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A maintainer of several container-related open source projects:

Moby (≈ Docker)
The open source upstream of Docker

containerd
The underlying runtime of Docker and Kubernetes

runc
The low-level runtime below containerd

And also BuildKit, OCI Runtime Spec, nerdctl (Founder), Lima (Founder), etc.
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Self-Introduction

Docker : Moby ≈ Chrome : Chromium



● Introduction to containers

● Internals of container runtimes

● Latest trends in container runtimes
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Topics



Introduction to containers



● Lightweight methods to isolate filesystems, CPU resources, memory 
resources, system permissions, etc.

● Not really well-defined, actually (discussed later)
● Pros and cons compared to virtual machines:
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What are containers?

Pros 😃
● Low overhead

○ No hardware emulation
○ The kernel is shared with the 

host operating system
● Direct access to host filesystems, 

networks, GPUs, etc. 
(when permitted to do so)

Cons 😥
● Can’t run Windows on Linux hosts

● Can’t change kernel config

● Weak isolation



● The most popular container engine
● Supports Linux and Windows

(But Windows is out of the scope of my talk)

● Using Docker is assumed for the most part of this talk (with its default config)

● Non-Docker containers will be discussed later too;
most of them are very similar to Docker under the hood 6 

Docker

$ docker run -p 8080:80 -v .:/usr/share/nginx/html nginx:1.25

Forwards the TCP port:
8080 (host) → 80 (container)

Mounts the current directory on the host onto
/usr/share/nginx/html in the container

A pure nginx image, 
without systemd, sshd, ...



● An image can be built using a language called Dockerfile

● The built image can be pushed to registries like Docker Hub
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Docker

FROM debian:12
RUN  apt-get update && apt-get install -y openjdk-17-jre
COPY myapp.jar /myapp.jar
CMD  ["java", "-jar", "/myapp.jar"]

$ docker build -t myimage -f Dockerfile .
$ docker run myimage ...

$ docker login example.com
$ docker push example.com/myimage



● Composes containers using a declarative YAML
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Docker Compose

Docker container

DB

Docker container

Application server

Docker container

Web serverservices:
  web:
    image: nginx:1.25
    ports: 8080:80
  app:
    image: example.com/myimage
  db:
    image: postgresql:15.3
 …   

$ docker compose up



● Kubernetes clusterizes container hosts
(such as, but not limited to, Docker hosts)

● Provides load balancing & fault-tolerance across container hosts
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Kubernetes

container container container



● Kubernetes clusterizes container hosts
(such as, but not limited to, Docker hosts)

● Provides load balancing & fault-tolerance across container hosts
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Kubernetes

container

container container

Failure

container

Automatically rescheduled
on another host



● Docker (2013) wasn’t the first container platform

● 1999: FreeBSD Jail

● 2000: Virtual Environment system for Linux (precursor to Virtuozzo and OpenVZ)

● 2001: Linux Vserver

● 2002: Virtuozzo

● 2004: BSD Jail for Linux

● 2004: Solaris Containers

● 2005: OpenVZ

● 2008: LXC

● 2013: Docker
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Docker vs pre-Docker containers

Apparently, the term “container” was coined this time

The basis of the modern container ecosystem was
almost established by 2008

Docker was just a wrapper for LXC until 2014

Other precursors to containers: chroot in UNIX 7th Ed. (1979), chroot with a security enhancement in System III (1982), Plan9 namespaces (1992) 

https://svnweb.freebsd.org/base?view=revision&revision=46155
https://lkml.iu.edu/hypermail/linux/kernel/0008.2/0042.html
https://www.cs.helsinki.fi/linux/linux-kernel/2001-40/1065.html
https://wiki.openvz.org/History
https://lkml.iu.edu/hypermail/linux/kernel/0409.1/0994.html
https://web.archive.org/web/20041116174148/http://www.sun.com/smi/Press/sunflash/2004-11/sunflash.20041115.2.html
https://wiki.openvz.org/History
https://github.com/lxc/lxc/tree/5e97c3fcce787a5bc0f8ceef43aa3e05195b480a
https://www.youtube.com/watch?v=9xciauwbsuo
https://github.com/dspinellis/unix-history-repo/blob/Research-V7/usr/sys/sys/sys4.c#L199-L203
https://utcc.utoronto.ca/~cks/space/blog/unix/SystemIIIBlindSpot
https://dl.acm.org/doi/10.1145/506378.506413


● Pre-Docker containers had focused on mimicking an entire VM,
with SysV init, sshd, syslogd, etc., inside it

● For a single-host environment, it was often common to put Web server + 
Application server + DB in a single container
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Docker vs pre-Docker containers

pre-Docker container

Web server

Application server

DB

SysV init sshd ...
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Docker vs pre-Docker containers

Docker container

DB

Docker container

Application server

Docker container

Web server

pre-Docker container

Web server

Application server

DB

SysV init sshd ...

Split

Stateless,
Immutable,

Scalable

Persistent data are 
preserved on 

external volumes

● In the case of Docker, services are split to separate containers, even on a single 
host
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Docker vs pre-Docker containers

Docker container

DB

Docker container

Application server

Docker container

Web server

pre-Docker container

Web server

Application server

DB

SysV init sshd ...

Split

Stateless,
Immutable,

Scalable

Persistent data are 
preserved on 

external volumes

● Disposable
● No need to “take a care”
● Load-balanced
● Fault-tolerant

● In the case of Docker, services are split to separate containers, even on a single 
host



● Filesystem images can be shared with other users on Docker Hub

● docker push to Docker Hub, just like git push to GitHub

→ Docker became the de facto standard
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Docker vs pre-Docker containers



Internals of container runtimes

Using Docker (v24) is assumed, but most parts are applicable to non-Docker containers too



● Consists of client (docker CLI) and 
daemon (dockerd)

● dockerd talks to containerd
to manage process life cycles
(and also images, since Docker v24, depending on config)

● containerd executes runc to create 
“containers”, which are implemented 
by several kernel features such as 
namespaces and capabilities

● No “container” object exists in Linux 
kernel
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Docker under the hood

CLI

dockerd

Provides command 
line interface

Manages images, 
networks, and storages

Manages process life 
cycles

Implements 
“containers” using 

Linux kernel features

Namespaces, 
capabilities, ...

Engine
R

untim
es

H
igh-level

Lo
w

-level

CLI: Command Line Interface Engines can be also classified as runtimes in a broader sense



● Mount namespaces
○ Isolates the rootfs from the host

(with pivot_root(2) )

● Network namespaces
○ Allows assigning dedicated IP 

addresses to containers

● PID namespaces
○ Hides the host processes from 

containers
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“Container” technologies offered by the kernel

● Cgroups
○ Limits container resources such as 

memory and CPU

● Capabilities & Seccomp
○ Limits syscalls

● AppArmor XOR SELinux
○ Strictly limits file accesses



● Isolates the filesystem view from the host (and other containers)

19 

Mount namespaces

Mount namespaces were merged in Linux v2.4.19 (2002), enhanced in Linux v2.6.16 (2006); Inspired by Plan9’s namespaces

bin ... usr var

lib

proc sys

...

host’s rootfs

Mount namespace

docker

dev

bin ... usr var proc sys

container’s rootfs

dev

/dev is not read-only but 
restricted with cgroups

(almost)
read-only

read-only

pivot_root(2) is used to switch the rootfs
(similar to chroot(2) but more secure)

https://elixir.bootlin.com/linux/2.4.19/source/fs/namespace.c#L752
https://github.com/torvalds/linux/commit/741a295130606143edbf9fc740f633dbc1e6225f
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Mount namespaces + File protections

● Mount namespaces don’t protect host system files by themselves

● Read-only bind mounts:
○ Remount /proc/sys as a read-only to prohibit sysctl

● Masks:
○ Mount /dev/null over /proc/kcore to hide the RAM
○ Mount an empty tmpfs over /sys/firmware to hide the firmware data

● Accesses to /dev are restricted by Cgroups Device Controller
(discussed later)



● Allows assigning dedicated IP addresses to containers

● Containers can talk to each other by IP on the same host, via a bridge

● Container ports can be exposed to the Internet via iptables

● Multi-host networking can be implemented by combining network 

namespaces with VXLAN, etc.
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Network namespaces

Network namespaces were merged in Linux v2.6.24 (2008)

(vEth)
eth0: 172.17.0.2

(Bridge)
docker0: 172.17.0.1

(Physical Ethernet)
eth0: 192.168.0.42

(vEth) (vEth)

Network namespaces
(vEth)
eth0: 172.17.0.3

vEth pairs

iptables

8080/tcp

80/tcp 80/tcp

https://kernelnewbies.org/Linux_2_6_24#PID_and_network_namespaces
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Network namespaces aren’t just for networks

● Network namespaces isolate abstract UNIX sockets too

● Abstract UNIX sockets:
○ UNIX sockets but their paths begin with \0 (NUL)
○ Not visible as named files
○ Used by dbus, ibus, irqbalance, iscsid, LXD, multipathd, X Window System, etc. 

(depending on configurations)
○ Historically also used by systemd, upstart, containerd, etc.

● Disabling network namespaces ( docker run –-net=host ) may 
result in allowing a container to connect to a system daemon on the 
host (especially when the container is running as the root)

https://medium.com/nttlabs/dont-use-host-network-namespace-f548aeeef575 (My own blog)

https://medium.com/nttlabs/dont-use-host-network-namespace-f548aeeef575
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PID namespaces

● Hides processes of the host and other containers
● PID=1 is an application, not systemd (usually)
● No sshd, journald, etc. in containers (usually)

PID namespaces were merged in Linux v2.6.24 (2008)

PID namespace

sshd dockerd containerd
containerd-

shim

systemd

nginx:
worker

nginx:
worker

nginx:
worker

nginx:
worker

nginx

PID=1234
PID=1

PID=1

https://kernelnewbies.org/Linux_2_6_24#PID_and_network_namespaces
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(Optional) User namespaces

● Maps a non-root user to the pseudo “root” in a container
● Pretends to be the root in the container (apt-get, dnf, …)
● Just a non-root user outside the container
● Mitigates potential container breakout attacks

User namespaces were merged in Linux v2.6.23 (2007), enhanced in Linux v3.8 (2013)

Host’s UID space

Container’s UID space

0 (root)                      Non-root 232-1

0 (pseudo root)                  216-1

Don’t confuse this with “User space”
(the antonym of “kernel space”)

https://github.com/torvalds/linux/commit/acce292c82d4d82d35553b928df2b0597c3a9c78
https://kernelnewbies.org/Linux_3.8#User_namespace_support_completed
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Other namespaces

● IPC namespaces
○ Isolates System V inter-process communication objects, etc.

● UTS namespaces
○ Isolates the hostname and the domainname
○ “UTS” (Unix Time Sharing system) sounds like a misnomer

● (Optional) Cgroup namespaces
○ Isolates /sys/fs/cgroup hierarchy

● (Optional) Time namespaces
○ Isolates clocks
○ Not supported by most container implementations yet
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Cgroups

● Imposes several quotas:
○ CPU
○ Memory
○ Block I/O
○ Number of processes

● Filesystem quota is not a part of cgroups

● Also controls access to device nodes
○ Allowed by default: /dev/null, /dev/zero, /dev/urandom, …
○ Disallowed by default: /dev/sda (disk devices), /dev/mem, …

Cgroups were merged in Linux v2.6.24 (2008)

https://kernelnewbies.org/Linux_2_6_24#Task_Control_Groups
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Capabilities

● The root privilege can be decomposed to 64-bit capability flag set

● Retained by default: (Docker v24)

○  Bit 0: CAP_CHOWN : for chown

○  Bit 10: CAP_NET_BIND_SERVICE : for binding TCP ports below 1024, etc.

○  Bit 13: CAP_NET_RAW: for old ping implementations that craft raw Ethernet packets
■ Dangerous, as it allows impersonating to be another host
■ Expected to be dropped by default in future

● Dropped by default: (Docker v24)

○  Bit 12: CAP_NET_ADMIN: for disallowing reconfiguration of iptables, etc.

○  Bit 21: CAP_SYS_ADMIN: for disallowing reconfiguration of mounts, etc.

Capabilities were merged in Linux v2.1.92 (1998); Based on an abandoned draft of IEEE 1003.1e (aka POSIX.1e)

https://github.com/tbodt/linux-history/blob/581efda067a91f2b3981fb4f8f519a8dd0d91d1d/include/linux/capability.h
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(Optional) Seccomp

● Allows specifying an explicit allowlist (or denylist) of syscalls
○ About 350 syscalls are allowed by default in Docker v24

● Defense of depth; used in conjunction with capabilities

● Kubernetes does not use seccomp by default for compatibility sake
(Unless seccompDefault: true is specified in KubeletConfiguration)

Seccomp was merged in Linux v2.6.12 (2005), enhanced in Linux v3.5 (2012) 

https://github.com/moby/moby/blob/v24.0.2/profiles/seccomp/default.json
https://kernelnewbies.org/Linux_2_6_12
https://kernelnewbies.org/Linux_3.5#Seccomp-based_system_call_filtering
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(Optional) AppArmor XOR SELinux

● These LSMs provide further fine-grained configuration knobs

● Mutually exclusive; one is chosen by host OS distributors
(not by container image distributors)

● AppArmor is chosen by Debian, Ubuntu, SUSE, etc.

