{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\"AeroPython\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Introducción a la sintaxis de Python II: librerías" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "_En esta clase continuaremos con nuestra introducción a Python. Para ello, analizaremos unos datos almacenados en una serie de archivos csv. Estos datos corresponden a la evolución de la inflamación de una serie de pacientes (filas) ante un tratamiento de artritis a lo largo de los días de tratamiento (columnas)._\n", "\n", "Objetivos:\n", "\n", "* Primer contacto con librerías: qué son y para qué se usan.\n", "* Cargar una librería y acceder a sus contenidos.\n", "* Leer datos de un archivo de texto y almacenarlos en un array.\n", "* Acceder a elementos y secciones del array\n", "* Operar con elementos del array.\n", "* Representar los datos en gráficos sencillos.\n", "\n", "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### Los materiales de esta clase son una adaptación de: http://swcarpentry.github.io/python-novice-inflammation/ distribuido bajo licencia [Creative Commons Attribution license](https://software-carpentry.org/license/)" ] }, { "cell_type": "markdown", "metadata": { "cell_tags": [] }, "source": [ "## Cargando los datos" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Para cargar los datos, haremos uso por primera vez de una librería. Las librerías empaquetan distintas funciones, estructuras de datos, variables... que pueden ser reutilizadas en otros programas. En este caso utilizaremos NumPy." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "cell_tags": [], "collapsed": true }, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "markdown", "metadata": { "cell_tags": [] }, "source": [ "Una vez que hemos importado una librería, podemos acceder a sus contenidos:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "cell_tags": [] }, "outputs": [ { "data": { "text/plain": [ "array([[ 0., 0., 1., ..., 3., 0., 0.],\n", " [ 0., 1., 2., ..., 1., 0., 1.],\n", " [ 0., 1., 1., ..., 2., 1., 1.],\n", " ..., \n", " [ 0., 1., 1., ..., 1., 1., 1.],\n", " [ 0., 0., 0., ..., 0., 2., 0.],\n", " [ 0., 0., 1., ..., 1., 1., 0.]])" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Usando la función que carga los datos\n", "np.loadtxt(fname='../data/swc/inflammation-01.csv', delimiter=',')" ] }, { "cell_type": "markdown", "metadata": { "cell_tags": [] }, "source": [ "La expresión `np.loadtxt(...)` es una llamada a una función que se llama `loadtxt` que pertenece a `numpy`. Veremos esta sintaxis que utiliza el punto para indicar la pertenencia en muchas más ocasiones a lo largo del curso." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "En la línea anterior hemos cargado los datos, pero no los hemos almacenado en ninguna variable todavía." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "cell_tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 0. 0. 1. ..., 3. 0. 0.]\n", " [ 0. 1. 2. ..., 1. 0. 1.]\n", " [ 0. 1. 1. ..., 2. 1. 1.]\n", " ..., \n", " [ 0. 1. 1. ..., 1. 1. 1.]\n", " [ 0. 0. 0. ..., 0. 2. 0.]\n", " [ 0. 0. 1. ..., 1. 1. 0.]]\n" ] } ], "source": [ "# Almacenando los datos\n", "data = np.loadtxt(fname='../data/swc/inflammation-01.csv', delimiter=',')\n", "\n", "print(data)" ] }, { "cell_type": "markdown", "metadata": { "cell_tags": [] }, "source": [ "Podemos comprobar el tipo de dato que es `data` y el tipo de los valores que contiene:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "cell_tags": [] }, "outputs": [ { "data": { "text/plain": [ "numpy.ndarray" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Tipo de data\n", "type(data)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "dtype('float64')" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Tipo de los valores de data\n", "data.dtype" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Comprabamos que hemos obtenido un `numpy.ndarray`: un array es un __bloque de memoria que contiene elementos del mismo tipo__. Básicamente:\n", "\n", "* nos _recuerdan_ a los vectores, matrices, tensores...\n", "* podemos almacenar el array con un nombre y acceder a sus __elementos__ mediante sus __índices__.\n", "* ayudan a gestionar de manera eficiente la memoria y a acelerar los cálculos.\n", "\n", "\n", "---\n", "\n", "| Índice | 0 | 1 | 2 | 3 | ... | n-1 | n |\n", "| ---------- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n", "| Valor | 2.1 | 3.6 | 7.8 | 1.5 | ... | 5.4 | 6.3 |\n", "\n", "---\n", "\n", "__¿Qué solemos guardar en arrays?__\n", "\n", "* Vectores y matrices.\n", "* Datos de experimentos:\n", " - En distintos instantes discretos.\n", " - En distintos puntos del espacio.\n", "* Resultado de evaluar funciones con los datos anteriores.\n", "* Discretizaciones para usar algoritmos de: integración, derivación, interpolación...\n", "* ... " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Según hemos observado al imprimir el contenido de `data`, se trata de un array de dos dimensiones, pero ¿cuántos elementos tiene? ¿cuántos elementos tiene en cada dimensión?" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2400" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.size" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "cell_tags": [] }, "outputs": [ { "data": { "text/plain": [ "(60, 40)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "El resultado es que tiene 60 filas y 40 columnas, es decir, 2400 elementos.\n", "\n", "`size` y `shape` son atributos del array, esto es lo mismo que decir, que son variables ligadas al array." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Accediendo a elementos del array " ] }, { "cell_type": "markdown", "metadata": { "cell_tags": [] }, "source": [ "Para acceder a elementos de un array, lo haremos entre paréntesis, al igual que hacíamos con listas y tuplas:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "cell_tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "first value in data: 0.0\n" ] } ], "source": [ "print('first value in data:', data[0, 0])" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "cell_tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "middle value in data: 13.0\n" ] } ], "source": [ "print('middle value in data:', data[30, 20])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Recuerda que en Python **la indexación comienza en cero** como en C, C++, Java y Perl; a diferencia de lenguajes como MATLAB y Fortran (aunque en este último se puede elegir).\n", "\n", "Por lo tanto, un array de M×N (M filas y N columnas) tiene índices que van desde 0 hasta M-1 y N-1. Al principio cuesta un poco acostumbrarse a esto." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Accediendo a secciones del array " ] }, { "cell_type": "markdown", "metadata": { "cell_tags": [] }, "source": [ "\n", "\n", "Algo como `[30, 20]` accede a un solo elemento del array, pero se pueden seleccionar más elementos a la vez usando la sintaxis `[start:stop:step]`. Por ejemplo, podemos acceder a los primeros diez días para los primeros cuatro pacientes." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![indexing](../images/indexing.png)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "cell_tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 0. 0. 1. 3. 1. 2. 4. 7. 8. 3.]\n", " [ 0. 1. 2. 1. 2. 1. 3. 2. 2. 6.]\n", " [ 0. 1. 1. 3. 3. 2. 6. 2. 5. 9.]\n", " [ 0. 0. 2. 0. 4. 2. 2. 1. 6. 7.]]\n" ] } ], "source": [ "# primeros diez días para los primeros cuatro pacientes\n", "print(data[0:4, 0:10])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "En realidad, no hace falta que pongamos el valor inicial si es cero." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 0. 0. 1. 3. 1. 2. 4. 7. 8. 3.]\n", " [ 0. 1. 2. 1. 2. 1. 3. 2. 2. 6.]\n", " [ 0. 1. 1. 3. 3. 2. 6. 2. 5. 9.]\n", " [ 0. 0. 2. 0. 4. 2. 2. 1. 6. 7.]]\n" ] } ], "source": [ "print(data[:4, :10])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "y podemos acceder a cualquier otra sección:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "cell_tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 0. 0. 1. 2. 2. 4. 2. 1. 6. 4.]\n", " [ 0. 0. 2. 2. 4. 2. 2. 5. 5. 8.]\n", " [ 0. 0. 1. 2. 3. 1. 2. 3. 5. 3.]\n", " [ 0. 0. 0. 3. 1. 5. 6. 5. 5. 8.]\n", " [ 0. 1. 1. 2. 1. 3. 5. 3. 5. 8.]]\n" ] } ], "source": [ "print(data[5:10, 0:10])" ] }, { "cell_type": "markdown", "metadata": { "cell_tags": [] }, "source": [ "así como saltarnos elementos:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "cell_tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 0. 1. 1. 4. 8.]\n", " [ 0. 2. 4. 2. 6.]\n", " [ 0. 2. 4. 2. 5.]\n", " [ 0. 1. 1. 5. 5.]]\n" ] } ], "source": [ "print(data[0:10:3, 0:10:2])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Y recuerda que el último no está incluido" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "cell_tags": [] }, "outputs": [ { "data": { "text/plain": [ "array([[ 2., 3., 0., 0.],\n", " [ 1., 1., 0., 1.],\n", " [ 2., 2., 1., 1.]])" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Tomando una sección más pequeña\n", "small = data[:3, 36:]\n", "\n", "small" ] }, { "cell_type": "markdown", "metadata": { "cell_tags": [] }, "source": [ "NumPy no solo nos provee de una estructura para almacenar elementos de una manera eficiente, sino también de muchas funciones para realizar operaciones con ellos. Por ejemplo, podemos obtener la inflamación media:" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "cell_tags": [] }, "outputs": [ { "data": { "text/plain": [ "6.1487499999999997" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.mean()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "La función media, está disponible como **función** (`np.mean`) y como **método** de un array (`ndarray.mean()`). Las funciones ya las conocemos, se puede decir que un método es una función que pertenece a un elemento, del mismo modo que las variables que pertenecen a ese elemento se llaman atributos.\n", "\n", "Los arrays de NumPy tienen numerosos métodos:" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "cell_tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "maximum inflammation: 20.0\n", "minimum inflammation: 0.0\n", "standard deviation: 4.61383319712\n" ] } ], "source": [ "# máximo\n", "print('maximum inflammation:', data.max())\n", "# mínimo\n", "print('minimum inflammation:', data.min())\n", "# desviación standard\n", "print('standard deviation:', data.std())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Cuando se analizan datos, es típico aplicar estas funciones a partes del array, por ejemplo: a un paciente en concreto o un día en concreto. Podríamos hacer algo así:" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "cell_tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "maximum inflammation for patient 0: 18.0\n" ] } ], "source": [ "# Seleccionando el primer paciente\n", "patient_0 = data[0, :] \n", "# Calculando su máximo\n", "print('maximum inflammation for patient 0:', patient_0.max())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Si queremos hacer esto para cada paciente, podemos aplicar esta operación a uno de los ejes al completo, en nuestro caso, querríamos la media a lo largo de cada fila, es decir, calcular la media a lo largo de las columnas (`axis = 1`)" ] }, { "cell_type": "markdown", "metadata": { "cell_tags": [] }, "source": [ "\"Operations" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "cell_tags": [] }, "outputs": [ { "data": { "text/plain": [ "array([ 5.45 , 5.425, 6.1 , 5.9 , 5.55 , 6.225, 5.975, 6.65 ,\n", " 6.625, 6.525, 6.775, 5.8 , 6.225, 5.75 , 5.225, 6.3 ,\n", " 6.55 , 5.7 , 5.85 , 6.55 , 5.775, 5.825, 6.175, 6.1 ,\n", " 5.8 , 6.425, 6.05 , 6.025, 6.175, 6.55 , 6.175, 6.35 ,\n", " 6.725, 6.125, 7.075, 5.725, 5.925, 6.15 , 6.075, 5.75 ,\n", " 5.975, 5.725, 6.3 , 5.9 , 6.75 , 5.925, 7.225, 6.15 ,\n", " 5.95 , 6.275, 5.7 , 6.1 , 6.825, 5.975, 6.725, 5.7 ,\n", " 6.25 , 6.4 , 7.05 , 5.9 ])" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.mean(axis=1)" ] }, { "cell_type": "markdown", "metadata": { "cell_tags": [] }, "source": [ "As a quick check,\n", "we can ask this array what its shape is:" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "cell_tags": [] }, "outputs": [ { "data": { "text/plain": [ "(60,)" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.mean(axis=1).shape" ] }, { "cell_type": "markdown", "metadata": { "cell_tags": [] }, "source": [ "Por supuesto, también podemos obtener la media diaría de la inflamación:" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "cell_tags": [] }, "outputs": [ { "data": { "text/plain": [ "array([ 0. , 0.45 , 1.11666667, 1.75 ,\n", " 2.43333333, 3.15 , 3.8 , 3.88333333,\n", " 5.23333333, 5.51666667, 5.95 , 5.9 ,\n", " 8.35 , 7.73333333, 8.36666667, 9.5 ,\n", " 9.58333333, 10.63333333, 11.56666667, 12.35 ,\n", " 13.25 , 11.96666667, 11.03333333, 10.16666667,\n", " 10. , 8.66666667, 9.15 , 7.25 ,\n", " 7.33333333, 6.58333333, 6.06666667, 5.95 ,\n", " 5.11666667, 3.6 , 3.3 , 3.56666667,\n", " 2.48333333, 1.5 , 1.13333333, 0.56666667])" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.mean(axis=0)" ] }, { "cell_type": "markdown", "metadata": { "cell_tags": [ "challenges" ] }, "source": [ "##### Ejercicio\n", "\n", "No sólo de un array se pueden hacer secciones, ya hemos visto que las listas y tuples también lo permitían y a lo largo del curso nos toparemos con otras colecciones de datos a las que se puede acceder de este modo. Vamos a usar el slicing sobre los strings:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Partiremos del string `\"oxygen\"`:" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "cell_tags": [ "challenges" ], "collapsed": true }, "outputs": [], "source": [ "# preserve\n", "element = 'oxygen'" ] }, { "cell_type": "markdown", "metadata": { "cell_tags": [ "challenges" ] }, "source": [ "1. ¿Qué devuelve `element[:4]`? \n", " ¿y `element[4:]`?\n", " ¿y `element[:]`?\n", "\n", "2. ¿Qué valor tiene `element[-1]`?\n", " ¿y `element[-2]`?\n", " Dados estos resultados, ¿qué hace `element[1:-1]`?