08             Nurse Practicioner                    IT   \n",
       "502 1974-08-19        Assistant Media Planner         Entertainment   \n",
       "531 1981-09-14          Chief Design Engineer    Financial Services   \n",
       "586 1996-04-13               Statistician III                Health   \n",
       "616 1956-07-05                  Programmer II              Property   \n",
       "755 1969-06-04                   Food Chemist                Health   \n",
       "767 1990-04-06          VP Product Management         Manufacturing   \n",
       "779 1996-04-05  Budget/Accounting Analyst III                   NaN   \n",
       "786 1957-09-04                 Research Nurse                Health   \n",
       "813 1991-02-06                            NaN    Financial Services   \n",
       "839 1939-02-19        Human Resources Manager                   NaN   \n",
       "849 1957-01-24             VP Quality Control    Telecommunications   \n",
       "888 1980-07-28   Structural Analysis Engineer    Financial Services   \n",
       "952 1977-12-08                            NaN    Financial Services   \n",
       "\n",
       "        wealth_segment deceased_indicator owns_car  tenure  \\\n",
       "12       Mass Customer                  N       No       9   \n",
       "58       Mass Customer                  N      Yes       8   \n",
       "87      High Net Worth                  N       No      13   \n",
       "155      Mass Customer                  N      Yes      19   \n",
       "202  Affluent Customer                  N      Yes      21   \n",
       "326      Mass Customer                  N      Yes      18   \n",
       "330  Affluent Customer                  N       No       9   \n",
       "357  Affluent Customer                  N       No      12   \n",
       "419      Mass Customer                  N       No       3   \n",
       "442      Mass Customer                  N      Yes      14   \n",
       "455     High Net Worth                  N       No      10   \n",
       "474      Mass Customer                  N      Yes      15   \n",
       "477     High Net Worth                  N       No      11   \n",
       "484     High Net Worth                  N       No      11   \n",
       "487     High Net Worth                  N      Yes      19   \n",
       "494  Affluent Customer                  N       No      14   \n",
       "502  Affluent Customer                  N      Yes      17   \n",
       "531      Mass Customer                  N      Yes       9   \n",
       "586  Affluent Customer                  N       No      14   \n",
       "616  Affluent Customer                  N      Yes      17   \n",
       "755  Affluent Customer                  N       No      10   \n",
       "767  Affluent Customer                  N      Yes       6   \n",
       "779      Mass Customer                  N      Yes       6   \n",
       "786     High Net Worth                  N      Yes      11   \n",
       "813     High Net Worth                  N      Yes      15   \n",
       "839      Mass Customer                  N       No      11   \n",
       "849     High Net Worth                  N       No      12   \n",
       "888  Affluent Customer                  N       No       5   \n",
       "952      Mass Customer                  N       No       6   \n",
       "\n",
       "                      address  postcode state    country  property_valuation  \\\n",
       "12          0484 North Avenue      2032   NSW  Australia                  11   \n",
       "58           683 Florence Way      3156   VIC  Australia                   5   \n",
       "87           12 Arapahoe Park      2035   NSW  Australia                  12   \n",
       "155       6704 Pine View Lane      2170   NSW  Australia                   9   \n",
       "202          67 Bluejay Plaza      2300   NSW  Australia                   9   \n",
       "326             49 Jana Point      4503   QLD  Australia                   4   \n",
       "330    770 Crest Line Parkway      4218   QLD  Australia                   3   \n",
       "357         04 Oakridge Plaza      2075   NSW  Australia                  11   \n",
       "419         53 Moulton Avenue      2880   NSW  Australia                   1   \n",
       "442        253 Katie Junction      2650   NSW  Australia                   2   \n",
       "455  7 Messerschmidt Crossing      3810   VIC  Australia                   6   \n",
       "474             94 Barby Lane      2210   NSW  Australia                  10   \n",
       "477     780 Norway Maple Hill      2565   NSW  Australia                   8   \n",
       "484       59 Garrison Terrace      3215   VIC  Australia                   4   \n",
       "487       777 Fairfield Court      4305   QLD  Australia                   3   \n",
       "494             07 Boyd Drive      4350   QLD  Australia                   7   \n",
       "502    2336 Continental Point      2527   NSW  Australia                   7   \n",
       "531         3128 Mallory Pass      2144   NSW  Australia                   6   \n",
       "586        20187 Loomis Court      4132   QLD  Australia                   6   \n",
       "616          770 Farmco Point      2049   NSW  Australia                  11   \n",
       "755           780 Bonner Pass      4034   QLD  Australia                   5   \n",
       "767          66 Hoffman Court      2232   NSW  Australia                   8   \n",
       "779           922 Utah Avenue      3204   VIC  Australia                  12   \n",
       "786             77 Paget Park      3147   VIC  Australia                  12   \n",
       "813            4 Mallory Pass      3690   VIC  Australia                   4   \n",
       "839         160 Fremont Point      2259   NSW  Australia                   8   \n",
       "849          9 Stephen Center      4122   QLD  Australia                   4   \n",
       "888             9 Derek Alley      3058   VIC  Australia                   9   \n",
       "952      59252 Maryland Drive      3500   VIC  Australia                   3   \n",
       "\n",
       "     Rank     Value  \n",
       "12     13  1.609375  \n",
       "58     57  1.375000  \n",
       "87     88  1.314844  \n",
       "155   155  1.200000  \n",
       "202   202  1.140625  \n",
       "326   326  1.009375  \n",
       "330   329  1.000000  \n",
       "357   358  0.980000  \n",
       "419   420  0.913750  \n",
       "442   441  0.901000  \n",
       "455   455  0.892500  \n",
       "474   475  0.881875  \n",
       "477   478  0.880000  \n",
       "484   485  0.875500  \n",
       "487   486  0.875000  \n",
       "494   495  0.863281  \n",
       "502   502  0.858500  \n",
       "531   530  0.828750  \n",
       "586   587  0.786250  \n",
       "616   617  0.754375  \n",
       "755   755  0.640000  \n",
       "767   760  0.637500  \n",
       "779   780  0.624219  \n",
       "786   786  0.616250  \n",
       "813   810  0.587500  \n",
       "839   840  0.571094  \n",
       "849   845  0.563125  \n",
       "888   888  0.525000  \n",
       "952   951  0.450500  "
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_cust[new_cust['last_name'].isnull()]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "new_cust['last_name'].fillna('None',axis=0, inplace=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_cust['last_name'].isnull().sum()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Currently there are no missing values for Last Name column."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2.2 Date of Birth"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>first_name</th>\n",
       "      <th>last_name</th>\n",
       "      <th>gender</th>\n",
       "      <th>past_3_years_bike_related_purchases</th>\n",
       "      <th>DOB</th>\n",
       "      <th>job_title</th>\n",
       "      <th>job_industry_category</th>\n",
       "      <th>wealth_segment</th>\n",
       "      <th>deceased_indicator</th>\n",
       "      <th>owns_car</th>\n",
       "      <th>tenure</th>\n",
       "      <th>address</th>\n",
       "      <th>postcode</th>\n",
       "      <th>state</th>\n",
       "      <th>country</th>\n",
       "      <th>property_valuation</th>\n",
       "      <th>Rank</th>\n",
       "      <th>Value</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>59</th>\n",
       "      <td>Normy</td>\n",
       "      <td>Goodinge</td>\n",
       "      <td>U</td>\n",
       "      <td>5</td>\n",
       "      <td>NaT</td>\n",
       "      <td>Associate Professor</td>\n",
       "      <td>IT</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>4</td>\n",
       "      <td>7232 Fulton Parkway</td>\n",
       "      <td>3810</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>5</td>\n",
       "      <td>57</td>\n",
       "      <td>1.375000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>226</th>\n",
       "      <td>Hatti</td>\n",
       "      <td>Carletti</td>\n",
       "      <td>U</td>\n",
       "      <td>35</td>\n",
       "      <td>NaT</td>\n",
       "      <td>Legal Assistant</td>\n",
       "      <td>IT</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>11</td>\n",
       "      <td>6 Iowa Center</td>\n",
       "      <td>2519</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>226</td>\n",
       "      <td>1.112500</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>324</th>\n",
       "      <td>Rozamond</td>\n",
       "      <td>Turtle</td>\n",
       "      <td>U</td>\n",
       "      <td>69</td>\n",
       "      <td>NaT</td>\n",
       "      <td>Legal Assistant</td>\n",
       "      <td>IT</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>3</td>\n",
       "      <td>57025 New Castle Street</td>\n",
       "      <td>3850</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>3</td>\n",
       "      <td>324</td>\n",
       "      <td>1.010000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>358</th>\n",
       "      <td>Tamas</td>\n",
       "      <td>Swatman</td>\n",
       "      <td>U</td>\n",
       "      <td>65</td>\n",
       "      <td>NaT</td>\n",
       "      <td>Assistant Media Planner</td>\n",
       "      <td>Entertainment</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>5</td>\n",
       "      <td>78 Clarendon Drive</td>\n",
       "      <td>4551</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>358</td>\n",
       "      <td>0.980000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>360</th>\n",
       "      <td>Tracy</td>\n",
       "      <td>Andrejevic</td>\n",
       "      <td>U</td>\n",
       "      <td>71</td>\n",
       "      <td>NaT</td>\n",
       "      <td>Programmer II</td>\n",
       "      <td>IT</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>11</td>\n",
       "      <td>5675 Burning Wood Trail</td>\n",
       "      <td>3030</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>7</td>\n",
       "      <td>361</td>\n",
       "      <td>0.977500</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>374</th>\n",
       "      <td>Agneta</td>\n",
       "      <td>McAmish</td>\n",
       "      <td>U</td>\n",
       "      <td>66</td>\n",
       "      <td>NaT</td>\n",
       "      <td>Structural Analysis Engineer</td>\n",
       "      <td>IT</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>15</td>\n",
       "      <td>5773 Acker Way</td>\n",
       "      <td>4207</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>6</td>\n",
       "      <td>375</td>\n",
       "      <td>0.960000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>434</th>\n",
       "      <td>Gregg</td>\n",
       "      <td>Aimeric</td>\n",
       "      <td>U</td>\n",
       "      <td>52</td>\n",
       "      <td>NaT</td>\n",
       "      <td>Internal Auditor</td>\n",
       "      <td>IT</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>7</td>\n",
       "      <td>72423 Surrey Street</td>\n",
       "      <td>3753</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>5</td>\n",
       "      <td>433</td>\n",
       "      <td>0.906250</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>439</th>\n",
       "      <td>Johna</td>\n",
       "      <td>Bunker</td>\n",
       "      <td>U</td>\n",
       "      <td>93</td>\n",
       "      <td>NaT</td>\n",
       "      <td>Tax Accountant</td>\n",
       "      <td>IT</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>14</td>\n",
       "      <td>3686 Waubesa Way</td>\n",
       "      <td>3065</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>6</td>\n",
       "      <td>436</td>\n",
       "      <td>0.903125</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>574</th>\n",
       "      <td>Harlene</td>\n",
       "      <td>Nono</td>\n",
       "      <td>U</td>\n",
       "      <td>69</td>\n",
       "      <td>NaT</td>\n",
       "      <td>Human Resources Manager</td>\n",
       "      <td>IT</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>12</td>\n",
       "      <td>0307 Namekagon Crossing</td>\n",
       "      <td>2170</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>7</td>\n",
       "      <td>575</td>\n",
       "      <td>0.796875</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>598</th>\n",
       "      <td>Gerianne</td>\n",
       "      <td>Kaysor</td>\n",
       "      <td>U</td>\n",
       "      <td>15</td>\n",
       "      <td>NaT</td>\n",
       "      <td>Project Manager</td>\n",
       "      <td>IT</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>5</td>\n",
       "      <td>882 Toban Lane</td>\n",
       "      <td>2121</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>11</td>\n",
       "      <td>599</td>\n",
       "      <td>0.775000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>664</th>\n",
       "      <td>Chicky</td>\n",
       "      <td>Sinclar</td>\n",
       "      <td>U</td>\n",
       "      <td>43</td>\n",
       "      <td>NaT</td>\n",
       "      <td>Operator</td>\n",
       "      <td>IT</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>0</td>\n",
       "      <td>5 Red Cloud Place</td>\n",
       "      <td>3222</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>4</td>\n",
       "      <td>662</td>\n",
       "      <td>0.711875</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>751</th>\n",
       "      <td>Adriana</td>\n",
       "      <td>Saundercock</td>\n",
       "      <td>U</td>\n",
       "      <td>20</td>\n",
       "      <td>NaT</td>\n",
       "      <td>Nurse</td>\n",
       "      <td>IT</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>14</td>\n",
       "      <td>82 Gina Junction</td>\n",
       "      <td>3806</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>7</td>\n",
       "      <td>751</td>\n",
       "      <td>0.648125</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>775</th>\n",
       "      <td>Dmitri</td>\n",
       "      <td>Viant</td>\n",
       "      <td>U</td>\n",
       "      <td>62</td>\n",
       "      <td>NaT</td>\n",
       "      <td>Paralegal</td>\n",
       "      <td>Financial Services</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>5</td>\n",
       "      <td>95960 Warner Parkway</td>\n",
       "      <td>3842</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>1</td>\n",
       "      <td>774</td>\n",
       "      <td>0.626875</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>835</th>\n",
       "      <td>Porty</td>\n",
       "      <td>Hansed</td>\n",
       "      <td>U</td>\n",
       "      <td>88</td>\n",
       "      <td>NaT</td>\n",
       "      <td>General Manager</td>\n",
       "      <td>IT</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>13</td>\n",
       "      <td>768 Southridge Drive</td>\n",
       "      <td>2112</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>11</td>\n",
       "      <td>832</td>\n",
       "      <td>0.575000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>883</th>\n",
       "      <td>Shara</td>\n",
       "      <td>Bramhill</td>\n",
       "      <td>U</td>\n",
       "      <td>24</td>\n",
       "      <td>NaT</td>\n",
       "      <td>NaN</td>\n",
       "      <td>IT</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>2</td>\n",
       "      <td>01 Bunker Hill Drive</td>\n",
       "      <td>2230</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>10</td>\n",
       "      <td>883</td>\n",
       "      <td>0.531250</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>904</th>\n",
       "      <td>Roth</td>\n",
       "      <td>Crum</td>\n",
       "      <td>U</td>\n",
       "      <td>0</td>\n",
       "      <td>NaT</td>\n",
       "      <td>Legal Assistant</td>\n",
       "      <td>IT</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>2</td>\n",
       "      <td>276 Anthes Court</td>\n",
       "      <td>2450</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>6</td>\n",
       "      <td>904</td>\n",
       "      <td>0.500000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>984</th>\n",
       "      <td>Pauline</td>\n",
       "      <td>Dallosso</td>\n",
       "      <td>U</td>\n",
       "      <td>82</td>\n",
       "      <td>NaT</td>\n",
       "      <td>Desktop Support Technician</td>\n",
       "      <td>IT</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>0</td>\n",
       "      <td>9594 Badeau Street</td>\n",
       "      <td>2050</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>10</td>\n",
       "      <td>985</td>\n",
       "      <td>0.408000</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    first_name    last_name gender  past_3_years_bike_related_purchases DOB  \\\n",
       "59       Normy     Goodinge      U                                    5 NaT   \n",
       "226      Hatti     Carletti      U                                   35 NaT   \n",
       "324   Rozamond       Turtle      U                                   69 NaT   \n",
       "358      Tamas      Swatman      U                                   65 NaT   \n",
       "360      Tracy   Andrejevic      U                                   71 NaT   \n",
       "374     Agneta      McAmish      U                                   66 NaT   \n",
       "434      Gregg      Aimeric      U                                   52 NaT   \n",
       "439      Johna       Bunker      U                                   93 NaT   \n",
       "574    Harlene         Nono      U                                   69 NaT   \n",
       "598   Gerianne       Kaysor      U                                   15 NaT   \n",
       "664     Chicky      Sinclar      U                                   43 NaT   \n",
       "751    Adriana  Saundercock      U                                   20 NaT   \n",
       "775     Dmitri        Viant      U                                   62 NaT   \n",
       "835      Porty       Hansed      U                                   88 NaT   \n",
       "883      Shara     Bramhill      U                                   24 NaT   \n",
       "904       Roth         Crum      U                                    0 NaT   \n",
       "984    Pauline     Dallosso      U                                   82 NaT   \n",
       "\n",
       "                        job_title job_industry_category     wealth_segment  \\\n",
       "59            Associate Professor                    IT      Mass Customer   \n",
       "226               Legal Assistant                    IT  Affluent Customer   \n",
       "324               Legal Assistant                    IT      Mass Customer   \n",
       "358       Assistant Media Planner         Entertainment  Affluent Customer   \n",
       "360                 Programmer II                    IT      Mass Customer   \n",
       "374  Structural Analysis Engineer                    IT      Mass Customer   \n",
       "434              Internal Auditor                    IT      Mass Customer   \n",
       "439                Tax Accountant                    IT      Mass Customer   \n",
       "574       Human Resources Manager                    IT      Mass Customer   \n",
       "598               Project Manager                    IT  Affluent Customer   \n",
       "664                      Operator                    IT     High Net Worth   \n",
       "751                         Nurse                    IT     High Net Worth   \n",
       "775                     Paralegal    Financial Services  Affluent Customer   \n",
       "835               General Manager                    IT      Mass Customer   \n",
       "883                           NaN                    IT  Affluent Customer   \n",
       "904               Legal Assistant                    IT      Mass Customer   \n",
       "984    Desktop Support Technician                    IT  Affluent Customer   \n",
       "\n",
       "    deceased_indicator owns_car  tenure                  address  postcode  \\\n",
       "59                   N       No       4      7232 Fulton Parkway      3810   \n",
       "226                  N      Yes      11            6 Iowa Center      2519   \n",
       "324                  N      Yes       3  57025 New Castle Street      3850   \n",
       "358                  N       No       5       78 Clarendon Drive      4551   \n",
       "360                  N      Yes      11  5675 Burning Wood Trail      3030   \n",
       "374                  N       No      15           5773 Acker Way      4207   \n",
       "434                  N       No       7      72423 Surrey Street      3753   \n",
       "439                  N      Yes      14         3686 Waubesa Way      3065   \n",
       "574                  N       No      12  0307 Namekagon Crossing      2170   \n",
       "598                  N       No       5           882 Toban Lane      2121   \n",
       "664                  N      Yes       0        5 Red Cloud Place      3222   \n",
       "751                  N      Yes      14         82 Gina Junction      3806   \n",
       "775                  N       No       5     95960 Warner Parkway      3842   \n",
       "835                  N       No      13     768 Southridge Drive      2112   \n",
       "883                  N       No       2     01 Bunker Hill Drive      2230   \n",
       "904                  N       No       2         276 Anthes Court      2450   \n",
       "984                  N      Yes       0       9594 Badeau Street      2050   \n",
       "\n",
       "    state    country  property_valuation  Rank     Value  \n",
       "59    VIC  Australia                   5    57  1.375000  \n",
       "226   NSW  Australia                   9   226  1.112500  \n",
       "324   VIC  Australia                   3   324  1.010000  \n",
       "358   QLD  Australia                   8   358  0.980000  \n",
       "360   VIC  Australia                   7   361  0.977500  \n",
       "374   QLD  Australia                   6   375  0.960000  \n",
       "434   VIC  Australia                   5   433  0.906250  \n",
       "439   VIC  Australia                   6   436  0.903125  \n",
       "574   NSW  Australia                   7   575  0.796875  \n",
       "598   NSW  Australia                  11   599  0.775000  \n",
       "664   VIC  Australia                   4   662  0.711875  \n",
       "751   VIC  Australia                   7   751  0.648125  \n",
       "775   VIC  Australia                   1   774  0.626875  \n",
       "835   NSW  Australia                  11   832  0.575000  \n",
       "883   NSW  Australia                  10   883  0.531250  \n",
       "904   NSW  Australia                   6   904  0.500000  \n",
       "984   NSW  Australia                  10   985  0.408000  "
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_cust[new_cust['DOB'].isnull()]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "2.0"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "round(new_cust['DOB'].isnull().mean()*100)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<b>Less than 5 % of data has null date of birth. we can remove the records where date of birth is null</b>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Int64Index([ 59, 226, 324, 358, 360, 374, 434, 439, 574, 598, 664, 751, 775,\n",
       "            835, 883, 904, 984],\n",
       "           dtype='int64')"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Fetching the index of the records / rows where the DOB is null.\n",
    "\n",
    "dob_index_drop = new_cust[new_cust['DOB'].isnull()].index\n",
    "dob_index_drop"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "new_cust.drop(index=dob_index_drop, inplace=True, axis=0)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_cust['DOB'].isnull().sum()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Currently there are no missing values for DOB."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Creating Age Column for checking further descripency in data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Function to find the age of customers as of today.\n",
    "\n",
    "def age(born):\n",
    "    today = date.today()\n",
    "    \n",
    "    return today.year - born.year - ((today.month, today.day) < (born.month, born.day))\n",
    "\n",
    "new_cust['Age'] = new_cust['DOB'].apply(age)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<b>Descriptive Statistics of Age column</b>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 45,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "count    983.000000\n",
       "mean      49.581892\n",
       "std       17.052487\n",
       "min       19.000000\n",
       "25%       38.000000\n",
       "50%       49.000000\n",
       "75%       63.000000\n",
       "max       82.000000\n",
       "Name: Age, dtype: float64"
      ]
     },
     "execution_count": 45,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_cust['Age'].describe()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.axes._subplots.AxesSubplot at 0x245691adf60>"
      ]
     },
