Contents

(@ T VT PSPPI 3
(08 =] (<7 4] o] 1SRRI 3
=] S o] I 1Y 0 -1 PR 4
APPLIcations INLEGrated CEP..........cui i et sbe e nreas 4
Chromium Embedded Framework (CEF).......cooiiiiiiiiieeiie e 5
Browser Features SUpPOrted DY CEPoooiiiececee e 5

HT TP COOKIE ...ttt ettt ettt bbb e beeneesbe et enes 5

Development and DEDUGGING .. .oovviiiiiiiieiie e et nreas 6
Development MaChiNg SEIUPccviiieie et nae e nreereenes 6
HTML EXENSION BUIIET ...ttt 6
SIGNING EXEENSTONS ...ttt sttt ettt e b bt e b e et e ebeenbeenbesseesbeenbeabeesbeeneesreenneans 6
Debugging UnsSigned EXIENSIONS.......ccvciuiiieieeiesiesieesiesie e e e ssee e esae e e sre e ae e sneesaesneesreeseanes 6

Special notes for Mac 10.9 and NIGNer...........cooeii i 7
REMOLE DEDUGGING ..ttt sttt e 7
KINOWN ISSUBS ...ttt n e e n et e e e e ne e s nneenn e 8
WHhere are the LOQ FIlES......c.viiieiicc ettt sae e nnees 9
e (00| o 0o T 0o RSP URSTRRPI 9
CEPHIMIENGING LOGS. .. tieiteeieeiieieesie e steeste e steeste e steeae e staesta e raenaeenaesnaenaaeneenraenseenes 10
(OF = e oo BT PR PR PRPPRP 10
EXIENSION FOIUBIS. ... ittt b et n et et neenne e 11
EXTENSION IMTBNITEST ...ttt bbbt 12
EXIENSION MANITEST XSD ..ot 12
Important Manifest Change for CEP 5.0 EXtENSIONS.........ccceiiiiriieiienieniee e, 12
EXTENSION SIZB.. .ottt bbb bbbt 12
CuStOMIize EXIENSION IMIBINU ...ttt bbbt 13
HiIgh DPT PANEl ICONS..... .o ettt nne s 13
Dialog Size Dased 0N SCIEEN SIZE......ccveieiie et se e e ste e e e e e eneenreas 14
Shortcut Keys for HTML EXENSIONSccuveiviiieiieiiee ettt 14

CEP JavaSCript ProgrammMing.........cooeeeeierieieenieeieseesie s steesee e steeaesseesseeeessesssesssessesssessessens 15

CEP JaVaSCrIPt LIDIAIIESvveveeieiieeiie e ce ettt sta e e e e te s e ssaeaeeneesneeneeenes 15
e o IRV =T €51 o] o TP U TR PR UPPRRP 15

CEP BVBNLS ...ttt ettt et et e e e et e et e e e e eeeeeeee et e e eeeeeeeeeessnneeeeeaeeennnnns 15

Invoke point product's scripts from html extension...........ccooiriiie s, 22

WV UICAN IMESSAGESveevveteeteesteeteesteeteste e teaseeste e teeseesteeaeaseesseeeeeseesreesseaseeaseenseaneesseeneeaneenneans 22
Access Application DOM from HtmMI EXIENSIONccoovieiiieieeiicciecc e 24
Access HTML DOM from eXtend SCHPLcveiiiieiieieiie et 25
FIY=0UL MENU ...ttt e e s e s te et e eseenreeteensessaesteaneenreas 26
CUSTOMIZE CONEEXE IMIBINU ...ttt bbb 27
Get Display Status of HTML EXtension WiNAOWccoceiiiiieiiiin e 30
Getting and Changing EXtension CONENt SIZE..........cccovvereiiieieeie e 30
Register invalid certificate error callbackcccevveiiiii i 31
Register an interest in SPECITIC KEY BVENTSoouiiiiiiiiieie e 31
[L B o 11 0] - YRS 33
Other JAVASCIIPE APIS......eiiiieece ettt e e ste e teaseesseeteeneenreeneeenes 33
[0 Tor L[72 LA o] O TPRTPRRTR P 35
License Locale and locales supported by eXtensioncccccevviieiiienncie s 36
LOCAlE TOIART STTUCTUIE ... bbbt 36
Sharing localization resources across multiple 10cales............ccovvriiiiiiienieice e 36
LOCAHZEA MENU ..ot bbbttt e et r e 37
EXAIMPIES ..ot e e re e re et e are e reeneenres 37
SUPPOItING MENA TOCAIES ..o et 38
VideOo/AUAIO PIAYDACKcoeiiiiiiiieie e et 39
WEDRTC ...ttt bt bbbt et e bbb e bbbt e s 40
Yol (0] I o T] PSPPI 41
INVISIDIE HTIML EXEENSIONS.......iiiiiieiitieieeie ettt 41
Customize CEF Command Line PArameterscccooeiiieiininisieieresese s 43
How to use CEF command i Parameters.........cocovveiiiriiiienie e 44
Commonly used CEF command Parameters:c.ooeeieererieneeniesee e see e enes 45
HTML EXIENSION PEISISTENT.......eiiiiiiieiiesii ettt 45
FullScreen APLIN HTML EXIENSIONocvviiiiiiiieiciie e e 46
Open URL lINK in default DrOWSEN..........coviiiiieiieiece e e 46
Using Node.js APIs (CEP 6.0 and prior releases)ccocveuereereeiiesieesesieseeseseeseeseesneesnnns 46
N[0T (=0 FRST0] o] o Lo ¢ SO U TS RPR PSRRI 46
NOGE.JS MOAUIES ...t ettt e nb e b e besneenneas 47
ST L1010 LSS 48

Using Node.js APIs (CEP 6.1 for CC 2015 release)..........cccvevveiieiiieeiie i 48

N[0T L= FRRST0] o] o Lo ¢ ST RTUSRPPR PRSP 48

Using Node.js APIs (CEP 6.1.0.176 or higher for CC 2016 June release)...........cccoovevvvevennenn. 50
NOGAE.JS MOAUIES ...t e st et e e s e sreeteenbesneenaeeneenreas 50
ST 1101 0] LSRR 50
Limitation of cep.process.StAOUL/STUBITcveieeiieee e 51
Other JavaScript INFOrMAtION...........ccuoiiiie e ae e nrees 52
Load MUILIPIE JSX FHES ... nae e 52
=T I Va0 N 5 (] o PRSP 53
USE Drag @GN DIOP ..cveeveeieciie ittt ettt teaneessa e teeseesraeaeansesneenaeaneenreas 53
Disable Drag and DIOPooeeiieiiiiesiieie sttt sttt e sre et neesbeenbeeneenreas 54
External JavaSCript LIDraries.......c.covoiiiiiiee et 54
Increase/Decrease font Size iN HTML PANelccooiiiiiiiiiiiiceee e 54
oY N Tl T o] S N0 LSS PRR 56
Check INternet CONNEBCTIONoiviiiiiiiesieieee bbb 56
SEE IMIOUSE CUISON ...ttt ettt ettt s e e s e e e e nme e e s ne e e n e e nreenne e 56
De-0DTUSCALE JAVASCIIPL......citieiieiesiie sttt enbe e nreas 56
TTTAIMIE .t e bbb bbbt bbb et nas 56
L1010 L€ o SR SS 57
Ports opened in CEPHIMIENGING.........c.oiiiiiiie e 57
CEF/CNIOMIUM ISSUBS ...ttt sttt bbbt e st et eer e beeneesneenbeeneenreas 57
More Information for EXtension DEVEIOPErS.......ccvcve i e 57
Overview

This cookbook is a guide to creating CEP 5.0 HTML/JavaScript Extensions for Creative Cloud
applications.

CSXS is the old name before CS6, and CEP (Common Extensibility Platform) is new name from
CS6. When we talk about CEP or CSXS, they refer to the same project.

CEP Extensions

CEP (formerly CSXS) Extensions extend the functionality of the host application in which they
run. Extensions are loaded into applications through the PlugPlug Library architecture.

Starting from CEP 4.0, HTML/CSS and JavaScript (ECMAScript 5) can be used to develop
extensions.

Extension Types

These extension types are supported by CEP. You need to specify an extension's type in its
manifest.xml.

e Panel
o The Panel type behaves like any other application panel. It can be docked,
participates in workspaces, has fly-out menus, and is re-opened at start-up if open
at shutdown.
e ModalDialog
o A Modal Dialog type opens a new window and forces the user to interact with the
window before returning control to the host application.
e Modeless
o A Modeless Dialog type opens a new window but doesn't force the user to interact
with the host application.
e Custom (Since CEP 5.0)
o This type is for invisible extensions. An invisible extension remains hidden and
never becomes visible during its whole life cycle. Read "Invisible HTML
Extensions™ for more details.

Applications Integrated CEP

These applications support CEP HTML extensions.

Appication |03t D] yorsion | Varsion | Version || Version
IPhotoshop IPHSP |14 115 |16 117 |
Photoshop PHXS (14 15 16 17
InDesign [IDSN|j9 110 11 111 |
InCopy laicy |9 110 11 11 |
lIllustrator ILsT |27 18 119 20 |
IPremiere Pro IPPRO |7 8 9 10 |
Prelude IPRLD |2 3 4 I5 |
|After Effects IAEFT |N/A 113 13 [F |
[Flash Pro IFLPR |13 14 15 115 |
/Audition |lAUDT |IN/A IN/A I8 o |

|

[Dreamweaver |DRWV |IN/A IN/A |16 116

Chromium Embedded Framework (CEF)

CEP HTML engine is based on Chromium Embedded Framework version 3 (CEF3). You can
find more information about CEF on http://code.google.com/p/chromiumembedded/. Here are
the versions:

| | CEP5.2 | CEP 6.1
CEF 3 release branch 2272
CEF 3 branch 1453,
CEF3 revision 1339 Commit
e8e1f98ee026a62778eh2269c8e883426db645ea
| Chromium |27.0.1453.110 141.0.2272.104
| Nodejs |Node.js0.8.22 10.js 1.2.0
CEF/Node ot 2 Node-WebKit 0.12.1 (nw.s)
Integration

Browser Features supported by CEP

HTTP Cookie
CEP supports two kinds of cookies:

o Session Cookies - Temporary in-memory cookie which will expire and disappear when
user closes extension
o Persistent Cookies - No expiry date or validity interval, stored in user's file system

Persistent Cookies location:

e CEP4Xx
o Windows: C:\Users\USERNAME\AppData\Local\Temp\cep_cookies\
o Mac: /UserssfUSERNAME/Library/Logs/CSXS/cep_cookies/

e CEP5Xx
o Windows: C:\Users\USERNAME\AppData\Local\Temp\cep_cache\
o Mac: /UserssfUSERNAME/Library/Logs/CSXS/cep_cache/

e CEPG6.X
o Windows: C:\Users\USERNAME\AppData\Local\Temp\cep_cache\
o Mac: /UserssfUSERNAME/Library/Caches/CSXS/cep_cache/

Each persistent cookie is a file. File name is HostID_HostVersion_ExtensionName, such
as PHXS _15.0.0_com.adobe.extensionl.

http://code.google.com/p/chromiumembedded/

Development and Debugging

Development Machine Setup

CEP HTML Extensions can be developed on both Windows and Mac platforms. The
development machine needs to have the following applications in order to successfully develop
CSXS extensions:

o Adobe Creative Suite applications supporting CEP HTML extensions.

e HTML Extension Builder (Nice to have, but not mandatory).

o Adobe ExtendScript Tool Kit (This tool kit is installed with all Creative Suite
applications).

o Adobe Extension Manager.

HTML Extension Builder

HTML Extension Builder (under development) is a tool set built on top of Eclipse and can be
used for developing and debugging HTML extensions. Please download the Extension Builder 3

here.

Signing extensions

« Before you sign the extensions, you need to get or create the certificate file. Configurator
and Adobe Exchange Packer can create certificates. Developers can get all information
here after logging in.

e Three tools can be used to sign a HTML extension.

1. Extension Builder 3
2. CC Extensions Signing Toolkit (also on above labs web site)
o Example of using CC Extension signing toolkit: ccextensionswin64.exe -sign
"d:\Adobe Layer Namer\Adobe Layer Namer\"(input extension
path) d:\AdobeLayerNamer.zxp(output zxp path) d:\sign.p12(certificate
path) 1(certificate password)
3. Adobe Exchange Packer (please sign in so that you can see it.)