● SELinux is chosen by Fedora, Red Hat Enterprise Linux, and similar 
host OS distributions

LSM: Linux Security Module
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(Optional) AppArmor

● The default profile almost just overlaps with capabilities, mount 
masks, etc. (Defense of depth)
○  deny @{PROC}/kcore rwklx
○  deny mount
○  ptrace (trace,read,tracedby,readby) peer=docker-default
○ …

● Custom settings can be added to the profile for further security
○ deny /** w : Completely prohibits writing files

AppArmor was originally known as SubDomain (c. 2000); Merged in Linux v2.6.36 (2010)

https://github.com/moby/moby/blob/v24.0.2/profiles/apparmor/template.go
https://www.usenix.org/legacy/publications/library/proceedings/lisa2000/full_papers/cowan/cowan_html/index.html
https://kernelnewbies.org/Linux_2_6_36#AppArmor
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(Optional) SELinux

● Similar to AppArmor, but takes a different approach
○ AppArmor: checks file path strings
○ SELinux: checks xattrs (extended attributes recorded in the filesystem)

● Type Enforcement (TE): Protects the host from containers

● Multi-category Security (MCS): Protects a container (as well as the host) 
from another container

● SELinux also supports Multi-level Security (MLS) and Role-Based Access 
Control (RBAC), but these are rarely utilized for containers

SELinux was merged in Linux v2.6.0-test3 (2003)

https://lwn.net/Articles/43691/
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(Optional) SELinux: Type Enforcement (TE)

● Container processes run with the process type (aka “domain”) 
container_t to limit file accesses

The home directory on the host

container_t

container_share_t

container_file_t

user_home_t

container processes

Read-only

Read/Write

No access

chcon -R -t container_share_t /foo
docker run -v /foo:/foo:ro

docker run -v /foo:/foo:z

Option :z (lower character) relabels 
the files under /foo to container_file_t
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(Optional) SELinux: Multi-category Security (MCS)

● Container processes also have category numbers for isolation 
across containers

Files for another container

container_t
Category 42

container processes

Read/Write

No access

docker run -v /foo:/foo:Z

Option :Z (upper character) relabels 
the files under /foo to have the category

that corresponds to the container 

container_file_t
(No category)

container_file_t
Category 43

container_file_t
Category 42

Read/Write
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Specifications

● Configuration knobs for these runtime components are 
standardized as the OCI Runtime Spec
○ Defines the structure of OCI runtime bundles:

 config.json + rootfs/
○ High-level runtimes (containerd) produce OCI runtime bundles
○ Low-level runtimes (runc) consume OCI runtime bundles

● Aside from the OCI Runtime Spec, OCI also provides:
○ OCI Image Spec: defines JSON and tar.gz files for archiving container images
○ OCI Distribution Spec: defines HTTP REST API for distributing OCI Image Spec 

blobs

OCI: Open Container Initiative (Don’t confuse with “Oracle Cloud Infrastructure”)

CLI

dockerd
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What about Docker for Mac/Win ?

● Docker for Mac
○ Linux containers: Supported, but under the hood it just runs Linux VM
○ macOS containers: Never supportable, unless Apple implements 

containers for macOS

● Docker for Windows
○ Linux containers: Supported, but under the hood it just runs Linux VM
○ Windows containers: Supported, natively



Latest trends in container runtimes

● Alternatives to Docker
● Running containers on Mac
● Docker being refactored
● Lazy-pulling
● User Namespaces

● Rootless Containers
● Kata Containers
● gVisor
● WebAssembly
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Alternatives to Docker (as Kubernetes runtimes)

● Kubernetes v0.2 (2014): Docker was the only supported runtime
● Kubernetes v1.3 (2016): Introduced support for rkt as an alternative 

container runtime (rkt was retired in 2019)

● Kubernetes v1.5 (2016): Introduced the Container Runtime Interface

Built-in 
dockershim

https://github.com/kubernetes/kubernetes/blob/v0.2/cmd/kubelet/kubelet.go
https://kubernetes.io/blog/2016/07/kubernetes-1-3-bridging-cloud-native-and-enterprise-workloads/
https://www.cncf.io/blog/2019/08/16/cncf-archives-the-rkt-project/
https://github.com/kubernetes/kubernetes/blob/v1.5.0/docs/devel/container-runtime-interface.md
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Alternatives to Docker (as Kubernetes runtimes)

● Kubernetes v1.24 (2022): Dropped the built-in support for Docker
○ Docker still continues to work for Kubernetes, via cri-dockerd
○ But Docker is now seeing less adoptions for Kubernetes

More info: https://medium.com/nttlabs/docker-to-containerd-4f3a56e6f2b6 (My own blog)

cri-dockerd
Built-in 

dockershim

Kubernetes Kubernetes

https://kubernetes.io/blog/2022/03/31/ready-for-dockershim-removal/
https://medium.com/nttlabs/docker-to-containerd-4f3a56e6f2b6
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Alternatives to Docker (as Kubernetes runtimes)

● containerd
○ Adopters: Amazon Elastic Kubernetes Service, Azure Kubernetes Service, 

Google Kubernetes Engine, k3s, etc.
○ Originally made for Docker in 2015
○ Supports Kubernetes too since 2017 
○ Focuses on extensibility

● CRI-O
○ Adopters: Red Hat OpenShift, Oracle Container Engine for Kubernetes, etc.
○ Solely made for Kubernetes in 2016
○ Focuses on simplicity

CRI-O was originally known as OCID

https://containerd.io/
https://cri-o.io/
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Alternatives to Docker (as CLI)

● Kubernetes has become the standard for multi-node production 
clusters

● Users still want Docker-like CLI for building and testing containers 
locally on their laptops

● Runtime developers also want Docker-like CLI for implementing and 
experimenting new features
○ It is often hard to propose new features to Docker and Kubernetes
○ Developers want their own “lab” platform to incubate new features

CLI: Command Line Interface
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Alternatives to Docker (as CLI)

● Podman (2018-): Docker-compatible standard container engine

○ Daemonless

○ Often confused with CRI-O (CRI API daemon)

○ Shares data with CRI-O (podman ps --external)

○ Manages pods as well as containers, but most users seem to just 

use Podman for non-pod containers

■ Pod: a set of containers that share the same 

network namespace and data volumes, etc.

on the same host for efficient communication

Podman was originally known as “kpod” (2016); it was written as a debugging tool for ocid (later CRI-O)

https://podman.io/
https://github.com/containers/podman/commit/7c7a85521eb12599d7f408774607b60f97fc2ba7
https://github.com/cri-o/cri-o/commit/0d0b70a475b9846798710ffd7cdd8f4a462a4404
https://podman.io/
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Alternatives to Docker (as CLI)

● nerdctl (2020-): contaiNERD ConTroL

○ Docker-compatible CLI for containerd

○ An official subproject of containerd (non-core)

○ Made for experimenting new features, ahead of Docker

■ Lazy-pulling (explained later)

■ Faster rootless containers (explained later)

■ …

○ Also useful for debugging Kubernetes nodes that are running containerd:

nerdctl --namespace=k8s.io ps

More info: https://medium.com/nttlabs/nerdctl-v1-0-fb6bf8e1b0b  (My own blog)

https://github.com/containerd/nerdctl
https://github.com/containerd/nerdctl/tree/f0d302cac40fbdbfcfe74a3ba5cbefdf2f5b3741
https://containerd.io/
https://medium.com/nttlabs/nerdctl-v1-0-fb6bf8e1b0b
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Solutions for running containers on Mac

● Docker for Mac/Win is no longer free[-as-in-beer] since 2021

○ It was free (no charge) until then, but was never free software 

(open source software)

● Windows users can just run the free (opensource) version of Docker 

(Apache License 2.0) in WSL2

○ No GUI though

● No equivalent for macOS users so far

https://en.wiktionary.org/wiki/free_as_in_beer
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Solutions for running containers on Mac

● Lima (2021-): Linux virtual machines for running containerd
○ Similar to WSL2 but for macOS hosts, using QEMU
○ Automatic port forwarding with macOS host
○ Automatic file system sharing with macOS host
○ Originally made for promoting experiments on containerd + nerdctl
○ For that sake, containerd + nerdctl is the default runtime
○ Supports Docker and Podman too, optionally
○ No GUI; not a full alternative to Docker for Mac

More info: https://medium.com/nttlabs/lima-is-now-a-cncf-project-a7affde4f03c  (My own blog)

https://lima-vm.io/
https://medium.com/nttlabs/lima-is-now-a-cncf-project-a7affde4f03c
https://lima-vm.io/
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Solutions for running containers on Mac

● colima (2021-): “Containers in Lima”
○ Provides an alternative CLI for running containers in Lima
○ Slightly misnomer, as Lima itself was already written for running containers 
○ colima uses Docker by default, while Lima uses containerd + nerdctl by default

● Finch (2022-): nerdctl + Lima in a single “finch” command
○ More extensions are likely to come

● Rancher Desktop (2020-): Kubernetes on Desktop
○ Supports Docker and nerdctl too
○ macOS version uses Lima (since 2021), Windows version uses WSL2
○ Provides GUI

https://github.com/abiosoft/colima
https://github.com/runfinch/finch
https://rancherdesktop.io/
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Solutions for running containers on Mac

● Podman Machine (2021-)
○ Podman’s built-in feature for creating Linux virtual machines with 

Podman installed in it

● Podman Desktop (2022-)
○ Provides GUI for Podman, Docker, and Kubernetes
○ Supports Lima as well as Podman Machine

https://docs.podman.io/en/latest/markdown/podman-machine.1.html
https://github.com/containers/podman-desktop


● containerd provides runtime subsystem and image subsystem

● The image subsystem is not used by Docker

● Docker’s legacy image subsystem is far behind containerd’s modern 

image subsystem
○ No support for lazy-pulling (on-demand image pulling)
○ Limited support for multi-platform images

(e.g., AMD64/ARM64 dual-platform images)
○ Limited compliance of OCI Image Spec
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Docker is being refactored to make more use of containerd

Runtime
Subsystem

Image
Subsytem



● Docker v24 (2023) experimentally supports using containerd’s image 

subsystem

● Future version will use containerd’s image subsystem by default
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Docker is being refactored to make more use of containerd

Runtime
Subsystem

Image
Subsytem

https://github.com/moby/moby/blob/v24.0.0/daemon/daemon.go#L161


● Most files in the images are never used
○ Dynamic libraries (/usr/lib)

○ Command binaries (/usr/bin)

○ Document files (/usr/share/doc)

○ …

● But containers cannot be started until downloading the entire images

● Because OCI-standard tar.gz images are not seek()-able

● “Lazy-pulling” eliminates this issue
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Lazy-pulling of images

OCI: Open Container Initiative (Don’t confuse with “Oracle Cloud Infrastructure”)

“pulling packages accounts for 76% of container start time, 
but only 6.4% of that data is read”

“Slacker: Fast Distribution with Lazy Docker Containers” (Harter, et al., FAST 2016)

https://www.usenix.org/conference/fast16/technical-sessions/presentation/harter


● Lazy-pulling: pulling image contents on demand

● No need to pull an entire image

● Several formats are being proposed (mostly for containerd)
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Lazy-pulling of images

Format Implementation for containerd Description

eStargz
(2019-) github.com/containerd/stargz-snapshotter Optimizes gzip granularity for seek()-ability;

Forward compatible with OCI v1 tar.gz

SOCI
(2022-) github.com/awslabs/soci-snapshotter Captures a checkpoint of tar.gz decoder state;

Forward compatible with OCI v1 tar.gz

Nydus
(2022-) github.com/containerd/nydus-snapshotter An alternate image format;

Not compatible with OCI v1 tar.gz

OverlayBD
(2021-) github.com/containerd/overlaybd Block devices as container images;

Not compatible with OCI v1 tar.gz

OCI: Open Container Initiative (Don’t confuse with “Oracle Cloud Infrastructure”)

https://github.com/containerd/stargz-snapshotter
https://github.com/awslabs/soci-snapshotter
https://github.com/containerd/nydus-snapshotter
https://github.com/containerd/overlaybd
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Lazy-pulling of images

Legacy

Lazy-pulling

Lazy-pulling+optimize
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Expanding adoption of User namespaces

● User namespaces are still rarely used in the Docker and Kubernetes ecosystem, 
although Docker has been supporting it since v1.9 (2015)

● One of the reason is that the complexity and the overhead of “chowning” are not 
negligible

● Linux kernel v5.12 (2021) added “idmapped mounts” to eliminate the necessity for 
chowning

○ runc v1.2 will be released soon (2023 Q2? Q3?) to support this

0 (root)                      Non-root 232-1

0 (pseudo root)                  216-1

container rootfs is still owned by the “real” root;
 has to be explicitly chowned for the “pseudo” root

https://github.com/moby/moby/pull/12648
https://kernelnewbies.org/Linux_5.12#ID_mapping_in_mounts
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Expanding adoption of User namespaces

● Kubernetes v1.25 (2022) added preliminary support for User Namespaces 
(KEP-127)

● For compatibility sake, it is unlikely that Kubernetes will ever enable User 
Namespaces by default

● Users will still have to explicitly enable User Namespaces for enhanced 
security

● Docker may still potentially enable User Namespaces by default in future, 
but nothing is decided yet (Discussed in PR #38795)

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.25.md
https://github.com/kubernetes/enhancements/blob/master/keps/sig-node/127-user-namespaces/README.md
https://github.com/moby/moby/pull/38795


● Puts container runtimes (as well as containers) in a user namespace 
that is created by a non-root user
○ No overhead of chowning, as everything is in the same user namespace

● Can mitigate potential vulnerabilities of the runtimes
○ No access to read/write other users’ files

○ No access to modify the kernel

○ No access to modify the firmware

○ No ARP spoofing

○ No DNS spoofing

● Also useful for shared hosts (High-performance Computing, etc.)
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Rootless containers



● 2014: LXC v1.0 introduced support for Rootless containers

(called “unprivileged containers” at that time)
○ Networking depends on a SETUID binary, which is hard to configure and also insecure

● 2017: runc v1.0-rc4 gained initial support for Rootless

● 2018: Several works has begun to support Rootless in containerd, BuildKit, 

Docker, Podman, etc.
○ slirp4netns (usermode TCP/IP) eliminated the need to use a SETUID binary for bringing up 

the network

● 2019: Docker v19.03 was released with an experimental Rootless support

● 2020: Docker v20.10 was released with general availability of Rootless
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Rootless containers

https://stgraber.org/2014/01/17/lxc-1-0-unprivileged-containers/
https://github.com/opencontainers/runc/releases/tag/v1.0.0-rc4
https://twitter.com/_AkihiroSuda_/status/953231819008180224
https://github.com/rootless-containers/slirp4netns
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Rootless containers

(vEth)
eth0: 172.17.0.2

(Bridge)
docker0: 172.17.0.1

(TAP)
tap0: 10.0.2.100

(vEth) (vEth)
Network namespaces

(vEth)
eth0: 172.17.0.3

(Physical Ethernet)
eth0: 192.168.0.42

(slirp4netns)
virtual IP:10.0.2.2

Network namespace + User namespace

Ethernet packets

Unprivileged socket 
syscalls
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Faster Rootless containers
● Bypasses slirp4netns (usermode TCP/IP) by using SECCOMP_IOCTL_NOTIF_ADDFD

○ Captures socket syscalls inside the NetNS, reconstructs the FDs outside the 
NetNS, and replaces the FDs inside the NetNS

● Even faster than rootful

Accelerating TCP/IP Communications in Rootless Containers by Socket Switching (Naoki Matsumoto and Akihiro Suda, SWoPP 2022)
https://speakerdeck.com/mt2naoki/ip-communications-in-rootless-containers-by-socket-switching?slide=4

https://speakerdeck.com/mt2naoki/ip-communications-in-rootless-containers-by-socket-switching?slide=4
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● It is controversial whether non-root users should be allowed to create 
user namespaces
○ Yes, for container users, because rootless containers are much safer than running 

everything as the root
○ No, for others, because it can be rather an attack surface

CVE-2023-32233: Privilege escalation in Linux Kernel due to a Netfilter nf_tables vulnerability

● Ubuntu and Debian provide a sysctl knob to allow/disallow unprivileged 
user namespaces: kernel.unprivileged_userns_clone=<bool>
○ But not upstreamed

● Linux v6.1 (2022) introduced a new LSM hook: userns_create
○ Hookable from KRSI (eBPF LSM)
○ Userspace tools have to be improved to provide a human-friendly UX for this

Criticisms against Rootless containers

LSM: Linux Security Module, KRSI: Kernel Runtime Security Instrumentation

https://www.tarlogic.com/blog/cve-2023-32233-vulnerability/
https://github.com/torvalds/linux/commit/7cd4c5c2101cb092db00f61f69d24380cf7a0ee8
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More LSMs

● Landlock LSM was merged into Linux v5.13 (2021)
○ Restricts file accesses by paths

■ LANDLOCK_ACCESS_FS_EXECUTE
■ LANDLOCK_ACCESS_FS_READ_FILE
■ ...

○ No privilege is needed to set up the profile
○ Slightly similar to OpenBSD’s pledge(2)

● Landlock is not supported by the OCI Runtime Spec yet , hope that 
it can be supported very soon (PR #1111)

LSM: Linux Security Module

https://landlock.io/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=17ae69aba89dbfa2139b7f8024b757ab3cc42f59
https://man.openbsd.org/pledge.2
https://github.com/opencontainers/runtime-spec/pull/1111
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“Non-container” containers

● “Containers” are not well defined

● Almost anything can be called a “container runtime” when it 

accepts OCI formats 😅

OCI: Open Container Initiative (Don’t confuse with “Oracle Cloud Infrastructure”)
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“Non-container” containers: Kata Containers

● Virtual machines, with container-ish user experiences

● As secure as virtual machines (because they are virtual machines)

● Same images as regular containers

● Same runtime configuration as regular containers

● Implemented as a containerd plugin

Kata Containers was released in 2017 , as a merger of Intel Clear Containers and Hyper runV

https://katacontainers.io/
https://www.openstack.org/news/view/365/kata-containers-project-launches-to-build-secure-container-infrastructure
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“Non-container” containers: gVisor

● Traps syscalls and execute them in yet another kernel (“sandbox”) to 

mitigate attacks
○ KVM mode: rarely used, but the best option for bare-metal hosts
○ ptrace mode: usermode kernel implementation; the most common option but slow
○ SIGSYS trap mode (since 2023): expected to replace ptrace mode eventually

● Seccomp is applied to limit calling host syscalls

● gVisor’s kernel is highly compatible with Linux kernel,

but not 100% compatible

● Implemented as a containerd plugin; 

Also available as a runc-compatible binary (runsc)

gVisor was released in 2018

https://gvisor.dev/
https://cloud.google.com/blog/products/identity-security/open-sourcing-gvisor-a-sandboxed-container-runtime?hl=en
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“Non-container” containers: gVisor

runsc (gVisor) is slower than runc

Screenshot on June 2023

https://gvisor.dev/docs/architecture_guide/performance/
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“Non-container” containers: gVisor

● Google Cloud Run was using gVisor, but they switched away to 

microVM in 2023

○ “This means that software that previously didn’t run in Cloud Run 

due to unimplemented system call issues can now run in Cloud 

Run’s second-generation execution environment.”
https://cloud.google.com/blog/products/serverless/cloud-run-jobs-and-second-generation-execution-environment-ga/?hl=en 

https://cloud.google.com/blog/products/serverless/cloud-run-jobs-and-second-generation-execution-environment-ga/?hl=en
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WebAssembly

● Platform-independent byte codes, originally designed for Web 
browsers in 2015

● Similar to Java applets (1995), but puts more focus on portability and 
security

● Can be compiled from C, Go, Java, Rust, .NET, etc.

● Harvard architecture: code address space != data address space
○ No instruction for “JMP <immediate>”, “JMP *<reg>”
○ Only jumpable to labels that are resolved on compilation time
○ Less possibility of arbitrary code execution bugs

https://blog.mozilla.org/luke/2015/06/17/webassembly/
https://emscripten.org/
https://github.com/golang/go/wiki/WebAssembly
https://www.teavm.org/
https://developer.mozilla.org/en-US/docs/WebAssembly/Rust_to_wasm
https://github.com/SteveSandersonMS/dotnet-wasi-sdk
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WebAssembly

● WebAssembly isn’t just for Web browsers today

● WASI (2019-): WebAssembly System Interface
○ Provides low-level API for implementing POSIX-like layers on it
○ Operates on file descriptors passed from a runtime:

fd_read() , fd_write(), sock_receive() , sock_send(), …

● WASIX (2023-): Extends WASI to provide more convenient (and 
somewhat controversial) functions
○ Threads: thread_spawn() , thread_join(), …
○ Processes: proc_fork() , proc_exec(), …
○ Sockets: sock_listen() , sock_connect(), …

https://wasi.dev/
https://wasix.org/docs/api-reference
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WebAssembly

https://twitter.com/solomonstre/status/1111004913222324225 

https://twitter.com/solomonstre/status/1111004913222324225
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WebAssembly

● containerd has “runWASI” plugin since 2022

● Supports WasmEdge and WasmTime as underlying WASI runtimes

https://github.com/containerd/runwasi


Recap
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Recap

● Containers are more efficient, but often less secure, than virtual 
machines
○ Lots of security technologies are being introduced to harden containers: 

UserNS, Rootless, LSMs, …

● Alternatives to Docker are arising, but Docker isn’t fading out
○ Kubernetes runtimes: containerd, CRI-O
○ CLI: Podman, nerdctl, Finch

● “Non-container” containers are trends too
○ Kata: VM-based, gVisor: user mode kernel, runWASI: WebAssembly, …
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Landscape
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Other topics (Not covered in this talk, feel free to chat with me)

● Copy-on-Write filesystems
○ overlayfs, btrfs, zfs, devicemapper, …

● Image security
○ SBOM, SLSA, Scanning, Signing, Reproducible builds, …

● Auditing
○ auditd, falco, …

● Trend of reimplementing runtimes in Rust
○ youki, containerd rust-extensions, conmon-rs, …

● Checkpointing
○ CRIU

● Multi-node networking
○ VXLAN, BGP, …

● Service mesh (almost out of the scope of container runtimes)
○ Sidecars, eBPF, Ambient mesh, …


