{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Calibration of the XY-axes in a laser scanning microscope\n", "\n", "In this notebook, we present the procedure to calibrate the XY scanner (e.g., galvo mirrors) of a microscope. We used a reflective [grid array](https://www.thorlabs.com/thorproduct.cfm?partnumber=R1L3S3PR) sample from Thorlabs. The reference grid we used is the one with spacing Δx = 10 µm." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import numpy.fft as ft\n", "import matplotlib.pyplot as plt\n", "from skimage.feature import peak_local_max\n", "\n", "import brighteyes_ism.dataio.mcs as mcs\n", "import brighteyes_ism.analysis.Tools_lib as tool\n", "import brighteyes_ism.analysis.Graph_lib as gr\n", "\n", "import os" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data loading\n", "In this case, the data are stored as an hdf5 file generated by the [BrightEyes-MCS](https://github.com/VicidominiLab/BrightEyes-MCS) software." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "data-25-10-2022-18-33-54.h5\n" ] } ], "source": [ "path = r'\\\\iitfsvge101.iit.local\\mms\\Data MMS server\\STED-ISM\\SetupDiagnostics\\calibrations\\grid\\10um\\B'\n", "\n", "for file in sorted( os.listdir(path) ):\n", " if file.endswith('.h5'):\n", " print(file)\n", " break\n", "\n", "fullpath = os.path.join(path, file)\n", "data, meta = mcs.load(fullpath)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To perform the acquisition, we used a 640 nm CW laser.
\n", "The microscope is a custom ISM setup, equipped with a 60x/1.4 oil objective lens.
\n", "The detector array size is 1.4 Airy Units.
\n", "We print the metadata, to show the acquisition parameters." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "version 0.0.1\n", "comment \n", "rangex 100.0\n", "rangey 100.0\n", "rangez 0.0\n", "nbin 10\n", "dt 5.0\n", "nx 2000\n", "ny 2000\n", "nz 1\n", "nrep 1\n", "calib_x 17.303\n", "calib_y 17.409\n", "calib_z 10.0\n" ] } ], "source": [ "meta.Print()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The ISM data structure is (repetition, z, y, x, time, channel).
\n", "Since we are not interested in having high-resolution and the sample is flat, we keep only the spatial dimensions (y, x)." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "img = np.sum(data, axis = (0,1,4,5))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We have a look at the image of the grid." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAFJCAYAAAA4z/46AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAD9X0lEQVR4nOz9e5xs11Xfi367ytW71K3eam95o41kWUK2LCGsyDYSAmNh7NjYmIcj4kB4BAJJICQEwuMGQu4J5BzO4YZDDoEDIZAQHuERCI/g42CMHRs/MLEtPxTJsoWNLKFHJG9ru7fa3a7uclXfP+b8rTnWqDnXWtVd1ZvP52h8Pt1VtdZcc4w55pjjNR9r5eDggCfhSXgSnoQn4Xigd6EJeBKehCfhSfh/EzypdJ+EJ+FJeBKOEZ5Uuk/Ck/AkPAnHCE8q3SfhSXgSnoRjhCeV7pPwJDwJT8IxwlOabn7FysrB+4FbgBfGa7vACHgTcA8wzTw3AfoLIG4IPAv4cuAksAOMgfcCb490LAt6wKXAy4EbgP2Iewt4HXA/s21fVLsB1oDnAy8l8GFKaP+bgDsiLUeBJloHwJXAq4CrCH0OcBfwB8D5I+Jugh5wBrgduJ7Q5gHwEPDrwFnyMgehTRDaNU9f2LKXAC8BXmTubwO/TZD3o/K9CTaAW4FXR5qm8fP1wJtZvrxfHXFfG6+NgPcDvweca3ne8v4wuDci7ltI/fcI8MvAgzT3eRPOLnIwBL4A+P2DgxVde8UrXnHw8Y9/vAv5WXjPe97z+oODg1fk7jUqXQ32CUHYugrcohTPhNDxe/G7/hZVdxc6J4SBL2jiwaLabWFE6oPdlrJdQW1v4kEv/o0IBkdCP28bD2OI1O9SMmPzvTT4cHjmwWnLiteiw/629C2jryEYGIBV6kp22SGpbY/wTgg6QPi78v6w+FWHxnmXNrfh7UJXrm0f//jHueOOOzo8nYeVlZWnle41Kl0NPBE+JAng6qHJKUNOmFeBE6ROmRIE86hCOI+QqN27C8LdddBKwQ8JA+EEzYLfFUoK118bUDe8Q+YHO5By30vP9Knz+TjzYOKxZHxM4MVRvLl5QP2j8TdgMf3eBGrbkKT4jwvUtknEPWaxjluXumbbfAB8ekFU1KFR6aqzxYwhdU9PSvAwkGNG6feQoHAsHccFQ5LS24g0rHK0ts+r8HuEdENX639YGuw1tVG8Fu+lDJva3ta3be2XAjhJirLWOzy3CBCv10mevjf6R4EmJWA96rWIa0ySgUWAxz8Bdlo2SP3ognAfBr5nyfWfXAkZhbxOuQBKd5Uw0DaATeqWvkddSOaFrgNIwrbK4UPco0CPZGxOEPJ7i0xzNIEMzDop1JUyXGZu0eKXh2eNXZviWVQ+/wR1b19RxrK8PsnaBsnADgl55K5Kr4sX3wR9gsKVxzfs8Mw80Obo/L8VZsfzBfJ0JUBXEoRwl2R95fUsO+yZkjyu/UjD/hHq6xpu2FyevJ8RSfnM2/a20DR334Z6UjjHFWbvG1r853GA5MvnW3Ow6BzrXvxcJ/BhnnD7qHQonScD1yfx4klYDkzJydbylG7jGLa5TBvq53KBue9doe0ZedbyvI+ST57Hwx6Qwlp5mvL+cpCbcLF4S3ybFO7r2sD87oJ3njLWa8+VEf6ubZ4XSs9bpevzux4WpZBk4E9Qz90rulg0+LYLh51H6RfKLgLfkxBATtVxQaunOyGE1H65irUMh5017vLMhOBtjKjPurfBIrwfO+E0NtfGBRr8BFXXpSxtE0xS+DI8pcHaBKUypb6TohFu0XEY3PPSJR5r1YSloQSL9HZl1LVyRMsFFwk5+VH+empw77C4VSulCdSTKysMgOuAv0uIbMcEebsT+HlCimWZcBr4BuDFBIO3R1gq9pPAfRzfRGKCC5ReEIigAUn5HUdOMTfAu65VXMQAFH6FmEPgMcptn2fgt01kCa9mcpcx8EtgPS4pnZyynxe6zv7Lu5UCItLQtHSrC9/nmckWr6XwS4b2sFCiQ/y26aRFThw3GXgpZRm8VRbf7iYQr/fc70XVPZ9OuEDpBTV4TNqYYNfrHqUzujxrQ2tIazflBRwVutAwJaVXtF50EYvUu6RUNNhH1BXQsnD7NIPaKhqOij+XQsmVEX4pIJtf9mUtdOFpEyisV//KwbBR1rJBhs46NstI4eTaInxS9Gr7onF7kBKyE/SLTqe09d3ezBUp3fT36U+Pqu+f/OR57rjjPZw7d3amXJuy7jwvo4G3Q+qIowjhPANGykd/i1I+Xei3C8V3Ce0v0SqF0dWgWMh5cTa14nl/FOiSarCh/XGt1sDgkYelPh/RTWE31dkVFFkI/7wK9yj8soZWMrdNXeYP057cs7l6vKE/KnSdtBaI3yNC249CQ1t6z0J+ziIp0V/6pf/EZZc9j2c/+zZe97o38lf+ysv4/u//P7jpppfzG7/xu8yjdDulF6yyk2I5ygqCHLSFW1I6E7pZiqN6JppB1iSSVk20CcFhcdrn5HH5RfEK+xYNpVBT95TiOK5ZdMmXXxN+WJjnWTupYvP4ouuw+LrKo/XyraPTVn9XaHrWjysZD3mgy16qp2j6OAx8Kb+d4KBGyb/6V/+Oe+/9I7a3d7jppi/nfe97Dc985lU89tjHednLvomv/dov64y7dSLNEinmHOfmhB5hBcGQoPisEDTBIpTDgLAffZ20XK5pJn9RMDWfdnOCndVeJDSF7javt8hF+m20aOJwwnxrhBeFH5LRU35VKZ+j1tsE6metnuni4R8WfL12wtQu1Twu0BI9SKtI5pW3o86rFMv2+zztaad42tNOcfHF6zzzmVcBcNllxd2+Rejk6cJs44/D44H6umAtGp9X6R3G65WH1zO/j2ttcs98WkWrFQV2NYWFReYdJfxW4R3XGmHrVTetnFgmfrssUX1/HGB3Ao4JMt/1/IM2aJMPKXpt/T5OyE0aHoaGw8p/2zbgZzzjDP/0n/5Ltrd3uP76z+J7v/dH+Kqv+hLe+MZ38Jmf+TTmmXRrHEcDU2hg/o47z6ftmHZib54OOewytjHwAGlTRJeJIDg6X/whK+J/j/wsvmCenHIb2NUKx2lwhHNIUjia3OqaWjoq+PW58yjco/LeTipZB2MR4X2XnLi2vYuOLkv2rnj603ntm97Euz7wAd559918+3d+Z3XvpS9/Oe/50Id4/4c/zHd///c34pfCX2Uxq2XmgVne1CfSfvVXf5STJ9d4+tM/g9e85v/mC77gr/CjP/pveeyxs/zSL/0IC8vpWiVjw75lHHbjIedZD6jn+paZZ5Knu03y+poUnoWjeptquybQ5lkWtQhP1+e7ZIC2SYpvWXwXThlZLwfHofTPUl8xocksqCujHBw132q3ui/y4Jeu0DbRloNPf/rT/LPv/V7ufN/7uPjii3nre97Dm97wBj587738q5/5GV71spfx8EMP8cfvfjd/8JrXcO8HPzhTR66dinKXDWXDmpTnyZND/uk//ebq96tf/RJe/eqXZMu2QeuOtCHhfFN5UPK2FILZ/JP3iOf567k/5XROUT/djHh9jZTb9X