Debugging Unsigned Extensions

If you are in the midst of development and are not using HTML Extension Builder for debug
workflows and want to bypass the need to sign your extensions, you can bypass the check for
extension signatures by editing the CSXS preference properties file, located at:

http://labs.adobe.com/technologies/extensionbuilder3/
https://www.adobeexchange.com/resources/7#overview
http://labs.adobe.com/downloads/extensionbuilder3.html
http://www.adobeexchange.com/resources

e Win: regedit > HKEY_CURRENT_USER/Software/Adobe/CSXS.6, then add a new
entry PlayerDebugMode of type "string"” with the value of "1".

e Mac: In the terminal, type: defaults write com.adobe.CSXS.6 PlayerDebugMode 1 (The
plist is also located at /Users/<username>/Library/Preferences/com.adobe.CSXS.6.plist)

These entries will enable debug extensions to be displayed in the host applications.

Special notes for Mac 10.9 and higher

Staring with Mac 10.9, Apple introduced a caching mechanism for plist files. Your modifications
to plist files does not take effect until the cache gets updated (on a periodic basis, you cannot
know exactly when the update will happen). To make sure your modifications take effect, there
are two methods.

o Kill cfprefsd process. It will restart automatically. Then the update takes effect.
e Restart your Mac, or log out the current user and re-log in.
e More Information

Remote Debugging
CEP supports remote debugging for HTML extensions from 5.0.

o Create a “.debug” file to the extension root directory such as Test_Extension\.debug.
The .debug file contains remote debug ports. Developers must create this file and use
valid debug ports because both remote debugging and dev tools are based on it.

« ".debug" file name is special for both Windows and Mac platforms, it has to be created
via command line.

o On Windows, use "copy con .debug" and "Ctrl+Z" to create an empty file.
o On Mac, use "touch .debug" to create an empty file.

e The value of Port should be between 1024 and 65535 (not include 65535), otherwise

remote debugging and dev tools will not work.

« One extension bundle may have multiple extensions. The .debug file can specify debug
ports for each extension. Here is an example file:

<?xml version="1.0" encoding="UTF-8"7?>
<ExtensionList>
<Extension ld=""com.adobe.CEPHTMLTEST.Panell1">
<HostList>
<Host Name="'PHXS'" Port="8000"/>
<Host Name="IDSN" Port="8001"/>
<Host Name="AICY" Port="8002"/>
<Host Name="ILST" Port="8003"/>
<Host Name="'PPRO" Port='8004"/>
<Host Name="'PRLD'" Port="8005"/>
<Host Name="FLPR"™ Port="8006"/>
<Host Name="AUDT" Port="8007"/>
</HostList>

http://hints.macworld.com/article.php?story=20130908042828630

</Extension>

<Extension ld="com.adobe.CEPHTMLTEST.Panel2">

<HostList
<Host
<Host
<Host
<Host
<Host
<Host
<Host

>
Name=""PHXS""
Name=""IDSN"*
Name=""AI1CY"
Name=""ILST"
Name=""PPRO"
Name=""PRLD"
Name=""FLPR"

Port="8100"/>
Port="8101"/>
Port="8102"/>
Port="8103"/>
Port="8104"/>
Port="8105"/>
Port="8106"/>

<Host Name="'AUDT"
</HostList>
</Extension>
<Extension ld="‘com.adobe.CEPHTMLTEST .ModalDialog">
<HostList>

Port="8107""/>

<Host
<Host
<Host
<Host
<Host
<Host
<Host

Name=""PHXS"
Name=""IDSN""
Name=""AICY"
Name=""ILST"
Name=""PPRO"
Name=""PRLD""
Name=""FLPR"

Port="8200"/>
Port="8201"/>
Port="8202"/>
Port="8203"/>
Port="8204"/>
Port="8205"/>
Port="8206"/>

<Host Name=""AUDT" Port="8207"/>
</HostList>
</Extension>
<Extension ld=""com.adobe.CEPHTMLTEST .Modeless"'>
<HostList>

<Host
<Host
<Host
<Host
<Host
<Host
<Host

Name=""PHXS"
Name=""IDSN""
Name="AICY"
Name=""ILST"
Name=""PPRO"
Name=""PRLD"
Name=""FLPR"

Port="8300"/>
Port="8301"/>
Port="8302"/>
Port="8303"/>
Port="8304"/>
Port="8305"/>
Port="8306"/>

<Host Name="AUDT' Port="'8307"/>
</HostList>
</Extension>
</ExtensionList>

If you load an extension whose debug port is 8088, you can load the debugger through
http://localhost:8088/ on Chrome.

Known lIssues

If you attempt to launch an extension using the requestOpenExtension API and the
extension invoking the API has the same debug port as the target extension, the target
extension will not load.
Due to an issue which should be fixed in Webkit inspector, in the dev tools, you
cannot inspect the variables or open watches. Please perform the following steps to work
around this issue when it happens:

1. Open the Developer tools from Chrome browser main menu by choosing

View->Developer->Developer Tools
2. Execute the following JS snippet in the Console

http://localhost:8088/

TreeElement.prototype.isEventWithinDisclosureTriangle =
function(event)
{

var computedLeftPadding = 10;

if(window.getComputedStyle(this._ listltemNode).getPropertyCSSV

alue){
computedLeftPadding =

window.getComputedStyle(this._listltemNode) .getPropertyCSSvValue(*™'
padding-left') ._getFloatValue(CSSPrimitiveValue.CSS_PX);

}
var left = this._listltemNode.totalOffsetLeft() +
computedLeftPadding;

return event.pageX >= left && event.pageX <= left +
this.arrowToggleWidth && this.hasChildren;

}

e InCEP 6.1, inline JavaScript source maps will cause the debugging session to be
terminated. To work around the issue, either remove the inline JavaScript source maps, or
use source maps reference.

e Can't scroll in Devtools console
To work around this, either use cefclient released by CEP for debugging, or use below
workaround in Chrome/Chromium

o Open Chrome/Chromium and connect to your extension's debugging port, say
localhost:8088

o Click the drop down menu on the upper-right corner on the Chrome/Chromium
window, then click "More tools"->"Developer tools"

o Inthe Console of the newly opened devtools panel, run:

(function()
{

var styleElement = document.createElement(‘'style™);
styleElement.type = ""text/css';
styleElement.textContent = "html /deep/ * { min-width: 0; min-
height: 0; }";
document.head.appendChild(styleElement);
PO:

Where are the Log Files

PlugPlug Logs

Log files with useful debugging information are created for each of the applications supporting
CEP extensions. The platform-specific locations for the log files are as follows:

e Win: C:\Users\USERNAME\AppData\Local\Temp
e Mac: /Users’fUSERNAME/Library/Logs/CSXS

These files are generated with the following naming conventions:

https://bugs.chromium.org/p/chromium/issues/detail?id=516760

e CEP 4.0 - 6.0 releases: csxs<versionNumber>-<HostID>.log. For example, PlugPlug in
Illustrator generates log file csxs6-ILST.log.

o CEP 6.1 and later releases: CEP<versionNumber>-<HostID>.log. For example, PlugPlug
in Hlustrator generates log file CEP6-1LST.log.

Logging levels can be modified as per the following levels:

0 - Off (No logs are generated)

1 - Error (the default logging value)
2 - Warn

3 - Info

4 - Debug

5 -Trace

6 - All

The LogLevel key can be updated at the following location (The application should be restarted
for the log level changes to take effect):

e Win: regedit > HKEY_CURRENT_USER/Software/Adobe/CSXS.6
e Mac: /Users’fUSERNAME/Library/Preferences/com.adobe.CSXS.6.plist

For example of Mac, in the terminal do:
defaults write com.adobe.CSXS.6 LogLevel 6
CEPHtmIEnNgine Logs

In CEP 6.1 and later releases, CEPHtmIEngine generates logs. Each CEPHtmIEngine instance
usually genereate two log files, one for browser process, the other for renderer process.

These files are generated with the following naming conventions:
o Browser process: CEPHtmIEngine<versionNumber>-<HostID>-<HostVersion>-
<ExtensionID>.log
e Renderer process: CEPHtmIEngine<versionNumber>-<HostID>-<HostVersion>-
<ExtensionID>-renderer.log

For example:

e CEPHtmIENgine6-PHXS-16.0.0-com.adobe.DesignLibraries.angular.log
e CEPHtmIENgine6-PHXS-16.0.0-com.adobe.DesignLibraries.angular-renderer.log

They are also controlled by the PlugPlug log level.

CEF Log

In CEP 4.0 - 6.0, the Chromium Embedded Framework (CEF) in CEPHtmIEngine also generates
a log:

e Win: C:\Users\USERNAME\AppData\Local\Temp\cef_debug.log
e Mac: /UserssfUSERNAME/Library/Logs/CSXS/cef_debug.log

In CEP 6.1 and later releases, this log is merged into CEPHtmIENngine log.

Extension Folders

CEP supports 3 types of extension folders.

e Product extension folder. Here is a suggestion, but each point product can decide where
this folder should be.
o ${PP}/CEP/extensions (PPs may use different folder.)
o System extension folder
o Win(x86): C:\Program Files\Common Files\Adobe\CEP\extensions
o Win(x64): C:\Program Files (x86)\Common Files\Adobe\CEP\extensions,
and C:\Program Files\Common Files\Adobe\CEP\extensions (since CEP 6.1)
o Mac: /Library/Application Support/Adobe/CEP/extensions
e Per-user extension folder
o Win: C:\Users\{USER}\AppData\Roaming\Adobe\CEP/extensions
o Mac: ~/Library/Application Support/Adobe/CEP/extensions

How does CEP decide which extension to load?

o CEP first searches the product extension folder, then the system extension folder, and
finally per-user extension folder.

o Extensions without an appropriate host application 1D and version are filtered out.

o If two extensions have same extension bundle ID, the one with higher version is loaded.

« If two extensions have same extension bundle ID and same version, the one whose
manifest file has latest modification date is loaded.

o If two extensions have same extension bundle ID, same version and same manifest
modification date, CEP loads the first one that is found.

Extension Installation:
« Point product installers should install extensions to product extension folder.
o Extension Manager and Exchange Plugin in Thor should install extensions to system
extension folder or per-user extension folder.

Note:

o Character '#'is not allowed in extension folder path on both Windows and Mac OSX,
since CEF treats '#' as a delimiter.

Extension Manifest

The manifest.xml file is required for every extension and provides the necessary information to
configure a CEP extension. ExtensionManifest is the root element of the manifest.xml file.
Extensions, ExtensionList, and DispatchList are the three child elements of

the ExtensionManifest root element.

Extension Manifest XSD
All HTML extensions must use 5.0 or above version. XSD attached in this file.

To check if the extension’'s manifest is in sync with the latest schema, perform the following
steps:

1. Download the latest schema (ExtensionManifest_<version>.xsd).

2. Navigate here

3. Upload the schema and your latest ExtensionManifest (from a real build to check the
validity of the versions).

4. Hit validate

Important Manifest Change for CEP 5.0 Extensions

Make sure correct point product versions are used. Here is an example.

<HostList>
<Host Name="PHXS" Version="[15.0,15.9]"/>
<Host Name="PHSP" Version="[15.0,15.9]"/>
</HostList>

This will support Photoshop version 15.0 up to, and including, 15.9. If you use the following
syntax then you are supporting releases up to 15.9 but not including 15.9

<HostList>
<Host Name="PHXS" Version="[15.0,15.9)"/>
<Host Name=""PHSP' Version="[15.0,15.9)"/>
</HostList>

Make sure correct CEP version is used.

<RequiredRuntimeList>
<RequiredRuntime Name="'CSXS" Version="5.0"/>
</RequiredRuntimeList>

Extension Size

You can specify extension size, max size and min size in extension manifest. Size is mandatory;
max size and min size are optional.

http://tools.decisionsoft.com/schemaValidate/

A modal or modeless dialog is resizable if there are max size and min size, otherwise it is un-
resizable. When you move mouse pointer over dialog border, CEP shows different cursor for
resizable and un-resizable dialogs.

<Geometry>
<Size>
<Height>580</Height>
<Width>1000</Width>
</Size>
<MaxSize>
<Height>800</Height>
<Width>1200</Width>
</MaxSize>
<MinSize>
<Height>400</Height>
<Width>600</Width>
</MinSize>
</Geometry>

Customize Extension Menu
This is only supported in InDesign and InCopy.

You can customize the extension menu by editing <menu/> item in manifest. Here is an
example. In this example, the Adobe Add-ons extension is displayed under Windows main
menu, rather than extensions menu under Windows. You can customize the location of extension
to somewhere else by changing the value of attribute Placement in <menu/> item.

<?xml version="1.0" encoding="UTF-8"7>
<ExtensionList>
<Extension ld="Adobe Add-ons' Version="1.0"/>
</ExtensionList>
<ExecutionEnvironment>
<HostList>
<Host Name="IDSN" Version="8.0"/>
</HostList>
</ExecutionEnvironment>
<DispatchInfoList>
<Extension ld="'com.adobe.CEPHTMLTEST.Panell1">
<DispatchlInfo>

<Uul>

<Menu Placement="""Main:&Window",600.0, "KBSCE Window
menu”"">Adobe Add-ons</Menu>

High DPI Panel Icons

In high DPI display mode, panel extensions may want to use high DPI icons. You set these icons
in extension's manifest.

<lcons>
<lcon Type="Normal''>_/images/lIconLight.png</lcon>
<lcon Type="RollOver">./images/lconLight.png</Icon>
<lcon Type="DarkNormal'>./images/lconDark.png</lcon>
<lcon Type="DarkRollOver'>_/images/lIconDark.png</lcon>

</lcons>

You pack both normal icon files (IconLight.png and IconDark.png) and high DPI icon files
(IconLight@2X.png and IconDark@2X.png) in your extension.

Host applications will be able to find and use

e IconLight.png and IconDark.png for normal display
e IconLight@2X.png and IconDark@2X.png for 200% high DPI display

@2X.ext is the industry standard. Please see more details
on https://developer.apple.com/library/ios/ga/qal686/ index.html.

Note: Photoshop supports _x2.ext format.

Dialog Size based on Screen Size

You can specify CEP dialog size as a percentage of screen size. Here is an example.

<Type>Modeless</Type>

<Geometry>
<ScreenPercentage>
<Height>50%</Height>
<Width>50%</Width>
</ScreenPercentage>
</Geometry>

Shortcut Keys for HTML Extensions
(Since 5.2)

CEP 5.2 supports shortcut keys for HTML extensions. When focus is on HTML extensions,
these shortcut keys are handled by extension.

\Windows Keys| Mac Keys |[Function

https://developer.apple.com/library/ios/qa/qa1686/_index.html

Ctrl + A [Command + Al Select All|
ICtrl + C [Command + C|Copy |
Ctrl +V |[Command + V|Paste |
Ctrl + X [Command + X|/Cut |

Other shortcut keys are handled by point products, such as pressing Ctrl + N to create a new
document.

CEP JavaScript Programming
CEP JavaScript Libraries

CEP JavaScript Libraries are counterparts of the Flex CSXS Library and the CEP IMS Library.
They provide JavaScript APIs to access application and CEP information.

e CSinterface.js
e Vulcan.js

To use them, please include these JavaScript files in your HTML extension.

API version

The CEP JavaScript APIs keep changing in each new CEP release. The changes are guaranteed
to be backward compatible. For newly added APIs, a version tag like "Since x.x.x" is added to its
API comments indicating since which CEP version the APIs is available.

You will need to check the version tag against the version of CEP integrated by the Adobe
Product you are using to make sure the API you want to use is available. To do so, use
CSinterface.getCurrentApiVersion() to retrieve the version of CEP integrated by the Adobe
Product. Please note this API itself is available only since 4.2.0. If you get an error saying
getCurrentApiVersion is undefined, then you are running in CEP 4.0 or 4.1. Otherwise, the value
returned will tell you the version of CEP integrated by the Adobe product.

CEP Events

CEP supports sending and receiving events within an extension, among extensions in an
application, and among extensions in different applications. Since both Flash and HTML
extensions are based on the common communication layer with the same event data format, they
can communicate with each other through CEP events, and even they can communicate with
native side as long as point products invoke PlugPlugAddEventListener/PlugPlugDispatchEvent
accordingly.

Like what we have for Flash extensions, there

are dispatchEvent/addEventListener/removeEventListener APIs available in JavaScript to
dispatch and listen for events. Let's go through CEP event data format/structure, APIs to dispatch
and listen event, and sample code snippet accordingly in JavaScript.

CSEvent

In terms of CSEvent, it just means CEP Event here. The data structure of CSEvent (CEP Event)
in JavaScript is just the same as the one defined in Flash extension, as below.

/**
* Class CSEvent.
* You can use it to dispatch a standard CEP event.

*

* @param type Event type.
* @param scope The scope of event, can be "GLOBAL" or "APPLICATION".
* @param appld The unique identifier of the application that

generated the event. Optional.

* @param extensionld The unique identifier of the extension that generated
the event. Optional.

*

* @return CSEvent object
*/
function CSEvent(type, scope, appld, extensionld)

{
this.type = type;
this.scope = scope;
this.appld = appld;
this.extensionld = extensionld;

3

You could create a CSEvent object and dispatch it by using CSinterface.dispatchEvent. Also you
could access its property in your callback of CSinterface.addEventListener. Refer to the section
addEventL.istener/dispatchEvent below for more details.

Listen for and Dispatch CSEvent

dispatchEvent/addEventListener/removeEventListener APIs are available in JavaScript
world to dispatch and listen for CSEvent.

addEventListener

Here is the definition for addEventListener. Refer to CSinterface.js for more information:

/**

* Registers an interest in a CEP event of a particular type, and

* assigns an event handler.

* The event infrastructure notifies your extension when events of this type
occur,

* passing the event object to the registered handler function.

*

* @param type The name of the event type of interest.

* @param listener The JavaScript handler function or method.

* @param obj Optional, the object containing the handler method, if
any.

* Default is null.

*/

CSInterface.prototype.addEventListener = function(type, listener, obj)

One thing needs to be mentioned here is both named and anonymous callback functions are
supported in CSinterface.addEventL.istener.

e An example of how to use named callback function in CSinterface.addEventListener.

function callback(event)

{
}

var csinterface = new CSinterface();
csinterface.addEventListener(“com.adobe.cep.test”, callback); //invoke
the function

console.log(“type=" + event.type + “, data=" + event.data);

e An example of how to use anonymous callback function in
CSlinterface.addEventListener.

var cslinterface = new CSinterface();
csinterface.addEventListener(“com.adobe.cep.test”, function (event)

{

console._log(“type=" + event.type + “, data=" + event.data);

); // Anonymous function is the second parameter
Similarly in Flash, event.data can be an object (i.e. you could use an object as event.data).

Before CEP 6.1, we regarded every attribute in event.data object as a regular string, but from
CEP 6.1, we revised the behavior that keep the type of each attribute in event.data as it was. If
the value is a valid JSON string, CEP will parse it natively and convert it to an object.

e Here is an example on how to use it.

var cslinterface = new CSinterface();
csinterface.addEventListener(“com.adobe.cep.test”, function (event)

{

var obj = event.data;
console.log(“type=" + event.type + “, data.propertyl=" +
obj.propertyl + “, data.property2=" + obj.property2);
}

); // Anonymous function is the second parameter
dispatchEvent

Here is the definition for CSinterface.dispatchEvent. Refer to CSlinterface.js for more details.

/**
* Triggers a CEP event programmatically. Yoy can use it to dispatch

* an event of a predefined type, or of a type you have defined.
*

* @param event A \c CSEvent object.
*/
CSInterface.prototype.dispatchEvent = function(event)

Here are three samples to demonstrate how to dispatch an event in JavaScript.

o An example of how to dispatch event in JavaScript.

var csinterface = new CSinterface();

var event = new CSEvent(''com.adobe.cep.test', "APPLICATION™);
event.data = "This is a test!";
cSinterface.dispatchEvent(event);

o Another example of creating event object and setting property, then dispatch it.

var csinterface = new CSinterface();
var event = new CSEvent();

event.type = "com.adobe.cep.test";
event.scope = "APPLICATION";
event.data = "This is a test!";

cSinterface.dispatchEvent(event);

« An example of dispatching an event whose data is an object.

var event = new CSEvent('’com.adobe.cep.test', "APPLICATION™);
var obj = new Object();

obj.a = "a";

obj.b = "b";

event.data = obj;

cSinterface.dispatchEvent(event);

Communication between Flash and HTML extensions

CEP event based communication between Flash and HTML extensions is simple, as long as the
event data is string. You can use the APIs to dispatch and listen to events accordingly.

If you dispatch an event whose data is an object in Javascript and handle it in Flash, then you
need a little bit conversion work to do in Flash extension. Because JavaScript objects are
serialized JSON strings, you need to deserialize them to XML-based objects in Flash. Vice versa,
if you dispatch an event whose data is an object in Flash and handle it in JavaScript, you need to
deserialize it from XML to a JSON-based object in JavaScript side. Considering that usage of
Flash extensions has gone down, communication between Flash and CEP extensions is limited,
and object-based event data is uncommon.

Handling Window State Change Events - Extensions

Unlike Flash extensions, CEP extensions do not support Window State Change Events.

Standard Events in Point Products

Following table lists the standard events supported by Point Products now.

(O = supported, B3 = not supported)

terminate.

Event Type Event Scope Description nganr;eter
Event fired
when a
document
activated
document.
If the doc
. (after was not
documentAfterActivate || APPLICATION|new/open save. the
document; NAME
after will be set
document instead of
the URL.
has
retrieved
focus).
Event fired
when the URL t(.)
active the active
document (ljfotchuen:j%r::t'
has been was not
documentAfterDeactivate|| APPLICATION||de-
) save, the
activated. .
name will
be set
((ja:)féirment instead of
the URL.
loses focus)
Event fired
when the
application
applicationBeforeQuit APPLICATION|got the none
signal to
start to

PS

PR PL AU
X X o
X X @
X X X

Event fired ©

on
when the Mac:
Application ’

applicationActivate APPLICATION]|(got an none 9008 B8 on

"activation"
event from

the OS. Windows

@ on
Mac;

Ed on

\Windows

Event fired
after the URL to

documentAfterSave APPLICATIONY|document |the saved (@& E3 B3

has been document.

saved

Note: CEP is unloaded from the point products ID and Al right after the
event applicationBeforeQuit is emitted from the point products, therefore CEP may have no
chance to get this event handled in HTML extensions.

Specific Events in Products

Photoshop

In Photoshop, the following specific events are defined:

com.adobe.PhotoshopPersistent
com.adobe.PhotoshopUnPersistent
com-adebe-PhetoshopCallback => This event will be removed in Photoshop 17.0 (see
below
com.adobe.PhotoshopWorkspaceSet
com.adobe.PhotoshopWorkspaceGet
com.adobe.PhotoshopWorkspaceAware
com.adobe.PhotoshopWorkspaceData
com.adobe.PhotoshopWorkspaceRequest
com.adobe.PhotoshopRegisterEvent
com.adobe.PhotoshopUnRegisterEvent
com.adobe.PhotoshopLoseFocus
com.adobe.PhotoshopQueryDockingState

For example, a CEP extension yields the mouse focus back to Photoshop by sending the
com.adobe.PhotoshopLoseFocus event:

var cslnterface = new CSinterface();

var event = new CSEvent(''com.adobe.PhotoshoplLoseFocus', "APPLICATION"™);
event.extensionld = cslinterface.getExtensionlD();
csinterface.dispatchEvent(event);

com.adobe.PhotoshopCallback will be removed in Photoshop 17.0 as adding a listener results in
all CS Extensions receiving the event. As of Photoshop CC 2015 June release, developers can
now use this alternative, which fixes the broadcast issue:

csinterface.addEventListener(*'com.adobe.PhotoshopJSONCal Iback"™ +
gExtensionlD, PhotoshopCallbackUnique);

TBD: add more examples.