     "execution_count": 43,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAHjCAYAAACn9WeCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAbVElEQVR4nO3da6xlZ3kf8P/MHAIMh8g1Jxgfm8ZEtRooFSZxXatOp8TE7pBYYKnkFRA5o8ZovqRtUiIFUqklnyojtVza0qgjHJhUBPPGmBiRaAJyoCM+lBC7XNK4NEBdY8ZgprUbJiNB7Tn9sJfTYS4+l3322c9Z+/eTtmavtdc6+9l+9u3vd+317llbWwsAAADztXfeBQAAACCcAQAAlCCcAQAAFCCcAQAAFCCcAQAAFCCcAQAAFLC0w/fnvP0AAMCi23OhlTsdznLixImdvsttt7KykpMnT867DGZIj8dPj8dNf8dPj8dPj8dvUXu8urp60dsc1ggAAFCAcAYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAcAYAAFDA0rwLAFh0Z44f2/K+ew8c3MZKAIB5MnIGAABQgHAGAABQgHAGAABQgHAGAABQgHAGAABQgHAGAABQgHAGAABQgHAGAABQgHAGAABQgHAGAABQgHAGAABQgHAGAABQgHAGAABQgHAGAABQgHAGAABQgHAGAABQgHAGAABQgHAGAABQgHAGAABQgHAGAABQgHAGAABQgHAGAABQgHAGAABQgHAGAABQgHAGAABQgHAGAABQwNJGNmqtPZTkO0meSvJk7/3a1tqlST6c5KokDyVpvffHZ1MmAADAuG1m5Owne+/X9N6vHZbfluS+3vvVSe4blgEAANiCaQ5rfF2So8P1o0lunb4cAACAxbShwxqTrCX5RGttLcl/6L0fSXJZ7/3RJOm9P9pae+GFdmytHU5yeNguKysr21D2fC0tLY3icXBxejx+lXp8enl5y/vuL/IYqqnUX2ZDj8dPj8dPj8+30XB2Q+/9xBDAPtla+28bvYMhyB0ZFtdOnjy52RrLWVlZyRgeBxenx+NXqcdnTp3a8r6nizyGair1l9nQ4/HT4/Fb1B6vrq5e9LYNHdbYez8x/PtYko8muS7Jt1prlyfJ8O9jU1cKAACwoNYNZ62157XWnv/09SQ3J/mTJB9LcmjY7FCSe2dVJAAAwNhtZOTssiSfaa19IckfJfm93vuxJHckuam19mdJbhqWAQAA2IJ1f3PWe/9akldcYP3/SvLqWRQFAACwaKY5lT4AAADbRDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoQDgDAAAoYGneBQCweM4cP7blffceOLiNlQBAHUbOAAAAChDOAAAAChDOAAAAChDOAAAAChDOAAAAChDOAAAAChDOAAAAChDOAAAAChDOAAAAChDOAAAAChDOAAAAChDOAAAAChDOAAAAChDOAAAAChDOAAAAChDOAAAAChDOAAAAChDOAAAAChDOAAAAChDOAAAAChDOAAAAChDOAAAAChDOAAAAChDOAAAAChDOAAAAChDOAAAAClja6IattX1J/jjJN3rvt7TWXpLkriSXJnkgyW299+/NpkwAAIBx28zI2S8lefCs5XckeVfv/eokjye5fTsLAwAAWCQbCmettSuT/EyS9w3Le5LcmOTuYZOjSW6dRYEAAACLYKMjZ+9O8qtJzgzLL0jyRO/9yWH5kSRXbHNtAAAAC2Pd35y11m5J8ljv/f7W2quG1XsusOnaRfY/nORwkvTes7KyssVS61haWhrF4+Di9Hj8KvX49PLylvfdX+QxbNasH3Ol/jIbejx+ejx+eny+jZwQ5IYkr22t/XSS5yT5wUxG0i5prS0No2dXJjlxoZ1770eSHBkW106ePDl91XO2srKSMTwOLk6Px69Sj8+cOrXlfU8XeQybNevHXKm/zIYej58ej9+i9nh1dfWit617WGPv/dd671f23q9K8oYkf9h7/7kkn0ry+mGzQ0nunb5UAACAxTTNPGdvTfKW1tpXMvkN2p3bUxIAAMDi2fA8Z0nSe/90kk8P17+W5LrtLwkAAGDxTDNyBgAAwDYRzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAAoQzgAAAApYmncBbN2Z48e2vO/eAwe3sRIAAGBaRs4AAAAKEM4AAAAKEM4AAAAKEM4AAAAKEM4AAAAKEM4AAAAKEM4AAAAKMM8ZAMBgmjlEE/OIAtMxcgYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAU+kDLCinDAeAWoycAQAAFCCcAQAAFCCcAQAAFCCcAQAAFCCcAQAAFCCcAQAAFCCcAQAAFCCcAQAAFCCcAQAAFCCcAQAAFCCcAQAAFLC03gatteckOZ7k2cP2d/fe395ae0mSu5JcmuSBJLf13r83y2IBAADGaiMjZ99NcmPv/RVJrklysLV2fZJ3JHlX7/3qJI8nuX12ZQIAAIzbuiNnvfe1JKeGxWcNl7UkNyZ507D+aJJfT/Ib218iAADA+K0bzpKktbYvyf1J/lqS9yb5apIneu9PDps8kuSKmVQIAACwADYUznrvTyW5prV2SZKPJnnpBTZbu9C+rbXDSQ4PfycrKytbLLWOpaWlEo/j9PLylvfdX6D+yqr0mNmp1ON5vZanud953vdG7rdSf3ez05/43an233/zrdtUyflm1eN5vi7mZZo+78YeU4cen29D4expvfcnWmufTnJ9kktaa0vD6NmVSU5cZJ8jSY4Mi2snT56cotwaVlZWUuFxnDl1av2NLuJ0gforq9JjZqdSj+f1Wp7mfud53xu530r93c3m+RxZz6x6XPkxz0rV7xNex+O3qD1eXV296G3rnhCktfZDw4hZWmvPTfJTSR5M8qkkrx82O5Tk3qkrBQAAWFAbOVvj5Uk+1Vr7YpLPJflk7/3jSd6a5C2tta8keUGSO2dXJgAAwLht5GyNX0zyygus/1qS62ZRFAAAwKLZyMgZAAAAMyacAQAAFLCpszUCzNqZ48e2vO/eAwe3sRIAYN4W7XuBkTMAAIAChDMAAIAChDMAAIAChDMAAIAChDMAAIAChDMAAIAChDMAAIACzHMGABu0aPPtALCzjJwBAAAUIJwBAAAUIJwBAAAUIJwBAAAUIJwBAAAUIJwBAAAUIJwBAAAUIJwBAAAUIJwBAAAUIJwBAAAUIJwBAAAUIJwBAAAUIJwBAAAUIJwBAAAUIJwBAAAUIJwBAAAUIJwBAAAUIJwBAAAUIJwBAAAUIJwBAAAUIJwBAAAUIJwBAAAUsDTvAmCjzhw/NtX+ew8c3KZKAABg+xk5AwAAKEA4AwAAKEA4AwAAKEA4AwAAKEA4AwAAKEA4AwAAKEA4AwAAKMA8Z+yoaecqA9itpnn/M08jwGIwcgYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAU+kDbAPTRAAA0zJyBgAAUIBwBgAAUIBwBgAAUIBwBgAAUIBwBgAAUIBwBgAAUIBwBgAAUIB5zhbUNHMy7T1wcBsrAXYrc7sBwPYycgYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAcAYAAFCAec4AoDhzUwIsBiNnAAAABQhnAAAABQhnAAAABaz7m7PW2ouT/FaSFyU5k+RI7/09rbVLk3w4yVVJHkrSeu+Pz65UAACA8drIyNmTSX6l9/7SJNcn+cXW2suSvC3Jfb33q5PcNywDAACwBeuGs977o733B4br30nyYJIrkrwuydFhs6NJbp1VkQAAAGO3qVPpt9auSvLKJJ9Nclnv/dFkEuBaay+8yD6HkxwetsvKyspUBVewtLT0l4/j9Cd+d8t/Z//N0+XZ08vLU+2/Vfun6OG8ak42V/fZPWZnTfUceeAzG970u3v3Zf+Zp75v3TSvybk9tzfxmM8zx9fjNDbyWp7Va3ie72FbNdf37Cmen+u9Hsv2eJrX5BTm9f41zfNrPT6Lx28jPa76/JyVDYez1tpyko8k+eXe+5+31ja0X+/9SJIjw+LayZMnN11kNSsrK3n6cZw5dWrLf+f0lP8tprnvaUxT97xqTjZX99k9Zmft1HNkeXk5p865r9363F40G+nTrF7Du7HPu/V5vV7devz95tXnab/LPBOfxeO3kR5XfX5OY3V19aK3behsja21Z2USzD7Ye79nWP2t1trlw+2XJ3lsyjoBAAAW1rrhrLW2J8mdSR7svb/zrJs+luTQcP1Qknu3vzwAAIDFsJHDGm9IcluSL7XWPj+s+2dJ7kjSW2u3J3k4yc/OpkQAAIDxWzec9d4/k2TPRW5+9faWAwAAsJg29JszAAAAZks4AwAAKGBT85wBO+vM8WNb3nfvgYPbWAkAALNm5AwAAKAA4QwAAKAA4QwAAKAA4QwAAKAA4QwAAKAA4QwAAKAA4QwAAKAA85yxadPMvQXAztqt79nr1X16eTlnTp3aoWqYlWfq83o9Np8nY2TkDAAAoADhDAAAoADhDAAAoADhDAAAoADhDAAAoADhDAAAoACn0mdhbOZ00ueevtfpehfDbj3lOBunx7C9vKZ2j2l65XvQzjFyBgAAUIBwBgAAUIBwBgAAUIBwBgAAUIBwBgAAUIBwBgAAUIBwBgAAUIB5zrL5eR/OnQMLAGCezDe2Oeb8oiojZwAAAAUIZwAAAAUIZwAAAAUIZwAAAAUIZwAAAAUIZwAAAAUIZwAAAAUIZwAAAAUIZwAAAAUIZwAAAAUIZwAAAAUIZwAAAAUIZwAAAAUIZwAAAAUszbuARXbm+LF5lwAAABRh5AwAAKAA4QwAAKAA4QwAAKAA4QwAAKAA4QwAAKAA4QwAAKAA4QwAAKAA4QwAAKAA4QwAAKAA4QwAAKAA4QwAAKAA4QwAAKAA4QwAAKAA4QwAAKAA4QwAAKCApXkXAAAAjNOZ48cuetvp5eWcOXVqB6upz8gZAABAAcIZAABAAcIZAABAAcIZAABAAcIZAABAAcIZAABAAU6lD8Cu8kynZX6a0zMDFW3k/euZ7D1wcJsqoSojZwAAAAUIZwAAAAUIZwAAAAWs+5uz1tpvJrklyWO995cP6y5N8uEkVyV5KEnrvT8+uzIBAADGbSMjZx9Icu6vD9+W5L7e+9VJ7huWAQAA2KJ1w1nv/XiS/33O6tclOTpcP5rk1m2uCwAAYKFs9Tdnl/XeH02S4d8Xbl9JAAAAi2fm85y11g4nOZwkvfesrKzM+i437fTy8qa237d3X5Y3uQ+7y7k93j+n5+1mn5tnm1fN05rmMW+G1/G46e/46fH4rdvjBz6z9T8+zXNnXveb6T7b5/Wd4pnud9av4934XWir4exbrbXLe++PttYuT/LYxTbsvR9JcmRYXDt58uQW73J2NjtR6fLyck6Z3HTUzu3x6Tk9b6eZRHdeNU9rpyYO9joeN/0dPz0ePz0+3zSf7fP6TvFM9zvrHlf9LrS6unrR27Z6WOPHkhwarh9Kcu8W/w4AAADZ2Kn0P5TkVUlWWmuPJHl7kjuS9Nba7UkeTvKzsywSAABg7NYNZ733N17kpldvcy0AAAALa6uHNQIAALCNhDMAAIAChDMAAIACZj7PGSy6M8ePzbsEAAB2ASNnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABTiVPnBB00wBsPfAwW2sBABgMRg5AwAAKEA4AwAAKEA4AwAAKEA4AwAAKEA4AwAAKEA4AwAAKEA4AwAAKMA8Z7AB08z5NS+7sWYAoB7fKXaOkTMAAIAChDMAAIAChDMAAIAChDMAAIAChDMAAIAChDMAAIAChDMAAIACzHMGAAC7gPnGxs/IGQAAQAHCGQAAQAHCGQAAQAHCGQAAQAHCGQAAQAHCGQAAQAFOpQ9sO6f6BQDYPCNnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABQhnAAAABSxNs3Nr7WCS9yTZl+R9vfc7tqUqAACABbPlkbPW2r4k703ymiQvS/LG1trLtqswAACARTLNYY3XJflK7/1rvffvJbkryeu2pywAAIDFMk04uyLJ189afmRYBwAAwCZN85uzPRdYt3buitba4SSHk6T3ntXV1Snuckbe8Aub3uWSGZRBLXo8fno8bvo7fno8fno8fnr8/aYZOXskyYvPWr4yyYlzN+q9H+m9X9t7vzaTQLfrL621++ddg4seu+ixi/4u8kWPx3/R4/FfFrzHFzTNyNnnklzdWntJkm8keUOSN03x9wAAABbWlkfOeu9PJvlHSf4gyYOTVf2/bldhAAAAi2Sqec5677+f5Pe3qZbd5Mi8C2Dm9Hj89Hjc9Hf89Hj89Hj89Pgce9bWzjuHBwAAADtsmhOCAAAAsE2mOqxx7FprL07yW0lelORMkiO99/e01i5N8uEkVyV5KEnrvT8+rzrZutbac5IcT/LsTF4Pd/fe3z6c6OauJJcmeSDJbcNk6+xSrbV9Sf44yTd677fo8bi01h5K8p0kTyV5svd+rffqcWmtXZLkfUlensnUPb+Q5MvR412vtfbXM+nj034kyb/I5DuY/o5Ea+2fJnlzJq/fLyX5h0kuj8/i72Pk7Jk9meRXeu8vTXJ9kl9srb0syduS3Nd7vzrJfcMyu9N3k9zYe39FkmuSHGytXZ/kHUneNfT48SS3z7FGtscvZXLyoqfp8fj8ZO/9mmHqlsR79di8J8mx3vuPJnlFJq9nPR6B3vuXh9fuNUl+PMnpJB+N/o5Ga+2KJP8kybW995cn2ZfJmd59Fp9DOHsGvfdHe+8PDNe/k8kHwRVJXpfk6LDZ0SS3zqdCptV7X+u9nxoWnzVc1pLcmOTuYb0e73KttSuT/Ewm/9c9rbU90eNF4L16JFprP5jkQJI7k6T3/r3e+xPR4zF6dZKv9t7/Z/R3bJaSPLe1tpRkf5JH47P4PMLZBrXWrkryyiSfTXJZ7/3RZBLgkrxwjqUxpdbavtba55M8luSTSb6a5IlhuohkMuH6FfOqj23x7iS/msnhyUnygujx2Kwl+URr7f7W2uFhnffq8fiRJN9O8v7W2n9prb2vtfa86PEYvSHJh4br+jsSvfdvJPlXSR7OJJT9nyT3x2fxeYSzDWitLSf5SJJf7r3/+bzrYXv13p8aDqW4Msl1SV56gc2c1nSXaq3dkuSx3vv9Z63ec4FN9Xh3u6H3/mNJXpPJIegH5l0Q22opyY8l+Y3e+yuT/EUc4jY6rbUfSPLaJL8z71rYXq21v5LJSOhLkqwmeV4m79fnWvjPYuFsHa21Z2USzD7Ye79nWP2t1trlw+2XZzLiwi43HCLz6Ux+X3jJMOyeTELbiXnVxdRuSPLa4YQRd2VyCMW7o8ej0ns/Mfz7WCa/Vbku3qvH5JEkj/TePzss351JWNPjcXlNkgd6798alvV3PH4qyf/ovX+79/5/k9yT5O/EZ/F5hLNnMPwu5c4kD/be33nWTR9Lcmi4fijJvTtdG9ujtfZDwxnA0lp7biZvHg8m+VSS1w+b6fEu1nv/td77lb33qzI5XOYPe+8/Fz0ejdba81prz3/6epKbk/xJvFePRu/9m0m+PpzVL5n8LulPo8dj88b8/0MaE/0dk4eTXN9a2z98v376Neyz+BzC2TO7IcltSW5srX1+uPx0kjuS3NRa+7MkNw3L7E6XJ/lUa+2LST6X5JO9948neWuSt7TWvpLJ75PunGONzIYej8dlST7TWvtCkj9K8nu992PxXj02/zjJB4f362uS/Mvo8Wi01vZn0sN7zlqtvyMxjHrfncnp8r+USQY5Ep/F59mztrbwh3YCAADMnZEzAACAAoQzAACAAoQzAACAAoQzAACAAoQzAACAAoQzAACAApbW3wQAdofW2qeTvCLJi3rv351zOQCwKUbOABiF1tpVSf5ukrUkr51vNQCweUbOABiLn0/yn5N8NsmhJL+TJK21FyT5QJK/l+TLSf4gyat67z8x3P6jSf5tkh9P8u0k/7z33ne6eAAwcgbAWPx8kg8Ol7/fWrtsWP/eJH+R5EWZhLZDT+/QWntekk8m+e0kL0zyxiT/vrX2N3awbgBIIpwBMAKttZ9I8sNJeu/9/iRfTfKm1tq+JP8gydt776d773+a5OhZu96S5KHe+/t770/23h9I8pEkr9/hhwAADmsEYBQOJflE7/3ksPzbw7oPZfJZ9/Wztj37+g8n+duttSfOWreU5D/OsFYAuCDhDIBdrbX23CQtyb7W2jeH1c9OckmSy5I8meTKJP99uO3FZ+3+9ST/qfd+0w6VCwAXJZwBsNvdmuSpJH8zyffOWt8z+R3aPUl+vbX25iR/dVj38LDNx5Pc0Vq7Lcldw7prkpzqvT+4A7UDwF8SzgDY7Q4leX/v/eGzV7bW/l2Sf5NJaPtAkm9mcrbGDyW5Nkl6799prd2c5J3DZW+SLyR5y04VDwBP27O2tjbvGgBgx7TW3pHJJNWH1t0YAHaQkTMARm2Yx+wHknwpyd9KcnuSN8+1KAC4AOEMgLF7fiaHMq4meSzJv05y71wrAoALcFgjAABAASahBgAAKEA4AwAAKEA4AwAAKEA4AwAAKEA4AwAAKEA4AwAAKOD/AZk/7HGxjjqSAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 1080x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Viz to find out the Age Distribution\n",
    "plt.figure(figsize=(15,8))\n",
    "sns.distplot(new_cust['Age'], kde=False, bins=50)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<b>Looking at the age field there is no descripency in the data</b>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Creating Age Group Column"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [],
   "source": [
    "new_cust['Age Group'] = new_cust['Age'].apply(lambda x : (math.floor(x/10)+1)*10)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.axes._subplots.AxesSubplot at 0x24568dddf98>"
      ]
     },
     "execution_count": 48,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHjCAYAAADhSlFEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAaAUlEQVR4nO3df5Bvd13f8VdyVylhbVNYE3KTaLSNCqRD1DQyxaYoDQSaMUjLp0GEoGD8A/xRman4E1q1E2dUyFTL9EKUYJHwFlAoMhFM1QwzBYQUBIkKaiSXhIQrP2S9FZvc2z/OWdzc7N5d7n3v3b13H4+Znd3v+Z7d78l7vrv3mXPO93xPO3z4cAAAOH6nb/cGAACcKoQVAEATYQUA0ERYAQA0EVYAAE2EFQBAk4Xt3oCZaz4AACeT09ZauFPCKnfdddeWP8bS0lIOHDiw5Y9zsjKfozOfjZnR0ZnPxszo6MxnYydiRnv37l33PocCAQCaCCsAgCbCCgCgibACAGgirAAAmggrAIAmwgoAoImwAgBoIqwAAJoIKwCAJsIKAKCJsAIAaCKsAACaCCsAgCbCCgCgibACAGgirAAAmggrAIAmwgoAoMnCdm8AcPI6dOvND7h9cHExh5aXH7Te6ZddcaI2CWBb2WMFANBEWAEANBFWAABNhBUAQBNhBQDQRFgBADQRVgAATYQVAEATYQUA0ERYAQA0EVYAAE2EFQBAE2EFANBEWAEANBFWAABNhBUAQBNhBQDQRFgBADQRVgAATYQVAEATYQUA0ERYAQA0EVYAAE2EFQBAE2EFANBEWAEANBFWAABNhBUAQBNhBQDQRFgBADQRVgAATYQVAEATYQUA0ERYAQA0EVYAAE2EFQBAE2EFANBEWAEANBFWAABNhBUAQBNhBQDQRFgBADQRVgAATYQVAEATYQUA0ERYAQA0EVYAAE2EFQBAE2EFANBEWAEANBFWAABNhBUAQJOFjVYYY5yf5DVJHpnkUJJ9VXX9GOPhSV6f5IIkdyQZVfXpMcZpSa5P8tQkB5M8t6pu25rNBwDYOTazx+q+JC+qqkcleVySF4wxHp3kxUluqaoLk9wy306SpyS5cP64Nskr2rcaAGAH2jCsqurulT1OVfW5JLcnOTfJVUlunFe7McnT5q+vSvKaqjpcVe9KcuYY45z2LQcA2GG+qHOsxhgXJPn6JO9OcnZV3Z1M8ZXkrHm1c5Pcuerb9s/LAABOaRueY7VijLGY5I1JfrCq/nqMsd6qp62x7PAaP+/aTIcKU1VZWlra7KYcs4WFhRPyOCcr8zk683mwg4uLD7i95/Q9WTxiWZKcYW5JPIc2w4yOznw2tt0z2lRYjTG+JFNUvbaq3jQvvmeMcU5V3T0f6rt3Xr4/yfmrvv28JHcd+TOral+SffPNwwcOHDiW7f+iLC0t5UQ8zsnKfI7OfB7s0PLyA24vLi5m+YhlSXLQ3JJ4Dm2GGR2d+WzsRMxo79696963mVcFnpbkhiS3V9UvrLrrLUmuSXLd/PnNq5a/cIxxU5JvSvLZlUOGAACnss3ssXp8kmcn+eAY4/3zsh/NFFQ1xnheko8lecZ839syXWrho5kut/BdrVsMALBDbRhWVfXOrH3eVJI8cY31Dyd5wXFuFwDASceV1wEAmggrAIAmwgoAoImwAgBoIqwAAJoIKwCAJsIKAKCJsAIAaCKsAACaCCsAgCbCCgCgibACAGgirAAAmggrAIAmwgoAoImwAgBoIqwAAJoIKwCAJsIKAKCJsAIAaCKsAACaCCsAgCbCCgCgibACAGgirAAAmggrAIAmwgoAoImwAgBoIqwAAJoIKwCAJsIKAKCJsAIAaCKsAACaCCsAgCbCCgCgibACAGgirAAAmggrAIAmwgoAoImwAgBoIqwAAJoIKwCAJsIKAKCJsAIAaCKsAACaLGz3BgCwuxy69eZ17zu4uJhDy8tJktMvu+JEbRK0sccKAKCJsAIAaCKsAACaCCsAgCZOXgfYAmudoL36xOwVTtCGU4s9VgAATYQVAEATYQUA0ERYAQA0EVYAAE2EFQBAE5dbIMn00vC1Xgp+JC8NB4D12WMFANBEWAEANBFWAABNhBUAQBNhBQDQRFgBADQRVgAATYQVAEATYQUA0ERYAQA0EVYAAE2EFQBAE2EFANBEWAEANBFWAABNhBUAQBNhBQDQRFgBADQRVgAATYQVAEATYQUA0ERYAQA0WdhohTHGLye5Msm9VXXRvOylSb4nySfn1X60qt423/cjSZ6X5P4k319Vv70F2w0AsONsGFZJXp3kF5O85ojlL6uqn1u9YIzx6CRXJ3lMkr1JfmeM8TVVdX/DtgIA7GgbHgqsqluTfGqTP++qJDdV1eer6i+SfDTJpcexfQAAJ43N7LFazwvHGM9J8t4kL6qqTyc5N8m7Vq2zf14GAHDKO9awekWSn0pyeP7880m+O8lpa6x7eK0fMMa4Nsm1SVJVWVpaOsZN2byFhYUT8jgno4OLi9lz+p4sLi4edb0zdvH8PH8e7OARz5f1nkO78Xlz5GyStedjNg+0eka7cTYb8XdoY9s9o2MKq6q6Z+XrMcYrk7x1vrk/yfmrVj0vyV3r/Ix9SfbNNw8fOHDgWDbli7K0tJQT8Tgno0PLy1lcXMzy8vJR1zu4i+fn+fNgh454vqz3HNqNz5sjZ5OsPR+zeaDVM9qNs9mIv0MbOxEz2rt377r3HdPlFsYY56y6+e1JPjR//ZYkV48xHjLG+KokFyZ5z7E8BgDAyWYzl1t4XZInJFkaY+xP8pIkTxhjXJzpMN8dSb43Sarqj8YYleTDSe5L8gKvCAQAdosNw6qqnrnG4huOsv7PJPmZ49koAICTkSuvAwA0EVYAAE2EFQBAE2EFANBEWAEANBFWAABNhBUAQBNhBQDQRFgBADQRVgAATYQVAEATYQUA0ERYAQA0EVYAAE2EFQBAE2EFANBEWAEANBFWAABNhBUAQBNhBQDQRFgBADQRVgAATYQVAEATYQUA0ERYAQA0EVYAAE2EFQBAE2EFANBEWAEANBFWAABNhBUAQBNhBQDQRFgBADQRVgAATYQVAEATYQUA0ERYAQA0EVYAAE2EFQBAE2EFANBEWAEANBFWAABNhBUAQBNhBQDQRFgBADQRVgAATYQVAEATYQUA0ERYAQA0EVYAAE2EFQBAE2EFANBEWAEANBFWAABNhBUAQBNhBQDQRFgBADQRVgAATYQVAEATYQUA0ERYAQA0EVYAAE2EFQBAE2EFANBEWAEANBFWAABNhBUAQBNhBQDQRFgBADQRVgAATYQVAEATYQUA0ERYAQA0EVYAAE2EFQBAE2EFANBEWAEANBFWAABNhBUAQBNhBQDQRFgBADRZ2GiFMcYvJ7kyyb1VddG87OFJXp/kgiR3JBlV9ekxxmlJrk/y1CQHkzy3qm7bmk0HANhZNgyrJK9O8otJXrNq2YuT3FJV140xXjzf/uEkT0ly4fzxTUleMX+Gk9ahW29OkhxcXMyh5eV11zv9sitO1CYBsENteCiwqm5N8qkjFl+V5Mb56xuTPG3V8tdU1eGqeleSM8cY53RtLADATraZPVZrObuq7k6Sqrp7jHHWvPzcJHeuWm//vOzuI3/AGOPaJNfOPyNLS0vHuCmbt7CwcEIe52R0cHExe07fk8XFxaOud8YunN/BeSYbzWc3z2bFejMym8la8zGbB1o9o904m434d2xj2z2jYw2r9Zy2xrLDa61YVfuS7FtZ58CBA82b8mBLS0s5EY9zMjq0vJzFxcUsH+VQV5Ic3IXzWzn8t9F8dvNsVqw3I7OZrDUfs3mg1TPajbPZiH/HNnYiZrR379517zvWVwXes3KIb/5877x8f5LzV613XpK7jvExAABOKse6x+otSa5Jct38+c2rlr9wjHFTppPWP7tyyBAA4FS3mcstvC7JE5IsjTH2J3lJpqCqMcbzknwsyTPm1d+W6VILH810uYXv2oJtBgDYkTYMq6p65jp3PXGNdQ8necHxbhQAwMnIldcBAJoIKwCAJsIKAKBJ93WsAIBjtPIWWutZeWstb6G1c9ljBQDQRFgBADQRVgAATYQVAEATYQUA0ERYAQA0EVYAAE2EFQBAE2EFANBEWAEANBFWAABNhBUAQBNhBQDQRFgBADQRVgAATYQVAEATYQUA0ERYAQA0EVYAAE2EFQBAE2EFANBEWAEANBFWAABNhBUAQBNhBQDQRFgBADQRVgAATYQVAEATYQUA0ERYAQA0EVYAAE2EFQBAE2EFANBEWAEANBFWAABNhBUAQBNhBQDQRFgBADQRVgAATYQVAEATYQUA0ERYAQA0EVYAAE2EFQBAE2EFANBEWAEANBFWAABNhBUAQBNhBQDQRFgBADQRVgAATYQVAEATYQUA0ERYAQA0EVYAAE2EFQBAE2EFANBEWAEANBFWAABNhBUAQBNhBQDQRFgBADQRVgAATYQVAEATYQUA0ERYAQA0EVYAAE2EFQBAE2EFANBEWAEANBFWAABNhBUAQBNhBQDQRFgBADQRVgAATYQVAECTheP55jHGHUk+l+T+JPdV1SVjjIcneX2SC5LckWRU1aePbzMBAHa+jj1W31JVF1fVJfPtFye5paouTHLLfBsA4JS3FYcCr0py4/z1jUmetgWPAQCw4xxvWB1O8vYxxvvGGNfOy86uqruTZP581nE+BgDASeG4zrFK8viqumuMcVaSd4wx/niz3ziH2LVJUlVZWlo6zk3Z2MLCwgl5nJPRwcXF7Dl9TxYXF4+63hm7cH4H55lsNJ/dPJsV683IbCZrzcdsHmj1jMzmwVbmsxtns1nb/W/9cYVVVd01f753jPEbSS5Ncs8Y45yqunuMcU6Se9f53n1J9s03Dx84cOB4NmVTlpaWciIe52R0aHk5i4uLWV5ePup6B3fh/A7NM9loPrt5NivWm5HZTNaaj9k80OoZmc2DrcxnN85ms07Ev/V79+5d975jPhQ4xnjYGOPLVr5O8qQkH0ryliTXzKtdk+TNx/oYAAAnk+M5x+rsJO8cY3wgyXuS/FZV3ZzkuiSXjzE+kuTy+TYAwCnvmA8FVtWfJ3nsGsv/KskTj2ejAABORq68DgDQRFgBADQRVgAATYQVAEATYQUA0ERYAQA0EVYAAE2EFQBAE2EFANBEWAEANBFWAABNjvm9AgEATpRDt968uRWf/p1buyEbsMcKAKCJsAIAaCKsAACaCCsAgCbCCgCgibACAGgirAAAmggrAIAmwgoAoImwAgBoIqwAAJoIKwCAJsIKAKCJsAIAaCKsAACaCCsAgCbCCgCgibACAGgirAAAmggrAIAmwgoAoImwAgBoIqwAAJoIKwCAJsIKAKCJsAIAaCKsAACaCCsAgCbCCgCgibACAGgirAAAmggrAIAmwgoAoImwAgBoIqwAAJoIKwCAJsIKAKCJsAIAaCKsAACaCCsAgCbCCgCgibACAGgirAAAmggrAIAmwgoAoImwAgBoIqwAAJoIKwCAJsIKAKCJsAIAaCKsAACaCCsAgCbCCgCgibACAGgirAAAmggrAIAmwgoAoImwAgBosrDdG3AiHXz7b+bQ8vKG651+2RUnYGsAgFONPVYAAE2EFQBAE2EFANBEWAEANBFWAABNhBUAQBNhBQDQRFgBADQRVgAATbbsyutjjCuSXJ9kT5JXVdV1W/VYAAA7wZbssRpj7EnyS0mekuTRSZ45xnj0VjwWAMBOsVWHAi9N8tGq+vOq+rskNyW5aoseCwBgR9iqsDo3yZ2rbu+flwEAnLJOO3z4cPsPHWM8I8mTq+r58+1nJ7m0qr5v1TrXJrk2SarqG9s3AgBg65y21sKt2mO1P8n5q26fl+Su1StU1b6quqSqLpk3bss/xhjvO1GPdTJ+mI/5mJH5bPeHGZnPSTSjNW3VqwL/IMmFY4yvSvLxJFcn+Y4teiwAgB1hS/ZYVdV9SV6Y5LeT3D4tqj/aiscCANgptuw6VlX1tiRv26qff4z2bfcG7HDmc3TmszEzOjrz2ZgZHZ35bGxbZ7QlJ68DAOxG3tIGAKDJlh0K3E5jjPOTvCbJI5McSrKvqq4fYzw8yeuTXJDkjiSjqj69Xdu5ncYY/yDJrUkekul58Iaqesn8goObkjw8yW1Jnj1f5HVXmt9F4L1JPl5VV5rP3xtj3JHkc0nuT3JfVV3id+yBxhhnJnlVkouSHE7y3Un+JGaUMcbXZprDiq9O8pOZ/nbv+vmsGGP8hyTPz/T8+WCS70pyTvwdSpKMMX4gyfdkepXeK6vq5dv9d+hU3WN1X5IXVdWjkjwuyQvmt9R5cZJbqurCJLfMt3erzyf51qp6bJKLk1wxxnhckp9N8rJ5Rp9O8rxt3Mad4AcyvQBjhfk80LdU1cXzZVMSv2NHuj7JzVX1dUkem+m5ZEZJqupP5ufOxUm+McnBJL8R8/mCMca5Sb4/ySVVdVGm9969Ov4OJUnGGBdliqpLM/1+XTnGuDDb/Bw6JcOqqu6uqtvmrz+X6Y/ZuZneVufGebUbkzxte7Zw+1XV4apanm9+yfxxOMm3JnnDvHxXz2iMcV6Sf5Npj0PGGKfFfDbid2w2xviHSS5LckOSVNXfVdVnYkZreWKSP6uqv4z5HGkhyUPHGAtJzkhyd/wdWvGoJO+qqoPz1Qh+P8m3Z5ufQ6dkWK02xrggydcneXeSs6vq7mSKryRnbeOmbbsxxp4xxvuT3JvkHUn+LMln5ido4q2IXp7kP2Y6nJwkj4j5rHY4ydvHGO+b30kh8Tu22lcn+WSSXxlj/J8xxqvGGA+LGa3l6iSvm782n1lVfTzJzyX5WKag+myS98XfoRUfSnLZGOMRY4wzkjw108XJt/U5dEqH1RhjMckbk/xgVf31dm/PTlNV98+74c/LtCv1UWustitfNjrGuDLJvVX1vlWL17rS7q6cz+zxVfUNSZ6S6XD7Zdu9QTvMQpJvSPKKqvr6JH+TXXxYaz1jjC9N8m1Jfn27t2WnGWP840x7X74qyd4kD8v0+3akXfl3qKpuz3RY9B1Jbk7ygUynAm2rUzasxhhfkimqXltVb5oX3zPGOGe+/5xMe2p2vfnwxO9lOh/tzHmXc7LGWxHtIo9P8m3zCdo3Zdr1/vKYzxdU1V3z53sznRtzafyOrbY/yf6qevd8+w2ZQsuMHugpSW6rqnvm2+bz9/51kr+oqk9W1f9L8qYk/yL+Dn1BVd1QVd9QVZcl+VSSj2Sbn0OnZFjN58LckOT2qvqFVXe9Jck189fXJHnzid62nWKM8eXzK5Yyxnhopl/g25P8bpJ/N6+2a2dUVT9SVedV1QWZDlP8r6p6VswnSTLGeNgY48tWvk7ypEy75f2OzarqE0nunF/9lkznEX04ZnSkZ+bvDwMm5rPax5I8boxxxvzv2spzyN+h2RjjrPnzVyR5eqbn0rY+h07JsMq0t+HZSb51jPH++eOpSa5LcvkY4yNJLp9v71bnJPndMcYfZnpvx3dU1VuT/HCSHxpjfDTTOUU3bOM27kTmMzk7yTvHGB9I8p4kv1VVN8fv2JG+L8lr59+zi5P8l5jRF8znxVyeaU/MCvOZzXs735DpkgofzPRv9r74O7TaG8cYH07yP5O8YL6swrY+h1x5HQCgyam6xwoA4IQTVgAATYQVAEATYQUA0ERYAQA0EVYAAE0WNl4F4PiNMX4v0zvQP7KqPr+Fj3N5kh9NckmSv0tyZ6aLBl5fVX+7VY8LkNhjBZwA85uh/8tM72n2bVv4OM/IdEHFX0vylVX1iCT/PtPbfpy/zvf4H0ygjQuEAltujPGTSZ6c5N1Jvqaqrlx13yOSvDrJv0ryJ0l+O8kTquqb5/u/Lsl/TfKNST6Z5CeqqtZ4jNMyvQXIy6vq54+yLS9NclGSv80UeT+U5FczvZnrmFerJD9cVZ8fYzw3yfNXtmf+GYeTXFhVHx1jvHr+Wf8k0/tt3pbkOVX1l5ufEHCqsMcKOBGek+S188eTxxhnr7rvl5L8TZJHZnpfr5X3+Fp5H8J3ZNoDdVam95X7b2OMx6zxGF+bac/UGzexPVdl2rN15rxNP5Ypii7OdLjy0iQ/vvn/vDwryU8lWUry/vlnAruQXeDAlhpjfHOSr0xSVXVgjPFnSb4jycvGGHuS/NskF1XVwSQfHmPcmOQJ87dfmeSOqvqV+fZtY4w3ZnoD2j864qGW5s+fWPXYNyW5IsmXJvneqvrV+a7/XVW/OX/9f8cYz0ryfVV17/x9/ynJf0/yE5v8z/ytqrp1/t4fS/LZMcb5VXXnJr8fOEUIK2CrXZPk7VV1YL79a/OylyX58kx/h1YHyOqvvzLJN40xPrNq2UKmQ3dH+qv58zlJ/iJJqurqJBljvDPJnnUeI0n2Jll96O4v52Wb9YWfV1XLY4xPzd8vrGCXEVbAlhljPDTTeUt7xhgre5IekuTMMcZjk3woyX2ZDuH96Xz/6pPM70zy+1V1+SYe7o+TfDzJ05Ose47V7MiTS+/KFHEre8G+Yl6WTIcpz1j13/TINX7e+avuX0zy8FXfD+wiwgrYSk9Lcn+Sf5bp0gcrKtMJ3i8aY7wpyUvHGM/PFDTPyXQSepK8Ncl1Y4xnJ7lpXnZxkuWqun31A1XV4THGi5K8cozx15nOofpMkn+aZPU5XWt5XZIfH2P8Qabo+skk/2O+7wNJHjPGuDhTvL10je9/6nzI8z2ZzrV6t8OAsDs5eR3YStck+ZWq+lhVfWLlI8kvJnnWfKmDFyb5R5nOjfrVTJHz+SSpqs8leVKSqzPtAfpEplfvPWStB6uq12faQ/admfZ2HcgUcfuS/PpRtvOnk7w3yR8m+WCmV/b99Pwz/zTJf07yO0k+kuSda3z/ryV5SZJPZXr14rM2mAtwinK5BWBHGWP8bKaLiF6z4co7wHy5hf1V9cW8ihA4RTkUCGyr+TpVX5ppT9E/T/K8JM/f1o0COEbCCthuX5bp8N/eJPdmOvH8zdu6RQDHyKFAAIAmTl4HAGgirAAAmggrAIAmwgoAoImwAgBoIqwAAJr8f90kS0SHTO8sAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 720x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Viz to find out the Age Group Distribution\n",
    "plt.figure(figsize=(10,8))\n",
    "sns.distplot(new_cust['Age Group'], kde=False, bins=50)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<b>The highest number of New Customers are from the Age Group 50-59.</b>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2.3 Job Title"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>first_name</th>\n",
       "      <th>last_name</th>\n",
       "      <th>gender</th>\n",
       "      <th>past_3_years_bike_related_purchases</th>\n",
       "      <th>DOB</th>\n",
       "      <th>job_title</th>\n",
       "      <th>job_industry_category</th>\n",
       "      <th>wealth_segment</th>\n",
       "      <th>deceased_indicator</th>\n",
       "      <th>owns_car</th>\n",
       "      <th>tenure</th>\n",
       "      <th>address</th>\n",
       "      <th>postcode</th>\n",
       "      <th>state</th>\n",
       "      <th>country</th>\n",
       "      <th>property_valuation</th>\n",
       "      <th>Rank</th>\n",
       "      <th>Value</th>\n",
       "      <th>Age</th>\n",
       "      <th>Age Group</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>15</th>\n",
       "      <td>Dukie</td>\n",
       "      <td>Swire</td>\n",
       "      <td>Male</td>\n",
       "      <td>88</td>\n",
       "      <td>1954-03-31</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Manufacturing</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>5</td>\n",
       "      <td>64 Granby Parkway</td>\n",
       "      <td>2500</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>16</td>\n",
       "      <td>1.562500</td>\n",
       "      <td>67</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>25</th>\n",
       "      <td>Rourke</td>\n",
       "      <td>Gillbard</td>\n",
       "      <td>Male</td>\n",
       "      <td>11</td>\n",
       "      <td>1945-08-03</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Property</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>17</td>\n",
       "      <td>75 Cordelia Trail</td>\n",
       "      <td>4817</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>4</td>\n",
       "      <td>26</td>\n",
       "      <td>1.468750</td>\n",
       "      <td>75</td>\n",
       "      <td>80</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>29</th>\n",
       "      <td>Rhona</td>\n",
       "      <td>De Freyne</td>\n",
       "      <td>Female</td>\n",
       "      <td>45</td>\n",
       "      <td>1960-11-22</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Health</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>8</td>\n",
       "      <td>11184 East Drive</td>\n",
       "      <td>3056</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>10</td>\n",
       "      <td>30</td>\n",
       "      <td>1.460938</td>\n",
       "      <td>60</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>30</th>\n",
       "      <td>Sharron</td>\n",
       "      <td>Claibourn</td>\n",
       "      <td>Female</td>\n",
       "      <td>62</td>\n",
       "      <td>1980-01-26</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Financial Services</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>17</td>\n",
       "      <td>555 Hermina Avenue</td>\n",
       "      <td>2280</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>30</td>\n",
       "      <td>1.460938</td>\n",
       "      <td>41</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>37</th>\n",
       "      <td>Mitchell</td>\n",
       "      <td>MacCague</td>\n",
       "      <td>Male</td>\n",
       "      <td>58</td>\n",
       "      <td>1979-04-11</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Manufacturing</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>15</td>\n",
       "      <td>240 Acker Avenue</td>\n",
       "      <td>3190</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>38</td>\n",
       "      <td>1.437500</td>\n",
       "      <td>42</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>38</th>\n",
       "      <td>Garik</td>\n",
       "      <td>Whitwell</td>\n",
       "      <td>Male</td>\n",
       "      <td>44</td>\n",
       "      <td>1955-06-13</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Property</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>13</td>\n",
       "      <td>04 Dexter Way</td>\n",
       "      <td>3280</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>2</td>\n",
       "      <td>38</td>\n",
       "      <td>1.437500</td>\n",
       "      <td>65</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>39</th>\n",
       "      <td>Antonin</td>\n",
       "      <td>Britt</td>\n",
       "      <td>Male</td>\n",
       "      <td>64</td>\n",
       "      <td>1993-08-28</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Manufacturing</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>8</td>\n",
       "      <td>011 Northland Trail</td>\n",
       "      <td>2160</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>40</td>\n",
       "      <td>1.434375</td>\n",
       "      <td>27</td>\n",
       "      <td>30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>40</th>\n",
       "      <td>Vinny</td>\n",
       "      <td>Incogna</td>\n",
       "      <td>Female</td>\n",
       "      <td>73</td>\n",
       "      <td>1953-02-13</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Health</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>10</td>\n",
       "      <td>8 Grayhawk Circle</td>\n",
       "      <td>2756</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>40</td>\n",
       "      <td>1.434375</td>\n",
       "      <td>68</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>42</th>\n",
       "      <td>Neile</td>\n",
       "      <td>Argent</td>\n",
       "      <td>Female</td>\n",
       "      <td>79</td>\n",
       "      <td>1946-10-25</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Retail</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>8</td>\n",
       "      <td>2548 Arrowood Pass</td>\n",
       "      <td>2024</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>10</td>\n",
       "      <td>42</td>\n",
       "      <td>1.421875</td>\n",
       "      <td>74</td>\n",
       "      <td>80</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>44</th>\n",
       "      <td>Brooke</td>\n",
       "      <td>Arling</td>\n",
       "      <td>Male</td>\n",
       "      <td>76</td>\n",
       "      <td>1961-12-05</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>6</td>\n",
       "      <td>6 Melby Center</td>\n",
       "      <td>3027</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>5</td>\n",
       "      <td>44</td>\n",
       "      <td>1.421094</td>\n",
       "      <td>59</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>50</th>\n",
       "      <td>Heinrick</td>\n",
       "      <td>Shilstone</td>\n",
       "      <td>Male</td>\n",
       "      <td>60</td>\n",
       "      <td>1978-02-11</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Manufacturing</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>10</td>\n",
       "      <td>998 Gale Park</td>\n",
       "      <td>3174</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>50</td>\n",
       "      <td>1.406250</td>\n",
       "      <td>43</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>53</th>\n",
       "      <td>Odessa</td>\n",
       "      <td>Mc Andrew</td>\n",
       "      <td>Female</td>\n",
       "      <td>97</td>\n",
       "      <td>1981-12-01</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Property</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>8</td>\n",
       "      <td>31756 Meadow Valley Lane</td>\n",
       "      <td>2232</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>10</td>\n",
       "      <td>54</td>\n",
       "      <td>1.381250</td>\n",
       "      <td>39</td>\n",
       "      <td>40</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>74</th>\n",
       "      <td>Mabelle</td>\n",
       "      <td>Wellbelove</td>\n",
       "      <td>Female</td>\n",
       "      <td>76</td>\n",
       "      <td>1958-04-21</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Financial Services</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>19</td>\n",
       "      <td>800 Emmet Park</td>\n",
       "      <td>2219</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>72</td>\n",
       "      <td>1.350000</td>\n",
       "      <td>63</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>82</th>\n",
       "      <td>Esther</td>\n",
       "      <td>Rooson</td>\n",
       "      <td>Female</td>\n",
       "      <td>14</td>\n",
       "      <td>1981-02-22</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Financial Services</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>5</td>\n",
       "      <td>5186 Main Trail</td>\n",
       "      <td>2046</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>78</td>\n",
       "      <td>1.337500</td>\n",
       "      <td>40</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>92</th>\n",
       "      <td>Andromache</td>\n",
       "      <td>Bonafacino</td>\n",
       "      <td>Female</td>\n",
       "      <td>84</td>\n",
       "      <td>1977-09-01</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Retail</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>11</td>\n",
       "      <td>74 Carpenter Street</td>\n",
       "      <td>2015</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>89</td>\n",
       "      <td>1.312500</td>\n",
       "      <td>43</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>94</th>\n",
       "      <td>Nobe</td>\n",
       "      <td>McAughtry</td>\n",
       "      <td>Male</td>\n",
       "      <td>25</td>\n",
       "      <td>1978-12-14</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>12</td>\n",
       "      <td>1 Orin Hill</td>\n",
       "      <td>4510</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>5</td>\n",
       "      <td>89</td>\n",
       "      <td>1.312500</td>\n",
       "      <td>42</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>95</th>\n",
       "      <td>Jehu</td>\n",
       "      <td>Prestedge</td>\n",
       "      <td>Male</td>\n",
       "      <td>91</td>\n",
       "      <td>1999-10-20</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Manufacturing</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>8</td>\n",
       "      <td>88 Annamark Avenue</td>\n",
       "      <td>2138</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>12</td>\n",
       "      <td>96</td>\n",
       "      <td>1.300000</td>\n",
       "      <td>21</td>\n",
       "      <td>30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>109</th>\n",
       "      <td>Michal</td>\n",
       "      <td>Bryan</td>\n",
       "      <td>Female</td>\n",
       "      <td>1</td>\n",
       "      <td>1969-11-09</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Manufacturing</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>16</td>\n",
       "      <td>4275 Bluestem Pass</td>\n",
       "      <td>4000</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>104</td>\n",
       "      <td>1.287500</td>\n",
       "      <td>51</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>115</th>\n",
       "      <td>Frederik</td>\n",
       "      <td>Milan</td>\n",
       "      <td>Male</td>\n",
       "      <td>45</td>\n",
       "      <td>1997-11-13</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Health</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>5</td>\n",
       "      <td>56 Riverside Street</td>\n",
       "      <td>2546</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>5</td>\n",
       "      <td>114</td>\n",
       "      <td>1.275000</td>\n",
       "      <td>23</td>\n",
       "      <td>30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>125</th>\n",
       "      <td>Elsworth</td>\n",
       "      <td>Abbitt</td>\n",
       "      <td>Male</td>\n",
       "      <td>71</td>\n",
       "      <td>1956-02-08</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Health</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>6</td>\n",
       "      <td>9722 Northport Way</td>\n",
       "      <td>3500</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>3</td>\n",
       "      <td>125</td>\n",
       "      <td>1.261719</td>\n",
       "      <td>65</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>132</th>\n",
       "      <td>Sharline</td>\n",
       "      <td>Abyss</td>\n",
       "      <td>Female</td>\n",
       "      <td>11</td>\n",
       "      <td>1960-03-18</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>15</td>\n",
       "      <td>367 Bay Point</td>\n",
       "      <td>4011</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>4</td>\n",
       "      <td>133</td>\n",
       "      <td>1.237500</td>\n",
       "      <td>61</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>133</th>\n",
       "      <td>Nowell</td>\n",
       "      <td>Preddy</td>\n",
       "      <td>Male</td>\n",
       "      <td>29</td>\n",
       "      <td>1985-07-23</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Manufacturing</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>9</td>\n",
       "      <td>932 Glendale Avenue</td>\n",
       "      <td>2173</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>133</td>\n",
       "      <td>1.237500</td>\n",
       "      <td>35</td>\n",
       "      <td>40</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>149</th>\n",
       "      <td>Bernardine</td>\n",
       "      <td>Delmonti</td>\n",
       "      <td>Female</td>\n",
       "      <td>39</td>\n",
       "      <td>1971-03-31</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Property</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>17</td>\n",
       "      <td>0721 Meadow Ridge Pass</td>\n",
       "      <td>2540</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>146</td>\n",
       "      <td>1.225000</td>\n",
       "      <td>50</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>200</th>\n",
       "      <td>Alfonso</td>\n",
       "      <td>Massel</td>\n",
       "      <td>Male</td>\n",
       "      <td>70</td>\n",
       "      <td>1940-12-05</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>13</td>\n",
       "      <td>6065 Talisman Crossing</td>\n",
       "      <td>3977</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>7</td>\n",
       "      <td>201</td>\n",
       "      <td>1.142187</td>\n",
       "      <td>80</td>\n",
       "      <td>90</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>201</th>\n",
       "      <td>Engracia</td>\n",
       "      <td>Dobbs</td>\n",
       "      <td>Female</td>\n",
       "      <td>84</td>\n",
       "      <td>1959-04-19</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Health</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>15</td>\n",
       "      <td>72 Eliot Place</td>\n",
       "      <td>2250</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>202</td>\n",
       "      <td>1.140625</td>\n",
       "      <td>62</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>207</th>\n",
       "      <td>Jeanne</td>\n",
       "      <td>Darte</td>\n",
       "      <td>Female</td>\n",
       "      <td>70</td>\n",
       "      <td>1955-08-18</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>11</td>\n",
       "      <td>3 Homewood Park</td>\n",
       "      <td>2756</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>7</td>\n",
       "      <td>206</td>\n",
       "      <td>1.137500</td>\n",
       "      <td>65</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>211</th>\n",
       "      <td>Abbie</td>\n",
       "      <td>Oldman</td>\n",
       "      <td>Male</td>\n",
       "      <td>82</td>\n",
       "      <td>1983-11-26</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Health</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>5</td>\n",
       "      <td>4 North Drive</td>\n",
       "      <td>2168</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>212</td>\n",
       "      <td>1.136875</td>\n",
       "      <td>37</td>\n",
       "      <td>40</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>219</th>\n",
       "      <td>Hunfredo</td>\n",
       "      <td>Hayball</td>\n",
       "      <td>Male</td>\n",
       "      <td>7</td>\n",
       "      <td>1994-04-15</td>\n",
       "      <td>NaN</td>\n",
       "      <td>IT</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>3</td>\n",
       "      <td>60461 Esch Avenue</td>\n",
       "      <td>2227</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>219</td>\n",
       "      <td>1.125000</td>\n",
       "      <td>27</td>\n",
       "      <td>30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>222</th>\n",
       "      <td>Gretna</td>\n",
       "      <td>Thredder</td>\n",
       "      <td>Female</td>\n",
       "      <td>62</td>\n",
       "      <td>1966-01-08</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>18</td>\n",
       "      <td>1607 Westridge Drive</td>\n",
       "      <td>2203</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>11</td>\n",
       "      <td>223</td>\n",
       "      <td>1.115625</td>\n",
       "      <td>55</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>224</th>\n",
       "      <td>Wallace</td>\n",
       "      <td>Newart</td>\n",
       "      <td>Male</td>\n",
       "      <td>91</td>\n",
       "      <td>1977-12-06</td>\n",
       "      <td>NaN</td>\n",
       "      <td>IT</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>17</td>\n",
       "      <td>29007 Dapin Street</td>\n",
       "      <td>4650</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>1</td>\n",
       "      <td>223</td>\n",
       "      <td>1.115625</td>\n",
       "      <td>43</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>668</th>\n",
       "      <td>Cecil</td>\n",
       "      <td>Gant</td>\n",
       "      <td>Male</td>\n",
       "      <td>52</td>\n",
       "      <td>1976-07-16</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>9</td>\n",
       "      <td>22435 Barnett Court</td>\n",
       "      <td>2145</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>668</td>\n",
       "      <td>0.705500</td>\n",
       "      <td>44</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>689</th>\n",
       "      <td>Willard</td>\n",
       "      <td>Booton</td>\n",
       "      <td>Male</td>\n",
       "      <td>69</td>\n",
       "      <td>1938-09-02</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Health</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>7</td>\n",
       "      <td>05 Ronald Regan Alley</td>\n",
       "      <td>2121</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>688</td>\n",
       "      <td>0.697000</td>\n",
       "      <td>82</td>\n",
       "      <td>90</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>691</th>\n",
       "      <td>Rockie</td>\n",
       "      <td>MacKibbon</td>\n",
       "      <td>Male</td>\n",
       "      <td>42</td>\n",
       "      <td>1978-04-20</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>13</td>\n",
       "      <td>8 Bunker Hill Court</td>\n",
       "      <td>2298</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>691</td>\n",
       "      <td>0.690625</td>\n",
       "      <td>43</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>697</th>\n",
       "      <td>Thaddus</td>\n",
       "      <td>Joder</td>\n",
       "      <td>Male</td>\n",
       "      <td>31</td>\n",
       "      <td>1957-12-10</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Manufacturing</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>7</td>\n",
       "      <td>27185 Fisk Drive</td>\n",
       "      <td>2290</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>698</td>\n",
       "      <td>0.690000</td>\n",
       "      <td>63</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>703</th>\n",
       "      <td>Suzy</td>\n",
       "      <td>Bussens</td>\n",
       "      <td>Female</td>\n",
       "      <td>44</td>\n",
       "      <td>1973-04-29</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Financial Services</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>13</td>\n",
       "      <td>25 Oneill Alley</td>\n",
       "      <td>4102</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>700</td>\n",
       "      <td>0.687500</td>\n",
       "      <td>48</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>740</th>\n",
       "      <td>Glory</td>\n",
       "      <td>Chilcott</td>\n",
       "      <td>Female</td>\n",
       "      <td>49</td>\n",
       "      <td>1939-09-09</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Telecommunications</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>9</td>\n",
       "      <td>4286 Rowland Circle</td>\n",
       "      <td>4165</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>5</td>\n",
       "      <td>741</td>\n",
       "      <td>0.658750</td>\n",
       "      <td>81</td>\n",
       "      <td>90</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>752</th>\n",
       "      <td>Trudie</td>\n",
       "      <td>Phinnessy</td>\n",
       "      <td>Female</td>\n",
       "      <td>45</td>\n",
       "      <td>1960-07-04</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Financial Services</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>15</td>\n",
       "      <td>077 Dennis Lane</td>\n",
       "      <td>3030</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>751</td>\n",
       "      <td>0.648125</td>\n",
       "      <td>60</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>759</th>\n",
       "      <td>Flore</td>\n",
       "      <td>Cashen</td>\n",
       "      <td>Female</td>\n",
       "      <td>79</td>\n",
       "      <td>1978-06-21</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Health</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>17</td>\n",
       "      <td>4 Vera Pass</td>\n",
       "      <td>2640</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>4</td>\n",
       "      <td>760</td>\n",
       "      <td>0.637500</td>\n",
       "      <td>42</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>764</th>\n",
       "      <td>Hagen</td>\n",
       "      <td>MacCarter</td>\n",
       "      <td>Male</td>\n",
       "      <td>93</td>\n",
       "      <td>1983-02-08</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Entertainment</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>15</td>\n",
       "      <td>7 Ramsey Trail</td>\n",
       "      <td>3172</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>760</td>\n",
       "      <td>0.637500</td>\n",
       "      <td>38</td>\n",
       "      <td>40</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>769</th>\n",
       "      <td>Andrea</td>\n",
       "      <td>Pendle</td>\n",
       "      <td>Female</td>\n",
       "      <td>86</td>\n",
       "      <td>1938-08-05</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>13</td>\n",
       "      <td>31281 Meadow Valley Way</td>\n",
       "      <td>4500</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>6</td>\n",
       "      <td>760</td>\n",
       "      <td>0.637500</td>\n",
       "      <td>82</td>\n",
       "      <td>90</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>778</th>\n",
       "      <td>Yuma</td>\n",
       "      <td>Dennick</td>\n",
       "      <td>Male</td>\n",
       "      <td>40</td>\n",
       "      <td>1972-11-10</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Manufacturing</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>6</td>\n",
       "      <td>89244 Macpherson Trail</td>\n",
       "      <td>2528</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>778</td>\n",
       "      <td>0.625000</td>\n",
       "      <td>48</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>800</th>\n",
       "      <td>Erminie</td>\n",
       "      <td>Rabidge</td>\n",
       "      <td>Female</td>\n",
       "      <td>64</td>\n",
       "      <td>1982-03-09</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Manufacturing</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>17</td>\n",
       "      <td>1969 Melody Lane</td>\n",
       "      <td>2170</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>801</td>\n",
       "      <td>0.597656</td>\n",
       "      <td>39</td>\n",
       "      <td>40</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>809</th>\n",
       "      <td>Dorolice</td>\n",
       "      <td>Osmon</td>\n",
       "      <td>Female</td>\n",
       "      <td>46</td>\n",
       "      <td>1961-01-15</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Financial Services</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>15</td>\n",
       "      <td>602 Clove Center</td>\n",
       "      <td>3046</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>6</td>\n",
       "      <td>810</td>\n",
       "      <td>0.587500</td>\n",
       "      <td>60</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>813</th>\n",
       "      <td>Dmitri</td>\n",
       "      <td>None</td>\n",
       "      <td>Male</td>\n",
       "      <td>72</td>\n",
       "      <td>1991-02-06</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Financial Services</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>15</td>\n",
       "      <td>4 Mallory Pass</td>\n",
       "      <td>3690</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>4</td>\n",
       "      <td>810</td>\n",
       "      <td>0.587500</td>\n",
       "      <td>30</td>\n",
       "      <td>40</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>832</th>\n",
       "      <td>Leonora</td>\n",
       "      <td>Swetenham</td>\n",
       "      <td>Female</td>\n",
       "      <td>66</td>\n",
       "      <td>1967-10-05</td>\n",
       "      <td>NaN</td>\n",
       "      <td>IT</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>10</td>\n",
       "      <td>660 Hallows Place</td>\n",
       "      <td>2026</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>10</td>\n",
       "      <td>832</td>\n",
       "      <td>0.575000</td>\n",
       "      <td>53</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>873</th>\n",
       "      <td>Babara</td>\n",
       "      <td>Sissel</td>\n",
       "      <td>Female</td>\n",
       "      <td>50</td>\n",
       "      <td>1974-06-08</td>\n",
       "      <td>NaN</td>\n",
       "      <td>IT</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>21</td>\n",
       "      <td>5 Ohio Road</td>\n",
       "      <td>3169</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>10</td>\n",
       "      <td>871</td>\n",
       "      <td>0.541875</td>\n",
       "      <td>46</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>879</th>\n",
       "      <td>Muffin</td>\n",
       "      <td>Bhar</td>\n",
       "      <td>Male</td>\n",
       "      <td>44</td>\n",
       "      <td>1966-04-07</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>19</td>\n",
       "      <td>15 Weeping Birch Crossing</td>\n",
       "      <td>2448</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>4</td>\n",
       "      <td>879</td>\n",
       "      <td>0.537500</td>\n",
       "      <td>55</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>881</th>\n",
       "      <td>Brigg</td>\n",
       "      <td>Himsworth</td>\n",
       "      <td>Male</td>\n",
       "      <td>63</td>\n",
       "      <td>1973-10-10</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Telecommunications</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>9</td>\n",
       "      <td>771 Union Crossing</td>\n",
       "      <td>4570</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>6</td>\n",
       "      <td>882</td>\n",
       "      <td>0.535500</td>\n",
       "      <td>47</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>889</th>\n",
       "      <td>Carr</td>\n",
       "      <td>Hopkynson</td>\n",
       "      <td>Male</td>\n",
       "      <td>64</td>\n",
       "      <td>1971-10-18</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Manufacturing</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>16</td>\n",
       "      <td>5990 Fairfield Pass</td>\n",
       "      <td>2318</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>6</td>\n",
       "      <td>888</td>\n",
       "      <td>0.525000</td>\n",
       "      <td>49</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>899</th>\n",
       "      <td>Penrod</td>\n",
       "      <td>Tomasicchio</td>\n",
       "      <td>Male</td>\n",
       "      <td>5</td>\n",
       "      <td>1968-05-28</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Health</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>19</td>\n",
       "      <td>30 Harper Trail</td>\n",
       "      <td>2318</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>899</td>\n",
       "      <td>0.510000</td>\n",
       "      <td>52</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>907</th>\n",
       "      <td>Dru</td>\n",
       "      <td>Crellim</td>\n",
       "      <td>Female</td>\n",
       "      <td>57</td>\n",
       "      <td>1963-03-04</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>12</td>\n",
       "      <td>90 Morningstar Drive</td>\n",
       "      <td>3030</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>7</td>\n",
       "      <td>904</td>\n",
       "      <td>0.500000</td>\n",
       "      <td>58</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>910</th>\n",
       "      <td>Aleece</td>\n",
       "      <td>Feige</td>\n",
       "      <td>Female</td>\n",
       "      <td>49</td>\n",
       "      <td>1975-09-16</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Manufacturing</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>18</td>\n",
       "      <td>2030 Anderson Lane</td>\n",
       "      <td>2141</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>10</td>\n",
       "      <td>904</td>\n",
       "      <td>0.500000</td>\n",
       "      <td>45</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>914</th>\n",
       "      <td>Launce</td>\n",
       "      <td>Gale</td>\n",
       "      <td>Male</td>\n",
       "      <td>86</td>\n",
       "      <td>1939-01-15</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>21</td>\n",
       "      <td>4 Fordem Avenue</td>\n",
       "      <td>2777</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>913</td>\n",
       "      <td>0.499375</td>\n",
       "      <td>82</td>\n",
       "      <td>90</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>923</th>\n",
       "      <td>Wilone</td>\n",
       "      <td>Champley</td>\n",
       "      <td>Female</td>\n",
       "      <td>22</td>\n",
       "      <td>1983-11-06</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Manufacturing</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>17</td>\n",
       "      <td>9346 Lyons Point</td>\n",
       "      <td>2077</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>10</td>\n",
       "      <td>924</td>\n",
       "      <td>0.488750</td>\n",
       "      <td>37</td>\n",
       "      <td>40</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>929</th>\n",
       "      <td>Diane</td>\n",
       "      <td>Furman</td>\n",
       "      <td>Female</td>\n",
       "      <td>67</td>\n",
       "      <td>1993-08-11</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Manufacturing</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>13</td>\n",
       "      <td>6660 Riverside Circle</td>\n",
       "      <td>3013</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>930</td>\n",
       "      <td>0.478125</td>\n",
       "      <td>27</td>\n",
       "      <td>30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>952</th>\n",
       "      <td>Candy</td>\n",
       "      <td>None</td>\n",
       "      <td>Female</td>\n",
       "      <td>23</td>\n",
       "      <td>1977-12-08</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Financial Services</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>6</td>\n",
       "      <td>59252 Maryland Drive</td>\n",
       "      <td>3500</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>3</td>\n",
       "      <td>951</td>\n",
       "      <td>0.450500</td>\n",
       "      <td>43</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>953</th>\n",
       "      <td>Noami</td>\n",
       "      <td>Cokly</td>\n",
       "      <td>Female</td>\n",
       "      <td>74</td>\n",
       "      <td>1962-09-17</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Manufacturing</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>15</td>\n",
       "      <td>2886 Buena Vista Terrace</td>\n",
       "      <td>2038</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>11</td>\n",
       "      <td>954</td>\n",
       "      <td>0.450000</td>\n",
       "      <td>58</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>971</th>\n",
       "      <td>Frieda</td>\n",
       "      <td>Tavinor</td>\n",
       "      <td>Female</td>\n",
       "      <td>43</td>\n",
       "      <td>1999-03-04</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>10</td>\n",
       "      <td>7 Mallory Lane</td>\n",
       "      <td>3064</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>6</td>\n",
       "      <td>972</td>\n",
       "      <td>0.430000</td>\n",
       "      <td>22</td>\n",
       "      <td>30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>972</th>\n",
       "      <td>Ellwood</td>\n",
       "      <td>Budden</td>\n",
       "      <td>Male</td>\n",
       "      <td>82</td>\n",
       "      <td>1998-06-03</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Health</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>11</td>\n",
       "      <td>79907 Randy Center</td>\n",
       "      <td>2192</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>10</td>\n",
       "      <td>972</td>\n",
       "      <td>0.430000</td>\n",
       "      <td>22</td>\n",
       "      <td>30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>989</th>\n",
       "      <td>Kellen</td>\n",
       "      <td>Pawelski</td>\n",
       "      <td>Female</td>\n",
       "      <td>83</td>\n",
       "      <td>1945-07-26</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Manufacturing</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>11</td>\n",
       "      <td>125 Manufacturers Parkway</td>\n",
       "      <td>2193</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>988</td>\n",
       "      <td>0.399500</td>\n",
       "      <td>75</td>\n",
       "      <td>80</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>105 rows × 20 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "     first_name    last_name  gender  past_3_years_bike_related_purchases  \\\n",
       "15        Dukie        Swire    Male                                   88   \n",
       "25       Rourke     Gillbard    Male                                   11   \n",
       "29        Rhona    De Freyne  Female                                   45   \n",
       "30      Sharron    Claibourn  Female                                   62   \n",
       "37     Mitchell     MacCague    Male                                   58   \n",
       "38        Garik     Whitwell    Male                                   44   \n",
       "39      Antonin        Britt    Male                                   64   \n",
       "40        Vinny      Incogna  Female                                   73   \n",
       "42        Neile       Argent  Female                                   79   \n",
       "44       Brooke       Arling    Male                                   76   \n",
       "50     Heinrick    Shilstone    Male                                   60   \n",
       "53       Odessa    Mc Andrew  Female                                   97   \n",
       "74      Mabelle   Wellbelove  Female                                   76   \n",
       "82       Esther       Rooson  Female                                   14   \n",
       "92   Andromache   Bonafacino  Female                                   84   \n",
       "94         Nobe    McAughtry    Male                                   25   \n",
       "95         Jehu    Prestedge    Male                                   91   \n",
       "109      Michal        Bryan  Female                                    1   \n",
       "115    Frederik        Milan    Male                                   45   \n",
