
The internals and the latest trends of container runtimes
コンテナランタイムの仕組み及び最新の動向

Akihiro Suda (NTT)
akihiro.suda.cz@hco.ntt.co.jp

June 16, 2023, CCE Colloquium, Kyoto University
2023年6月16日 京都大学 大学院 情報学研究科 通信情報システムコース 談話会

2008-2012: Department of Information Science, Kyoto University (Yuasa Lab.)
2012-2014: Graduate School of Informatics, Kyoto University (Takagi Lab.)
2014-Present: Software Innovation Center, NTT Corporation

A maintainer of several container-related open source projects:

Moby (≈ Docker)
The open source upstream of Docker

containerd
The underlying runtime of Docker and Kubernetes

runc
The low-level runtime below containerd

And also BuildKit, OCI Runtime Spec, nerdctl (Founder), Lima (Founder), etc.

2 

Self-Introduction

Docker : Moby ≈ Chrome : Chromium

● Introduction to containers

● Internals of container runtimes

● Latest trends in container runtimes

3 

Topics

Introduction to containers

● Lightweight methods to isolate filesystems, CPU resources, memory
resources, system permissions, etc.

● Not really well-defined, actually (discussed later)
● Pros and cons compared to virtual machines:

5 

What are containers?

Pros 😃
● Low overhead

○ No hardware emulation
○ The kernel is shared with the

host operating system
● Direct access to host filesystems,

networks, GPUs, etc.
(when permitted to do so)

Cons 😥
● Can’t run Windows on Linux hosts

● Can’t change kernel config

● Weak isolation

● The most popular container engine
● Supports Linux and Windows

(But Windows is out of the scope of my talk)

● Using Docker is assumed for the most part of this talk (with its default config)

● Non-Docker containers will be discussed later too;
most of them are very similar to Docker under the hood 6 

Docker

$ docker run -p 8080:80 -v .:/usr/share/nginx/html nginx:1.25

Forwards the TCP port:
8080 (host) → 80 (container)

Mounts the current directory on the host onto
/usr/share/nginx/html in the container

A pure nginx image,
without systemd, sshd, ...

● An image can be built using a language called Dockerfile

● The built image can be pushed to registries like Docker Hub

7 

Docker

FROM debian:12
RUN apt-get update && apt-get install -y openjdk-17-jre
COPY myapp.jar /myapp.jar
CMD ["java", "-jar", "/myapp.jar"]

$ docker build -t myimage -f Dockerfile .
$ docker run myimage ...

$ docker login example.com
$ docker push example.com/myimage

● Composes containers using a declarative YAML

8 

Docker Compose

Docker container

DB

Docker container

Application server

Docker container

Web serverservices:
 web:
 image: nginx:1.25
 ports: 8080:80
 app:
 image: example.com/myimage
 db:
 image: postgresql:15.3
 …

$ docker compose up

● Kubernetes clusterizes container hosts
(such as, but not limited to, Docker hosts)

● Provides load balancing & fault-tolerance across container hosts

9 

Kubernetes

container container container

● Kubernetes clusterizes container hosts
(such as, but not limited to, Docker hosts)

● Provides load balancing & fault-tolerance across container hosts

10 

Kubernetes

container

container container

Failure

container

Automatically rescheduled
on another host

● Docker (2013) wasn’t the first container platform

● 1999: FreeBSD Jail

● 2000: Virtual Environment system for Linux (precursor to Virtuozzo and OpenVZ)

● 2001: Linux Vserver

● 2002: Virtuozzo

● 2004: BSD Jail for Linux

● 2004: Solaris Containers

● 2005: OpenVZ

● 2008: LXC

● 2013: Docker

11 

Docker vs pre-Docker containers

Apparently, the term “container” was coined this time

The basis of the modern container ecosystem was
almost established by 2008

Docker was just a wrapper for LXC until 2014

Other precursors to containers: chroot in UNIX 7th Ed. (1979), chroot with a security enhancement in System III (1982), Plan9 namespaces (1992)

https://svnweb.freebsd.org/base?view=revision&revision=46155
https://lkml.iu.edu/hypermail/linux/kernel/0008.2/0042.html
https://www.cs.helsinki.fi/linux/linux-kernel/2001-40/1065.html
https://wiki.openvz.org/History
https://lkml.iu.edu/hypermail/linux/kernel/0409.1/0994.html
https://web.archive.org/web/20041116174148/http://www.sun.com/smi/Press/sunflash/2004-11/sunflash.20041115.2.html
https://wiki.openvz.org/History
https://github.com/lxc/lxc/tree/5e97c3fcce787a5bc0f8ceef43aa3e05195b480a
https://www.youtube.com/watch?v=9xciauwbsuo
https://github.com/dspinellis/unix-history-repo/blob/Research-V7/usr/sys/sys/sys4.c#L199-L203
https://utcc.utoronto.ca/~cks/space/blog/unix/SystemIIIBlindSpot
https://dl.acm.org/doi/10.1145/506378.506413

● Pre-Docker containers had focused on mimicking an entire VM,
with SysV init, sshd, syslogd, etc., inside it

● For a single-host environment, it was often common to put Web server +
Application server + DB in a single container

12 

Docker vs pre-Docker containers

pre-Docker container

Web server

Application server

DB

SysV init sshd ...

13

Docker vs pre-Docker containers

Docker container

DB

Docker container

Application server

Docker container

Web server

pre-Docker container

Web server

Application server

DB

SysV init sshd ...

Split

Stateless,
Immutable,

Scalable

Persistent data are
preserved on

external volumes

● In the case of Docker, services are split to separate containers, even on a single
host

14

Docker vs pre-Docker containers

Docker container

DB

Docker container

Application server

Docker container

Web server

pre-Docker container

Web server

Application server

DB

SysV init sshd ...

Split

Stateless,
Immutable,

Scalable

Persistent data are
preserved on

external volumes

● Disposable
● No need to “take a care”
● Load-balanced
● Fault-tolerant

● In the case of Docker, services are split to separate containers, even on a single
host

● Filesystem images can be shared with other users on Docker Hub

● docker push to Docker Hub, just like git push to GitHub

→ Docker became the de facto standard

15 

Docker vs pre-Docker containers

Internals of container runtimes

Using Docker (v24) is assumed, but most parts are applicable to non-Docker containers too

● Consists of client (docker CLI) and
daemon (dockerd)

● dockerd talks to containerd
to manage process life cycles
(and also images, since Docker v24, depending on config)

● containerd executes runc to create
“containers”, which are implemented
by several kernel features such as
namespaces and capabilities

● No “container” object exists in Linux
kernel

17 

Docker under the hood

CLI

dockerd

Provides command
line interface

Manages images,
networks, and storages

Manages process life
cycles

Implements
“containers” using

Linux kernel features

Namespaces,
capabilities, ...

Engine
R

untim
es

H
igh-level

Lo
w

-level

CLI: Command Line Interface Engines can be also classified as runtimes in a broader sense

● Mount namespaces
○ Isolates the rootfs from the host

(with pivot_root(2))

● Network namespaces
○ Allows assigning dedicated IP

addresses to containers

● PID namespaces
○ Hides the host processes from

containers

18 

“Container” technologies offered by the kernel

● Cgroups
○ Limits container resources such as

memory and CPU

● Capabilities & Seccomp
○ Limits syscalls

● AppArmor XOR SELinux
○ Strictly limits file accesses

● Isolates the filesystem view from the host (and other containers)

19 

Mount namespaces

Mount namespaces were merged in Linux v2.4.19 (2002), enhanced in Linux v2.6.16 (2006); Inspired by Plan9’s namespaces

bin ... usr var

lib

proc sys

...

host’s rootfs

Mount namespace

docker

dev

bin ... usr var proc sys

container’s rootfs

dev

/dev is not read-only but
restricted with cgroups

(almost)
read-only

read-only

pivot_root(2) is used to switch the rootfs
(similar to chroot(2) but more secure)

https://elixir.bootlin.com/linux/2.4.19/source/fs/namespace.c#L752
https://github.com/torvalds/linux/commit/741a295130606143edbf9fc740f633dbc1e6225f

20 

Mount namespaces + File protections

● Mount namespaces don’t protect host system files by themselves

● Read-only bind mounts:
○ Remount /proc/sys as a read-only to prohibit sysctl

● Masks:
○ Mount /dev/null over /proc/kcore to hide the RAM
○ Mount an empty tmpfs over /sys/firmware to hide the firmware data

● Accesses to /dev are restricted by Cgroups Device Controller
(discussed later)

● Allows assigning dedicated IP addresses to containers

● Containers can talk to each other by IP on the same host, via a bridge

● Container ports can be exposed to the Internet via iptables

● Multi-host networking can be implemented by combining network

namespaces with VXLAN, etc.

21 

Network namespaces

Network namespaces were merged in Linux v2.6.24 (2008)

(vEth)
eth0: 172.17.0.2

(Bridge)
docker0: 172.17.0.1

(Physical Ethernet)
eth0: 192.168.0.42

(vEth) (vEth)

Network namespaces
(vEth)
eth0: 172.17.0.3

vEth pairs

iptables

8080/tcp

80/tcp 80/tcp

https://kernelnewbies.org/Linux_2_6_24#PID_and_network_namespaces

22 

Network namespaces aren’t just for networks

● Network namespaces isolate abstract UNIX sockets too

● Abstract UNIX sockets:
○ UNIX sockets but their paths begin with \0 (NUL)
○ Not visible as named files
○ Used by dbus, ibus, irqbalance, iscsid, LXD, multipathd, X Window System, etc.

(depending on configurations)
○ Historically also used by systemd, upstart, containerd, etc.

● Disabling network namespaces (docker run –-net=host) may
result in allowing a container to connect to a system daemon on the
host (especially when the container is running as the root)

https://medium.com/nttlabs/dont-use-host-network-namespace-f548aeeef575 (My own blog)

https://medium.com/nttlabs/dont-use-host-network-namespace-f548aeeef575

23 

PID namespaces

● Hides processes of the host and other containers
● PID=1 is an application, not systemd (usually)
● No sshd, journald, etc. in containers (usually)

PID namespaces were merged in Linux v2.6.24 (2008)

PID namespace

sshd dockerd containerd
containerd-

shim

systemd

nginx:
worker

nginx:
worker

nginx:
worker

nginx:
worker

nginx

PID=1234
PID=1

PID=1

https://kernelnewbies.org/Linux_2_6_24#PID_and_network_namespaces

24 

(Optional) User namespaces

● Maps a non-root user to the pseudo “root” in a container
● Pretends to be the root in the container (apt-get, dnf, …)
● Just a non-root user outside the container
● Mitigates potential container breakout attacks

User namespaces were merged in Linux v2.6.23 (2007), enhanced in Linux v3.8 (2013)

Host’s UID space

Container’s UID space

0 (root) Non-root 232-1

0 (pseudo root) 216-1

Don’t confuse this with “User space”
(the antonym of “kernel space”)

https://github.com/torvalds/linux/commit/acce292c82d4d82d35553b928df2b0597c3a9c78
https://kernelnewbies.org/Linux_3.8#User_namespace_support_completed

25 

Other namespaces

● IPC namespaces
○ Isolates System V inter-process communication objects, etc.

● UTS namespaces
○ Isolates the hostname and the domainname
○ “UTS” (Unix Time Sharing system) sounds like a misnomer

● (Optional) Cgroup namespaces
○ Isolates /sys/fs/cgroup hierarchy

● (Optional) Time namespaces
○ Isolates clocks
○ Not supported by most container implementations yet

26 

Cgroups

● Imposes several quotas:
○ CPU
○ Memory
○ Block I/O
○ Number of processes

● Filesystem quota is not a part of cgroups

● Also controls access to device nodes
○ Allowed by default: /dev/null, /dev/zero, /dev/urandom, …
○ Disallowed by default: /dev/sda (disk devices), /dev/mem, …

Cgroups were merged in Linux v2.6.24 (2008)

https://kernelnewbies.org/Linux_2_6_24#Task_Control_Groups

27 

Capabilities

● The root privilege can be decomposed to 64-bit capability flag set

● Retained by default: (Docker v24)

○ Bit 0: CAP_CHOWN : for chown

○ Bit 10: CAP_NET_BIND_SERVICE : for binding TCP ports below 1024, etc.

○ Bit 13: CAP_NET_RAW: for old ping implementations that craft raw Ethernet packets
■ Dangerous, as it allows impersonating to be another host
■ Expected to be dropped by default in future

● Dropped by default: (Docker v24)

○ Bit 12: CAP_NET_ADMIN: for disallowing reconfiguration of iptables, etc.

○ Bit 21: CAP_SYS_ADMIN: for disallowing reconfiguration of mounts, etc.

Capabilities were merged in Linux v2.1.92 (1998); Based on an abandoned draft of IEEE 1003.1e (aka POSIX.1e)

https://github.com/tbodt/linux-history/blob/581efda067a91f2b3981fb4f8f519a8dd0d91d1d/include/linux/capability.h

28 

(Optional) Seccomp

● Allows specifying an explicit allowlist (or denylist) of syscalls
○ About 350 syscalls are allowed by default in Docker v24

● Defense of depth; used in conjunction with capabilities

● Kubernetes does not use seccomp by default for compatibility sake
(Unless seccompDefault: true is specified in KubeletConfiguration)

Seccomp was merged in Linux v2.6.12 (2005), enhanced in Linux v3.5 (2012)

https://github.com/moby/moby/blob/v24.0.2/profiles/seccomp/default.json
https://kernelnewbies.org/Linux_2_6_12
https://kernelnewbies.org/Linux_3.5#Seccomp-based_system_call_filtering

29 

(Optional) AppArmor XOR SELinux

● These LSMs provide further fine-grained configuration knobs

● Mutually exclusive; one is chosen by host OS distributors
(not by container image distributors)

● AppArmor is chosen by Debian, Ubuntu, SUSE, etc.

● SELinux is chosen by Fedora, Red Hat Enterprise Linux, and similar
host OS distributions

LSM: Linux Security Module

30 

(Optional) AppArmor

● The default profile almost just overlaps with capabilities, mount
masks, etc. (Defense of depth)
○ deny @{PROC}/kcore rwklx
○ deny mount
○ ptrace (trace,read,tracedby,readby) peer=docker-default
○ …

● Custom settings can be added to the profile for further security
○ deny /** w : Completely prohibits writing files

AppArmor was originally known as SubDomain (c. 2000); Merged in Linux v2.6.36 (2010)

https://github.com/moby/moby/blob/v24.0.2/profiles/apparmor/template.go
https://www.usenix.org/legacy/publications/library/proceedings/lisa2000/full_papers/cowan/cowan_html/index.html
https://kernelnewbies.org/Linux_2_6_36#AppArmor

31 

(Optional) SELinux

● Similar to AppArmor, but takes a different approach
○ AppArmor: checks file path strings
○ SELinux: checks xattrs (extended attributes recorded in the filesystem)

● Type Enforcement (TE): Protects the host from containers

● Multi-category Security (MCS): Protects a container (as well as the host)
from another container

● SELinux also supports Multi-level Security (MLS) and Role-Based Access
Control (RBAC), but these are rarely utilized for containers

SELinux was merged in Linux v2.6.0-test3 (2003)

https://lwn.net/Articles/43691/

32 

(Optional) SELinux: Type Enforcement (TE)

● Container processes run with the process type (aka “domain”)
container_t to limit file accesses

The home directory on the host

container_t

container_share_t

container_file_t

user_home_t

container processes

Read-only

Read/Write

No access

chcon -R -t container_share_t /foo
docker run -v /foo:/foo:ro

docker run -v /foo:/foo:z

Option :z (lower character) relabels
the files under /foo to container_file_t

33 

(Optional) SELinux: Multi-category Security (MCS)

● Container processes also have category numbers for isolation
across containers

Files for another container

container_t
Category 42

container processes

Read/Write

No access

docker run -v /foo:/foo:Z

Option :Z (upper character) relabels
the files under /foo to have the category

that corresponds to the container

container_file_t
(No category)

container_file_t
Category 43

container_file_t
Category 42

Read/Write

34 

Specifications

● Configuration knobs for these runtime components are
standardized as the OCI Runtime Spec
○ Defines the structure of OCI runtime bundles:

 config.json + rootfs/
○ High-level runtimes (containerd) produce OCI runtime bundles
○ Low-level runtimes (runc) consume OCI runtime bundles

● Aside from the OCI Runtime Spec, OCI also provides:
○ OCI Image Spec: defines JSON and tar.gz files for archiving container images
○ OCI Distribution Spec: defines HTTP REST API for distributing OCI Image Spec

blobs

OCI: Open Container Initiative (Don’t confuse with “Oracle Cloud Infrastructure”)

CLI

dockerd

35 

What about Docker for Mac/Win ?

● Docker for Mac
○ Linux containers: Supported, but under the hood it just runs Linux VM
○ macOS containers: Never supportable, unless Apple implements

containers for macOS

● Docker for Windows
○ Linux containers: Supported, but under the hood it just runs Linux VM
○ Windows containers: Supported, natively

Latest trends in container runtimes

● Alternatives to Docker
● Running containers on Mac
● Docker being refactored
● Lazy-pulling
● User Namespaces

● Rootless Containers
● Kata Containers
● gVisor
● WebAssembly

37 

Alternatives to Docker (as Kubernetes runtimes)

● Kubernetes v0.2 (2014): Docker was the only supported runtime
● Kubernetes v1.3 (2016): Introduced support for rkt as an alternative

container runtime (rkt was retired in 2019)

● Kubernetes v1.5 (2016): Introduced the Container Runtime Interface

Built-in
dockershim

https://github.com/kubernetes/kubernetes/blob/v0.2/cmd/kubelet/kubelet.go
https://kubernetes.io/blog/2016/07/kubernetes-1-3-bridging-cloud-native-and-enterprise-workloads/
https://www.cncf.io/blog/2019/08/16/cncf-archives-the-rkt-project/
https://github.com/kubernetes/kubernetes/blob/v1.5.0/docs/devel/container-runtime-interface.md

38 

Alternatives to Docker (as Kubernetes runtimes)

● Kubernetes v1.24 (2022): Dropped the built-in support for Docker
○ Docker still continues to work for Kubernetes, via cri-dockerd
○ But Docker is now seeing less adoptions for Kubernetes

More info: https://medium.com/nttlabs/docker-to-containerd-4f3a56e6f2b6 (My own blog)

cri-dockerd
Built-in

dockershim

Kubernetes Kubernetes

https://kubernetes.io/blog/2022/03/31/ready-for-dockershim-removal/
https://medium.com/nttlabs/docker-to-containerd-4f3a56e6f2b6

39 

Alternatives to Docker (as Kubernetes runtimes)

● containerd
○ Adopters: Amazon Elastic Kubernetes Service, Azure Kubernetes Service,

Google Kubernetes Engine, k3s, etc.
○ Originally made for Docker in 2015
○ Supports Kubernetes too since 2017
○ Focuses on extensibility

● CRI-O
○ Adopters: Red Hat OpenShift, Oracle Container Engine for Kubernetes, etc.
○ Solely made for Kubernetes in 2016
○ Focuses on simplicity

CRI-O was originally known as OCID

https://containerd.io/
https://cri-o.io/

40 

Alternatives to Docker (as CLI)

● Kubernetes has become the standard for multi-node production
clusters

● Users still want Docker-like CLI for building and testing containers
locally on their laptops

● Runtime developers also want Docker-like CLI for implementing and
experimenting new features
○ It is often hard to propose new features to Docker and Kubernetes
○ Developers want their own “lab” platform to incubate new features

CLI: Command Line Interface

41 

Alternatives to Docker (as CLI)

● Podman (2018-): Docker-compatible standard container engine

○ Daemonless

○ Often confused with CRI-O (CRI API daemon)

○ Shares data with CRI-O (podman ps --external)

○ Manages pods as well as containers, but most users seem to just

use Podman for non-pod containers

■ Pod: a set of containers that share the same

network namespace and data volumes, etc.

on the same host for efficient communication

Podman was originally known as “kpod” (2016); it was written as a debugging tool for ocid (later CRI-O)

https://podman.io/
https://github.com/containers/podman/commit/7c7a85521eb12599d7f408774607b60f97fc2ba7
https://github.com/cri-o/cri-o/commit/0d0b70a475b9846798710ffd7cdd8f4a462a4404
https://podman.io/

42 

Alternatives to Docker (as CLI)

● nerdctl (2020-): contaiNERD ConTroL

○ Docker-compatible CLI for containerd

○ An official subproject of containerd (non-core)

○ Made for experimenting new features, ahead of Docker

■ Lazy-pulling (explained later)

■ Faster rootless containers (explained later)

■ …

○ Also useful for debugging Kubernetes nodes that are running containerd:

nerdctl --namespace=k8s.io ps

More info: https://medium.com/nttlabs/nerdctl-v1-0-fb6bf8e1b0b (My own blog)

https://github.com/containerd/nerdctl
https://github.com/containerd/nerdctl/tree/f0d302cac40fbdbfcfe74a3ba5cbefdf2f5b3741
https://containerd.io/
https://medium.com/nttlabs/nerdctl-v1-0-fb6bf8e1b0b

43 

Solutions for running containers on Mac

● Docker for Mac/Win is no longer free[-as-in-beer] since 2021

○ It was free (no charge) until then, but was never free software

(open source software)

● Windows users can just run the free (opensource) version of Docker

(Apache License 2.0) in WSL2

○ No GUI though

● No equivalent for macOS users so far

https://en.wiktionary.org/wiki/free_as_in_beer

44 

Solutions for running containers on Mac

● Lima (2021-): Linux virtual machines for running containerd
○ Similar to WSL2 but for macOS hosts, using QEMU
○ Automatic port forwarding with macOS host
○ Automatic file system sharing with macOS host
○ Originally made for promoting experiments on containerd + nerdctl
○ For that sake, containerd + nerdctl is the default runtime
○ Supports Docker and Podman too, optionally
○ No GUI; not a full alternative to Docker for Mac

More info: https://medium.com/nttlabs/lima-is-now-a-cncf-project-a7affde4f03c (My own blog)

https://lima-vm.io/
https://medium.com/nttlabs/lima-is-now-a-cncf-project-a7affde4f03c
https://lima-vm.io/

45 

Solutions for running containers on Mac

● colima (2021-): “Containers in Lima”
○ Provides an alternative CLI for running containers in Lima
○ Slightly misnomer, as Lima itself was already written for running containers
○ colima uses Docker by default, while Lima uses containerd + nerdctl by default

● Finch (2022-): nerdctl + Lima in a single “finch” command
○ More extensions are likely to come

● Rancher Desktop (2020-): Kubernetes on Desktop
○ Supports Docker and nerdctl too
○ macOS version uses Lima (since 2021), Windows version uses WSL2
○ Provides GUI

https://github.com/abiosoft/colima
https://github.com/runfinch/finch
https://rancherdesktop.io/

46 

Solutions for running containers on Mac

● Podman Machine (2021-)
○ Podman’s built-in feature for creating Linux virtual machines with

Podman installed in it

● Podman Desktop (2022-)
○ Provides GUI for Podman, Docker, and Kubernetes
○ Supports Lima as well as Podman Machine

https://docs.podman.io/en/latest/markdown/podman-machine.1.html
https://github.com/containers/podman-desktop

● containerd provides runtime subsystem and image subsystem

● The image subsystem is not used by Docker

● Docker’s legacy image subsystem is far behind containerd’s modern

image subsystem
○ No support for lazy-pulling (on-demand image pulling)
○ Limited support for multi-platform images

(e.g., AMD64/ARM64 dual-platform images)
○ Limited compliance of OCI Image Spec

47 

Docker is being refactored to make more use of containerd

Runtime
Subsystem

Image
Subsytem

● Docker v24 (2023) experimentally supports using containerd’s image

subsystem

● Future version will use containerd’s image subsystem by default

48 

Docker is being refactored to make more use of containerd

Runtime
Subsystem

Image
Subsytem

https://github.com/moby/moby/blob/v24.0.0/daemon/daemon.go#L161

● Most files in the images are never used
○ Dynamic libraries (/usr/lib)

○ Command binaries (/usr/bin)

○ Document files (/usr/share/doc)

○ …

● But containers cannot be started until downloading the entire images

● Because OCI-standard tar.gz images are not seek()-able

● “Lazy-pulling” eliminates this issue

49 

Lazy-pulling of images

OCI: Open Container Initiative (Don’t confuse with “Oracle Cloud Infrastructure”)

“pulling packages accounts for 76% of container start time,
but only 6.4% of that data is read”

“Slacker: Fast Distribution with Lazy Docker Containers” (Harter, et al., FAST 2016)

https://www.usenix.org/conference/fast16/technical-sessions/presentation/harter

● Lazy-pulling: pulling image contents on demand

● No need to pull an entire image

● Several formats are being proposed (mostly for containerd)

50 

Lazy-pulling of images

Format Implementation for containerd Description

eStargz
(2019-) github.com/containerd/stargz-snapshotter Optimizes gzip granularity for seek()-ability;

Forward compatible with OCI v1 tar.gz

SOCI
(2022-) github.com/awslabs/soci-snapshotter Captures a checkpoint of tar.gz decoder state;

Forward compatible with OCI v1 tar.gz

Nydus
(2022-) github.com/containerd/nydus-snapshotter An alternate image format;

Not compatible with OCI v1 tar.gz

OverlayBD
(2021-) github.com/containerd/overlaybd Block devices as container images;

Not compatible with OCI v1 tar.gz

OCI: Open Container Initiative (Don’t confuse with “Oracle Cloud Infrastructure”)

https://github.com/containerd/stargz-snapshotter
https://github.com/awslabs/soci-snapshotter
https://github.com/containerd/nydus-snapshotter
https://github.com/containerd/overlaybd

https://github.com/containerd/stargz-snapshotter/blob/v0.14.3/docs/images/benchmarking-result-ecdb227.png 51 

Lazy-pulling of images

Legacy

Lazy-pulling

Lazy-pulling+optimize

52 

Expanding adoption of User namespaces

● User namespaces are still rarely used in the Docker and Kubernetes ecosystem,
although Docker has been supporting it since v1.9 (2015)

● One of the reason is that the complexity and the overhead of “chowning” are not
negligible

● Linux kernel v5.12 (2021) added “idmapped mounts” to eliminate the necessity for
chowning

○ runc v1.2 will be released soon (2023 Q2? Q3?) to support this

0 (root) Non-root 232-1

0 (pseudo root) 216-1

container rootfs is still owned by the “real” root;
 has to be explicitly chowned for the “pseudo” root

https://github.com/moby/moby/pull/12648
https://kernelnewbies.org/Linux_5.12#ID_mapping_in_mounts

53 

Expanding adoption of User namespaces

● Kubernetes v1.25 (2022) added preliminary support for User Namespaces
(KEP-127)

● For compatibility sake, it is unlikely that Kubernetes will ever enable User
Namespaces by default

● Users will still have to explicitly enable User Namespaces for enhanced
security

● Docker may still potentially enable User Namespaces by default in future,
but nothing is decided yet (Discussed in PR #38795)

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.25.md
https://github.com/kubernetes/enhancements/blob/master/keps/sig-node/127-user-namespaces/README.md
https://github.com/moby/moby/pull/38795

● Puts container runtimes (as well as containers) in a user namespace
that is created by a non-root user
○ No overhead of chowning, as everything is in the same user namespace

● Can mitigate potential vulnerabilities of the runtimes
○ No access to read/write other users’ files

○ No access to modify the kernel

○ No access to modify the firmware

○ No ARP spoofing

○ No DNS spoofing

● Also useful for shared hosts (High-performance Computing, etc.)
54 

Rootless containers

● 2014: LXC v1.0 introduced support for Rootless containers

(called “unprivileged containers” at that time)
○ Networking depends on a SETUID binary, which is hard to configure and also insecure

● 2017: runc v1.0-rc4 gained initial support for Rootless

● 2018: Several works has begun to support Rootless in containerd, BuildKit,

Docker, Podman, etc.
○ slirp4netns (usermode TCP/IP) eliminated the need to use a SETUID binary for bringing up

the network

● 2019: Docker v19.03 was released with an experimental Rootless support

● 2020: Docker v20.10 was released with general availability of Rootless

55 

Rootless containers

https://stgraber.org/2014/01/17/lxc-1-0-unprivileged-containers/
https://github.com/opencontainers/runc/releases/tag/v1.0.0-rc4
https://twitter.com/_AkihiroSuda_/status/953231819008180224
https://github.com/rootless-containers/slirp4netns

56 

Rootless containers

(vEth)
eth0: 172.17.0.2

(Bridge)
docker0: 172.17.0.1

(TAP)
tap0: 10.0.2.100

(vEth) (vEth)
Network namespaces

(vEth)
eth0: 172.17.0.3

(Physical Ethernet)
eth0: 192.168.0.42

(slirp4netns)
virtual IP:10.0.2.2

Network namespace + User namespace

Ethernet packets

Unprivileged socket
syscalls

57 

Faster Rootless containers
● Bypasses slirp4netns (usermode TCP/IP) by using SECCOMP_IOCTL_NOTIF_ADDFD

○ Captures socket syscalls inside the NetNS, reconstructs the FDs outside the
NetNS, and replaces the FDs inside the NetNS

● Even faster than rootful

Accelerating TCP/IP Communications in Rootless Containers by Socket Switching (Naoki Matsumoto and Akihiro Suda, SWoPP 2022)
https://speakerdeck.com/mt2naoki/ip-communications-in-rootless-containers-by-socket-switching?slide=4

https://speakerdeck.com/mt2naoki/ip-communications-in-rootless-containers-by-socket-switching?slide=4

58 

● It is controversial whether non-root users should be allowed to create
user namespaces
○ Yes, for container users, because rootless containers are much safer than running

everything as the root
○ No, for others, because it can be rather an attack surface

CVE-2023-32233: Privilege escalation in Linux Kernel due to a Netfilter nf_tables vulnerability

● Ubuntu and Debian provide a sysctl knob to allow/disallow unprivileged
user namespaces: kernel.unprivileged_userns_clone=<bool>
○ But not upstreamed

● Linux v6.1 (2022) introduced a new LSM hook: userns_create
○ Hookable from KRSI (eBPF LSM)
○ Userspace tools have to be improved to provide a human-friendly UX for this

Criticisms against Rootless containers

LSM: Linux Security Module, KRSI: Kernel Runtime Security Instrumentation

https://www.tarlogic.com/blog/cve-2023-32233-vulnerability/
https://github.com/torvalds/linux/commit/7cd4c5c2101cb092db00f61f69d24380cf7a0ee8

59 

More LSMs

● Landlock LSM was merged into Linux v5.13 (2021)
○ Restricts file accesses by paths

■ LANDLOCK_ACCESS_FS_EXECUTE
■ LANDLOCK_ACCESS_FS_READ_FILE
■ ...

○ No privilege is needed to set up the profile
○ Slightly similar to OpenBSD’s pledge(2)

● Landlock is not supported by the OCI Runtime Spec yet , hope that
it can be supported very soon (PR #1111)

LSM: Linux Security Module

https://landlock.io/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=17ae69aba89dbfa2139b7f8024b757ab3cc42f59
https://man.openbsd.org/pledge.2
https://github.com/opencontainers/runtime-spec/pull/1111

60 

“Non-container” containers

● “Containers” are not well defined

● Almost anything can be called a “container runtime” when it

accepts OCI formats 😅

OCI: Open Container Initiative (Don’t confuse with “Oracle Cloud Infrastructure”)

61 

“Non-container” containers: Kata Containers

● Virtual machines, with container-ish user experiences

● As secure as virtual machines (because they are virtual machines)

● Same images as regular containers

● Same runtime configuration as regular containers

● Implemented as a containerd plugin

Kata Containers was released in 2017 , as a merger of Intel Clear Containers and Hyper runV

https://katacontainers.io/
https://www.openstack.org/news/view/365/kata-containers-project-launches-to-build-secure-container-infrastructure

62 

“Non-container” containers: gVisor

● Traps syscalls and execute them in yet another kernel (“sandbox”) to

mitigate attacks
○ KVM mode: rarely used, but the best option for bare-metal hosts
○ ptrace mode: usermode kernel implementation; the most common option but slow
○ SIGSYS trap mode (since 2023): expected to replace ptrace mode eventually

● Seccomp is applied to limit calling host syscalls

● gVisor’s kernel is highly compatible with Linux kernel,

but not 100% compatible

● Implemented as a containerd plugin;

Also available as a runc-compatible binary (runsc)

gVisor was released in 2018

https://gvisor.dev/
https://cloud.google.com/blog/products/identity-security/open-sourcing-gvisor-a-sandboxed-container-runtime?hl=en

63 

“Non-container” containers: gVisor

runsc (gVisor) is slower than runc

Screenshot on June 2023

https://gvisor.dev/docs/architecture_guide/performance/

64 

“Non-container” containers: gVisor

● Google Cloud Run was using gVisor, but they switched away to

microVM in 2023

○ “This means that software that previously didn’t run in Cloud Run

due to unimplemented system call issues can now run in Cloud

Run’s second-generation execution environment.”
https://cloud.google.com/blog/products/serverless/cloud-run-jobs-and-second-generation-execution-environment-ga/?hl=en

https://cloud.google.com/blog/products/serverless/cloud-run-jobs-and-second-generation-execution-environment-ga/?hl=en

65 

WebAssembly

● Platform-independent byte codes, originally designed for Web
browsers in 2015

● Similar to Java applets (1995), but puts more focus on portability and
security

● Can be compiled from C, Go, Java, Rust, .NET, etc.

● Harvard architecture: code address space != data address space
○ No instruction for “JMP <immediate>”, “JMP *<reg>”
○ Only jumpable to labels that are resolved on compilation time
○ Less possibility of arbitrary code execution bugs

https://blog.mozilla.org/luke/2015/06/17/webassembly/
https://emscripten.org/
https://github.com/golang/go/wiki/WebAssembly
https://www.teavm.org/
https://developer.mozilla.org/en-US/docs/WebAssembly/Rust_to_wasm
https://github.com/SteveSandersonMS/dotnet-wasi-sdk

66 

WebAssembly

● WebAssembly isn’t just for Web browsers today

● WASI (2019-): WebAssembly System Interface
○ Provides low-level API for implementing POSIX-like layers on it
○ Operates on file descriptors passed from a runtime:

fd_read() , fd_write(), sock_receive() , sock_send(), …

● WASIX (2023-): Extends WASI to provide more convenient (and
somewhat controversial) functions
○ Threads: thread_spawn() , thread_join(), …
○ Processes: proc_fork() , proc_exec(), …
○ Sockets: sock_listen() , sock_connect(), …

https://wasi.dev/
https://wasix.org/docs/api-reference

67 

WebAssembly

https://twitter.com/solomonstre/status/1111004913222324225

https://twitter.com/solomonstre/status/1111004913222324225

68 

WebAssembly

● containerd has “runWASI” plugin since 2022

● Supports WasmEdge and WasmTime as underlying WASI runtimes

https://github.com/containerd/runwasi

Recap

70 

Recap

● Containers are more efficient, but often less secure, than virtual
machines
○ Lots of security technologies are being introduced to harden containers:

UserNS, Rootless, LSMs, …

● Alternatives to Docker are arising, but Docker isn’t fading out
○ Kubernetes runtimes: containerd, CRI-O
○ CLI: Podman, nerdctl, Finch

● “Non-container” containers are trends too
○ Kata: VM-based, gVisor: user mode kernel, runWASI: WebAssembly, …

71 

Landscape

Engines

High-level
Runtimes

Low-level
Runtimes

Orchestrator

docker CLI

dockerd

nerdctl CLI

containerd

cri-dockerd

containerd
gVisor plugin

containerd
runc plugin

conmon
containerd
Kata plugin Shims

72 

Other topics (Not covered in this talk, feel free to chat with me)

● Copy-on-Write filesystems
○ overlayfs, btrfs, zfs, devicemapper, …

● Image security
○ SBOM, SLSA, Scanning, Signing, Reproducible builds, …

● Auditing
○ auditd, falco, …

● Trend of reimplementing runtimes in Rust
○ youki, containerd rust-extensions, conmon-rs, …

● Checkpointing
○ CRIU

● Multi-node networking
○ VXLAN, BGP, …

● Service mesh (almost out of the scope of container runtimes)
○ Sidecars, eBPF, Ambient mesh, …