Better JSON Support in CEP Event JavaScript APIs

Defects in CEP 6.0 and Former Releases

CEP 6.0 treats each attribute of the event.data object as a string. For example, if you pass
the string below through a CEP event:

{"myBoolKey": false,"mylntKey": 7,"myFloatKey": 5.4,"myStringKey":
"test7 A A", "myArrayKey': [5.4,true,false,{"yellow": true,"green':
false}, 71}

When you receive the event, event.data is an object with several attributes such as
“myBoolKey” and “mylntKey”. But the value of those attribute are all strings. For
example, the value of “myBoolKey” is “false” rather than false; the value of “myIntKey”
is “7” rather than 7. If the value of an attribute is an array or JSON string, they are all
treated as regular strings. Besides, CEP does not support non-ASCII characters in CEP
events, especially on Windows platform. So, the result is:

{ myBoolKey: "false", mylntKey: "7, myFloatKey: ''5.400000",
myStringKey: "testXXXXX", myArrayKey: "[5.4,true,false,{" "yellow":
true,''green”: false},7]"}

Improvement in CEP 6.1

CEP 6.1 keeps the type of all attributes in event.data as what they are. If the same string
is passed through event.data by CEP 6.1, the result will be:

{
"myBoolKey": false,

"mylntKey': 7,
"myFloatKey': 5.4,
"myStringKey': "test7 Z R,
"myArrayKey'": [
5.4,
true,
false,
{
“yellow": true,
"green'": false

}

o myArrayKey is an array object rather than a JSON string, and it has an anonymous
object which includes “yellow” and “green” attribute.

o Therefore, Since CEP parses JSON and returns the parsed JavaScript object to you, you
do not need to call JSON.Parse() to parse the result from event.data anymore.

o Besides, you can pass non-ASCII characters and binary data by CEP events.

Invoke point product’s scripts from html extension

First, define a callback function in CEP extension:

function evalScirptCallback(result)
{

}

// process the result string here.

Then call CSinterface.evalScript with the script you want to call and the callback function:

var script = "app.documents.add"; //Demo script
CSInterface.evalScript(script, evalScriptCallback);

Please be aware that the script in evalScript and the jsx file which is configured in <ScriptPath>
in the extension's manifest are executed in host application's ExtendScript engine, which runs in
host application's main thread. On the other hand, CEP event is also dispatched from host
application’'s main thread. If the interaction between the script and CEP event is needed, please
split the script into small parts and call them separately so that CEP event has a chance to be
scheduled.

Vulcan messages

Starting with CEP 5.0, global CEP Events whose scope attribute is set to "GLOBAL" is no
longer supported. Please use the APIs in Vulcan.js instead.

Vulcan message

The data structure of Vulcan message in JavaScript is as below.

/**

@class VulcanMessage

Message type for sending messages between host applications.
A message of this type can be broadcast to all running
Vulcan-enabled apps.

To send a message between extensions running within one
application, use the <code>CSEvent</code> type in CSlInterface.]js.

*
*
*
*
*
*
*
*
*

@param type The message type.

*
*/
function VulcanMessage(type)
{
this.type = type;
this.scope = VulcanMessage.SCOPE_SUITE;
this.appld = VulcanMessage.DEFAULT _APP_ID;
this.appVersion = VulcanMessage.DEFAULT_APP_VERSION;
this.data = VulcanMessage.DEFAULT_DATA;
33
VulcanMessage.TYPE_PREFIX
VulcanMessage.SCOPE_SUITE ""GLOBAL";
VulcanMessage .DEFAULT_APP_ID ""UNKNOWN"*;
VulcanMessage .DEFAULT_APP_VERSION = ""UNKNOWN';
VulcanMessage .DEFAULT_DATA = "<data><payload></payload></data>"";

"vulcan.SuiteMessage.";

Listen for and Dispatch Vulcan message

addMessageL.istener, removeMessageL.istener, dispatchMessage and getPayload APIs are
available to dispatch and listen for Vulcan messages. The API definitions are as below. Refer to
Vulcan.js for more information.

/**
* Registers a message listener callback function for a Vulcan message.
*
* @param type The message type.
* @param callback The callback function that handles the message.
* Takes one argument, the message object.
* @param obj Optional, the object containing the callback

method, if any.
* Default is null.

*/
Vulcan.prototype.addMessagelListener = function(type, callback, obj)

/**

* Removes a registered message listener callback function for a Vulcan
message -

*

* @param type The message type.

* @param callback The callback function that was registered.

* Takes one argument, the message object.

* @param obj Optional, the object containing the callback
method, if any.

* Default is null.

*/

Vulcan.prototype.removeMessagelListener = function(type, callback, obj)

/**
* Dispatches a Vulcan message.

*

* @param vulcanMessage The message object.
*/
Vulcan.prototype.dispatchMessage = function(vulcanMessage)

/**

* Retrieves the message payload of a Vulcan message for the registered
message listener callback function.
*

* @param vulcanMessage The message object.
* @return A string containing the message payload.
*/

Vulcan.prototype.getPayload = function(vulcanMessage)

Here is the example to demonstrate how to use the APIs in JavaScript.

var testVulcanMessage = new VulcanMessage(VulcanMessage.TYPE_PREFIX +

"test');

testVulcanMessage.setPayload("'To be or not to be that is a question!™);

var callback = function (message) {
alert(VulcanlInterface.getPayload(message));

};

Vulcanlnterface.addMessagelListener(testVulcanMessage.type, callback);

Vulcanlnterface.dispatchMessage(testVulcanMessage);

Vulcanlnterface.removeMessagelListener(testVulcanMessage.type, callback);

Access Application DOM from Html Extension
There are two separate JavaScript engines here.

e JavaScript engine of host application - Application DOM/Extend script DOM
« JavaScript engine of CEP HTML runtime - HTML DOM

Application DOM is not available in CEP extension's engine and CEP DOM is not available in
host application's engine.

To access Application DOM from CEP extensions, CEP JavaScript library provides an
API, CSinterface.evalScript, to execute extend script to access the host application's DOM. Here
is a brief diagram to indicate how to access Application DOM through this API.

Application CEP Extension Runtime

JavaScript Engine V8 JavaScript Engine
App Dom HTML Dom
EW'E]SCI'II.F'I cslnterface evalSoript]

‘app.documents add(Hf’,
function(result) {

result i

Here is the sample JavaScript code snippet in HTML extension.

var cslinterface = new CSinterface();
cslinterface.evalScript(“app.documents.add();", function(result){
alert(result);

H:
Access HTML DOM from extend script

There is no way to access HTML extension's JavaScript DOM directly from Application's
ExtendScript. If you need to access it, CEP event based communication can be used as a
substitution.

CEP creates a library which uses External Object mechanism of ExtendScript to send CSXS
events. The external object provides an ExtendScript class CSXSEvent for creating and
dispatching application-level CSXS events. On HTML extension side, event listeners can be
registered via the addEventListener API in CSinterface.js to listen to the events.

Some CC applications (Photoshop, Illustrator, Premiere Pro) integrate PlugPlugExternalObject
library and start to support this functionality in CC 2014 release. Audition supports this
functionality since CC 2015.1 release.

Sample Code

ExtendScript developers need to create external object instance first.

var externalObjectName = "PlugPlugExternalObject";
var mylib = new ExternalObject("lib:" + externalObjectName);

And then create the CSXSEvent instance.

var eventObj = new CSXSEvent();
eventObj . type=""documentCreated";
eventObj .data="blahblah";

At last use this instance to dispatch event:

eventObj.dispatch(Q);

Below is the sample code of ExtendScript.

var cs = new CSInterface();

cs.addEventListener(*'documentCreated’, function(event){
alert("Cool!" + event.data);

¥

var extendScript = "var externalObjectName = "PlugPlugExternalObject'; var
mylib = new ExternalObject("lib:" + externalObjectName);
app-document.add(); var eventObj = new CSXSEvent();

eventObj . type="documentCreated”™; eventObj.data="blahblah";

eventObj .dispatch(Q);*

cs.evalScript(extendScript);

Fly-out menu
For fly-out menu on the native panel of HTML extension, it has been supported.

Two new interfaces are added to CSinterface.

CSInterface.prototype.setPanelFlyoutMenu = function(menu){
window. adobe _cep__ .invokeSync(“'setPanelFlyoutMenu', menu);

3

CSinterface.prototype.updatePanelMenultem = function(menultemLabel, enabled,
checked){
var ret = false;
if (this.getHostCapabilities().EXTENDED PANEL_MENU){
var itemStatus = new MenultemStatus(menultemLabel, enabled, checked);
ret = window.__adobe_cep__ . invokeSync("'updatePanelMenultem",
JSON.stringify(itemStatus));

return ret;

}:
The "menu” parameter for "setPanelFlyoutMenu™ is a XML string. Below is an example:

<Menu>
<Menultem ld="menultemldl"™ Label="TestExamplel™ Enabled="true"
Checked=""false"/>
<Menultem Label="TestExample2'>
<Menultem Label="TestExample2-1' >

<Menultem Label="TestExample2-1-1" Enabled="false" Checked="true'"/>
</Menultem>
<Menultem Label="TestExample2-2" Enabled="true" Checked=""true"/>
</Menultem>
<Menultem Label=""---"" />
<Menultem Label="TestExample3" Enabled=""false'" Checked="false'/>
</Menu>

If user wants to be notified when clicking a menu item, user needs to register
"com.adobe.csxs.events.flyoutMenuClicked" event by calling AddEventListener. When a menu
item is clicked, the event callback function will be called. The "data" attribute of event is an
object which contains "menuld" and "menuName" attributes.

To get notified when fly-out menu is opened and closed, register event listener for below event
types respectively:

*com.adobe .csxs.events. flyoutMenuOpened™
""com.adobe.csxs.events. flyoutMenuClosed"

Customize Context Menu
Set and Update Context Menu

There are three APIs in CSinterface for developers to set and update the customized context
menu.

CSInterface.prototype.setContextMenu = function(menu, callback){
window.__adobe_cep__ . invokeAsync("'setContextMenu", menu, callback);

¥

CSInterface.prototype.setContextMenuByJSON = function(menu, callback){
window.__adobe_cep__ . invokeAsync("'setContextMenuByJSON", menu, callback);

3

CSInterface.prototype.updateContextMenultem = function(menultemlD, enabled,
checked){
var itemStatus = new ContextMenultemStatus(menultemlD, enabled, checked);
ret = window.__adobe_cep__ .invokeSync("'updateContextMenultem',
JSON.stringify(itemStatus));
};

The "menu” parameter for "setContextMenu™ is a XML string.

e Id - Menu item ID. It should be plain text.

e Icon - Menu item icon path. It is a path relative to the extension root path. For optimal
display results please supply a 16 x 16px PNG icon as larger dimensions will increase the
size of the menu item.

e Label - Menu item label. It supports localized languages.

o Enabled - Whether the item is enabled or disabled. Default value is true.

e Checkable - Whether the item can be checked/unchecked. Default value is false.

o Checked - Whether the item is checked or unchecked. Default value is false.
o The items with icons and checkable items cannot coexist on the same menu level. The
former take precedences over the latter.

Here is an example.

<Menu>
<Menultem ld="menultemldl™ Label="TestExamplel™ Enabled="true"
Checked="false" Icon="./img/small_16X16.png"/>
<Menultem ld="menultemld2" Label="TestExample2'>
<Menultem Id="menultemld2-1" Label="TestExample2-1" >
<Menultem Id="menultemld2-1-1" Label="TestExample2-1-1"
Enabled="false'" Checkable="true" Checked=""true"/>
</Menultem>
<Menultem ld="menultemld2-2" Label="TestExample2-2'" Enabled=""true"
Checkable=""true" Checked="true'"/>
</Menultem>
<Menultem Label="---" />
<Menultem Id="menultemld3" Label="TestExample3"” Enabled="false"
Checked=""false'"/>
</Menu>

The "callback" parameter is the callback function which is called when user clicks a menu
item. The only parameter is the ID of clicked menu item.

If you prefer to using a JSON string to set context menu, you can achieve it by calling
"setContextMenuByJSON".

The "menu” parameter for "setContextMenuByJSON" is a JSON string.

e id - Menu item ID. It should be plain text.

e icon - Menu item icon path. It is a path relative to the extension root path. For optimal
display results please supply a 16 x 16px PNG icon as larger dimensions will increase the
size of the menu item.

o label - Menu item label. It supports localized languages.

o enabled - Whether the item is enabled or disabled. Default value is true.

o checkable - Whether the item can be checked/unchecked. Default value is false.

o checked - Whether the item is checked or unchecked. Default value is false.

e The items with icons and checkable items cannot coexist on the same menu level. The
former take precedences over the latter.

Here is an JSON example

{
“"menu": [
{
"id": "menultemldl™,
"label™: "testExamplel",
"enabled": true,
""checkable': true,

"checked": false,

"icon": "./img/small_16X16.png"
3}
{
"id": "menultemld2",
"label™: ""testExample2",
"menu": [
{

"id": "menultemld2-1",

"label': "testExample2-1",

"menu: [

{

"id": "menultemld2-1-1",
"label': "testExample2-1-1",
"enabled": false,
""checkable': true,
""checked": true

}
1
}s
{
"1d": "menultemld2-2",
"label': "testExample2-2",
"enabled": true,
""checkable': true,
""checked": true
}
]
3.
{
"label': "---"
T,
{
“id": "menultemld3",
"label™: "testExample3",
"enabled": false,
""checkable": true,
"checked": false
}

}

If developers do not set context menu, CEP shows default items (Back, Forward, View Source,
etc.). This is compatible with previous releases. If developers set context menu which has no any
default id, CEP removes all default items and show customized items only. If one of the
following default ids is set, the default menu item against that id will be shown.

"print"”

"back"

"view source"
"forward"

Notes:
1. They are case-insensitive.
2. The quotation marks is not a part of an id.
3. The default callback associated to each id will be used and cannot be customised.
Disable Context Menu
To disable the context menu, you can call setContextMenu by null.
Another way is to add oncontextmenu="return false;" to the HTML tag. For example,

<body oncontextmenu="return false;">

Other Implementation of Context Menu

See examples.
Get Display Status of HTML Extension Window
Two ways to get HTML extension window

o Register "com.adobe.csxs.events.panelWindowStatusChanged™ CSXS event
o Call isWindowVisible JavaScript API.

Resister "*com.adobe.csxs.events.panelWindowStatusChanged’ CSXS event

o Observe "com.adobe.csxs.events.panelWindowStatusChanged” CSXS event, this is
for PANEL extensions only. If user hides the panel window by clicking "X" or collapsing
window, this event is going to be sent to observer with the "true" or "false” string in data
attribute, while the event is not going to be sent if the extension is closed.
That is to say, currently, only panel extensions which are running on Ai and persistent
can receive this event, when the extension is hiding, event with "false" data is sent while
the extension is shown, event with “true™ is sent.

Call iswWindowVisible API
o Call "isWindowVisible" JS interface. Both dialog and panel extension enable to access
this API, but it always returns true for modal and modeless dialog extensions while it

always returns false for invisible extensions.

Getting and Changing Extension Content Size

Getting Extension Content Size

http://www.javascripttoolbox.com/lib/contextmenu/

Getting extension content size can be done using window.innerWidth and window.innerHeight.
However, if you are accessing these properties from inside an IFrame, you are actually accessing
the properties of the IFrame's window object, not the ones for the HTML document. To access
the top-most one, you will need to do "parent.window.innerWidth" and
"parent.window.innerWidth".

Changing Extension Content Size

Changing modal and modeless extension content size is supported in all Adobe applications that
supports CEP. However, changing panel HTML extension size is not supported in Premiere Pro,
Prelude, After Effects and Audition.

CSInterface.prototype.resizeContent = function(width, height)

The width and height parameters are expected to be unsigned integers. The function does nothing
when parameters of other types are passed.

Please note that extension min/max size constraints as specified in the manifest file apply and
take precedence. If the specified size is out of the min/max size range, the min or max bounds
will be used. When a panel is docked with other panels, there are chances that it won't resize as
expected even when the specified size satisfies the min and max constraints. The restriction is
imposed by host applications, not by CEP.

Register invalid certificate error callback

(Since 6.1)

Register the invalid certificate error callback for an extension. This callback will be triggered
when the extension try to access the web site that contains the invalid certificate on main
frame. But if the extension does not call this function and try to access the web site containing
the invalid certificate, a default error page will be shown:

CSInterface.prototype.registerinvalidCertificateCallback = function(callback)
Register an interest in specific key events
(Since 6.1)

Register an interest in some key events to prevent them from being sent to the host application:

CSInterface.prototype.registerkKeyEventsinterest = function(keyEventslinterest)

This function works with modeless extensions and panel extensions. Generally all the key events
will be sent to the host application for these two extensions if the current focused element is not
text input or dropdown.

If you want to intercept some key events and you want them to be handled in the extension,
please call this function in advance to prevent them being sent to the host application.

o keyEventsinterest: A JSON string describing those key events you are interested in. A
null object or an empty string will lead to removing the interest

This JSON string should be an array, each object has following keys:

o keyCode: [Required] represents an OS system dependent virtual key code
identifying the unmodified value of the pressed key.

o ctrlkey: [optional] a Boolean that indicates if the control key was pressed (true) or
not (false) when the event occurred.

o altKey: [optional] a Boolean that indicates if the alt key was pressed (true) or not
(false) when the event occurred.

o shiftkey: [optional] a Boolean that indicates if the shift key was pressed (true) or not
(false) when the event occurred.

o metaKey: [optional] (Mac Only) a Boolean that indicates if the Meta key was pressed
(true) or not (false) when the event occurred. On Macintosh keyboards, this is the
command key. To detect Windows key on Windows, please use keyCode instead.

To learn all key codes:

e Windows
e Mac
o /System/Library/Frameworks/Carbon.framework/Versions/A/Frameworks/HIToo
Ibox.framework/Versions/A/Headers/Events.h
o Install Key Codes from the Mac App Store.

An example JSON string:

{
""keyCode': 48
} ’
{
""keyCode': 123,
"ctriKey': true
H

Set and Get the title of the extension windows
(Since 6.1)

CEP 6.1 introduces two APIs to set and get the title of extension windows. Those functions work
with modal and modeless extensions in all Adobe products, and panel extensions in Photoshop,
InDesign, InCopy, Hllustrator, Flash Pro and Audition:

CSInterface.prototype.setWindowTitle = function(title){
window. _adobe _cep__ .invokeSync(“'setWindowTitle", title);

https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://itunes.apple.com/us/app/key-codes/id414568915?mt=12

3

CSInterface.prototype.getWindowTitle = function(){
return window.__adobe_cep__.invokeSync("getWindowTitle", "'");

};
HI-DPI display

CEP JavaScript library provides APIs for detecting the availability of HI-DPI display on the Mac
platform.

e CSinterface.getScaleFactor()
Use this function to retrieve the scale factor of the display on which the calling extension
window is located.

var scaleFactor = CSLibrary.getScaleFactor();

e CSinterface.setScaleFactorChangedHandler()
Use this function to add a event handler that will be called when calling extension
window is moved between HI-DPI and non-HI-DPI displays.

window.scaleFactorHandler = function(){
var scaleFactor = CSLibrary.getScaleFactor();
if (scaleFactor === 2){
imgSrc = "../img/PS_Applcon_r.png"
} else {
imgSrc = "../img/PS_Applcon.png"
}

document.getElementByld(*"image').src = imgSrc;

}

CSLibrary.setScaleFactorChangedHandler(window.scaleFactorHandler);

CEP 5.2 has already supported HiDPI on Windows.

Other JavaScript APls

The JavaScript engine in CEP HTML engine had been extended to provide some APIs,
including:

o local file access
e native process
e others

These APIs are in JavaScript DOM and can be used as other built-in JavaScript APIs. You
do NOT need to include any JavaScript files.

API reference is as below.

CEPEnNgine_extensions.js is actually a CEF extension that is built in CEPHtmIEngine to expand
the DOM of CEPHtmIENgine, like create/delete folder, read/write file, create/quit process, and so
on. You can invoke these built-in APIs directly in your HTML extension without any JavaScript
file reference.

For example, you want to

1) create a folder.

var path = "/tmp/test";
var result = window.cep.fs.makedir(path);
if (0 == result.err){

...// success

} else {
...// fail
}

2) write a file.

var data = "This is a test."
var path = "/tmp/test";
var result = window.cep.fs.writeFile(path, data);
if (0 == result.err){
...// success

} else {
...// fail
}

3) Write file with base64 encoding mode. To use this mode, you need to convert the input string
to a base64-encoded string before calling writeFile(). The following is an example.

var data = "This iIs a test.";
var path = "/tmp/test";
data = cep.encoding.convertion.utf8 to b64(data);

var result = window.cep.fs.writeFile(FileName, data, cep.encoding.Base6t4);
if (0 == result.err) {
...// success

} else {
...// fail
}

4) read afile.

var path = "/tmp/test";
var result = window.cep.fs.readFile(path);

if(result_err === 0){

//success

alert(result.data); //result.data is file content
} else {

...// fail

}

5) Read file with base64 encoding mode in which the read data after readFile called is converted
to a base-encoded string. You need to decode this string to any format you want. The following
is an example

var path = "/tmp/test";
result = window.cep.fs.readFile(path, cep.encoding.Base6t4);
if(result.err === 0){

//success

var base64Data = result.data;

var data = cep.encoding.convertion.b64 to utf8(base64Data);

} else {
...// fail

}
6) Create a process and check if it's running.

var result = window.cep.process.createProcess('usr/X11/bin/xterm™);

if(result.err === 0){
var pid = result.data;
result = window.cep.process. isRunning(pid);
if(result.data === true){
// running

}
}

You could use other APIs like delete folder, rename folder, set file permission, delete file, show
file open dialog, quit process, etc.

To know them now, please look at
/lcsxs/main/projects/native/ CEPHtmIEngine/common/CEPENgine_extensions.js

We have the following samples that demonstrate use of some of these APIs:

o https://github.com/Adobe-CEP/Samples/tree/master/Flickr
o https://github.com/Adobe-CEP/Samples/tree/master/Collage

Localization

In order to support localization, both the extension and the host application must provide locale
information. There are two distinct types of locale information.

o The License Locale (returned as the applicationLocale by the AMT library)
o The Effective/Language/Ul Locale (which is controlled by the user in the OS settings).

The extension must provide the list of supported locales for both the License Locale and the
Language Locale via the HostEnvironment. This is particularly important in cases where the
extension has features for a specific locale. PlugPlug library expects the host application to
provide the locale information as part of the environmental data.

https://github.com/Adobe-CEP/Samples/tree/master/Flickr
https://github.com/Adobe-CEP/Samples/tree/master/Collage

JavaScript API HostEnvironment has the appLocale property in place.

In the CSXS Reference Application, the applicationLocale can be changed in
<userHome>/settings.txt. The default value is en_US for the Reference Application.

License Locale and locales supported by extension

CEP checks the License Locale of host application against supported locales declared in
extensions locale list to determine if the extension is loadable for the host application.

Locale folder structure

The locale folder structure in HTML extensions is similar as Flash extensions. Each property file
should be placed in its corresponding locale folder. For example, the en_US property file should
be <YourExtension>/locale/en_US/messages.properties. Users can define a default property file
(<YourExtension>/locale/messages.properties), which will be used when the corresponding
locale file is not defined.

YourExtension/
| -csxs/
|-locale/ <-- Directory for localized resources
| -- messages.properties <-- The one to fallback to if no
localized resources is provided for a locale
|-- en_US/
| |- messages.properties
|-- zh_CN/

| - messages.properties

Locale file format is similar to Flash extension. It contains multiple lines of <key>=<value>.
There should be a new line below the last property key/value.

keyl=valuel
key2=value2
key3.value=value3
key4 . innerHTML=value4

CEP provides a JS interface named initResourceBundle to initialize the locale resources. This
should be called during the loading of the extension. CEP initializes the resource bundle for the
extension with property values for the current application and Ul locale. Then users can access
the resource bundle (object) to get the localized strings.

var cslinterface = new CSinterface();
csinterface. initResourceBundle();

Sharing localization resources across multiple locales

CEP 6.0 provided a mechanism to allow multiple locales to share the same localization resources
(messages.properties).

For example, you want es_ MX to use the messages.properties for es_ES. To do so, supply a file
named fallback.properties in the es_ MX folder as illustrated below.

YourExtension/
| -csxs/
|-locale/
| -- messages.properties
|-- es ES/
| |- messages.properties
|-- es_MX/

|- fallback.properties

In the fallback.properties file, you specify which locale's localized resources you want es_ MX to
use, in below format

fallback=es ES
Side Notes:

« The fallback.properties file takes precedence when both messages.properties and
fallback.properties exist at the same time.

o If fallback.properties is malformed, or it specifies a non-existent fallback locale, the
messages.properties file in the same directory will be used.

Localized menu

In manifest, it supports to use locale string as menu. For example, in ShareOnBehance's
manifest, it is using %UIl_share_on_Behance. Ul_share_on_Behance is defined as
"Ul_share_on_Behance=xxx" in messages.properties.

<Type>ModalDialog</Type>
<Menu>%UIl_share_on_Behance</Menu>

</U1>
Examples

Example 1

var cs = new CSInterface();

// Get properties according to current locale of host application.

var resourceBundle = cs.initResourceBundle();

// Use the localized strings.

<script type="text/javascript''>document.write(resourceBundle.keyl);</script>

Example 2

data-locale is the custom HTML element attribute and you can add to each HTML element that
you want to localize.

In this example, there is "key3.value=value3" in the property file. In the HTML file, the input
widget has attribute "data-locale™ with "key3", then its value is set to "value3".

In this example, there is "key4.innerHTML=value4" in the property file. In the HTML file, the
text area widget has attribute "data-locale™ with "key4", then its innerHTML is set to "value4".

<script type="text/javascript'>
var cs = new CSInterface();

// Get properties according to current locale of host application.
var resourceBundle = cs.initResourceBundle();

// Use the localized strings.

document.write(resourceBundle._keyl);

document.write(resourceBundle._key?2);
</script>

<input type="submit"” value="" data-locale=""key3"/>
<textarea rows=""10" cols="80" data-locale="key4'"></textarea>

Example 3

Use parameters ($1, $2, ...) in localized strings.

var localize = function(key){
var cs = new CSInterface();
var resourceBundle = cs.initResourceBundle();
var localizedStr = resourceBundle[key];
it (localizedStr){
var index = 1;
while (localizedStr.indexOF("'$" + index) == -1){
localizedStr = localizedStr.replace("$" + index, arguments[index]);
index++;

return localizedStr;

} else {
return °°;
¥

}:

Supporting MENA locales

MENA stands for "Middle East and North Africa". Support needs to be provided for Arabic,
Hebrew, and NA French languages. Products supporting these languages are: 1D, PS, Al, DW
and Acrobat.

With MENA, new AMT locales have been added to AMT in CS6:

| Language I ISO Code|
| Arabic (Middle East Enabled English Arabic) | en_AE |
| Hebrew (Middle East Enabled English Hebrew)| en_IL |
| NA French | fr MA |

If an extension needs to be loaded in host applications in MENA locales, MENA locales must be
added to the supported locale list of the extension manifest file. For example:

<LocaleList>
<Locale Code="en_AE"/>
<Locale Code="en_IL"/>
<Locale Code=""fr_MA"/>

</LocaleList>
Extension localization for MENA locales

Suppose your extension has this directory layout

Extension/
| -xxx.swF
| -csxs/
|-locale/ <-- Directory for localized
resources
| -- messages.properties <-- The one to fallback to
if no localized resources is provided for a locale
|-- fr_FR/

| |- messages.properties
|-- en_GB/
|- messages.properties

When CSinterface.initResourceBundle() is called, CEP uses the app Ul locale (not app locale)
reported by PP to load localized resources. If there is no localized resources for an app Ul locale,
for example fr_MA, then CEP will fall back to use messages.properties located under the
“locale” folder.

With MENA feature, PPs map en_AE/en_IL to en_US and fr_MA to fr_FR for app Ul locale. In
this case, for en_AE and en_IL build of PP, en_US resources will be used if provided and for
fr_MA Dbuild of PP, fr_FR resources will be used if provided. What extension team needs to do in
this case is to provide en_US version of resources for en_AE/en_IL and fr_FR version of
resources for fr_MA.

Video/Audio Playback

CEP 5.0 supports playing video and audio encoded in below formats

[Format|MIME-Type| Misc. |
IMP4 |video/mp4 |MPEG 4 files with H.264 video codec and AAC audio codec|
l0gg |video/ogg [Ogg files with Theora video codec and Vorbis audio codec |
imp3 [laudio/mpeg | |

Here is an example of playing video in your extension:

<video poster="http://www.html5rocks.com/en/tutorials/video/basics/star.png"
controls>

<source
src="http://www.html5rocks.com/en/tutorials/video/basics/Chrome_ImF.mp4"
type="video/mp4; codecs="avcl.42EO1E, mp4a.40.2""/>
</video>

One thing to note is that because HTML extensions are hosted in integrating application's
windows, video cannot be played in full-screen mode.

WebRTC

WebRTC is targeting to serve stream audio, video capture, like online video
conference. WebRTC is not enabled by default. To enable it, the schema below need to be added
in manifest file. For details, refer to Customize CEF command parameters.

<CEFCommandLine> <Parameter>--enable-media-stream</Parameter>
</CEFCommandLine>

For WebRTC related development, CEP runtime just keeps the same experiences as the usage in
Chrome. Below is a sample script to demonstrate how to use it in HTML pages of extension:

<video id="basic-stream" autoplay></video>

<script>
var errorCallback = function(e){
if (e.code === 1) {
alert("User denied access to their camera®);
} else {
alert("getUserMedia() not supported in your browser.");
¥
}

var video = document.querySelector("#basic-stream™);
var localMediaStream = null;

if(navigator.getUserMedia){
navigator.getUserMedia("video", function(stream){
video.src = stream;
video.controls = true;
localMediaStream = stream;
}, errorCallback);

} else if(navigator.webkitGetUserMedia){

http://www.webrtc.org/

navigator.webkitGetUserMedia({ video: true }, function(stream){
video.src = window.URL.createObjectURL(stream);
video.controls = true;
localMediaStream = stream;

}, errorCallback);

}

</script>

More samples.

In addition, there are some limitations of WebRTC support in CEP 5.0 runtime due to the known
issue in CEF3:

Issue.
No

Description

Link

1065

Add support for webrtc
based screen
sharing/capturing

https://code.qgoogle.com/p/chromiumembedded/issues/detail?id=1065

http://www.magpcss.org/ceforum/viewtopic.php?f=6&t=10982

cefclient w/OSR hangs on

RTCPeerConnection

1139 |lexit with the WebRTC https://code.google.com/p/chromiumembedded/issues/detail ?id=1139&g=We
Reference App
1144 CEF3 does not support https://code.qgoogle.com/p/chromiumembedded/issues/detail?id=1144

1151

CEF3: Mac: Process is
blocked to quit when
iframe is using WebRTC

https://code.google.com/p/chromiumembedded/issues/detail ?id=1151&start=:

1153

CEF3: Win: Can not show
https://apprtc.appspot.com

https://code.google.com/p/chromiumembedded/issues/detail?id=1153&start=.

Scroll bar tips

On Mac, scroll bars of panel are hidden by OS (since Lion by design). It can be always shown by
settings as below.
1. Click the Apple menu at the top-left of the screen, then select System Preferences.

2. Next, select the General preferences pane; it’s the very first one, up at the top.

3. Under the “Show scroll bars” heading, you’ll find three options: “Automatically based on
input device,” “When scrolling,” and “Always.” Chose "Always."

Invisible HTML Extensions

http://www.html5rocks.com/en/tutorials/getusermedia/intro/
https://code.google.com/p/chromiumembedded/issues/detail?id=1065
http://www.magpcss.org/ceforum/viewtopic.php?f=6&t=10982
https://code.google.com/p/chromiumembedded/issues/detail?id=1139&q=WebRTC
https://code.google.com/p/chromiumembedded/issues/detail?id=1144
https://code.google.com/p/chromiumembedded/issues/detail?id=1151&start=100
https://apprtc.appspot.com/
https://code.google.com/p/chromiumembedded/issues/detail?id=1153&start=100

An HTML extension can be invisible during its whole life cycle. This means

o It always runs in the background
e ltis never visible

To make an HTML extension invisible

o Set extension manifest version to "5.0" or higher.

e Specify its window type as 'Custom’ in the manifest file.

e Set <AutoVisible> to false in the manifest file.

« If you do not want the extension to appear in the Window->Extensions menu, do not add
the <Menu> tag.

« If you want the extension to start on specific types of events, specify those events using
<StartOn> tag.

Here is an example:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<ExtensionManifest xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
ExtensionBundleld="lamlnvisible"™ ExtensionBundleVersion="1.0" Version="5.0">
<ExtensionList>
<Extension Id="lamlnvisible" Version="1.0"/>
</ExtensionList>
<ExecutionEnvironment>
<HostList>
<Host Name="PHXS" Version="13.0"/>
</HostList>
<LocaleList>
<Locale Code="All"/>
</LocaleList>
<RequiredRuntimeList>
<RequiredRuntime Name="'CSXS" Version="5.0"/>
</RequiredRuntimeList>
</ExecutionEnvironment>
<DispatchlnfolList>
<Extension ld="lamlnvisible'>
<DispatchlInfo>

<Resources>
<MainPath>_/html/index.html</MainPath>
</Resources>
<Lifecycle>
<AutoVisible>false</AutoVisible>
<StartOn>
<I-- Photoshop dispatches this event on startup -->
<Event>applicationActivate</Event>
<I-- Premiere Pro dispatches this event on startup -

->

<Event>com.adobe.csxs.events._ApplicationActivate</Event>
<Il-- You can add more events -->
<Event>another_event</Event>
</StartOn>
</Lifecycle>

<Type>Custom</Type>
<Geometry>
<Size>
<Height>1</Height>
<Width>1</Width>
</Size>
</Geometry>

</Dispatchinfo>
</Extension>
</DispatchilnfoList>
</ExtensionManifest>

One important thing to note is that not all host applications support Invisible HTML Extension.
See table below for more information:

Supports
PP Invisible Misc.
Extension
IPhotoshop |[Yes |
Premiere Yes
Pro

Prelude |[Yes I

[Flash Pro |[Yes |

/Audition ||Yes I

Doesn't work at all because InDesign doesn't support ‘Custom’

InDesign |[No window type.

Doesn't work at all because InCopy doesn't support ‘Custom'’

InCopy |No window type.

The invisible extension is shown as a visible panel. Possibly that
Illustrator treated the ‘Custom' window type as 'Panel'.

Illustrator ||[No One possible workaround is to use the 'Modeless' window type
instead of '‘Custom'. However, under certain situations (someone
calls PlugPlugLoadExtension for example), the extension will
become visible.

Customize CEF Command Line Parameters

Chromium/CEF command line parameters can be passed to CEPHtmIENgine, like --enable-
media-stream. Available Chromium command line parameters.

http://peter.sh/experiments/chromium-command-line-switches/

CEP filters out some parameters due to various reasons:

| Parameters || What is it filtered out?

—-remote- This could overwrite the one in .debug file. Filter out to avoid conflict.
debugging-port

--ignore- This ignores SSL certificate errors. It is a security concern to ignore invalid
certificate-errors ||server certificate, which allows extensions to load files from malicious sites.

All other parameters are passed to underlying CEF. It is up to CEF to decide whether a parameter

is supported and what is the behavior.

How to use CEF command line parameters

e Add <CEFCommandLine><Parameter>--paraml1<Parameter/> ... </CEFCommandLine>

in manifest.

e For key=value parameter, add <CEFCommandLine><Parameter>--
paraml=valuel<Parameter/> ... </CEFCommandLine> in manifest.

Here is an example:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<ExtensionManifest xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
ExtensionBundleld=""xx.yy.zz" ExtensionBundleVersion="1.0" Version="5.0">

<ExtensionList>

<Extension ld="xx.yy.zz" Version="1.0"/>
</ExtensionList>
<ExecutionEnvironment>

<HostList>

<Host Name="PHXS'" Version="13.0"/>
<Host Name="PPRO" Version="6.0"/>
</HostList>
<LocaleList>
<Locale Code="All"/>
</LocaleList>
<RequiredRuntimeList>
<RequiredRuntime Name='"'CSXS" Version="5.0"/>
</RequiredRuntimeList>
</ExecutionEnvironment>
<DispatchiInfoList>
<Extension Id="xx.yy.zz">
<DispatchliInfo>
<Resources>
<MainPath>./html/index.html</MainPath>
<CEFCommandLine>
<Parameter>--enable-media-stream</Parameter>
</CEFCommandLine>
</Resources>

</DispatchInfo>
</Extension>
</DispatchiInfoList>
</ExtensionManifest>

Commonly used CEF command parameters:

| Parameters H Notes

|--enable-media-stream |[Enable media (WebRTC audio/video) streaming.

|--enable-speech-input |Enable speech input (x-webkit-speech).

--persist-session- . . .
P Persist session cookies.

cookies
--disable-image- Disable loading of images from the network. A cached image will still
loading be rendered if requested.

--disable-javascript-

. Disable opening of windows via JavaScript.
open-windows

--disable-javascript-

i Disable closing of windows via JavaScript.
close-windows

--disable-javascript-

. Disable clipboard access via JavaScript.
access-clipboard

--enable-caret-

. Enable caret browsing.
browsing

This tells Chrome to try and automatically detect your proxy
configuration.

See more info on http://www.chromium.org/developers/design-
documents/network-settings.

--proxy-auto-detect

|--user-agent ||A string used to override the default user agent with a custom one.
—-disable-application- |, - 16 the ApplicationCache.

cache

|--enable-nodejs [Enable Node.js APIs in extensions. Supported since CEP 6.1
|--disable-pinch |Disable compositor-accelerated touch-screen pinch gestures. <

Enable the "mixed context” mode. Supported since CEP 6.1.0.176 or

--mixed-conext higher for CC 2016 June release.

HTML Extension Persistent

The purpose of persistent is to force not reload HTML extension when it is closed or hidden.
Photoshop has provided persistent since the version of 14.2.

To make an HTML extension persistent in Photoshop

http://www.chromium.org/developers/design-documents/network-settings
http://www.chromium.org/developers/design-documents/network-settings
https://code.google.com/p/chromium/codesearch#chromium/src/content/public/common/content_switches.cc&q=kDisablePinch&sq=package:chromium&type=cs

e Upgrade Photoshop version to 14.2 or later
« Dispatch the event com.adobe.PhotoshopPersistent from HTML extension to Photoshop
to request persistent

Sample code:

var Persistent = function(inOn){
iT(Ginon){
var event = new CSEvent(''com.adobe.PhotoshopPersistent', "APPLICATION"™);
} else {
var event = new CSEvent(''com.adobe.PhotoshopUnPersistent’,
"APPLICATION"™);

}

event.extensionld = gExtensionld;
csinterface.dispatchEvent(event);

}

Persistent(true); //persistent to prevent extension from unloading

Persistent(false); //unpersistent

FullScreen API in HTML Extension

CEP HTML extension runtime has not supported fullscreen API yet. The reason is its based
library CEF3 does not support fullscreen API.

Open URL link in default browser

In HTML extension, URL link could be opened in the default browser by
calling window.cep.util.openURLInDefaultBrowser(*“http://example.com"):

<button
onclick="window.cep.util.openURLInDefaultBrowser("http://www.adobe.com®)">0pe
n browser</button></1i>

Using Node.js APIs (CEP 6.0 and prior releases)

Node.js Support

One of the most prominent feature in CEP 5.0 is allowing Node.js APIs to be used in HTML
extensions. Most of the built-in APIs in Node.js version 0.8.22 are available to HTML
extensions, with the below exceptions:

e Cluster APIs are not supported.
e Console APIs are not supported on Windows.

Other things to note:

https://code.google.com/p/chromiumembedded/issues/detail?id=562

e CEP injects following symbols into the root HTML DOM:
o global, GLOBAL, root - same with the window object
o Buffer - node's Buffer class
o process - node's process class
o require - the magic function that bring you node API
o module - in node the main script is a special module, this is for the compatibility

o Conflicts with Web-Based Require Function

« If your app uses libraries like RequireJS that inserts a require function into DOM,
you should consider renaming CEP's require function to something else before
migrating.

<script type="text/javascript'>windows.nodeRequire=window.require &&
window. require=undefined</script>

<script type="text/javascript"
src=""your/require/js/file_js"></script>

o Conflicts with Web-Based module Function
o If your app uses JQuery that is trying to register itself as nodejs plugin, then you
will have to add the script below inside script tag to define window.module as
undefined.

<script type="text/javascript'>window.module =
undefined</script>

o Disable Node.js APIs in iframe
Because of security consideration, CEP provides an option to disable Node.js APIs in
iframe. To do so, add a nodejs-disabled=""true"" attribute to iframe tag. For example:

<iframe i1d="xxx" class=""xxxxx" nodejs-disabled=""true">

« Forcing the environment implementation. If you are using RequireJS, and the text plugin
tries to detect what environment is available for loading text resources, Node,
XMLHttpRequest (XHR) or Rhino, but sometimes the Node or Rhino environment may
have loaded a library that introduces an XHR implementation. You can force the
environment implementation to use by passing an "env" module config to the plugin:

requirejs.config({
config: {
text: {
//Valid values are "node-,
env: "rhino”

xhr®, or "rhino*

}
D;

Node.js Modules

JavaScript Modules

All third-party node JavaScript modules are supported. The root search path of third-party
modules is the directory which contains your HTML file. For example, when you do require
in file:///your_extension/index.html, CEP will lookup modules

under file:///your_extension/node_modules, this rule is exactly the same with upstream node.

Samples

Use Environment Variables

process.env.ENV_VARIABLE // ENV_VARIABLE is the name of the variable you want
to access.

Use Node.js to download files

e http://www.hacksparrow.com/using-node-js-to-download-files.html

Using Node.js APIs (CEP 6.1 for CC 2015 release)

Node.js Support

CEP 6.1 upgraded its HTML engine to CEF 2272 (based on Chromium 41.0.2272.104) with
10.js version 1.2.0 integrated.

Known limitations:

e Cluster APIs are not supported.
e Console APIs are not supported on Windows.

Other things to note:

e Node.js APIs are disabled by default
Due to security consideration, node.js APIs are disabled by default (prior to CEP 6.1,
they were enabled by default) both on the extension level and IFrame level.
To enable Node.js APIs:
o Set ExtensionManifest version and RequiredRuntime version 5.0 or higher.
o Specify --enable-nodejs' in extension manifest. See section Customize CEF
Command Line Parameters for details
o To use Node.js APIs in IFrames, add property 'enable-nodejs' to it and to all its
ancestor IFrames. If any of its ancestors don't have this property specified,
Node.js APIs won't work

<iframe id="xxx" class=""xxxxx" enable-nodejs>

http://www.hacksparrow.com/using-node-js-to-download-files.html
https://wiki.corp.adobe.com/display/csxs/CEP+6+HTML+Extension+Cookbook#CEP6HTMLExtensionCookbook-CustomizeCEFCommandLineParameters
https://wiki.corp.adobe.com/display/csxs/CEP+6+HTML+Extension+Cookbook#CEP6HTMLExtensionCookbook-CustomizeCEFCommandLineParameters

e The old 'nodejs-disabled' CEF command line parameter and IFrame property are no
longer supported and ignored by the new HTML engine
« Node context and Browser context
The way io.js was integrated into CEF introduced two types of JavaScript contexts, one
for browser, the other for io.js. Global objects created in HTML pages are in browser
context, while "required” js files run in io.js context. These two contexts don't have direct
access to each other's data. To share data, pass reference to objects between the two
contexts:
o Accessing objects in io.js context from browser context
For example, in browser context, "var backbone = require(’backbone’);" executes
the backbone module's code and then pass the result object to browser context.
o Accessing objects in browser context from io.js context
Browser context's ‘window' global object is injected to i0.js context, providing a
way to access objects in browser context from io.js context.
For example, if you want to access a global object named 'localeStrings' defined
in browser context from your io.js module, use ‘window.localStrings' in your io.js
module.

e CEP injects following symbols into the root HTML DOM:
o global, GLOBAL, root - same with the window object
o Buffer - node's Buffer class
o process - node's process class
o require - the magic function that bring you node API
o module - in node the main script is a special module, this is for the compatibility

o Conflicts with Web-Based Require Function

o If your app uses libraries like RequireJS that inserts a require function into DOM,
you should consider renaming CEP's require function to something else before
migrating.

<script type="text/javascript'>windows.nodeRequire=window.require &&
window. require=undefined</script>

<script type="text/javascript"
src=""your/require/js/file_js"></script>

o Conflicts with Web-Based module Function
o If your app uses JQuery that is trying to register itself as nodejs plugin, then you
will have to add the script below inside script tag to define window.module as
undefined.

<script type="text/javascript'>window.module =
undefined</script>

« Forcing the environment implementation. If you are using RequireJS, and the text plugin
tries to detect what environment it is available for loading text resources, Node,
XMLHttpRequest (XHR) or Rhino, but sometimes the Node or Rhino environment may

have loaded a library that introduces an XHR implementation. You can force the
environment implementation to use by passing an "env" module config to the plugin:

requirejs.config({
config: {
text: {
//Valid values are "node-,
env: "rhino”

xhr®, or "rhino*

}
D:;

Using Node.js APIs (CEP 6.1.0.176 or higher for CC 2016
June release)

In addition to the Node.js support in previous CEP 6.1, this release provided a new "mixed
context™ Node.js mode. Unlike the "separate context™ mode in previous CEP 6.1 where a
"required” node module is in a separate JavaScript context, a "required” node module and the
JavaScript code that "requires™ it are in the same context in the new "mixed context” mode,
eliminating all the inconveniences in the old "separate context" mode.

This mode is disabled by default. To enabled it, add command line parameter "--mixed-context"
to your extension manifest.

<Parameter>--mixed-context</Parameter>

Node.js Modules

JavaScript Modules

All third-party node JavaScript modules are supported. The root search path of third-party
modules is the directory which contains your HTML file. For example, when you do require

in file://lyour_extension/index.html, CEP will lookup modules
under file://lyour_extension/node_modules, this rule is exactly the same with upstream node.

Samples

Use Environment Variables

process.env_ENV_VARIABLE // ENV_VARIABLE is the name of the variable you want
to access.

Use Node.js to download files

e http://www.hacksparrow.com/using-node-js-to-download-files.html

http://www.hacksparrow.com/using-node-js-to-download-files.html

Limitation of cep.process.stdout/stderr

There is a known limitation of cep.process.stdout/stderr which is targeting to capture one time of
stdout/stderr output.

For applications that has not integrated CEP 5, there are two workarounds suggested as the
following.

1. Embed cep.process.stdout/stderr:

var getSTDOutput = function(){
console.log("'getSTDOutput™);
window.cep.process.stdout(pid, function(output){
console.log(output);
// your code is here

¥

var result = window.cep.process. isRunning(pid);
if (result._data === true){
setTimeout(getSTDOutput, 1000);
}
}

2. Join all stdout output as one, like below

var strl = "abcdef";
var str2 = "12345"%;
var str3 = "gghhtt”;

console.log(strl + str2 + str3);

An example on how to get curl downloading progress through stderr:

<script>
var downloadPid = -1;
function getStdErrOutput()
{

window.cep.process.stderr(downloadPid, function(progress) {
var keys = progress.split(new
RegExp(C"[# 17, "97));
for(i=0; i<keys.length; i++){
if (keys[i] = "") {
console.log(keys[i]);
+
}
D
var result = window.cep.process. isRunning(downloadPid);
if (result.data == true)

{

}
}

var doDownlload = function() {

setTimeout(getStdErrOutput, 100);

qURL,

var qURL "http://code. jquery.com/jquery-1.11.0.min.js";

var dest "/tmp/test.js”;

console._log('ext download (curl) ™ + qURL + "™ " + dest);

var result = window.cep.process.createProcess("/usr/bin/curl”,
"-#", "-0", dest);

downloadPid = result.data;

console.log('download pid is " + downloadPid);

getStdErrOutput();

3

doDownload();

</script>

Since CEP 5, Node.js is integrated into CEP runtime and users could invoke the standard APIs of
Node.js in extension directly. For applications that has integrated CEP 5, refer
to http://nodejs.org/api/process.html for how to use the global process object in Node.js.

Other JavaScript Information

Load Multiple JSX files

HTML extension can load jsx files which define functions and objects into ExtendScript
environment, thus, the extension can refer them by evalScript.

There are two approaches to load jsx files:

1.