       "125    Elsworth       Abbitt    Male                                   71   \n",
       "132    Sharline        Abyss  Female                                   11   \n",
       "133      Nowell       Preddy    Male                                   29   \n",
       "149  Bernardine     Delmonti  Female                                   39   \n",
       "200     Alfonso       Massel    Male                                   70   \n",
       "201    Engracia        Dobbs  Female                                   84   \n",
       "207      Jeanne        Darte  Female                                   70   \n",
       "211       Abbie       Oldman    Male                                   82   \n",
       "219    Hunfredo      Hayball    Male                                    7   \n",
       "222      Gretna     Thredder  Female                                   62   \n",
       "224     Wallace       Newart    Male                                   91   \n",
       "..          ...          ...     ...                                  ...   \n",
       "668       Cecil         Gant    Male                                   52   \n",
       "689     Willard       Booton    Male                                   69   \n",
       "691      Rockie    MacKibbon    Male                                   42   \n",
       "697     Thaddus        Joder    Male                                   31   \n",
       "703        Suzy      Bussens  Female                                   44   \n",
       "740       Glory     Chilcott  Female                                   49   \n",
       "752      Trudie    Phinnessy  Female                                   45   \n",
       "759       Flore       Cashen  Female                                   79   \n",
       "764       Hagen    MacCarter    Male                                   93   \n",
       "769      Andrea       Pendle  Female                                   86   \n",
       "778        Yuma      Dennick    Male                                   40   \n",
       "800     Erminie      Rabidge  Female                                   64   \n",
       "809    Dorolice        Osmon  Female                                   46   \n",
       "813      Dmitri         None    Male                                   72   \n",
       "832     Leonora    Swetenham  Female                                   66   \n",
       "873      Babara       Sissel  Female                                   50   \n",
       "879      Muffin         Bhar    Male                                   44   \n",
       "881       Brigg    Himsworth    Male                                   63   \n",
       "889        Carr    Hopkynson    Male                                   64   \n",
       "899      Penrod  Tomasicchio    Male                                    5   \n",
       "907         Dru      Crellim  Female                                   57   \n",
       "910      Aleece        Feige  Female                                   49   \n",
       "914      Launce         Gale    Male                                   86   \n",
       "923      Wilone     Champley  Female                                   22   \n",
       "929       Diane       Furman  Female                                   67   \n",
       "952       Candy         None  Female                                   23   \n",
       "953       Noami        Cokly  Female                                   74   \n",
       "971      Frieda      Tavinor  Female                                   43   \n",
       "972     Ellwood       Budden    Male                                   82   \n",
       "989      Kellen     Pawelski  Female                                   83   \n",
       "\n",
       "           DOB job_title job_industry_category     wealth_segment  \\\n",
       "15  1954-03-31       NaN         Manufacturing  Affluent Customer   \n",
       "25  1945-08-03       NaN              Property      Mass Customer   \n",
       "29  1960-11-22       NaN                Health     High Net Worth   \n",
       "30  1980-01-26       NaN    Financial Services     High Net Worth   \n",
       "37  1979-04-11       NaN         Manufacturing      Mass Customer   \n",
       "38  1955-06-13       NaN              Property      Mass Customer   \n",
       "39  1993-08-28       NaN         Manufacturing  Affluent Customer   \n",
       "40  1953-02-13       NaN                Health     High Net Worth   \n",
       "42  1946-10-25       NaN                Retail      Mass Customer   \n",
       "44  1961-12-05       NaN                   NaN     High Net Worth   \n",
       "50  1978-02-11       NaN         Manufacturing  Affluent Customer   \n",
       "53  1981-12-01       NaN              Property      Mass Customer   \n",
       "74  1958-04-21       NaN    Financial Services  Affluent Customer   \n",
       "82  1981-02-22       NaN    Financial Services      Mass Customer   \n",
       "92  1977-09-01       NaN                Retail      Mass Customer   \n",
       "94  1978-12-14       NaN                   NaN      Mass Customer   \n",
       "95  1999-10-20       NaN         Manufacturing     High Net Worth   \n",
       "109 1969-11-09       NaN         Manufacturing      Mass Customer   \n",
       "115 1997-11-13       NaN                Health      Mass Customer   \n",
       "125 1956-02-08       NaN                Health      Mass Customer   \n",
       "132 1960-03-18       NaN                   NaN      Mass Customer   \n",
       "133 1985-07-23       NaN         Manufacturing      Mass Customer   \n",
       "149 1971-03-31       NaN              Property      Mass Customer   \n",
       "200 1940-12-05       NaN                   NaN      Mass Customer   \n",
       "201 1959-04-19       NaN                Health      Mass Customer   \n",
       "207 1955-08-18       NaN                   NaN      Mass Customer   \n",
       "211 1983-11-26       NaN                Health     High Net Worth   \n",
       "219 1994-04-15       NaN                    IT  Affluent Customer   \n",
       "222 1966-01-08       NaN                   NaN      Mass Customer   \n",
       "224 1977-12-06       NaN                    IT      Mass Customer   \n",
       "..         ...       ...                   ...                ...   \n",
       "668 1976-07-16       NaN                   NaN     High Net Worth   \n",
       "689 1938-09-02       NaN                Health     High Net Worth   \n",
       "691 1978-04-20       NaN                   NaN      Mass Customer   \n",
       "697 1957-12-10       NaN         Manufacturing      Mass Customer   \n",
       "703 1973-04-29       NaN    Financial Services      Mass Customer   \n",
       "740 1939-09-09       NaN    Telecommunications     High Net Worth   \n",
       "752 1960-07-04       NaN    Financial Services      Mass Customer   \n",
       "759 1978-06-21       NaN                Health     High Net Worth   \n",
       "764 1983-02-08       NaN         Entertainment  Affluent Customer   \n",
       "769 1938-08-05       NaN                   NaN     High Net Worth   \n",
       "778 1972-11-10       NaN         Manufacturing      Mass Customer   \n",
       "800 1982-03-09       NaN         Manufacturing     High Net Worth   \n",
       "809 1961-01-15       NaN    Financial Services  Affluent Customer   \n",
       "813 1991-02-06       NaN    Financial Services     High Net Worth   \n",
       "832 1967-10-05       NaN                    IT      Mass Customer   \n",
       "873 1974-06-08       NaN                    IT      Mass Customer   \n",
       "879 1966-04-07       NaN                   NaN  Affluent Customer   \n",
       "881 1973-10-10       NaN    Telecommunications      Mass Customer   \n",
       "889 1971-10-18       NaN         Manufacturing  Affluent Customer   \n",
       "899 1968-05-28       NaN                Health     High Net Worth   \n",
       "907 1963-03-04       NaN                   NaN      Mass Customer   \n",
       "910 1975-09-16       NaN         Manufacturing      Mass Customer   \n",
       "914 1939-01-15       NaN                   NaN      Mass Customer   \n",
       "923 1983-11-06       NaN         Manufacturing     High Net Worth   \n",
       "929 1993-08-11       NaN         Manufacturing  Affluent Customer   \n",
       "952 1977-12-08       NaN    Financial Services      Mass Customer   \n",
       "953 1962-09-17       NaN         Manufacturing      Mass Customer   \n",
       "971 1999-03-04       NaN                   NaN  Affluent Customer   \n",
       "972 1998-06-03       NaN                Health      Mass Customer   \n",
       "989 1945-07-26       NaN         Manufacturing     High Net Worth   \n",
       "\n",
       "    deceased_indicator owns_car  tenure                    address  postcode  \\\n",
       "15                   N      Yes       5          64 Granby Parkway      2500   \n",
       "25                   N       No      17          75 Cordelia Trail      4817   \n",
       "29                   N       No       8           11184 East Drive      3056   \n",
       "30                   N      Yes      17         555 Hermina Avenue      2280   \n",
       "37                   N       No      15           240 Acker Avenue      3190   \n",
       "38                   N      Yes      13              04 Dexter Way      3280   \n",
       "39                   N      Yes       8        011 Northland Trail      2160   \n",
       "40                   N       No      10          8 Grayhawk Circle      2756   \n",
       "42                   N       No       8         2548 Arrowood Pass      2024   \n",
       "44                   N       No       6             6 Melby Center      3027   \n",
       "50                   N       No      10              998 Gale Park      3174   \n",
       "53                   N       No       8   31756 Meadow Valley Lane      2232   \n",
       "74                   N      Yes      19             800 Emmet Park      2219   \n",
       "82                   N       No       5            5186 Main Trail      2046   \n",
       "92                   N       No      11        74 Carpenter Street      2015   \n",
       "94                   N       No      12                1 Orin Hill      4510   \n",
       "95                   N      Yes       8         88 Annamark Avenue      2138   \n",
       "109                  N      Yes      16         4275 Bluestem Pass      4000   \n",
       "115                  N       No       5        56 Riverside Street      2546   \n",
       "125                  N      Yes       6         9722 Northport Way      3500   \n",
       "132                  N      Yes      15              367 Bay Point      4011   \n",
       "133                  N       No       9        932 Glendale Avenue      2173   \n",
       "149                  N       No      17     0721 Meadow Ridge Pass      2540   \n",
       "200                  N      Yes      13     6065 Talisman Crossing      3977   \n",
       "201                  N       No      15             72 Eliot Place      2250   \n",
       "207                  N      Yes      11            3 Homewood Park      2756   \n",
       "211                  N      Yes       5              4 North Drive      2168   \n",
       "219                  N       No       3          60461 Esch Avenue      2227   \n",
       "222                  N       No      18       1607 Westridge Drive      2203   \n",
       "224                  N       No      17         29007 Dapin Street      4650   \n",
       "..                 ...      ...     ...                        ...       ...   \n",
       "668                  N      Yes       9        22435 Barnett Court      2145   \n",
       "689                  N      Yes       7      05 Ronald Regan Alley      2121   \n",
       "691                  N      Yes      13        8 Bunker Hill Court      2298   \n",
       "697                  N       No       7           27185 Fisk Drive      2290   \n",
       "703                  N       No      13            25 Oneill Alley      4102   \n",
       "740                  N       No       9        4286 Rowland Circle      4165   \n",
       "752                  N      Yes      15            077 Dennis Lane      3030   \n",
       "759                  N       No      17                4 Vera Pass      2640   \n",
       "764                  N      Yes      15             7 Ramsey Trail      3172   \n",
       "769                  N      Yes      13    31281 Meadow Valley Way      4500   \n",
       "778                  N      Yes       6     89244 Macpherson Trail      2528   \n",
       "800                  N       No      17           1969 Melody Lane      2170   \n",
       "809                  N       No      15           602 Clove Center      3046   \n",
       "813                  N      Yes      15             4 Mallory Pass      3690   \n",
       "832                  N      Yes      10          660 Hallows Place      2026   \n",
       "873                  N      Yes      21                5 Ohio Road      3169   \n",
       "879                  N       No      19  15 Weeping Birch Crossing      2448   \n",
       "881                  N      Yes       9         771 Union Crossing      4570   \n",
       "889                  N       No      16        5990 Fairfield Pass      2318   \n",
       "899                  N       No      19            30 Harper Trail      2318   \n",
       "907                  N       No      12       90 Morningstar Drive      3030   \n",
       "910                  N       No      18         2030 Anderson Lane      2141   \n",
       "914                  N       No      21            4 Fordem Avenue      2777   \n",
       "923                  N       No      17           9346 Lyons Point      2077   \n",
       "929                  N      Yes      13      6660 Riverside Circle      3013   \n",
       "952                  N       No       6       59252 Maryland Drive      3500   \n",
       "953                  N      Yes      15   2886 Buena Vista Terrace      2038   \n",
       "971                  N       No      10             7 Mallory Lane      3064   \n",
       "972                  N      Yes      11         79907 Randy Center      2192   \n",
       "989                  N      Yes      11  125 Manufacturers Parkway      2193   \n",
       "\n",
       "    state    country  property_valuation  Rank     Value  Age  Age Group  \n",
       "15    NSW  Australia                   8    16  1.562500   67         70  \n",
       "25    QLD  Australia                   4    26  1.468750   75         80  \n",
       "29    VIC  Australia                  10    30  1.460938   60         70  \n",
       "30    NSW  Australia                   8    30  1.460938   41         50  \n",
       "37    VIC  Australia                   8    38  1.437500   42         50  \n",
       "38    VIC  Australia                   2    38  1.437500   65         70  \n",
       "39    NSW  Australia                   9    40  1.434375   27         30  \n",
       "40    NSW  Australia                   8    40  1.434375   68         70  \n",
       "42    NSW  Australia                  10    42  1.421875   74         80  \n",
       "44    VIC  Australia                   5    44  1.421094   59         60  \n",
       "50    VIC  Australia                   8    50  1.406250   43         50  \n",
       "53    NSW  Australia                  10    54  1.381250   39         40  \n",
       "74    NSW  Australia                   9    72  1.350000   63         70  \n",
       "82    NSW  Australia                   9    78  1.337500   40         50  \n",
       "92    NSW  Australia                   9    89  1.312500   43         50  \n",
       "94    QLD  Australia                   5    89  1.312500   42         50  \n",
       "95    NSW  Australia                  12    96  1.300000   21         30  \n",
       "109   QLD  Australia                   8   104  1.287500   51         60  \n",
       "115   NSW  Australia                   5   114  1.275000   23         30  \n",
       "125   VIC  Australia                   3   125  1.261719   65         70  \n",
       "132   QLD  Australia                   4   133  1.237500   61         70  \n",
       "133   NSW  Australia                   9   133  1.237500   35         40  \n",
       "149   NSW  Australia                   8   146  1.225000   50         60  \n",
       "200   VIC  Australia                   7   201  1.142187   80         90  \n",
       "201   NSW  Australia                   8   202  1.140625   62         70  \n",
       "207   NSW  Australia                   7   206  1.137500   65         70  \n",
       "211   NSW  Australia                   8   212  1.136875   37         40  \n",
       "219   NSW  Australia                   8   219  1.125000   27         30  \n",
       "222   NSW  Australia                  11   223  1.115625   55         60  \n",
       "224   QLD  Australia                   1   223  1.115625   43         50  \n",
       "..    ...        ...                 ...   ...       ...  ...        ...  \n",
       "668   NSW  Australia                   8   668  0.705500   44         50  \n",
       "689   NSW  Australia                   9   688  0.697000   82         90  \n",
       "691   NSW  Australia                   8   691  0.690625   43         50  \n",
       "697   NSW  Australia                   8   698  0.690000   63         70  \n",
       "703   QLD  Australia                   9   700  0.687500   48         50  \n",
       "740   QLD  Australia                   5   741  0.658750   81         90  \n",
       "752   VIC  Australia                   9   751  0.648125   60         70  \n",
       "759   NSW  Australia                   4   760  0.637500   42         50  \n",
       "764   VIC  Australia                   9   760  0.637500   38         40  \n",
       "769   QLD  Australia                   6   760  0.637500   82         90  \n",
       "778   NSW  Australia                   8   778  0.625000   48         50  \n",
       "800   NSW  Australia                   8   801  0.597656   39         40  \n",
       "809   VIC  Australia                   6   810  0.587500   60         70  \n",
       "813   VIC  Australia                   4   810  0.587500   30         40  \n",
       "832   NSW  Australia                  10   832  0.575000   53         60  \n",
       "873   VIC  Australia                  10   871  0.541875   46         50  \n",
       "879   NSW  Australia                   4   879  0.537500   55         60  \n",
       "881   QLD  Australia                   6   882  0.535500   47         50  \n",
       "889   NSW  Australia                   6   888  0.525000   49         50  \n",
       "899   NSW  Australia                   9   899  0.510000   52         60  \n",
       "907   VIC  Australia                   7   904  0.500000   58         60  \n",
       "910   NSW  Australia                  10   904  0.500000   45         50  \n",
       "914   NSW  Australia                   9   913  0.499375   82         90  \n",
       "923   NSW  Australia                  10   924  0.488750   37         40  \n",
       "929   VIC  Australia                   9   930  0.478125   27         30  \n",
       "952   VIC  Australia                   3   951  0.450500   43         50  \n",
       "953   NSW  Australia                  11   954  0.450000   58         60  \n",
       "971   VIC  Australia                   6   972  0.430000   22         30  \n",
       "972   NSW  Australia                  10   972  0.430000   22         30  \n",
       "989   NSW  Australia                   8   988  0.399500   75         80  \n",
       "\n",
       "[105 rows x 20 columns]"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_cust[new_cust['job_title'].isnull()]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<b>Since percentage of missing values for Job Title is 11%. We will replace null values with Missing.</b>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [],
   "source": [
    "new_cust['job_title'].fillna('Missing', inplace=True, axis=0)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0"
      ]
     },
     "execution_count": 25,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_cust['job_title'].isnull().sum()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Currently there are no missing values for Job Title Column."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2.4 Job Industry Category"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>first_name</th>\n",
       "      <th>last_name</th>\n",
       "      <th>gender</th>\n",
       "      <th>past_3_years_bike_related_purchases</th>\n",
       "      <th>DOB</th>\n",
       "      <th>job_title</th>\n",
       "      <th>job_industry_category</th>\n",
       "      <th>wealth_segment</th>\n",
       "      <th>deceased_indicator</th>\n",
       "      <th>owns_car</th>\n",
       "      <th>tenure</th>\n",
       "      <th>address</th>\n",
       "      <th>postcode</th>\n",
       "      <th>state</th>\n",
       "      <th>country</th>\n",
       "      <th>property_valuation</th>\n",
       "      <th>Rank</th>\n",
       "      <th>Value</th>\n",
       "      <th>Age</th>\n",
       "      <th>Age Group</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>22</th>\n",
       "      <td>Otis</td>\n",
       "      <td>Ottey</td>\n",
       "      <td>Male</td>\n",
       "      <td>26</td>\n",
       "      <td>1998-02-05</td>\n",
       "      <td>Quality Engineer</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>3</td>\n",
       "      <td>1562 Merchant Street</td>\n",
       "      <td>4744</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>4</td>\n",
       "      <td>23</td>\n",
       "      <td>1.500000</td>\n",
       "      <td>23</td>\n",
       "      <td>30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>23</th>\n",
       "      <td>Tabbatha</td>\n",
       "      <td>Averill</td>\n",
       "      <td>Female</td>\n",
       "      <td>5</td>\n",
       "      <td>1977-12-17</td>\n",
       "      <td>Quality Control Specialist</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>13</td>\n",
       "      <td>663 8th Parkway</td>\n",
       "      <td>2257</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>23</td>\n",
       "      <td>1.500000</td>\n",
       "      <td>43</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>33</th>\n",
       "      <td>Mikel</td>\n",
       "      <td>McNess</td>\n",
       "      <td>Male</td>\n",
       "      <td>71</td>\n",
       "      <td>1981-09-22</td>\n",
       "      <td>Nurse</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>9</td>\n",
       "      <td>3 Pleasure Drive</td>\n",
       "      <td>4122</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>32</td>\n",
       "      <td>1.453125</td>\n",
       "      <td>39</td>\n",
       "      <td>40</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>36</th>\n",
       "      <td>Farlie</td>\n",
       "      <td>Petford</td>\n",
       "      <td>Male</td>\n",
       "      <td>76</td>\n",
       "      <td>1968-03-25</td>\n",
       "      <td>Recruiting Manager</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>13</td>\n",
       "      <td>2330 Butternut Trail</td>\n",
       "      <td>2017</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>10</td>\n",
       "      <td>36</td>\n",
       "      <td>1.447656</td>\n",
       "      <td>53</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>43</th>\n",
       "      <td>Corinna</td>\n",
       "      <td>Suggey</td>\n",
       "      <td>Female</td>\n",
       "      <td>52</td>\n",
       "      <td>1966-09-18</td>\n",
       "      <td>Design Engineer</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>9</td>\n",
       "      <td>938 Ilene Road</td>\n",
       "      <td>2761</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>44</td>\n",
       "      <td>1.421094</td>\n",
       "      <td>54</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>44</th>\n",
       "      <td>Brooke</td>\n",
       "      <td>Arling</td>\n",
       "      <td>Male</td>\n",
       "      <td>76</td>\n",
       "      <td>1961-12-05</td>\n",
       "      <td>Missing</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>6</td>\n",
       "      <td>6 Melby Center</td>\n",
       "      <td>3027</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>5</td>\n",
       "      <td>44</td>\n",
       "      <td>1.421094</td>\n",
       "      <td>59</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>47</th>\n",
       "      <td>Jobina</td>\n",
       "      <td>Gobourn</td>\n",
       "      <td>Female</td>\n",
       "      <td>85</td>\n",
       "      <td>1994-12-04</td>\n",
       "      <td>VP Quality Control</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>14</td>\n",
       "      <td>18 Grim Road</td>\n",
       "      <td>4305</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>4</td>\n",
       "      <td>46</td>\n",
       "      <td>1.407812</td>\n",
       "      <td>26</td>\n",
       "      <td>30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>57</th>\n",
       "      <td>Marylou</td>\n",
       "      <td>Kirkup</td>\n",
       "      <td>Female</td>\n",
       "      <td>51</td>\n",
       "      <td>1972-10-31</td>\n",
       "      <td>VP Product Management</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>14</td>\n",
       "      <td>76733 Sunbrook Terrace</td>\n",
       "      <td>3196</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>57</td>\n",
       "      <td>1.375000</td>\n",
       "      <td>48</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>58</th>\n",
       "      <td>Whittaker</td>\n",
       "      <td>None</td>\n",
       "      <td>Male</td>\n",
       "      <td>64</td>\n",
       "      <td>1966-07-29</td>\n",
       "      <td>Media Manager III</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>8</td>\n",
       "      <td>683 Florence Way</td>\n",
       "      <td>3156</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>5</td>\n",
       "      <td>57</td>\n",
       "      <td>1.375000</td>\n",
       "      <td>54</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>69</th>\n",
       "      <td>Vivienne</td>\n",
       "      <td>Crayden</td>\n",
       "      <td>Female</td>\n",
       "      <td>82</td>\n",
       "      <td>1988-09-18</td>\n",
       "      <td>Associate Professor</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>6</td>\n",
       "      <td>69 Algoma Center</td>\n",
       "      <td>4173</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>7</td>\n",
       "      <td>68</td>\n",
       "      <td>1.354688</td>\n",
       "      <td>32</td>\n",
       "      <td>40</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>73</th>\n",
       "      <td>Yancy</td>\n",
       "      <td>Clementet</td>\n",
       "      <td>Male</td>\n",
       "      <td>5</td>\n",
       "      <td>1968-02-16</td>\n",