\n", "\n", "3. La expresión `element[3:3]` produce una cadena vacía \n", " ¿qué devuelve `data[3:3, 4:4]`?\n", " ¿y `data[3:3, :]`?" ] }, { "cell_type": "markdown", "metadata": { "cell_tags": [] }, "source": [ "## Visualización" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Una de las mejores maneras de extraer información de nuestros datoas es representarlos. Hagamos una pequeña introducción a la visualización con matplotlib. Ya habrá tiempo de introducirnos en los detalles, pero tratemos de mostrar gráficamente los datos de inflamación.\n", "\n", "Empecemos con la *función mágica*:" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "cell_tags": [], "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Las funciones mágicas son funciones propias de IPython. En este caso está indicando que la salida de la representación quede embebida en el Notebook" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Ahora importaremos el módulo pyplot de matplotlib:" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "y representemos todos los datos:" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "cell_tags": [] }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQQAAAFxCAYAAACV59Z4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnX90ldWZ778bkoDm8CMBiQmINAha6ghSLFoRdapdaLXq\nzGDt1Ftl2eJdV121t3Or1Xtv7b23jjrT3s4q3hmZtsrc1qq0ta1t5VZYWkQdFFH8QSmYNFJ+JSAh\n5AQlCdn3jxx2qc/3gXPknHCw389aLJKHzbvf95w3T97zfZ793SHGCCGEAIBBR/oEhBDlgxKCECKh\nhCCESCghCCESSghCiIQSghAiMeAJIYQwJ4TwuxDCGyGEWwdgvpYQwqshhJdDCKtKcPzvhRDaQgiv\nHRCrDSE8EULYkPu7psTz3RFC2Jy7xpdDCBcXcb4TQghPhhDWhhBeDyF8IRcvyTUeZL6iX2MIYWgI\n4fkQwprcXF/LxUt1bd58JXv/CibGOGB/AAwG0ASgEUAVgDUAppR4zhYAo0t4/NkApgN47YDYPQBu\nzX19K4C7SzzfHQD+rkTXVw9geu7rYQDWA5hSqms8yHxFv0YAAUAm93UlgJUAzizhtXnzlez9K/TP\nQD8hfATAGzHG5hhjN4CHAFw2wOdQVGKMywHsfFf4MgCLcl8vAnB5iecrGTHGrTHG1bmvOwH8FsBY\nlOgaDzJf0Yn9ZHPfVub+RJTu2rz5yoaBTghjAfzhgO83oURv9gFEAEtDCC+GEOaXeK791MUYt+a+\n3gagbgDmvCmE8EruI0XRPqIcSAhhAoDT0f+breTX+K75gBJcYwhhcAjhZQBtAJ6IMZb02pz5gAF4\n//Lhz0FUnBVjnAbgIgA3hBBmD+Tksf/5sNS/Bf4Z/R/DpgHYCuAbxZ4ghJAB8GMAN8cYdx/4b6W4\nRjJfSa4xxrgvd3+MA/CREMKp7/r3ol6bM1/J3798GeiEsBnACQd8Py4XKxkxxs25v9sAPIr+jy2l\npjWEUA8Aub/bSjlZjLE1d6P1AfhXFPkaQwiV6P/h/EGM8Se5cMmukc1X6muMMe4C8CSAORiA9+/A\n+Up9bYUw0AnhBQCTQggfCCFUAbgKwM9LNVkIoTqEMGz/1wA+DuC1g/+vovBzANfkvr4GwM9KOdn+\nmzfHFSjiNYYQAoDvAvhtjPGbB/xTSa7Rm68U1xhCOC6EMDL39TEALgSwDqW7NjpfKd+/ghloFRPA\nxehXjpsA3F7iuRrRX8lYA+D1UswH4Ifof8zrQb8mch2AUQCWAdgAYCmA2hLP938BvArgFfTfzPVF\nnG8W+h+ZXwHwcu7PxaW6xoPMV/RrBHAagJdyx3wNwH/PxUt1bd58JXv/Cv0TcickhBB/FqKiECJP\nlBCEEAklBCFEQglBCJFQQhBCJI5YQhjANuL3/Xzv52vTfAPLkXxCGOgX4f083/v52jTfAHJYCaFQ\nb4MQwpLDmU8I8d7I92fvPTcmhRAGo7/j8EL0d8y9AODTMca13v+pCJXxWAwDAPRgLyoxxD/+4ME0\nHodU2rF7e5wJ/3iM7n17UDX4WABAX1WFGbpvaODzkdOo3L2Pz3cAPb17UFlxrPvve0fx66vstLE+\ne8kAgMHv9L93PT1dqKysTnHvWhj7Mn0mNqH6LTp209bjAAC973ShYugf54s1vfa4Pfz6GIP3HPx8\ne9/uQsUxf5xv/3UfSF8VP4b32jEquvjryYiD85+voovfL3HwIDrfoG77eu4fa9jzzkHPMw1DJ3pj\nzyFvDPuTkT/J2wAAQgj7vQ3chHAshmFm+FheBx88gq8A7WtsMLFBzVvo2FAzgsbfmTDKxHaewpNT\nzzAbG7e0g44thA1XkwMDaFhub/ZsPf/hql23l8a9a2FkZ+0xsX+e+W907C13XE/jPXOtPUP7tuF5\nn8PIlwv4qQW/7uzYKjq2qyH/5Fj3An89Gd0j+I8Oe6/qVvL7pWfEUBof2mIT8r4anqDii697p/gn\nrIzL8hp3OB8Z8vI2CCHMDyGsCiGs6kH+L7gQYuApuagYY1wYY5wRY5xxsI8IQogjz+EkhAH3NhBC\nlJbD0RCStwH6E8FVAP72vRxocI3VC7zP/0wv8MbGdv7ZrZJ8HmtYwoU0xo6z63l8Ohdo+6qtqDTu\ncT62bbrN0eOePPyPWp+Y/zSN//SH55jYLY9zreDuO+6j8f/5+Xkm1vk5LvQev9g+JW6ba3UMAMis\n4KJs81XkNXrciqMA0DbRxk++j8/n0TU+Y2JVHVb4A4BaEmf//2AMIfftIOdeZnIl/XnqyE/kfc8J\nIcbYG0K4EcD/Q7+b8vdijPkpHEKIsuRwnhAQY/wVgF8V6VyEEEcYrWUQQiSUEIQQicP6yFBKPEGQ\nNSZ5eDJK+xTbNDP6mS46dvdUa8m/azI/LmsqAoBsvW28qergQuGY1fm/JePvXE/j3XdPMbEfPH8m\nHVuVsefsiaONlbtpvOL2VhtsHU3HXnun9Std8O2/omNZ01T/P9jX02veanzIinyD2/l7ve6m42nc\ne18ZrKmItx/5zUaeSM7Ivx80P/SEIIRIKCEIIRJKCEKIhBKCECKhhCCESJRFlWFfe7uJVTROoGPZ\ncs/ev/wwHeupyaOf2WpiXlWjO2PblI/dypfUbpnN48M32Nim8/ly3eqpZCnxM3a5NgC0PvoXNH7G\nLa/ac3vuQ3RsL6kyDN/Af0880XUSP8bXbSVmPB0JLDjFVhSqOrmKP6uxicbX3nuqiWU286oNe527\n646jY0++j5hRgLcee8utKzsO7qNwIN7yZ3bfehUJVmXw7uV80BOCECKhhCCESCghCCESSghCiMSA\n7v48PNRG5qnI1m97FNK67HktsmN4a9aHr7FtucyT8WAwj0NPSKvK2vX71RuzdKzny3jMNpvn3z6e\n+wWMXm2F0Pm3PUrH3vOjK2h8wkf/YGItz55ARnJBNszhXhRda2ppvG/i2yZW+/gxdGz3sPw9FffU\n8/dkJOkQr1nL27g9IZvh3Ues/bm3uYXPl+fPznMdj6Kjd/shXww9IQghEkoIQoiEEoIQIqGEIIRI\nKCEIIRJl27rsqacFqbinN9I4U3GHORWJHZecYmKZzd10rLdjkldRYDDXZUznuyDNPus1Gt94m3Vw\nOeubz9OxF3zStoJ/fuVn+ckRdR8A9iww+/Pgvn/kDs3XP2gdncfcP5KOHbORK/msuuKp/k1fsmYq\nnptzZZaL8KwtunUmNzGpW2ljXgXLc25m1QfmFA4Agfw8qHVZCFEUlBCEEAklBCFEQglBCJEoC1GR\nUYjzbCEtoB6d53ErZdZK3HoGFw+rt+TfjrzpIt5KXNVq35JxT3IRc81U3sZdTbYqf3gt94z4YevZ\nJsbamQHfbfraO22r86Lt9rgAF+6okArgAxv5fCMmWhG6dSa/B4assbGGJVxAfnMufz3Z++1tHc9E\nb88hoRCx0WvDL/bCAz0hCCESSghCiIQSghAioYQghEgoIQghEmVbZfDaL1n1obLjncM+hmdCwpTg\ncUv5cb121q4G641b3cR35atZv8/EWi617bcAUOEYiEy9xbY0b3rFtmADwP2fXGhijX/N24DHV3BV\n/NR/+k8mxq4DAKrm2crPGWO4gr48w52iRy+2lYod0/M3gNkyh1cTvMoBc2727jm2Fygz2QEAOFUG\nduxCqm5qXRZCFAUlBCFEQglBCJFQQhBCJJQQhBCJsq0yMNMUAAjEQt3r8/bWJ3RnbB5k6w08Nl3A\nFd8TF/PzYGstmq/iuXjv1B4bbOV7AHbXcYONZ5+wex8OIns4AkBT9xgTm7fsOjp2zNP8drn8S0+b\nmLd2onaxrYy80MDXIZz0cb6YYddqa/HO1jcAwA5Yo52+av661a6jYWrD7u3LmK231SO2PyhQmJW7\nVznwfk7M/4+86vNu9IQghEgoIQghEkoIQoiEEoIQIlEWomIheztSl1lnrNeOzFpGC2ld9thxNheP\nuhps+2xFZg8de/xia8bRNY8LR5VEoAOAnrk7Taz7GS7c/X7vcSZW3cRbpe++419onJmhfGrKi3Ts\nC3UnmtjO1tF0bNuPx9N43VorsG1yrq+CiKndjmOJZ6jTPcK2I3tktlrxbthTRJUEsNdxBWciudu6\nnKeomC96QhBCJJQQhBAJJQQhREIJQQiRUEIQQiRCjAc3cg4hfA/AJQDaYoyn5mK1AB4GMAFAC4Ar\nY4yHlDuHh9o4M3zMxFmVId+WTADo/UveJuuZWDAKqSZ4e/J1E/tzAGifbNtZKzv5sXdPsi3UXlvu\nmK/x+ZhRS5jDFfSpxJzkmuOeoWNvXPgfafyMK16lccbYobtM7AfPn0nHTp64lcabSVVi/He44Yxn\nLsOY8BhpGwe/j7zWZe8eYLhVMEIhe5qyNufnOh5FR+927q9/APk8ITwAYM67YrcCWBZjnARgWe57\nIcRRziETQoxxOYB3F7YvA7Ao9/UiAJcX+byEEEeA99qYVBdj3P88tw2A27kRQpgPYD4ADAXfhlsI\nUR4ctqgY+0UIV4iIMS6MMc6IMc6oBN8CTQhRHrzXJ4TWEEJ9jHFrCKEeQFsxT6pQPPHQE35Yi2rW\ncUzuGWZjNbwT1XXXbZ9sPRx2TeMC1rjHSY5ePpKO3XQBF9LGEh+B9U28rXotaX+edw53aK5yPBWY\nUHjBsNfp2FvuuN7EKi56m47ds2AsjY8noq53DzQst7c48ywA/D07xy21x/bEQyY4e2ML2dsxvshf\nz0La/vPhvT4h/BzANbmvrwHws+KcjhDiSHLIhBBC+CGA5wCcHELYFEK4DsBdAC4MIWwAcEHueyHE\nUc4hPzLEGD/t/JNtKBBCHNWoU1EIkVBCEEIkDtm6XEy81mVGReMEGmdtmZ7RhKc8t08ZbmKZzd10\nbHas3devexjvAN1Tn/9r+YGfcsfd311vezU8t+OdjjrP2nj/9t5f0rH3bjjXxFg7MwCsaeN7InZm\njzGxIWt4zwlr2a5dx/dU3HkKV/2zs6y5zKAmew4AMGa1bQVnrtuA77zNVH/v3OpW2vuzkGoCwKtg\n+2q4qwurPrDKQzFbl4UQfyYoIQghEkoIQoiEEoIQIqGEIIRIlIUNO6O3uSXvsUNeaqbxPrIPJACM\n+oXdxO+tS3j/PoNZbffH+XhP1WawigKzVQeAiY5Byoar7RoOVk0AgK41di3D2EvXOifHw8+usXtJ\ndk3kazUaH7JKPqvkAH71Ydc0Ynri7HO5ba49j4nf4OfmVQPYGgfP4Iatn3GrGny7Rr6Po1NlYDBz\nIe3tKIQoGCUEIURCCUEIkVBCEEIkykJUZK2W3l52VHBxYHvkAbzVmQmNANB53mQT84xQvPZSFt1w\nNXFeATB8g+0u9fpNPRFs+Aab52+Y8xs6duHiK0xs8WOz6Ni+ibxVethUK3r2NnnGHVZU9FqwM46T\nMhNevXbyqk47lomuAHDMNv778cTF9j7aPZW7BjKBu7KDi9uegQ+79z2DFNbiX4gg/270hCCESCgh\nCCESSghCiIQSghAioYQghEiUhUFKIVbSrC3T+/9epeKdCaNMrBhmKp5phtfqzGAW4d7/3zKbK+us\nysDs5AFgwfx/MbGmbt6jfM+PbEUCACqz9jz2TrUmJgDQm81/r0UPtufjrgdOoGPbzrEtzVPu2k7H\nrrvpeBqvINfHjFcA3qbsGa94ezuy6gMzTfFgVYaVcRl2x50ySBFC5I8SghAioYQghEgoIQghEmXR\nusyEwkLwxEOvlZitv69y9t/zWmIZzHEXAAa3d5mYJ2AN32BjbdN53u6r5h4A2VlWID1+MRc8P7/y\nsybmORhXkxZlAPjptO/a4264io698vRVJvbAbZfRsV3z7J6RALD51+Pt2HPy3yuzEPEQ4KKptz8k\nE4A98dBrrQdprffakVnrMl0K0MHP15xTXqOEEH8WKCEIIRJKCEKIhBKCECKhhCCESJRFlaEQCmlz\n9lTcDGkN9VqXuzO2ddlrUa7lHiu0yjCojs9Xtdoq/NlZ3ECk0TEQqbh9h4m11VtlHuB7MI79+EY6\ndntX/s6/XivxPZNtvG8uv77axdYRGgBqNls35vazuZLfnbHHYCY0ANCwhN8vrFrFWto9PCOUoU51\njN2L3gIDZhgk12UhRFFQQhBCJJQQhBAJJQQhRKJsRUXWkgkU5rrMHJMBoKrDtvwy4Q8AuodZ4cfz\nFvDYMse67vZmeavtLnLKTPgDgOar+DHOq7av0ZU3/YSO/V9PX2qP2zqajs2s4OfxseyNdqzT8j1y\nvZXHurfy42aIeAgA7TdbAbH6/pF0bLbenkdVJ5fodpxdT+PsPTnpfr5vXyH3JxxRkd2LvEm9+OgJ\nQQiRUEIQQiSUEIQQCSUEIURCCUEIkSiLKsNhuy47Y6s6rLsy4LcpM1g7K6saHOy4dSttPDuLuw9X\nH7/bxNq38TbZGjIWANbee6qJvZGdQsdWEfOVuR/5dzp2cRPf83HZrAUmtnDKWXTsD54/08Sqm/hr\nsel8a2QDABOqrQrfPJebujCX56pWftuPXE/DNO5VJEb9ooAqgwN1BXfMfkDa82WQIoQoCkoIQoiE\nEoIQIqGEIIRIKCEIIRKHrDKEEE4A8G8A6tDv07AwxvhPIYRaAA8DmACgBcCVMcbD81M/AK8nPHz4\nQzbo2Vk7MMMKz0xl4/wPmtiJiwubz7ODZ3RmrVo+qIsrxFPH8PNYM5cEHbMRtkfhb1Z/lI697x/v\no3HG4sd4RWIMUezbHAv1igyPt/3Ymr3UOusTataSqo1jbsLGAnxtAasEAEBfo61AeffW7ql1NF7I\nWhu2HoJZthfTIKUXwJdijFMAnAnghhDCFAC3AlgWY5wEYFnueyHEUcwhE0KMcWuMcXXu604AvwUw\nFsBlABblhi0CcHmpTlIIMTAU1JgUQpgA4HQAKwHUxRj3rwHdhv6PFOz/zAcwHwCGgi9zFUKUB3mL\niiGEDIAfA7g5xvgnH7ZijBGOD2SMcWGMcUaMcUYluDmpEKI8yOsJIYRQif5k8IMY436njdYQQn2M\ncWsIoR5A23s9CdaO7Bmk0PMrwL0W4ALNjktOoWPHLbXi5ptzndblTn5+teus0Uft47wtl8EMOgDg\njbt5O3LnXGIschF3NmbmKzXruQDF9oEEgL5WK9J++tIVdOwvF55jYpMncrMR16iF7J/IhDiAC4je\n69nVwO+jmvUZE+vOOL9Lyb6hoxxR0Ttndt8Wsrfj4XDIJ4QQQgDwXQC/jTF+84B/+jmAa3JfXwPg\nZ0U9MyHEgJPPE8LZAP4DgFdDCC/nYrcBuAvAIyGE6wC8CeDK0pyiEGKgOGRCiDGuAODtif6x4p6O\nEOJIok5FIURCCUEIkSgLgxSGp6qy1mWvjbR7BL+8YUT17R7GKwetM7nyzPD2BmQtqjsd1X882a9x\nx3RuIHLsjZtp/PgFY71TNFx7p7Vnv3fDuXTsp8avpfHNjdYC/VcbHUMW0mLsVRMGNXHTky2z7TEm\nfZ9XlGqIYs+s9QFeDfJon8xL6Kyt3atgVWVt2zgADHnJHsNrPC7I9j0P9IQghEgoIQghEkoIQoiE\nEoIQIhH6lyEMDMNDbZwZbOtCIa7LhcDWpnt4682Zu663bv73l/N19sdutW0chewPWfdC/nscAkBc\nYkXWMX+9kY5d32Sv77zT1tGxW7q4GLe9y/o9eHstds3bZWLsfAH/nFuePcHEejP8Pm5YbuObLuJi\n3rjH+e/H6o32de4ab9uZAWDYU451M2Hv6Y15jx3yUjONs7Z9JsivjMuwO+70+okSekIQQiSUEIQQ\nCSUEIURCCUEIkVBCEEIkyrZ1uRA8gxQPphDn74vsw6oJALB7klW1J32fu6lsusBey8bP8cbV8d/i\nSvfGz+0xsT1EmQeA8y58zcQ845Vr7+SWF7/fe5yJ/QbcubmjiVSUyOsDANOqeVtu21brupzZyo/B\nKgQo0MqP3S+uQUoBeJUDBjMRAoAKcu9rb0chRFFQQhBCJJQQhBAJJQQhREIJQQiRKIu1DAzPXpoZ\nQhSyZgHg6xa2zOHHKMQ0w7N9Z5WDvVNtJQDgpiB9E7mZimcgwvZrPPerz9KxP/2htUX/4rXWNAUA\nFnz7r2h81zS7B6Nnrc72ZQxz3qJj27fxtSEjX7aGMdlZ/PVkZFbwKoO3voTZ0mfruWrvmeQwPGOf\nQqoPDFaR0FoGIUTBKCEIIRJKCEKIhBKCECJRtq3Lnpssa1PuGWH3FgSAoS1crGLUreTzsbZVT1Da\nPYm7IzcsJ63H67lr77a5VkCc+A0r2gFA21e52Fj1pD1nzwWZ7Ue5omMSHbunngvQFRl7fl+Z8Cs6\n9u//+mITO2PUm3Tsw9kP03jdSisg7prGhcKT77NjB7dz4c8TltkejD2T82sFPhieeMhE8vji63Qs\na1NW67IQoigoIQghEkoIQoiEEoIQIqGEIIRIlG3rcjGs2TvPm0zjzCrbGzt8TWve83mtqC2X2urD\nhMd45aD1DFt9GPtxbke+6wFuejLlBmt6svbeU+lYtsfkrMYmOtZjTRtRxR1r9Rtvsm3RD97wCTrW\n25uT2ag3PsQNUtjrySorgF9FGfdkd97nxgxZPIt/tucnwKsaXls8Ozar0D3X8Sg6ererdVkIkT9K\nCEKIhBKCECKhhCCESJStqOj5ITD21XDPZK+lOTu2ysS8/RpbZ9pW6apO/pplNlvxCeACVLvT+sr2\ncdx5Cm9z9mDn13aOFaoA3na8bNYCOnZ8BXd5fupt+3vl+gevp2OZVwMT0QD/utmej5t/bX0WAP56\negIde689PO+EcUutoOftA+ldN2tp9jw/BjXbNmz5IQghioISghAioYQghEgoIQghEkoIQohE2Rqk\n9Da30Dhrae5xWoaLAVOTq5zWV48ts624O6iOuwRXLrWqf91Kroq3T+GuxF0Ndj7mVAwAN970mIkt\n3HkWHfvCWyfSeAPZg/HLf/MoHfvgk7ZNueJ23h4eunj1qPfrtuW3Dtwdm+2L2ZvlZipjnubVo12k\nq51VSwBeUfDa373W5aHEBIhVEwBeUZBBihCiKCghCCESSghCiIQSghAicUhRMYQwFMByAENy438U\nY/xqCKEWwMMAJgBoAXBljNEqHHlQiPcBE1EKWSvejxUhPYGuEDyX50nft+LY767nwhZgRcV4D3eE\nHgke39k62gbX8Pn+9wN2e7bLP/00HbvdEfnY9mxrO7n/wq7zbeyjRJT0jgsA2bFW/PPaxvtabft6\n9Tb+e3DHdC4UMu8K773ecXa9iXniYSF4rcsV7VaA9BzL8yGfJ4S9AP4yxjgVwDQAc0IIZwK4FcCy\nGOMkAMty3wshjmIOmRBiP/ttYCpzfyKAywAsysUXAbi8JGcohBgw8tIQQgiDQwgvA2gD8ESMcSWA\nuhjj/i1+twE4/OciIcQRJa+EEGPcF2OcBmAcgI+EEE59179H9D81GEII80MIq0IIq3qc5hEhRHlQ\nUJUhxrgLwJMA5gBoDSHUA0Du7zbn/yyMMc6IMc6oRGHr+oUQA8shDVJCCMcB6Ikx7gohHAPg1wDu\nBnAugLdijHeFEG4FUBtj/PLBjlUMgxTPDIXhGaQwwxLmlgvw6kP3MO4zsXsSV6kbltvXmLUzA8CI\nibaKclw1r5aEL3NDj00X2Pjbx/Nzq8ge0jMj8cQ1/0DjX91yUd7HYO7PrNX6YHRNtKr/uMfz/93m\n7c3p7e9ZSAWKVTs8h+ZCHL29+97b8/Hd5GuQks9ahnoAi0IIg9H/RPFIjPEXIYTnADwSQrgOwJsA\nrszrzIQQZcshE0KM8RUAp5P4WwDy+3UvhDgqUKeiECKhhCCESCghCCESZWGQUshaBn99Qv5kx5LK\nQRHWMoxezUXc6o3WUaWvmq8t6Mwek/d8U+/lez7abnpg+XMfomMnfPQPJra+iR0BOHfJF2m8usma\nr1Rv4dUrtpckW28A8OoMAOydaqsM2XpvbYhl1zS+r2ZmK7dLZ1WQmvXWeAXgaxy6nbUM3hoHVn3w\nqgmsGsfWMsggRQhRMEoIQoiEEoIQIqGEIIRIlIWoyExPKojzLMAFE888wttTj+G1I2e2WvGoq4EL\nNHu4FoeatTbG9lQEuMDmmTxv/BaxAwZ3GvZalJnpyaCu/ASo/TABccd0Lgj2Za0A2UgMSABg/J3r\nabyrzb7fEVxUZO3Iteu4iDm0ZTuNt023b6zX/jx8jY15ezh6JivsHvda+Q/HDIWhJwQhREIJQQiR\nUEIQQiSUEIQQCSUEIUSiLKoMDE89DaT64BmhDHuKq9Sd51l1vor7o9A20uqN3KzCOw9mWDKEqNEA\nsHeq3fPx+MXcaWr8naR8AWDTE9aExNtrccG3rQ37k7feQ8d+fsNVNP6VT/7Kjl35WTr2ttOXmNgj\nE2fQsRtv41UU3GzfrDCHK/abhlnLfWawAgDjHuetxCPpbXRwY6ED8bYJ8FuXyWxFriZ46AlBCJFQ\nQhBCJJQQhBAJJQQhRKJsRUXWzgwAgbQpD3mpmY71Wpq7MzYPensDMrdbTzxsPYOLf+OWWkHIPQZp\nwa3eyAWlp145hc+32josL9hqxUOAO0V/5gtfomNPuoWLmNc/eL2JferSFXQs44xRb9L4qg7evt79\njBUKezJc5LON0sDJ91nh9mC0XW69MsaQ1xjg4l872e8RAKqy/BjvTLDXx+8WTm9ziz2vyP0b3o2e\nEIQQCSUEIURCCUEIkVBCEEIklBCEEImyqDIw12XWogwAYK7LzljPIIWpu16lYu/pjSaWHVtFx7Jq\nAsD3BvQUZqaWe3sLjnyZm55UdZBdth1Dj0+f/4yJ/XLDOXTs2KG7aLx66k4TW/zYLDp2Lqk+PLz2\nw3Rs7RTuQF1JHGN6HC8cb09Lhvc6j3sy//0a2f3i4e0nyipQ3t6OzIWc/jzJdVkIUShKCEKIhBKC\nECKhhCCESCghCCESZVFlYBRikOIpsIUYpHgwq+yhLXysZ3jBLd55LmZmHF5FYsd0p8rQyasgjA8M\nsdbjntnI5ndG0vjF4+0ahw9M4pbmj2yxZijjv+Mp4Hx9SculbIVC/vzuem7ZXmW9cAAAuybb19Nb\ny8Dw1sksaeLaAAAQQUlEQVR4+5QOat5iYt7ankgqCmys1jIIIQpGCUEIkVBCEEIklBCEEImyFRUL\nMUjxxJl3nDZST2xkMKGwbTrPo72OScfwDTa286K36Vi2t2NFls83+6zXaHxF3UQTG5bh89274VwT\nq1xcS8d+7evfpfELF/0XE/Nei9GrrRDac7NtfQaA6vu5iDlior03vHNmgm7Dkm10rCcKM5gbN1CY\nO3L+vs1A+PCHaHzfi6+bmFqXhRBFQQlBCJFQQhBCJJQQhBAJJQQhRKJsqwxMKQUA1jDqKbtDnHgh\nrcvMxOLYem7I0rBka97H3beSt1s3EQf0cY9xhXjteruHIwAMabDK+tQrmuhYanrCXdjx1S0X0Tgz\nEKm4navwe5aPNTG+0yKwZTZvzR6+xNqU75jOW4lHr7Yxr9Xdqxyw8Tsca/WatfzYDNfAp6PXxLz9\nISsaJ5jY4ewDqScEIURCCUEIkVBCEEIklBCEEIm8RcUQwmAAqwBsjjFeEkKoBfAwgAkAWgBcGWPk\n/caHwGtTZlS0E0HPcV32xBUmFHp7LTLhJ7OVry33hCbPz4BjHZPbb+buvF5rb3enFSHfuHsKHfvU\nRfbczjttHR17zXHWoRkAvnjKX5jYnmdPoGN7Z9uG3ZOqeet5Zx13Xd5Vbf0Qqlr5rbxjup2vhm9R\n6fJ7srcj860A/DZ6iiMqMgExkhZlALDyoy/I50MhTwhfAPDbA76/FcCyGOMkAMty3wshjmLySggh\nhHEAPgHgOweELwOwKPf1IgCXF/fUhBADTb5PCN8C8GX8aRtAXYxxf+F9GwC6VCyEMD+EsCqEsKqH\nPA4LIcqHQyaEEMIlANpijC96Y2KMEc5qzhjjwhjjjBjjjEoMee9nKoQoOfmIimcD+GQI4WIAQwEM\nDyF8H0BrCKE+xrg1hFAPoK2UJyqEKD2HTAgxxq8A+AoAhBDOA/B3McarQwj/AOAaAHfl/v5ZMU/M\nU0q9tlPGIKfKwJRg5nQLAK3zP2hibP9FADjpft66/OZca+ri7Tk46Ru2kXfTBbZVFwAqnfPYPcke\nO8zh+zJim1XQZ40gji4AGit303hVpz2P2nXcabj5KvtQuusBXpGAYyIz8mVbZfAqPwyvouTFK7O2\nhXr0M/x+8SpNjILcmEmLMgD0NreY2JFyXb4LwIUhhA0ALsh9L4Q4iilocVOM8SkAT+W+fgvAx4p/\nSkKII4U6FYUQCSUEIUQi9FcMB4bhoTbODPZTRiGtln3EddkTg7pH8E9EbN271+bM5mudyVul99Tz\n15K1ubKWWgBoWG7j7ZO5H8IZV7xK40+9coqJVWS468CsRuuTsPZe7rPgOUV/aoqtSD/xjVl0LBPS\nPO+E8GX+Ojd9yYqKg5p4mzN77dvOYQ2/wLjH+e9H9vrXrM9fxOzO8OOO+gVvEWfbFRaytSETGlfG\nZdgdd3KDiQPQE4IQIqGEIIRIKCEIIRJKCEKIhBKCECJRFq7LrNWykMrDkJea+T84ezuy9ud2p+WU\n7Q3YM4xPN2Y1b0fO1luVuq+aK93VG/fYc8jY9mKAVxMAYMzT9m3dMd1xbn7cVhQWf/0f6NjmHn4e\nf99yMY0zWi61FYLhPx5Px+65nFdihqyx74mn+rMKwcn32dcYADZczd/YU75t25S9fSDZvqGey/de\n5/4c2vIWjTNYRUF7OwohioISghAioYQghEgoIQghEkoIQohEWVQZDsc2GuDrDQ6Gt/aBUbfS9pB7\n/3/T+VXOUaxazkw+AKB9ilXyu8hejYBvl74iM9HEZpM1CwCwdrWtMpy75It0LKteAMDdd9xnYv8t\n+3k69qTTNptYw1m8T39Fs70OAOgh6xa89R7jltpjs9e4H17VYKYn3nuSrbeGOg1LuJmKV6nABGuI\nU+kYAw12CmzvFT0hCCESSghCiIQSghAioYQghEiUrUEKM37weIeIMADfIw/gDsteG2nrGXYvCc91\n2Wtd3jL7kL4UiUnf77TzOSJmdiwXMVm79a5p3CDlMx/5dxPzzE1GXvsHGm8h+zh21/HW7EFd+bXQ\nAsDwDfz3FXOVPmZb/r/b6l7gGwZ5hjpMsPSOUchxmVEPwO9ntz2fwJYCyCBFCFEwSghCiIQSghAi\noYQghEgoIQghEmVRZWBUOHvZMXOTQm3YqzqsAu4p9qOfsfs1vjGPm6kcu5WLuLXrrCLttTn3kgqG\np6B3Tcy/cvDw2g/TscyG3dvb8cLqN2j8/B//nYl995ML6dj//PpcE5s6hrf2egYw1U227dtT/Xee\nYqtEXsXFa81mVRu2nyUAVGVtBYSZpgB+yz2rgrHKQSGoyiCEKBglBCFEQglBCJFQQhBCJMrWD8Hb\nyw5EVCzUdZkJiEw8BIA351rh56T7uQi27qbjabxupW2h7q7jubiq1b4lVWdzF94zHDHuN1/7qInN\numUtHcv2cVw+/UN07J00yvej/PvTuBMzExA93wPPM4KJtJ6AzATExoccd+yxNEz37Mxs5cfw9nFk\nMPEQ4G37XsN3vvtAynVZCFEwSghCiIQSghAioYQghEgoIQghEmVRZTjcvR09MxVPeR71C+JW7Byj\n0vqVUBdeABi9mp8foyLD22dBqgw138rQoVtu5+fMWrNZNQEAdl70tj034moMAH0T7VgAyNYfa2Kb\nmvhr1Pay3cfxU/OfpmN/uuYcGm+/OWtilYtr6diRL1t1PTvWcVeezuPMqMWrJtSs3U3jDG/PR/b+\nea7L8cXX85orRr735bvRE4IQIqGEIIRIKCEIIRJKCEKIhBKCECJRFlWGQhjc3mVizDQF4GotwNXd\nbD3v9c5steqsd9yWS3nvfVWWVQm4oQdT8rtXW5MPAMDX+d6AzBSE9eMDwL/O/DcTWzqFr2Xw+GHr\n2Sbm7TuJ08j/f9L+fwCY4JieVC61t23rTO79wd6/tun89+CEx3jlp5C1L9RCnY7076OhLXztCoUY\nCWktgxCiKCghCCESSghCiIQSghAikZfrcgihBUAngH0AemOMM0IItQAeBjABQAuAK2OMB7WGLcbe\njq5xCsFzte0ab0W+6o22HRYA2qcMNzGvPXXD1cPyP7dq3krK9j4cMZG/rB1NvL2bjfdaexneHo57\nFnAHESaOeW3jDE/kG/dkN41v/Jx97TIrbPu0BzNYAbgYC3BB9gM/zb9Fmd1DgH8fMRdxzwSI/Zz0\nNreYWClcl8+PMU6LMc7IfX8rgGUxxkkAluW+F0IcxRzOR4bLACzKfb0IwOWHfzpCiCNJvgkhAlga\nQngxhDA/F6uLMe4vxm4DQIviIYT5IYRVIYRVPU7tXQhRHuT7QW9WjHFzCGEMgCdCCH/SdRJjjCEE\nKkbEGBcCWAj0awiHdbZCiJKS1xNCjHFz7u82AI8C+AiA1hBCPQDk/m4r1UkKIQaGQz4hhBCqAQyK\nMXbmvv44gP8B4OcArgFwV+7vn5XyRNP5EFXVa11m1QQAGL6m1cRYyynA9+rzVONjtnERd9xSWxnx\nzq2qw7bPVnbwt2nqvfmZYwDAiou46cmnprxoYr9cyI1JXrr3/9D4vI12vGetPmQNqwbwB0dvv03A\ntnezFmUAaJ9sqzaVHdYWHwB6hvEqw5jV9h7w9hNl1QDP6oe14QPcnr2QfSAPh3w+MtQBeDSEsH/8\ngzHGJSGEFwA8EkK4DsCbAK4s6pkJIQacQyaEGGMzgKkk/haA/LZyFkIcFahTUQiRUEIQQiTyal0u\nFl7rciFUkPXfniDowdpqvdblQvBal7119vlScbsVQQFgveNszLwI1rRxUYq1P5902qaC5vuv5zxm\nYvf86Ao6truOewAwvL0dd0+yIt+gOi4U9rVy8a8Qjtlmf28yN26Ai5tMxD4Y1FOhgNZl1t7/XMej\n6OjdXtTWZSHE+xwlBCFEQglBCJFQQhBCJJQQhBCJsnVdZtUEgCuoQxzTlL2nN9I4M/RonckNWRqW\n2NbQN+ZxtX3CY9zQg7kxe6o4M/qoeuAEOnYMjQJP4RQT8/aSrMha4bmhmr+eDafx+MI7bUVhpHNu\nPVOtKUj1/Xz0trl7aJztPTlyNW/Nzmy274lnhOJR1WkrcaylHeD3lmfq492f1HXZMQwqNnpCEEIk\nlBCEEAklBCFEQglBCJEoC1GRuS6XEta67DnxsjZStj4eADadz9fvD99ghbvd4C21dSutANX21fzb\nfQGg+hl7zj0Z/lZ/+W8eNbHf7z2uoPlww2sm5Pkh5O9L7dObsSLfrsm8K7ftHPs7r6qVt+t7Ls+F\nOEgXIgh6x2Ui+b72gxqa/wmH8/OkJwQhREIJQQiRUEIQQiSUEIQQCSUEIUSiLKoMTEG1Xrn9MPdZ\nz73Wc9fNjrWuyVXOlpFMCc7W87M76X7ugMsqFbum8Vz8u+tt6/LJX+MtvJsuyL+dde6lK2j8gdsu\nM7Guebvo2IvHr6XxN+6eYmJDiNsxAHTDXl8lqRoAwCDSogwAfWQ8qzwAQFWrff8K2ZcRALpH5L8X\n6O6pdr8i1s58MNg9HsANbuKL+Ttv54OeEIQQCSUEIURCCUEIkVBCEEIklBCEEImyqDIU0nvtVRQY\n3v6Jo35hbcq3fvqDdCxb49Dg2Gozhdmj8SGuPLP9DL29JOte4Osvzvrm8yb2g+fPpGMn37jZxM4d\n9SYd+8JbJ9L4seQY7b8eT8d+8dqfmNiDN3yCjh15LX+dt3fZvTzjEmdvTmJu4uGZ5HD4vdWdsb9j\nqzfyahec9SyF3OOxyOuA9IQghEgoIQghEkoIQoiEEoIQIlEWomIhMAdbz7122FPrafytS6wrsWeQ\nwkS+yg4ragFcUAK4Qy87LsBdgr29HZm4BgC/2mhbiVkLLwA0Z0ab2L9OeoiOXfzYLBpnbcOzr3iV\njr1zyeUmVnE+NzfpfWUcjTO47Mpfe0+k7XHcW6q32Ovz3mv2/nl4BilMavScm4uNnhCEEAklBCFE\nQglBCJFQQhBCJJQQhBCJsqgylMpiuvO8yXmP9cxUus6w+wB2D+MtrnvqeZtsb8aq6Mds48o6YKsP\nVQvG0pGdc3llZFZjk4m9sZrvn7glYzXtz3zhS3RspWN1Xj11p4ldc9wz/NzmbDCxR7bMoGNbnuV7\nWrL5ah7jrcRsX82+at42PqjLs+Up5Pcmef8KsHH38H5G2B6ovc0tJhbjvrzm0ROCECKhhCCESCgh\nCCESSghCiERZiIoMTzxk4oonCA5t4evKmW9Bzwi+Np3RsIS7K78xr57GJ32/M+9jb7ja9s8OquPi\noedKvKXOip6bLuL7UdYcbx2I27dxbwHWwgsAd39osYnNW3YdHctaqJlICADddVz8qyR7V3aP4KJZ\nw3J7zsPXbKdj35zLnY1r1ttje67LzIPDc10e8lIzje9jzuLOz0OxW5r1hCCESCghCCESSghCiIQS\nghAioYQghEiEGPN3pT3syULYDmC/pe9oADsGbPL393zv52vTfMXhxBjjcYcaNKAJ4U8mDmFVjJE3\nsWu+sp1L8x398x0MfWQQQiSUEIQQiSOZEBZqvqNyLs139M/ncsQ0BCFE+aGPDEKIhBKCECKhhCCE\nSCghCCESSghCiMT/B44fj/Vvhw41AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.matshow(data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Las regiones azules corresponden a valores bajos de inflamación, mientras que las amarillas indican valores más altos. Se puede ver como a lo largo de los cuarenta días la inflamación aumenta y luego disminuye en todos los pacientes." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Podemos representar ahora la inflamación media de todos los pacientes para cada día " ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "cell_tags": [] }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VuX9x/H3N3svMkhIQoAEgowwIipTRFQEHPWHFWer\nFfeoWqvVVmuXbbW1VrHFYh04qBvcqCCiMhIIhE1YGYQMQsgi+/79kUdEBDKeJznP+L6uKxfJyZOc\nT4/Jpyf3Oee+xRiDUkop1+dldQCllFKOoYWulFJuQgtdKaXchBa6Ukq5CS10pZRyE1roSinlJrTQ\nlVLKTWihK6WUm9BCV0opN+HTkzuLjo42KSkpPblLpZRyednZ2eXGmJj2XtejhZ6SkkJWVlZP7lIp\npVyeiOztyOt0yEUppdyEFrpSSrkJLXSllHITWuhKKeUmtNCVUspNaKErpZSb0EJXSik3oYWu1DEK\nD9bxbk6R1TGU6rQefbBIKWdnjOHO13LI2nuQwfFhDIwLtTqSUh2mZ+hKHWXR+n1k7T0IwCur8i1O\no1TnaKErZVPX2MyfPtjK0D5hzMxI4M3sQuoam62OpVSHaaErZfPMsp3sr6rn4ZlDuPqMvlQ3NLN4\n/T6rYynVYVroSgEFFXX8e/kuLhyRQGZKFJl9IxkYF8KClTrsolyHFrpSwB8/2IK3CPdNSwdARLjy\n9L7kFh1iQ2GlxemU6hgtdOXxvt5Zzocb93PzmQOIDw88sv2ikX0I9PXmZT1LVy5CC115tOaWVn67\naDOJkYFcP7H/9z4XFuDLRSMTeHd9EYcON1mUUKmO00JXHu2V1flsK6nmwemDCfD1/sHnLx/Tl/qm\nVt5eW2hBOqU6RwtdeayDtY08/sl2xg7oxblDeh/3NcMSw8lIDOflVfkYY3o4oVKdo4WuPNbfP91O\ndX0Tv5l5CiJywtddcXpfdpTWsHp3RQ+mU6rztNCVR9q6v4oFK/dy5el9Se8ddtLXzhyeQFiADy/r\nk6PKyWmhK49jjOG3izYTFujLXVMHtvv6QD9vLhmdyIcbiymvaeiBhEp1jRa68jiLNxTzza4D3D11\nIBFBfh36mitOS6apxfB6ll4cVc5LC115lLLqBh56dyMZSRHMHpPc4a9LjQ3ltH5RvLJ6L62tenFU\nOad2C11EnhORUhHZeNS2v4rIVhHZICJvi0hE98ZUyn7GGB58J5faxhYenzUcH+/Onc9ceXpfCioO\ns3xHWTclVMo+HfmJfh4475htS4ChxpjhwHbgfgfnUsrhFq3fx8ebSrhr6kBSYzs/z/m5Q3oTHeKn\nF0eV02q30I0xy4GKY7Z9Yoz5dl7RlUBiN2RTymFKq+t5aNEmRiRFcP2E/u1/wXH4+XhxaWYSn20p\nYV/lYQcnVMp+jhhDvxb40AHfR6luYYzhwbc3UtfYwmOzMvD2OvE95+2ZPSYZA7y2psBxAZVyELsK\nXUQeAJqBl0/ymjkikiUiWWVlOvaoet6i9fv4ZHMJd08dSGpsiF3fKykqiMmDYnnpmz06v4tyOl0u\ndBH5CTADuMKc5JloY8w8Y0ymMSYzJiamq7tTqku+HWoZmRzBz7o41HKsu6YOpPJwE3OX5jnk+ynl\nKF0qdBE5D7gXuMAYU+fYSEo5hjGGB2xDLX/9P/uGWo42tE84PxqZyH+/2kNBhf74K+fRkdsWXwW+\nAQaJSKGIXAc8BYQCS0QkR0T+1c05leq0d3P2sWRzCfecY/9Qy7F+ce4gvLzg0Y+2OvT7KmUPn/Ze\nYIyZfZzN87shi1IOU1r13VDLdeMdM9RytN7hAcyZOIAnP9vBteMOMrpvpMP3oVRn6ZOiyu0YY3jg\nnY0cbnLsUMuxbpjYn9hQf37//madWlc5BS105XY+21LKEgfd1XIywf4+3HPOINblV/LehuJu249S\nHaWFrtxKU0srf/xwC/2jg7l2fL9u398loxMZHB/Gox9upb6ppdv3p9TJaKErt/LKqnx2ldVy//mD\n8e3kXC1d4e0lPDh9MEWVh3n+6z3dvj+lTkYLXbmNQ4ebeOLT7ZzRvxdnD47tsf2OS43mrPRYnv48\njwM6X7qykBa6chtPL82j8nATD0wffNIl5brDr85Pp66phSc+3dGj+1XqaFroyi3kH6jj+a/2cMmo\nRIb2Ce/x/afGhnL5mGReWZ1PXml1j+9fKdBCV27izx9txdtLuOecQZZluPPsNIJ8vfnjB/qwkbKG\nFrpyedl7K3g/t5g5E/vTOzzAshy9Qvy55axUPt9ayood5ZblUJ5LC125NGMMv3tvC7Gh/twwyfFP\nhHbWT8amkBQVyCPvbaKppdXqOMrDaKErl7Z4QzE5BZXcc+4ggvzancmi2wX4evObGUPYXlLD81/t\nsTqO8jBa6Mpl1Te18OcPtzI4PoxLRjnPollTT4ljSnosT3y6nf2H6q2OozyIFrpyWf/9ag9FlYd5\ncPrgbpuvpasemjmE5lbD79/fbHUU5UG00JVLKq9p4OmleUxJj2VcarTVcX4guVcQN5+Zynsbivkq\nTy+Qqp6hha5c0hOfbudwUwv3nz/Y6igndMOk/vTtFcSv391IY7NeIFXdTwtduZz8A3W8trqAy8ck\nd+tsivYK8PXm4QuGsKuslv+s2GV1HOUBtNCVy3l6aR5eXsItk1OtjtKuyYNiOXdIHP/8LI+iysNW\nx1FuTgtduZSCijreXFvI7FOTLH2IqDN+PeMUDIbfLdYLpKp7aaErl/L00jy8RLjpTOc/O/9WYmQQ\nt52Vxkeb9rNsW6nVcZQb00JXLqOgoo43sguZPcZ1zs6/df2E/vSPCeahRZt0IQzVbbTQlcuYu6zt\n7PzGMwdYHaXT/Hy8eOSCoew9UMe85XqBVHWPdgtdRJ4TkVIR2XjUtigRWSIiO2z/6pLnqlsVVNTx\nelYhl41JIj480Oo4XTI+LZrpw+N5emken20p0VsZlcN15Az9eeC8Y7bdB3xmjEkDPrN9rFS3mbts\np23s3PXOzo/24PTBhAX6ct0LWYz+/RLueG0dH+YWU9fYbHU05Qbanc3IGLNcRFKO2XwhcKbt/ReA\nZcAvHZhLqSMKD9bxelYBs8cku+zZ+bfiwwP58t7JfJVXzseb9rNkcwnv5uzD38eLiQNjOG9Ib6YM\njiUiyM/qqMoFdXV6ujhjTLHt/f1AnIPyKPUDc5ftRASXPzv/VoCvN1MGxzFlcBzNLa2s2XOQjzft\nP1LwQX7evHvLONLiQq2OqlyM3RdFjTEGMCf6vIjMEZEsEckqKyuzd3fKwxRVHub1rAJ+fGoSCRGu\nfXZ+PD7eXpwxoBcPXzCEr+87i7duHktzq2HByr1WR1MuqKuFXiIi8QC2f094c60xZp4xJtMYkxkT\nE9PF3SlPNXdpHoBL3XfeVSLCqORIpg3tzdvrivT2RtVpXS30RcA1tvevAd51TBylvlNUeZj/ZRVw\naWYSfdzw7PxELjs1mar6Zj7cWNz+i5U6SkduW3wV+AYYJCKFInId8CgwVUR2AGfbPlbKob49O7/Z\nBeZscaTT+0eR0iuIV1cXWB1FuZiO3OUy+wSfmuLgLEodsc92dj7Lw87OoW3o5dJTk/jLR9vYVVZD\n/xjnnVFSORfrF2FUHs8YQ1lNA3mlNewsrSGvtIZVuysAuNlN7mzprP8bncjjn2xn4ZoCp57zXTkX\nLXRliT3ltcxdlscOW4lX1X/3YE2wnzepsSE8cuFQEiODLExpndjQAKakx/Lm2kLuPmcQfj46S4dq\nnxa6ssSv3s5lXX4lGUnhXDAigQExIaTGtr31DgtAxLnWCLXC7DHJfLK5hM+2lDBtWLzVcZQL0EJX\nPW5DYSVf7zzAr85PZ85EzxxS6YiJA2OIDw/gtTUFWuiqQ/TvONXj/v3FLkIDfJg9JtnqKE7N20uY\nlZnE8h1lutqR6hAtdNWj9pTX8uHGYq48vS+hAb5Wx3F6s0YnAvC/NXoLo2qfFrrqUf9ZsQsfLy9+\nOjbF6iguISkqiPGp0byeVUBL6wln2DiitKqegoq6HkimnJEWuuox5TUNvJ5VyI9G9SE2zLVWHLLS\n7DHJ7DtUz/IdJ58LKaegknOfWM4V/1lF2xRLytNooase88LXe2hsaeX6if2tjuJSzh4cR69gPxae\n5MnRFTvKufzZldQ2tJBfUcfOstoeTKichRa66hG1Dc28+M1epg6OY4A++dgpfj5eXDI6kU+3lFBW\n3fCDz3+YW8y1z68hOSqIV+ecBsCX7ZzNK/ekha56xMI1BRw63MQNk/Q2xa64NDOJ5lbDm2sLv7f9\n1dX53PLKWoYlhrNwzhmM7ts2D8zy7VronkgLXXW7ppZW5q/YzZiUKEb31eVnuyI1NoRTUyJZuKbg\nyPj4M8t2cv9buUxIi+Gl68YQHtR219DEgTGs3FVBQ7NOv+tptNBVt3t/QzFFlYe5YZKOndvjslOT\n2V1ey8pdFfzpgy38+aOtXJCRwLNXZxLk990zghPSYjjc1EL23oMWplVW0EJX3coYw7++2ElabAiT\nB8VaHcelnT8sntAAH256OZt/L9/FVaf35Ykfj/jBPC9nDOiFj5ewfHu5RUmVVbTQVbf6YnsZW/dX\nM2dif7y8dH4WewT6eXPxyD5U1jVx+5Q0HrlwyHGPaYi/D6P6RuqFUQ+kc7mobvXvL3YRF+bPhSP6\nWB3FLdw3LZ0LRyQwum/USV83aWAMf/14G2XVDcSE+vdQOmU1PUNX3WZ9QSXf7DrAdeP76fSvDhLk\n59NumQNMSIsG4Ks8HXbxJPpbprrNvOU6CZdVhiaEExnkq7cvehgtdHVCa/ZUsP9QfZe+Nq+0Rifh\nspCXlzA+LYblO8p1GgAPooWujquppZWr56/mx/O+oaK2sVNfW13fxE0LsgkN8OWn41K6J6Bq18S0\naMprGthSXG11FNVDtNDVcW0truZwUwt7D9Rx40vZHX5IpaXVcOdrOewqr+WZK0YRG6qTcFll4sAY\nQKcB8CR2FbqI/FxENonIRhF5VUT0t9dN5BRWAnDveYNYvaeC+9/K7dCf7n/5eCufbS3l4ZmnMDY1\nurtjqpOICwtgUFxou7M0KvfR5UIXkT7A7UCmMWYo4A1c5qhgylo5+ZVEh/hx06QB/Pzsgby1toi5\ny3ae9GvezC7k31/s4srTk7nqjJSeCapOauLAaNbsPsjhRp0GwBPYO+TiAwSKiA8QBOyzP5JyBjkF\nB8lIjEBEuH1KKheNSOCvH2/jvQ3H/0+8Nv8g97+Vyxn9e/HQzCE9nFadyIS0GBpbWlm5+4DVUVQP\n6HKhG2OKgMeAfKAYOGSM+cRRwZR1quqb2FlWy4ikCABEhEcvGc7ovpHc/b/1rMv//hwh+yoPM+fF\nbHqHBzD3ilH4euulGWcxpl8U/j5efKnTAHgEe4ZcIoELgX5AAhAsIlce53VzRCRLRLLKynQszxVs\nKDgEwIjkiCPbAny9mXfVaGLD/Ln+xWwKD7Ytc1bX2Mz1L2ZR39TC/GsyiQz2sySzOr4AX2/G9IvS\ncXQPYc+p1NnAbmNMmTGmCXgLGHvsi4wx84wxmcaYzJiYGDt2p3rKetsF0eGJEd/b3ivEn//+5FQa\nmlv42QtZVNU38YvXN7C5uIonZ48gLS7UiriqHZMGxpBXWsO+ysNWR1HdzJ5CzwdOF5EgERFgCrDF\nMbGUldblV9I/JpjwwB8+EJQaG8ozV4xmR2kN5/19Oe/nFnPfeemclR5nQVLVERPS9PZFT2HPGPoq\n4A1gLZBr+17zHJRLWcQYQ05B5ZHx8+MZnxbNIxcOYd+hen40qg9zdI1QpzYwLoS4MH+W79BxdHdn\n12yLxpiHgIcclEU5gX2H6imvaThpoQNccVpfRveNJDUmhLY/0JSzEhEmpMXw6ZYSWloN3jqNsdvS\n2xHU9+Tkt42ft1foAOm9w/DRO1pcwsSBMVTWNZFbdMjqKKob6W+j+p6cgoP4+XiR3jvM6ijKgcan\nRiMCX+rsi25NC119z/qCQwxJCNP5y91MVLAfw/qE6+2Lbk5/a9URzS2t5BYd6tBwi3I9E9KiWZtf\nSXV903E/f+hwExuLDtHU0trDyZSj6BJ06ohtJW0zLGqhu6eJaTE8vXQn728oJjEyiJ1lNeSV2t7K\naiirbgDgitOS+cPFwyxOq7pCC10dsf7bJ0S10N3SyORIgv28ue+t3CPbQv19GBAbwqSBMaTGhrCj\npIaXV+UzZXCsPlvggrTQ1RE5BQeJCvYjOSrI6iiqG/j5ePHU5aMoOFhHakwIqbEhxIT6f++204bm\nFjbtO8S9b+Ty8Z0R9ArRBaZdiY6hqyNyCirJSAzX+8rd2OT0WK4+I4WxqdHEhgX84L+1v483T1w2\ngqrDTR2eA185Dy10BUBNQzM7SmvI0OEWj5feO4xfnDuITzaX8HpWodVxVCdooSsANhRWYoyOn6s2\n143vx+n9o/jt4k3kH6izOo7qIC10BbQNt4AWumrj5SU8fukIvES46385tLTq0Isr0EJXAKwvqKRf\ndDARQTqfuWrTJyKQRy4aQtbeg/zri5MvP6icgxa6Ar67IKrU0S4a0Yfpw+P5+5LtbNR5YJyeFrqi\n+NBhSqran2FReR4R4Q8XDaVXiB93LsyhvkkXm3ZmWuiK9d+OnydHWpxEOaOIID8em5VBXmkNj364\n1eo46iS00BXrCirx8/ZicLwuIaeOb0JaDD8Zm8LzX+/hzWy9ldFZ6ZOiipz8SgYnhOHv4211FOXE\n7puWzo7Sau55Yz0txnBpZpLVkdQx9Azdw7W0GnKLDjFSx89VOwJ8vZl/zamMT43ml29uYOGafKsj\nqWNooXu4HaXV1DW2kJGkd7io9gX4evPs1ZlMSIvhl2/m8soqLXVnooXu4b5bck4viKqOCfD1Zt5V\no5k8KIZfvZ3LS9/ssTqSstFC93DrCysJD/QlpZfOsKg6LsDXm39dNZqzB8fy63c38cLXe6yOpLCz\n0EUkQkTeEJGtIrJFRM5wVDDVM9blV5KRFKEzLKpO8/fxZu4Vo5l6ShwPLdrEcyt2Wx3J49l7hv4P\n4CNjTDqQAWyxP5LqKXWNzWwvqdYHilSX+fl48fTlozh3SByPvLeZJz/bQWlVvdWxPFaXb1sUkXBg\nIvATAGNMI9DomFiqJ+QWHqLVoHe4KLt8u3DGna/l8Lcl2/nbku0kRgYyKjmSUckRjOobyeD4MHy9\ndYS3u9lzH3o/oAz4r4hkANnAHcaY2qNfJCJzgDkAycnJduxOddbq3RV8uLGYqCA/YsP8iQn1JzY0\ngJhQf3oF+x2ZYXG4zuGi7OTr7cU/Z4/k2vH9WJd/kLX5B1m1+wCL1u8DIMDXi+GJEfzf6ES9f70b\nSVdXJBGRTGAlMM4Ys0pE/gFUGWN+faKvyczMNFlZWV1LqjrlpZV7eXjRJrxFaDzOKu4i4OvlRe/w\nAJbfO9mChMrdGWPYd6ietXvbCv6rvHJ2lNbw1k1jGanTTHSKiGQbYzLbe509Z+iFQKExZpXt4zeA\n++z4fsoBmlpaeWTxZl5auZcp6bE8cdkIfL29KK9poLS6gbLq7/4tq65n7IBoqyMrNyUi9IkIpE9E\nIDMzEqiub2Lq35Zz/1u5LL5tvA7BdIMuF7oxZr+IFIjIIGPMNmAKsNlx0VRnVdY1cvPLa/l65wFu\nmNSfe89Nx9ur7e6VxMggEiP11kRlndAAXx6+YAg3Lshm/ord3DhpgNWR3I69c7ncBrwsIn7ALuCn\n9kdSXZFXWs3PXshiX2U9j8/K4JLRiVZHUuoHzhvam6mnxPHEp9uZPiyepCg9yXAku/7mMcbkGGMy\njTHDjTEXGWMOOiqY6rhl20q5+OmvqWlo5tU5p2uZK6f22wuG4C3Cg+9spKvX8NTx6SCWCzPGMH/F\nbq59fg1JUUG8e+t4RvfVi03KuSVEBHL3OYP4YnsZizcUWx3HrWihu6icgkoum7eS3723mXNO6c0b\nN51Bn4hAq2Mp1SHXjE1heGI4jyzexKG6JqvjuA0tdBezu7yWm1/O5qKnv2JnWQ2/u2goc68YRZCf\nTm2vXIe3l/DHi4dRUdvIox/pKkiOoi3gIsqqG3jysx28ujofPx8v7jw7jZ9N6E+Iv/4nVK5paJ9w\nrh3Xj/+s2M2PRvXh1JQoqyO5PG0DJ1fT0Myzy3fx7Je7aGxuZfaYZG6fkkZMqL/V0ZSy28+nDuTD\njfv51Vu5vH/7BPx8dNDAHlroTqy8poEZT65gf1U95w/rzS/OTadfdLDVsZRymGB/H3530RCufT6L\nect3cutZaVZHcmla6E7sjexC9lfV88rPTmNsqj7RqdzTWelxTB8Wz5Of5zF9eIKetNhB/75xUsYY\n/remgMy+kVrmyu09NPMU/L29eOyTbVZHcWla6E5qzZ6D7Cqv5dJTdWY65f5iwwK4eFQfPt1cQk1D\ns9VxXJYWupNauKaAEH8fpg+LtzqKUj3igowEGppbWbJ5v9VRXJYWuhOqrm/ig9xiZmbEE6y3JSoP\nMSo5koTwABav16dHu0oL3QktXl/M4aYWXQhAeRQvL2FGRgLLt5dRWaeLn3WFFroTWphVwMC4EF3r\nU3mcCzISaG41fLRRh126QgvdyWzdX8X6gkp+fGoyImJ1HKV61JCEMPpFBx9Zuk51jha6k1m4pgBf\nb+HikX2sjqJUjxMRZg6P55tdByitqrc6jsvRQnciDc0tvL2uiHNO6U1UsJ/VcZSyxMyMBIyBD3L1\n4mhnaaE7kSWbS6isa9J7z5VHS4sLJb13qA67dIEWuhNZuKaAhPAAxuuTocrDzcxIYG1+JQUVdVZH\ncSla6E6i8GAdK/LKmZWZdGRhZ6U81czhCQC8r8MunaKF7iRezyoEYFamrgeqVHKvIDKSIliswy6d\nooXuBFpaDW9kFzI+NZrESF0FXSlouyd9074qdpbVWB3FZdhd6CLiLSLrROQ9RwTyRF/llVNUeVif\nDFXqKNOHxSOCnqV3giPO0O8Atjjg+3ishVkFRAT5cs6QOKujKOU0eocHMCYlisXr92GMsTqOS7Cr\n0EUkEZgO/McxcTxPRW0jSzaVcPHIPvj7eFsdRymncsGIBHaW1bKluNrqKC7B3jP0J4B7gdYTvUBE\n5ohIlohklZWV2bk79/P2uiIaW1r5sd57rtQPTBsaj7eX6D3pHdTluVlFZAZQaozJFpEzT/Q6Y8w8\nYB5AZmamR//dZIyhrLqBvNIadpbVkFdawwcb95ORGE567zCr4ynldKKC/RifGs3i9fv45XmDdH6j\ndtgz2fY44AIROR8IAMJEZIEx5krHRHMPX+4oY1HOPvJsBV5d/91qLCH+PgyICeaB6adYmFAp5zYz\nI4F7Xl/PuoJKRiVHWh3HqXW50I0x9wP3A9jO0O/RMv++7L0Hue75LIL9vRnUO5QLRySQGhNCamwo\nA2KD6R0WoGccSrXjnCFx+L3txaKcfVro7dDlcLpJSVU9Ny3Ipnd4AItuHUdEkE62pVRXhAX4MnlQ\nDO/nFvPrGafok9Qn4ZAHi4wxy4wxMxzxvdxBQ3MLNy7IpqahmXlXj9YyV8pOMzMSKKtusGu9UU+4\n9VGfFHUwYwy/eWcT6/IreXxWhl7sVMoBpqTHkRgZyI0L1nLX/3Io6cRc6evyD3LV/FWc+ofPKKtu\n6MaU1tNCd7AFq/JZmFXArZNTmTYs3uo4SrmFQD9vPrxjAjdOGsB764uZ/Ngynvp8B/VNLSf8mtzC\nQ1z7/Bounvs1m/ZVUVHbwPwVu3swdc/TQnegVbsO8NtFmzgrPZafTx1odRyl3EpogC/3TUvn07sm\nMTEthsc+2c6Ux7/gvQ3ff5J0874q5ryYxcynVpC99yC/OHcQX947mfOHxfPSN3vcegFq6clxpczM\nTJOVldVj++tJ+yoPM/OfKwgP9OXtW8YRHuhrdSSl3NrXO8t5ZPFmtu6vZkxKFD+b0I93cor4IHc/\noQE+XD+hPz8dl0JoQNvv4pbiKqb940vuPDuNO892rRMuEck2xmS2+zotdPvVN7Uw61/fsLu8lndu\nGUtqbKjVkZTyCC2thoVrCnj8k20cqG0kxN+Ha8elcN34/oQH/fCk6voXs1i9u4IVv5x8pOhdQUcL\nXW9btJMxhvvfyiW36BDPXp2pZa5UD/L2Ei4/LZkZGfEs317GuAHRRJ5kPd5bJ6dy4eavWLAyn5vO\nHNCDSXuGjqHb6YWv9/D2uiJ+fvZApp6isyUqZYWwAF9mDE84aZkDZCRFMCEtmvkrdnG48cQXVF2V\nFrodNhYd4o8fbGVKeiy3nZVqdRylVAfcOjmV8ppGXluTb3UUh9NC76LahmZue3UdUcF+PDYrAy99\nek0pl3Ba/16MSYli3vJdNDS711m6FnoX/ebdTew5UMsTl41o9888pZRzufWsVIoP1fPW2iKroziU\nFnoXvLOuiDfXFnLb5FRO79/L6jhKqU6akBbN8MRwnlm2k+aWEy7n4HK00DtpT3ktD7ydy6kpkdw+\nJc3qOEqpLhARbp2cSn5FHYs3uM/iGVrondDY3Mrtr63Dx9uLJy4biY+3Hj6lXNXZg+MYFBfKU5/n\n0drqHhN3aSN1wmOfbGND4SH+fMlw+kQEWh1HKWUHLy/hlrNS2VlWy0ebuj6LozPRQu+gZdtKmbd8\nF1eensx5Q3tbHUcp5QDTh8XTLzqYpz7Pc4vpdbXQO6C0up57Xl9Peu9QHtTl4pRyG95ewk1nDmBz\ncRVLt5VaHcduWujtaG013LVwPTUNzfxz9kgCfL2tjqSUcqCLR/ahT0QgT37m+mfpWujteOaLnazI\nK+ehmUNIi9N5WpRyN77eXtx6Vio5BZV8usW1z9K10E/i653lPP7JNi7ISOCyU5OsjqOU6iazRifS\nPzqYv368lRYXvuNFC/0ESqrquf3VdfSPCeFPPxqGiD7ar5S78vH24u5zBrG9pIZ31rnu06NdLnQR\nSRKRpSKyWUQ2icgdjgxmpaaWVm57ZR21DS08c8Uogv11lmGl3N20ob0Z1iecvy3Z7rJzvNhzht4M\n3G2MOQU4HbhFRNziFpDHPt7G6j0VPHrJMB03V8pDeHkJ9543iKLKw7y80jVnYuxyoRtjio0xa23v\nVwNbgD7wkD14AAAKGklEQVSOCmaVjzft59+2+80vHOHy/3OUUp0wPjWasQN68dTSPGoamq2O02kO\nGUMXkRRgJLDKEd/PKnsP1HLP6+sZnhjOr2e4xR8bSqlOEBF+eV46FbWN/OfLXVbH6TS7C11EQoA3\ngTuNMVXH+fwcEckSkayysjJ7d9dt6ptauGnBWgR4+vJR+Pvo/eZKeaKMpAimDe3Ns8t3caCmweo4\nnWJXoYuIL21l/rIx5q3jvcYYM88Yk2mMyYyJibFnd93qt4s3sbm4ir9dOoKkqCCr4yilLHT3OYM4\n3NTC00t3Wh2lU+y5y0WA+cAWY8zfHBep572RXcirqwu46cwBnK3rgirl8VJjQ5g1OokFK/dSeLDO\n6jgdZs8Z+jjgKuAsEcmxvZ3voFw9ZtO+Qzz4Ti6n9Yvi7qkDrY6jlHISd5ydBgJPfLrD6igdZs9d\nLiuMMWKMGW6MGWF7+8CR4bpbWXUD17+QRUSgH/+8XOc3V0p9JyEikJ+MTeGttYVsL6m2Ok6HeGyD\nNTS3cMNLWVTUNfLs1ZnEhgZYHUkp5WRumjSAYD8f/vrxNqujdIhHFroxhgfe3sja/Eoem5XBsMRw\nqyMppZxQZLAfN0zqz5LNJWTvPWh1nHZ5ZKHPX7GbN7ILuX1KGjOGJ1gdRynlxK4d34+YUH9uXJDN\nF9ud99Zr8MBCX7qtlD9+sIVpQ3tzpy7yrJRqR5CfDy9eO4bIIF+ueW41D727kfom55zrxaMKPa+0\nmttfWUd67zAevzQDLy+dQVEp1b7B8WEsunU8Px2Xwgvf7GXGP1ewseiQ1bF+wGMKvbKuketeyMLf\n14tnr8kkyE9nUFRKdVyArzcPzRzCS9eNobq+iYvnfsXcZXlONX+6RxR6U0srt7yyluLKev591Wj6\nRARaHUkp5aImpMXw8Z0TmXpKHH/5aBuz562koMI5Hj7yiEL//Xub+SrvAH+4eCij+0ZZHUcp5eIi\ngvx4+vJRPD4rg83FVUz7x5cs3Wr98nVuX+ivZxXwwjd7+dn4fszK1GXklFKOISJcMjqRD++YQN9e\nQdy4IJvVuysszeTWhb6x6BAPvrORM/r34r5p6VbHUUq5oaSoIF68dgx9IgO57vk1bNpn3cVSty30\ng7WN3Lggm6hgfaxfKdW9eoX4s+C60wgN8OGa59awp7zWkhxu2XItrYY7FuZQWtXAM1eOJjrE3+pI\nSik3lxARyIvXnUZLaytXzl9FSVV9j2dwy0J/4tPtLN9exsMXDGFEUoTVcZRSHiI1NoTnfzqGg7WN\nXD1/NZV1jT26f7cr9CWbS/jn53lcmpnI7DF6EVQp1bMykiKYd3Umu8trufb5NdQ19tzapG5V6LvL\na7lrYQ7D+oTzyIVDaVuDQymleta41GienD2CnIJKblywlsbm1h7Zr9sUel1jMze+lI23t/DMlaMI\n8NU1QZVS1jlvaDx/+tEwlm8v467/5fTIE6VuUejGGO57M5ftpdU8edlIEiN1TVCllPV+fGoy901L\n570NxXyQW9zt+3OLCU2e/XIXi9bv4xfnDmLiQOddiFop5XlunDSAU+LDmJAW3e37culCb201PPbJ\nNuYu28m0ob25adIAqyMppdQP9NSJpssWen1TC3e/vp73NxQze0wyj1w4RKfDVUp5NJcs9AM1DVz/\nYhZr8yu5f1o6cyb21ztalFIez66LoiJynohsE5E8EbnPUaFOJq+0hovnfs2mfVXMvWIUN0waoGWu\nlFLYcYYuIt7A08BUoBBYIyKLjDGbHRXuWN/sPMCNC7Lx9RZem3M6I5Mju2tXSinlcuw5Qx8D5Blj\ndhljGoHXgAsdE+uH3swu5OrnVhET6s/bN4/TMldKqWPYM4beByg46uNC4DT74hzfU5/v4LFPtjN2\nQC+euWI04UG+3bEbpZRyad3+YJGIzBGRLBHJKisr69L36B8TwqWZiTz/0zFa5kopdQL2nKEXAUfP\nfpVo2/Y9xph5wDyAzMzMLj37ev6weM4fFt+VL1VKKY9hzxn6GiBNRPqJiB9wGbDIMbGUUkp1VpfP\n0I0xzSJyK/Ax4A08Z4zZ5LBkSimlOsWuB4uMMR8AHzgoi1JKKTu4xWyLSimltNCVUsptaKErpZSb\n0EJXSik3oYWulFJuQozp/nXujuxMpAzY28UvjwbKHRjHkTRb12i2rtFsXePK2foaY9pdJaNHC90e\nIpJljMm0OsfxaLau0Wxdo9m6xhOy6ZCLUkq5CS10pZRyE65U6POsDnASmq1rNFvXaLaucftsLjOG\nrpRS6uRc6QxdKaXUSbhEoVuxGHVHicgeEckVkRwRybI4y3MiUioiG4/aFiUiS0Rkh+1fS9buO0G2\nh0WkyHbsckTkfIuyJYnIUhHZLCKbROQO23bLj91Jsll+7EQkQERWi8h6W7bf2rY7w3E7UTbLj5st\nh7eIrBOR92wfO+SYOf2Qi20x6u0ctRg1MLs7F6PuDBHZA2QaYyy/v1VEJgI1wIvGmKG2bX8BKowx\nj9r+zzDSGPNLJ8n2MFBjjHmsp/Mcky0eiDfGrBWRUCAbuAj4CRYfu5NkuxSLj52ICBBsjKkREV9g\nBXAH8COsP24nynYezvEzdxeQCYQZY2Y46vfUFc7Qe3QxaldmjFkOVByz+ULgBdv7L9BWBj3uBNmc\ngjGm2Biz1vZ+NbCFtjVzLT92J8lmOdOmxvahr+3N4BzH7UTZLCciicB04D9HbXbIMXOFQj/eYtRO\n8QNtY4BPRSRbROZYHeY44owxxbb39wNxVoY5jttEZINtSMaS4aCjiUgKMBJYhZMdu2OygRMcO9vQ\nQQ5QCiwxxjjNcTtBNrD+uD0B3Au0HrXNIcfMFQrd2Y03xowApgG32IYWnJJpG19zirMUm2eA/sAI\noBh43MowIhICvAncaYypOvpzVh+742RzimNnjGmx/fwnAmNEZOgxn7fsuJ0gm6XHTURmAKXGmOwT\nvcaeY+YKhd6hxaitYowpsv1bCrxN2xCRMymxjcN+Ox5banGeI4wxJbZfulbgWSw8drZx1jeBl40x\nb9k2O8WxO142Zzp2tjyVwFLaxqid4rgdL5sTHLdxwAW2a2+vAWeJyAIcdMxcodCddjFqEQm2XahC\nRIKBc4CNJ/+qHrcIuMb2/jXAuxZm+Z5vf4BtLsaiY2e7gDYf2GKM+dtRn7L82J0omzMcOxGJEZEI\n2/uBtN24sBXnOG7HzWb1cTPG3G+MSTTGpNDWZZ8bY67EUcfMGOP0b8D5tN3pshN4wOo8R+XqD6y3\nvW2yOhvwKm1/RjbRdq3hOqAX8BmwA/gUiHKibC8BucAG2w90vEXZxtP2J+4GIMf2dr4zHLuTZLP8\n2AHDgXW2DBuB39i2O8NxO1E2y4/bURnPBN5z5DFz+tsWlVJKdYwrDLkopZTqAC10pZRyE1roSinl\nJrTQlVLKTWihK6WUm9BCV0opN6GFrpRSbkILXSml3MT/A28p6Ke22pdeAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ave_inflammation = data.mean(axis=0)\n", "plt.plot(ave_inflammation)" ] }, { "cell_type": "markdown", "metadata": { "cell_tags": [] }, "source": [ "veamos también la inflamación máxima y mínima:" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "cell_tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "maximum inflammation per day\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD8CAYAAABw1c+bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VPW9//HXh1U2WQOyCiiCqCGQFK1iW9cCtWDVKijU\ntt4LqCi2Wqv1/qx622qttS5YFqtXC4hi3SvuWveKSdgX2QTZCbLLGvj8/pgzdsAEkplJzizv5+OR\nBzNnzmS+nIf5OJyZzMvcHRERyR41wl6AiIhULw1+EZEso8EvIpJlNPhFRLKMBr+ISJbR4BcRyTIa\n/CIiWUaDX0Qky2jwi4hkmVphL6AsLVq08I4dO4a9DBGRtFFUVLTB3XMqsm9KDv6OHTtSWFgY9jJE\nRNKGmS2v6L461SMikmU0+EVEsowGv4hIltHgFxHJMhr8IiJZ5rCD38zam9k7ZjbPzOaa2ahgezMz\ne8PMFgV/Ni3n/n3N7DMzW2xmNyX7LyAiIpVTkWf8pcD17t4dOAW42sy6AzcBb7l7F+Ct4PoBzKwm\n8BDQD+gODA7uKyIiITns4Hf3Ne5eHFzeBswH2gIDgceD3R4Hzi/j7r2Bxe6+1N33AE8G9xNJe28v\nWMeCtVvDXoZIpVXqHL+ZdQR6Ap8Ardx9TXDTWqBVGXdpC6yIub4y2FbW9x5mZoVmVlhSUlKZZYlU\nu7cXrOOKxwu59OFPWLV5Z9jLEamUCg9+M2sIPANc5+4HPM3xSLE9oWq7u4939wJ3L8jJqdBvHYuE\nYtmGrxj15Ay6tGzI3tL9jJhQxK69+8JelkiFVWjwm1ltIkN/krs/G2xeZ2atg9tbA+vLuOsqoH3M\n9XbBNpG0tGNPKcMnFFGzhvHI5d/i3kvymL1qC//v+TlEnv+IpL6KvKvHgEeA+e5+b8xNLwKXB5cv\nB14o4+6fAl3MrJOZ1QEGBfcTSTvuzq+fmc3C9dt4YFBP2jerzzndW3HtmcfydNFKnpj2RdhLFKmQ\nijzjPw0YCpxpZjOCr/7AXcA5ZrYIODu4jpm1MbOpAO5eCowEXiPyovAUd59bBX8PkSr3yAef89LM\n1dxwble+c9x/TkeOOvs4vtc1h9tenEvxF5tCXKFIxVgq/vO0oKDA9emckko+XvIlQx75hLOPb8nY\nIflE/iH8H5t37GHA6A/ZXbqPf15zOjmN6oa0UslWZlbk7gUV2Ve/uStyGGu27GTkE8V0bF6fe37c\n4xtDH6BJ/TqMHZLPlp17ufqJYvbu2x/CSkUqRoNf5BB2l+5jxMRidpfuZ9zQAhodUbvcfbu3OZK7\nLshl2ucbuXPqgmpcpUjlpGSIRSRV3PbiPGau2MzYIfkc27LhYfc/v2dbZq7czKMffk6P9o0ZmFfm\nr62IhErP+EXK8eS0L5g87Quu+t4x9D3xqArf7zf9j6d3p2b8+plZzFut3+yV1KPBL1KGGSs2c+sL\nczm9SwuuP7drpe5bu2YNHrq0F43r1WbExCI279hTRasUiY8Gv8hBNmzfzZUTi2h5ZF0eGNSTmjW+\n+WLu4eQ0qsuYIfms2bKTUU/OYN/+1Hv3nGQvDX6RGKX79jPyiWI2frWHsUPyadqgTtzfq1eHptw2\n4ATeXVjC/W8uTOIqRRKjwS8S44+vLuDfSzdy5wUncWLbxgl/v0t7d+DignY88PZi3pi3LgkrFEmc\nBr9I4KWZq3n4/c+5/NtHc0Gvdkn5nmbGHQNPJLddY3751AyWlmxPyvcVSYQGvwjw2dpt3PiPWRQc\n3ZRbfpDcVtARtWsyZkg+tWvVYPiEIr7aXZrU7y9SWRr8kvW27NzL8AmFNDqiFn+9rBd1aiX/x6Jt\nk3qMHtyTJSXb+dU/ZuqTPCVUGvyS1fbvd37x1AxWbd7JmCG9aHnkEVX2WKce24Kb+nVj6uy1jH9v\naZU9jsjhaPBLVnvg7UW8vWA9t57Xnfyjm1X54/336Z35wUmt+eOrC/hw8YYqfzyRsmjwS9Z6e8E6\n7ntzERf2aseQU46ulsc0M+6+KJdjchoy8oliVm7aUS2PKxJLg1+yUjSfeEKbI/n9j04s8xM3q0qD\nurUYNzSf0n3OlROLlW2UaleRAtejZrbezObEbHsqJsqyzMxmlHPfZWY2O9hPH7AvKSE2nzh2SD5H\n1K5Z7WvonNNQ2UYJTUWe8T8G9I3d4O6XuHueu+cRafE+W9YdA2cE+1YoECBSldydG/8xi0Xrt/Hg\n4Eg+MSyx2cZJnyjbKNXnsIPf3d8DNpZ1W9DjvRiYnOR1iVSJRz74nH/OWsMN3+/K6V1yDn+HKhbN\nNt7+0lyKlivbKNUj0XP8pwPr3H1RObc78KaZFZnZsAQfSyQhHy3ZwJ2vLKDvCUdx5XePCXs5ANSs\nYdx/SU9aN67HVZOKWL9tV9hLkiyQ6OAfzKGf7fcJTgf1A642s++Ut6OZDTOzQjMrLCkpSXBZIgda\nvXkn1zwxPZJPvLjsfGJYGtevzbihkWzjyEnTlW2UKhf34DezWsAFwFPl7ePuq4I/1wPPAb0Pse94\ndy9w94KcnPD/CS6ZY9fefVw5sejrfGLDuqkXnju+9ZH88cJcpi3byB+mzg97OZLhEnnGfzawwN1X\nlnWjmTUws0bRy8C5wJyy9hWpSre/NJeZK7dwz497VCifGJaBeW35+Wmd+L8Pl/H89FVhL0cyWEXe\nzjkZ+BjoamYrzeyK4KZBHHSax8zamNnU4Gor4AMzmwlMA15291eTt3SRw5s87QsmT1vB1WdULp8Y\nlpv7d6N3p2bc9Ows5q7eEvZyJENZKr5/uKCgwAsL9bZ/ScyMFZu5eOzHnNy5GY/9rHdcJa0wlGzb\nzXkPvk+dWjV4aWQfmtSPPwYj2cPMiir6tnn95q5kpJJtuxkxIbF8Ylii2ca1W3ZxrbKNUgU0+CXj\nRPOJm3Yknk8MSzTb+N7CEu5TtlGSTINfMs5dryzgk8+Tl08MSzTb+ODbi3l97tqwlyMZRINfMsqL\nM1fztw+Sm08MywHZxikzWaJsoySJBr9kjPlrtvLrf8ziWx2Tn08MSzTbWCfINm5XtlGSQINfMsKW\nHXsZMbGIRkfU4qFLqyafGJZotnFpyXZ+9bSyjZK4zPnpkKy1f79z3VPTWV0N+cSwRLONr8xZyzhl\nGyVBGvyS9u5/axHvfFZSbfnEsESzjXe/uoAPFinbKPHT4Je09tb8ddz/VvXmE8MSm228ZrKyjRI/\nDX5JW59v+IrrnprBiW2rP58Ylths44iJRco2Slw0+CUtfbW7lBETiqhVwxhzWTj5xLB0zmnIXy7J\nY86qrfyPso0SBw1+STvuzo3PRPKJD4ScTwzL2d1bce1ZXfhH0UomKtsolaTBL2nnb+9/zsuz1vCr\n73dLiXxiWK47qwtndM3hjpfmUrS8zDqqSJk0+CWtfLR4A3e+Mp9+Jx7FiO92Dns5oapRw7gvyDZe\nObFY2UapMA1+SRurN+9k5OTpdGrRgD/9OLXyiWGJZhu37trL1ZOKlW2UCtHgl7QQzSfuSeF8Ylii\n2cZPl23i9y8r2yiHV5EC16Nmtt7M5sRsu83MVpnZjOCrfzn37Wtmn5nZYjO7KZkLl+xy24uRfOKf\nL07tfGJYBua15Yo+nXjso2U8W1xmDVXkaxV5xv8Y0LeM7X9x97zga+rBN5pZTeAhoB/QHRhsZpnx\nyVlSrSZP+4InP13ByDOO5fsnpH4+MSw39evGyZ2acfOzs5mzStlGKd9hB7+7vwfE85aB3sBid1/q\n7nuAJ4GBcXwfyWLTv9jEb1+Yy3eOy+EX5xwX9nJSWu2aNRh9aS+a1q/DiIlFbN6xJ+wlSYpK5Bz/\nNWY2KzgV1LSM29sCK2Kurwy2iVRIybbdXDmxmFaN6/LAoLy0yieGJZJt7MX6rbu5ZvJ0ZRulTPEO\n/jFAZyAPWAP8OdGFmNkwMys0s8KSkpJEv52kuYPziQqOV1zPINv4/qIN/OUNZRvlm+Ia/O6+zt33\nuft+4GEip3UOtgpoH3O9XbCtvO853t0L3L0gJyd7fylHIqL5xLsuPIkT2qRvPjEsg3u355KC9ox+\nZzGvKdsoB4lr8JtZ65irPwLmlLHbp0AXM+tkZnWAQcCL8TyeZJcXZqzibx98zk9P7ciPeqZ3PjEs\nZsbtA0+gR7vGXK9soxykIm/nnAx8DHQ1s5VmdgVwt5nNNrNZwBnAL4J925jZVAB3LwVGAq8B84Ep\n7j63iv4ekiHmr9nKr5+ZRe+OzbjlB8eHvZy0Fs021lW2UQ5iqfjJfgUFBV5YWBj2MqSabdmxlwEP\nfcDOPfv457V9aNko80paYfhoyQaG/O0Tvn/CUfz1sl76jecMZWZF7l5QkX31m7uSEvbvd34xZUaQ\nT8zX0E+iU49pwc39jle2Ub6mwS8p4f63FvH2gvXc+sMTyD+6rHcHSyL+6/RO/CBX2UaJ0OCX0EXz\niRflt2PIyR3CXk5GMjPuvjCXY1sq2yga/BKy2Hzi787PjnxiWCLZxgJlG0WDX8ITm08cOyS78olh\n6dSiAfcNimQbb3lO2cZspcEvoYjNJz44uBftmmZfPjEsZx3filFndeGZYmUbs5UGv4Qimk+8sW83\n+nRpEfZyss4oZRuzmga/VLvYfOLw72R3PjEs0WxjmybKNmYjDX6pVtF8Yuechsonhqxx/dqMHZLP\ntl2lXD2pmD2lyjZmCw1+qTYH5hPzlU9MAce3PpK7LjyJT5dt4g9TlW3MFvrJk2oTzSeOG5rPMTnK\nJ6aKgXltmbVyC4988Dm57RpzQS99MF6m0zN+qRbKJ6a2m/t145TOyjZmCw1+qXLKJ6a+Wso2ZhUN\nfqlSyiemjxYN/5NtvPbJGco2ZjANfqkye4N84uadyiemi54dmnL7wBN4b2GJso0ZTINfqkw0n3jn\nBconppPBvTsw6FvKNmayihS4HjWz9WY2J2bbn8xsgZnNMrPnzKxJOfddFpS6ZpiZyipZ5IUZq3hE\n+cS0dduAE+jRvgnXT5nJ4vXKNmaaijzjfwzoe9C2N4AT3T0XWAjcfIj7n+HueRUtw0j6Uz4x/R1R\nuyZjLusVZBsLlW3MMIcd/O7+HrDxoG2vB01dgH8DekonQCSfOHxCEUceUZvRl/Wkdk2dTUxXbZrU\n48FLe7Lsyx3cMGWmPskzgyTjp/LnwCvl3ObAm2ZWZGbDDvVNzGyYmRWaWWFJSUkSliXVbf9+Z9RT\n01mzRfnETBHJNnbj1blrGfuuso2ZIqHBb2a3AKXApHJ26ePueUA/4Goz+05538vdx7t7gbsX5OTk\nJLIsCcl9by3iX5+VKJ+YYa7o04nzclvzp9cW8P4iPSnLBHEPfjP7KXAecJmX829Ad18V/LkeeA7o\nHe/jSWp7Y946HlA+MSOZGXdflEuXlo24dvJ0VmxUtjHdxTX4zawvcCMwwN3L/K/AzBqYWaPoZeBc\nYE5Z+0p6W1qynV8+NYOT2jZWPjFD1a9Ti7FD8ynd71w5SdnGdFeRt3NOBj4GuprZSjO7AhgNNALe\nCN6qOTbYt42ZTQ3u2gr4wMxmAtOAl9391Sr5W0hovtpdyvAJRdSqaYwZ0kv5xAzWqUUD7rtE2cZM\ncNhP53T3wWVsfqScfVcD/YPLS4EeCa1OUpq7c+M/ZrGkZDt///nJyidmgWi28f63FpHXoQlDTzk6\n7CVJHPReO4nbw+8v5eXZyidmm1FndeGsbi2VbUxjGvwSl48Wb+CuVxYon5iFatQw7r0k7z/Zxq3K\nNqYbDX6ptFXKJ2a9xvVqM25oJNt4lbKNaUeDXypF+USJ6nbUkfzxolwKlyvbmG70UysV5u7c+sIc\nZq3cwnjlEwUY0KMNs1Zs5m/KNqYVPeOXCps8bQVTCldyzZnHcq7yiRK4SdnGtKPBLxVS/MUmfvvi\nHL57XA7Xna18ovzHwdnGTV8p25jqNPjlsCL5xCKOanwE9yufKGU4MNs4XdnGFKfBL4e0d99+rn6i\nmC079zJuSIHyiVKuaLbx/UUbuPeNz8JejhyCBr8c0p1TFzAtyCd2b3Nk2MuRFDe4dwcG927PQ+8s\n4dU5yjamKg1+KdcLM1bx6IfKJ0rlRLONNzytbGOq0uCXMimfKPGqW0vZxlSnwS/fsHnHHoZPKKJx\nPeUTJT7KNqY2/UTLAfbtd0Y9OYM1W3by18uUT5T4xWYbx7y7JOzlSAwNfjnA/W8u5N2FJfxW+URJ\ngmi28Z7XPuO9hco2poqKhFgeNbP1ZjYnZlszM3vDzBYFf5Y5Icysr5l9ZmaLzeymZC5cku+Neet4\n4O3FXFzQjsuUT5QkOCDb+KSyjamiIs/4HwP6HrTtJuAtd+8CvBVcP4CZ1QQeIhJa7w4MNrPuCa1W\nqkw0n5jbrjF3DFQ+UZKnfp1ajBuaz779zoiJyjamgsMOfnd/Dzi4tjAQeDy4/Dhwfhl37Q0sdvel\n7r4HeDK4n6SY7UE+sXatGowZkq98oiRdxxYNuH9QHnNXb+U3z83Wi70hi/ccfyt3XxNcXkukr3uw\ntsCKmOsrg22SQiL5xJksKdnO6ME9adukXthLkgx1ZrdWXHd2F54tXsXEfy8PezlZLeEXdz3yv+6E\n//dtZsPMrNDMCktK9CJQdRn/3lKmzl7Lr/t249RjlU+UqnXtmZFs4+0vzaNwmbKNYYl38K8zs9YA\nwZ/ry9hnFdA+5nq7YFuZ3H28uxe4e0FOTk6cy5LK+HDxBv746gJ+cFJrhimfKNUgmm1s27QeV05S\ntjEs8Q7+F4HLg8uXAy+Usc+nQBcz62RmdYBBwf0kBazctIORTxRzTE5D7r4oVy/mSrVpXK8244cW\nsF3ZxtBU5O2ck4GPga5mttLMrgDuAs4xs0XA2cF1zKyNmU0FcPdSYCTwGjAfmOLuc6vmryGVEckn\nFlO6zxk3NJ8GyidKNet6VKOvs42/f3le2MvJOof9iXf3weXcdFYZ+64G+sdcnwpMjXt1knTuzv97\nfg6zV23h4Z8U0Fn5RAnJgB5tmL1yMw+//zm57ZpwYb4+CLC66Dd3s8wT077g6aKVXHvmsZzTvaw3\nY4lUn1/3jWQbf/Ocso3VSYM/ixR/sYnbXpzL97rmMEr5REkB0WxjswbKNlYnDf4sEc0ntm5cj/su\nUT5RUkck25ivbGM10uDPArH5xLFD8pVPlJST174JdyjbWG00+LPAH6bOZ9rnG7nrglzlEyVlDTog\n27jm8HeQuGnwZ7jnp6/i/z5cxk9P7cj5PfWJGZLaotnG66co21iVNPgz2LzVW7npWeUTJX1Es41H\n1K7J8AmFbNu1N+wlZSQN/gy1eccehk8sVD5R0s4B2canlW2sCpoGGSiaT1y7ZZfyiZKWotnG1+au\nU7axCmjwZyDlEyUTKNtYdTT4M8zrc9fywNuL+XG+8omS3pRtrDoa/BlkScl2fjllJrntGvO/5yuf\nKOkvNts4fEIRO/co25gMGvwZYvvuUkZMKKKO8omSYaLZxnlrtnKLso1JocGfAWLziQ8qnygZ6Ots\n4/RVTFC2MWEa/BkgNp94mvKJkqGi2cY7XprHp8o2JkSDP81F84n9TzpK+UTJaNFsY7um9bhK2caE\nxD34zayrmc2I+dpqZtcdtM/3zGxLzD63Jr5kiTown9hDL+ZKxmtcrzbjgmzjlco2xi3uwe/un7l7\nnrvnAfnADuC5MnZ9P7qfu98R7+PJgXbt3ceIiUVf5xMbKp8oWaLrUY24+6JcipZv4nfKNsYlWdPi\nLGCJu+tVl2rg7vzP83OYs2qr8omSlX7Yow2zYrKNFynbWCnJOsc/CJhczm2nmtksM3vFzE5I0uNl\ntUmffME/lE+ULBfNNt6ibGOlJTz4zawOMAB4uoybi4EO7p4LPAg8f4jvM8zMCs2ssKREv55dnqLl\nm7j9JeUTRWKzjcMnKNtYGcl4xt8PKHb3dQff4O5b3X17cHkqUNvMyny/obuPd/cCdy/IyclJwrIy\nz/ptu7hqUiSfeP8lPZVPlKwXzTaWbFO2sTKSMfgHU85pHjM7yoK3mphZ7+DxvkzCY2advfv2M3LS\ndLbs3Mu4ofk0rl877CWJpIS89k343/Mj2cZ7Xle2sSISenHXzBoA5wDDY7aNAHD3scBFwJVmVgrs\nBAa5ft86Lr9/eT7Tlm3k/kF5HN9a+USRWJd8qwMzVmxhzL+WkNu2Mf1Oah32klJaQoPf3b8Cmh+0\nbWzM5dHA6EQeQyL5xMc+WsbPT+vEwDzlE0XKctuA7sxbs5Ubnp5Jl1YNObZlo7CXlLL0m7spbu7q\nLZF8Yqdm3Ny/W9jLEUlZdWvVZOyQXtSrU5NhE4qUbTwEDf4UtnnHHkZMLKJxvdo8dGkv5RNFDqN1\n43o8OLgXy7/cwfVTZrJfL/aWSZMkRe3b71wb5BPHDMknp1HdsJckkha+fUxzbu7XjdfnKdtYHg3+\nFHXfmwt5b2EJtw84kV4dlE8UqYwr+nRiQI823PO6so1l0eBPQa/PXcuDby/mkoL2DO7dPuzliKQd\nM+OuC0+iaytlG8uiwZ9iYvOJtw88QZ+4KRKnaLZxv7KN36DBn0KUTxRJrqObN+D+QT2Zv1bZxlga\n/CkiNp84WvlEkaQ5o1tLrjvrOGUbY2jwp4hxQT7xpn7dOFX5RJGkuubMYzn7eGUbozT4U8AHizZw\n96sL+EFua/77dOUTRZItmm1s36w+V00qZl2WZxs1+EO2ctMOrplczLEtG3L3hbl6MVekihx5RG3G\nDc3nq92lXJXl2UYN/hAdmE8soIHyiSJV6rhWyjZC8tKLUkmx+cS//aSATi0ahL0kkaxwXm4bZq3c\nwvj3lmZttlHP+EPydT7xrC6crXyiSLW68ftd+Xbn5lmbbdTgD0E0n3hG1xyuO6tL2MsRyTqRbGNP\nmmdptlGDv5rF5hPvu6QnNZRPFAlF8yzONiY0+M1smZnNNrMZZlZYxu1mZg+Y2WIzm2VmvRJ5vHSn\nfKJIaukRk238cxZlG5Px4u4Z7r6hnNv6AV2Cr5OBMcGfWekPU5VPFEk10WzjX/+1hNx2jel7YuZn\nG6v6VM9A4O8e8W+giZll/lEtw/PTV/F/HyqfKJKKbhvQnbz2Tbh+ykwWr98e9nKqXKKD34E3zazI\nzIaVcXtbYEXM9ZXBtm8ws2FmVmhmhSUlmfX52fNWb1U+USSF1a1VkzFfZxsLMz7bmOjg7+PueURO\n6VxtZt+J9xu5+3h3L3D3gpycnASXlTo279jD8ImFNKlXR/lEkRTWunE9Rl+aHdnGhKaQu68K/lwP\nPAf0PmiXVUBsSaRdsC0rRPOJ67bsZsyQXsoniqS4Uzo35zf9j8/4bGPcg9/MGphZo+hl4FxgzkG7\nvQj8JHh3zynAFndfE/dq00w0n3jbgBPoqXyiSFr4+WkdMz7bmMgz/lbAB2Y2E5gGvOzur5rZCDMb\nEewzFVgKLAYeBq5KaLVpRPlEkfSUDdlGS8UiTUFBgRcWfuPXAtLGkpLtDBz9IZ1zGjBl+LdV0hJJ\nQ8u//IofPvgB7ZrW55krT6VendT+OTazIncvqMi+eqUxybbvLmW48okiaS+Ts40a/Enk7vzq6Zks\nLdnO6EuVTxRJd2d0a8kvzo5kG//+ceZkGzX4k2jce0t5Zc5abu53PKceo3yiSCYYeUYk2/i//8yc\nbKMGf5LE5hP/6/ROYS9HRJIkE7ONGvxJoHyiSGbLtGyjBn+ClE8UyQ6ZlG3UlEpAbD7xkcuVTxTJ\ndJmSbdQz/gRMDPKJo87qwlnHK58okg1u/H5XTj2mOb9J42yjBn+cipZv5I4gnzhK+USRrFGrZg0e\nHNyTFkG2cWMaZhs1+OOwftsurpxYTJsmyieKZKPmDesydmg+Jdt3c+3k9Ms2avBX0t59+7l6UjHb\ndpUydojyiSLZKrddE3438EQ+WLyBe9Is26jBX0m/f3k+ny7bxF0XnqR8okiWu/hb7bn05A6M+dcS\nXpmdPh88rMFfCc9NX8ljHy3jij7KJ4pIxG9/2J2eHZpww9MzWbRuW9jLqRAN/gqau3oLNz0zm1M6\nN+PmfsonikhE3Vo1GXNZPvXq1GT4hCK2pkG2UYO/Ajbv2MPwCUU0rV+H0Zf2opbyiSIS46jGR/DQ\npb1YvjE9so2aYIcRzSeu3xrJJ7ZoqHyiiHzTyZ2bc0v/43kjDbKNiaQX25vZO2Y2z8zmmtmoMvb5\nnpltMbMZwdetiS23+v3ljUg+8faByieKyKH97LSODMyLZBvfTeFsYyLP+EuB6929O3AKcLWZdS9j\nv/fdPS/4uiOBx6t2r81dy+h3FjPoW+0Z3LtD2MsRkRRnZtx5QZBtnJy62ca4B7+7r3H34uDyNmA+\nkDFvdVm8fjvXT5lJj3aNuW3ACWEvR0TSRP06tRg3NB93Z9iEInbu2Rf2kr4hKef4zawj0BP4pIyb\nTzWzWWb2ipmVO0HNbJiZFZpZYUlJuP9EiuQTC6mrfKKIxOHo5g24f3BPFqzdys3Pzkq5bGPCg9/M\nGgLPANe5+9aDbi4GOrh7LvAg8Hx538fdx7t7gbsX5OTkJLqsuLk7N0yZybIvd/DgpT1po3yiiMTh\njK4t+eXZx/H8jNU8/tGysJdzgIQGv5nVJjL0J7n7swff7u5b3X17cHkqUNvMUrpJOPbdpbw6dy03\n9+umfKKIJOTqM47l7ONb8buX5zPt89TJNibyrh4DHgHmu/u95exzVLAfZtY7eLwv433Mqvb+ohL+\n9NoCzsttzRV9lE8UkcREso09Ui7bmMgz/tOAocCZMW/X7G9mI8xsRLDPRcAcM5sJPAAM8lQ72RVY\nsXEH106eTpeWkcqO8okikgzRbOOOPaVcObEoJbKNlopzuKCgwAsLC6vt8Xbt3ceFYz7ii407eGlk\nHzqqpCUiSTZ19hqumlTMkFM68LvzT0r69zezIncvqMi+Wf+bu+7Ob56bzdzVW7l/UJ6GvohUif4n\ntWb4dzsz8d9fMKVwRahryfrBP/Hfy3m2eBXXnd2FM7spnygiVedX53bltGOb8z/Pz2H2yvCyjVk9\n+IuWb+T2l+ZxVreWXHum8okiUrVq1azBA4N6ktOwLiMmhpdtzNrBv35rJJ/Ytmk97r0kT/lEEakW\nzRvWZcxiJXIuAAAGaUlEQVSQXpRs3801k4sp3Vf9L/Zm5eDfU7qfq4J84rih+TSup3yiiFSf3HZN\n+N35J/Lh4i+55/WF1f74WTn4f//yPAqXb+KPF+XS7SjlE0Wk+l1c0J7LTu7A2HerP9uYdYP/maKV\nPP7xcv6rTycG9GgT9nJEJIvdGlK2MasG/5xVW/jNc5F84k3KJ4pIyMLKNmbN4N/01R5GTFQ+UURS\nSxjZxqyYfpF84nTlE0UkJUWzjaX79rOrtOo/v79WlT9CCrj3jc94f9EG7rzgJOUTRSQl/ey0jvz0\n1I7V8tbyjB/8r85Zy0PvLGFwb+UTRSR1mRnV9dmQGX2qJ5JPnEGP9k2UTxQRCWTs4N+2ay/DJxRy\nRO2ajLmsF3VrKZ8oIgIZeqrH3bnh6Ug+ccIVvZVPFBGJkWh6sa+ZfWZmi83spjJuNzN7ILh9lpn1\nSuTxKmrMu0t4be465RNFRMqQSHqxJvAQ0A/oDgw2s+4H7dYP6BJ8DQPGxPt4FfXewhLuee0z5RNF\nRMqRyDP+3sBid1/q7nuAJ4GBB+0zEPi7R/wbaGJmrRN4zENasXEH1z6pfKKIyKEkMvjbArEZmZXB\ntsrukxS79u5jxMQi9u13xg3Np36djHz5QkQkYSkzHc1sGJHTQXToUPn327tD11aN+OU5xymfKCJy\nCIkM/lVA+5jr7YJtld0HAHcfD4yHSGy9soupV6cm916SV9m7iYhknURO9XwKdDGzTmZWBxgEvHjQ\nPi8CPwne3XMKsMXdq/eDp0VE5ABxP+N391IzGwm8BtQEHnX3uWY2Irh9LDAV6A8sBnYAP0t8ySIi\nkoiEzvG7+1Qiwz1229iYyw5cnchjiIhIcmXsRzaIiEjZNPhFRLKMBr+ISJbR4BcRyTIa/CIiWcYi\nb7xJLWZWAiyP8+4tgA1JXE4yaW3x0drio7XFJ13XdrS751Tkm6Tk4E+EmRW6e0HY6yiL1hYfrS0+\nWlt8smFtOtUjIpJlNPhFRLJMJg7+8WEv4BC0tvhobfHR2uKT8WvLuHP8IiJyaJn4jF9ERA4hYwb/\n4cLvYTKzZWY228xmmFlhCqznUTNbb2ZzYrY1M7M3zGxR8GfTFFrbbWa2Kjh+M8ysfwjram9m75jZ\nPDOba2ajgu2hH7dDrC0VjtsRZjbNzGYGa7s92J4Kx628tYV+3GLWWNPMppvZP4PrSTluGXGqJwi/\nLwTOIZJ3/BQY7O7zQl1YwMyWAQXunhLvDTaz7wDbifSQTwy23Q1sdPe7gv9xNnX3X6fI2m4Dtrv7\nPdW9nph1tQZau3uxmTUCioDzgZ8S8nE7xNouJvzjZkADd99uZrWBD4BRwAWEf9zKW1tfQj5uUWb2\nS6AAONLdz0vWz2mmPOOvSPhdAu7+HrDxoM0DgceDy48TGRzVrpy1hc7d17h7cXB5GzCfSD869ON2\niLWFziO2B1drB19Oahy38taWEsysHfAD4G8xm5Ny3DJl8Fdb1D1ODrxpZkVBWzgVtYqpo60FWoW5\nmDJcY2azglNBoZyGijKzjkBP4BNS7LgdtDZIgeMWnK6YAawH3nD3lDlu5awNUuC4AfcBNwL7Y7Yl\n5bhlyuBPdX3cPQ/oB1wdnM5IWUFAJ2We+QBjgM5AHrAG+HNYCzGzhsAzwHXuvjX2trCPWxlrS4nj\n5u77gv/+2wG9zezEg24P7biVs7bQj5uZnQesd/ei8vZJ5LhlyuCvcNQ9DO6+KvhzPfAckVNTqWZd\ncK44es54fcjr+Zq7rwt+QPcDDxPS8QvOAz8DTHL3Z4PNKXHcylpbqhy3KHffDLxD5Bx6Shy3staW\nIsftNGBA8Prgk8CZZjaRJB23TBn8FQm/h8LMGgQvuGFmDYBzgTmHvlcoXgQuDy5fDrwQ4loOEP0P\nPfAjQjh+wQuBjwDz3f3emJtCP27lrS1FjluOmTUJLtcj8gaMBaTGcStzbalw3Nz9Zndv5+4dicyz\nt919CMk6bu6eEV9Eou4LgSXALWGvJ2ZdnYGZwdfcVFgbMJnIP2H3Enk95AqgOfAWsAh4E2iWQmub\nAMwGZgX/4bcOYV19iPyzehYwI/jqnwrH7RBrS4XjlgtMD9YwB7g12J4Kx628tYV+3A5a5/eAfybz\nuGXE2zlFRKTiMuVUj4iIVJAGv4hIltHgFxHJMhr8IiJZRoNfRCTLaPCLiGQZDX4RkSyjwS8ikmX+\nP7+RmvP0YEI7AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "minimum inflammation per day\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG9dJREFUeJzt3XtsXOd5JvDnnQvvnCNRpCTOUDQtS7YsDhunZZw0CbqJ\ni6aOmybbC7oNkCKLLSr0nqAt0gYFFglQoMVeihaLoIiaBM223aYXx2jrtunm4jZJkY0r+TYzomzZ\nli88JEXRlM7MkBxyLu/+MXNoWuZlSPGc7xye5wcIpujxmTcn5MPD7/0uoqogIqLwiJkugIiIdofB\nTUQUMgxuIqKQYXATEYUMg5uIKGQY3EREIcPgJiIKGQY3EVHIMLiJiEIm4cVFBwcHdWxszItLExEd\nSBcvXlxQ1aF2XutJcI+NjeHChQteXJqI6EASkZfbfS2HSoiIQobBTUQUMgxuIqKQYXATEYUMg5uI\nKGTamlUiIi8BKAGoA6ip6qSXRRER0dZ2Mx3wvaq64FklRETUFk/mcRPth5W1Or7wb1exWq179h4P\nfc8wzhxPeXZ9Ii+0G9wK4GsiUgfwWVU9f+sLROQcgHMAMDo6un8VUmT930tz+O///CwAQGT/r68K\nXJot4XMf5cgfhUu7wf1uVbVF5CiAr4rIZVX95sYXtML8PABMTk7yBGK6bblpB52JGAqf/mEk4vvf\nR//4l57E/3txcd+vS+S1tr4bVNVu/XMewCMA7veyKCIAyM84ODOc8iS0ASCbsTBXrOB6adWT6xN5\nZcfvCBHpFZF+92MA7wOQ97owirZGQ1Gwi5jIeDf+nM1YAJo/IIjCpJ1HmWMAvi0iTwN4HMA/qOpX\nvC2Lou6VxWWUVmuYaIWrF86mmz8UCjaDm8JlxzFuVX0RwFt8qIVoXa4VpuNp74I71ZXEnYO96+9F\nFBZcOUmBlJ9x0BGP4e5j/Z6+TzZjIW8XPX0Pov3G4KZAytsO7jnej46Et1+i2XQK9s0V3Fha8/R9\niPYTg5sCR1WRt4vrzUMvTbBBSSHE4KbAmb6xAmeliqyHM0pc7hg6x7kpTBjcFDj5Voh6OaPEZfUk\nMTrQgwLHuSlEGNwUODnbQSImnjcmXdlMik/cFCoMbgqcnO3g7mP96ErGfXm/bMbCK4vLcJarvrwf\n0e1icFOgqCoKM0Vfhklc2dY4d4ENSgoJBjcFyoxTweLSmi+NSReXvlPYMLgpUNzGpB9TAV0DvR3I\nHOpGjg1KCgkGNwVK3nYQjwnuHfb3cINsJrX+Q4Mo6BjcFCh528Hpo32+NSZd2bSFqwtLKFXYoKTg\nY3BTYKgqcnbR042ltpIdcRuUHC6h4GNwU2DMl1axUF71dA/urbgzSzhcQmHA4KbAyE3735h0DfV3\n4niqi8FNocDgpsDIzziIyesHHPgtm0khz6ESCgEGNwVG3nZw11AfejraPcN6f2UzFl64XsbSas3I\n+xO1i8FNgeHXVq5byaYtqAJTs3zqpmBjcFMgXC+tYq5YMRrcEyPc4pXCgcFNgbC+YtLQ+DYAHEt1\nYai/k0eZUeAxuCkQ3OAeN/jEDTR/cHBmCQUdg5sCIWc7ODnYi75OM41J10TGwpX5ElbW6kbrINoO\ng5sCoTBjtjHpGs9YaCgwNcfhEgouBjcZt7i0Bvvmiq9buW7F3Qe8wOESCjAGNxlnYivXrQxbXRjo\n7eDMEgo0BjcZ54akic2lbiUiyGYsziyhQGNwk3GFGQd3HOmB1Z00XQqA5syS566VUKmyQUnBxOAm\n43K2E4hhEtdExkKtoXjuWsl0KUSbYnCTUc5yFa8urqxvqxoE7g8RjnNTUDG4ySj3gF4/T3Xfycjh\nbljdSS7EocBqO7hFJC4iT4rIo14WRNGyvmLS4FL3WzUblCk2KCmwdvPE/TEAU14VQtGUsx2MHO7G\n4d4O06W8QTZj4dm5EtZqDdOlEL1JW8EtIiMAfgTA57wth6ImbzuBGt92ZdMW1uoNNigpkNrdGOIP\nAHwCQL+HtVDEFCtVvPTaMn7y+0ZMl/Im7pj7hz7zb4iLePIe7z0zhM/+zKQn16aDbcfgFpEPAJhX\n1Ysi8p5tXncOwDkAGB0d3bcC6eAqtMaQgzQV0HXHkR58+oPjmCtWPLn+xZdv4BuX57Faq6MzEffk\nPejgaueJ+10APigiDwHoApASkT9T1Y9sfJGqngdwHgAmJyd13yulA6cwE5yl7rcSEXz0nWOeXf/R\nZ2bw+NVFXLlWDuT/fgq2Hce4VfWTqjqiqmMAfhrAN24NbaK9yNkOhq0uDPZ1mi7FdxOcK063gfO4\nyZh8wFZM+ml0oAf9XQnOFac92VVwq+q/qOoHvCqGoqO8WsOLC0uBnFHiBxFBNm0xuGlP+MRNRkzN\nFqEKTIwEZ+GN3yZGLEzNlVCtc6447Q6Dm4zITQe3MemX8XQKa7UGrlwrmy6FQobBTUbkZxwc7e/E\n0f4u06UY4zYo3f1aiNrF4CYj8rYTqI2lTBg70jwcmePctFsMbvLd8loNz8+XMR7x4I7FBGfTKU4J\npF1jcJPvpmZLaGiwtnI1JZu2MDVbRI0NStoFBjf57vXDgaM7o8Q1MZJCpdrAC9eXTJdCIcLgJt/l\nbQeDfR04nopuY9LlzmPnODftBoObfJezHYynLYhHu+6FycmhPvR0xDnOTbvC4CZfVap1XJkvc3y7\nJR4TnB1OrW+4RdQOBjf56vJcCfWGcnx7g2zGQmGmiHqDm2pSexjc5KvXG5N84nZlMxaW1+q4usAG\nJbWHwU2+ytsODvUkkTnUbbqUwHB/+2CDktrF4CZf5VorJtmYfN2poT50JmJsUFLbGNzkm9VaHc9d\nK2E8olu5biURj+He4RSfuKltDG7yzXNzZVTryhklm5hoNSgbbFBSGxjc5Jv8DFdMbiWbSaG8WsPL\ni8umS6EQYHCTb3K2g/6uBEYHekyXEjhZnkFJu8DgJt8UbAdZrpjc1N3H+tERj6HA4KY2MLjJF9V6\nA1NzJUyMcHx7M8l4DGeG+/nETW1hcJMvrlwrY63WwHia49tbyWaahwerskFJ22Nwky/cqW6cUbK1\nbNpCsVLDq4srpkuhgGNwky9ytoO+zgTGjvSaLiWwJtigpDYxuMkX+RkHZ9MpxGJsTG7l7uN9SMaF\nhwfTjhjc5LlavYGp2eL6oQG0uc5EHHcf6+cKStoRg5s898L1JVSqDUyMsDG5k2yaDUraGYObPOeO\n2fKJe2fZEQs3lquwb7JBSVtjcJPn8raD7mQcJ4f6TJcSeG6DMm8XDVdCQcbgJs/l7WZjMs7G5I7O\nHO9HPCYc56ZtMbjJU/WG4tJskfO329SVjOP00T7OLKFtMbjJU1cXylheq3PF5C5wBSXtZMfgFpEu\nEXlcRJ4WkYKIfNqPwuhgcBuT3KOkfRMZCwvlNcwVK6ZLoYBq54l7FcADqvoWAPcBeFBE3uFtWXRQ\n5O0iOhMxnGJjsm2vn0HJBiVtLrHTC7T5+1q59ddk6w9/hzsgKtU6Hn5iGpVqw5Pr/+tz13HvcAqJ\nOEfl2nXvcAoxAb70+Ct4xaODFdJWF94/MezJtcl7OwY3AIhIHMBFAKcAfEZVv7vJa84BOAcAo6Oj\n+1kjeegr+Tn89iN5T9/jl997ytPrHzQ9HQlM3jGAr1+ex9cvz3v2Pt/55AMYtro9uz55p63gVtU6\ngPtE5BCAR0Qkq6r5W15zHsB5AJicnOQTeUg8M+2gKxnDd37rBz3ZR0QE6O9s68uMNvg/P/d2LK3V\nPbl2btrBRz7/XeSmHQZ3SO3qO0pVb4rIYwAeBODtYxr5Im87ODucwuHeDtOl0AaJeAxWtzfDS993\nx2HEpPn//fvGj3vyHuStdmaVDLWetCEi3QB+CMBlrwsj7zUaisKMs37eIUVDd0ccp472IT/D5mdY\ntfPEPQzgi61x7hiAv1LVR70ti/xw9bUlLK3VGdwRlM1Y+NaVBdNl0B61M6vkGQBv9aEW8lmemz9F\nVjZt4ctP2JgvVnA01WW6HNolztGKsLztoCMRw+ljnGMdNe6CKJ62E04M7gjL20XcO5xCknOsI+fs\ncAoiXOQTVvyOjShVRX7GQZZ7iERSb2cCJwd7+cQdUgzuiHplcRmlSo279kXYRMZCgbsQhhKDO6LW\nT6VhcEdWNmNh1qlgobxquhTaJQZ3ROXtIpJxwd3H+k2XQoZk10/b4VN32DC4IypvO7jneD86EvwS\niKqzaXcXQgZ32PC7NoLcxiTHt6Mt1ZXEnYO9nFkSQgzuCJq+sYKby1WMc+FN5I2nU5xZEkIM7ghy\nZxLwiZsmMhbsmyu4sbRmuhTaBQZ3BOVsB4mY4J7jbExG3XqDktMCQ4XBHUF5u4jTx/rRlYybLoUM\nc/ep4Th3uDC4I0ZVkbe5YpKarJ4kTgx0c2ZJyDC4I2bWqeC1pTWeuk7rJjIWG5Qhw+COGPfJijNK\nyDWetvDK4jKc5arpUqhNDO6IydsOYtLcHY4IeH12EfctCQ8Gd8TkZ4o4dbQP3R1sTFITZ5aED4M7\nYnI2z5ikNxro7UDmUDdynFkSGgzuCJkvVnC9tMqjyuhNxtMpFNigDA0Gd4S4Mwc4o4RuNZGx8OLC\nEkoVNijDgMEdIXm7CGFjkjaRbf0wvzTD4ZIwYHBHSM52cHKwF72dCdOlUMC4w2eczx0ODO4IKXAr\nV9rCUH8njqe6UOATdygwuCNiobyKWafCGSW0pWyGW7yGBYM7IvI8Y5J2kM1YeOF6GctrNdOl0A4Y\n3BHhBvdZbi5FW8imLaiyQRkGDO6IyNtF3DnYi1RX0nQpFFDuNFHuFBh8DO6IyNkOxvm0Tds42t+J\nwb5OrqAMAQZ3BNxYWoN9c4UzSmhbIoKJTIqbTYUAgzsC3M2D2JiknWQzFq7Ml1Gp1k2XQtvYMbhF\n5ISIPCYil0SkICIf86Mw2j/uFC/uUUI7yWYs1BuKS7McLgmydp64awB+XVXPAngHgF8SkbPelkX7\nqWAXcWKgG1YPG5O0Pfe3Mm44FWw7BreqzqrqE62PSwCmAGS8Loz2T87miklqT9rqwkBvBxfiBNyu\nNq0QkTEAbwXwXS+Kiaq/f3oGv/MPl9BQb65/vbSK//S2E95cnA4UEcF4OoVHnrTx2LPXPXmP7mQc\nX/wv9+POwV5Prh8FbQe3iPQBeBjAx1X1TQNgInIOwDkAGB0d3bcCo+Cf8rNYqzXwYHbYk+t3xAU/\n8b0jnlybDp5f/cHTGDnc48m1q/UG/ubiNL515TqD+za0FdwikkQztP9cVb+82WtU9TyA8wAwOTnp\n0bPjwZSzHbzzrkH87o9PmC6FCG8bG8DbxgY8ubaq4rHL88hNcyjmdrQzq0QAfB7AlKr+vvclRYuz\nXMWriysYz3BxDB18IoLxjIU8l9XflnZmlbwLwM8AeEBEnmr9ecjjuiLDnWPN5iFFxUQmhSvXSpwr\nfht2HCpR1W8DEB9qiaQ851hTxGTTFmoNxbNzJbzlxCHT5YQSV04alrMdZA5143Bvh+lSiHzhzhXn\nlMO9Y3AbVpgpIsvxbYqQkcPdONST5J4ot4HBbVCxUsXVhSWOb1OkiAiyaYtP3LeBwW2Qu2E9N3+i\nqMlmLDw7V8JarWG6lFBicBvE48QoqrKZFKp1xXPXSqZLCSUGt0E528Gw1YXBvk7TpRD5aoINytvC\n4DYobzsY5zRAiqDRgR70dyV4TNoeMbgNKa/W8CIbkxRRboOSwb03DG5DpmaLUAWnAlJkZTMpTM2V\nUK2zQblbDG5D3E12+MRNUZXNWFirNXDlWtl0KaHD4DYkP+NgqL8TR1NdpkshMsJ9aMlzIc6uMbgN\nyfNUGoq4sSO96Otkg3IvGNwGrKzV8fx8Gdk0x7cpumIxwdl0isG9BwxuAy7NFtFQLrwhyqYtXJot\nosYG5a4wuA3gikmipomRFCrVBl64vmS6lFBhcBuQtx0c6e3AsMXGJEWbuw89h0t2h8FtQM52MJ6x\n0DwVjii6Tg71oTsZ59L3XWJw+6xSrePKfBkTXHhDhHirQcm9uXeHwe2zy3Ml1BvKo8qIWiYyFgoz\nRdQbarqU0GBw+4yNSaI3ymYsLK/VcXWBDcp2Mbh9lrcdWN1JjBzuNl0KUSC4+/WwQdk+BrfP8jPN\nFZNsTBI1nRrqQ2cixuDeBQa3j1ZrdTw7V+IwCdEGiXgM9w6nOLNkFxjcPnpuroxqXbmVK9Et3AZl\ngw3KtjC4feTugsbNpYjeKJtJobxaw8uLy6ZLCQUGt49ytoP+rgRGB3pMl0IUKFmeQbkrDG4fFWwH\n2TQbk0S3On20Hx3xGAoM7rYwuH1SrTcwNVfi+DbRJjoSMZwZ7ucTd5sY3D65cq2MtVqDM0qItpDN\nNA8PVmWDcicMbp9wxSTR9rJpC8VKDa8urpguJfAY3D7Jzzjo7YjjziO9pkshCiSeQdm+HYNbRL4g\nIvMikvejoIMqZzsYT1uIxdiYJNrM3cf7kIwLx7nb0M4T958AeNDjOg60Wr2Bqdkih0mIttGZiOPu\nY/1c+t6GxE4vUNVvisiY96WYdXVhCU+8fMOTa7+2tIpKtcEZJUQ7yKYtfKUwh4cvTnty/VgMeOCe\nY7B6kp5c3y87Bne7ROQcgHMAMDo6ul+X9c1v/PXTuOhRcANATIDJOwY8uz7RQfD2kwP4ywuv4tf/\n+mnP3uMX33MXPvHgGc+u74d9C25VPQ/gPABMTk6Gaj5Prd5A3nbw4ftP4Bf+wylP3qO3M44jfZ2e\nXJvooPixt2bwjpNHUKt7EyHn/vQCnpkO/1DMvgV3mD1/vYzVWgNvv/MIRo9wOTqRKSKC9CHv9qq/\n78QhfKUwB1UN9QpmTgcEkJvmHGuiKMhmLNxcrmL6RrjnirczHfAvAHwHwD0iMi0iP+t9Wf4qzBTR\n0xHHnYOcY010kLkPZ2E/nLidWSUf9qMQk5pzrFOIc4410YF25ng/4rHmXPEHs8Omy9mzyA+V1BuK\nSzNFjPPUdaIDrysZx+mjfcjbRdOl3JbIB/eL18tYqdZ5uAFRREwcgM2sIh/c7r4IbEwSRUM2Y+G1\npTXMFSumS9mzyAd3brqIrmQMdw2xMUkUBeun7YR4Pnfkgzs/4+DscAqJeORvBVEknB1OISZAfia8\n49yRTqtGqzHJYRKi6OjuiOPU0b5Qb2YV6eB+6bUllFdrDG6iiHFP2wmrSAe3u+9vllMBiSIlm7Yw\nX1rFfEgblJEO7sJMER2JGE4f6zNdChH5aGIk3KftRDq4c9MO7j3ejyQbk0SRcnY4BZHmrLIwimxi\nqSryMw7Ht4kiqLczgZODvXziDptXFpdRqrAxSRRVYW5QRja43b0KuNSdKJomMhZmnQoWyqumS9m1\nyAZ3znaQjAsbk0QR5W4sF8an7sgGd952cM/xfnQm4qZLISIDxluHdzO4Q2K9Mcn520SRlepKYuxI\nTyi3eI1kcE/fWMHN5Sobk0QRl81Y6wvxwiSSwV3gVq5EhGYG2DdXcGNpzXQpuxLJ4M7ZDuIxwZnj\n/aZLISKD3FllYZvPHcngzttFnD7ah64kG5NEUTaedhuU4RrnjlxwqyrytsP520SEQz0dODHQHbqZ\nJZEL7rliBa8trXF8m4gANHcK5FBJwLnHFTG4iQhoZsHLry3DWamaLqVtkQvu/EwRMWnuDkZE5A6b\nFkL01B294LYdnDrah+4ONiaJ6PXfvsM0zh3J4OYwCRG5Bno7kDnUHaqZJZEK7vliBfOlVS51J6I3\nGE+n+MQdVG7n2D22iIgIaI5zv7iwhFIlHA3KSAV3broIYWOSiG7hDp9emgnHcEmkgjs/4+DkYC96\nOxOmSyGiAFlvUB6k4BaRB0XkWRF5XkR+y+uivMLGJBFtZqi/E8dSnaEZ594xuEUkDuAzAN4P4CyA\nD4vIWa8L228L5VXMOhUudSeiTU2E6AzKdp647wfwvKq+qKprAL4E4EPelrX/3P9DxjmjhIg2MZ62\n8ML1MpbXaqZL2VE7g70ZAK9u+Ps0gLd7UcyP/q9vo1Kte3Hp9eWs7nFFREQbTWQsNBR4/x9+Cx3x\nvbX/Dvd04K9+/vv3ubI327cunYicA3AOAEZHR/d0jbuGerFWb+xXSW9y5ngKqa6kZ9cnovB656kj\n+KnJEZRX9/7E7Ve+iKpu/wKR7wfwKVX94dbfPwkAqvq7W/03k5OTeuHChf2sk4joQBORi6o62c5r\n2/l94N8BnBaRO0WkA8BPA/i72ymQiIj2bsehElWticgvA/hnAHEAX1DVgueVERHRptoa41bVfwTw\njx7XQkREbYjUykkiooOAwU1EFDIMbiKikGFwExGFDIObiChkdlyAs6eLilwH8PIe//NBAAv7WM5+\nYm17w9r2hrXtTVhru0NVh9q5iCfBfTtE5EK7q4f8xtr2hrXtDWvbmyjUxqESIqKQYXATEYVMEIP7\nvOkCtsHa9oa17Q1r25sDX1vgxriJiGh7QXziJiKibQQmuIN8ILGIvCQiORF5SkSMbzQuIl8QkXkR\nyW/43ICIfFVErrT+eThAtX1KROzW/XtKRB4yUNcJEXlMRC6JSEFEPtb6vPH7tk1tQbhvXSLyuIg8\n3art063PB+G+bVWb8fu2oca4iDwpIo+2/r4v9y0QQyWtA4mfA/BDaB6N9u8APqyql4wW1iIiLwGY\nVNVAzA0VkR8AUAbwv1U12/rcfwOwqKq/1/rBd1hVfzMgtX0KQFlV/4ff9WyoaxjAsKo+ISL9AC4C\n+I8A/jMM37dtavspmL9vAqBXVcsikgTwbQAfA/DjMH/ftqrtQRi+by4R+TUAkwBSqvqB/fo+DcoT\n94E4kNgvqvpNAIu3fPpDAL7Y+viLaH7j+26L2oxT1VlVfaL1cQnAFJrnqRq/b9vUZpw2lVt/Tbb+\nKIJx37aqLRBEZATAjwD43IZP78t9C0pwb3YgcSC+cFsUwNdE5GLrbM0gOqaqs62P5wAcM1nMJn5F\nRJ5pDaUYGcZxicgYgLcC+C4Cdt9uqQ0IwH1r/br/FIB5AF9V1cDcty1qAwJw3wD8AYBPANh4kO6+\n3LegBHfQvVtV7wPwfgC/1BoOCCxtjn8F5skDwB8BOAngPgCzAP6nqUJEpA/AwwA+rqrFjf/O9H3b\npLZA3DdVrbe+/kcA3C8i2Vv+vbH7tkVtxu+biHwAwLyqXtzqNbdz34IS3DaAExv+PtL6XCCoqt36\n5zyAR9Ac2gmaa62xUnfMdN5wPetU9VrrG6wB4I9h6P61xkEfBvDnqvrl1qcDcd82qy0o982lqjcB\nPIbmGHIg7ttmtQXkvr0LwAdb/bEvAXhARP4M+3TfghLcgT2QWER6Ww0jiEgvgPcByG//XxnxdwA+\n2vr4owD+1mAtb+B+obb8GAzcv1Yj6/MAplT19zf8K+P3bavaAnLfhkTkUOvjbjQnEFxGMO7bprUF\n4b6p6idVdURVx9DMs2+o6kewX/dNVQPxB8BDaM4seQHAb5uuZ0NdJwE83fpTCEJtAP4CzV8Bq2j2\nA34WwBEAXwdwBcDXAAwEqLY/BZAD8EzrC3fYQF3vRvPX0mcAPNX681AQ7ts2tQXhvn0PgCdbNeQB\n/NfW54Nw37aqzfh9u6XO9wB4dD/vWyCmAxIRUfuCMlRCRERtYnATEYUMg5uIKGQY3EREIcPgJiIK\nGQY3EVHIMLiJiEKGwU1EFDL/H4lXPwvxMiVzAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "print('maximum inflammation per day')\n", "plt.plot(data.max(axis=0))\n", "plt.show()\n", "\n", "print('minimum inflammation per day')\n", "plt.plot(data.min(axis=0))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### Ejercicio " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "1. Crea una gráfica que muestre la desviación típica de los datos cada día para todos los pacientes\n", "2. Crea una gráfica que muestre a la vez la inflamación máxima, media y mínima para cada día." ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VFXiPvD3zEx6r5DeCxBIkBhpUkUFUVHE7leUn+5a\ndq3rutZdt+na3V1d3RVXv6hYEEEUpEiL9BACCSGVkF4mvZfJ+f2RwJcSkkkyk3tn8n6eh4cw9X0u\n5OXmzDn3CCkliIjIcmiUDkBERIPD4iYisjAsbiIiC8PiJiKyMCxuIiILw+ImIrIwLG4iIgvD4iYi\nsjAsbiIiC6Mzx4t6e3vL0NBQc7w0EZFVSklJ0UspfYx5rFmKOzQ0FIcOHTLHSxMRWSUhxCljH8uh\nEiIiC8PiJiKyMCxuIiILw+ImIrIwLG4iIgvD4iYisjAsbiIiC8PiJuqDlBLr00pR09yhdBSiC7C4\nifqw4WgZfv15Kl5cn6F0FKILsLjJap2qbkZ6Sf2gn9faYcBff8iETiPwXVopTpQ3mCEd0dCxuMlq\nPfFlGm5+fy9OVTcP6nnv7cxDaX0b3rtzClzsdHhzS7aZEhINDYubrFJFQxsOnapFS4cBj3+ZBkO3\nNOp5xbUteH9nHq6N98eC8WOw4vIw/JhRMaQzdyJzYXGTVfoxoxwA8PDcSKScqsW/duYZ9by//JAJ\nIYDfLYwFANw7MwxuDjZ4g2fdpCIsbrJKG4+VI8LHCU9cGY1rJvrhra3ZyCjt/6x5T54ePxwrx4Nz\nIuHv7gAAcLW3wS9mh+OnE5U4XFg7EtGJBsTiJqtT3dSO/SersTDOD0II/GlJHDwcbfHYF0fQ1mno\n8zldhm78Yf1xBHo44P5Z4efcd/e0UHg52eKNzTzrJnVgcZPV2XK8At0SuDpuLADAw8kWr9w0CdkV\nTXh9c1afz/nsQCGyKhrx7KJxsLfRnnOfk50OD8yJQHKuHvvzq82en2ggLG6yOhvTyxHk6YAJ/q5n\nbpsb44s7LgvGf5JPYt955Vvb3IHXN2djWrjXmbI/351TQ+DrYofXt2RDSuM+6CQyFxY3WZX61k7s\nydOfGSY527PXjEOIpyOe+DINjW2dZ25/Y0s2mtq78OJ14y94zmn2Nlo8NDcSB07W4OdcnnWTsljc\nZFW2ZVag0yD7PHN2tNXh9ZsTUFbfipe+Ow4AyCxrwKf7T+HOy4IRO9b1guec7dakIPi72eO1zVk8\n6yZFsbjJqmxML8dYV3skBLr3ef+UEA88MCcCX6UU48eMcvzhuwy4OdjgsQXRA762nU6Lh+dF4UhR\nHbZnVZo6OpHRWNxkNZrbu7AruwpXx42FRtP3kAcAPDI/GhP8XfHrz1OxL78Gj18ZA3dHW6PeY1li\nIII8HfAGx7pJQSxushrbsyrR3tV90Q8YT7PVafDmLQmQAGLHuuD2pGCj38NGq8Gv50UhvaQBP2ZU\nDDMx0dCwuMlqbEwvh7ezLS4N9RzwsdFjXLD2wen45N4kaPs5O+/LDZMDEO7thDe3ZBu9lJ7IlFjc\nZBXaOg3YfqISC8aPNbqIJ/i7wdfVftDvpdNq8NiCaGRVNOKad3Zjd07VoF+DaDhY3GQVdmVXoaXD\ngIUDDJOYyuJJfvj7bZPR1N6Fuz48gLtXHkBWeeOIvDcRi5uswqb0crg52GBahNeIvJ8QAtfG+2Pb\nE7Px7KJxSC2sxcK3d+HpNUdR2dA2Ihlo9GJxk8Xr6OrGlswKXDFuDGy0I/tP2k6nxX2zwrHzN3Ox\nfHoY1hwuxpzXduCtrdlo6ega0Sw0erC4yeLtydOjsa1rxIZJ+uLhZIsXrh2PLY/NxpwYH7y1NQdX\nvbULze0sbzI9o4tbCKEVQqQKITaYMxDRYG1KL4eTrRYzo7yVjoJQbye8e8cUrFyeiKKaVnxxsEjp\nSGSFBnPG/QiATHMFIRqKLkM3Nh+vwLxxYy64qp+S5sWOQVKYJz5MPolOQ7fSccjKGFXcQohAANcA\n+I9545C1+Wx/Ifbk6c32+gcKalDT3KHoMMnF/HJ2OErqWvH90TKlo5CVMfaM+y0ATwHgqQMZ7acT\nFXhm7THc89FBHCqoMct7bEovh72NBnNifMzy+sMxJ9oX0WOc8a+deVweTyY1YHELIRYDqJRSpgzw\nuPuFEIeEEIeqqrggYbRraOvEM9+kI8rXGf7uDljx8SHkVJh2nnN3t8Sm9HLMjvaBo63OpK9tChqN\nwP2zInCivBE7s/k9QaZjzBn3DADXCSEKAKwGME8Iser8B0kpP5BSJkopE3181Hf2QyPrL99norKx\nDa8ti8cn9ybBVqfB3SsPoLzedHOcU4tqUdnYjoVxfiZ7TVO7Lt4ffm72eH9nvtJRyIoMWNxSyt9J\nKQOllKEAbgXwk5TyTrMnI4u1O6cKqw8W4f5ZEYgPckeQpyM+Wn4pGtq6sPyjA6hv7Rz4RYzwzeES\n2Oo0mDfO1ySvZw62Og1WzAzD3vxqpBXVKR2HrATncZNJNbV34ek1xxDh44RHr4g6c3tcgBv+decU\n5FU14f5PDl10015j1TZ3YM3hYixJ8Iervc1wY5vVrUnBcLHX4YNdPOsm0xhUcUspd0gpF5srDFm+\nlzdmorS+FX+7Kf6C6Xkzo7zx2rJ47D9Zgye+TEP3MK6s99mBQrR1duPemWHDjWx2znY63DU1BBvT\ny1Cgb1Y6DlkBnnGTyezJ02PVvkLcOyMMU0I8+nzM9QkBeHbROHx/rAwvbTg+pNkWHV3d+GRvAWZG\neg+43ZhaLJ8RCp1Gg3/v5lk3DR+Lm0yipaNniCTUyxFPXhnT72PvmxWOFTPD8N89BXh/CMMHPxwr\nQ0VDO1ZYwNn2ab4u9lg6JQBfpRSjqrFd6Thk4VjcZBKv/piFwpoWvLJ0EhxsB17B+Oyicbg23h8v\nbzyBTenlRr+PlBIfJp9EuI8TZkdb1uyl+y4PR6eh56cFouFgcdOwHSqowX/3FODuaSG4LNy4y6pq\nNAKvLZuEuABXPPdtOupbjJtpcrCgFsdK6nHvjLB+95VUo3AfZ1w1fiw+2XuKF5+iYWFx07C0dRrw\n1NdHEeDugKeujh3Uc+10Wrx84yTUtnTg5U3GXQbnw+R8uDvaYOklgUOJq7hfzA5HfWsnLz5Fw8Li\npmH5x0+5yNc345Wlk+BkN/jVi3EBblgxMwyfHyjCvvzqfh9bWN2CzccrcHtSsFHDMWo0OdiDF5+i\nYWNx05BJKbE2tQTzY30xI3Lol1R97IpoBHk64JlvjvU7v/ujPSehFQL/My10yO+lBqcvPrXhaKnS\nUchCsbhpyAqqW1BS14q5scNbuehgq8VfbpiIfH0z/rk9t8/HNLR14suDRVg8yQ9j3Qa/wa+azI3x\nRcwYF/z5+xNYm1o8rPnsNDqxuGnITu9ufrkJNjC4PMoHN04OwHs78vrcdPfLg0Vo7jBgxczwYb+X\n0oQQePOWBPi52eOxL9Jww3t7kHLKPFdPJOvE4qYh25WtR7CnI0K8nEzyes8tHg9XBxs8/c1RGM46\nC+0ydOOjnwuQFOqJiYFuJnkvpY33d8W6h2bg9WXxKK9vxdL39uKhzw6jqKZF6WhkAVjcNCSdhm7s\nzdOb5Gz7NE8nWzy/eBxSC+uwat+pM7dvPl6BkrpWi1jePhgajcDSKYHY/uQcPDI/CtsyKzD/jZ14\nZdMJNLaZ5kJcZJ1Y3DQkqYV1aO4w4PIo0y6CWZIQgFnRPvjbphMorWsFAHyYfBJBng5YMH6MSd9L\nLRxtdXhsQTS2PzkHiyf64b0deZj72g7syKpUOhqpFIubhmR3ThW0GoFpEcYtuDGWEAJ/XhKHbgm8\nsC4dR4rqkHKqFsunh0FrYQtuBsvPzQFv3JKAdQ/NgJuDDZ5dm44uThmkPrC4aUh25eiREOQONwfT\nX1I1yNMRjy+IxtbMSjy6OhXOdjrcnGiZC26GIj7IHU8vHNezX+Ux7ldJF2Jx06DVtXTgaHEdZg5j\n7vZA7pkRiokBbiiobsEtlwbBReXX3Da1+bG+CPdxwr9353O/SroAi5sGbU9eNaQEZkWbr7h1Wg1e\nXTYJ82J98f8ut64PJY2h0Qjcd3k40ksasHeAFaU0+rC4adB251TBxU6H+EB3s75P7FhXrFx+Kfzc\nHMz6Pmp1w+QAeDvbcuccugCLmwZFSold2XpMj/SCTst/PuZkb6PF3dNCsSOrqs9FSTR68TuPBuWk\nvhklda0mnwZIfbtzaggcbLTcOYfOweKmQdmdowcAzGJxjwgPJ1vcnBiIdUdKUNHQpnQcUgkWNw3K\n7pwqhHg5ItjLUekoo8aKmeEwdEv8d0+B0lFIJVjcZLSOrm7szas26zRAulCwlyMWxvlh1b5TaOLO\nOQQWNw1CamGtWZa508DumxWOxrYu7pxDAFjcNAjJuXqzLHOngSUEuSMpzBMrk09yGTyxuMl45lzm\nTgO7//JwLoMnACxuMtLpZe6mvIwrDc68WF9EcBk8gcVNRvo5t2eZO8e3lXPOMvg8LoMfzVjcZJTd\nOVVwsdch3kp2oLFUSyYHwNvZDh9wQc6oxuKmAUkpsTtHj+kRXOauNHsbLZZPD+Ey+FGO34U0oHwu\nc1eVO6eGwN5GY7YFObuyq87ZOo7Uh8VNA0rmMndVcXe0xfXxAfg2tQQNZtib8k/fH8dLG46jrdNg\n8tcm02Bx04AzFLjMXX3umhaC1k4DvkkpNunrnihvQHZFEzq6upFyqtakr02mw+Ie5VJO1SDmuU1Y\n+PZuvLguHd+llZ5zMaPTy9w5DVBd4gLcEB/kjlX7C006NXDdkVJoNQI6jUByrt5kr0umpVM6ACnr\nu7QyQABeTrb4KqUYH+/tGdsM9nREYqgHxrjac5m7St01NQRPfpWGffk1JlnNKqXE+iOlmBnpjZaO\nLvzM4lYtFvcotzO7CtMjvPDfe5LQaejG8dIGHCyowcGCGuzIqkJNcwdstRouc1ehxZP88Kfvj2PV\nvlMm+fs5XFiLkrpWPL4gGkW1LXh7Ww7qWzrh5siVsmozYHELIewB7AJg1/v4r6WUL5o7GJlfgb4Z\nJ/XNuHtaCADARqtBfJA74oPc8f8uD4eUEnlVzeg0dMN1lG3WawnsbbRYNiUQH/1cgMqGNvi62g/r\n9dYfKYWdToMrJ4xBVnkj3tqag735elwd52eixGQqxoxxtwOYJ6WMB5AA4GohxFTzxqKRsCOrEgAw\nJ8a3z/uFEIj0dcY4P9eRjEWDcMdlIejqllg9zKsGdhm68f2xMswf5wsXexvEB7nDyVbLcW6VGrC4\nZY+m3j/a9P7ihRKswI7sKoR5OyHU20npKDREod5OmBXtg8/2Fw7rqoF78qqhb+rAdfEBAHp++ros\n3At7crm0Xo2MmlUihNAKIY4AqASwRUq537yxyNzaOg3Ym1eN2dH80NHS3XlZMMob2rA1s3LIr7E+\nrRQudjrMifm/fw8zIr3PLL4idTGquKWUBillAoBAAElCiLjzHyOEuF8IcUgIcaiqqsrUOcnE9uZX\no72rG3Nj+x4mIcsxL9YX/m72+HT/0FY7tnUa8GN6Oa6KGwt7G+2Z22dE9nzgydkl6jOoedxSyjoA\n2wFc3cd9H0gpE6WUiT4+PItTu51ZVbC30eCyME+lo9Aw6bQa3H5ZMHbn6JFf1TTwE86zI6sSje1d\nuD7B/5zbY8a4wNvZFntY3KozYHELIXyEEO69XzsAWADghLmDkXltz6rEtHCvc86wyHLdfGkQdBqB\nT/cXDvq5646UwtvZFtPCz51SKITAjEhvJOdW8/rfKmPMGbcfgO1CiKMADqJnjHuDeWOROZ3UN+NU\ndQuHSayIr4s9ro4bi68OFaG1w/hrjDS2dWLbiUosnuTf55UfZ0R4Q9/UjuyKwZ/Jk/kYM6vkqJRy\nspRykpQyTkr50kgEI/M5Mw0wmsVtTe6aGoKGti58d7TU6OdszqhAR1c3ro337/P+Gb2XOuA4t7rw\nWiWj0PasKoT7OPGiUVYmKcwT0WOcB3VJ1nVppQj0cMAlwe593h/g7oAwbycWt8qwuEeZ1g4D9uVX\n82zbCgkhcOfUEBwtrkdaUd2Aj9c3tePnXD2ui/eHEOKij5se4YV9+dXo5O7yqsHiHmX25Vejo6v7\nnPm6ZD1umBwAR1utUWfdPxwrg6Fb4vqEgH4fNzPSG80dBhwtHvg/AxoZLO5RZntWJRxstEjiNECr\n5GJvgyWTA7A+rRS5lf1/oLj+SClixrggZqxLv4+bFuEFIYDkHK6iVAsW9ygipcSOrJ6rAXIaoPW6\nd0YYbLQaXPXWLjz37TFUNbZf8Jji2hYcOlWL6xL6/lDybO6Otojzd+M4t4qwuC2clBL3fXII/9ye\nO+BjT+qbUVjTwmESKxfp64ztT87B7UnBWH2gCLNf3Y43t2Sjqb3rzGO+SysDAFx3kdkk55sR6Y3U\nolo0n/UapBwWt4U7XFiLLccr8OqPWfgxo7zfx27P6rkUwcWuBkjWw8fFDn9cEoctj8/GnBgfvL0t\nB3Ne3Y7/3VuATkM31qeVYnKwO4I8jZtZNDPSG50GiQMFNeYNTkZhcVu4r1OK4WCjRVyAK578Mg0F\n+uaLPnZHViUifJyM/mYlyxfm7YR375iCtQ9OR7iPM55fl4G5r+1AZlkDrjfybBsAEkM9YKvT4Occ\nDpeoAYvbgrV1GrAhrQwLJ47Fe3dMgUYj8MtVKX2unGvp6ML+kzU82x6lJgd74Iv7p2Ll8kQ42mrh\naKvFoknGb5Bgb6NFYogHfs7jB5RqwOK2YD9mlKOxvQs3TQlEkKcj3ro1AVkVjXh+XfoF15bYm9cz\nDXAui3vUEkJgXuwYbHxkFvY+PR++LoPbMWdGpDcyyxqgb7rww04aWSxuC/Z1SjEC3B0wNazn4kBz\nY3zxq7mR+DqlGF+ctyPKjqwqONpqcWmYhxJRSUW0GjGkfSRnRPYsf9/Ds27FsbgtVFl9K5Jz9Vg6\nJRAazf+tenvkimhcHuWNF9ZnIL2kHkDPzJPtWZWYHuENOx2nAdLQTAxwg4u9jpd5VQEWt4X65nAJ\npASWXnLuqjetRuCtWxLg5WSLBz5NQX1LJ/KqmlFc28ppgDQsWo3A9Agv7M7R8zKvCmNxWyApJdak\nFCMpzBMhXhfuF+nlbId/3nEJyuvb8PiXR7D9xOlNgVncNDwzIr1RUteKwpoWpaOMaixuC3S4sA75\n+mbcNCXwoo+5JNgDzy4ah20nKvHW1mxE+Toj0IPTAGl4To9z/8xNhBXF4rZAp+duL5rY/3Suu6eH\n4tp4fzR3GHi2TSYR7u0EPzd7bM2sUDrKqKZTOgANTs/c7VIsnDgWznb9//UJIfDyjRPh5qDD7ZeF\njFBCsmZCCNw0JRD/2J6LAn0zQr0vHKoj8+MZt4U5e+62MZzsdPjTkokI4zcYmchdU0Og0wh89PNJ\npaOMWixuC3P+3G2ikebrao9r4/3xVUox6ls7lY4zKrG4LciZuduXBJwzd5topK2YGYaWDgNWHxj8\nrvI0fCxuC7I2tXfutpHDJETmMsHfDVPDPfHxngJ0cUuzEcfithBSSnydUoyk0L7nbhONtBUzw1Fa\n34aN6f1fTphMj8VtIVKL6pBf1f/cbaKRND/WF6FejvgwmR9SjjQWt4U4M3d7EJfiJDInjUbgnhlh\nOFJUh5RTtUrHGVVY3BagrdOA79JKsTBu4LnbRCPppimBcLXXYSXPukcUi9sCbD5egcY24+duE40U\nJzsdbksKxsb0MhTX8volI4XFrXJSSqzae6pn7nY4526T+tw9PRRCCHy8p0DpKKMGi1vldmRX4UBB\nDX4xO5xzt0mV/N0dsDBuLFYfKDpnJ3kyHxa3inV3S/xtUxaCPR1x66XBSschuqgVM8PQ2N6Frw4V\nDfxgGjYWt4qtTytFZlkDnrgyGrY6/lWRek0O9sAlwe746OcCGLq5yYK5sQ1Uqr3LgNc2Z2GCvyuu\nneSvdByiAa2YGY7CmhZe8nUEsLhV6rP9hSiubcVTV8dybJsswlUTxiDA3YELckYAi1uFmtq78I+f\ncjE9wguzoryVjkNkFJ1Wg+XTQ3HgZM2ZjarJPFjcKvTvXfmobu7Ab6+OhRA82ybLcUtSEBxstPh0\n/ymlo1i1AYtbCBEkhNguhDguhMgQQjwyEsFGK31TO/6zOx+LJo5FfJC70nGIBsXV3gYL48ZiQ1oZ\n2joNSsexWsaccXcBeEJKOR7AVAAPCSHGmzfW6PWPn3LR1tWNJ6+MUToK0ZAsnRKIxvYubDnODynN\nZcDillKWSSkP937dCCATQIC5g41GhdUt+HT/KdycGIRwH2el4xANybRwL/i72WPN4WKlo1itQY1x\nCyFCAUwGsN8cYUa717dkQasRePSKKKWjEA2ZRiNwwyUB2JVdhcqGNqXjWCWji1sI4QxgDYBHpZQN\nfdx/vxDikBDiUFVVlSkzjgoZpfVYd6QU984IwxhXe6XjEA3LjZcEolsC3x4pUTqKVTKquIUQNugp\n7U+llN/09Rgp5QdSykQpZaKPj48pM1q86qZ2vLMtByuTT2Lr8QpklTeipePcazr8bVMW3Bxs8IvZ\nEQqlJDKdCB9nJAS5Y01KCaTkSkpTG/DizqJnPtqHADKllG+YP5J1MXRLPPTZYezLr7ngPm9nWwR6\nOMLHxQ47s6vwzKJYuDnYKJCSyPSWTgnE89+mI6O0AXEBbkrHsSrGXJV/BoC7ABwTQhzpve0ZKeUP\n5otlPd7eloN9+TV49aZJmBfri6LaVhTWtKDo9K/aFpwob0BcgCv+Z1qo0nGJTObaSX7443fHseZw\nMYvbxAYsbillMgCuAhmC5Bw9/v5TDm6aEohliUEAAC9nOyRwfjaNAu6Otpg/zhfrj5TimUXjYKPl\nej9T4ZE0k8qGNjz6RSoifZzx0vUTlI5DpIillwSiurkDO7I4YcGUWNxmYOiW+PXqVDS3G/DuHZfA\n0Zb7RNLoNDvGB15OtviGc7pNisVtBqfHtf+4JA5RY1yUjkOkGButBtcnBGBbZiXqWjqUjmM1WNwm\ndva4Njf3JQKWTglAh6Eb36WVDvjYLkM3MkrrUVzbgvYuXuvkYvgzvAlxXJvoQuP9XBE71gVfHy7B\nXf3MnGpo68QDq1Lwc271mds8HG3g62IPX1e7M7/PjvYZ9Rtns7hN5Oxx7c/v47g20WlCCCy9JBB/\n/iETuZVNiPS98Do8ZfWtuOejg8itbDqznqGioR2VjW29v7cjt1KPqsZ2fJh8Esm/nQtfl9G7wpjt\nYiKnx7VfWxbPcW2i81w/2R8vbzqBbw4X46mrY8+5L7OsAfd8dBBN7V346J5LcXnUxVdeF+ibMe/1\nHViZXICnF8Ze9HHWjmPcJpBeUo+//5SDpZdwXJuoL74u9pgV5Y21qSXnbCacnKPHsn/tBQB89ctp\n/ZY2AIR6O2HRRD+s2ncK9a2dZs2sZixuE3hl0wm4O9jgxet4mXKii1k6JRBl9W3Ym9czhv11SjGW\nf3QAAe4OWPvQdIzzczXqdR6YE4Gm9i6s2jd6d9lhcQ9Tco4eu3P0eGhuJFzteZ0Roou5YtwYuNjr\nsOZwMd7ZloMnv0rDZeGe+OqBafBzczD6dSb4u2FOjA9WJp9Ea8fonHnC4h6G7m6JVzadQIC7A+6c\nGqJ0HCJVs7fRYvEkf6xNLcEbW7Jx4+QAfLQ8aUgnPA/OiUR1cwe+PFRkhqTqx+Iehu+PleFYST0e\nXxANexut0nGIVO/2pGDY6jR4eG4kXr85Hra6oVXQpaEemBLigQ925aPT0G3ilOrH4h6iTkM3Xt+c\nhZgxLlgymTu5ERljYqAbjv3+Sjx5VQx6rhg9NEIIPDgnAiV1rUYt7LE2LO4hWn2wCAXVLfjtwhho\nNbx4IpGx7HSm+el0XqwvYse64L0deejuHl2bNbC4h6C5vQtvb81BUqgn5sb4Kh2HaFQSQuCBORHI\nqWzC1szRtaM8i3sIViafhL6pHb9dGDusH/eIaHiumeiHIE8HvLsjb1RtkcbiHqTqpna8vysfV44f\ngykhHkrHIRrVdFoN7p8VgSNFddibXz3wE6wEi3uQ/rk9Dy0dXXjq6hiloxARgGVTAuHtbIf3duQp\nHWXEsLgHoaimBav2ncKyKUGI9OX1SIjUwN5GixUzw7A7R49jxfVKxxkRLO5BeHNLNoQAHl0QpXQU\nIjrLHVOD4WKnw3s7c5WOMiJY3EbKLGvA2iMlWD4jdFDLc4nI/FztbXDXtBBsTC9HXlWT0nHMjsVt\nBCklXt54Ai52Ojw4O1LpOETUh3tnhsFWq8E723KUjmJ2LG4jrD5YhJ3ZVXjkimi4OfJCUkRq5O1s\nh/tnhWPdkVJsPW7d87pZ3APIrmjE79dn4PIob9wzPVTpOETUj1/Ni0LsWBc8/c0x1DZb7+bELO5+\ntHUa8PBnh+Fir8PrN8dDw6XtRKpmq9PgjZsTUN/agRfWZygdx2xY3P14acNxZFc04Y2bE0b1/nZE\nlmS8vysemR+F79JK8f3RMqXjmAWL+yI2HivDZ/sL8YvZ4ZgV3f92SkSkLr+cHYH4QDc89+0xVDW2\nKx3H5FjcfSiqacFTa44iIcgdT17JFZJElkan1eD1m+PR3GHA7745ZnXXMWFxn6fT0I1HVqcCEvj7\nbZNho+UhIrJEkb4u+M2VMdiaWYFvDpcoHcek2ErneWtrNg4X1uEvN05EkKej0nGIaBjunRmGS0M9\n8PvvMlBW36p0HJNhcZ/l51w93t2Rh1svDcK18f5KxyGiYdJqBF5bFo8ug8RTXx/td8hE39SOvXnV\nFrEpg07pAGqhb2rHo18cQYSPM168doLScYjIREK8nPDMolg8vy4Dnx8owu2XBQMAyuvbsP9kNfaf\nrMH+/GrkVTUDAP5w3QTcrfI1G6O+uOtbO7H2cDE+2XsK9a2d+N8VSXCw5ca/RNbkjstC8GNGBf70\n/XGkFtbiQEENTlW3AABc7HRIDPXAssQgbEovx7s7cnHLpUGq3gB8VBa3lBKpRXX4bH8hNhwtRVtn\nNyYFuuH9O6cgdqyr0vGIyMQ0GoFXbpqEa97ZjS2ZFbg01BN3TQ3B1HAvjPNzPbNv7KRAN9z+7/34\n/EAh7pmsW2qLAAAK6UlEQVQRpnDqixtVxd3Q1ol1qSX4dH8hTpQ3wslWixsmB+KOy4IRF+CmdDwi\nMqMAdwfs+9182Go1F10FPT3CG5eFeeLdHXm4LSlYtWfdAxa3EGIlgMUAKqWUceaPZB7rjpTg6TXH\n0NppwAR/V/z5hjhcnxAAZ7tR9X8X0ahmTBE/tiAat36wD5/uL8SKmeo86zamtf4L4B8APjFvFPNp\naOvE79dnIGqMM/54fRwmBbpxk18i6tPUcC9MC/fCezvycHtSsCo/8xpwOqCUcheAmhHIYjbv7chD\nbUsn/rxkIuKD3FnaRNSvxxZEQ9/Ujk/3n1I6Sp9MNo9bCHG/EOKQEOJQVVWVqV522ErrWrEy+SSW\nJPhjYiDHsYloYElhnpgR6YV/7ezZHFxtTFbcUsoPpJSJUspEHx/1XJTptc1ZkACevIrXHCEi4z12\nRTT0TR1YtU99Z91WvXIyo7Qea1NLcM/0UAR6cPk6ERkvMdQTl0d54/2d+ao767bq4n554wm4Odjg\nwbncJ5KIBu/RK6JR3dyBT/aq66x7wOIWQnwOYC+AGCFEsRBihfljDd/O7CrsztHjV/Oi4ObAfSKJ\naPCmhHhgVrQPPtiVj+Z29Zx1GzOr5DYppZ+U0kZKGSil/HAkgg2HoVvirz9kIsjTAXdODVY6DhFZ\nsMeuiEJNcwc+3lugdJQzrHKoZM3hYpwob8RTV8XCTqe+OZhEZDkmB3tgTkzPWXeTSs66ra64WzsM\neH1zFuKD3LF4kp/ScYjICjx6RTTqWjrx8Z4CpaMAsMLi/jA5HxUN7Xh20TgutCEik0gIcse8WF98\nsCsf9a2dSsexruLWN7XjXzvzsWD8GCSFeSodh4isyBNXRqOhrRPvbMtROop1Ffc723LQ2mnA0wtj\nlY5CRFZmgr8bbr00CB/vKUBuZaOiWaymuHMrG/HZ/kLclhSECB9npeMQkRV68soYONhq8dKGTEV3\njreK4m7tMODhz1LhYq/DI/OjlY5DRFbKy9kOj8yPwq7sKmzPqlQsh1UU9wvr0pFV0Yg3b0mAj4ud\n0nGIyIr9z7RQhPs44Y8bMtHR1a1IBosv7i8PFuGrlGL8al4U5sT4Kh2HiKycrU6DFxaPx0l9M/67\n56QiGSy6uDNK6/H8unTMjPTGI/OjlI5DRKPEnBhfzIv1xTvbclHV2D7i72+xxd3Q1okHPz0MD0db\nvH1rwpnNPomIRsJz14xDe5cBr/54YsTf2yKLW0qJ33yVhuLaVvzj9snwcua4NhGNrHAfZ9wzIwxf\npRTjaHHdiL63RRb3h8kn8WNGBX63MBaJoVxoQ0TKeHheJLycbPGH746P6PRAiyvuQwU1+OvGE7hq\nwhjV7sBMRKODq70NfnNVDFJO1WJ9WumIva9FFbe+qR0Pf5aKQA8HvLosntciISLFLZsShIkBbvjr\nDydGbKcciynu7m6JR1cfQU1LB9694xK42nNzBCJSnkYj8OK141He0Ib3duSNzHuOyLuYwO5cPZJz\n9Xh+8XhM8Odu7USkHomhnrgu3h+r9p0akbNundnfwUS+TS2Bq70ONycGKh2FiOgCzy0eBynHwdHW\n/LVqEcXd3N6FTenlWDI5gDvaEJEq+brYj9h7WcRQyebj5WjtNOCGyQFKRyEiUpxFFPfa1FIEejgg\nMcRD6ShERIpTfXFXNrQhOacKSxICoOGydiIi9Rf3+rRSdEtgCYdJiIgAWEBxr00twaRAN0T6clcb\nIiJA5cWdXdGIjNIGfihJRHQWVRf3t6kl0GoEFk/yVzoKEZFqqLa4u7sl1h0pxeVR3tyOjIjoLKot\n7gMFNSipa+UwCRHReVRb3GsPl8DJVosrx49VOgoRkaqosrjbOg344VgZro7zg4Mtl7gTEZ1NlcW9\nLbMSje1dHCYhIuqDKot7bWoJxrjaYVqEl9JRiIhUR3XFXdPcgR1Zlbg+IYA7txMR9UF1xf390VJ0\ndUssSeAwCRFRX4wqbiHE1UKILCFErhDiaXMGWptagtixLhjv72rOtyEislgDFrcQQgvgnwAWAhgP\n4DYhxHhzhCnQN+NwYR0vKEVE1A9jzriTAORKKfOllB0AVgO43hxhvj1SAiGA6xO4xJ2I6GKMKe4A\nAEVn/bm49zaTklJibWoJpoV7wc/NwdQvT0RkNUy256QQ4n4A9wNAcHDwoJ/f2mnAtHAvzIj0NlUk\nIiKrZExxlwAIOuvPgb23nUNK+QGADwAgMTFRDjaIo60OLy+dNNinERGNOsYMlRwEECWECBNC2AK4\nFcB688YiIqKLGfCMW0rZJYR4GMCPALQAVkopM8yejIiI+mTUGLeU8gcAP5g5CxERGUF1KyeJiKh/\nLG4iIgvD4iYisjAsbiIiC8PiJiKyMELKQa+VGfhFhagCcGqIT/cGoDdhHFNitqFhtqFhtqGx1Gwh\nUkofY17ELMU9HEKIQ1LKRKVz9IXZhobZhobZhmY0ZONQCRGRhWFxExFZGDUW9wdKB+gHsw0Nsw0N\nsw2N1WdT3Rg3ERH1T41n3ERE1A/VFPdIbkg8WEKIAiHEMSHEESHEIRXkWSmEqBRCpJ91m6cQYosQ\nIqf3dw8VZfu9EKKk9/gdEUIsUiBXkBBiuxDiuBAiQwjxSO/tih+3frKp4bjZCyEOCCHSerP9ofd2\nNRy3i2VT/LidlVErhEgVQmzo/bNJjpsqhkp6NyTOBrAAPVujHQRwm5TyuKLBegkhCgAkSilVMTdU\nCDELQBOAT6SUcb23/Q1AjZTy5d7/+DyklL9VSbbfA2iSUr420nnOyuUHwE9KeVgI4QIgBcASAMuh\n8HHrJ9vNUP64CQBOUsomIYQNgGQAjwC4Ecoft4tluxoKH7fThBCPA0gE4CqlXGyq71O1nHGP2IbE\n1kBKuQtAzXk3Xw/g496vP0bPN/6Iu0g2xUkpy6SUh3u/bgSQiZ69UxU/bv1kU5zs0dT7R5veXxLq\nOG4Xy6YKQohAANcA+M9ZN5vkuKmluEdkQ+JhkAC2CiFSevfWVKMxUsqy3q/LAYxRMkwffiWEONo7\nlKLIMM5pQohQAJMB7IfKjtt52QAVHLfeH/ePAKgEsEVKqZrjdpFsgAqOG4C3ADwFoPus20xy3NRS\n3Go3U0qZAGAhgId6hwNUS/aMf6nmzAPAewDCASQAKAPwulJBhBDOANYAeFRK2XD2fUoftz6yqeK4\nSSkNvf/+AwEkCSHizrtfseN2kWyKHzchxGIAlVLKlIs9ZjjHTS3FbdSGxEqRUpb0/l4JYC16hnbU\npqJ3rPT0mGmlwnnOkFJW9H6DdQP4NxQ6fr3joGsAfCql/Kb3ZlUct76yqeW4nSalrAOwHT1jyKo4\nbn1lU8lxmwHgut7Px1YDmCeEWAUTHTe1FLdqNyQWQjj1fmAEIYQTgCsBpPf/LEWsB3B379d3A1in\nYJZznP6H2usGKHD8ej/I+hBAppTyjbPuUvy4XSybSo6bjxDCvfdrB/RMIDgBdRy3PrOp4bhJKX8n\npQyUUoaip89+klLeCVMdNymlKn4BWISemSV5AJ5VOs9ZucIBpPX+ylBDNgCfo+dHwE70fB6wAoAX\ngG0AcgBsBeCpomz/C+AYgKO9/3D9FMg1Ez0/lh4FcKT31yI1HLd+sqnhuE0CkNqbIR3AC723q+G4\nXSyb4sftvJxzAGww5XFTxXRAIiIynlqGSoiIyEgsbiIiC8PiJiKyMCxuIiILw+ImIrIwLG4iIgvD\n4iYisjAsbiIiC/P/ATZAnX4bbs3BAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(data.std(axis=0))" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD8CAYAAABw1c+bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcjfX7x/HXNWPsjG3sZM1YwjCkUESFCq2WSKVQhBZF\n/SpS30olQpaixRaSQpZkF2FmGHv2bWxjm7Gb5fP74z5Tk2bMds65zzlzPR+PeczMOfe578tt5pr7\n3Pfn/rzFGINSSqnsw8/uApRSSrmXNn6llMpmtPErpVQ2o41fKaWyGW38SimVzWjjV0qpbEYbv1JK\nZTPa+JVSKpvRxq+UUtlMDrsLSEmxYsVMhQoV7C5DKaW8Rnh4+GljTFB6lvXIxl+hQgXCwsLsLkMp\npbyGiBxK77J6qkcppbIZbfxKKZXNaONXSqlsRhu/UkplM9r4lVIqm0mz8YtIORFZLiI7RGS7iPRz\nPF5ERJaIyB7H58KpvL6ViPwlIntFZKCz/wFKKaUyJj1H/PHAq8aYGkAjoLeI1AAGAkuNMVWBpY7v\n/0VE/IExQGugBtDJ8VqllFI2SbPxG2OOG2MiHF9fAHYCZYB2wHeOxb4D2qfw8obAXmPMfmPMdeAH\nx+uU8nrLdp1k14lYu8tQKsMydI5fRCoAIcB6oIQx5rjjqRNAiRReUgY4kuz7o47HUlp3DxEJE5Gw\n6OjojJSllNst23WS7t+F0fmr9USdv2J3OUplSLobv4jkB2YD/Y0x/zrMMVZie5ZS240xE4wxocaY\n0KCgdN11rJQtDp6+RL8fNlO1eH7i4hPpNTmcq3EJdpelVLqlq/GLSABW059qjPnJ8fBJESnleL4U\ncCqFl0YB5ZJ9X9bxmFJe6fL1eHpODsffT5jYrQHDO9Rla1QMb/+8Dev4RynPl55RPQJMBHYaY4Yn\ne2ou0M3xdTfglxRevhGoKiIVRSQn0NHxOqW8jjGGN2ZvZfepC3zRMYRyRfJyb40S9L2nCrPCjzJt\nw2G7S1QqXdJzxN8Y6ArcIyKbHR9tgI+Ae0VkD9DS8T0iUlpEFgAYY+KBPsBirIvCM40x213w71DK\n5SauOcC8yGO8dl817rr1n9OR/VreSrNqQQyeu52Iw+dsrFCp9BFPfHsaGhpqdHZO5UnW7TtDl4nr\naVm9OOO61Md6I/yP85ev03b0H1yLT2D+S00JKpDLpkpVdiUi4caY0PQsq3fuKpWG4zFX6DMtggpF\n8/Lp43X+0/QBCuXNybgu9Ym5EkfvaRHEJSTaUKlS6aONX6mbuBafQK8pEVyLT2R811AK5A5Iddka\npQvy0SO12XDgLB8u2OXGKpXKGI8MYlHKUwyeu4PII+cZ16U+VYrnT3P59iFliDx6nkl/HKBOuUDa\n1U3xthWlbKVH/Eql4ocNh5m+4TAvNqtMq1ol0/26N9tUp2HFIrwxews7jumdvcrzaONXKgWbj5zn\nnV+207RqMV69r1qGXhvg78eYzvUIzBNArynhnL983UVVKpU52viVusHpi9d4YUo4xQvm4ouOIfj7\n/fdiblqCCuRibJf6HI+5Qr8fNpOQ6Hmj51T2pY1fqWTiExLpMy2Cs5euM65LfQrny5npddUrX5jB\nbWuycnc0I3/f7cQqlcoabfxKJfPxol38uf8sHz5yG7XKBGZ5fZ0blueJ0LJ8sWwvS3acdEKFSmWd\nNn6lHOZFHuOr1QfodsctPFKvrFPWKSK8164WtcsG8sqMzeyPvuiU9SqVFdr4lQL+OnGB13/cQugt\nhXnrAedmBeUO8Gdsl/oE5PCj5+RwLl2Ld+r6lcoobfwq24u5EkfPyWEUyJ2DL5+sR84czv+1KFMo\nD6M7hbAv+iIDfozUmTyVrbTxq2wtMdHw8ozNRJ2/wtgu9SheMLfLtnVnlWIMbB3Mgq0nmLBqv8u2\no1RatPGrbO2LZXtYtusU7zxYg/q3FHH59p5vWokHbivFx4t28cfe0y7fnlIp0cavsq1lu04y4vc9\nPFqvLF0a3eKWbYoIwx6rTeWg/PSZFsHRc5fdsl2lktPGr7KlpPjEmqUL8sHDtVKccdNV8uXKwfiu\n9YlPMLwwJUJjG5XbpSeBa5KInBKRbckem5EslOWgiGxO5bUHRWSrYzmdYF95hOTxieO61Cd3gL/b\na6gUlF9jG5Vt0nPE/y3QKvkDxpgOxpi6xpi6WFm8P6X0QofmjmXTFRCglCsZY3j9xy3sOXWBUZ2s\n+ES7JI9tnLpeYxuV+6TZ+I0xq4CzKT3nyON9Apju5LqUcomJaw4wf8txXru/Gk2rBqX9AhdLim0c\nMm874Yc0tlG5R1bP8TcFThpj9qTyvAF+F5FwEemRxW0plSVr953mw4W7aFWzJC/cXdnucgDw9xNG\ndgihVGAeXpwazqkLV+0uSWUDWW38nbj50X4Tx+mg1kBvEbkrtQVFpIeIhIlIWHR0dBbLUurfjp2/\nwkvTNlnxiU+kHJ9ol8C8AYzvasU29pm6SWMblctluvGLSA7gEWBGassYY6Icn08Bc4CGN1l2gjEm\n1BgTGhRk/1tw5TuuxiXwwpTwv+MT8+fyvOC56qUK8vGjtdlw8Cz/W7DT7nKUj8vKEX9LYJcx5mhK\nT4pIPhEpkPQ1cB+wLaVllXKlIfO2E3k0hk8fr5Ou+ES7tKtbhmcbV+SbPw7y86You8tRPiw9wzmn\nA+uAaiJyVES6O57qyA2neUSktIgscHxbAlgjIpHABuBXY8wi55WuVNqmbzjM9A1H6N08Y/GJdhnU\nJpiGFYsw8KctbD8WY3c5ykeJJ44fDg0NNWFhOuxfZc3mI+d5Ytw6bq9UhG+faZipJC07RF+4xoOj\nVpMzhx/z+jShUN7Mh8Go7ENEwtM7bF7v3FU+KfrCNXpNzlp8ol2SYhtPxFylr8Y2KhfQxq98TlJ8\n4rnLWY9PtEtSbOOq3dGM0NhG5WTa+JXP+WjhLtYfcF58ol2SYhtHLdvLb9tP2F2O8iHa+JVPmRt5\njK/XODc+0S7/im2cGck+jW1UTqKNX/mMncdjeePHLTSo4Pz4RLskxTbmdMQ2XtTYRuUE2viVT4i5\nHEevKeEUyJ2DMZ1dE59ol6TYxv3RFxkwS2MbVdb5zm+HyrYSEw39Z2zimBviE+2SFNu4cNsJxmts\no8oibfzK641cuoflf0W7LT7RLkmxjcMW7WLNHo1tVJmnjV95taU7TzJyqXvjE+2SPLbxpeka26gy\nTxu/8loHTl+i/4zN1Crj/vhEuySPbew1JVxjG1WmaONXXunStXh6TQ4nh58w9kl74hPtUikoP593\nqMu2qFj+T2MbVSZo41dexxjD67Ot+MQvbI5PtEvLGiXo26IqP4YfZYrGNqoM0savvM7Xqw/w65bj\nDLg/2CPiE+3Sv0VVmlcL4r152wk/lGI6qlIp0savvMravaf5cOFOWtcqSa+7K9ldjq38/IQRjtjG\nF6ZEaGyjSjdt/MprHDt/hT7TN1GxWD4+edyz4hPtkhTbGHs1jt5TIzS2UaWLNn7lFZLiE697cHyi\nXZJiGzcePMcHv2pso0pbehK4JonIKRHZluyxwSISJSKbHR9tUnltKxH5S0T2ishAZxauspfBc634\nxM+e8Oz4RLu0q1uG7k0q8u3ag/wUkWIaqlJ/S88R/7dAqxQe/9wYU9fxseDGJ0XEHxgDtAZqAJ1E\nxDdmzlJuNX3DYX7YeIQ+zatwf03Pj0+0y8DWwdxesQiDftrKtiiNbVSpS7PxG2NWAZkZMtAQ2GuM\n2W+MuQ78ALTLxHpUNrbp8Dne/WU7d90axMv33mp3OR4twN+P0Z3rUThvTnpNCef85et2l6Q8VFbO\n8b8kIlscp4IKp/B8GeBIsu+POh5TKl2iL1zjhSkRlAjMxRcd63pVfKJdrNjGepyKvcZL0zdpbKNK\nUWYb/1igElAXOA58ltVCRKSHiISJSFh0dHRWV6e83I3xiRo4nn4hjtjG1XtO8/kSjW1U/5Wpxm+M\nOWmMSTDGJAJfYZ3WuVEUUC7Z92Udj6W2zgnGmFBjTGhQUPa9KUdZkuITP3r0NmqW9t74RLt0aliO\nDqHlGL18L4s1tlHdIFONX0RKJfv2YWBbCottBKqKSEURyQl0BOZmZnsqe/llcxRfrznA03dW4OEQ\n745PtIuIMKRdTeqUDeRVjW1UN0jPcM7pwDqgmogcFZHuwDAR2SoiW4DmwMuOZUuLyAIAY0w80AdY\nDOwEZhpjtrvo36F8xM7jsbwxewsNKxThrQeq212OV0uKbcylsY3qBuKJM/uFhoaasLAwu8tQbhZz\nOY62Y9Zw5XoC8/s2oXgB30vSssPafafp8vV67q9Zki+frKd3PPsoEQk3xoSmZ1m9c1d5hMREw8sz\nNzviE+tr03eiOysXY1Dr6hrbqP6mjV95hJFL97Bs1yneeagm9W9JaXSwyornmlbkgdoa26gs2viV\n7ZLiEx+rX5Yut5e3uxyfJCIMe7Q2VYprbKPSxq9sljw+8f322SM+0S5WbGOoxjYqbfzKPsnjE8d1\nyV7xiXapWCwfIzpasY1vzdHYxuxKG7+yRfL4xFGd6lG2cPaLT7RLi+ol6NeiKrMjNLYxu9LGr2yR\nFJ/4eqtgmlQtZnc52U4/jW3M1rTxK7dLHp/Y867sHZ9ol6TYxtKFNLYxO9LGr9wqKT6xUlB+jU+0\nWWDeAMZ1qc+Fq/H0nhrB9XiNbcwutPErt/l3fGJ9jU/0ANVLFeSjR29j48Fz/G+BxjZmF/qbp9wm\nKT5xfNf6VA7S+ERP0a5uGbYcjWHimgPULhvII/V0Yjxfp0f8yi18Lj4xIR4WDIDN0+2uxCkGtQ6m\nUSWNbcwutPErl/O5+ERj4NdXYMMEmN8fzh20u6Isy6GxjdmKNn7lUj4Zn7j6M4j4Duo/A345rCN/\nH7gRqlj+f2Ib+/6wWWMbfZg2fuUycY74xPNXfCg+MXIGLBsKtTvAg59D8zdhz2+wc57dlTlFSPnC\nDGlXk1W7ozW20Ydp41cukxSf+OEjPhKfuH8l/NIbKjSFtqNBBBr2hBK3waKBcO2C3RU6RaeG5enY\nQGMbfVl6ErgmicgpEdmW7LFPRGSXiGwRkTkiUiiV1x50JHVtFhFNVslGftkcxURfik88uQNmdIWi\nVaDDFMjhePfin8M68o89Bis+srdGJxrctiZ1yhXi1ZmR7D2lsY2+Jj1H/N8CrW54bAlQyxhTG9gN\nDLrJ65sbY+qmNxlGeT+fi0+MPQ5TH4eceeHJWZDnhuOccg2gfjf4cyyc2GpPjU6WO8CfsU/Wc8Q2\nhmlso49Js/EbY1YBZ2947DdHpi7An4APHNIpZ4i5HEfPyeEUzB3A6CdDCPD38rOJV2Otpn/1PHSe\nCYXKpbxci3chT2GY/wok+sYdsKUL5WFU5xAOnrnMazMjdSZPH+KM38pngYWpPGeA30UkXER63Gwl\nItJDRMJEJCw6OtoJZSl3S0w09JuxieMxPhKfmBAHs7rBqR3wxHdQqnbqy+YtAve9D0c3wKbv3Vej\ni1mxjcEs2n6CcSs1ttFXZKnxi8hbQDwwNZVFmhhj6gKtgd4icldq6zLGTDDGhBpjQoOCgrJSlrLJ\niKV7WPFXtG/EJyYmWBdy9y2Dh0ZClZZpv6ZOR7ilCSx5Fy76zsFL9yYVebB2KT5ZvIvVe3zn35Wd\nZbrxi8jTwIPAkyaV94DGmCjH51PAHKBhZrenPNuSHSf5wlfiExMT4OcXYMsMuOf/oF7X9L1OBB4c\nDtcvwZK3XVujG4kIwx6rTdXiBeg7fRNHzmpso7fLVOMXkVbA60BbY0yKPwUikk9ECiR9DdwHbEtp\nWeXd9kdf5JUZm7mtTKD3xycmxMOcnv80/bsGZOz1QdWgcV+InA4HVrumRhvkzZmDcV3rE59oeGGq\nxjZ6u/QM55wOrAOqichREekOjAYKAEscQzXHOZYtLSILHC8tAawRkUhgA/CrMWaRS/4VyjaXrsXT\nc3I4OfyFsV3qeXd8YlLT3zoLWryT8aafpOlrUKg8/PoqxPvO1AcVi+VjRAeNbfQFac7OaYzplMLD\nE1NZ9hjQxvH1fqBOlqpTHs0Yw+s/bmFf9EW+f/Z2745PTIiHn56H7T9By8HQ5OXMrytnXmjzGUx7\nHJYOgfs/cFaVtkuKbRy5dA91yxeia6Nb7C5JZYKXj7VTdvpq9X5+3eoD8YkJcTC7u9X0730va00/\nya33QcMesG40hH+X9fV5kH4tqtIiuLjGNnoxbfwqU9buPc1HC3d5f3xiUtPf8bM1HLNxP+et+/4P\noXILaybP/Sudt16b+fkJwzvU/Se2MVZjG72NNn6VYVG+Ep+YEAc/PgM7foH7/wd3vuTc9fvngMe/\nsaZ5mNkVTu9x7vptFJgngPFdrdjGFzW20eto41cZ4jPxicbAL32sWTVbfQR39HbNdnIHQucZ4Bdg\n3QF82XdOjQSXLMjHj9Um7JDGNnobbfwq3YwxvPPLNrYcjWH4E3W8Oz5x9aew5Qdo/hY0esG12ypc\nATpOsyZym9HFp0b6tK1TmueaVOTbtQf5KeKo3eWodNLGr9Jt+oYjzAw7ykv3VOE+b45P3PYTLHvf\nmlM/s0M2M6r87dBuDBz6w0rt8qGhkAM1ttHraONX6RJx+Bzvzt3G3bcG0b+lF8cnHg237sot1wja\njrLutnWX2o/D3W/A5qnwxwj3bdfFboxtPHfJd97R+Cpt/CpNVnxiOCUDczPSm+MTzx+B6R0hfwno\nOBVy5HJ/Dc0GQa1H4ffBsGOu+7fvIv+ObdyksY0eThu/uqm4hER6T4sg5koc47uEem984rULMK0D\nxF+1plfOZ9N9ByLWKZ+yDeCnHnDUd/KJkmIbV+85zfAlf9ldjroJbfzqpj5csIsNjvjEGqUL2l1O\n5iQmwI/dIXoXPP4tFA+2t56APNbF3gIlrJE+0b6TbdupYXk6NSzHmOX7WLRNYxs9lTZ+lapfNkcx\n6Q8fiE/87f9gz2JoMwyqtLC7Gkv+4tB1Dvj5w+SHISbK7oqcJim28bVZGtvoqbTxqxT5THzixonw\n55dw+wvQ4Dm7q/m3IpWgy2y4GgNTHvGZMf65cmhso6fTxq/+4/zl6/ScHE5gHi+PTzy4BhYMgKr3\nee5EaaXqQKdpcHa/deH5um/Mda+xjZ7NS3+jlaskJBr6/bCZ4zFX+PJJL45PvHgKfnwWilSERyda\np1Q8VcW74NGv4cgGmPW0NZWED0ge2zh25T67y1HJaONX/zLy992s3B3Nu94cn5iYYE2xfDUGHv8O\ncnvBReka7az0rj2LYe5LPhPYnhTb+Oniv1i1W2MbPUV6glgmicgpEdmW7LEiIrJERPY4PqfYIUSk\nlYj8JSJ7RWSgMwtXzrdkx0m+WLaXJ0LL8qQ3xyeu+hT2r4A2n0DJWnZXk36hz1pTSEROh9/fsbsa\np/hXbOMPGtvoKdJzxP8t0OqGxwYCS40xVYGlju//RUT8gTFYQes1gE4iUiNL1SqXSYpPrF02kPfa\neXF84v6VsOJDqN0RQtKZletJ7hoADZ6HtaNgxUdw6bTdFWVZ3pw5GN+1PgmJhl5TNLbRE6TZ+I0x\nq4Abhxu0A5LSJb4D2qfw0obAXmPMfmPMdeAHx+uUh7noiE8MyOHH2C71vTc+8cJJmP0cFKsKD3zm\n3ukYnEUEWg+Dmo9Yf8A+qQwjasOsZ2DtaDi0zisvAFcolo+RHeuy/Vgsb87Zqhd7bZbZOXVLGGOO\nO74+gZWve6MywJFk3x8Fbs/k9pSLWPGJkeyLvsiU7rdTplAeu0vKnMQE+Ok56w7dp36BXF48c6if\nn3VBusFzEBVufRwNsxLCAMQfiteAkC7QqJe9tWbAPcEl6N+yKiN+30NIuUJ0vaOC3SVlW1meTN0Y\nY0Qky3++RaQH0AOgfHkvPr/sZSas2s+CrScY1DqYO6t4cXziymFwYJU1HUIJHzij6OcHFRpbH0ku\nnoKoCOsPwb6lsOgNKFMfyjWwr84M6ntPVbYejWHIvB1UL1WQ0ApF7C4pW8rsqJ6TIlIKwPH5VArL\nRAHlkn1f1vFYiowxE4wxocaY0KCgoEyWpTLij72n+XjRLh64rRQ9vDk+cf8KWPkx1OlsHQX7qvzF\noVoruOcteGouFCgFC16z3u14iaTYxjKF8/DCVI1ttEtmG/9coJvj627ALykssxGoKiIVRSQn0NHx\nOuUBjp67TJ9pEVQOys+wx2p778XcCyes8/pB1eCBT+2uxn1y5bcygo9vhk2T7a4mQwLzBDChaygX\nNbbRNukZzjkdWAdUE5GjItId+Ai4V0T2AC0d3yMipUVkAYAxJh7oAywGdgIzjTHbXfPPUBlhxSdG\nEJ9gGN+1Pvm8JT4x/jqcPwyH18P2ObDuS/ihM1y/ZI3Xz5nP7grdq9ajcEtj+H2I1033UK1kgb9j\nGz/4dYfd5WQ7af7GG2M6pfLUf2a7MsYcA9ok+34BsCDT1SmnM8bw9s/b2BoVw1dPhVLJk+MTjYGl\n78He3+HCccfQxhsuJwXkswJV7J5x0w5JI4DGN4XlH1gjmbxI2zql2Xr0PF+tPkDtsoV4tL4XTwTo\nZbzkUE85y7QNh5kVfpS+91Th3hopDcbyIBHfw5rh1lFt6RAoWNo6r538c57C3jls01lK1rLG/W/8\nCup1g1K17a4oQ95oFczWqBjenLOVaiULUKtMoN0lZQviieNpQ0NDTViY7wRUeIqIw+foMH4djasU\nY2K3Bp6dpHVmH4xrCmVDoevP1igXlbIr52FUfShaBZ5d5HV/CE9fvMZDo9bg7yfM69OEwvm8NOzH\nZiISbowJTc+y+tuUTSTFJ5YKzMOIDh4en5gQD3N6gX8OaD9Wm35a8hSClu/CkT9hy8z0vSZ6t8dM\nBmfFNtbX2EY30t+obCB5fOK4LvU9Pz7xj8/h6AZ4YDgElrG7Gu9QtwuUrgdL3oarsakvF3sMZj4F\nYxpYQ2A9RN1yhXhPYxvdRht/NvC/BTvZcOAsHz1S2/PjE6MirDlqaj0Gtz1mdzXew8/PGs568RSs\nGvbf5xPiYd0YGN0Adi+2QmDCvoH4a+6vNRUd/xXbeDztF6hM08bv437eFMU3fxzk6Tsr0D7Ew4+e\nr1+GOT0hX/HsNSbfWcrUt25g+3Psv3N8j2yACc1g8Ztwy53w4p/Q5lO4fBp2eNatNUmxja/O1NhG\nV9LG78N2HItl4E9eFJ/4+2A4vRseHmuN1lEZ13KwdT/DwgHW2P65L8HEe+HKWXhiMnSeaYXTVGoO\nRSpbo4E8SFJsY+4Af3pODuPCVc+4DuFrtPH7qPOXr9NzSpj3xCfuXQobxkOjF6FSM7ur8V75illz\n+u9fYc3quWkq3PkS9N4ANdr+M+LHzw8adIcj6+H4FltLvtG/YhtnaWyjK3h4N1CZkRSfeCLmqnfE\nJ14+Cz+/CEHB0MI3AkhsFdodyt9p5fn2Wm1N7ZDSbKV1O0OOPBA20f01piEptnHx9pMa2+gCegOX\nD0qKT3y/fS3Pj080Bua/DJfPwJMzIcBLp4X2JP454NmFaS+Xp7B1AX3LTGg5xBoW6kG6N6nI5iPn\n+XTxX9QqHchdt+rkjc6iR/w+5rftJ/hi2V4er++m+MTERDiwOvMzRG6aAjt+huZvWkeoyr0aPAdx\nlyHyB7sr+Q+NbXQdbfw+ZF/0RV6ZGUntsoEMbe+m+MTI6fDdgzDlEbh0Jv2vS0y0hm3O7QMVmkLj\nfq6rUaWudF0oEwobv7befXmY5LGNPSeHc+W690xB7cm08fuIi9fi6TU5nJzujk/c8TPkLmRFAo6/\nC46Gp/2aq7Ewo4sVLVinMzz5I/h5adyjL2j4PJzZAwdW2l1JipJiG3ccj+UtjW10Cm38PiB5fOKo\nTiHui0+8GmONHgnpAt0Xg/jBN62sG4NS++U8vQe+bgG7F1kzS7b/EgI8/OKzr6vRHvIWtY76PVRS\nbONPm6KY/Ochu8vxetr4fUBSfOIbrYJp7M74xN2/QcJ1qN7Wmj2z50rrtM38/tYpnLgr/17+r0Xw\n1T3WhdynfoHbe3rdhGI+KSA3hHSFXQsgJtWQPNv1vacqLYKL8968HWw86F35A55GG7+XS4pPbHNb\nSffHJ+6cC/lLQllH5mveIvDkLLjrdeui7cT74NxB63z+yk9gekfr5qEeK6FiU/fWqm4u9BkwiRD+\nrd2VpCoptrFs4Ty8qLGNWZLpxi8i1URkc7KPWBHpf8MyzUQkJtkyOkjbif4dn1jHvfGJ1y9bASnV\nH/z37Jl+/lYmbKcZcO4QjL8bpj4Ky9+H2k/As4uhULnU16vsUbgCVL0PIr6zks48VGCeAMY7Yhtf\n0NjGTMt04zfG/GWMqWuMqQvUBy4Dc1JYdHXScsaY9zK7PfVvV+MS6DUl/O/4xPzujk/ct9QaBlj9\noZSfr9YKeiyHwLKwfyXc/yE8PF7H6Xuyhs/DxZOwa57dldxUtZIFGPZYbcIPneN9jW3MFGd1ixbA\nPmOMXnVxA2MM//fzNrZFxdoXn7hjrnUD0C1NUl+maGV4fpnVTAq54Z4ClTWVW0ChW2DjRCvP14M9\nVKc0W5LFNj6msY0Z4qxz/B2B6ak8d6eIbBGRhSJS00nby9amrj/Mj3bGJ8Zft0blVHvAukv0ZnLk\n0qbvLZLm7zn0B5zcbnc1aXqjVTCNKhXhrTlb2RYVY3c5XiXLjV9EcgJtgVkpPB0BlDfG1AZGAT/f\nZD09RCRMRMKio6OzWpbPCj90jiHzttOsWhD9Wt5qTxEHVsK1WGvSL+VbQrqCfy7rqP9G8desi/WH\n1lm5CTbL4e/H6M71KJIvJz0nh3Pukudem/A0zjjV0xqIMMacvPEJY0xssq8XiMiXIlLMGHM6hWUn\nABPAytx1Ql0+59SFq7w41YpPHNkhxL74xJ1zIWcBnUXTF+UtYp3m2TIDEuPhwnGIPQ4XjlnDcJNr\n8Q40fdWeOh2SYhufGLeOvj9s4ttnGnp2rKiHcMapnk6kcppHREqKY6iJiDR0bC8D9/WrJHEJifSZ\nuomYK3GM71qfwLwB9hSSEA+7foVb77dO4yjf0+gF6wa8vxZa12cCy0KNdtZ0z21HQ5fZcNvjsPQ9\n+H2I7VOG4CLIAAAgAElEQVQ91C1XiKHtrdjGT3/T2Mb0yNIRv4jkA+4FeiZ7rBeAMWYc8BjwgojE\nA1eAjkbvt86UD37dyYaDZxnZsS7VS9kYn3h4nXXkl9poHuX9StWGN6NufnNdpeYQkBfWDIfrl6DV\nR/8e1utmHRqUZ/ORGMau2EftMoG0vq2UbbV4gyw1fmPMJaDoDY+NS/b1aGB0VrahrPjEb9ce5NnG\nFWlX1+b4xJ1zrTncq95rbx3KtdK6J8TPHx4aCbkKwLrRVvNv+4Wtcy4NbluDHcdjeW1WJFVL5KdK\n8QK21eLp9M5dD7f9WIwVn1ixCIPaBNtbTGIi7JwPVVpY8X4qexOxQl7uHgibp8Ds7rbe/JUrhz/j\nutQjT05/ekwO19jGm9DG78HOX75OrynhBOYJYEznevbHJ0aFWxf5qutoHuUgAs0Hwb1DYfsca9bV\nG+docqNSgXkY1akeh85c5tWZkSQm6pnllGjj91AJiYa+jvjEsV3qE1TAAy6k7pwLfgHWhV2lkmvc\nFx4YDnt+g6mPw7WLtpVyR+WiDGodzG87NLYxNdr4PdSI33ezanc0Q9rWol55D4hPNMZq/JXu9riI\nPuUhGnSHh8dZN4B92wZO7bStlO5NKtK2Tmk+/e0vVu3W+4JupI3fA/22/QSjlu2lQ2g5OjX0kAnN\nTm6zbt7R0zzqZup0hI7TIOYojGsKK4dBgvvPtYsIHz16G9VKaGxjSrTxe5jk8YlD2tV074ybN7Nj\nrhW0EvyA3ZUoT1etNfTeYN3ZvfwDmNAcjm12exlJsY2JGtv4H9r4PYht8YnpsXMe3NIY8rkx6EV5\nr3zF4LFJ1tH/pWgrgOf3IRDn3jn0bymaj5EdQ9h5QmMbk9PG7yGSxyeOdmd8Ynqc3gPRO/WmLZVx\nwQ9A7z+hbifrZq/xTeHwereW0Dy4OP1b3Kqxjcm4eRJ3lZrxjvjEN9sEc6c74xPTY+dc63Pwg/bW\nobxTnsLQbgzUfATm9YdJ91vzPBW7FYpWsabvLloZAsu57Aawl+6pwtao87w3bwfVSxWkQYUiLtmO\ntxBPfOsTGhpqwsLC7C7DbdbsOc1Tk9bT+rZSjO4U4t7z+pfOwJ9jrLfjuQtB7kDHh+PrPIXg11es\nGRufX+q+upRvunYBVn4MB1bBmX1wPdmwT/+cUKSS9ceg6StQpr5TNx17NY52o//g4rV45r/UhBIF\nczt1/XYTkXBjTGi6ltXGb6+j5y7z0Kg1BBXIxZwXG5PPXUlacVfgz7Gw5nPrly9fEFyNgfhUzsHe\nO9Qaq62UsxgDF0/Bmb3/fJzdD0fWW3cAd5sLpes6dZO7T16g/Zg/qF6qINOfb0TOHL5ztlsbv5e4\nGpfAY+PWcuj0Zea+1ISKxdwwDUJigjXl7rL3ITYKbm0N9w6BoGrW83FXrbn2r8bAlfPW57jL1tw8\nGpuo3OH8EfimtfVz98zCf342nWT+lmP0mbaJp+64hffa1XLquu2Ukcav5/htkjw+8eunQt3T9Pcu\nhSXvwsmtULoePDIBKtwQnRiQ2/rIX9z19SiVkkLl4KlfYFIr+L6d1fyLVHTa6h+sXZotR2OYsGp/\nto1t9J33OV7m7/jEFlVp6cr4RGPgyAaY/DBMecQ6mn9sEjy39L9NXylPUbQyPPWzderx+3YQe8yp\nq3/9/mrcUaloto1t1MZvg6T4xObVgujfoqprNnJmHyz/EL4IgYn3wrFNcP+H0GejlbBk49zpSqVL\niZpW6MvlM1bzv/Sf4L5Ms2IbQyiaTWMb9bffzZLHJ47oEIKfM2PiLkbD+vHwVQsYVc8aPVGonDWU\nrt8WuONFTc1S3qVMfeg8A84ftt61XjnvtFUXdcQ2Rl+4Rt8fNpGQjWbyzFLjF5GDIrJVRDaLyH+u\nxorlCxHZKyJbRKReVrbn7VwWn3hqlzUj4mfVYOHrVij2vUPhlR3QbR6EdIHcNqZ2KZUVFZpAh6nW\npG/TnrBCX5ykTrLYxs+yUWyjMy7uNk8pPN2hNVDV8XE7MNbxOVv63wIXxCcmxFsBGLFRcOdLUPsJ\n6y2yUr6kakt4bCLMehqmd4InZznt3WtSbOOXK/ZRu2wgrWr5fmyjq0f1tAO+d+Ts/ikihUSklDHm\nuIu363F+3hTFN3+4ID4x4ltr5szHv4WaDztvvT7AGMOOszu4HOe6mRlrFatFnhw6zNUtarSzwt5/\nedE6penE+0oGt63BzuOxvDozkirFC1CleH6nrdsTZWkcv4gcAGKABGC8MWbCDc/PBz4yxqxxfL8U\neMMYk9JpoR5AD4Dy5cvXP3TId+bU2HEslkfG/kHtsoWY+tztzkvSunzWOpdfopZ1SsdTZvL0EGM3\nj+XLyC9duo3qRarzfevvyZ3Dt+4C9WiTH7Zm++wX6dRTmMdjrvDQqDUUzBPAL70bUyC3k07Fuok7\nx/E3McZEiUhxYImI7DLGrMrMihx/NCaAdQNXFuvyGOcvX6fnlDAK5cnp/PjE5R9YN1i1/lib/g1W\nHlnJl5Ff0rpiax6/9XGXbONAzAGG/jmUoX8O5f3G73vOFNq+7p634avm1p3nzd5w2mpLBeZhdOd6\nPPn1el6dGcm4LvWdO/jCg2Sp8RtjohyfT4nIHKAhkLzxRwHJk0TKOh7LFpLiE0/GXGNGz0bOjU88\nsRXCJkGD5/Sc/g0Oxx5m0OpBBBcJ5r0733PZ0XiDkg04feU0YyPHUrtYbToEd3DJdtQNytSzJgxc\nNxoaPg95nTfhWqNKRXmzTXWGzt/B2JX76N28itPW7UkyffgpIvlEpEDS18B9wLYbFpsLPOUY3dMI\niMlO5/eT4hMHt61JiDPjE42BhQOtidSaDXLeen3A5bjL9FveDz8/Pz5v9rnLT8H0qtOLpmWa8tHG\nj9h8yv1hI9nWPf9nTfj2xwinr/rZxhV8PrYxK+cdSgBrRCQS2AD8aoxZJCK9RKSXY5kFwH5gL/AV\n8GKWqvUiLo1P3D4HDq2xfvideLTj7YwxDF47mH3n9zGs6TDKFnD9rfh+4seHTT+kVL5SvLLiFU5f\ncd5NRuomile3RrCtnwAXTjh11dkhtjHTjd8Ys98YU8fxUdMY84Hj8XHGmHGOr40xprcxprIx5raU\nLur6IpfGJ16/BL+9DSVug/pPO2+9PmDyjsksPLiQvvX6cmeZO9223cBcgYxoPoKLcRd5dcWrxCW6\nP2M2W2o2EBLjYPVnTl+1r8c26p27TnbxWjw9XRmfuGYExB6FNsNcFlrhjTYc38Dw8OG0KN+C7rW6\nu337txa+lSF3DiHiVASfhTm/EakUFKkEIV0h7Bs45/xRgL4c26iN34mMMQyYFcn+6IuM7uyC+MRz\nB+GPkdZcO7e474jW0524dIIBqwZQvmB5W0fXtK7YmqdqPMXUnVOZt2+eLTVkO3cNAPGDlcNcsvrm\nwcV5uaUV2/j9Ot8ZYq6N34nGr9rPwm0nGNS6OndWdkF84m//Zx3l3/ue89ftpa4lXOPl5S9zLeEa\nI5qPIH9Oe2+8ebn+yzQo2YD31r3HrrO7bK0lWwgsY41si5xmZUO7QJ/mVWhZvThD5+9g48GzLtmG\nu2kQi5O4PD5x/wprhsJ7/s86ylEADF47mNl7ZjOi2Qha3NLC7nIAOHPlDE/Mf4IAvwBeqPOCy96B\nVC9SnaqFXTS7qze5dBpG1oGq98Hj37hkE94Q26gJXG7m0vjE+Otw4ThM62AlEvXeYAWlKH7c/SND\n1g2he63u9K/f3+5y/mVr9Fa6/9adK/FXXLaN3P65mdJmCtWKODehyistex9WfQI9V0Op2i7ZhKfH\nNmrjdyOnxCcmJsKOn623qheOQezxfz5fTjY8sOM0CH7AecV7sa3RW+m2qBuhJUIZ23Is/h54oTv2\neiwx11wT8nE57jIv/v4iAf4BzHhwBoG5Al2yHa9x5TyMrA3l77CmcXYRT45t1OhFN0kenzixWybj\nE69dgJ96wF8LrO/zFoOCpaBAaWsu8gKlre+L14Cy6fo/9Xlnrpzh5RUvUzxvcYbdNcwjmz5AwZwF\nKZjTddNhD28+nKcXPc0bq99gzD1jPHY/uEWeQtC4PywdYiXOlWvoks34SmyjNv4smOKIT+zXoiot\nqmciPvHcQWuK2ei/oNXHEPqMBqWkIT4xngGrBnD+2nkmt55ModyF7C7JNnWC6jCo4SCG/jmULyO/\n5KWQl+wuyV6397Tm71nyLnSabv0xyKiEOGuU0E3+iL5+fzW2RcXw5pytBJcsQK0y3vduy7NOUnmR\n8ENnec8Rn9gvM/GJB1bDhObWPPpdZkOjXtr00+Hz8M/ZeGIj797xLtWLVre7HNs9fuvjPFzlYSZs\nmcCyw8vsLsdeOfNB8zfh8ForlGj2c7BvuXUq9Wbir8GuX63lP64AUx6FxNRv2Mrh78eoTiEUc8Q2\nnvXC2EZt/Jlw6sJVXpgSQelCmYxP3DgRJreHfMXg+eVQublrCvUxCw8s5Psd39MpuBMPVX7I7nI8\ngojwVqO3qFm0Jm+ueZMDMQfsLsleoc9AjxXWjV17frN+z0bWhmUfwNlk+yb+OuxeDHN6wSdV4IfO\nsPd3uKUx7F8Oaz6/6WaK5s/FuK71ib54jb7TvS+2US/uZlBcQiKdv/qTbVGx/PTinRlL0kqIg0UD\nYePXUOVeK1Eot/e9TbTD7nO76bKgC8FFgpl430QC/L1rrnRXO37xOB3md6BI7iJMfWAq+QIycb3J\n18Rdhb9+hU1TYd8ywECFphBYznr8aoz1+xf8ENR6GCreDX45rES77T/DMwuh/M0DA2duPMLrs7fw\nQrPKvNEq2D3/rlToqB4XGjx3O9+uPcjIjnUzlqR1+SzMfAoOrrYiElsO0SkX0in2eiwd53fkSvwV\nZj44k6C8QXaX5JHWH19PjyU9aFG+BZ/d/ZnmAyQXcxQip8Pmada4/+AHrMS6Ss0hR85/L3s1BsY1\ntWbB7bU6zWsFb87ZyrT1hxn7ZD1a32ZfbGNGGr+e6smAOZuO8u3ag3RvksH4xLP74esWcGQ9tB8L\n972vTT+dEk0ig1YP4vjF4wxvNlyb/k3cXup2Xq73MksOLeHb7d/aXY5nCSxr3fjYdxMMPAwPj4Nb\n7/9v0wfrXcBjk6wh1fP6WX8AbuLdh2oQUr4Qr82KZM/JCy76BziXjupJp+3HYhg4eyuNKhVhUOsM\nvKU7HglTHrNmEew2P823jt7mUtwlftrzk8tybffH7GfV0VW8dftbhBQPcck2fEm3mt3YenorIyJG\ncP7aefLmyOuS7ZTKX4qHKj3kne8q0lNz2VDrLvnfB0PE91C/W6qL5srhz9gn6/PgqNX0nBzOz30a\nU9DDYxu18afD+cvX6Tk5nMJ5czK6cz1ypDc+8cAqmN7ZOoJ4ej4E+dYdlokmkYGrBrLi6AqXbqdD\ntQ50qKbpVukhIgxtPJTjl44zadskl27r3NVzdKuZekP0enf2s6ZKWfgGlLsdiqd+wFcyMDdjOtej\nsyO2cbyHxzZq409DUnziqVgrPrFY/nQOudz+M/z0PBSpbA3XDMzAqSEvMWHLBFYcXcHAhgNd2phz\n+OmPaUbkDcjL1DZTSTCumUPeYHhj1RsMDx9OcJFgbi/lW+9i/+bnBw+Ph7GN4cdn4fllN50u5fZK\nRXmrTXXe84LYxqxEL5YTkeUiskNEtotIvxSWaSYiMSKy2fHxTtbKdb/Pl1jxiUPaZSA+cePXMOtp\nKF0Pnl3ok01/1dFVfLn5Sx6q9BCdgzuTwy+Hyz5UxomIy/4/AvwCGNp4KBUKVmDAygGcuOTcBCyP\nUqCkdT3g1HZrdtw0PNO4Au3qWrGNKz04tjErF3fjgVeNMTWARkBvEamRwnKrjTF1HR9eNZ/w4u0n\nGL18Lx0blKNTw/Jpv8AYWP4/+PVVuLUVdJ0DeZyYteshjsQeYeDqgVQrUo2373jbO8/zqizJF5CP\nEc1HcD3x+t/TYvusqvfCHX1g41fWjV43ISJ8+IgjtnG658Y2ZiV68bgxJsLx9QVgJ+Azh7Z7T13k\n1ZmR1CkbyOC2NdN+QWICzO8PKz+GkC7QYQrkdM2FNTtdjrtMvxX9EITPm31OnhxODptRXqNiYEU+\naPIB285s48P1H9pdjmu1eBdK1YVfeltDQ28iKbbRGEMPD41tdMpwThGpAIQA61N4+k4R2SIiC0Uk\n1Q4qIj1EJExEwqKj7X2LZMUnhpErvfGJ1y9bY/TDv4Umr0Db0eDve6cojDEMXjeYvef2Muwu94SZ\nK8/WonwLnr/teWbvmc2s3bPsLsd1cuS0hngmxMHMbtY0DzdxS9F8jOwUwq4TsQz6aYvHxTZmufGL\nSH5gNtDfGBN7w9MRQHljTG1gFPBzausxxkwwxoQaY0KDguwbq22M4bWZkRw8c5lRnUMonVZ84sVT\n8N2D1lvAVh9Dy3fTN1zMC03ZOYWFB6ww88ZlGttdjvIQvev2pnGZxvxv/f+IjI60uxzXKVrZug8n\nKgx+fSXN8f3NqxXnlZa38vPmY3y39qB7akynLDV+EQnAavpTjTE/3fi8MSbWGHPR8fUCIEBEXJBJ\n6DzjVu5n0fYTDGodnHZ8YvRf1o1ZJ3dAx6nWRGs+auOJjXwW9pltYebKc/n7+fNx048pkbcEr6x4\nhdNXTqf9Im9Vo611I9imKdYgjjT0bl6FltVL8P6vO9lwwHNiG7MyqkeAicBOY8zwVJYp6VgOEWno\n2N6ZzG7T1VbvieaTxbt4sHYpujepePOFD6yCifda84E886tPB6ScuHSC11a+RrkC5WwNM1eeKzBX\nICObjyT2WiwDVg4gLjHO7pJcp9mb1uCNRQPh0NqbLurnJwzvUIdyRfLy4tQITsZedVORN5fpuXpE\npAmwGtgKJM17+iZQHsAYM05E+gAvYI0AugK8Yoy5+Z7Cnrl6jpy9TNvRayheIDdzet9J3pw3OUcf\n+QP80sd669d5JhS+xX2FpmDX2V3M+muWy8ZtR0ZHcuziMaY/MJ1KhSq5ZBvKN8zbN48317xJo1KN\nKJPfNWM98gXko/tt3SmSu4hL1p8uV2Pgq3uszz1WWFNC3ERSbGNwyQL80OMOl8Q26iRtGXQ1LoFH\nx67l8NnLzOvThAqpJWkZY43aWfEhVLwLnpicubAHJzp56SRPzH+CK/FXyB+Q3yXbyOmfk4ENB9Ks\nXDOXrF/5lrGbx7r0Qu+5q+cIKRHChHsn2HufR/Rf8FULKFYFnlmUZhb2gq3HeXFqBF0alef99rc5\nvRxt/BlgjOHVWZH8FBHFpKdDuSc4lSSt+Oswr681w1+dzvDQyJQneHKj6wnXeWbxM+w5t4fpD0yn\ncqHKttajlDskvat4qsZTDGgwwN5idi2AHzpZPaH9l2kO7Phw4U7Gr9zPsMdq80RoOaeWorNzZsCU\nPw/xU0QU/VtWTb3pXzwF37ezmn7zt6z/YJubPsDHGz5mS/QW3m/8vjZ9lW08VPkhOgV34vsd37Pw\nwEJ7iwluA80GQeQ0WD8+zcUH3FeNxlWK8n8/b2Pr0Rg3FJiybN34ww+dZci8HbQILk7fe1KJT4wK\nh/F3w7FN8OhEuPt1jxiuOWfPHGbunskztZ7hvgr32V2OUm41IHQAIcVDeHftu+w+t9veYu56Hao9\nAIvftCJVbyKHvx9fdAwhKH8uek2xL7Yx2zb+U7FWfGKZwnkY3qFuyjPpbZoKk1pbqTzdf4PbHnN/\noSnYfno77//5PreXup2+IX3tLkcptwvwD+Czuz8jf0B++i/vT+z1G28hciM/P2s+n6JVYFY3+GvR\nTXN+i+bPxdgu9Yi+eI2XpkcQn5BGJrALZMvGfz0+kRenRnDhajzju9YnMM8Nc2cnxMGC1+GXF635\n83usgFK17Sj1P85ePUv/Ff0pmqcon9z1iU5iprKtoLxBDG82nOOXjjNo9SASjfsb6N9yF4SO06zA\n9+kdYOydsHm61UtSULtsId5vX4s/9p7h09/c/44lWzb+D37dQdihc3z8WG2CS96QmXsxGr5vDxvG\nWxMzdZkD+YraU+gN4hPjeX3V65y9cpbPm39O4dy+NwGcUhlRt3hd3mjwBquOrmJ8ZNrn2F2qWBV4\nKQIengDiBz/3gpF1Yd2XcO3ifxZ/IrQcT95ennEr97Fw63G3lprtGv/s8KN8t+4QzzWpSNs6pf/9\n5LFNMKGZdUv2I1/B/R941Jw7X0R8wfrj63n7jrepWTQdE8cplQ10qNaBtpXb8mXkl6w8stLeYvwD\noE4HeOEP6DzLusdn8SD4vCYse9/K+03mHZtiG7NV498WFcObc6z4xIE3xidu/REmtbIu3D67GGo/\nYU+RqVh8cDHfbP+GDtU60L5Ke7vLUcpjiAhvN3qb6kWqM2j1IA7FHrK7JKuP3HofPLMAuv8OFZrA\nqk9gRG0rytExjD4ptjFPTn96Tg4n9qp77njONuP4z126zkOj1xCfYJjft8k/SVrGwIqPYOVHcEtj\neOJ7yJfx6YRm7JrB8iPLnVpzchGnIqhauCrf3v8tAf6eneeplB2iLkbRYX4Hcvvnpkoh16Rf+Ykf\nz9R6hgYlG2T8xdG7rcndDq6GGu2se4EceR3r95+h89fruSe4eKZjG/UGrhskJBqe/mYD6/efZUbP\nRv8kacVdsebX3jYb6j4JD47I1Pj8JYeW8MqKV6hQsAIFcxZM+wWZUCh3Id5p9A4l8qVyr4FSirAT\nYYzaNIr4xHiXrP/4peNcTbjKjAdmUK5gJm7ASkyAtV9Yp33yl4RHJkAFa6bbSWsOsHpPNGOerHfz\nKWNSoY3/Bp8s3sWY5fv48JHb/knSungKfugMRzdCy8HQuH+mxufvP7+fTr92okqhKnzT6hty+tt/\nY5dSyjWOXjhKh/kdKJGvBFNaTyFvQCbDlqLCYfZzcPYANH0Vmg3E+OXAGDId0q537iazaNsJxizf\nR6eGyeITT263Jlg6sc2ab6fJy5lq+hevX6Tf8n7kzpGbz5p9pk1fKR9XtkBZht01jL3n9jJk3ZDM\nB6yUqQ89V1tnGlZ/CpNaIecOZrrpZ5RPN34rPnEzdcoV+ic+cfdvMPE+SIy3gtBrtM3UuhNNIm+t\neYsjF47w6d2fUjJfSSdWrpTyVI3LNOalkJdYcGABU3dOzfyKcuWH9mPgsW/g9B4Y1xQiZziv0Jvw\n2cZ/4WocPSeHkTvAn7FP1iOXvx/8Oda6uaJIJXh+GZQOyfT6J22bxLIjy3g19NXMXehRSnmt7rd1\n555y9/Bp2KdsPLExayur9Qi8sAZK1oKl76U45t/ZfLLxG2N4bVay+MRLO2DS/VZwQrU28OwiKFg6\n7RWlYm3UWr6I+ILWFVvTpXoXJ1aulPIGfuLHB00+oFyBcry28jVOXjqZtRUWKg9P/2qFOuVyzfTq\nyWU1erGViPwlIntFZGAKz4uIfOF4fouI1MvK9tJr7Mp9LN5+kqHNi3Bn5FvW+fyzB6DtKOucfs5U\n5ttPh6MXjvL66tepWrgqg+8YrGlUSmVT+XPmZ2TzkVyNv8orK1/hekIWJ1zz84fCFZxSW5qbyuwL\nRcQfGAO0BmoAnUSkxg2LtQaqOj56AGMzu730WrU7mtGLtzC6zG902vAwbJ8DTV6BvhFQ7ylrQqVM\nuhJ/hZdXvEyiSWREsxGZv6KvlPIJlQpV4oMmH7AlegsfbfjI7nLSLSvzETQE9hpj9gOIyA9AO2BH\nsmXaAd8b69L3nyJSSERKGWNcMjHFkTOXWDj9C1bmnkbQmdNQoz3cO8Qpf0WNMQxdN5S/zv7FmBZj\nMjeGVynlc1re0pLutbozcdtEahWrxSNVH7G7pDRlpfGXAY4k+/4ocHs6likDOL3xX71wlj6zmyGl\nr/Gcf36kQGUIiIGV/Z2y/gSTwMHYg/Su25umZZs6ZZ1KKd/wUshLbD+znaF/DuX77d9nej2BuQL5\nrvV3TqwsZR4zA5mI9MA6HUT58uUz/HqTsyAlyE9i/koULFkJXHDqvXXF1vSo3cP5K1ZKeTV/P38+\nuesTRm4aScy1zCdruerO/xtlpfFHAcnPd5R1PJbRZQAwxkwAJoB1525Gi8mTKwcTeqzN6MuUUsop\nCuUuxLt3vGt3GemSlVE9G4GqIlJRRHICHYG5NywzF3jKMbqnERDjqvP7Siml0ifTR/zGmHgR6QMs\nBvyBScaY7SLSy/H8OGAB0AbYC1wGnsl6yUoppbIiS+f4jTELsJp78sfGJfvaAL2zsg2llFLO5ZN3\n7iqllEqdNn6llMpmtPErpVQ2o41fKaWyGW38SimVzXhk9KKIRAOHMvnyYsBpJ5bjTFpb5mhtmaO1\nZY631naLMSYoPSvxyMafFSISlt7cSXfT2jJHa8scrS1zskNteqpHKaWyGW38SimVzfhi459gdwE3\nobVljtaWOVpb5vh8bT53jl8ppdTN+eIRv1JKqZvwmcafVvC7nUTkoIhsFZHNIhLmAfVMEpFTIrIt\n2WNFRGSJiOxxfC7sQbUNFpEox/7bLCJtbKirnIgsF5EdIrJdRPo5Hrd9v92kNk/Yb7lFZIOIRDpq\nG+J43BP2W2q12b7fktXoLyKbRGS+43un7DefONXjCH7fDdyLFe+4EehkjNlx0xe6iYgcBEKNMR4x\nNlhE7gIuYuUh13I8Ngw4a4z5yPGHs7Ax5g0PqW0wcNEY86m760lWVymglDEmQkQKAOFAe+BpbN5v\nN6ntCezfbwLkM8ZcFJEAYA3QD3gE+/dbarW1wub9lkREXgFCgYLGmAed9XvqK0f8fwe/G2OuA0nB\n7yoFxphVwNkbHm4HJIV9fofVONwuldpsZ4w5boyJcHx9AdiJlR9t+367SW22M5aLjm8DHB8Gz9hv\nqdXmEUSkLPAA8HWyh52y33yl8acW6u4pDPC7iIQ7soU9UYlk6WgngBJ2FpOCl0Rki+NUkC2noZKI\nSAUgBFiPh+23G2oDD9hvjtMVm4FTwBJjjMfst1RqAw/Yb8AI4HUgMdljTtlvvtL4PV0TY0xdoDXQ\n2yR8zEYAAAHFSURBVHE6w2M5AnQ85sgHGAtUAuoCx4HP7CpERPIDs4H+xpjY5M/Zvd9SqM0j9psx\nJsHx818WaCgitW543rb9lkpttu83EXkQOGWMCU9tmazsN19p/OkOdbeDMSbK8fkUMAfr1JSnOek4\nV5x0zviUzfX8zRhz0vELmgh8hU37z3EeeDYw1Rjzk+Nhj9hvKdXmKfstiTHmPLAc6xy6R+y3lGrz\nkP3WGGjruD74A3CPiEzBSfvNVxp/eoLfbSEi+RwX3BCRfMB9wLabv8oWc4Fujq+7Ab/YWMu/JP2g\nOzyMDfvPcSFwIrDTGDM82VO277fUavOQ/RYkIoUcX+fBGoCxC8/YbynW5gn7zRgzyBhT1hhTAauf\nLTPGdMFZ+80Y4xMfWKHuu4F9wFt215OsrkpApONjuyfUBkzHegsbh3U9pDtQFFgK7AF+B4p4UG2T\nga3AFscPfikb6mqC9bZ6C7DZ8dHGE/bbTWrzhP1WG9jkqGEb8I7jcU/Yb6nVZvt+u6HOZsB8Z+43\nnxjOqZRSKv185VSPUkqpdNLGr5RS2Yw2fqWUyma08SulVDajjV8ppbIZbfxKKZXNaONXSqlsRhu/\nUkplM/8PI0MOrA6nThsAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(data.max(axis=0))\n", "plt.plot(data.mean(axis=0))\n", "plt.plot(data.min(axis=0))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "** En definitiva**:\n", "* Hemos importado una librería por primera vez y lo hemos hecho con un alias.\n", "* Hemos visto como acceder a atributos de los arrays como `shape` y `size`, así como a métodos como `max` o `std`.\n", "* Hemos visto como acceder a elementos y secciones de un array\n", "* Hemos visto como aplicar algunos de los métodos sólo a las columnas o las filas de un array.\n", "* Hemos hecho nuestras primeras representaciones con matplotlib" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### Los materiales de esta clase son una adaptación de: http://swcarpentry.github.io/python-novice-inflammation/ distribuido bajo licencia [Creative Commons Attribution license](https://software-carpentry.org/license/)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### Mabel Delgado, Alejandro Sáez" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "_Las siguientes celdas contienen configuración del Notebook_\n", "\n", "_Para visualizar y utlizar los enlaces a Twitter el notebook debe ejecutarse como [seguro](http://ipython.org/ipython-doc/dev/notebook/security.html)_\n", "\n", " File > Trusted Notebook" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/html": [ "/* This template is inspired in the one used by Lorena Barba\n", "in the numerical-mooc repository: https://github.com/numerical-mooc/numerical-mooc\n", "We thank her work and hope you also enjoy the look of the notobooks with this style */\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# preserve\n", "# Esta celda da el estilo al notebook\n", "from IPython.core.display import HTML\n", "css_file = '../styles/aeropython.css'\n", "HTML(open(css_file, \"r\").read())" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }