June 16, 2023, CCE Colloquium, Kyoto University
20236 A 16E REKE KB WREHRA BEMBRTLI—R BES NTT (©)

The internals and the latest trends of container runtimes
10T+ S aA LOHEAR U BE ORI

Akihiro Suda (NTT)

akihiro.suda.cz@hco.ntt.co.jp

Self-Introduction NTT ©

2008-2012: Department of Information Science, Kyoto University (Yuasa Lab.)
2012-2014: Graduate School of Informatics, Kyoto University (Takagi Lab.)
2014-Present: Software Innovation Center, NTT Corporation

A maintainer of several container-related open source projects:

Moby (= Docker) % Docker : Moby = Chrome : Chromium

The open source upstream of Docker

containerd
The underlying runtime of Docker and Kubernetes

runc
The low-level runtime below containerd

And also BuildKit, OCI Runtime Spec, nerdctl (Founder), Lima (Founder), etc.

Topics
e |Introduction to containers

e Internals of container runtimes

e latesttrends in container runtimes

Introduction to containers

What are containers?

NTT (O)

e Lightweight methods to isolate filesystems, CPU resources, memory

resources, system permissions, etc.

e Not really well-defined, actually (discussed later)

® Pros and cons compared to virtual machines:

Pros ‘&
e Low overhead
o No hardware emulation
o The kernel is shared with the
host operating system

e Direct access to host filesystems,

networks, GPUs, etc.
(when permitted to do so)

Cons o
e Can't run Windows on Linux hosts

e Can't change kernel config

e \Weak isolation

Docker NTT O

e The most popular container engine
e Supports Linux and Windows

(But Windows is out of the scope of my talk) A pure nginx image,
without systemd, sshd, ...

$ docker run -p 8080:80 -v .:/usr/share/nginx/html nginx:1.25

Forwards the TCP port: Mounts the current directory on the host onto
8080 (host) — 80 (container) /usr/share/nginx/html in the container

e Using Docker is assumed for the most part of this talk witits default config)
e Non-Docker containers will be discussed later too;
most of them are very similar to Docker under the hood

Docker NTT O

e Animage can be built using a language called Dockerfile

FROM debian:12
RUN apt-get update && apt-get install -y openjdk-17-jre
COPY myapp.jar /myapp.jar

CMD [lljavall, Il_jar‘ll, Il/myapp.jar\ll]

$ docker build -t myimage -f Dockerfile .
$ docker run myimage ...

e The built image can be pushed to registries like Docker Hub

$ docker login example.com
$ docker push example.com/myimage

Docker Compose

e Composes containers using a declarative YAML

services:
web:

image:

ports:

app:

image:

db:

image:

$ docker compose up

nginx:1.25
8080:80

example.com/myimage

postgresql:15.3

Web server

Docker container

Application server

Docker container

DB

Docker container

Kubernetes

e Kubernetes clusterizes container hosts
(such as, but not limited to, Docker hosts)

e Provides load balancing & fault-tolerance across container hosts

kubernetes
/_I\

container

container

container

Kubernetes NTT ©

e Kubernetes clusterizes container hosts
(such as, but not limited to, Docker hosts)

e Provides load balancing & fault-tolerance across container hosts

kubernetes
| T

————————————————

| container !} container container

————————————————

Automatically rescheduled
on another host

Docker vs pre-Docker containers

e Docker (2013) wasn't the first container platform

1999:
2000:
2001:
2002:
2004
2004:
2005:
2008:
2013:

FreeBSD |ail
Virtual EﬂVIrOﬂment SyStem fOr LIﬂUX (precursor to Virtuozzo and OpenVZz)

Linux Vserver

Virtuozzo
BSD Jail for Linux

SOla ris Containers % Apparently, the term “container” was coined this time

OpenVZ

LXC I The basis of the modern container ecosystem was

almost established by 2008

/
M] Docker was just a wrapper for LXC until 2014

Other precursors to containers: chroot in UNIX 7th Ed. (1979), chroot with a security enhancement in System 11 (1982), Plan9 namespaces (1992)

https://svnweb.freebsd.org/base?view=revision&revision=46155
https://lkml.iu.edu/hypermail/linux/kernel/0008.2/0042.html
https://www.cs.helsinki.fi/linux/linux-kernel/2001-40/1065.html
https://wiki.openvz.org/History
https://lkml.iu.edu/hypermail/linux/kernel/0409.1/0994.html
https://web.archive.org/web/20041116174148/http://www.sun.com/smi/Press/sunflash/2004-11/sunflash.20041115.2.html
https://wiki.openvz.org/History
https://github.com/lxc/lxc/tree/5e97c3fcce787a5bc0f8ceef43aa3e05195b480a
https://www.youtube.com/watch?v=9xciauwbsuo
https://github.com/dspinellis/unix-history-repo/blob/Research-V7/usr/sys/sys/sys4.c#L199-L203
https://utcc.utoronto.ca/~cks/space/blog/unix/SystemIIIBlindSpot
https://dl.acm.org/doi/10.1145/506378.506413

NTT (©)

Docker vs pre-Docker containers

e Pre-Docker containers had focused on mimicking an entire VM,
with SysV init, sshd, syslogd, etc., inside it

e For a single-host environment, it was often common to put Web server +
Application server + DB in a single container

Web server

Application server

DB

| SysVinit || sshd ||
pre-Docker container

Docker vs pre-Docker containers

NTT (O)

e Inthe case of Docker, services are split to separate containers, even on a single

host

Web server

Application server

DB

| SysVinit || sshd ||

pre-Docker container

Split

Web server

Docker container

Application server

Docker container

DB

Docker container

Stateless,
Immutable,
Scalable

Persistent data are
preserved on
external volumes

Docker vs pre-Docker containers

NTT (O)

e Inthe case of Docker, services are split to separate containers, even on a single

host

Web server

Application server

DB

| SysVinit || sshd ||

pre-Docker container

Split

Web server

Docker container

Application server

Stateless,
Immutable,
Scalable

Docker container

Disposable

No need to “take a care”
Load-balanced
Fault-tolerant

DB

Docker container

Persistent data are
preserved on
external volumes

Docker vs pre-Docker containers NTT ©

e Filesystem images can be shared with other users on Docker Hub
e docker pushto Docker Hub, just like git push to GitHub

— Docker became the de facto standard

Internals of container runtimes

Using Docker (v24) is assumed, but most parts are applicable to non-Docker containers too

Docker under the hood

e Consists of client (docker CLI) and
daemon (dockerd)

e dockerd talks to containerd
to manage process life cycles

(and also images, since Docker v24, depending on config)

e containerd executes runc to create
“containers’, which are implemented
by several kernel features such as
namespaces and capabilities

e No “container” object exists in Linux
kernel

CLI: Command Line Interface

NTT (©)

‘-“" docker Provides command

\ CLI line interface

mEEEm rdocker ﬁ Manages images,

networks, and storages
\ dockerd

- Manages process life
I:I:IFItEII‘IEI'm ﬁ o oles

Implements

RUNC “containers” using

Linux kernel features

|
Linux/A | S5
o

Engines can be also classified as runtimes in a broader sense

auidug

[2A91-Y81H

Y
sawinuny

|9A3]-MoT

“Container” technologies offered by the kernel NTT ©

e Mount namespaces e (Cgroups
o lIsolates the rootfs from the host o Limits container resources such as
(with pivot_root(2)) memory and CPU
e Network namespaces e Capabilities & Seccomp
o Allows assigning dedicated IP o Limits syscalls

addresses to containers

e AppArmor XOR SELinux

e PID namespaces
o Strictly limits file accesses

o Hides the host processes from
containers

Mount namespaces NTT ©

e Isolates the filesystem view from the host (and other containers)

host’s rootfs

C bin D> o D Cusr > C var_ > Cproe D C_sys D C_dev D

pivot_root(2) is used to switch the rootfs docker >
(similar to chroot(2) but more secure) D
I
container’s rotfs Mount namespace

D e e o oo o el oo o S
(almost) read—o/n;‘ /dev is not read-only but
read-only restricted with cgroups

Mount namespaces were merged in Linux v2.4.19 (2002), enhanced in Linux v2.6.16 (2006); Inspired by Plan9’s namespaces

https://elixir.bootlin.com/linux/2.4.19/source/fs/namespace.c#L752
https://github.com/torvalds/linux/commit/741a295130606143edbf9fc740f633dbc1e6225f

Mount namespaces + File protections NTT ©

e Mount namespaces don'’t protect host system files by themselves

e Read-only bind mounts:
o Remount /proc/sys as a read-only to prohibit sysctl

e Masks:
o Mount /dev/null over /proc/kcore to hide the RAM
o Mount an empty tmpfs over /sys/firmware to hide the firmware data

e Accesses to /dev are restricted by Cgroups Device Controller
(discussed later)

Network namespaces NTT ©

Allows assigning dedicated IP addresses to containers
Containers can talk to each other by IP on the same host, via a bridge
Container ports can be exposed to the Internet via iptables

Multi-host networking can be implemented by combining network
namespaces with VXLAN, etc.

8ese/tcp [| [(Physical Ethernet)
etho: 192.168.0.42

iptables ijorci:igee:e: 172.17.0.1
(vEth) (vEth) '
sy Ve, VEheR
i | (VEth) V1| (VEth) I
\ [_ethe: 172.17.0.2 i [ethe: 172.17.0.3 i Network namespaces

Network namespaces were merged in Linux v2.6.24 (2008)

https://kernelnewbies.org/Linux_2_6_24#PID_and_network_namespaces

Network namespaces aren’t just for networks NTT ©

e Network namespaces isolate abstract UNIX sockets too

e Abstract UNIX sockets:
o UNIX sockets but their paths begin with \@ (NUL)
o Not visible as named files
o Used by dbus, ibus, irgbalance, iscsid, LXD, multipathd, X Window System, etc.
(depending on configurations)
o Historically also used by systemd, upstart, containerd, etc.

e Disabling network namespaces (docker run --net=host) may
result in allowing a container to connect to a system daemon on the
host (especially when the container is running as the root)

https://medium.com/nttlabs/dont-use-host-network-namespace-f548aeeef575 (My own blog)

https://medium.com/nttlabs/dont-use-host-network-namespace-f548aeeef575

PID namespaces NTT ©

e Hides processes of the host and other containers
e PID=1is an application, not systemd (usually)
e No sshd, journald, etc. in containers (usually)

PID=1

containerd-
shim

PID=1234

PID namespace

nginx:
worker

1

I

1

1

1

:

1 . .

! nginx: nginx: nginx:
! worker worker worker
1

PID namespaces were merged in Linux v2.6.24 (2008)

https://kernelnewbies.org/Linux_2_6_24#PID_and_network_namespaces

(Optional) User namespaces = "y | YTTO

Maps a non-root user to the pseudo “root” in a container
Pretends to be the root in the container (apt-get, dn+, ..)
Just a non-root user outside the container

o
®
o
e Mitigates potential container breakout attacks

Host’s UID space

O (root) Non-root 2321

Container’s UID space

O (pseudo root) 261

User namespaces were merged in Linux v2.6.23 (2007), enhanced in Linux v3.8 (2013)

https://github.com/torvalds/linux/commit/acce292c82d4d82d35553b928df2b0597c3a9c78
https://kernelnewbies.org/Linux_3.8#User_namespace_support_completed

Other namespaces

e |PC namespaces
o Isolates System V inter-process communication objects, etc.

e UTS namespaces
o Isolates the hostname and the domainname
o “UTS” (Unix Time Sharing system) sounds like a misnomer

e (Optional) Cgroup namespaces
o Isolates /sys/fs/cgroup hierarchy

e (Optional) Time namespaces
o Isolates clocks
o Not supported by most container implementations yet

Cgroups

e Imposes several quotas:
o CPU
o Memory
o Block I/O
o Number of processes

e Filesystem quota is not a part of cgroups

e Also controls access to device nodes

o Allowed by default: /dev/null, /dev/zero, /dev/urandon, ..
o Disallowed by default: /dev/sda (disk devices), /dev/menm, ...

Cgroups were merged in Linux v2.6.24 (2008)

https://kernelnewbies.org/Linux_2_6_24#Task_Control_Groups

Capabilities NTT ©
e The root privilege can be decomposed to 64-bit capability flag set

e Retained by default: poderv2s
o Bit O: CAP_CHOWN : for chown
o Bit 10: CAP_NET_BIND_SERVICE : for binding TCP ports below 1024, etc.

o Bit 13: CAP_NET_RAW: for old ping implementations that craft raw Ethernet packets

m Dangerous, as it allows impersonating to be another host
m Expected to be dropped by default in future

e Dropped by default: wociervae
o Bit 12: CAP_NET_ADMIN: for disallowing reconfiguration of iptables, etc.
o Bit 21: CAP_SYS_ADMIN: for disallowing reconfiguration of mounts, etc.

Capabilities were merged in Linux v2.1.92 (1998); Based on an abandoned draft of IEEE 1003.1e (aka POSIX.1e)

https://github.com/tbodt/linux-history/blob/581efda067a91f2b3981fb4f8f519a8dd0d91d1d/include/linux/capability.h

(Optional) Seccomp NTT ©

e Allows specifying an explicit allowlist (or denylist) of syscalls
o About 350 syscalls are allowed by default in Docker v24

e Defense of depth; used in conjunction with capabilities

e Kubernetes does not use seccomp by default for compatibility sake

(Unless seccompDefault: true is specified in KubeletConfiguration)

Seccomp was merged in Linux v2.6.12 (2005), enhanced in Linux v3.5 (2012)

https://github.com/moby/moby/blob/v24.0.2/profiles/seccomp/default.json
https://kernelnewbies.org/Linux_2_6_12
https://kernelnewbies.org/Linux_3.5#Seccomp-based_system_call_filtering

(Optional) AppArmor XOR SELinux NTT ©

e These LSMs provide further fine-grained configuration knobs

e Mutually exclusive; one is chosen by host OS distributors
(not by container image distributors)

e AppArmor is chosen by Debian, Ubuntu, SUSE, etc.

e SELinux is chosen by Fedora, Red Hat Enterprise Linux, and similar
host OS distributions

LSM: Linux Security Module

(Optional) AppArmor NTT ©

e The default profile almost just overlaps with capabilities, mount

masks, etc. (Defense of depth)

o deny @{PROC}/kcore rwklx

o deny mount

o ptrace (trace,read,tracedby,readby) peer=docker-default
O

e Custom settings can be added to the profile for further security
o deny /** w:Completely prohibits writing files

AppArmor was originally known as SubDomain (c. 2000); Merged in Linux v2.6.36 (2010)

https://github.com/moby/moby/blob/v24.0.2/profiles/apparmor/template.go
https://www.usenix.org/legacy/publications/library/proceedings/lisa2000/full_papers/cowan/cowan_html/index.html
https://kernelnewbies.org/Linux_2_6_36#AppArmor

(Optional) SELinux NTT ©

e Similar to AppArmor, but takes a different approach
o AppArmor: checks file path strings
o SELinux: checks xattrs (extended attributes recorded in the filesystem)

e Type Enforcement (TE): Protects the host from containers

e Multi-category Security (MCS): Protects a container (as well as the host)
from another container

e SELinux also supports Multi-level Security (MLS) and Role-Based Access
Control (RBAC), but these are rarely utilized for containers

SELinux was merged in Linux v2.6.0-test3 (2003)

https://lwn.net/Articles/43691/

(Optional) SELinux: Type Enforcement (TE) NTT ©

e Container processes run with the process type (aka “domain”)
container_t to limit file accesses

Read/Write

container_share_t

container_t

container processes

Y

container_file_t

user_home_t

chcon -R -t container_share_t /foo
docker run -v /foo:/foo:ro

docker run -v /foo:/foo:z

Option :z (lower character) relabels
the files under /foo to container_file_t

The home directory on the host

(Optional) SELinux: Multi-category Security (MCS) ¥TT©

e Container processes also have category numbers for isolation
across containers

container_file_t
(No category)

e
)
Re?

container_t Read/Write | container file t
Category 42 Category 42

container processes

docker run -v /foo:/foo:Z

Option :Z (upper character) relabels
the files under /foo to have the category
that corresponds to the container

Files for another container

container_file_t
Category 43

Specifications NTT ©

e Configuration knobs for these runtime components are

. e e docker
standardized as the OCI Runtime Spec e
o Defines the structure of OCI runtime bundles: %*docdkekrd
config.json + rootfs/ 1
o High-level runtimes (containerd) produce OCI runtime bundles ':”"ta'l"erm
o Low-level runtimes (runc) consume OCI runtime bundles R
!
Limgﬁ\

e Aside from the OCI Runtime Spec, OCl also provides:

o OCI Image Spec: defines JSON and tar.gz files for archiving container images
o OCI Distribution Spec: defines HTTP REST API for distributing OCI Image Spec
blobs

OCI: Open Container Initiative (Don't confuse with “Oracle Cloud Infrastructure”)

What about Docker for Mac/Win ? NTT O

e Docker for Mac
o Linux containers: Supported, but under the hood it just runs Linux VM
o macOS containers: Never supportable, unless Apple implements
containers for macOS

e Docker for Windows
o Linux containers: Supported, but under the hood it just runs Linux VM
o Windows containers: Supported, natively

Latest trends in container runtimes

Alternatives to Docker
Running containers on Mac
Docker being refactored
Lazy-pulling

User Namespaces

Rootless Containers
Kata Containers
gVisor
WebAssembly

Alternatives to Docker (as Kubernetes runtimes) ¥NITO

e Kubernetes v0.2 (2014): Docker was the only supported runtime

e Kubernetes v1.3 (2016): Introduced support for rkt as an alternative
container runtime (kt was retired in 2019)

e Kubernetes v1.5 (2016): Introduced the Container Runtime Interface

kubernetes kubernetes kubernetes

@ docker @ docker @ rkt @ docker container[t] @ cri-o

https://github.com/kubernetes/kubernetes/blob/v0.2/cmd/kubelet/kubelet.go
https://kubernetes.io/blog/2016/07/kubernetes-1-3-bridging-cloud-native-and-enterprise-workloads/
https://www.cncf.io/blog/2019/08/16/cncf-archives-the-rkt-project/
https://github.com/kubernetes/kubernetes/blob/v1.5.0/docs/devel/container-runtime-interface.md

Alternatives to Docker (as Kubernetes runtimes) ¥NITO

e Kubernetes v1.24 (2022): Dropped the built-in support for Docker
o Docker still continues to work for Kubernetes, via cri-dockerd
o But Docker is now seeing less adoptions for Kubernetes

Kubernetes Kubernetes

kubernetes

/

! Built-in
! dockershim

More info: https://medium.com/nttlabs/docker-to-containerd-4f3a56e6f2b6 (My own blog)

https://kubernetes.io/blog/2022/03/31/ready-for-dockershim-removal/
https://medium.com/nttlabs/docker-to-containerd-4f3a56e6f2b6

Alternatives to Docker (as Kubernetes runtimes) ¥NITO

e containerd

o Adopters: Amazon Elastic Kubernetes Service, Azure Kubernetes Service,
Coogle Kubernetes Engine, k3s, etc.

o Originally made for Docker in 2015

o Supports Kubernetes too since 2017 : m
o Focuses on extensibility Container
e CRI-O

o Adopters: Red Hat OpenShift, Oracle Container Engine for Kubernetes, etc.

o Solely made for Kubernetes in 2016
% cri-o

o Focuses on simplicity

CRI-O was originally known as OCID

https://containerd.io/
https://cri-o.io/

Alternatives to Docker (as CLI) NTT ©

e Kubernetes has become the standard for multi-node production
clusters

e Users still want Docker-like CLI for building and testing containers
locally on their laptops

e Runtime developers also want Docker-like CLI for implementing and
experimenting new features
o ltis often hard to propose new features to Docker and Kubernetes
o Developers want their own “lab” platform to incubate new features

CLI: Command Line Interface

Alternatives to Docker (as CLI) NTT ©

e Podman (2018-): Docker-compatible standard container engine

o Daemonless
o Often confused with CRI-O (CRI APl daemon)
o Shares data with CRI-O (podman ps --external)
o Manages pods as well as containers, but most users seem to just
use Podman for non-pod containers
m Pod: a set of containers that share the same
network namespace and data volumes, etc.
on the same host for efficient communication

podman

Podman was originally known as “kpod” (2016); it was written as a debugging tool for ocid (later CRI-O)

https://podman.io/
https://github.com/containers/podman/commit/7c7a85521eb12599d7f408774607b60f97fc2ba7
https://github.com/cri-o/cri-o/commit/0d0b70a475b9846798710ffd7cdd8f4a462a4404
https://podman.io/

Alternatives to Docker (as CLI) NTT ©

e nerdctl (2020-): contaiNERD ConTroL

o Docker-compatible CLI for containerd
o An official subproject of containerd (non-core)
o Made for experimenting new features, ahead of Docker

m Lazy-pulling (explained later)
m Faster rootless containers (explained later)
m

o Also useful for debugging Kubernetes nodes that are running containerd:

nerdctl --namespace=k8s.10 ps

Enntainerm

More info: https://medium.com/nttlabs/nerdctl-vi-0-fb6bf8elbOb (My own blog)

https://github.com/containerd/nerdctl
https://github.com/containerd/nerdctl/tree/f0d302cac40fbdbfcfe74a3ba5cbefdf2f5b3741
https://containerd.io/
https://medium.com/nttlabs/nerdctl-v1-0-fb6bf8e1b0b

Solutions for running containers on Mac NTT ©

e Docker for Mac/Win is no longer free[-as-in-beer] since 2021

o It was free (no charge) until then, but was never free software
(open source software)

e \Windows users can just run the free (opensource) version of Docker
(Apache License 2.0) in WSL2
o No GUI though

e No equivalent for macOS users so far

https://en.wiktionary.org/wiki/free_as_in_beer

Solutions for running containers on Mac NTT ©

e Lima (2021-): Linux virtual machines for running containerd
o Similar to WSL2 but for macOS hosts, using QEMU

Automatic port forwarding with macOS host

Automatic file system sharing with macOS host

Originally made for promoting experiments on containerd + nerdctl

For that sake, containerd + nerdctl is the default runtime

Supports Docker and Podman too, optionally

No GUI; not a full alternative to Docker for Mac

O O OoO|0A0 O

Lima

More info: https://medium.com/nttlabs/lima-is-now-a-cncf-project-a7affde4f03c (My own blog)

https://lima-vm.io/
https://medium.com/nttlabs/lima-is-now-a-cncf-project-a7affde4f03c
https://lima-vm.io/

Solutions for running containers on Mac NTT ©

e colima (2021-): “Containers in Lima”
o Provides an alternative CLI for running containers in Lima
o Slightly misnomer, as Lima itself was already written for running containers
o colima uses Docker by default, while Lima uses containerd + nerdctl by default

e Finch (2022-): nerdctl + Lima in a single “finch” command
o More extensions are likely to come

e Rancher Desktop (2020-): Kubernetes on Desktop
o Supports Docker and nerdctl too
o macOS version uses Lima (since 2021), Windows version uses WSL2
o Provides GUI

https://github.com/abiosoft/colima
https://github.com/runfinch/finch
https://rancherdesktop.io/

Solutions for running containers on Mac NTT ©

e Podman Machine (2021-)
o Podman’s built-in feature for creating Linux virtual machines with
Podman installed in it

e Podman Desktop (2022-)
o Provides GUI for Podman, Docker, and Kubernetes
o Supports Lima as well as Podman Machine

https://docs.podman.io/en/latest/markdown/podman-machine.1.html
https://github.com/containers/podman-desktop

Docker is being refactored to make more use of containerd NTT (©

e containerd provides runtime subsystem and image subsystem
e The image subsystem is not used by Docker
e Docker’s legacy image subsystem is far behind containerd’s modern

image subsystem

o No support for lazy-pulling (on-demand image pulling)
o Limited support for multi-platform images

""" kubernetes
(e.g., AMD64/ARM64 dual-platform images) -‘docker)
o Limited compliance of OCI Image Spec \//\
Runtime Image
Subsystem Subsytem

Enntainerm

Docker is being refactored to make more use of containerd NTT (©

e Dockerv24 (2023) experimentally supports using containerd’s image
subsystem
e Future version will use containerd’s image subsystem by default

Runtime Image
Subsystem Subsytem

I:Dntainerm

https://github.com/moby/moby/blob/v24.0.0/daemon/daemon.go#L161

Lazy-pulling of images NTT ©

e Most files in the images are never used
o Dynamic libraries (/usr/1ib)

o Command binaries (/usr/bin) “pulling packages accounts for 76% of container start time,
o Document files (fusr/share/doc) but only 6.4% of that data is read”

“Slacker: Fast Distribution with Lazy Docker Containers” (Harter, et al.. FAST 2016)

©)

e But containers cannot be started until downloading the entire images
e Because OCl-standard tar.gz images are not seek()-able

e “Lazy-pulling” eliminates this issue

OCI: Open Container Initiative (Don't confuse with “Oracle Cloud Infrastructure”)

https://www.usenix.org/conference/fast16/technical-sessions/presentation/harter

Lazy-pulling of images

e Lazy-pulling: pulling image contents on demand

e No need to pull an entire image

e Several formats are being proposed (mostly for containerd)

Format Implementation for containerd Description
(ezsotfg?)z qithub.com/containerd/stargz-snapshotter I(:)c?:\i/vrgirzdezc?rﬁipr))ag’?iﬁg L\j,:/?trr:tg&r \s/,flaetl;ﬁ);bility;
?200%-) qithub.com/awslabs/soci-snapshotter Ic:;c?r?:/zrr?jscir;r;)ea(’iilé)rl)gi\?vﬁtﬁf(gacnlg\zdtea c;c;dzer state;
?2362;3 github.com/containerd/nydus-snapshotter ﬁgtacl;toer:]npa;’ﬁtjg%vgitehfgg|a\t;1 tar.gz
(02\6qu3an qithub.com/containerd/overlaybd Elftcgoﬁ;;iie;eajvi(’ig rg%??/q if{g?g?;

OCI: Open Container Initiative (Don't confuse with “Oracle Cloud Infrastructure”)

https://github.com/containerd/stargz-snapshotter
https://github.com/awslabs/soci-snapshotter
https://github.com/containerd/nydus-snapshotter
https://github.com/containerd/overlaybd

T
[Feaaed]

create ===z
Tun e—

pull

ST
K

o

rethinkdb-2.3.6

5
o9}

XK
SRR
K
Pa%a9a9.9

%
55

i0

e
3
K>

0TI
ficsd XX XXX
o

o0
AR
IR
RORIRREIKKKK

Sasasatatole!

imize

t

59692
KKK
s

ing+op

BRI 0»\

ey S

glassfish-4.1-jdk8

Lazy-pull

Time to take for starting up containers(95 pctl., 5 samples)

RIRSRIERKKKKLL
v o essede
Q ool S EEEs
00 =
O o =
© o
|
€ g 5 '
© mmm o
e @
f — 3 s
@) S
g | 1 1 | 1 1 1 1
n) o 0 o 0 o 0 o 0 (=}
< < ™ ™ N « - =
© mmm
— [0as]awn
—

https://github.com/containerd/stargz-snapshotter/blob/v0.14.3/docs/images/benchmarking-result-ecdb227.png

Expanding adoption of User namespaces NTT ©

e User namespaces are still rarely used in the Docker and Kubernetes ecosystem,
although Docker has been supporting it since v1.9 (2015)

e One of the reason is that the complexity and the overhead of “chowning” are not
negligible

0 (root) Non-root 2321

has to be explicitly chowned for the “pseudo” root

ﬁ container rootfs is still owned by the “real” root;

O (pseudo root) 2'®-1

e Linux kernel v5.12 (2021) added “idmapped mounts” to eliminate the necessity for
chowning
o runc v1.2 will be released soon (2023 Q2? Q37?) to support this

https://github.com/moby/moby/pull/12648
https://kernelnewbies.org/Linux_5.12#ID_mapping_in_mounts

Expanding adoption of User namespaces NTT ©

e Kubernetes v1.25 (2022) added preliminary support for User Namespaces
(KEP-127)

e For compatibility sake, it is unlikely that Kubernetes will ever enable User
Namespaces by default

e Users will still have to explicitly enable User Namespaces for enhanced
security

e Docker may still potentially enable User Namespaces by default in future,
but nothing is decided yet (Discussed in PR #38795)

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.25.md
https://github.com/kubernetes/enhancements/blob/master/keps/sig-node/127-user-namespaces/README.md
https://github.com/moby/moby/pull/38795

Rootless containers NTT ©

e Puts container runtimes (as well as containers) in a user namespace
that is created by a non-root user
o No overhead of chowning, as everything is in the same user namespace

e Can mitigate potential vulnerabilities of the runtimes
No access to read/write other users’ files

No access to modify the kernel

No access to modify the firmware

No ARP spoofing

O O O O O

No DNS spoofing

e Also useful for shared hosts (High-performance Computing, etc.)

Rootless containers NTT ©

e 2014: LXC v1.0 introduced support for Rootless containers

(called “unprivileged containers” at that time)

o Networking depends on a SETUID binary, which is hard to configure and also insecure

e 2017: runc v1.0-rc4 gained initial support for Rootless

e 2018: Several works has begun to support Rootless in containerd, BuildKit,
Docker, Podman, etc.

o slirp4netns (usermode TCP/IP) eliminated the need to use a SETUID binary for bringing up
the network

® 2019: Docker v19.03 was released with an experimental Rootless support

® 2020: Docker v20.10 was released with general availability of Rootless

https://stgraber.org/2014/01/17/lxc-1-0-unprivileged-containers/
https://github.com/opencontainers/runc/releases/tag/v1.0.0-rc4
https://twitter.com/_AkihiroSuda_/status/953231819008180224
https://github.com/rootless-containers/slirp4netns

Rootless containers

(Physical Ethernet)
eth@: 192.168.0.42

Unprivileged socket
syscalls

(slirp4netns)
virtual IP:10.0.2.2

Ethernet packets

—

(TAP)
tapo: 10.0.2.100

(Bridge)
dockero: 172.17.0.1

Network namespaces

NTT (©)

Network namespace + User namespace

Faster Rootless containers NTT ©

e Bypasses slirp4netns (usermode TCP/IP) by using SECCOMP_IOCTL_NOTIF_ADDFD

o Captures socket syscalls inside the NetNS, reconstructs the FDs outside the
NetNS, and replaces the FDs inside the NetNS
e Even faster than rootful

50

41.4
39.2 39.8
a0 38.6

35.8

Throughput(Gbps)

0.452

Container — Host Host — Container

O Rootful mRootless w/o bypass4netns @ Rootless w/ bypassdnetns

Accelerating TCP/IP Communications in Rootless Containers by Socket Switching (Naoki Matsumoto and Akihiro Suda, SWoPP 2022)
https://speakerdeck.com/mt2naoki/ip-communications-in-rootless-containers-by-socket-switching?slide=4

https://speakerdeck.com/mt2naoki/ip-communications-in-rootless-containers-by-socket-switching?slide=4

Criticisms against Rootless containers NTT ©

It is controversial whether non-root users should be allowed to create

USEr Namespaces
o Yes, for container users, because rootless containers are much safer than running
everything as the root

o No, for others, because it can be rather an attack surface
CVE-2023-32233: Privilege escalation in Linux Kernel due to a Netfilter nf_tables vulnerability

Ubuntu and Debian provide a sysctl knob to allow/disallow unprivileged

user namespaces: kernel.unprivileged_userns_clone=<bool>
o But not upstreamed

Linux v6.1 (2022) introduced a new LSM hook: userns_create
o Hookable from KRSI (eBPF LSM)
o Userspace tools have to be improved to provide a human-friendly UX for this

LSM: Linux Security Module, KRSI: Kernel Runtime Security Instrumentation

https://www.tarlogic.com/blog/cve-2023-32233-vulnerability/
https://github.com/torvalds/linux/commit/7cd4c5c2101cb092db00f61f69d24380cf7a0ee8

More LSMs NTT O

e |andlock LSM was merged into Linux v5.13 (2021)

o Restricts file accesses by paths
m LANDLOCK_ACCESS_FS_EXECUTE
m LANDLOCK_ACCESS_FS_READ FILE
|
o No privilege is needed to set up the profile

o Slightly similar to OpenBSD’s pledge(2)

e Landlock is not supported by the OCI Runtime Spec yet , hope that
it can be supported very soon (PR #1111)

LSM: Linux Security Module

https://landlock.io/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=17ae69aba89dbfa2139b7f8024b757ab3cc42f59
https://man.openbsd.org/pledge.2
https://github.com/opencontainers/runtime-spec/pull/1111

“Non-container” containers

e “Containers” are not well defined

e Almost anything can be called a “container runtime” when it

accepts OCl formats &

OCI: Open Container Initiative (Don't confuse with “Oracle Cloud Infrastructure”)

“Non-container” containers: Kata Containers NTT ©

Virtual machines, with container-ish user experiences
As secure as virtual machines (because they are virtual machines)
Same images as regular containers

Same runtime configuration as regular containers

Implemented as a containerd plugin ,
katacontainers

Kata Containers was released in 2017 , as a merger of Intel Clear Containers and Hyper runV

https://katacontainers.io/
https://www.openstack.org/news/view/365/kata-containers-project-launches-to-build-secure-container-infrastructure

“Non-container” containers: gVisor NTT ©

Traps syscalls and execute them in yet another kernel (“sandbox”) to
mitigate attacks

o KVM mode: rarely used, but the best option for bare-metal hosts
o ptrace mode: usermode kernel implementation; the most common option but slow
o SIGSYS trap mode (since 2023): expected to replace ptrace mode eventually

Seccomp is applied to limit calling host syscalls

gVisor’s kernel is highly compatible with Linux kernel,

but not 100% compatible

Implemented as a containerd plugin; .
Also available as a runc-compatible binary (runsc) @ gVisor

gVisor was released in 2018

https://gvisor.dev/
https://cloud.google.com/blog/products/identity-security/open-sourcing-gvisor-a-sandboxed-container-runtime?hl=en

“Non-container” containers: gVisor

Screenshot on June 2023

® ® (@ Performance Guide - gVisor X + v

~ C' & gvisor.dev/docs/architecture_guide/performance/ & a n v O a

requests_per_second
35.0

30.0k: runsc
25.0k runc.
20.0k
15.0k
10.0k —
5.0k -
0.0k -
~ ~
L L8EFFTSSELSSSSSL
S SITIITTIITLPIN®EG CY
S Q S QT T V& o T Dy ¢ o 4 <
o & RS CINCICINS)
S < < < < =<
g9 & & & &
NN NV Y

For example, redis is an application that performs relatively little work in userspace: in general it
reads from a connected socket, reads or modifies some data, and writes a result back to the
socket. The above figure shows the results of running comprehensive set of benchmarks. We can
see that small operations impose a large overhead, while larger operations, such as LRANGE , where
more work is done in the application, have a smaller relative overhead.

https://gvisor.dev/docs/architecture_guide/performance/

“Non-container” containers: gVisor NTT ©

Google Cloud Run was using gVisor, but they switched away to

microVM in 2023

o “This means that software that previously didn’t run in Cloud Run
due to unimplemented system call issues can now run in Cloud
Run’s second-generation execution environment.”

https://cloud.google.com/blog/products/serverless/cloud-run-jobs-and-second-generation-execution-environment-ga/?hl=en

https://cloud.google.com/blog/products/serverless/cloud-run-jobs-and-second-generation-execution-environment-ga/?hl=en

WebAssembly NTT ©

e Platform-independent byte codes, originally designed for Web
browsers in 2015

e Similar to Java applets (1995), but puts more focus on portability and
security

e Can be compiled from C, Co, Java, Rust, .NET, etc.

e Harvard architecture: code address space != data address space
o No instruction for “JMP <immediate>”, “JMP *<reg>”
o Only jumpable to labels that are resolved on compilation time
o Less possibility of arbitrary code execution bugs

https://blog.mozilla.org/luke/2015/06/17/webassembly/
https://emscripten.org/
https://github.com/golang/go/wiki/WebAssembly
https://www.teavm.org/
https://developer.mozilla.org/en-US/docs/WebAssembly/Rust_to_wasm
https://github.com/SteveSandersonMS/dotnet-wasi-sdk

WebAssembly NTT ©

e \WebAssembly isn't just for Web browsers today

e WASI (2019-): WebAssembly System Interface

o Provides low-level APl for implementing POSIX-like layers on it
o Operates on file descriptors passed from a runtime:
fd _read(), fd write(), sock receive() , sock send(), ..

e \WASIX (2023-): Extends WASI to provide more convenient (and

somewhat controversial) functions

o Threads: thread_spawn() , thread _join(), ..
o Processes: proc_fork() , proc_exec(), ..

o Sockets: sock listen() , sock connect(), ..

https://wasi.dev/
https://wasix.org/docs/api-reference

WebAssembly

£ Solomon Hykes / @shykes@hachyderm.io &
@solomonstre

If WASM+WASI existed in 2008, we wouldn't have needed to created
Docker. That's how important it is. Webassembly on the server is the
future of computing. A standardized system interface was the missing
link. Let's hope WASI is up to the task!

g Lin Clark @linclark - Mar 28, 2019

WebAssembly running outside the web has a huge future. And that future gets
one giant leap closer today with...

¥ | Announcing WASI: A system interface for running WebAssembly outside
the web (and inside it too)

hacks.mozilla.org/2019/03/standa...
Show this thread

5:39 AM - Mar 28, 2019

https://twitter.com/solomonstre/status/1111004913222324225

https://twitter.com/solomonstre/status/1111004913222324225

WebAssembly NTT ©

e containerd has “runVWASI” plugin since 2022

e Supports WasmEdge and WasmTime as underlying WASI runtimes

https://github.com/containerd/runwasi

Recap

Recap NTT ©

e Containers are more efficient, but often less secure, than virtual

machines

o Lots of security technologies are being introduced to harden containers:
UserNS, Rootless, LSMs, ...

e Alternatives to Docker are arising, but Docker isn't fading out
o Kubernetes runtimes: containerd, CRI-O
o CLI: Podman, nerdctl, Finch

e “Non-container” containers are trends too
o Kata: VM-based, gVisor: user mode kernel, runWASI: WebAssembly, ...

Landscape NTT ©

ku bel'netes . Orchestrator

@ Jocker Enntainerm
docker CLI nerdctl CLI

pOd Man e Engines

dockerd

containerd

. High-level
:nntainerm @ Cri-o © Runtimes

containerd] []
conmon

runc plugin

Shims

Low-level
Runtimes

H_JH_J\

@ katacontainers @ gVisor E! RUNC

Other topics (Not covered in this talk, feel free to chat with me) NTT (©)

e Copy-on-Write filesystems

o overlayfs, btrfs, zfs, devicemapper, ...
® [mage security
o SBOM, SLSA, Scanning, Signing, Reproducible builds, ...
e Auditing
o auditd, falco, ..
e Trend of reimplementing runtimes in Rust
o youki, containerd rust-extensions, conmon-rs, ...
e Checkpointing
o CRIU

e Multi-node networking
o VXLAN, BGP, ...

e Service mesh (almost out of the scope of container runtimes)

o Sidecars, eBPF, Ambient mesh, ...