       "      <td>Mechanical Systems Engineer</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>15</td>\n",
       "      <td>9 Union Center</td>\n",
       "      <td>2147</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>72</td>\n",
       "      <td>1.350000</td>\n",
       "      <td>53</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>85</th>\n",
       "      <td>Pietra</td>\n",
       "      <td>Buckleigh</td>\n",
       "      <td>Female</td>\n",
       "      <td>9</td>\n",
       "      <td>1949-04-29</td>\n",
       "      <td>Engineer III</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>13</td>\n",
       "      <td>387 Dixon Alley</td>\n",
       "      <td>2024</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>10</td>\n",
       "      <td>85</td>\n",
       "      <td>1.325000</td>\n",
       "      <td>72</td>\n",
       "      <td>80</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>87</th>\n",
       "      <td>Kahaleel</td>\n",
       "      <td>None</td>\n",
       "      <td>Male</td>\n",
       "      <td>5</td>\n",
       "      <td>1942-11-01</td>\n",
       "      <td>GIS Technical Architect</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>13</td>\n",
       "      <td>12 Arapahoe Park</td>\n",
       "      <td>2035</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>12</td>\n",
       "      <td>88</td>\n",
       "      <td>1.314844</td>\n",
       "      <td>78</td>\n",
       "      <td>80</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>90</th>\n",
       "      <td>Ludovico</td>\n",
       "      <td>Juster</td>\n",
       "      <td>Male</td>\n",
       "      <td>93</td>\n",
       "      <td>1992-04-19</td>\n",
       "      <td>Environmental Specialist</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>15</td>\n",
       "      <td>1 Talisman Avenue</td>\n",
       "      <td>2125</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>10</td>\n",
       "      <td>89</td>\n",
       "      <td>1.312500</td>\n",
       "      <td>29</td>\n",
       "      <td>30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>93</th>\n",
       "      <td>Levy</td>\n",
       "      <td>Abramamov</td>\n",
       "      <td>Male</td>\n",
       "      <td>94</td>\n",
       "      <td>1952-09-21</td>\n",
       "      <td>Teacher</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>14</td>\n",
       "      <td>6776 Anderson Center</td>\n",
       "      <td>4037</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>89</td>\n",
       "      <td>1.312500</td>\n",
       "      <td>68</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>94</th>\n",
       "      <td>Nobe</td>\n",
       "      <td>McAughtry</td>\n",
       "      <td>Male</td>\n",
       "      <td>25</td>\n",
       "      <td>1978-12-14</td>\n",
       "      <td>Missing</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>12</td>\n",
       "      <td>1 Orin Hill</td>\n",
       "      <td>4510</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>5</td>\n",
       "      <td>89</td>\n",
       "      <td>1.312500</td>\n",
       "      <td>42</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>108</th>\n",
       "      <td>Aridatha</td>\n",
       "      <td>Sephton</td>\n",
       "      <td>Female</td>\n",
       "      <td>95</td>\n",
       "      <td>1961-10-22</td>\n",
       "      <td>Human Resources Assistant II</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>5</td>\n",
       "      <td>422 Forster Circle</td>\n",
       "      <td>2340</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>1</td>\n",
       "      <td>104</td>\n",
       "      <td>1.287500</td>\n",
       "      <td>59</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>112</th>\n",
       "      <td>David</td>\n",
       "      <td>Napoleon</td>\n",
       "      <td>Male</td>\n",
       "      <td>72</td>\n",
       "      <td>1961-11-05</td>\n",
       "      <td>Structural Engineer</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>14</td>\n",
       "      <td>69 Garrison Point</td>\n",
       "      <td>2223</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>11</td>\n",
       "      <td>111</td>\n",
       "      <td>1.281250</td>\n",
       "      <td>59</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>121</th>\n",
       "      <td>Alexander</td>\n",
       "      <td>Broadbent</td>\n",
       "      <td>Male</td>\n",
       "      <td>57</td>\n",
       "      <td>1997-05-28</td>\n",
       "      <td>Desktop Support Technician</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>9</td>\n",
       "      <td>265 Stephen Trail</td>\n",
       "      <td>2209</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>10</td>\n",
       "      <td>120</td>\n",
       "      <td>1.262500</td>\n",
       "      <td>23</td>\n",
       "      <td>30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>122</th>\n",
       "      <td>Teddy</td>\n",
       "      <td>Lagadu</td>\n",
       "      <td>Female</td>\n",
       "      <td>86</td>\n",
       "      <td>1969-07-20</td>\n",
       "      <td>Design Engineer</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>6</td>\n",
       "      <td>2 Charing Cross Trail</td>\n",
       "      <td>2759</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>120</td>\n",
       "      <td>1.262500</td>\n",
       "      <td>51</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>124</th>\n",
       "      <td>Ludvig</td>\n",
       "      <td>Andren</td>\n",
       "      <td>Male</td>\n",
       "      <td>44</td>\n",
       "      <td>1941-02-22</td>\n",
       "      <td>Media Manager III</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>15</td>\n",
       "      <td>578 Waywood Circle</td>\n",
       "      <td>4306</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>5</td>\n",
       "      <td>125</td>\n",
       "      <td>1.261719</td>\n",
       "      <td>80</td>\n",
       "      <td>90</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>131</th>\n",
       "      <td>Farris</td>\n",
       "      <td>Skettles</td>\n",
       "      <td>Male</td>\n",
       "      <td>38</td>\n",
       "      <td>1965-07-03</td>\n",
       "      <td>Payment Adjustment Coordinator</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>13</td>\n",
       "      <td>49309 Redwing Lane</td>\n",
       "      <td>3240</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>7</td>\n",
       "      <td>132</td>\n",
       "      <td>1.248438</td>\n",
       "      <td>55</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>132</th>\n",
       "      <td>Sharline</td>\n",
       "      <td>Abyss</td>\n",
       "      <td>Female</td>\n",
       "      <td>11</td>\n",
       "      <td>1960-03-18</td>\n",
       "      <td>Missing</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>15</td>\n",
       "      <td>367 Bay Point</td>\n",
       "      <td>4011</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>4</td>\n",
       "      <td>133</td>\n",
       "      <td>1.237500</td>\n",
       "      <td>61</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>135</th>\n",
       "      <td>Padraig</td>\n",
       "      <td>Snel</td>\n",
       "      <td>Male</td>\n",
       "      <td>89</td>\n",
       "      <td>1970-11-08</td>\n",
       "      <td>Staff Accountant II</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>19</td>\n",
       "      <td>12683 Mifflin Point</td>\n",
       "      <td>2114</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>7</td>\n",
       "      <td>133</td>\n",
       "      <td>1.237500</td>\n",
       "      <td>50</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>158</th>\n",
       "      <td>Tedra</td>\n",
       "      <td>Goodbanne</td>\n",
       "      <td>Female</td>\n",
       "      <td>4</td>\n",
       "      <td>1978-01-15</td>\n",
       "      <td>Senior Quality Engineer</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>6</td>\n",
       "      <td>8 Debs Road</td>\n",
       "      <td>3934</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>158</td>\n",
       "      <td>1.187500</td>\n",
       "      <td>43</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>159</th>\n",
       "      <td>Roberto</td>\n",
       "      <td>Harme</td>\n",
       "      <td>Male</td>\n",
       "      <td>27</td>\n",
       "      <td>1951-06-11</td>\n",
       "      <td>Environmental Tech</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>10</td>\n",
       "      <td>101 Starling Pass</td>\n",
       "      <td>2564</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>158</td>\n",
       "      <td>1.187500</td>\n",
       "      <td>69</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>163</th>\n",
       "      <td>Fonsie</td>\n",
       "      <td>Levane</td>\n",
       "      <td>Male</td>\n",
       "      <td>96</td>\n",
       "      <td>1951-07-10</td>\n",
       "      <td>Account Representative III</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>19</td>\n",
       "      <td>83 Armistice Terrace</td>\n",
       "      <td>4011</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>3</td>\n",
       "      <td>163</td>\n",
       "      <td>1.182031</td>\n",
       "      <td>69</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>164</th>\n",
       "      <td>Emilie</td>\n",
       "      <td>Brody</td>\n",
       "      <td>Female</td>\n",
       "      <td>3</td>\n",
       "      <td>1979-05-22</td>\n",
       "      <td>Director of Sales</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>3</td>\n",
       "      <td>5388 Burrows Alley</td>\n",
       "      <td>2073</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>11</td>\n",
       "      <td>163</td>\n",
       "      <td>1.182031</td>\n",
       "      <td>41</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>170</th>\n",
       "      <td>Alvira</td>\n",
       "      <td>Coulman</td>\n",
       "      <td>Female</td>\n",
       "      <td>42</td>\n",
       "      <td>1955-06-05</td>\n",
       "      <td>Account Representative II</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>14</td>\n",
       "      <td>823 Wayridge Trail</td>\n",
       "      <td>2205</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>166</td>\n",
       "      <td>1.175000</td>\n",
       "      <td>65</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>176</th>\n",
       "      <td>Devonne</td>\n",
       "      <td>Alderwick</td>\n",
       "      <td>Female</td>\n",
       "      <td>79</td>\n",
       "      <td>1939-01-29</td>\n",
       "      <td>Research Associate</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>9</td>\n",
       "      <td>534 Lien Lane</td>\n",
       "      <td>3122</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>7</td>\n",
       "      <td>177</td>\n",
       "      <td>1.162500</td>\n",
       "      <td>82</td>\n",
       "      <td>90</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>814</th>\n",
       "      <td>Maddalena</td>\n",
       "      <td>Hencke</td>\n",
       "      <td>Female</td>\n",
       "      <td>61</td>\n",
       "      <td>1952-12-09</td>\n",
       "      <td>Help Desk Operator</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>22</td>\n",
       "      <td>64037 Swallow Crossing</td>\n",
       "      <td>4170</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>5</td>\n",
       "      <td>810</td>\n",
       "      <td>0.587500</td>\n",
       "      <td>68</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>815</th>\n",
       "      <td>Rand</td>\n",
       "      <td>Winchcum</td>\n",
       "      <td>Male</td>\n",
       "      <td>34</td>\n",
       "      <td>2000-04-10</td>\n",
       "      <td>Software Consultant</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>3</td>\n",
       "      <td>4594 Jackson Hill</td>\n",
       "      <td>2146</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>7</td>\n",
       "      <td>810</td>\n",
       "      <td>0.587500</td>\n",
       "      <td>21</td>\n",
       "      <td>30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>822</th>\n",
       "      <td>Brod</td>\n",
       "      <td>Attrey</td>\n",
       "      <td>Male</td>\n",
       "      <td>46</td>\n",
       "      <td>1966-11-05</td>\n",
       "      <td>Budget/Accounting Analyst III</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>14</td>\n",
       "      <td>180 Lakewood Park</td>\n",
       "      <td>2194</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>820</td>\n",
       "      <td>0.584375</td>\n",
       "      <td>54</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>826</th>\n",
       "      <td>Herbert</td>\n",
       "      <td>Henryson</td>\n",
       "      <td>Male</td>\n",
       "      <td>21</td>\n",
       "      <td>1995-10-10</td>\n",
       "      <td>Marketing Manager</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>4</td>\n",
       "      <td>05123 Bobwhite Plaza</td>\n",
       "      <td>2528</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>820</td>\n",
       "      <td>0.584375</td>\n",
       "      <td>25</td>\n",
       "      <td>30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>827</th>\n",
       "      <td>Cristie</td>\n",
       "      <td>Bence</td>\n",
       "      <td>Female</td>\n",
       "      <td>49</td>\n",
       "      <td>2000-04-17</td>\n",
       "      <td>Automation Specialist II</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>9</td>\n",
       "      <td>3413 Schmedeman Court</td>\n",
       "      <td>4122</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>828</td>\n",
       "      <td>0.580000</td>\n",
       "      <td>21</td>\n",
       "      <td>30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>837</th>\n",
       "      <td>Monty</td>\n",
       "      <td>Thomazin</td>\n",
       "      <td>Male</td>\n",
       "      <td>7</td>\n",
       "      <td>1951-09-16</td>\n",
       "      <td>Quality Engineer</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>13</td>\n",
       "      <td>30738 Muir Avenue</td>\n",
       "      <td>3105</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>10</td>\n",
       "      <td>838</td>\n",
       "      <td>0.573750</td>\n",
       "      <td>69</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>838</th>\n",
       "      <td>Briano</td>\n",
       "      <td>Janowski</td>\n",
       "      <td>Male</td>\n",
       "      <td>66</td>\n",
       "      <td>1994-07-17</td>\n",
       "      <td>Analyst Programmer</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>7</td>\n",
       "      <td>3259 Eagan Parkway</td>\n",
       "      <td>2066</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>838</td>\n",
       "      <td>0.573750</td>\n",
       "      <td>26</td>\n",
       "      <td>30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>839</th>\n",
       "      <td>Ginger</td>\n",
       "      <td>None</td>\n",
       "      <td>Male</td>\n",
       "      <td>94</td>\n",
       "      <td>1939-02-19</td>\n",
       "      <td>Human Resources Manager</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>11</td>\n",
       "      <td>160 Fremont Point</td>\n",
       "      <td>2259</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>840</td>\n",
       "      <td>0.571094</td>\n",
       "      <td>82</td>\n",
       "      <td>90</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>840</th>\n",
       "      <td>Logan</td>\n",
       "      <td>Colomb</td>\n",
       "      <td>Male</td>\n",
       "      <td>74</td>\n",
       "      <td>1948-01-01</td>\n",
       "      <td>Recruiter</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>19</td>\n",
       "      <td>266 Lakewood Terrace</td>\n",
       "      <td>2761</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>840</td>\n",
       "      <td>0.571094</td>\n",
       "      <td>73</td>\n",
       "      <td>80</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>841</th>\n",
       "      <td>Nichols</td>\n",
       "      <td>Devinn</td>\n",
       "      <td>Male</td>\n",
       "      <td>47</td>\n",
       "      <td>1979-09-29</td>\n",
       "      <td>Recruiter</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>11</td>\n",
       "      <td>5280 Waxwing Point</td>\n",
       "      <td>2071</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>12</td>\n",
       "      <td>842</td>\n",
       "      <td>0.570000</td>\n",
       "      <td>41</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>846</th>\n",
       "      <td>Rosabelle</td>\n",
       "      <td>Godsmark</td>\n",
       "      <td>Female</td>\n",
       "      <td>60</td>\n",
       "      <td>1995-10-19</td>\n",
       "      <td>Executive Secretary</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>3</td>\n",
       "      <td>4871 Caliangt Hill</td>\n",
       "      <td>4102</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>845</td>\n",
       "      <td>0.563125</td>\n",
       "      <td>25</td>\n",
       "      <td>30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>867</th>\n",
       "      <td>Mycah</td>\n",
       "      <td>Beaston</td>\n",
       "      <td>Male</td>\n",
       "      <td>11</td>\n",
       "      <td>1961-07-31</td>\n",
       "      <td>Environmental Specialist</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>12</td>\n",
       "      <td>2 Mandrake Street</td>\n",
       "      <td>2221</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>11</td>\n",
       "      <td>865</td>\n",
       "      <td>0.550000</td>\n",
       "      <td>59</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>879</th>\n",
       "      <td>Muffin</td>\n",
       "      <td>Bhar</td>\n",
       "      <td>Male</td>\n",
       "      <td>44</td>\n",
       "      <td>1966-04-07</td>\n",
       "      <td>Missing</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>19</td>\n",
       "      <td>15 Weeping Birch Crossing</td>\n",
       "      <td>2448</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>4</td>\n",
       "      <td>879</td>\n",
       "      <td>0.537500</td>\n",
       "      <td>55</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>882</th>\n",
       "      <td>Judi</td>\n",
       "      <td>Cazereau</td>\n",
       "      <td>Female</td>\n",
       "      <td>22</td>\n",
       "      <td>1997-03-03</td>\n",
       "      <td>GIS Technical Architect</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>13</td>\n",
       "      <td>22 Farmco Avenue</td>\n",
       "      <td>3851</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>3</td>\n",
       "      <td>883</td>\n",
       "      <td>0.531250</td>\n",
       "      <td>24</td>\n",
       "      <td>30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>893</th>\n",
       "      <td>Jesse</td>\n",
       "      <td>Alflat</td>\n",
       "      <td>Male</td>\n",
       "      <td>31</td>\n",
       "      <td>1984-09-01</td>\n",
       "      <td>Executive Secretary</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>5</td>\n",
       "      <td>49 Northfield Drive</td>\n",
       "      <td>2145</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>893</td>\n",
       "      <td>0.520625</td>\n",
       "      <td>36</td>\n",
       "      <td>40</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>900</th>\n",
       "      <td>Pancho</td>\n",
       "      <td>Edis</td>\n",
       "      <td>Male</td>\n",
       "      <td>1</td>\n",
       "      <td>1970-12-30</td>\n",
       "      <td>Assistant Professor</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>13</td>\n",
       "      <td>64467 Pankratz Pass</td>\n",
       "      <td>3023</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>7</td>\n",
       "      <td>899</td>\n",
       "      <td>0.510000</td>\n",
       "      <td>50</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>906</th>\n",
       "      <td>Conway</td>\n",
       "      <td>Juarez</td>\n",
       "      <td>Male</td>\n",
       "      <td>27</td>\n",
       "      <td>1967-03-02</td>\n",
       "      <td>Help Desk Technician</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>17</td>\n",
       "      <td>66904 American Ash Hill</td>\n",
       "      <td>4814</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>5</td>\n",
       "      <td>904</td>\n",
       "      <td>0.500000</td>\n",
       "      <td>54</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>907</th>\n",
       "      <td>Dru</td>\n",
       "      <td>Crellim</td>\n",
       "      <td>Female</td>\n",
       "      <td>57</td>\n",
       "      <td>1963-03-04</td>\n",
       "      <td>Missing</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>12</td>\n",
       "      <td>90 Morningstar Drive</td>\n",
       "      <td>3030</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>7</td>\n",
       "      <td>904</td>\n",
       "      <td>0.500000</td>\n",
       "      <td>58</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>913</th>\n",
       "      <td>Hildegarde</td>\n",
       "      <td>Bamb</td>\n",
       "      <td>Female</td>\n",
       "      <td>16</td>\n",
       "      <td>1961-02-10</td>\n",
       "      <td>Help Desk Operator</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>10</td>\n",
       "      <td>5070 Division Parkway</td>\n",
       "      <td>3910</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>913</td>\n",
       "      <td>0.499375</td>\n",
       "      <td>60</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>914</th>\n",
       "      <td>Launce</td>\n",
       "      <td>Gale</td>\n",
       "      <td>Male</td>\n",
       "      <td>86</td>\n",
       "      <td>1939-01-15</td>\n",
       "      <td>Missing</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>21</td>\n",
       "      <td>4 Fordem Avenue</td>\n",
       "      <td>2777</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>913</td>\n",
       "      <td>0.499375</td>\n",
       "      <td>82</td>\n",
       "      <td>90</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>920</th>\n",
       "      <td>Sheilakathryn</td>\n",
       "      <td>Huff</td>\n",
       "      <td>Female</td>\n",
       "      <td>45</td>\n",
       "      <td>1958-05-15</td>\n",
       "      <td>Assistant Manager</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>14</td>\n",
       "      <td>04 Miller Drive</td>\n",
       "      <td>2477</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>6</td>\n",
       "      <td>921</td>\n",
       "      <td>0.490000</td>\n",
       "      <td>63</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>941</th>\n",
       "      <td>Angele</td>\n",
       "      <td>Cadore</td>\n",
       "      <td>Female</td>\n",
       "      <td>5</td>\n",
       "      <td>1954-09-06</td>\n",
       "      <td>Chief Design Engineer</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>7</td>\n",
       "      <td>85894 Amoth Court</td>\n",
       "      <td>4125</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>7</td>\n",
       "      <td>939</td>\n",
       "      <td>0.467500</td>\n",
       "      <td>66</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>950</th>\n",
       "      <td>Liane</td>\n",
       "      <td>Abelevitz</td>\n",
       "      <td>Female</td>\n",
       "      <td>26</td>\n",
       "      <td>1976-11-25</td>\n",
       "      <td>Operator</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>3</td>\n",
       "      <td>85340 Hovde Way</td>\n",
       "      <td>3153</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>7</td>\n",
       "      <td>951</td>\n",
       "      <td>0.450500</td>\n",
       "      <td>44</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>954</th>\n",
       "      <td>Lyndell</td>\n",
       "      <td>Jereatt</td>\n",
       "      <td>Female</td>\n",
       "      <td>14</td>\n",
       "      <td>1994-11-28</td>\n",
       "      <td>Payment Adjustment Coordinator</td>\n",
       "      <td>NaN</td>\n",
       "      <td>High Net Worth</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>13</td>\n",
       "      <td>58770 Monterey Plaza</td>\n",
       "      <td>2122</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>12</td>\n",
       "      <td>954</td>\n",
       "      <td>0.450000</td>\n",
       "      <td>26</td>\n",
       "      <td>30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>957</th>\n",
       "      <td>Rhodie</td>\n",
       "      <td>Gaskall</td>\n",
       "      <td>Female</td>\n",
       "      <td>83</td>\n",
       "      <td>1964-02-01</td>\n",
       "      <td>VP Quality Control</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>9</td>\n",
       "      <td>251 Pierstorff Alley</td>\n",
       "      <td>4170</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "      <td>9</td>\n",
       "      <td>956</td>\n",
       "      <td>0.446250</td>\n",
       "      <td>57</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>959</th>\n",
       "      <td>Blondell</td>\n",
       "      <td>Dibdall</td>\n",
       "      <td>Female</td>\n",
       "      <td>62</td>\n",
       "      <td>1967-01-03</td>\n",
       "      <td>Programmer III</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>4</td>\n",
       "      <td>34 Bunting Pass</td>\n",
       "      <td>3048</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>4</td>\n",
       "      <td>960</td>\n",
       "      <td>0.442000</td>\n",
       "      <td>54</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>971</th>\n",
       "      <td>Frieda</td>\n",
       "      <td>Tavinor</td>\n",
       "      <td>Female</td>\n",
       "      <td>43</td>\n",
       "      <td>1999-03-04</td>\n",
       "      <td>Missing</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>10</td>\n",
       "      <td>7 Mallory Lane</td>\n",
       "      <td>3064</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>6</td>\n",
       "      <td>972</td>\n",
       "      <td>0.430000</td>\n",
       "      <td>22</td>\n",
       "      <td>30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>975</th>\n",
       "      <td>Amby</td>\n",
       "      <td>Bodega</td>\n",
       "      <td>Male</td>\n",
       "      <td>63</td>\n",
       "      <td>1968-06-12</td>\n",
       "      <td>Recruiter</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Affluent Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>17</td>\n",
       "      <td>669 Declaration Street</td>\n",
       "      <td>3810</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "      <td>6</td>\n",
       "      <td>974</td>\n",
       "      <td>0.425000</td>\n",
       "      <td>52</td>\n",
       "      <td>60</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>980</th>\n",
       "      <td>Tyne</td>\n",
       "      <td>Anshell</td>\n",
       "      <td>Female</td>\n",
       "      <td>71</td>\n",
       "      <td>1992-04-08</td>\n",
       "      <td>Mechanical Systems Engineer</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>Yes</td>\n",
       "      <td>3</td>\n",
       "      <td>93 Sutherland Terrace</td>\n",
       "      <td>2560</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>8</td>\n",
       "      <td>979</td>\n",
       "      <td>0.416500</td>\n",
       "      <td>29</td>\n",
       "      <td>30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>983</th>\n",
       "      <td>Augusta</td>\n",
       "      <td>Munns</td>\n",
       "      <td>Female</td>\n",
       "      <td>5</td>\n",
       "      <td>1951-09-17</td>\n",
       "      <td>Quality Control Specialist</td>\n",
       "      <td>NaN</td>\n",
       "      <td>Mass Customer</td>\n",
       "      <td>N</td>\n",
       "      <td>No</td>\n",
       "      <td>21</td>\n",
       "      <td>607 Memorial Avenue</td>\n",
       "      <td>2074</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "      <td>11</td>\n",
       "      <td>983</td>\n",
       "      <td>0.410000</td>\n",
       "      <td>69</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>165 rows × 20 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "        first_name  last_name  gender  past_3_years_bike_related_purchases  \\\n",
       "22            Otis      Ottey    Male                                   26   \n",
       "23        Tabbatha    Averill  Female                                    5   \n",
       "33           Mikel     McNess    Male                                   71   \n",
       "36          Farlie    Petford    Male                                   76   \n",
       "43         Corinna     Suggey  Female                                   52   \n",
       "44          Brooke     Arling    Male                                   76   \n",
       "47          Jobina    Gobourn  Female                                   85   \n",
       "57         Marylou     Kirkup  Female                                   51   \n",
       "58       Whittaker       None    Male                                   64   \n",
       "69        Vivienne    Crayden  Female                                   82   \n",
       "73           Yancy  Clementet    Male                                    5   \n",
       "85          Pietra  Buckleigh  Female                                    9   \n",
       "87        Kahaleel       None    Male                                    5   \n",
       "90        Ludovico     Juster    Male                                   93   \n",
       "93            Levy  Abramamov    Male                                   94   \n",
       "94            Nobe  McAughtry    Male                                   25   \n",
       "108       Aridatha    Sephton  Female                                   95   \n",
       "112          David   Napoleon    Male                                   72   \n",
       "121      Alexander  Broadbent    Male                                   57   \n",
       "122          Teddy     Lagadu  Female                                   86   \n",
       "124         Ludvig     Andren    Male                                   44   \n",
       "131         Farris   Skettles    Male                                   38   \n",
       "132       Sharline      Abyss  Female                                   11   \n",
       "135        Padraig       Snel    Male                                   89   \n",
       "158          Tedra  Goodbanne  Female                                    4   \n",
       "159        Roberto      Harme    Male                                   27   \n",
       "163         Fonsie     Levane    Male                                   96   \n",
       "164         Emilie      Brody  Female                                    3   \n",
       "170         Alvira    Coulman  Female                                   42   \n",
       "176        Devonne  Alderwick  Female                                   79   \n",
       "..             ...        ...     ...                                  ...   \n",
       "814      Maddalena     Hencke  Female                                   61   \n",
       "815           Rand   Winchcum    Male                                   34   \n",
       "822           Brod     Attrey    Male                                   46   \n",
       "826        Herbert   Henryson    Male                                   21   \n",
       "827        Cristie      Bence  Female                                   49   \n",
       "837          Monty   Thomazin    Male                                    7   \n",
       "838         Briano   Janowski    Male                                   66   \n",
       "839         Ginger       None    Male                                   94   \n",
       "840          Logan     Colomb    Male                                   74   \n",
       "841        Nichols     Devinn    Male                                   47   \n",
       "846      Rosabelle   Godsmark  Female                                   60   \n",
       "867          Mycah    Beaston    Male                                   11   \n",
       "879         Muffin       Bhar    Male                                   44   \n",
       "882           Judi   Cazereau  Female                                   22   \n",
       "893          Jesse     Alflat    Male                                   31   \n",
       "900         Pancho       Edis    Male                                    1   \n",
       "906         Conway     Juarez    Male                                   27   \n",
       "907            Dru    Crellim  Female                                   57   \n",
       "913     Hildegarde       Bamb  Female                                   16   \n",
       "914         Launce       Gale    Male                                   86   \n",
       "920  Sheilakathryn       Huff  Female                                   45   \n",
       "941         Angele     Cadore  Female                                    5   \n",
       "950          Liane  Abelevitz  Female                                   26   \n",
       "954        Lyndell    Jereatt  Female                                   14   \n",
       "957         Rhodie    Gaskall  Female                                   83   \n",
       "959       Blondell    Dibdall  Female                                   62   \n",
       "971         Frieda    Tavinor  Female                                   43   \n",
       "975           Amby     Bodega    Male                                   63   \n",
       "980           Tyne    Anshell  Female                                   71   \n",
       "983        Augusta      Munns  Female                                    5   \n",
       "\n",
       "           DOB                       job_title job_industry_category  \\\n",
       "22  1998-02-05                Quality Engineer                   NaN   \n",
       "23  1977-12-17      Quality Control Specialist                   NaN   \n",
       "33  1981-09-22                           Nurse                   NaN   \n",
       "36  1968-03-25              Recruiting Manager                   NaN   \n",
       "43  1966-09-18                 Design Engineer                   NaN   \n",
       "44  1961-12-05                         Missing                   NaN   \n",
       "47  1994-12-04              VP Quality Control                   NaN   \n",
       "57  1972-10-31           VP Product Management                   NaN   \n",
       "58  1966-07-29               Media Manager III                   NaN   \n",
       "69  1988-09-18             Associate Professor                   NaN   \n",
       "73  1968-02-16     Mechanical Systems Engineer                   NaN   \n",
       "85  1949-04-29                    Engineer III                   NaN   \n",
       "87  1942-11-01         GIS Technical Architect                   NaN   \n",
       "90  1992-04-19        Environmental Specialist                   NaN   \n",
       "93  1952-09-21                         Teacher                   NaN   \n",
       "94  1978-12-14                         Missing                   NaN   \n",
       "108 1961-10-22    Human Resources Assistant II                   NaN   \n",
       "112 1961-11-05             Structural Engineer                   NaN   \n",
       "121 1997-05-28      Desktop Support Technician                   NaN   \n",
       "122 1969-07-20                 Design Engineer                   NaN   \n",
       "124 1941-02-22               Media Manager III                   NaN   \n",
       "131 1965-07-03  Payment Adjustment Coordinator                   NaN   \n",
       "132 1960-03-18                         Missing                   NaN   \n",
       "135 1970-11-08             Staff Accountant II                   NaN   \n",
       "158 1978-01-15         Senior Quality Engineer                   NaN   \n",
       "159 1951-06-11              Environmental Tech                   NaN   \n",
       "163 1951-07-10      Account Representative III                   NaN   \n",
       "164 1979-05-22               Director of Sales                   NaN   \n",
       "170 1955-06-05       Account Representative II                   NaN   \n",
       "176 1939-01-29              Research Associate                   NaN   \n",
       "..         ...                             ...                   ...   \n",
       "814 1952-12-09              Help Desk Operator                   NaN   \n",
       "815 2000-04-10             Software Consultant                   NaN   \n",
       "822 1966-11-05   Budget/Accounting Analyst III                   NaN   \n",
       "826 1995-10-10               Marketing Manager                   NaN   \n",
       "827 2000-04-17        Automation Specialist II                   NaN   \n",
       "837 1951-09-16                Quality Engineer                   NaN   \n",
       "838 1994-07-17              Analyst Programmer                   NaN   \n",
       "839 1939-02-19         Human Resources Manager                   NaN   \n",
       "840 1948-01-01                       Recruiter                   NaN   \n",
       "841 1979-09-29                       Recruiter                   NaN   \n",
       "846 1995-10-19             Executive Secretary                   NaN   \n",
       "867 1961-07-31        Environmental Specialist                   NaN   \n",
       "879 1966-04-07                         Missing                   NaN   \n",
       "882 1997-03-03         GIS Technical Architect                   NaN   \n",
       "893 1984-09-01             Executive Secretary                   NaN   \n",
       "900 1970-12-30             Assistant Professor                   NaN   \n",
       "906 1967-03-02            Help Desk Technician                   NaN   \n",
       "907 1963-03-04                         Missing                   NaN   \n",
       "913 1961-02-10              Help Desk Operator                   NaN   \n",
       "914 1939-01-15                         Missing                   NaN   \n",
       "920 1958-05-15               Assistant Manager                   NaN   \n",
       "941 1954-09-06           Chief Design Engineer                   NaN   \n",
       "950 1976-11-25                        Operator                   NaN   \n",
       "954 1994-11-28  Payment Adjustment Coordinator                   NaN   \n",
       "957 1964-02-01              VP Quality Control                   NaN   \n",
       "959 1967-01-03                  Programmer III                   NaN   \n",
       "971 1999-03-04                         Missing                   NaN   \n",
       "975 1968-06-12                       Recruiter                   NaN   \n",
       "980 1992-04-08     Mechanical Systems Engineer                   NaN   \n",
       "983 1951-09-17      Quality Control Specialist                   NaN   \n",
       "\n",
       "        wealth_segment deceased_indicator owns_car  tenure  \\\n",
       "22       Mass Customer                  N       No       3   \n",
       "23   Affluent Customer                  N      Yes      13   \n",
       "33       Mass Customer                  N       No       9   \n",
       "36      High Net Worth                  N       No      13   \n",
       "43   Affluent Customer                  N       No       9   \n",
       "44      High Net Worth                  N       No       6   \n",
       "47      High Net Worth                  N      Yes      14   \n",
       "57       Mass Customer                  N       No      14   \n",
       "58       Mass Customer                  N      Yes       8   \n",
       "69      High Net Worth                  N      Yes       6   \n",
       "73      High Net Worth                  N       No      15   \n",
       "85      High Net Worth                  N       No      13   \n",
       "87      High Net Worth                  N       No      13   \n",
       "90   Affluent Customer                  N       No      15   \n",
       "93   Affluent Customer                  N      Yes      14   \n",
       "94       Mass Customer                  N       No      12   \n",
       "108      Mass Customer                  N       No       5   \n",
       "112     High Net Worth                  N       No      14   \n",
       "121      Mass Customer                  N       No       9   \n",
       "122     High Net Worth                  N       No       6   \n",
       "124     High Net Worth                  N      Yes      15   \n",
       "131      Mass Customer                  N      Yes      13   \n",
       "132      Mass Customer                  N      Yes      15   \n",
       "135      Mass Customer                  N       No      19   \n",
       "158      Mass Customer                  N      Yes       6   \n",
       "159     High Net Worth                  N       No      10   \n",
       "163     High Net Worth                  N      Yes      19   \n",
       "164      Mass Customer                  N      Yes       3   \n",
       "170  Affluent Customer                  N       No      14   \n",
       "176     High Net Worth                  N      Yes       9   \n",
       "..                 ...                ...      ...     ...   \n",
       "814     High Net Worth                  N       No      22   \n",
       "815  Affluent Customer                  N       No       3   \n",
       "822      Mass Customer                  N      Yes      14   \n",
       "826      Mass Customer                  N       No       4   \n",
       "827     High Net Worth                  N       No       9   \n",
       "837      Mass Customer                  N      Yes      13   \n",
       "838      Mass Customer                  N       No       7   \n",
       "839      Mass Customer                  N       No      11   \n",
       "840      Mass Customer                  N      Yes      19   \n",
       "841  Affluent Customer                  N       No      11   \n",
       "846      Mass Customer                  N      Yes       3   \n",
       "867     High Net Worth                  N      Yes      12   \n",
       "879  Affluent Customer                  N       No      19   \n",
       "882  Affluent Customer                  N      Yes      13   \n",
       "893     High Net Worth                  N       No       5   \n",
       "900      Mass Customer                  N       No      13   \n",
       "906  Affluent Customer                  N       No      17   \n",
       "907      Mass Customer                  N       No      12   \n",
       "913     High Net Worth                  N      Yes      10   \n",
       "914      Mass Customer                  N       No      21   \n",
       "920     High Net Worth                  N      Yes      14   \n",
       "941      Mass Customer                  N      Yes       7   \n",
       "950      Mass Customer                  N       No       3   \n",
       "954     High Net Worth                  N       No      13   \n",
       "957      Mass Customer                  N      Yes       9   \n",
       "959      Mass Customer                  N       No       4   \n",
       "971  Affluent Customer                  N       No      10   \n",
       "975  Affluent Customer                  N      Yes      17   \n",
       "980      Mass Customer                  N      Yes       3   \n",
       "983      Mass Customer                  N       No      21   \n",
       "\n",
       "                       address  postcode state    country  property_valuation  \\\n",
       "22        1562 Merchant Street      4744   QLD  Australia                   4   \n",
       "23             663 8th Parkway      2257   NSW  Australia                   8   \n",
       "33            3 Pleasure Drive      4122   QLD  Australia                   9   \n",
       "36        2330 Butternut Trail      2017   NSW  Australia                  10   \n",
       "43              938 Ilene Road      2761   NSW  Australia                   8   \n",
       "44              6 Melby Center      3027   VIC  Australia                   5   \n",
       "47                18 Grim Road      4305   QLD  Australia                   4   \n",
       "57      76733 Sunbrook Terrace      3196   VIC  Australia                   9   \n",
       "58            683 Florence Way      3156   VIC  Australia                   5   \n",
       "69            69 Algoma Center      4173   QLD  Australia                   7   \n",
       "73              9 Union Center      2147   NSW  Australia                   9   \n",
       "85             387 Dixon Alley      2024   NSW  Australia                  10   \n",
       "87            12 Arapahoe Park      2035   NSW  Australia                  12   \n",
       "90           1 Talisman Avenue      2125   NSW  Australia                  10   \n",
       "93        6776 Anderson Center      4037   QLD  Australia                   8   \n",
       "94                 1 Orin Hill      4510   QLD  Australia                   5   \n",
       "108         422 Forster Circle      2340   NSW  Australia                   1   \n",
       "112          69 Garrison Point      2223   NSW  Australia                  11   \n",
       "121          265 Stephen Trail      2209   NSW  Australia                  10   \n",
       "122      2 Charing Cross Trail      2759   NSW  Australia                   8   \n",
       "124         578 Waywood Circle      4306   QLD  Australia                   5   \n",
       "131         49309 Redwing Lane      3240   VIC  Australia                   7   \n",
       "132              367 Bay Point      4011   QLD  Australia                   4   \n",
       "135        12683 Mifflin Point      2114   NSW  Australia                   7   \n",
       "158                8 Debs Road      3934   VIC  Australia                   9   \n",
       "159          101 Starling Pass      2564   NSW  Australia                   9   \n",
       "163       83 Armistice Terrace      4011   QLD  Australia                   3   \n",
       "164         5388 Burrows Alley      2073   NSW  Australia                  11   \n",
       "170         823 Wayridge Trail      2205   NSW  Australia                   9   \n",
       "176              534 Lien Lane      3122   VIC  Australia                   7   \n",
       "..                         ...       ...   ...        ...                 ...   \n",
       "814     64037 Swallow Crossing      4170   QLD  Australia                   5   \n",
       "815          4594 Jackson Hill      2146   NSW  Australia                   7   \n",
       "822          180 Lakewood Park      2194   NSW  Australia                   8   \n",
       "826       05123 Bobwhite Plaza      2528   NSW  Australia                   9   \n",
       "827      3413 Schmedeman Court      4122   QLD  Australia                   8   \n",
       "837          30738 Muir Avenue      3105   VIC  Australia                  10   \n",
       "838         3259 Eagan Parkway      2066   NSW  Australia                   8   \n",
       "839          160 Fremont Point      2259   NSW  Australia                   8   \n",
       "840       266 Lakewood Terrace      2761   NSW  Australia                   8   \n",
       "841         5280 Waxwing Point      2071   NSW  Australia                  12   \n",
       "846         4871 Caliangt Hill      4102   QLD  Australia                   8   \n",
       "867          2 Mandrake Street      2221   NSW  Australia                  11   \n",
       "879  15 Weeping Birch Crossing      2448   NSW  Australia                   4   \n",
       "882           22 Farmco Avenue      3851   VIC  Australia                   3   \n",
       "893        49 Northfield Drive      2145   NSW  Australia                   9   \n",
       "900        64467 Pankratz Pass      3023   VIC  Australia                   7   \n",
       "906    66904 American Ash Hill      4814   QLD  Australia                   5   \n",
       "907       90 Morningstar Drive      3030   VIC  Australia                   7   \n",
       "913      5070 Division Parkway      3910   VIC  Australia                   9   \n",
       "914            4 Fordem Avenue      2777   NSW  Australia                   9   \n",
       "920            04 Miller Drive      2477   NSW  Australia                   6   \n",
       "941          85894 Amoth Court      4125   QLD  Australia                   7   \n",
       "950            85340 Hovde Way      3153   VIC  Australia                   7   \n",
       "954       58770 Monterey Plaza      2122   NSW  Australia                  12   \n",
       "957       251 Pierstorff Alley      4170   QLD  Australia                   9   \n",
       "959            34 Bunting Pass      3048   VIC  Australia                   4   \n",
       "971             7 Mallory Lane      3064   VIC  Australia                   6   \n",
       "975     669 Declaration Street      3810   VIC  Australia                   6   \n",
       "980      93 Sutherland Terrace      2560   NSW  Australia                   8   \n",
       "983        607 Memorial Avenue      2074   NSW  Australia                  11   \n",
       "\n",
       "     Rank     Value  Age  Age Group  \n",
       "22     23  1.500000   23         30  \n",
       "23     23  1.500000   43         50  \n",
       "33     32  1.453125   39         40  \n",
       "36     36  1.447656   53         60  \n",
       "43     44  1.421094   54         60  \n",
       "44     44  1.421094   59         60  \n",
       "47     46  1.407812   26         30  \n",
       "57     57  1.375000   48         50  \n",
       "58     57  1.375000   54         60  \n",
       "69     68  1.354688   32         40  \n",
       "73     72  1.350000   53         60  \n",
       "85     85  1.325000   72         80  \n",
       "87     88  1.314844   78         80  \n",
       "90     89  1.312500   29         30  \n",
       "93     89  1.312500   68         70  \n",
       "94     89  1.312500   42         50  \n",
       "108   104  1.287500   59         60  \n",
       "112   111  1.281250   59         60  \n",
       "121   120  1.262500   23         30  \n",
       "122   120  1.262500   51         60  \n",
       "124   125  1.261719   80         90  \n",
       "131   132  1.248438   55         60  \n",
       "132   133  1.237500   61         70  \n",
       "135   133  1.237500   50         60  \n",
       "158   158  1.187500   43         50  \n",
       "159   158  1.187500   69         70  \n",
       "163   163  1.182031   69         70  \n",
       "164   163  1.182031   41         50  \n",
       "170   166  1.175000   65         70  \n",
       "176   177  1.162500   82         90  \n",
       "..    ...       ...  ...        ...  \n",
       "814   810  0.587500   68         70  \n",
       "815   810  0.587500   21         30  \n",
       "822   820  0.584375   54         60  \n",
       "826   820  0.584375   25         30  \n",
       "827   828  0.580000   21         30  \n",
       "837   838  0.573750   69         70  \n",
       "838   838  0.573750   26         30  \n",
       "839   840  0.571094   82         90  \n",
       "840   840  0.571094   73         80  \n",
       "841   842  0.570000   41         50  \n",
       "846   845  0.563125   25         30  \n",
       "867   865  0.550000   59         60  \n",
       "879   879  0.537500   55         60  \n",
       "882   883  0.531250   24         30  \n",
       "893   893  0.520625   36         40  \n",
       "900   899  0.510000   50         60  \n",
       "906   904  0.500000   54         60  \n",
       "907   904  0.500000   58         60  \n",
       "913   913  0.499375   60         70  \n",
       "914   913  0.499375   82         90  \n",
       "920   921  0.490000   63         70  \n",
       "941   939  0.467500   66         70  \n",
       "950   951  0.450500   44         50  \n",
       "954   954  0.450000   26         30  \n",
       "957   956  0.446250   57         60  \n",
       "959   960  0.442000   54         60  \n",
       "971   972  0.430000   22         30  \n",
       "975   974  0.425000   52         60  \n",
       "980   979  0.416500   29         30  \n",
       "983   983  0.410000   69         70  \n",
       "\n",
       "[165 rows x 20 columns]"
      ]
     },
     "execution_count": 26,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_cust[new_cust['job_industry_category'].isnull()]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<b>Since Percentage of missing Job Industry Category is 16%. We will replace null values with Missing.</b>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [],
   "source": [
    "new_cust['job_industry_category'].fillna('Missing', inplace=True, axis=0)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0"
      ]
     },
     "execution_count": 28,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_cust['job_industry_category'].isnull().sum()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Currently there are no Missing values for Job Industry Category column."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<b>Finally there are no Missing Values in the dataset.</b>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "first_name                             0\n",
       "last_name                              0\n",
       "gender                                 0\n",
       "past_3_years_bike_related_purchases    0\n",
       "DOB                                    0\n",
       "job_title                              0\n",
       "job_industry_category                  0\n",
       "wealth_segment                         0\n",
       "deceased_indicator                     0\n",
       "owns_car                               0\n",
       "tenure                                 0\n",
       "address                                0\n",
       "postcode                               0\n",
       "state                                  0\n",
       "country                                0\n",
       "property_valuation                     0\n",
       "Rank                                   0\n",
       "Value                                  0\n",
       "Age                                    0\n",
       "Age Group                              0\n",
       "dtype: int64"
      ]
     },
     "execution_count": 29,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_cust.isnull().sum()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total records after removing Missing Values: 983\n"
     ]
    }
   ],
   "source": [
    "print(\"Total records after removing Missing Values: {}\".format(new_cust.shape[0]))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 3. Inconsistency Check in Data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We will check whether there is inconsistent data / typo error data is present in the categorical columns.<br>\n",
    "The columns to be checked are <b>'gender', 'wealth_segment' ,'deceased_indicator', 'owns_car'</b>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.1 Gender"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "There is <b>no inconsistent data</b> in <b>gender</b> column."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Female    513\n",
       "Male      470\n",
       "Name: gender, dtype: int64"
      ]
     },
     "execution_count": 31,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_cust['gender'].value_counts()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.2 Wealth Segment"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "There is <b>no inconsistent data</b> in <b>wealth_segment</b> column."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Mass Customer        499\n",
       "High Net Worth       249\n",
       "Affluent Customer    235\n",
       "Name: wealth_segment, dtype: int64"
      ]
     },
     "execution_count": 32,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_cust['wealth_segment'].value_counts()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.3 Deceased Indicator"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "There is <b>no inconsistent data</b> in <b>deceased_indicator</b> column."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "N    983\n",
       "Name: deceased_indicator, dtype: int64"
      ]
     },
     "execution_count": 33,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_cust['deceased_indicator'].value_counts()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.4 Owns a Car"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "There is <b>no inconsistent data</b> in <b>owns_car</b> column."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "No     497\n",
       "Yes    486\n",
       "Name: owns_car, dtype: int64"
      ]
     },
     "execution_count": 34,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_cust['owns_car'].value_counts()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.5 State"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "There is <b>no inconsistent data</b> in <b>state</b> column."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "NSW    499\n",
       "VIC    258\n",
       "QLD    226\n",
       "Name: state, dtype: int64"
      ]
     },
     "execution_count": 35,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_cust['state'].value_counts()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.6 Country"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "There is <b>no inconsistent data</b> in <b>country</b> column."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Australia    983\n",
       "Name: country, dtype: int64"
      ]
     },
     "execution_count": 36,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_cust['country'].value_counts()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.7 Postcode"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "There is <b>no inconsistent data</b> in <b>postcode</b> column."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>postcode</th>\n",
       "      <th>state</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>164</th>\n",
       "      <td>2073</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>202</th>\n",
       "      <td>2300</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>616</th>\n",
       "      <td>2049</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>204</th>\n",
       "      <td>2429</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>615</th>\n",
       "      <td>2070</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>208</th>\n",
       "      <td>2144</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>213</th>\n",
       "      <td>2165</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>608</th>\n",
       "      <td>2477</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>216</th>\n",
       "      <td>2444</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>601</th>\n",
       "      <td>2103</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>222</th>\n",
       "      <td>2203</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>223</th>\n",
       "      <td>2446</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>599</th>\n",
       "      <td>2096</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>593</th>\n",
       "      <td>2753</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>198</th>\n",
       "      <td>2448</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>227</th>\n",
       "      <td>2099</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>231</th>\n",
       "      <td>2007</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>233</th>\n",
       "      <td>2011</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>588</th>\n",
       "      <td>2539</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>236</th>\n",
       "      <td>2281</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>237</th>\n",
       "      <td>2224</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>583</th>\n",
       "      <td>2574</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>580</th>\n",
       "      <td>2028</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>571</th>\n",
       "      <td>2258</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>566</th>\n",
       "      <td>2030</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>565</th>\n",
       "      <td>2142</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>564</th>\n",
       "      <td>2567</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>253</th>\n",
       "      <td>2166</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>558</th>\n",
       "      <td>2158</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>228</th>\n",
       "      <td>2430</td>\n",
       "      <td>NSW</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>158</th>\n",
       "      <td>3934</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>153</th>\n",
       "      <td>3201</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>148</th>\n",
       "      <td>3977</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>684</th>\n",
       "      <td>3860</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>194</th>\n",
       "      <td>3195</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>195</th>\n",
       "      <td>3687</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>613</th>\n",
       "      <td>3782</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>212</th>\n",
       "      <td>3021</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>277</th>\n",
       "      <td>3804</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>275</th>\n",
       "      <td>3976</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>537</th>\n",
       "      <td>3028</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>538</th>\n",
       "      <td>3185</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>270</th>\n",
       "      <td>3199</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>544</th>\n",
       "      <td>3200</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>260</th>\n",
       "      <td>3103</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>556</th>\n",
       "      <td>3335</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>256</th>\n",
       "      <td>3206</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>139</th>\n",
       "      <td>3081</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>255</th>\n",
       "      <td>3031</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>567</th>\n",
       "      <td>3177</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>242</th>\n",
       "      <td>3004</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>579</th>\n",
       "      <td>3133</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>240</th>\n",
       "      <td>3170</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>584</th>\n",
       "      <td>3585</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>585</th>\n",
       "      <td>3677</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>234</th>\n",
       "      <td>3429</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>589</th>\n",
       "      <td>3037</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>604</th>\n",
       "      <td>3129</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>245</th>\n",
       "      <td>3134</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>341</th>\n",
       "      <td>3163</td>\n",
       "      <td>VIC</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>515 rows × 2 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "     postcode state\n",
       "164      2073   NSW\n",
       "202      2300   NSW\n",
       "616      2049   NSW\n",
       "204      2429   NSW\n",
       "615      2070   NSW\n",
       "208      2144   NSW\n",
       "213      2165   NSW\n",
       "608      2477   NSW\n",
       "216      2444   NSW\n",
       "601      2103   NSW\n",
       "222      2203   NSW\n",
       "223      2446   NSW\n",
       "599      2096   NSW\n",
       "593      2753   NSW\n",
       "198      2448   NSW\n",
       "227      2099   NSW\n",
       "231      2007   NSW\n",
       "233      2011   NSW\n",
       "588      2539   NSW\n",
       "236      2281   NSW\n",
       "237      2224   NSW\n",
       "583      2574   NSW\n",
       "580      2028   NSW\n",
       "571      2258   NSW\n",
       "566      2030   NSW\n",
       "565      2142   NSW\n",
       "564      2567   NSW\n",
       "253      2166   NSW\n",
       "558      2158   NSW\n",
       "228      2430   NSW\n",
       "..        ...   ...\n",
       "158      3934   VIC\n",
       "153      3201   VIC\n",
       "148      3977   VIC\n",
       "684      3860   VIC\n",
       "194      3195   VIC\n",
       "195      3687   VIC\n",
       "613      3782   VIC\n",
       "212      3021   VIC\n",
       "277      3804   VIC\n",
       "275      3976   VIC\n",
       "537      3028   VIC\n",
       "538      3185   VIC\n",
       "270      3199   VIC\n",
       "544      3200   VIC\n",
       "260      3103   VIC\n",
       "556      3335   VIC\n",
       "256      3206   VIC\n",
       "139      3081   VIC\n",
       "255      3031   VIC\n",
       "567      3177   VIC\n",
       "242      3004   VIC\n",
       "579      3133   VIC\n",
       "240      3170   VIC\n",
       "584      3585   VIC\n",
       "585      3677   VIC\n",
       "234      3429   VIC\n",
       "589      3037   VIC\n",
       "604      3129   VIC\n",
       "245      3134   VIC\n",
       "341      3163   VIC\n",
       "\n",
       "[515 rows x 2 columns]"
      ]
     },
     "execution_count": 37,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_cust[['postcode', 'state']].drop_duplicates().sort_values('state')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.8 Address"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "There is <b>no inconsistent data</b> in <b>address</b> column."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>address</th>\n",
       "      <th>postcode</th>\n",
       "      <th>state</th>\n",
       "      <th>country</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>721</th>\n",
       "      <td>0 Bay Drive</td>\n",
       "      <td>2750</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>138</th>\n",
       "      <td>0 Dexter Parkway</td>\n",
       "      <td>2380</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>624</th>\n",
       "      <td>0 Emmet Trail</td>\n",
       "      <td>4128</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>300</th>\n",
       "      <td>0 Esker Avenue</td>\n",
       "      <td>4019</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>685</th>\n",
       "      <td>0 Express Lane</td>\n",
       "      <td>2142</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>546</th>\n",
       "      <td>0 Kipling Way</td>\n",
       "      <td>2289</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>644</th>\n",
       "      <td>0 Larry Park</td>\n",
       "      <td>3175</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>305</th>\n",
       "      <td>0 Mayfield Parkway</td>\n",
       "      <td>4272</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>99</th>\n",
       "      <td>0 Meadow Ridge Street</td>\n",
       "      <td>3173</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>469</th>\n",
       "      <td>0 Memorial Road</td>\n",
       "      <td>3109</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>78</th>\n",
       "      <td>0 Mockingbird Plaza</td>\n",
       "      <td>2212</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>524</th>\n",
       "      <td>0 Nelson Crossing</td>\n",
       "      <td>3155</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>325</th>\n",
       "      <td>0 Stoughton Park</td>\n",
       "      <td>3000</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>894</th>\n",
       "      <td>0 Summit Center</td>\n",
       "      <td>4019</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>446</th>\n",
       "      <td>0 Union Parkway</td>\n",
       "      <td>3142</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>501</th>\n",
       "      <td>0 Veith Way</td>\n",
       "      <td>2009</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>413</th>\n",
       "      <td>00 Judy Terrace</td>\n",
       "      <td>2035</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>757</th>\n",
       "      <td>00 Southridge Avenue</td>\n",
       "      <td>2036</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>298</th>\n",
       "      <td>00003 Hoffman Pass</td>\n",
       "      <td>2560</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>803</th>\n",
       "      <td>005 Kensington Street</td>\n",
       "      <td>4165</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>456</th>\n",
       "      <td>005 Loeprich Way</td>\n",
       "      <td>4680</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>642</th>\n",
       "      <td>01 Reindahl Circle</td>\n",
       "      <td>4132</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>39</th>\n",
       "      <td>011 Northland Trail</td>\n",
       "      <td>2160</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>333</th>\n",
       "      <td>01124 Dottie Lane</td>\n",
       "      <td>3630</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>214</th>\n",
       "      <td>013 David Junction</td>\n",
       "      <td>4211</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>315</th>\n",
       "      <td>016 Westport Park</td>\n",
       "      <td>3073</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>179</th>\n",
       "      <td>0193 Northland Street</td>\n",
       "      <td>4179</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>353</th>\n",
       "      <td>0197 Sachs Avenue</td>\n",
       "      <td>2747</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>198</th>\n",
       "      <td>02 Hoffman Road</td>\n",
       "      <td>2448</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>392</th>\n",
       "      <td>02 Roth Drive</td>\n",
       "      <td>2022</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>942</th>\n",
       "      <td>955 Burning Wood Way</td>\n",
       "      <td>2478</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>585</th>\n",
       "      <td>95796 Mcbride Drive</td>\n",
       "      <td>3677</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>795</th>\n",
       "      <td>96 Hermina Place</td>\n",
       "      <td>4350</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>451</th>\n",
       "      <td>96 Rutledge Drive</td>\n",
       "      <td>3064</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>72</th>\n",
       "      <td>9608 Heffernan Drive</td>\n",
       "      <td>4068</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>712</th>\n",
       "      <td>96081 Lakewood Hill</td>\n",
       "      <td>4650</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>65</th>\n",
       "      <td>9630 Cottonwood Avenue</td>\n",
       "      <td>2168</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>454</th>\n",
       "      <td>9645 Moose Terrace</td>\n",
       "      <td>2137</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>196</th>\n",
       "      <td>96515 Di Loreto Pass</td>\n",
       "      <td>4109</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>102</th>\n",
       "      <td>966 Sunnyside Center</td>\n",
       "      <td>2390</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>620</th>\n",
       "      <td>97 Merrick Center</td>\n",
       "      <td>2460</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>395</th>\n",
       "      <td>97 Transport Plaza</td>\n",
       "      <td>2097</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>125</th>\n",
       "      <td>9722 Northport Way</td>\n",
       "      <td>3500</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>378</th>\n",
       "      <td>9736 Mitchell Pass</td>\n",
       "      <td>3199</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>610</th>\n",
       "      <td>976 Roxbury Alley</td>\n",
       "      <td>4157</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>633</th>\n",
       "      <td>98 Shoshone Road</td>\n",
       "      <td>4207</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>156</th>\n",
       "      <td>98158 Alpine Point</td>\n",
       "      <td>4212</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>192</th>\n",
       "      <td>98221 Pennsylvania Place</td>\n",
       "      <td>2170</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>286</th>\n",
       "      <td>984 Del Sol Junction</td>\n",
       "      <td>4659</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>761</th>\n",
       "      <td>98454 Dapin Park</td>\n",
       "      <td>4556</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>482</th>\n",
       "      <td>98555 Victoria Hill</td>\n",
       "      <td>2171</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>66</th>\n",
       "      <td>989 Graedel Terrace</td>\n",
       "      <td>4208</td>\n",
       "      <td>QLD</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>960</th>\n",
       "      <td>99 Park Meadow Hill</td>\n",
       "      <td>2570</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>488</th>\n",
       "      <td>99 Quincy Parkway</td>\n",
       "      <td>3630</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>654</th>\n",
       "      <td>99 Sherman Parkway</td>\n",
       "      <td>3083</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>308</th>\n",
       "      <td>99 Westend Court</td>\n",
       "      <td>2287</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>336</th>\n",
       "      <td>990 Hoffman Avenue</td>\n",
       "      <td>3029</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>796</th>\n",
       "      <td>99376 Namekagon Street</td>\n",
       "      <td>3101</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>583</th>\n",
       "      <td>9940 Manley Drive</td>\n",
       "      <td>2574</td>\n",
       "      <td>NSW</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>50</th>\n",
       "      <td>998 Gale Park</td>\n",
       "      <td>3174</td>\n",
       "      <td>VIC</td>\n",
       "      <td>Australia</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>983 rows × 4 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "                      address  postcode state    country\n",
       "721               0 Bay Drive      2750   NSW  Australia\n",
       "138          0 Dexter Parkway      2380   NSW  Australia\n",
       "624             0 Emmet Trail      4128   QLD  Australia\n",
       "300            0 Esker Avenue      4019   QLD  Australia\n",
       "685            0 Express Lane      2142   NSW  Australia\n",
       "546             0 Kipling Way      2289   NSW  Australia\n",
       "644              0 Larry Park      3175   VIC  Australia\n",
       "305        0 Mayfield Parkway      4272   QLD  Australia\n",
       "99      0 Meadow Ridge Street      3173   VIC  Australia\n",
       "469           0 Memorial Road      3109   VIC  Australia\n",
       "78        0 Mockingbird Plaza      2212   NSW  Australia\n",
       "524         0 Nelson Crossing      3155   VIC  Australia\n",
       "325          0 Stoughton Park      3000   VIC  Australia\n",
       "894           0 Summit Center      4019   QLD  Australia\n",
       "446           0 Union Parkway      3142   VIC  Australia\n",
       "501               0 Veith Way      2009   NSW  Australia\n",
       "413           00 Judy Terrace      2035   NSW  Australia\n",
       "757      00 Southridge Avenue      2036   NSW  Australia\n",
       "298        00003 Hoffman Pass      2560   NSW  Australia\n",
       "803     005 Kensington Street      4165   QLD  Australia\n",
       "456          005 Loeprich Way      4680   QLD  Australia\n",
       "642        01 Reindahl Circle      4132   QLD  Australia\n",
       "39        011 Northland Trail      2160   NSW  Australia\n",
       "333         01124 Dottie Lane      3630   VIC  Australia\n",
       "214        013 David Junction      4211   QLD  Australia\n",
       "315         016 Westport Park      3073   VIC  Australia\n",
       "179     0193 Northland Street      4179   QLD  Australia\n",
       "353         0197 Sachs Avenue      2747   NSW  Australia\n",
       "198           02 Hoffman Road      2448   NSW  Australia\n",
       "392             02 Roth Drive      2022   NSW  Australia\n",
       "..                        ...       ...   ...        ...\n",
       "942      955 Burning Wood Way      2478   NSW  Australia\n",
       "585       95796 Mcbride Drive      3677   VIC  Australia\n",
       "795          96 Hermina Place      4350   QLD  Australia\n",
       "451         96 Rutledge Drive      3064   VIC  Australia\n",
       "72       9608 Heffernan Drive      4068   QLD  Australia\n",
       "712       96081 Lakewood Hill      4650   QLD  Australia\n",
       "65     9630 Cottonwood Avenue      2168   NSW  Australia\n",
       "454        9645 Moose Terrace      2137   NSW  Australia\n",
       "196      96515 Di Loreto Pass      4109   QLD  Australia\n",
       "102      966 Sunnyside Center      2390   NSW  Australia\n",
       "620         97 Merrick Center      2460   NSW  Australia\n",
       "395        97 Transport Plaza      2097   NSW  Australia\n",
       "125        9722 Northport Way      3500   VIC  Australia\n",
       "378        9736 Mitchell Pass      3199   VIC  Australia\n",
       "610         976 Roxbury Alley      4157   QLD  Australia\n",
       "633          98 Shoshone Road      4207   QLD  Australia\n",
       "156        98158 Alpine Point      4212   QLD  Australia\n",
       "192  98221 Pennsylvania Place      2170   NSW  Australia\n",
       "286      984 Del Sol Junction      4659   QLD  Australia\n",
       "761          98454 Dapin Park      4556   QLD  Australia\n",
       "482       98555 Victoria Hill      2171   NSW  Australia\n",
       "66        989 Graedel Terrace      4208   QLD  Australia\n",
       "960       99 Park Meadow Hill      2570   NSW  Australia\n",
       "488         99 Quincy Parkway      3630   VIC  Australia\n",
       "654        99 Sherman Parkway      3083   VIC  Australia\n",
       "308          99 Westend Court      2287   NSW  Australia\n",
       "336        990 Hoffman Avenue      3029   VIC  Australia\n",
       "796    99376 Namekagon Street      3101   VIC  Australia\n",
       "583         9940 Manley Drive      2574   NSW  Australia\n",
       "50              998 Gale Park      3174   VIC  Australia\n",
       "\n",
       "[983 rows x 4 columns]"
      ]
     },
     "execution_count": 38,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_cust[['address', 'postcode','state','country']].sort_values('address')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.9 Tenure"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "There is <b>no inconsistent data</b> in <b>tenure</b> column. The distribution of tenure looks fine."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "count    983.000000\n",
       "mean      11.459817\n",
       "std        5.006123\n",
       "min        1.000000\n",
       "25%        8.000000\n",
       "50%       11.000000\n",
       "75%       15.000000\n",
       "max       22.000000\n",
       "Name: tenure, dtype: float64"
      ]
     },
     "execution_count": 39,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_cust['tenure'].describe()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.axes._subplots.AxesSubplot at 0x245697f5b00>"
      ]
     },
     "execution_count": 44,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAHjCAYAAABih/0TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZgcVaH///epmclkGbJOQnYIJISEJbIFBJLIIoRdBYrtXhFRLioqP+9XRUVBFEWv9yIKekVQweVCiRtrAAkQdsJu2HdIQoAskI2sdX5/9ERjTMiEzKS6pt+v55kn6e7q6U9P18z0Z+rUOSHGiCRJkiSp+iVFB5AkSZIktY4FTpIkSZJKwgInSZIkSSVhgZMkSZKkkrDASZIkSVJJWOAkSZIkqSTqiw6wFq5rIEmSJKnWhbVdWY0FjpkzZxYdQW2oubmZ2bNnFx1DVcB9Qau4L2h17g9axX1Bq9T6vjBw4MB13uYQSkmSJEkqCQucJEmSJJWEBU6SJEmSSsICJ0mSJEkl0apJTNI0nQhcANQBl2RZdt4at48HfgjsCBybZdlVq912InBmy8VvZ1l2WVsElyRJkqRas94jcGma1gEXAQcBo4Hj0jQdvcZmrwAfA363xn17A2cBuwNjgbPSNO218bElSZIkqfa0ZgjlWOC5LMteyLJsGXAFcMTqG2RZ9lKWZY8B+Rr3PRC4OcuyuVmWzQNuBia2QW5JkiRJqjmtGUI5CHh1tcvTqRxRa4213XfQmhulaXoKcApAlmU0Nze38tOrDOrr631NBbgv6B/cF7Q69wet4r6gVdwX1q01BW5tK4DHVn7+Vt03y7KLgYtX3V7Li/Z1RLW+EKP+wX1Bq7gvaHXuD1rFfUGr1Pq+sLELeU8Hhqx2eTAws5WPvTH3lSRJkiStpjVH4KYCI9I0HQbMAI4Fjm/l578R+M5qE5ccAHxlg1NKkiRJktZ/BC7LshXAaVTK2JOVq7LH0zQ9J03TwwHSNN0tTdPpwNHAz9I0fbzlvnOBb1EpgVOBc1qukyRJkiRtoBBja09n22TizJmOsuxIan0Ms/7BfUGruC9ode4PWsV9QavU+r7Qcg7c2uYTadU5cJIkSZKkKmCBkyRJkqSSsMBJkiRJUklY4CRJkiSpJCxwkiRJklQSFjhJkiRJKonWLOQtSSpYPmVS0RH+RTJ+YtERJEmqOR6BkyRJkqSSsMBJkiRJUklY4CRJkiSpJCxwkiRJklQSFjhJkiRJKgkLnCRJkiSVhAVOkiRJkkrCAidJkiRJJWGBkyRJkqSSsMBJkiRJUklY4CRJkiSpJCxwkiRJklQSFjhJkiRJKgkLnCRJkiSVhAVOkiRJkkrCAidJkiRJJWGBkyRJkqSSsMBJkiRJUklY4CRJkiSpJCxwkiRJklQSFjhJkiRJKgkLnCRJkiSVhAVOkiRJkkqivugAkiS1hXzKpKIj/Itk/MSiI0iSOhiPwEmSJElSSVjgJEmSJKkkLHCSJEmSVBIWOEmSJEkqCQucJEmSJJWEBU6SJEmSSsICJ0mSJEklYYGTJEmSpJKwwEmSJElSSVjgJEmSJKkkLHCSJEmSVBIWOEmSJEkqCQucJEmSJJWEBU6SJEmSSsICJ0mSJEklYYGTJEmSpJKwwEmSJElSSVjgJEmSJKkkLHCSJEmSVBIWOEmSJEkqCQucJEmSJJWEBU6SJEmSSsICJ0mSJEklYYGTJEmSpJKwwEmSJElSSVjgJEmSJKkkLHCSJEmSVBIWOEmSJEkqCQucJEmSJJWEBU6SJEmSSsICJ0mSJEklYYGTJEmSpJKwwEmSJElSSVjgJEmSJKkkLHCSJEmSVBIWOEmSJEkqCQucJEmSJJWEBU6SJEmSSsICJ0mSJEklYYGTJEmSpJKwwEmSJElSSVjgJEmSJKkkLHCSJEmSVBIWOEmSJEkqCQucJEmSJJVEfWs2StN0InABUAdckmXZeWvc3ghcDuwCzAGOybLspTRNG4BLgJ1bHuvyLMu+24b5JUmSJKlmrPcIXJqmdcBFwEHAaOC4NE1Hr7HZycC8LMuGA+cD32u5/migMcuyHaiUu/9I03TLNsouSZIkSTWlNUMoxwLPZVn2QpZly4ArgCPW2OYI4LKW/18F7JemaQAi0C1N03qgC7AMmN8mySVJkiSpxrSmwA0CXl3t8vSW69a6TZZlK4C3gT5Uytwi4DXgFeAHWZbN3cjMkiRJklSTWnMOXFjLdbGV24wFVgIDgV7AHWma/jXLshdW3zBN01OAUwCyLKO5ubkVsVQW9fX1vqYC3Bc2xuKmpqIj/IuuG/Fatse+0NG+RrXEnw1axX1Bq7gvrFtrCtx0YMhqlwcDM9exzfSW4ZI9gLnA8cCkLMuWA2+kaXoXsCvwTwUuy7KLgYtbLsbZs2dv6PNQFWtubsbXVOC+sDHyhQuLjvAvFm/Ea9ke+0JH+xrVEn82aBX3Ba1S6/vCwIED13lbawrcVGBEmqbDgBnAsVSK2equBk4E7gGOAiZnWRbTNH0F2DdN098AXYE9gB9u8DOQJEmSJK3/HLiWc9pOA24EnqxclT2epuk5aZoe3rLZpUCfNE2fA74AnNFy/UVAEzCNShH8ZZZlj7Xxc5AkSZKkmhBiXPN0tsLFmTPXHKGpMqv1Q+D6B/eF9y6fMqnoCP8iGT/xPd+3XYZQdrCvUS3xZ4NWcV/QKrW+L7QMoVzbPCOtmoVSkiRJklQFLHCSJEmSVBIWOEmSJEkqCQucJEmSJJWEBU6SJEmSSsICJ0mSJEklYYGTJEmSpJKoLzqAJEmqbYtv+jP5woVFx/g71++TVM08AidJkiRJJWGBkyRJkqSSsMBJkiRJUklY4CRJkiSpJCxwkiRJklQSFjhJkiRJKgkLnCRJkiSVhAVOkiRJkkrCAidJkiRJJWGBkyRJkqSSsMBJkiRJUklY4CRJkiSpJCxwkiRJklQSFjhJkiRJKgkLnCRJkiSVhAVOkiRJkkrCAidJkiRJJWGBkyRJkqSSsMBJkiRJUklY4CRJkiSpJCxwkiRJklQSFjhJkiRJKgkLnCRJkiSVhAVOkiRJkkrCAidJkiRJJWGBkyRJkqSSsMBJkiRJUklY4CRJkiSpJCxwkiRJklQSFjhJkiRJKgkLnCRJkiSVhAVOkiRJkkrCAidJkiRJJWGBkyRJkqSSsMBJkiRJUklY4CRJkiSpJCxwkiRJklQSFjhJkiRJKgkLnCRJkiSVRH3RASRJ5RWXLYVZ04kzX4G358HixfDOInhnMbHlXwA6dYKGToROjdCpkfndu5PXdYJefQi9mqFXH+jVTOjStdgnJElSlbPASZJaJa5YDrNmwJw34K25rLzpL/DGaxDzf2wUEujSteWjG3TtCgRYuACWL6sUvmXLWLJ8GXHxwsrnXf1BOneBvv0J/QfDgCGEAYOh/2DYfBChoWFTPl1JkqqSBU6StE5x0QKY8TJMfxlmTYeVKys3bNYDRowm7DaOMGgoDBwKvftCY2dCCOv9vM3Nzbz52mvw9lyYN4c4bzbMmwPzZhNfn0l88Rl44E5ibKl3IYHNBxKGDIMhW1X+HTqM0L1XOz57SZKqjwVOqjH5lEmFPfbipibyhQv/5fpk/MQC0mhd4uJF8NyT8MrzlVIF0NQdRmwHg7eoHCGrb9jo1y00NEDz5tC8OWurfHHpUnh9BvG1VyvDNKe/THzhaZh6xz+O2vXoBUOGEYYMIy6cD72aYbMehMRTvCVJHZMFTpJUOdL15ix4ehq8/HxlWGS/gbDz+2HwltC9Z6uOrLWl0NgIQ7ciDN3qn7MuWgjTXyS++gK88iLx1ReJTz76j6ODdfXEXn2gd3Ol0PVqhl69CfUOwZQklZ8FTpJqWFy5Al58tlLc5r4JDZ1g5PYwcgdC9x5Fx1ur0K2pkm/kDn+/Li5fTn7dlTBvNsydXfn3xWfhmcdb7hSIm/X4R6lr+ddJUyRJZWOBk6QaFPMcnn8KHr2/MlNkj16w+3gYNrKUk4WEhgZC75ZitnXluhgjLFrwj0I3dw68+Tq89Nzf7xe7dG05QrfaETuHYEqSqpgFTpJqSIyxMiHJw/dUpv3v2x/22h/6D9rkQyTbWwihcu5eU3dYbRhmXLrk7xOm/L3cvTb9H7NpOgRTklTFLHCSVCPi7NfhwXvgjZnQvSdMmFiZAKSDFbf1CY2dof+gykeLuHJlpdC+2xDM7j1XG37ZB3r3JXTuUtCzkCTVKgucJHVwcck7MPVOeOnZyjprY8fDiFGEpK7oaFUj1NVVitm7DsGcDW++Vvk6tojdmirLJ/TpB336WuokSe3OAidJHVSMsXK+19Q7YPky2GEX2G4nQkOnoqOVwnqHYM55ozLxy5w34dUX/3H7Zj2g3wDo25+4zfaVRchr7CinJKn9WOAkqQOKixfBfVNg+ouVo0Pv34fQq0/RsTqEtQ7BXLa0UuTmvglvzILpL8HzT5Hfe1tl0fOtRxFG7UjYfmdCv4GFZZcklZ8FTpI6kBgjvPA0PHAXrFxRWcdt1BhnVWxnoVMjDBhc+diu5XWY/xahZx949gnis48TH7m3sgB53/6E7XchbL9zZTmExs5Fx5cklYgFTpI6iLjkHbh7Msx4uTKE7/37ELr3LDpWTQohQI9eJOMOgHEHABDfmEmc9lDl466bibdeB/UNMPp9hN3GEd43ltDZdekkSe/OAidJHUB8fSbccTMsXQK77g3b7uB5V1Um9BtI2Hcg7HsocfkyePZx4t8eJD54N/GxqcSGTrDjriS7jYcddqkc1ZMkaQ0WOEkqsRgjTHsQHp1amWxj3yMrC1qrqoWGTjB6J8LonYhHfxyef4o4dQrxgbvIH7wbGrsQdtub8IGDCFsMLzquJKmKWOAkqaTiO4vhrr9WFqHecgTsMcEZJksoJAmMGE0YMZp4zCfh6b8R77+98nHnzbDliEqR23UcodGjcpJU6yxwklRCcdYMuPNmWLYU9vgADB/lkMkOINTVVc6JG/0+Ynoy8Z7biLffQPzVj4jZpYQ99yPseyihb/+io0qSCmKBk6QSiTHCU3+DB++qTE+/36GEXg6Z7IhC1ybCfocS9z0Ennm8UuRuvZ54y7WVSU8OOpIweMuiY0qSNjELnCSVRFy5Eu67HZ5/CgYPg733c8hkDQghwMjtCSO3J741h3jz1ZUyd//tMGYsycFHE7YaWXRMSdImYoGTpBKIixfB7ZNg9uuw466w424OmaxBoWcfwtEnEQ8+injLtcTJ15J/94uw7Y4khx1L2Gb7oiNKktqZBU6Sqlx88Rm4/qrK+W7jDyRssXXRkVSw0G0zwuHHEQ/4EHHKjcSb/kz+X1+FHXYl+ci/EwYPKzqiJKmdWOAkqYrl995KvOxCaOwMB33E8930T0LnLoQDPkSccBBx8rXESVeRn3M6YfcJhMOPd7ITSeqALHCSVIVijMRrriBe838wcgfYcVdC5y5Fx1KVCo2NhIOOJI4/kDjpD8RbriFOvZMwYSLh0GMIm/UoOqIkqY0kRQeQJP2zuGI58ZcXEK/5P8Ke+5GcfrblTa0SujWRHHkiybk/I+y5L/G268m/dir5X/9CXLGi6HiSpDZggZOkKhIXLyS/4JvEeyZXhsB97HOE+oaiY6lkQq8+JB89jeTsH8OwbYhXXkr+zc8Rpz1UdDRJ0kaywElSlYhz3iA/78vw7BOEk06vzCroTJPaCGHAEJLTzyY57UzIV5JfcDYrL/w28fWZRUeTJL1HngMnSVUgvvwc+Y+/BcuWkXz+LMKoMUVHUgcRQqisFzd6J+Lka4jXXkl+1mmEDx5ROT+usXPRESVJG8ACJ0kFi49OJb/4+7BZD5IvfIswcGjRkdQBhYYGwoEfIe6xD/EPl1UmO7n/dpJjPgE7vd+jvZJUEq0qcGmaTgQuAOqAS7IsO2+N2xuBy4FdgDnAMVmWvdRy247Az4DuQA7slmXZkrZ6ApJUZvmt1xP/72IYuhXJZ79O6NGr6Ejq4EKPXoSPn04cdwD57/6X/KfnwfY7kxx3CqHfwKLjSZLWY73nwKVpWgdcBBwEjAaOS9N09BqbnQzMy7JsOHA+8L2W+9YDvwFOzbJsO+ADwPI2Sy9JJRXznPz3vyD+7n9hx11Jvvgdy5s2qTBiNMmZ5xOO+QQ89yT5WZ8l/8vviMuWFh1NkvQuWnMEbizwXJZlLwCkaXoFcATwxGrbHAGc3fL/q4AL0zQNwAHAY1mWPQqQZdmcNsotSaUVly0lv/R8eOhuwj6HEI79BCGpKzqWalCoqyPsfzhx172Jv/8l8doriPfeWjkat+NuRceTJK1Fa2ahHAS8utrl6S3XrXWbLMtWAG8DfYBtgJim6Y1pmj6UpumXNj6yJJVXXPA2+X+fCQ/fQzjmZMJxp1jeVLjQszfJJ/+T5D+/DQ2dyH/8LVZedC5x9utFR5MkraE1R+DWdlZzbOU29cDewG7AYuCWNE0fzLLsltU3TNP0FOAUgCzLaG5ubkUslUV9fb2vaRVZ3NRU2GPXJXU0reXxu9bI/rFixiu89b0vw7zZ9PjiuXR+/wdafd8iX7d12ZjXrT1+LnS0r1Eh9t6XuPs4Fl97JQuv/AX5WafR7agT6fah4wkNndrtYZeu42dDUUr3unUgvmfQKu4L69aaAjcdGLLa5cHAmgvIrNpmest5bz2AuS3X355l2WyANE2vB3YG/qnAZVl2MXBxy8U4e/bsDXwaqmbNzc34mlaPfOHCwh67qamJhWt5/MU1sH/EZx4n/8l3IElI/vNcFm41koUb8LyLfN3WZWNet/b4udDRvkaFGjeRZLtdyLNLWfS7i1l0y3Ukx59CGL1Tuzxc13zlWn82FKW0r1sH4HsGrVLr+8LAgeueVKo1QyinAiPSNB2Wpmkn4Fjg6jW2uRo4seX/RwGTsyyLwI3Ajmmadm0pdhP453PnJKnDy6feQX7+16GpO8kZ3ydsNbLoSNJ6hd59qTv1DJLPnw0xkp9/Fvn/fo84t3bfUElSNVhvgWs5p+00KmXsycpV2eNpmp6TpunhLZtdCvRJ0/Q54AvAGS33nQf8D5US+AjwUJZl17X905Ck6hNjJL/hD8SL/wuGbUPyle8T+g0oOpa0QcL2O5Oc/WPCEScQH5tK/o1Pk9/4R+KKFUVHk6SaFGJc83S2wsWZM9ccoakyq/VD4NUmnzKpsMde1xDKZPzEAtK0r7hyJfF3/0ucciNh7HjCxz5PaGh4z5+vyNdtXTbmdWuXIZQd7GtUjeKbs8ivvAQevR8GDCE54VOEkdtv9Oft+tCdVTWEsqO9bmXiewatUuv7QssQyrXNM9KqIZSSpA0Q31lM/uNzKuXt4KMJJ39ho8qbVC1C3/7UnXYmyWlnwrKl5D/4Kvkl/018e17R0SSpZrRmEhNJUivFOW+Q//hbMGs64aOnkYw7oOhIUpsLY8aSjBpDvOEq4qQ/EB+bSjjiBMIHDibUuSyGJLUnj8BJUhuJLzxN/p3/B3Nnk3z+bMubOrTQqZHkiBNIzr4QthpJvOLn5Od+gfj8U0VHk6QOzQInSW0gPnAn+Q++Bo2dK5OVjBpTdCRpkwibD6z8weLUM2DhAvLzvkT+qx8R579VdDRJ6pAcQilJGyHGWBlG9qdfw9bbknzma4TNehQdS9qkQgiwy54k2+1EvC4j3vxn4oN3Vc4B3f/wdl0EXJJqjQVOkt6juGI58dc/Id59C2HsBMLHPusbVdW00LkL4cgTiXvtR/6Hy4h/vJx42w2Ej3yUsNs4QuLAH0naWBY4SXoP4qIF5D/5LjwzjXDYsYTDjqschZBE6D+Yus98jfj038izS4mX/Dfxr1eTpCcTRowuOp4klZp/CpOkDRRfn0n+3S/BC08RTv4CyeHHW96ktQgjdyD52v8QTjod3ppL/v0zWHnRucQZrxQdTZJKyyNwkrQB4jPTKkfeAiRf+LZHE6T1CElC2HNf4i57Vc6Nu+lP5N/8LGGPfQhHHE/o06/oiJJUKhY4SWql/O7JxMsvhL6bk3z2G4R+A4qOJJVGaGwkHHoM8QMHEW/4A3HytcSpUwgTDiIfPLToeJJUGhY4SVqPmOfEv/yOeH0GI3cg+dRXCN2aio4llVJo6k44+iTifocSr72SOPk6FtXXwcgdYfQYQmPnoiNKUlWzwEnSu4jvLCa/9H/g0fsJe3+QcMKphPqGomNJpRd69yV89DTiBz9E8qsLWDHtQXj6b8TR74NtdyR0ckZXSVobC5wkrUN84zXyC78Nr88gHHsKYd9DnKxEamNhwGC6HHgEC155CR69v/Lx5KPE7XaCkTsQGvyDiSStzgInSWsRn3iE/GffhxBITv8mYdSYoiNJHVro3Qz7HEyc/To8OhUevrelyO0M22xHqPctiySBBU6S/kmMkXjL1cTslzBgMMlpZxL69i86llQzQvPmsN+hxDdeqxyNe/AueOIR4g47w/DRhLq6oiNKUqEscJLUIi5fTvzNT4h33wI77UHy8dMJnbsWHUuqSaHfAPjgEcRZMypF7v474PGHiTvsCluPJCQWOUm1yQInSUB8ay75T78LLzxNOOxYwqHHEpKk6FhSzQv9BxE3/xC89io8cj/cextMe4i4464wbBu/TyXVHAucpJoXX3yW/CfnwjuLSU49g7DLnkVHkrSaEAIMHEocMARmvFw5Inf35JYitxtsOdwJhiTVDAucpJqW33NrZXHuHr1IzvgeYfCwoiNJWocQAgzekjhoC3j1BXhkKtx5M0x7kDhmNxiylUVOUodngZNUk+LKlcQ/Xka86c+Vxbn/48uEzboXHUtSK4QQYOjWxMHD4OXn4bGpcPuN0LuZOGYsDNrCIiepw7LASao5cfFC8ov/Cx5/mLDPIYT0ZKcol0ooJAkMG0HcYmt48Rl47AG49Xpo3rxyRG7AEIucpA7HdyySakqcNZ38wnNh9uuEf/8MyfgDi44kaSOFJIGttyUOGwHPP10pcrdcC/0GEMeMJfQfVHRESWozFjhJNSNOe6hy5K2+nuQL3yJss13RkSS1oZDUwYjRxK1GwnNPwt8egJv/Quw/CHZ+P6FPv6IjStJGs8BJ6vBijMS/Xk38/S9h0NDK4ty+kZM6rFBXByO3J269LTzzOEx7CK6/ijh8FLxvd0IX13eUVF4WOEkd2j8tzr3z+0lOOp3QuUvRsVQj8imTio7wL5LxE4uOsMmE+noYPYY4fNvKsMqn/gYvP185P27k9i4GLqmULHCSOqz49rzK4tzPP+Xi3FINC50aYde9iCNGwdS74IG74NkniLvtTRgwpOh4krRBLHCSOqT48vPkF50LixaQnPplwi57FR1JUsFCj97E/Q6F6S9VStxfryFuOQJ229sj85JKwwInqcPJp95J/NUPoak7yZe/Rxi6VdGRJFWJEAIMGUYcOASmPQzTHoTXphPHjoMttnbZAUlVzwInqcOIeU685v+I114JW29L8umvELr3KjqWpCoU6uphzG7EoVvBPZPhjpvgpWHEseOLjiZJ78oCJ6lDiEveIf/F+fDwvYS99iec8ClCQ0PRsSRVudCrD3HikfDko/DI/XDNFeTdexLev69H4yRVJQucpNKLb80h/9E5MP1lwjGfIOx3mG+8JLVaSBLYbifi4C3hnluJv7yA+Mh9JCd+jtCtqeh4kvRPnI5NUqnFGa+Qf/eL8MYsks99nWT/wy1vkt6T0KMXHPhhwtEnwWNTyb91OvH5p4qOJUn/xAInqbTiU4+Rf+/LsDIn+dJ3CNvvUnQkSSUXQiA54MMkXzoPgPy/vkJ+45+IeV5wMkmqcAilpFLK77ud+MsLoN8Aks+fRejTr+hIkjqQsNVIkm/8kPyyC4lX/ZL49N9ITjqdsFn3QvK4KLykVTwCJ6lUYozk1/+eeMl/V2aa/PL3LG+S2kXo2lRZR/L4U+HJR8jP+ZxDKiUVzgInqTRinhP/72fEP/2aMHY8yenfdIIBSe0qhECyz8EkX/kBNHQi/8HXyO+9rehYkmqYBU5SKcSVKyszw916PeGADxNO/oLLBEjaZMLQrUi++gPYaiTx0v8h//NvPC9OUiEscJKqXly+nPxn3yPeeyvhQ/9GOOpjlWm/JWkTCk3dSf6/bxL2/iDxuoz84u8Tly4tOpakGuMkJpKqWly6lPwn34EnHiYc8wmS/Q8vOpKkGhbqG+Cjp8GAwcSrfkU++w2S075G6Nmn6GiSaoR/wpZUteLiReQ/PAuefJRw4mctb5Kqwt+XGvjM12DWDPJz/5M4/cWiY0mqERY4SVUpLpxP/j9fhxefJnzy/5Hs/cGiI0nSPwljxpKccR6EhPy/vuoMlZI2CQucpKoTFy0g/+8zYcbLJJ/+KsluexcdSZLWKgweRvLl86CpO/n53yA++WjRkSR1cBY4SVUlLl5Efv5ZMGsGyWfPJOy4W9GRJOldhT79SL50HjRvTv6jbxIfubfoSJI6MAucpKoRl7xD/qNvwvQXSU49gzB6p6IjSVKrhB69SL74HRiyFflPz3OtOEntxgInqSrEZUvJL/w2vPgMySe/SBjjkTdJ5RK6bUbyhXNgxHbEX5xPftsNRUeS1AFZ4CQVLi5fTv7T78Iz0wgnnU7YZc+iI0nSexI6dyX53Ddg+12Iv/0p+S3XFB1JUgdjgZNUqJivJL/4+zDtIcK/f4Zkjw8UHUmSNkro1Ejy6a/CTnsQr/g5+ZQbi44kqQOxwEkqTIwR7p4Mj9xHOP4/SMYdUHQkSWoTob6e5JNfrByJ+81PyO+9tehIkjoIC5yk4jxyH7z4LOFD/0ayzyFFp5GkNhUaGkg+dQZssz3xlxcQH7y76EiSOgALnKRCxGceh2kPwYjRhIOPLjqOJLWL0KmR5LQzYdg25D//AfGxqUVHklRyFjhJm1yc8TLcPwUGDoWx4wkhFB1JktpN6NyF5HNnweAtyX96not9S9ooFjhJm1ScOxum3AS9+sD4AwiJP4YkdXyhazeS08+GzQeSX/ht4vNPFR1JUkn5zknSJpMvmA+Tr4VOjbDPIYSGTkVHkqRNJjR1r6wT16MX+YXfIs6aUXQkSSVkgZO0ScRlS3nn+qtgxQrY9xBC125FR5KkTS5071U5EhcS8gvOJs6fV3QkSSVjgTVALkwAACAASURBVJPU7mKewx03kb81FyZMJPTqU3QkSSpM6DeQ5LNfh/nzyH/0LeLSJUVHklQi9UUHkFQDHr0fZr5K44QDWTZgcNFp1EbyKZPe830XNzWRL1zYhmmkcgnDtiE55UvkF32H/GffJ/nM1wh1dUXHklQCHoGT1K7iKy9UlgsYPppOo8cUHUeSqkYYM5ZwwqnwtweIv/0pMcaiI0kqAY/ASWo38e15cNct0KcfjB1XdBxJqjrJhInkc98kXv976N2XcOgxRUeSVOUscJLaRVy2DG67AerqK+e9OTRIktYqfOjfYN5s4l9+S97cj2SPfYqOJKmKOYRSUpuLMcLdt8CCt2HCAYRuTUVHkqSqFUIgfPQ0GLkD8bILXSNO0ruywElqe9MegldfhF32JGw+qOg0klT1Qn0Dyalfhl59yH/yHeLcN4uOJKlKWeAktak48xV45D7YcgRsu2PRcSSpNEJTd5LTzoRlS8kvOtflBSStlQVOUpuJixfBnX+Fnr1hjw8QQig6kiSVShg4lOSUL8KrL5H/8oeVdTQlaTUWOEltIsZYmXFyxQoYfwChoaHoSJJUSmGHXQlHfQwevJt47RVFx5FUZZyFUlLbeOIRmDUddp9A6NG76DSSVGrhg0fAzJeJ11xBPmBo0XEkVRGPwEnaaHHOG/DwfTB0Kxgxuug4klR6IQTCCZ+G4aOIv/ohcY6TmkiqsMBJ2ihx+XK442bo0sXz3iSpDYWGBpJPfQWausPtNxCXvFN0JElVwCGUkjbO1Dtg4Xz44BGExs5Fp2kT+ZRJRUeQVKCq+xmwxwdg0p/gjpuJ+x1KSPz7u1TL/Akg6T2LLz4Lzz8F2+9C2Hxg0XEkqUMKffrBHhMq5xk/fG/RcSQVzAIn6T2JC+bDfbdD3/6w465Fx5GkDi1svS1ssx088QjxpeeKjiOpQBY4SRssxgh331K5sPf+DueRpE1h170rfzS7ZzJx3pyi00gqiO+6JG24px6DN16D3fYmNHUvOo0k1YRQVwfjD4SGTpVJTZYuKTqSpAJY4CRtkDj/rcqSAYO2gK1GFh1HkmpK6NqtUuIWLoS7/loZESGppljgJLVazHO4ezLU1blkgCQVJPQbALvtDTNegcemFh1H0iZmgZPUek/9Dd6cVRk62bVb0WkkqXZts11lFMRjDxBnvFJ0GkmbkAVOUqvE+W/BI/fC4C1h2DZFx5GkmhZCgN3HQ8/ecOfNxIULio4kaRNp1ULeaZpOBC4A6oBLsiw7b43bG4HLgV2AOcAxWZa9tNrtQ4EngLOzLPtB20SXtKn8Y+hkPew+waGTklQFQn0DccJEuP4qmDKJeOBHKhOdSOrQ1nsELk3TOuAi4CBgNHBcmqaj19jsZGBelmXDgfOB761x+/nADRsfV1IhnnrMoZOSVIVC956w574w50144M6i40jaBFozhHIs8FyWZS9kWbYMuAI4Yo1tjgAua/n/VcB+aZoGgDRNPwS8ADzeNpElbUrx7XnwyH0OnZSkKhWGbgXb7QTPPE58/qmi40hqZ60pcIOAV1e7PL3lurVuk2XZCuBtoE+apt2ALwPf3Piokja1GCPcc6tDJyWp2r1vd9h8INw3hThvdtFpJLWj1pwDt7Z3bGsuOrKubb4JnJ9l2cI0Tdf5AGmangKcApBlGc3Nza2IpbKor6/3Na0ii5uaWr3tsiceZembs+i8z0E09Nt8ox+7LqmjaS2P37XK9o8N+RrpvVnXvqD2V23fbwBL3R/aRD7xQyz+/WVwx010O/JEQmNjuz5ee+xLvmfQKu4L69aaAjcdGLLa5cHAzHVsMz1N03qgBzAX2B04Kk3T7wM9gTxN0yVZll24+p2zLLsYuLjlYpw9278cdSTNzc34mlaPfOHCVm0X31kM99wGmw9kyaAtWdrK+72bpqYmFq7l8yyusv2jtV8jvXfr2hfU/qrt+w2ga77S/aGNxHEHwE1/ZuHNV8OEie06cqI99iXfM2iVWt8XBg4cuM7bWlPgpgIj0jQdBswAjgWOX2Obq4ETgXuAo4DJWZZFYNyqDdI0PRtYuGZ5k1SlHrgLVix36KQklUjoN4C4857w4F3wxCOVc+MkdSjrPQeu5Zy204AbgScrV2WPp2l6Tpqmh7dsdimVc96eA74AnNFegSW1vzjjFXjpWdh+F0KPXkXHkSRtiFE7wtCt4eF7ibNmFJ1GUhsLMa55Olvh4syZa47QVJnV+iHwapNPmfSut8cVy+GaKyFJ4NBj2nRNoXUNm0vGT2yzx2gL6/saaeM5hLI41fb9BtD1oTvdH9pYXL6ssj7csqVwSNouS8C0x77kewatUuv7QssQyrUOgWrNLJSSasljD8DC+bDHBBeElaSSCg2dYMLEylD4KTcS85VFR5LURixwkv4uzptdOWdi620Jm6+5WogkqUxCz96wxz7w5ix46N6i40hqIxY4SUDLmm/33g6dOsMuexYdR5LUBsKwETByB3jyUeLLzxUdR1IbsMBJqnjmcZj9Ouy6J6Gxc9FpJEltZZc9oXlzuPtW4tvzik4jaSO1ZhkBSR1cfGcxPHwv9B8Mw7YpOo6kdlSVk/S4iHe7CnV1xPEHwnUZ3D6JeNBRhIaGomNJeo88AiepUt5WroCx41zzTZI6oNCtCcYdAPPfgntvowpnIZfUShY4qcbFN2fB80/BqDGu+SZJHVgYMBjGjK2s8/n0tKLjSHqPLHBSDYt5DvdPga7dYIddi44jSWpv2+8Mg7aAB++q/AFPUulY4KRa9uwTMHc27LKn50NIUg0IIcBe+0HXpsr6cEveKTqSpA1kgZNqVFzyDjxyH/QfBFsMLzqOJGkTCY2dYcKBsHQJ3HFzZTSGpNKwwEm16uF7Yfly2M2JSySp1oTefWHseJg1HR6dWnQcSRvAAifVoPjmLHjuSRi1I6Fn76LjSJIKEIaPguGjYNqDxOkvFR1HUitZ4KQaU5m45A7o0g12dOISSappY8dB775w1y3EBW8XnUZSK1jgpFrz3JMw982WiUs6FZ1GklSgUFcP4w+sXJhyI3HFimIDSVovC5xUQ+KihZWJSzYfCFs6cYkkCcJm3SszU86dDVPvKDqOpPWwwEk1JF7zf7BsKey6txOXSJL+LgzeEnbYBZ57kvjsE0XHkfQuLHBSjYivvUq89ToYPorQu7noOJKkarPjbtB/MNx/B3Hum0WnkbQOFjipBsQYya+8BBq7wPt2LzqOJKkKhSSBcR+Ezp3h9huJS5cUHUnSWljgpFrwtwfg8YcJhx1L6Nyl6DSSpCoVOnepTGqyeGFlZsoYi44kaQ0WOKmDiyuWk2e/gM0HEfY5uOg4kqQqF/r2h133ghkvw2MPFB1H0hoscFIHFydfB6/PIDnmZEJ9Q9FxJEllsM32sNVIeGwq8dUXi04jaTUWOKkDi/PfIl57JWy/M2EHF+2WJLVOCAH2mAB9+sGdfyW+NbfoSJJaWOCkDiz+5bewbAlJenLRUSRJJRPq6mHCRKivh9tuIC5bWnQkSVjgpA4rvvIC8Y6bCB84mDBgSNFxJEklFLo1VUrcogVwx83EPC86klTzLHBSB/T3ZQO6NREOO67oOJKkEgv9BsBu42DmK/Do/UXHkWqeBU7qiB66B56ZRjjihMpfTyVJ2ghhm+1gxGiY9hDxpeeKjiPVtPqiA0hqW3HZUvLf/wIGbUEYd2DRcVolnzKp6AiSpPXZbRy8NRfunkzs3rPoNFLN8gic1MHEm/8Cc94gOeYThLq6ouNIkjqIUFdXOR+usRFuvZ44f17RkaSaZIGTOpA4bw7xhqtgpz0Io8YUHUeS1MGELl3hAwfD0iXkP/kucfmyoiNJNccCJ3Ug8Y+Xw8oVJEd/vOgokqQOKvTpC3vtB88/Rbz8ImKMRUeSaooFTuog4gtPE++9lfDBIwh9+xcdR5LUgYUttiYccTzx3luJk/5YdByppjiJidQBxDwnv+Ln0KMX4eCji44jSaoB4ZBjYOarxD9dThwwmPC+3YuOJNUEj8BJHUC8/3Z48RnChz9K6Ny16DiSpBoQQiB87HMwdGvyS/6bOP3FoiNJNcECJ5VcXPIO8Q+XwRbDCe/fp+g4kqQaEjo1kpz2NejSlfzCc4nz3yo6ktThWeCkkouT/gBvzSU59pOExG9pSdKmFXr2IfnM12DBW+QXfpu4bGnRkaQOzXd7UonF2a8Tb/wTYex4wvBRRceRJNWosOUIkpP/E156lviLHxLzvOhIUodlgZNKLL/ql5AEwpEnFh1FklTjws7vJxz1MeKDdxH//Oui40gdlrNQSiUVn54GD95NOPx4Qu++RceRJInwwQ/BG68Rb/gDed8BJOMOKDqS1OFY4KQSivnKyrIBvfsSDvhw0XEkSQIqM1Ny3H8Q57xB/M1PiH36EkbvVHQsqUNxCKVUQvHOv8L0FwlHfYzQ2Fh0HEmS/i7U1ZGc8iUYMIT8f79HnPFK0ZGkDsUCJ5VMXLyI+OffwPDRhF33LjqOJEn/InTpSvLZb0CnRvIfn0N8e17RkaQOwwInlUy87kpYOL+ybEAIRceRJGmtQp++JJ/9Oix4m/xH3yQuWVx0JKlDsMBJJRJnzSDecg1hr/0JW2xddBxJkt5V2GI4yalnwPSXyH96HnHF8qIjSaVngZNKJP/9L6ChE+HD/1Z0FEmSWiXssAvho6fBE48QL/sxMcaiI0ml5iyUUknEaQ/CY1MrE5d071V0HEmSWi3Za3/yeXOIf/kt9Ozj+qXSRrDASSUQV6wgv/JS6DeAsO9hRceRJGmDhUNSeGsOcdIfyHv2Idnv0KIjSaXkEEqpBOLtN8Cs6SRHf5zQ0FB0HEmSNlgIgXD8f8D7dide+XPig3cVHUkqJQucVOXigvnEq38Ho98HY8YWHUeSpPcsJHUkn/x/sNVI8kv+h/jMtKIjSaVjgZOqXLz6d7DkHZL0Ey4bIEkqvdCpkeS0M6F5c/KLznWhb2kDWeCkKhanv0S8fRJhwkGEQUOLjiNJUpsITd1JTj8bGhrJLzibOHd20ZGk0rDASVUqxkh+5SXQtRvhiOOLjiNJUpsKffqRfO4b8M6iykLfixcWHUkqBQucVK0euQ+eeoxw+HGEbpsVnUaSpDYXhm5F8umvwqwZ5Bd9h7hsadGRpKpngZOqUFy+vLJo98ChhAkHFR1HkqR2E0aNIZz0eXhmGm9f8C1inhcdSapqrgMnVaH416vhzVkk/985hLq6ouNIktSukt0nkL89l6W//yWhSzc4xom7pHWxwElVJr41l3hdBmPGEka/r+g4kiRtEskBH6ZxyWIWX3Ml9OhNOOjIDbp/PmVSOyV775LxE4uOoA7IAidVmfinX8OK5STpx4uOIknSJtX0sc/yzuuvEf94GXn3HiR77V90JKnqWOCkKhKff4p49y2EiUcS+g0sOo4kSZtUSBLCSZ8nLpxPvPxCYlN3wpixRceSqoqTmEhVIuYryX/3M+jZh3BIWnQcSZIKEeobSD51BgzZivxn3yc+90TRkaSqYoGTqkScchO88jwh/Tihc5ei40iSVJjQuSvJ58+C3n3Jf/wt4oxXio4kVQ0LnFQF4oL5lXPfRu5A2HXvouNIklS4sFkPktPPhk6N5D88izjnzaIjSVXBAidVgfjnX8OSxSTH/YfTJkuS1CI0b07y+bNh6RLyH36DuGB+0ZGkwlngpILFl54l3nETYd/DCIOGFh1HkqSqEgZvSXLamTDnTfIfn0Nc8k7RkaRCWeCkAsU8r0xcslkPwuHHFR1HkqSqFLbZjuSUL8JLz5H/73nEFSuKjiQVxgInFSjefQu8+AzhqJMIXboWHUeSpKoV3rc74d8/DY8/TPzVBcQ8LzqSVAjXgZMKEhctJP7xchg+mrDHB4qOI0lS1UvGHUA+/y3in38Dm/WE9OOeO66aY4GTChL/8htYuIDk9FP85SNJUiuFg4+GBW8T//oX6N6TcNCRRUeSNikLnFSA+NKzxNtuIOxzCGHoVkXHkSSpNEIIkJ5cKXF/vIy8ew+SvfYvOpa0yVjgpE0s5ivJf/0T6N6LcMQJRceRJKl0QpLASZ8nLpxPvPxCYlP3oiNJm4yTmEibWLz1BnjlecIxnyB07VZ0HEmSSinUN5B86gwYshX5z75PfOO1oiNJm4QFTtqE4ltzKot2b7cTYde9io4jSVKphc5dST5/FvTuC7deT5w3p+hIUruzwEmbULzyUlixguT4U524RJKkNhA260Fy+tlQVw+3XEtcuKDoSFK7ssBJm0ic9iDxgTsJh6SEfgOKjiNJUocRmjeH/Q6FFcvhlmuIS94pOpLUbixw0iYQly0l/93PoP8gwoEfKTqOJEkdTujVB/Y5GBYtgMnXEZcvLzqS1C4scNImEG+4Ct6cRXLCpwgNDUXHkSSpQwqbD4RxB8DcN2HKJGK+suhIUpuzwEntLL42nXjDHwh77EPYdsei40iS1KGFIcNg9wkw81W45zZijEVHktqU68BJ7SjmOflvfgKNjYSjTyo6jiRJNSGMGE1cvAgemwpNm8GYsUVHktpMqwpcmqYTgQuAOuCSLMvOW+P2RuByYBdgDnBMlmUvpWn6QeA8oBOwDPhilmWT2zC/VNXiHTfBM9MIJ36W0L1n0XEkSaodO+5aOR/usQeIXZsII0YXnUhqE+sdQpmmaR1wEXAQMBo4Lk3TNb8DTgbmZVk2HDgf+F7L9bOBw7Is2wE4Efh1WwWXql2cN4f4h1/BqDGEvfYvOo4kSTUlhAB7TICBQ+C+24kzXik6ktQmWnMO3FjguSzLXsiybBlwBXDEGtscAVzW8v+rgP3SNA1Zlj2cZdnMlusfBzq3HK2TOrQYI/lvfworV5D8+2dc802SpAKEpA7GHwg9+8CUG4lz3yw6krTRWlPgBgGvrnZ5est1a90my7IVwNtAnzW2ORJ4OMuype8tqlQe8YG74NH7CUecQOjbv+g4kiTVrNDQCfY9BDo1VpYXWORC3yq31pwDt7ZDB2tO5/Ou26Rpuh2VYZUHrO0B0jQ9BTgFIMsympubWxFLZVFfX19Tr2k+/23mXPlz6oZvS+9jTiLUVddcQYubmgp77LqkjqYCH1/Vw31Bq3N/KKeu7fC7fWPeM7zr77emJlYelrL4T78lufV6un74BEJj5/eYsvXa42tUK2rt/eOGaM07y+nAkNUuDwZmrmOb6Wma1gM9gLkAaZoOBv4EfDTLsufX9gBZll0MXNxyMc6ePbvVT0DVr7m5mVp6TfNf/JC4cD6cfjZz5r1VdJx/kS9cWNhjNzU1sbDAx1f1cF/Q6twfymlxO/xu35j3DOv9/dapM0yYSH7LNSy87irY7zBCXd17eqzWao+vUa2otfePaxo4cOA6b2vNEMqpwIg0TYeladoJOBa4eo1trqYySQnAUcDkLMtimqY9geuAr2RZdtcGJ5dKJj7+MPGeyYQDjyQMHlZ0HEmStJrQfxDsuS+8PhPunuwacSql9Ra4lnPaTgNuBJ6sXJU9nqbpOWmaHt6y2aVAnzRNnwO+AJzRcv1pwHDg62maPtLy0a/Nn4VUBeKSd8h/fRH0H0Q4NC06jiRJWoswbBvYaQ946Vl4+N6i40gbLFThXx7izJlrjtBUmdXKIfD8ip8Tb7mG5EvnVfVaM/mUSYU9tsOktIr7glbn/lBOyfiJbf45N2oI5Qb8fosxwv1T4JnHYex4wsjt39Njrk97fI1qRa28f1yXliGUa53GvLpmV5BKKj71GPGWawj7HlrV5U2SJFXWiIu7jYNFC2HqHcSu3QhDPPVB5dCac+AkvYu4ZDH5r34E/QYSPnLi+u8gSZIKF5IExh0AvZvhjpuJs18vOpLUKhY4aSPF7BcwdzbJSZ8nNLpOvSRJZREaGmCfQ6BLV5h8PXHB/KIjSevlEEppI8S/PUi84ybCgR8hDB/1L7cXeb6ZJElav9ClK3HfQ2DSH+HW64gTP0Lo5B9kVb08Aie9R3HRQvLLfwwDhxKOOL7oOJIk6T0KPXrBhIkw/22YciMxX1l0JGmdLHDSexSvuBgWvE3y8dMJDZ2KjiNJkjZC6D8I9pgAr02HqXe6RpyqlkMopfcgPnQ38d7bCIcdR9hieNFxJElSGwjDRxHnvwWPPwzde8KoMUVHkv6FBU7aQHH+W+S/+SkM3Zpw8NFFx5EkSW1ppz1gwdvwwF3EzXoQBm9ZdCLpnziEUtoAMUbyX18E7yyqDJ2s928gkiR1JCEE2Gs/6N0X7riJOLd2F5NWdbLASRsg3j4JHrmP8OGPEgZtUXQcSZLUDkJ9A+xzMHRqrMxMuXhR0ZGkv7PASa0UZ7xCzC6F7XYi7H940XEkSVI7Cl27VdaIW7YUbrueuGJ50ZEkwAIntUpcvoz85/8FnbuQnHQ6IfFbR5Kkji70/v/bu/MwqaoD/ePfU6yyyeoCCCrigui4b7jgrjHG/WjMguMWo0YzJhkdYxKT0cyYZMyYxJmMURNNXHIMMZoRd0UdBxSXEfc1iggisiOLQJ3fH7fx1yJoi3Tfrq7v53nu01XVVdVv6eXSL+fec/rC7gfAjOnw8L3OTKlWwQt4pCbIo6+Bt96gctb3i7ViJEmqc9UH71jj77mgWzeq8+ev8ff9LMIGG5K3HwGPPwxPjoftdi07kuqcBU76BHniBPK9fyXseyhhqx3KjiNJklraFlvD3Fnw7JPkHj0Jm2xRdiLVMc8Dkz5GnjOL6u9+AQM3JBw1quw4kiSpBCEE2GkPWH8gjH+A/PZbZUdSHXMETm3Gmj6VI+cM9/43LHgPRh5MHncfnvkuSVJ9CpV25D0PhDv+DA/cQT74KEKPnmXHUh1yBE5aleefgqlvwg4jCD17l51GkiSVLHTsVCwvEALcdxt58aKyI6kOWeCklcjvTIUnxsGgjWHosLLjSJKkViJ0XxtGHgzvzStG4pYtKzuS6owFTlpBXrgAHrwTuvWAXfcuznuXJElqENZZH3bdB6ZNgUcecHkBtSivgZMaydUqPHR3sWjnvp8vTpWQJElaQdh4U/K82TDxMejRE4ZvV3Yk1QkLnNTYU4/CtLdgt30IvfqWnUaSJLVmW+8Ic+fAk+PJ3dcmDB5SdiLVAU+hlBrkya/DM0/AJlsQhmxedhxJktTKhRBgt72h37rw8D3kd6eVHUl1wAInAXn+XHj4Xujdt1jnRZIkqQlCu/aw18HQuQuMvZ383ryyI6mNs8Cp7uVlS+GBOyFn2PPA4kAsSZLURGGtLrDPIbB0Kdw/hrzk/bIjqQ2zwKmu5Zzh0Ydg5nQYsW8xNbAkSdKnFHr2hj0PgNkz4aG7i4nRpGZggVN9e2EivPI8DN+esMFGZaeRJEk1LPQfBDvuAW+9AY//b9lx1EZZ4FS38pRJxcF1g41gm53KjiNJktqAsNlw2HxreGEi1bFjyo6jNsgCp7qU58yCB++Cnr1hxH4u1i1Jktac7XeDAYPJN1xBfuaJstOojbHAqe7kxYtg7O1QqcDIgwkdOpQdSZIktSGhUoE99of+g6he8RPyW5PKjqQ2xAKnupKrVXjobpg/F/Y6iNCtR9mRJElSGxQ6dKTyje9Bx05Uf/kj8tzZZUdSG2GBU315/H9h6puw056EdfuXnUaSJLVhoXc/KmdcAPNmU738YvL7i8uOpDbAAqe6kV9+rph1cvOtCUOHlR1HkiTVgbDRUConnQN/e4nqVZeSq8vKjqQaZ4FTXciTX4dHHoD+g4oLiyVJklpI2G43wjEnwhPjyOnqYh1aaTW1LzuA1Nzy9GnFjJO9+sKeBxYXFkuSJLWgyv6HUZ05nXzPrdC7H+GAw8uOpBplgVOblufOhvtvg7W6wD6HOOOkJEkqTTjmRPKsd8k3XU21Vx8qO+5RdiTVIAuc2qy8cAHc+9/FnX0/T1irS7mBJElSXQuVCpWTzqE6Zzb56p+T1+5F2HR42bFUYzyXTG1SXvI+3HcbLFxQjLz16Fl2JEmSpGJ5gTO/C33XK2amnOIacfp0LHBqc3J1GTxwJ8x6F/Y8gNB33bIjSZIkfSB07U7l7B9Ah45UL/shedaMsiOphljg1KbkahUevq9Y622XkYSBG5YdSZIk6SNC33WpfOP7sGA+1Z9/nzx/btmRVCMscGozcs4w7n54/WXYdhfCJluUHUmSJGmVwuAhVM68AKa/XYzELVpQdiTVAAuc2oRcrcL4B+C1F+HvdiQM367sSJIkSZ8obLYVla/9I0x6lerlPy6u45c+hgVONS/nTL7xCnjlORi+HWy1Q9mRJEmSmixsszPhhLPhhYlUr/gZedmysiOpFbPAqablnMk3XU2+fwwM2wa22ZkQQtmxJEmSPpXKrnsTjjsF/m88+dpfFWcXSSvhOnCqWTln8s3Xku++hbDvoeT1B1reJElSzarseyjV9+aT/3oDdOkK8SR/t9FHOAKnmpRzJv/lD+TbRxP2PIhw7Mke4CRJUs0Lhx5X/MP0PbcW/1Cdc9mR1Mo4Aqeak6tV8g1XkMeOIex5IOFLpxFCwMObJEmqdSEEiCfBkiXk20cXDx7xVf+hWh+wwKmm5KVLyb+9jPzoA4QDjyQcNcoDmiRJalNCpQJfOg3AEqePsMCpZuT3F1P9r5/AxAmEI79K5eCjy44kSZLULD4occESpw+zwKkm5IULqP7qInj5WcKXTqMy8nNlR5IkSWpWoVKB4x2J04dZ4NTq5XlzqF72Q5j8N8JJ51DZea+yI0mSJLWIj5S4DBxpiatnFji1annKpGLkbfZMKqefT9h6x7IjSZIktagPSlwI5DtGw6IF8MVTCZV2ZUdTCSxwarXyM49TveKn0KEjlW9dRBiyedmRJEmSSvFBievchXzHaPLcOVROPofQoWPZ0dTCLHBqdXLO5PtuI//xShgwiMqZ3yP06Vd2LEmSpFKFEAhHjaLaoyc5XUX1snnFGUpdupYdTS3IhbzVquSlS8nX/5p84xWwJuxDfwAADudJREFU9Q5Uzr3E8iZJktRIZf/DCCedA688R/Wn55Nnzyw7klqQBU6tRn5vPtVf/JA89nbCgUdQOf2fCJ3XKjuWJElSq1PZZSSVM78H06dSveRc8rQpZUdSC7HAqVXIr71I9Z+/CS89SzjhLCpH/70X5kqSJH2MMHw7Kt+6CBYtLErcS8+WHUktwAKnUuWcqd51M9WfnAdA5Ts/pjJiv5JTSZIk1Yaw0aZUzr0E1upK9dILqI4dQ8657FhqRk5iotLk+XOp/vYymDgBttmFyglnEbp2KzuWJElSTQnrDaDy3Z9RvfJS8nW/hjdeheNPI3ToUHY0NQMLnEqRX36O6m9+BvNmE447lbDPIS5IKUmStJpCl25Uzvwu+ZYbyGMSecokKl8/j9CzT9nRtIZ5CqVaVF6yhOot11P92fnQvj2V835CZd/PW94kSZI+o1BpR+WIL1M57Tx46w2qF51DfvWFsmNpDXMETi0mv/Yi1Wt+CVMmEXYZSTj+NMJaXcqOJUmS1KaE7Xejst4AqpdfTPWn5xMOO55w4BFOENdGWODU7PKihVT/eBX53luhZx8q3/geYesdy44lSZLUZoUBg6l899+o/v5y8p+vJU98jMqJ3yT0W6/saPqMLHBqVvn5p5hx3X+Sp00h7HUQ4agTHHWTJElqAaFrdypfO5c8fiz5hv+i+sOzCcedTBixn5ev1DALnJpFnjmdfPPvyePH0m79gVS+/WPCZsPLjiVJklRXQgiEXfcmbzqc6m//nXzNL8lPPUrlK2cQevQsO55WgwVOa1RetIB8+2jy3bdAzoSDj6bPqNOZMW9+2dEkSZLqVujTj8o5/0y+51byzddSvfAbhKNGEXbdh1BxXsNaYoHTGpGXLSP/z93kW66DeXMIO+1FOPIrhD7rEDp1BgucJElSqUKlQjjgcPKW2xbXxv3uF+Sxt1P54qmEjTcrO56ayAKnzyRXq/B/46necj1MmQSbDCsmKdlo07KjSZIkaSXCgMFUzr2E/MhY8p+uofov3ylG4o78KqFn77Lj6RNY4LRa8tKl5EceIN8xGt6eDOusT+Xr58G2u3pRrCRJUisXQiDssjd5m53JY24i330L+YlxhEMiYZ9DijOo1CpZ4PSp5MWLyf9zF/mum2HmuzBwI8Ip3yZsP4LQzrVFJEmSakno3IVw5Cjy7vtTTVeT/3wN+a6bCft9gbD3IYQuXcuOqBVY4NQk+Z2pxTVuD90F8+cWp0p++XQYvr0jbpIkSTUurNOfdmdeQH7lOaq33UT+yx/Id95clLj9vkDo3qPsiGpggdMq5SXvk58YV5S2F5+GUIGtd6By4JGEocPKjidJkqQ1LGwyjHZn/4D8xqtUx9xEvv0m8j23EPY4oFjTd/0Nyo5Y9yxw+pBcrcLfXiI/+iB5/FhYMB/6rks4/MuE3fYl9OpTdkRJkiQ1szB4CO2+fh556pvk2/9EHjuGfO9fYcjmxULgO+xOWKtL2THrkgVO5KVL4aWnyU+OJz/5CMyZCe3bE7bdlbDHAbDZVq4PIkmSVIfC+hsQTvwH8tEnkMeNJT98D/naX5Fv/E0xB8KI/WDoFoSKcyG0FAtcncoz3yW/9DQ8+yR54gRY8B507ATDtyNsuwthqx0JXbuVHVOSJEmtQOjRi3DgEeQDDofXXiyK3ISHyOPug27dCcN3gK13JGy5rROfNDMLXJ3Is2aQX3waXnqm+PrO1OIbXbsT/m5nwna7wLBtCR07lRtUkiRJrVYIoTiNcsjm5GNPJk98DCZOID/zGIy/n9yuHQzdkrDVDoShW8IGGxHaWznWJP9rtjE5Z5j1Lkx6lfzGa+Q3X4M3XoXZM4ondOla/KEa+TnCZlvBwMEOeUuSJOlTC506E3bcHXbcnVxdVozMPTWBPHEC+aaryQAdOsKGmxCGbEEYsjlsvBmhR8+yo9e0JhW4GONBwGVAO+DKlNK/rvD9TsC1wPbADODYlNLrDd/7J+AkYBlwVkrpzjWWvo7l9xfD9Ldh2hTytCnwzhTytLdg6uRimn8oZo1cbwBhs+HFH5xNh8PADS1skiRJWqNCpR1sMoywyTA4ahR51gx47QXyKy+QX32+WCj8jtHFk7uvDf0HFTNa9h9E6D8I1h8A3Xu6PFUTfGKBizG2Ay4H9gcmAxNijLemlJ5r9LSTgFkppU1ijMcBlwDHxhiHAccBWwL9gXtijJumlJat6Q/SFuScYdHCooDNnwfz55LnzYZZM2D2TPKsd2H2zGKEbd4cyPn/v7hHT1inP2GbnWHQxoRBQ4qy1qlzeR9IkiRJdSn06gPbjyBsPwJoGHx441Xy6y/DlEnkKZPIj4yFhQv44Dfajh2hdz/o3Y+5/Teg2rU79OpH6LE2dFsbuveA7mvX/e+3TRmB2wl4JaX0GkCM8UbgMKBxgTsMuLDh9p+AX8UYQ8PjN6aUFgN/izG+0vB+49ZM/JaR584uRruq1YZt2Upv5w/dXwbvvw9LVtjeXwyLFpIXLSzK2sIFsLjh6/x5sGzpykN07Q49e0OvvoRBG0OvvrDO+oT1BhTFzWlcJUmS1EqFjp1g6LAPrSVcXPozA6a+SX57MsycTp7xDsx8l8WPPUyePbN43opv1rEjdOsBnbvAWl2g81qE5bc7dYb2HaBDB2jXvvja/sO3Q/v2xWPLtxqbRbMpBW4A8Gaj+5OBnVf1nJTS0hjjHKBPw+PjV3jtgNVOW5I8cQL5ml9+tjcJoTgHuGMn6LxWw9al+FeEfusVO1y37sXO2LUHoVuP4n73HtCzj5OLSJIkqU0JIUDvvtC7L2HLbT/0vb59+zJ96pSi4M2b03Bm2hyYNxfmz4H588iLFhSDIAveI8+YDosWwOJFsGQJLF2yyp+7YiGs/MdoaGMFbmUnoq74uVf1nKa8lhjjqcCpACkl+vfv34RYLSiOKjatthb5f3rcic3/M/SZedmylnNfUGPuD1rOfUHLDRi8IQzesOwYrU5TVmeeDGzQ6P5AYMqqnhNjbA+sDcxs4mtJKV2RUtohpbQDRelza0NbjPHxsjO4tY7NfcFt+ea+4NZ4c39wW765L7gt39wXCKxCU0bgJgBDY4wbAW9RTEpy/ArPuRUYRXFt29HAfSmlHGO8Fbg+xngpxSQmQ4FHm/AzJUmSJEkr+MQRuJTSUuBM4E7g+eKh9GyM8Ucxxi80PO0qoE/DJCXnAOc1vPZZIFFMeHIHcIYzUEqSJEnS6mnSOnAppTHAmBUe+36j24uAY1bx2ouBiz9DRtW+K8oOoFbDfUHLuS+oMfcHLee+oOXcF1Yh5PyROUUkSZIkSa1QUyYxkSRJkiS1Ak06hVJaXTHGg4DLgHbAlSmlfy05kkoSY3wdmAcsA5Y2zDqrOhBjvBr4PPBOSml4w2O9gT8CGwKvAzGlNKusjGoZq9gXLgROAaY3PO38hks31IbFGDcArgXWA6rAFSmlyzw21J+P2RcuxGPDSjkCp2YTY2wHXA4cDAwDvhhjHFZuKpVs75TSNpa3uvM74KAVHjsPuDelNBS4t+G+2r7f8dF9AeDnDceGbfwFrW4sBb6VUtoC2AU4o+F3BI8N9WdV+wJ4bFgpC5ya007AKyml11JK7wM3AoeVnElSC0spPUixNmhjhwHXNNy+Bji8RUOpFKvYF1SHUkpTU0pPNNyeRzHT+QA8NtSdj9kXtAoWODWnAcCbje5Pxj+Q9SwDd8UYH48xnlp2GJVu3ZTSVCj+8gbWKTmPynVmjHFijPHqGGOvssOoZcUYNwS2BR7BY0NdW2FfAI8NK2WBU3Na2QryTntav0aklLajOKX2jBjjnmUHktQq/CcwBNgGmAr8W7lx1JJijN2A0cA3U0pzy86j8qxkX/DYsAoWODWnycAGje4PBKaUlEUlSylNafj6DnAzxSm2ql/TYozrAzR8fafkPCpJSmlaSmlZSqkK/AaPDXUjxtiB4hf261JKf2542GNDHVrZvuCxYdUscGpOE4ChMcaNYowdgeOAW0vOpBLEGLvGGLsvvw0cADxTbiqV7FZgVMPtUcAtJWZRiZb/st7gCDw21IUYYwCuAp5PKV3a6FseG+rMqvYFjw2r5kLealYxxs8B/06xjMDVKaWLS46kEsQYN6YYdYNi+ZLr3RfqR4zxBmAk0BeYBvwA+AuQgEHAJOCYlJKTW7Rxq9gXRlKcIpUppo3/2vJroNR2xRh3Bx4CnqaYOh7gfIprnzw21JGP2Re+iMeGlbLASZIkSVKN8BRKSZIkSaoRFjhJkiRJqhEWOEmSJEmqERY4SZIkSaoRFjhJkiRJqhEWOEmSJEmqERY4SVKbEGN8Pca4X9k5JElqThY4SZI+gxhj+7IzSJLqhwt5S5JqXozx98CXgMXAMuBHwIPApcAw4A3g7JTS2IbnjwUeAvYBtgbGAcenlN6NMY4E/pBSGtjo/V8HTk4p3RNjvBAYDiwCvgCcA1wN/CNwCtATuBc4LaU0sxk/tiSpDjkCJ0mqeSmlrwCTgENTSt2A64DbgIuA3sC3gdExxn6NXnY88PfAOkDHhuc01WHAnyjK2nXAWcDhwF5Af2AWcPln+EiSJK2Up31IktqiLwNjUkpjGu7fHWN8DPgccE3DY79NKb0EEGNMFKNpTTUupfSXhtsLY4xfA85MKU1ueL8LgUkxxq+klJZ+xs8iSdIHLHCSpLZoMHBMjPHQRo91AO5vdP/tRrcXAN0+xfu/uZKfd3OMsdrosWXAusBbn+J9JUn6WBY4SVJb0fii7jeB36eUTlmN93kP6LL8ToyxHdBvheeseAH5m8CJKaWHV+PnSZLUZBY4SVJbMQ3YuOH2H4AJMcYDgXsoRt92AV5Zfprjx3gJ6BxjPAS4Czgf6PQJr/k1cHGMcVRK6Y2Ga+12SyndspqfRZKklXISE0lSW/EvwAUxxtnAsRQTjZwPTKcYIfsOTfh7L6U0BzgduJLi9Mf3gE8qfZcBtwJ3xRjnAeOBnVfvY0iStGouIyBJkiRJNcIROEmSJEmqERY4SZIkSaoRFjhJkiRJqhEWOEmSJEmqERY4SZIkSaoRFjhJkiRJqhEWOEmSJEmqERY4SZIkSaoRFjhJkiRJqhH/D+hIZEZJsNDTAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 1080x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Distributon of tenure\n",
    "\n",
    "plt.figure(figsize=(15,8))\n",
    "sns.distplot(new_cust['tenure'])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 4. Duplication Checks"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We need to ensure that there is no duplication of records in the dataset. This may lead to error in data analysis due to poor data quality. If there are duplicate rows of data then we need to drop such records.<br>For checking for duplicate records we need to firstly remove the primary key column of the dataset then apply drop_duplicates() function provided by Python."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Number of records after removing customer_id (pk), duplicates : 983\n",
      "Number of records in original dataset : 983\n"
     ]
    }
   ],
   "source": [
    "new_cust_dedupped = new_cust.drop_duplicates()\n",
    "\n",
    "print(\"Number of records after removing customer_id (pk), duplicates : {}\".format(new_cust_dedupped.shape[0]))\n",
    "print(\"Number of records in original dataset : {}\".format(new_cust.shape[0]))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<b>Since both the numbers are same. There are no duplicate records in the dataset.</b>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 5. Exporting the Cleaned New Customers Data Set to csv"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {},
   "outputs": [],
   "source": [
    "new_cust.to_csv('NewCustomerList_Cleaned.csv', index=False)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}