Define <ScriptPath> node in manifest.xml, and the value of the node is the relative path
for the jsx file. For example:

<Extension ld=""com.adobe.CEPHTMLTEST.Panell1">
<Dispatchinfo>
<Resources>
<MainPath>./html/index.html</MainPath>
<CEFCommandLine>
<Parameter>--enable-speech-input</Parameter>
<Parameter>--enable-media-stream</Parameter>
</CEFCommandLine>
<ScriptPath>_/jsx/example. jsx</ScriptPath> <I--
ExtensionRootPath/jsx/example.jsx -->
</Resources>
</Dispatchinfo>
</Extension>

Call "$.evalFile(jsxFile)" to load other jsx files. Probably developers will refer to
"$.fileName" to find out the jsx files path they expect. The value of "$.fileName" should
be the current executed jsx file path. For example:

http://nodejs.org/api/process.html

var extensionPath = $.fileName.split("/").slice(0, -1).join(" /") + */~;
// The value of $._fileName should be ExtensionRootPath/jsx/example.jsx,
while the value of extensionPath should be "ExtensionRootPath/jsx/"
$.evalFile(extensionPath + "examplel.jsx");

$.evalFile(extensionPath + "example2.jsx");

$.evalFile(extensionPath + "example3.jsx");

But if the "$.fileName" is referred in the FIRST LOADED jsx file, the value is not
correct. That is to say, if the snippet above runs in example.jsx which is referred in the
manifest.xml, the error will arise. So, PLEASE AVOID using "$.fileName" in the FIRST
LOADED jsx file, maybe this is a limitation in ExtendScript. The workaround is refer it
in the second loaded and afterward jsx files. For example:

// After finishing loading the jsx file refered in the manifest.xml,
please use evalScript of CSInterface to load other jsx files.

// "anotherJSXFile"™ is not the first loaded jsx file, so the value of
"$.FileName"™ iIn it"s stage is correct.
CSinterface.evalScript("$.evalFile(anotherJSXFile)", callback);

// Or in the first loaded jsx file, load another jsx file, and the
value of "$._fileName" is correct in this file.

// Given the code is running this example.jsx which is referred in the
manifest.xml .

// In the stage of "hardCodeJSXFile'"™, the value of "$.fileName" is
correct too.

$.evalFile(hardCodeJSXFile);

3. Please use "namespace™ if the developers want to define new variable/function/object in
Global Space or "$" object.
If the same name defined in multiple jsx files, the definition in the last loaded jsx file will
take effect, and the definition in the previous loaded jsx files will be overridden. For
example, "$.ext" is defined in a.jsx, b.jsx and c.jsx, and in a.jsx "$.ext" is a function, in
b.jsx "$.ext" is a object and in c.jsx "$.ext" is a string, and the load sequence is
a.jsx->b.jsx->c.jsx, after loading, "$.ext" is string, rather than a object or function. And
this behavior will be across multiple extension running in the same point product, for
example, if a.jsx, b.jsx and c.jsx belong to extension a,b,c separately , and extension
loading order is extension a-> extension b-> extension c, "$.ext" will be still a string,
rather than a function or an object.

Drag and Drop

Use Drag and Drop
CEP 5.2 support HTML 5 Drag and Drop. There are four types.
1. Drag and drop inside HTML extension.

2. Drag and drop between two HTML extensions
3. Drag and drop between HTML extension and its host application.

4. Drag and drop between HTML extension and operating system (e.g. Desktop or
Browser).

To learn about HTML 5 Drag and Drop and how to use it by JavaScript, please refer
to http://www.w3.org/TR/html5/editing.html#dnd.

Here are some demos.

e http://lwww.w3schools.com/html/htmI5 draganddrop.asp
e http://html5demos.com/

Disable Drag and Drop

Extension developers can disable the default behavior of DnD by JavaScript.
Method 1

<body ondragover="return false'" ondrop="‘return false">

Method 2 (using jQuery)

$(document.body) .on("dragover drop®, function(e) {
e.preventDefault();

P;

Please read HTML 5 standard for more details.

http://www.w3.0rg/TR/html5/editing.html#event-dragenter

External JavaScript Libraries

CEP HTML Engine does not restrict using any extension JavaScript libraries. As long as a
library can be used in CEF Client or Chrome browser, it should be usable in CEP HTML Engine.

Here are some JavaScript which had been used successfully

JQuery - http://jquery.com/
o Please refer to Node.js section about resolving symbol conflicts.
RequireJS - http://requirejs.org/
o Please refer to Node.js section about resolving symbol conflicts.
spin.js - http://fgnass.github.com/spin.js/
Modernizr - http://modernizr.com/
o Modernizr is a JavaScript library that detects HTML5 and CSS3 features in the
user’s browser.

Increase/Decrease font size in HTML Panel

http://www.w3.org/TR/html5/editing.html#dnd
http://www.w3schools.com/html/html5_draganddrop.asp
http://html5demos.com/
http://www.w3.org/TR/html5/editing.html#event-dragenter
http://jquery.com/
http://requirejs.org/
http://fgnass.github.com/spin.js/
http://modernizr.com/

There are couples of JavaScript ways to increase or decrease font size in HTML panel either by
plain JavaScript or JQuery. The following is the two pieces of sample snippet to achieve this.
One is in plain JavaScript and the other uses JQuery library.

e Plain JavaScript
Use document.body.style.fontSize to change font size in page.

<script type="text/javascript" language="javascript'>
window.onload = function() {

var fontchange = document.createElement('div');

var fontchangelink = function(fontsize, desc) {
var a = document.createElement("a");
a.href="#";
a.style_margin = "5px';
a.onclick = function() {

document._body.style.fontSize = fontsize + "pt”;

};
a.innerHTML = desc;
return a;
}:
fontchange.appendChild(document.createTextNode(**Change font
size:'));

fontchange.appendChild(fontchangelink(9, "1'));
fontchange.appendChild(fontchangelink(11, "2'));
fontchange.appendChild(fontchangelink(13, *"3"));

document.body. insertBefore(fontchange,
document.body.childNodes[0]);
}:

</script>

For the full example, please refer to the HTML file - ResizeFont_plain_js.html

e JQuery
Use $('html").css('font-size', size) to change font size in page.

<script type="text/javascript"” language="javascript'>
$(document) . ready(function(){
// Reset Font Size
var originalFontSize = $("html*)._.css("font-size");
$(" .resetFont™).click(function(){
$("html ") .css("font-size", originalFontSize);

s

// Increase Font Size

$(".increaseFont™) .click(function(){
var currentFontSize = $("html*")._.css("font-size");
var currentFontSizeNum = parseFloat(currentFontSize,

10);

var newFontSize = currentFontSizeNum*1.2;
$("html ") .css("font-size", newFontSize);
return false;

D:;

// Decrease Font Size

$("".decreaseFont'™) .click(function(){
var currentFontSize = $("html")._css("font-size");
var currentFontSizeNum = parseFloat(currentFontSize,

10);
var newFontSize = currentFontSizeNum*0.8;
$("html ") .css("font-size", newFontSize);
return false;
D:
D:
</script>

For the full example, please refer to the HTML file - ResizeFont_JQuery.html

The ways above are the common used solution for JavaScript developers to increase or
decrease fonts.

JavaScript Tips

Check Internet Connection

if (navigator.onLine === true)

{

//system is online

}

else

{
//system is offline

}
Set Mouse Cursor

Please refer to http://jsfiddle.net/BfLAN/1390/

$(document) .mousemove (function(e){
$('#image'™) .css({left:e.pageX, top:e.pageY});
P:

De-obfuscate JavaScript

Please refer to http://jsbeautifier.org/

iframe

Due to the X-Frame-Options header a number of HTTPS websites are unavailable to host in an
iframe. An alternative to displaying HTTPS content is to use the window.location.href e.g.

iFrame alternative for HTTPS content
// html

http://jsfiddle.net/BfLAh/1390/
http://jsbeautifier.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options

<body onLoad=""onLoaded()'>

<I-—iframe src="https://www.trello.com"></iframe--> <I-- this line can be
deleted as HTTPS blocks content being displayed in an iframe -->

</body>

// javascript
function onLoaded() {
window. location_href = "https://www.trello.com";

}
Tooltip
CEP 5.2 supports HTML title attribute to show the tooltip on Windows. However, it's not

supported on Mac due to off-screen rendering. The alternative is use JavaScript instead, please
refer to http://www.a2zwebhelp.com/bootstrap-tooltips for good examples.

Ports opened in CEPHtmIENgine

If you use TCPView to monitor CEPHtmIENgine process, you may see some ports are opened in
localhost. Most of the ports are opened internally in Chromium code for websocket, which is
initiated by HTML extension instead of CEPHtmIEngine itself. You can use RawCap to capture
the data in *.pcap file and open it in Wireshark to examine the details.

CEF/Chromium Issues

¢ HTML <datalist> tag is not supported
e Can'tscroll in DevTools console

More Information for Extension Developers

https://github.com/Adobe-CEP is for external developers, but it is also useful for Adobe internal
developers.

http://www.a2zwebhelp.com/bootstrap-tooltips
https://technet.microsoft.com/en-us/sysinternals/tcpview.aspx
http://www.netresec.com/?page=RawCap
https://www.wireshark.org/
https://bitbucket.org/chromiumembedded/cef/issues/906
https://bugs.chromium.org/p/chromium/issues/detail?id=516760
https://github.com/Adobe-CEP

	Overview
	CEP Extensions
	Extension Types
	Applications Integrated CEP
	Chromium Embedded Framework (CEF)
	Browser Features supported by CEP
	HTTP Cookie

	Development and Debugging
	Development Machine Setup
	HTML Extension Builder
	Signing extensions
	Debugging Unsigned Extensions
	Special notes for Mac 10.9 and higher

	Remote Debugging
	Known Issues

	Where are the Log Files
	PlugPlug Logs
	CEPHtmlEngine Logs
	CEF Log

	Extension Folders
	Extension Manifest
	Extension Manifest XSD
	Important Manifest Change for CEP 5.0 Extensions
	Extension Size
	Customize Extension Menu
	High DPI Panel Icons
	Dialog Size based on Screen Size

	Shortcut Keys for HTML Extensions

	CEP JavaScript Programming
	CEP JavaScript Libraries
	API version
	CEP Events
	CSEvent
	Listen for and Dispatch CSEvent
	addEventListener
	dispatchEvent

	Communication between Flash and HTML extensions
	Handling Window State Change Events - Extensions
	Standard Events in Point Products
	Specific Events in Products
	Photoshop

	Better JSON Support in CEP Event JavaScript APIs
	Defects in CEP 6.0 and Former Releases
	Improvement in CEP 6.1

	Invoke point product's scripts from html extension
	Vulcan messages
	Vulcan message
	Listen for and Dispatch Vulcan message

	Access Application DOM from Html Extension
	Access HTML DOM from extend script
	Sample Code

	Fly-out menu
	Customize Context Menu
	Set and Update Context Menu
	Disable Context Menu
	Other Implementation of Context Menu

	Get Display Status of HTML Extension Window
	Two ways to get HTML extension window
	Resister "com.adobe.csxs.events.panelWindowStatusChanged" CSXS event
	Call isWindowVisible API

	Getting and Changing Extension Content Size
	Getting Extension Content Size
	Changing Extension Content Size

	Register invalid certificate error callback
	Register an interest in specific key events

	HI-DPI display
	Other JavaScript APIs
	Localization
	License Locale and locales supported by extension
	Locale folder structure
	Sharing localization resources across multiple locales
	Localized menu
	Examples
	Example 1
	Example 2
	Example 3

	Supporting MENA locales
	Extension localization for MENA locales

	Video/Audio Playback
	WebRTC
	Scroll bar tips
	Invisible HTML Extensions
	Customize CEF Command Line Parameters
	How to use CEF command line parameters
	Commonly used CEF command parameters:

	HTML Extension Persistent
	FullScreen API in HTML Extension
	Open URL link in default browser
	Using Node.js APIs (CEP 6.0 and prior releases)
	Node.js Support
	Node.js Modules
	JavaScript Modules

	Samples
	Use Environment Variables
	Use Node.js to download files

	Using Node.js APIs (CEP 6.1 for CC 2015 release)
	Node.js Support

	Using Node.js APIs (CEP 6.1.0.176 or higher for CC 2016 June release)
	Node.js Modules
	JavaScript Modules

	Samples
	Use Environment Variables
	Use Node.js to download files

	Limitation of cep.process.stdout/stderr

	Other JavaScript Information
	Load Multiple JSX files
	Drag and Drop
	Use Drag and Drop
	Disable Drag and Drop

	External JavaScript Libraries
	Increase/Decrease font size in HTML Panel
	JavaScript Tips
	Check Internet Connection
	Set Mouse Cursor
	De-obfuscate JavaScript
	iframe
	Tooltip

	Ports opened in CEPHtmlEngine
	CEF/Chromium Issues
	More Information for Extension Developers