++vhKOpvKrEccGqVNkbGSNm+ooXWvCads+BK4g5LkgGQHriczz10RLjlebpAklCeSI5Hn6Oi2Pu+LK/fUjz0+ZOiHlt49SdxfcfdIuRLtsSrhVZtG45eWdjnzfN/h7S8Jp/4aEPt8gOVYK9dv4fvbRR7nrfe+jB3zyk5/kzz74Qa644gpu+bzP476PfIS/+OhHmYzH/O5/+k98+ateVXv26quu4k/vuosh4YCjZ3zv9/JZP/RDTICNq67idR/8IP/2F3+R9957L//+V3+VF//Vv8ofvf3tvO/P/oybb7mlkpHDyobSlqfxUPd0f/qnf41wvu6n+chHPsoXfdE389Sn3satt349d931IRbm6Z4CriHsULHrJ1fjtS3qy8cmJMXkJ+Gs55Tb9LDvfvcJjLiVIAhaQbFKMAJXEjwShT4SzAmz+CwNTSCrqo64HricpPBOEDr3ctJOoR6zHpk9m8K3N0eHLae6rgCeE+nQjqRebPtp6oaoFP6W8Huw4WMv1v+C+Clva0zoh8vNM+qnXK7Qr60t8d9f24y4r6Q+k30JYVITEt9LUFoiBXnv2dJ2DXAjQfFKttciPeeoLyG0uLwc5nBbfDYVJINyFUHeLyVFFX2CLFwJPE69n4THRn62nZILS5ueH5jrA8JYv5mg+PSMxqD63M5xWDqsR/6ZV13FTc97Hg+885288Eu+hHMPPlgptJ2HHuLGW2/lUkPnJkEJ3Ux4YcEKyQhcBDzjWc/ie//G3+BHvuVb+M13v5u/9XVfx9964Qv5q1/5lfzTH/xB/tHtt1eOiM5mKfFDv23/rBL6/Pk0w8/+7O/wHd/xNQB813f9ON/93V/H7be/mD/+4zv4+3///+BP/uQ/tNSQoFHpniGc5H6ZIRKCEF4XG7FNsjJ2dt/uJJJXqNycGm2FYGSuQWDctYSBZkOuaaTrJsLuMLuaQXitYPQIA0gdodygdh3Z1QHbkdYNgrBdGduqZ8cEIbkhPrdjnrcduUsQYrv8R22VMlaeWDRogGzF31cTBp+MjQTxmvj7cdLAlTcsUPtXSekY205N0ui5Jwyejdi+a6nnh/uRnpsI/Bc9Uhg9Ut+Kx7bfvWEVT6xi7cf2ib/K3Z8gGeBTJKMmvqid1gtVTtBubFB59ZX1otUft0QconWV0Oe3UO831SmZ07pmmw+1KRIbwtprWg+7SVA81xiaifVdF+u38j4gnT4nBa1oTP1mJ8Qkq94xUn03EPrWKqoJ8HTCWzTuJTke1qjJAPaBE+vr/C+/8zv853/8j/mc7W2eDXwmcFusS79fSFL4m7EdX07ysgWXAU989KOcufturgE++YEP8PH/9t94EbB5111cd/XVvCCWk6E6SxobVi6tsbEprFOEvi17ugE+/enkwX7sY+e4/fbbgE/zxV/8XLa3d5gnvdCodC+jviXSejWXk9IOEiYNlIEpO6WuGKGuGK2VHLkylmmCHkER3kgQFKvshMPmguxyH58fEu12B5Cspp1Esp7CgKCMz5AMiocRaaWFbX+OD6JR+Dz/RqZsjyCkN8VrqksCJsVjlZFVnFbpC6T4BKprTFDGmHouAZ4b8diDgNT/6kurTFWf7gun3XhRyiGr7Xsk5XMVSTZs/0FSNNbDtAbPGvle5lnM88KtybSnkwamV7rW0Ni+sH0vnGpfP1NmkySH1hBprO04GldNHQLr3dr+t2utVa+Vjc1Y77Z5FkI/30IYawrj7XiUTE2f8hQ+/3d+h4/92q/x7N/7PZ4NnHr4YZ515ZXV64euf/rTmT78MLcb3vaAjZUVNmNd08Gg4tc6MNjb40vj92dMpwz29ngGsD6d8tSnPIWvNnVBWtMvg6Nx8AT1/rIGdI3cOK4r3Ve/+kX87b/9L/jn//xvc/vtt/Gv//Wvc/vtX8Sb3vQenvGMy1iY0l2nftCFiNV35fdseOqFHppnf60QQH1g+MHjFavwa4LLehJStlC37FZJe2VsPU6riPzglDefe5NDL163bbL17JFypcJtw1s7iIemDmv4rDflQ1kbutpVFz4cth6NPKR9V3bVlLO880vIbCSiazbiGbl7lmeqU7hykyfqJylKj1N4dNC794KtQVVb7Kfa5D178VB0bxh6vBKzsjQkpcRUp+iw/PVjxa5RFU+EXys5vLPiI0ubf4cka15OrZxbr1t4bb8PCJ6kNfBepq79hV9g/4MfZOcnfqJq+9673836tdfyGVdfzc7DD/OZf/Nvcu/XfR2nSdtu14C1q66i/7SnMXr8cU590Rexc8cdlU5ZIRm7pxBSDhvx00axGu8nqJ/9rbafce3vk8ap2lmHutL93//3v8Mv/dLr+Nqv/WH+/M8fZm9vzM///O/z1/7aC/m1X/tBFqZ0c7OnPrTwuSwrkFYZiyk5JWUVmvWWhMsOMP0eMbtTx4adVrno7IQe9cM09KkBocXZ28x6BVbpTR1ubyVtB3qFOqAe7qjNdjBZj0nfZUgm5I2S5b1t/9iUHVCfhfdRgr7L+IiXXoDtQTw2ly7Fbb0O68X2XV0lb80av765Z3fkSeaklKy3CalP1fc2YlH7LW/kwen4UMsfKb+SvNk6xR/JzOxgrvPNyoIN3S0/JO/K7VujovpsHwq8krf1WSOjVJM1SlJgijgs7zU2JAOnvvALOfON38gT/+N/sPm+93EA/NkP/iAff93ruPs7voPPfv3rWen3efg//Aceu+eeGVr2Hn+c637lV7jossv4xH/7b3zGN34jj/zSL/HpSaB8K5bdBz4Vf386PrtFGhdqizUotn8wZSE5A31KRzvWFekNN1zJT//0P+SWW67nAx+4nz/8w3fz2Z/9DC65ZDhTtglWDhpe1fEfV1YOHiDkPWy+RcJ8ljSZJY/KepcT0iC395smA1RWHsNlBMulMlKcZ4FHzTUJkgRFClRKNjfx4vNtA9LyoDWCdb+MFG6rE3cI+TWFYt6bFHgvFOoDxE9CYMpvECy8vCvlN/cJEzpb7lnr2Xuj4xWbD3MtjVJAp+OfFIPoPU84cm9kytpQu+RR2Vy+aLC5chuya/JGSkBRzojwhtgtg0/g69Y17xRgrqnvpGwhyPppksyp/C5B3s5SVzpWrqz8W0PtHQurdKXU+oS+voqUa7e8e5TwRmQb0fVdOZtGgrxnb2VAcrFHmiQ9Q90D3CPkSO8jjQvxSn3mN5LkvttIyirGp1x1FV/92tfyBzfeyOWk1xSJTzsEeTtPeSLQ6hxFiDZ1BbPpH9GnfPqVwCvN24Bvvvm6gzvu+DcV/f/iX/wKr3vdu/j0p6e87GXP513vupcv/uKbeMMb3sPLX34z/+yffT0WVlZe+p6Dg4ObyUCjp3sf8A7g8yNh1mN4EHgbQQHYMMOH4ja3akGdZRWFyonppwg5xOdRZ9QTwLsjfd7ie0EcmXs2t2c9NTsBMYp/64RJjRMEQVRotwd8JOLfNnVDXSh8Wy34CRXvKfUizueTcszCcxZ4C2nw+7SB8Fk++MHolZL9PiXw/Sbqr2maEgT/3YQzVq0i9vUK/H0PE3dPxuaG+Llu6N+NeN9NGoA5vucGZg48TTIg15JWzMjYTghK7w8IxtbWXWp7bkLXjwXxXEroaoJiuoH0frghwdC8liDv9nlrTHw00iPlNW3EYeVeZScEebuZtFRQTs8e8HbCWBedUqA2/WV1gzfk/rflzVOBVwLvpb4hRl71ncAbSR6t7dsd6jrEOghQlwU7Maq+k7G9ijDZV4d6euG3f/utvP/9P8Pe3pgzZ76Ohx76j5w8uc73fd/t3Hrrd/HP/tnXzNRQgkalew+ho88QlnNYr/TD8d4o/2gFlsHzwjZpAmWdFOY8FPFbhX9Y6BMETV6r6jsfcV1DGAwS1h3gLpK3twzoE5TMkCAQ8qS3gQ8R+O5D3UXCExHntQRvX4PsUeCO+HlUvpdgK37eQPA+Jub6Owg7BP3ywhItTfdyIE/pyohfy/X2I+67WR7f1b+nCJPE1hl5L0H5SEaXgXuL0N5bqDtI9xMU7gMNuHNKtjOdDzzAF9x4Y7Vq5RpTxzmCwr2LbmNt3v7WM3JgvqN2p650n/KUHv3+AWtrT+GZzzzDyZMngE9z0UV9er0VFpbTPUs9/LG5knOkkLcNupTJwZiUk1PObY8gINssbrfKNrN5Rc2CStnqc0QK7Q/bri6gXOU69Zn+syzuPOES7JHCNGswRwSF7D3URYL63Htu5+Kf76cmOualUXlTHSKu588TvM1l8n0acSvKWietBX+Eox9z2IZ7jxRBrJKcJfG9qc/99cPw/Tz15XgAD5Ocm2XpGeWF75m5U1e6q6t9dnd3WFs7wXve8+PVvfPnd+ZWuo1OqGYNFeZBYkiPxVvdXH1K6Fu8TUTPS5MmKXId1iOEmcJpc5eHafvEfTbRRMRtc7U+99uG5yhlFYZZ78GvHFgGaBJHMmdzcjncXdvapZz4rOVwCqc36M77o0CPEFmsUZ9rsPK/LBDfV0mne2lswHL7XKDUgmRPzsayYUCIbupQ35H21rf+r6yt9YFP0+tNq+vj8R6//Mv/kIXtSJPStYPe5pHszHIXsPme3O+SYNtJLJ+4XyTk6FEbNQiHmefmrbuJBx78BFHT8rvcM/PQYkEvZ5R3VXo5o+rK5e9yE4RttInnUrjK2Z8ib2yb8M2D15e3Kw/saoqjQhstfo4D6m8uWRZu8V3zFja6mreuw4Bd3id6lDOeV+HPS9uQ0o60pDxPnMh7s0972hpPe9pa9l4JOqVbx+6zlKdts0p2gHS1YFOSAHQJ6RcpCBPSwen69LPwXaHpGc8Lv3xMRqcrLMI72COF+Zpc3M6Us8q7NLHnyzaBZENelr7rrwRdDVcX/FbhTEgvZl0EX73B9XUqtWP7fhHQlXbhtVFG7tmjjrNcnVqKqJx9lzzuImibUJ8nWDa0nqebU3beExDM09ich5KzUFrKJUtvO4WG5+axdipbUhTe2DQNhDa8Je/eKis7Q6vBPqa78pXyO8rAUErFzv52ya11VaxdPC6rAOeZwDpK2+0sP9TXqS4achM/MnA+jbWICeM2sIZGv4+SVmjrZw9ex/TMZ4mORThZeW/6Ar0N2C690MQKJCV8GNffgg1NS0rPKngpXI8zF64fxgCUYBDx9jqUbQrBm+7n7qnd4vVupoyvv0RHEw05/PIsZeBmX9x3eGjjoV3OJB7I624agLb+0oDvqpCt4ln0ioUu6R1IRrZJ4dp783r0OZnRm0JsfYcd411SPwKfv13WpGGJltnI/QK+gt16HvukQXjYZWCqc96y08Lvo9TdhlfH21mLfxhhmFdRy8u064elcA5Tf1uZknKSgI4p7dhZHkyp55RtuNsF5vGwLNj5CsFh8/gl6Npf1vgcpa6uz9nJcevkHBW60mi3wMvQLnoCLzfWoHT2wnKm8RqVrh3kdgKti8fXBbpYe4VZlpa2FQyLACkdLaC2O5iWjVvgF37D8jwADwPSCoKRuXYcYBf0q/021zsvHGZixW5ztQZo2bP49iyHo6xxnxc0kSWDo3630e4y2z4gLVHUppRFzs+0wax6XZ6n29inNuckK+QnTI4DpOR1ctdxvLkC6la/lMdeNn6b29NynmWDBB+D39+fBw7DM0UYMnJ299O8MO9z9g0hwj3kePp+YvBpzB2l7V1BCl5zKFPSwT3HpfghyZqWyh0n7uOC1rcBS8naEGveUK+t/i5lhoRZ5MOukT0MbqgbG8ivE+3SBjriszi0TE6Lxufle9skZRMIt4Re+C19XWFeWZHXMyTkU+0a8dw5BoeF0vO5d3TNK3OHpU0KVo7NouS9C6jP/RwJLN/Dt5sy/Fjrgvsw/LZ8zUdxFyCna4V7WbO3baAQ384mL3rpThNo9lohtufFUfOpJVBOUwNQea7Dtn0eGvwSPSmA44owBHbVSG6R/lENf+l58Vg5TWt0jxJmd51QUlsle0fp93nBT6IdduflPEpQ5RTF+We7Tp7OS4NNX82Wu0ATada1twn148orwiwzpplr88C8FtFOYFkltChoo8fmtuYdAEeZvffPSAEdJrVwFH4dd24PklevYyrttuSu/M/R3KUdmszSphCt4Fg0NK3usJ+iaZ46aLheqsfisikGWJyXXVql4yP5ABdI6SrUGZIOCz7ukEcDQJ2h95TJSs0bas47gIVLR849Mefzh6FHE4V9kvVvWx/cBk38yXkW6yRBVLjdtkEhB02Kv5T+sLlsDbzD5DXnabOl157stowlY00wJJ3oB+WjP4+a0spd13yJHW/zrnrJ0dFWrk99Ek+pnUWlMS0eD2rnNTN3/hJMpNnCfklNFyiFSE3KW0rV5rhyy7iO6k01gW2rJjmOmtxvM1i+XfJ2FjGpkMvXNfFuUPjeBG25UL9qpdR/1tNZdP821aeUls2vtpXveq+t78ULe9aHh9xEtud5lzHqx6RkTHJ21LXZOfpL7dc5J4ow2hSub2+TnLXBcaZvoMNEmgUpgMMs2TpMGGLzW7Zsjq4SHFUhy9s6rgmFHMjrtYc/zwvzhLt2C67NZdoc2Ly45imvnHJOccyTUz1Mv9ucvU56a1siOc+9LjldqOfPpfyb5hL6Dfe60KboZoMU1axztPXZ88jcKuGwH0UY66RjTXN9Pi9fS6B6H5u5c4HSC9bjsuHWYRt4mGf92uCS59HkFRwW9KwUnZ1JPwq05VolZFbh22VcR4V5UjE96u8emxcOExHp0/Oki8I/TErBg1ZPaK3ucZ12JX5L0SxyiaBve44XpwiHXNn31R0X6NhQvTFkTDjGtAsNR42C7M7LOlwApetPuG9aNtQ1dzMvKJ0ga28PAzlq3W1gB/5hD7rx9XX1+LU5QTkulVlEO7vm4qyH59NMRx2QTUbSprF0jnLXScSj5iDFbyncibu3LEUkXustJcInOKrSz3mGuT5Q2xXiHxdMCEtC7aT1eZZ/EM1futULkDpHCf3SwF+00rNbYVW/lm5NTJllDQK1U68Osd6O5YHSLcuyyH3SRI7FP8+k2jx8Et/twB+Zz0VBGy/sbjy7K+0o0MaHPrPn507M37JBfFd0Y89e0DhcpLzbKAKC0tsitV+5bZVZpucrY3eckYUgH0FdwIk0C/vm02/L1WdbCFi63/ScjnzTOZ9W6eXo6IK/C63WGzhMjrFHHk8Ob+7ahPrL/Gy5Jj42tauJHnvdtlu/cwPhMP2ZK2Nzp5qs9IvjxX9Pb5sMqO6mbbV2E8gp0nvCSuVKfVuiIUevLzclvRFFsg6zfD/MhGoTvaX1+Lt0m0wr6QJ/r+2+jazsjrxcuXnHfRuUl4wd9q8MjfTmhEKWT0s8PPOsApqXUf6a7QDrcdiQIzeQunb4tKVcbnbfe3t2YrFJ4XWlRWCXzOivFO7lcM+jDHI7fxRm2p1w6xmc/rt+N/WLxZujaUiYVJGnpVC3Rz3K8bhKA7rUz6VrMjZdVnf4urwRLvVLTtkoxNYqAnm2fsKrhLeLHDb1iz1fxK9kKOHUc7aeeRWvv9d0lm9uvJT6v4TL8qhtbC0DOk2kaQBCu+cD5cHfxJxceUi5XJtP9kJoBSkn9DnwSq40+Gw+NSeEpTZYRVaizdJh65Eg2N1guj4P5BShvV7iTZ/06pS2vKJvX4kGi9umZKbumgZCjzShokHYFFGUrjX1T67MmPDizWtJZxDYAZnrv5yMl3BafL6sV/Z+HsXX1xVyhilXR84QtOHsSkeunD1ES+0cUzfuvo5cO3LjvU3eLe/z8wsXMKcL6XXLyrdoe2IOmjphHkGxMCQpoBzeLoow90xugFhBgJRDzilM/0wXGnLCkAPr5fkJpTYcXejqwiMviE3hdglfrlyTR6Jo6hxpIhHqhscu3zusTJWeG1N/Q4bNa5aes/15WPn36061guIwL6RsM4R+HkJlPJ4mY9fGe3u/aZwJlL/WHEppoq+r89CG3yvcv1SrF3qExLo9dMXeh9kZ3i6eWWnhtPdi7RpZMVyhT9OAbMNfum9zSDrlSG9M0ISaze36Wf42HCqfu2/zxjrhSdf15gbRVlr+Y3Ox3kMqCbIHeXg7JG9Xg19pJc/zXL7b0+S/56DHbCpJg8xO7rXxsQv4dliPS/MI1tB7+RK9TfU2gaffTuKpzWNzr+uEXpNRK923uO1bSjTufZvajJ1k1PeTv6/vOkEQUk7bngMxD25fpqm8xtrJmTsXyNMdEN6SeS31A2f6hPV0jzG7RbKkDAQljzG3BOw0cCNJ8CV0l8V75zM4bP2qM7fMrRSe6Lkhod3Xx7I6ULkX8W8R2i7cfra7dDiMDR1zilJCcBPw0ljPE6R82xlCvrNpa2pJqal+L4R+0f3piF/hnryA04S223bkcFga2hSvN5IbhJcEnmF2nfhp6t6/bxfMtt17kCrjeT4heNbXxj+V0860KwjrRq0CbgO/i3CVxEspeSsvVxHkHdK5D5DkfYv8mPJto1AuV0ZwBfAC0gSi7l1O0AEPUu5D3DVrhDUecwZDsr4J3BppsKs2NghyYA8eKrUh16ceSvifD1w3U/oCKd0zkaDLqQvIkCAcU5IgKAWQ8/q8UrSHQ9t72nygPNqNhMEvvLp+BfBcgiDYg49lpe2Mv8I0SAPIKuO+qdueJHYauIV0vKDauA7cEMttM/uqcHlmomtAsNoafDo8xXqh3qKfBl4ZPx8j8fUkQTj2CQrALquSYPtzKazQ+5y4+mLX/F6POG4iKR0NoCsJA/PD1Pva7pTzob9ozB0IbssLxzXAzaR0ihTPGeALCCsLtkmz21YJyktVey0Oe4CMjZ5smU3g5QR5V58o4rg5/paMSt71rJdni1MgpWvPFoDEv5fG9ls5HhDkcJfQ56Ld44d8/+utH2NS5ILhkUL6FwIvIvGdWMcN8d5HqHuvts8l41apDUhrjh8298WfEaEvzwCXAC8xbVKZq4EXA3eTPG7bL974WqUsOZCRs2PAyu4Z4NWEvj8uWDk4OCje/O8rKwdSbJahWkYyIgmhBCq3ZVGCooFlOxWS8NgdX31Cp6zG66pPCnKHIIgDglBtUk8BwGw+VEIp0ICWIpCFXyUd3izBteUgeNkQUhA55WcVsQR0Ql3B2QFqJ2y0HXNinpfiGhGUjsqvUd+4YdtnBc8aAj9LreelEE6Z3wI72GwbhFN1wqxCU7v8BhPJgu3zNdJEih1U4t2WqbNPkAPxv09dkfnow4epKi8eyLOSMpfcSJ4fJXlgg0iP70fb57ZtdqLIKmjVMyAoe1vGwqOkNbRQxyklrvq8h7kWcewQDLdkiXhNW25PEnguelTnOdJZ1nZM6LfGqOiSvJ4hjMtH4/OePxq3a9R3wdmx9DjB8diPZUW3+sjiG1Ifq1ZJW/m0xvBSUvT2jIODlfiVm29+2sEdd3wlh4WVlV98z8HBwc25e62njEH9LFOreNYIA9R7N36AqwNtAtx7BrK4Vnj2SArGK4shicmbJAUj0KSGFKvtEL/NcWLKQOpIpQ9Ek81vXcLsQdd61io+72FummdyNAskpL7+KekUKt3fNPVpMFheec9O9OxRP1FL+EfUPRmVFY5LTF3q1yF1mmRgbb3rzCo/KRHMvSdI8qB8utoipaiBo7YLRy7KyoWgAttmLc63aSMpGHn6ti5Lu43QrFeNu+ZpUn/CrEGzz58hGUPbL371hw+zJf+b1GXNKiTR/rgpo3trhP5Wn2slkx3PRNqso6H27ZO2F1uw8zIy8NZZ0thS5KU2WT7a9wf6frb1W2Vrx4ZAMjYLfvQtBhqV7hb5dalWYLapW1Z/6DPkZxF9yAv1MNtazgmpU+xMqzxXCatnkbwjq3S8MrFCuu3uqW7roVlFKJw2ErCKSMdBymNcpR4mWd56b0kGQ3XZtnmP0udkPY+lwCCf/rECbxWD3Q1l224Hq/XSvYfl0xy5iRENuJyStnyfkiZXbFSAeSbnIYpu63X7gasyftJK9NooQx6wnhEdkrNtc0/t83zyMmgVmJwVm9aZxHo9n1SXDZs9X5QftakeRYo53ti8s71v5d561N5xss9Bfcx6Y2OdMp+68GkE9buNIjX+rHyq/T5C1Vi2KTE7Lmcn2y5QTncbeIRgpWyoBWlZzzazIZbtXO9ZWLD37KCxnXGK+ro9MXNMCrckRL7TrSfqvTDbAVCnUWUuIYQf69QnQMYEr0ADTB6cpdGGk3ZQWGVkhdV73pvxTx67YD/iPces12MHrx3owiUeN3nY8lpPE3hrvX3ib02gbphnrNfieW5Bg0oDx/aZFMMp03av+B6M7VdaR3UK/AD0xt3nYb2B2iR4tFBPb4wIOdWt+Fs5ZUHO8OWiPP22yldRxBqJ7zYyGxHSWY+TDKgPxT0v7PNqh+eBjWTXCOkNuzrFpv3OMmvUrDL1Hq41prat3pDbVMQpVxcEfp9lVsGqLjk8VqZsmxWh+jmOQay7T+D55Xi4QEr3LHAHYVLlWpJymQAPAHcRBj/Ud43lBoMgF+LZssrVQFB4zyEk822HjYE7gftJy9nkcdu6SpMNMOsVWLr2Y73PJCkBO3geBN5J6DQNPp9DtIpt4ur3A0aDzl6/hjBZeLlpM4SB96eEPJlNW0BeofloAkOvcPlw9RShz59JfYPEBLiHMLFh89TeW1FZW6f1jGwfWMMAge83Evp8zfHtHuAdzE5gqt3Wi1E7oS5vFp/k1KZTroz3rnbtexR4M2FM6OQvPW8dDJjtYx9FWL5YZ+NywkTlpqvnLPB6gtypXdZZsYrI4rJRluqzhlATbCPSJOlNJJlQ9Pc+At/Hse2Wv/5wINtfO9TlR221ToYM3c2ECcPT1BX+PQS+b1GXU9Gn8ar+s6uGctGtvbZF0DHPZ3aMLBMale4DwIcIiebrSIzYJcxg30N5W2zumr+XKyvoExT6kKCANs29B4F3x/s5xe7TGIJcot7es89vENr5dIIg2LTGnaS257w5Gq5b+rxHIRwKUzcIvLch9j3Ae8kvGSsN7hINubJ9Us746kiDztp4DHg7IfqxitPWk/N0fXtztFilOyZM7GgAysN9I8HQjmeraIUu/SSDfwP1+YUngLcQZM7L+1HA8+pRgvK7huTN7gJvi3/b5tnc2GmSuSb8feA+QvuvInidUvjvBX4z3s9FFFA3LG2Qi4I2CG27geRxDgmy/lsE527sni3VnYtYvdG1uIcER+aqmdoukKermUzlq6zl3GZ2h5Rg4r57DwdmPSIvLOr0rfh9nbQ8TbOhdgD4DvH1WkbvZ675TtmJ+KSAhetBwsBXuJNTvNbbamqzx6+QaEoKq6zXOiKF9iW+e1qaogoy98YEJfN4/G0N1IPU16r6dngh9woq5wX7QbHNbCi7G3E/Sn1pksdXkgGY5Yuu2f4T3/2BTucIDkhp3iDXvpzxyfFa14X7cVJqCkJfP0A6k8ErkBwdvr05uRN+fW4BD8XfMjgjgqw/Sr3PrXxbaGp3CTexbQ+S1sKLBuGXsWkzmjm6Ru6674cpod1/aQ4xV27WuvJD0lIZP8GTgybrW7puPTvLJJ9iyD3fhsuGWCXlZwXLhlJdPKycoHkcOVq9IlG+yi+D6WWe8XAYvohGwTrB4xX+E658yZiSud+FLj8obTioiSX1eZsh6dr+ksFfN/X79EtbfTkvrMmxsNenJAdD1+Xx5p5v8vya+idHu1V2qm+TtDnBP1fCXZLpJtyic0jdwckZeA9tdfvr3hMWzPbxBTx7wSvWkmufSx2Uykwz5XLKxIYA9r6dWPO4m1IWtk6/EsILtoTWKpseaUD6GV7/3U4A6XrX1Ms+6cCZVXNvg/rW4Kb25a6VeKPrtpxon5prdtYe6nzzfar6SikcW9bfl3HfIEU6J6mvQikpsjYee1y2rTmDYl8jYxVYSeZydJXSa15uJqaNGmeXEtIs08xzvt8svtz3HA0WLiGtT5d8y7v3tHZNJ5T45PnuD9WSp51z7Npkytef62NdE5/tMs8EF/AV7H3zKeWT2+ZaUrS2vqm7nhsgHrdSG1b5rFHPa7bh9vj9/VxHSvj9ygLvxflBlevwHF1eGHXdr0gQvgFlg1PC2abo/DPWENnQ20Y8vu6cws3hyeFtMpAa+OvUc9ttuErta8rpW9Dk6MT9zuGxbWibS/C02/se1OePkyar/bMl+Wrif9N8hqIJ3dshpZl8HcJd4muTA5ZT/FKyTdFhqb+64i7hnbD8N1RYaFS68mSUY5LlyVmfNk/CX7dQUlp9V35CmrVuqjc3GOz1HE5/v2/+Sh5Frg2elrbfOYUnEH4pALuRwUNO8eZ44vGUBr9mgjX4+6R3peVwN9GU826aoEfiOwWcvn05xZobZCXe+7qFVzluH7m0gcfvHY5cPX3qS7bkUfrcuFV4lqYcT7rQqU9v1PrU86y5OnMy1Sbfnjc2dWnBLlEt4W/D12Rk1Wab0klwgdILEvyx++09niavtUnJCkqdIZyQFqX7Cb0c3rbfHmcTrSqjtivkb6u/qc4my2xB7VVbB5myTcLeRJM3TCUeadndhPrseVdooqkkN3ovnpTePmGiw6/pLeFqG5ht1204vUaYSGrzhNoUfBewDk6Opra6S0Y29zv3vB3X1tnw4GWnC7TxxqflrHNno615cXX57vVZgAukdNVQ73V0EYDDXPf35F2OqL+3qTRhcRQoCbH2hWuB9Sm6v5X3MO0XKG9sUxhbHE7xCWeTN25BPNZkHqR0QynE6wJdBr763KZU5lVeTfU30SPwGzesV1l6dl6v0oOfVNPErZWBeeAwBsAqU5taaavbPtuFlhzI2Ai3T7F1xbU4uIBKV5/2tB57b1ngZxklhPJ4l41fYLcLQn075mFomGewTqlb/G1Cfu+wiq+roNplPcKlEFdGeBGKoA2/BmBu9nwRUKJnRMhn2ijvqF5sDnLKwy/DVP8flufzgHitVSLadDCPQTks2BVLPrr2bV+Gwp2t8wK9mHJoPu3efeVVjwNWIz7thhuR1s8eB6jTlVLQYd6HHQDzCIxyueI51M+kIPP9qGDrsn08ZPHRRReQwTkuI6sBrxz2gLQz7jiiKzkUPfO5fK8ugHLIWk1g526Oo++VvlOa5bjaXYYL8GJKm0+FlOT3e7CXBTrYWbtUvNd1HOAH+3FuF4S6pVeOFbqtTzwM2EFmJzJzy7U8ncsA5dAvhMIX2PXBOVi0A2C3d+fmEJYF4rEMfI96tLNM8Mv1cveWifswuxwPC63phdyM3zxhx1FAHp52ox235VNOUd6HJniOS/H6SZV16mfHLksY/YROF09zWYo/d22Zg1CGTTl1eXtNimeRcjkwn/bMgGWDUhhStDB77sYyQQamT/0kN91bJn5FNXW4gKsXIE0s2FyLPQ5QZRfNmDHh1Hm7HVaK57hAbdbgk8E5LtwychJGf3DHMnHbxfq5yaRl4bUDvW1H0jLwj0h5/OPCC/UlguK1fyPDskH9rbmM43J0/Iql0saIRYOdv6jDBVK6Y/fdL+uwjFoGc8aEiaOzpMPS7YTOPLCoGc/jyiVD8miH1E9ROy6wE3mLWL3QBdRH9hS040wnQZCzPcJuxK5rixeJe5fkddrQd1ken00jeWN7HKCVNdocYVdQHMcEIvwlUrqQwg17tuhx5pns+jyfZ5wHjrrsaN/8Pk7lJy9T1v+4cmzCbXej2eMblzkQNOjF++PO6w5JRxgeZ0rLpzGkANtyyovAC7NHlB4XWMOm9srjh+XKW3kJ6gVavWDzS9obbXdILWPw59ZDStk0rZtcFvgUynGEPJA8HkgK77gGg9psDzqyxmbZ+TXb3tzE4TJB8wiavRdNbbAoecz1c1PfLwqvTSVqtZJW7RzH3I1gSJrIW4a85fg1IJ2xchzQ6cAbO6liT/paNNgUgJ/NlKK3IchxQI/QIescb37RKrrjTGn4UNPCsnluFYs9HNuv1Vym56O6rafdJa2yKN74XXdNW78XiXdC/swJOB75sytz9HsZaSXPr/I2YFiWlHV6MaVfo3jYNYttg8Un06VwpXR3ON4lWwp1/HZET+OywHofGhTKdx0Fd5dn/Sn9y9gFmAPhsYrOp5SaaD9qn1ijr7qW5WS00ZA7Y2QZUDJqdg7luMC+Ykvynht3UO6TxYzLC7wN2J7+Y/M/pe2MXRpcKueVu5SMD/Ptp6+n1Em5sr68VyzW47RelzUK8y5x6sIjP/it4i+tlfZ0lGhow23XBQuUU/UGd17hzvWZ7/OJ+dPqjVK5edvWRJfqtzPnY1dmXoWf66Mm/tmcpt/92UVumsqUeObLyMjsZMqVaLf92uSclMas3Xk5Inie15DmjuxzbX3QhMfTozKzxuUCTqRZBTOl/oZamGXopOEzp5xsGYH97TvTzzJ2Ech5ZkE9bp/uaPIyu+LpYqHFX/HbnkmQUzJtA7kk+Dl6rbLRgTsedxfjVeJRDpp4Yj9zz82bemgq41fmzOs1NdGSM4a+vA1z/Rb0XLTRZLz8/TYnxzo2KqvJxJKxLMlDVyVp8dqXSfZPwNrerPORw21hHjkQ2LN8E1xApasBKOvbdNqSHwCTluu+TFOdglK41SZcTR3gO6pkrf1nTqBydXUF3wYt05Kn32f2ZYuHwWNx5Z7zE0h9UrRTUn6+rnnbbQep5hGgfuhOF1xdDWsTDfIyB9RpmdeYdjGuOVgjTaLq0PwuE5ld+eDLqV6lkWwUu5Z5rk3mSoq5ia4eycEYAIzDMsmcIWiqp8v9Jpk/DmhVuhAYr7MPoN4pXQVtXqUAqSM0mTAhTGota0KnZK31PeeR52Be76hUxxqzJ1NZT/8oCr0JeqTzBuRhn6Q8obOI9nrZ6lN/W4N/e8iyQHhtHntRy9VyzoiHfcIaYSl6vUGk60FTh+kLW35g/vqEN1fk2j5P5NgGGucb1D1Of4TrMkDylZetC7BkrCQcdo3uIoSxS10iVJ1jc5yHrbOtjLwui8sqwlI9R1VAAptHhbpAtoXd80CuDuX17NbnktLt2t7S4M3h1sFCEAz+RkccXepvK2NzmdbwLBuEQ8uXpgQ+2DektLWnC52lOsRv8V7GN4ejLR3U9Z4dM1bBHkzDOcY5D3TROscuRzUUsKwDb1pfTKkG2gkNWSZL+KIgp0x8ikNvJ+6qeA4z8LQhwL4jTYNgXHimKy5ByWhooD9Bve271BP+uTztPHh8SK1Pq+hV/1b8w5Vvg1z04Gn2EYUMm3i+Rf21MV1w53KAbXRBfZnehHSqnWQvp2x8jryJphyI3xpv2pG2H3HvZsr7ekv9myufu9an/v49bfN/rFDepxpsGT92u8qKPVZSfLf0lZzAw0Zavs/rcIFyuj3C9ttnkjYojAi5ljXC20J17miTy1xiStPp9v1Y/3XUc4pSuJuxXNMg0P0mgfGgeyeBqwnhlT3PdZ/Ak3PMWvw2xZbDkwOFdc+M3/fi9RGh3ZuUvR/Pa7+rqi090ie071rSm5913sRJ0nZsi6tJ+Tfl9wTqdw38a0l8HxPa2ie8oNEuJWuKOCYt5fw9HSt4BeFkO7VZufTTBCXQdfmcx9mUM9S7764iyJzWJ+ulkJcRziBR27ukWTyvrSGFWdk9DTyHoPjl6U/j9U1m+9fy14NNhfnoLDde1gjjXP2rft+M12QA/Com0QHJCfNrzNvG+gZwA2GlRB0ukNLdBG4hCIMUn/I91xCE8Fy854XRfi9NAvj97ZZBA0JHvID6yUe9iPsmQvixR31do1cEqsumCOSxy1u3tOreaeC2+Gm33q4Dz4/f7bIttVEDRu3Ypz5BoO875IVyN/Lk+YRBIPr0/A0Evp+N5W3+Ubt5VLeMpN3c4ttsvQcpnhuALyB5HMTnLwduBB50bfVKQHzxyj63MsCugR1GHLcRBsOOuX4GeC5pk0rf1WN3Sfr8d2696zjzzDrwIkKfE6+fiL9vMvzQ5F5OiVia1FZ9t0vRbKpmCDwrtvs6U2ZAMHTPJxkfy9tVknFQ+sfKlHKiNl+qZ7cjPTrR69aI3/bFNNJ1M6HPIRilCSn0zxmgNZLR0IoE9UHOYFwJvIqUNpRM3UiQw3vNNS9bY/Ppd+7pGe/Mibdjgry9iuBMzMDBcpJKKwcHB8Wb/31l5eBBAjN8zmOboHB3CMKqxmkiREywClW/R+b7JeaaHcADQgevkV83OSK9JdUrXQteEWrdcd+Ul+D1SQP9FMmbFm7hH5HCLuW8pFCtYMhCW6WodmsAWSEntmmTYOg2TBv13BMR9+MR3ymDS7lPG5VIiQtOxk/rPYiOaXz+DHWFNDHfHwceibg0uDz4fKiUlFVwMj7CrX673LTJr53cAh6IvNs0OOwuKiki27Z1ZvvCftdJXpsRv9plPfBHgfsMLQrFJUtQV2rTWI9t75bDLdneBK4n9d224aMOO3rEtUHtHplyaqdkyRod9ZdkdJf0+qchQd5OUx9nw1j//aST/s7E+49RPxvD8mIzljlLetWWjL33VicEpXutuyb6HyUofLs7TvJyAjhPks9NV8ZGqNbpsONY0cUQWD84WBENN9+8cnDHuzk0rPR4z8HBwc3Ze01K9y9WVg4eoHzCmF3RAHUFlwsj7CAeExSurLO1Sj48npAGk65txs8T1DvCe9i5EMgaAFsH7jlLj83pyatoCtWtly2lLsGz6xGtF6/nZLAkGHZQW96Kjqm772ny4b8GqRVKS4tti+q26zXFMw1gyyPv6Wng+mjDKkTbbg92csV6TFbRik4ptxGzit3+htnXPtn+tjitksOUGWZos9/t7km7pRlHu/f+7Fiwb2PWHIPNm8qL9ZGDnXQW6HlrSDQe7TOSc7t8zNK5aj5lBGRcID8OVO8AuKgHk2k9DSBHyHqrNhpYiQQfjGElEnYwTddrTMqtMbMD1yiYg2m9vy/ySvedHBpWnlJWuq0TaVAPgSfUQ1Tv7lth1j0bWkJdqEbmWm4gWUGzHW5nWhU+a6UBpFyoVWrWWtrUgOqwbdRva81Ft1V+Njdov9s296l7t3ZAWWH14erA3JOs9ExZm/YQnf6cYylI1e0N38CUswPBDzbdEw2KTnQN9111azD59klOrDdrB75kyEcP3ij4eu1GDmvAvVIXbbk8sw39/TMl8Gkt69nvm3uq0+sH8XlA3RhY5Wdl245D8cZGJVbP7JLkV+MC6qkPm6LQPSufFmzfD6j3oXUALF+rdMy03p++jNqn9vYHUdkSlOzBOHzWFG4sfLAXlHKlnA3TDqYwjZstVhxxq8zKAAe5i4uBRqW7Qwg/NkjeoFU4T5AUlkIbm2PN5dR0ZN46IfxQOA+z3uWQtEYY6sK3TQrXvIetDrZ5ICukZOqD2eMrh9RzPVISe7HtEl4/GK3StUpboZAfWDbnJwO2TsotWuU0ie1WSGxDWKvkvUdplatPwfhnB4RIQqkitVFe2Jap0/NcdckDsmD5YdtlDXefev5R0Cf0eY7vE1PeKltbh5Q85ppX2GMCzzdM+2zedJuQXtlg1gCornXzXTlTGVmoKzobwY0Jsnapo0v1nyXIj22TxhLU+3zg6rCyWMrpD2PbpZyn5rvGmlKJ1smSDIguL1tkeGBfcrtDytmLrzLs/R7sjEPbJ1PTHnnK02ig94x+HMfxPE5pIt0Tr0fjehR0mpSaqOBCKd1HgHcCzyMwBdIAPwu8n5BvWScQ/Tiz6QHvGUuBniIth/HJbg1ETWAo3yMPdRe4J/4pdLX47ISCFAXUwyqfcPeWeZ0wqfFckvLQSfqPAnfGtluDY+u0NAmnZqOhnt+1ZaVcryJMoJyh7imeA/6UMJstOm3+2E9e2UEBdc94RD2EVRs2CZN411I3VLvAh2PbNYit0bUpEeUsRYeNDKznLZ6IjjXCBMoNBq+MrHA/QX3rpveI7TWV2SHlFiUH29Qjrkls802kQSiF+ChwR/y0fSc+iJfCp3yt6NG4EE98ConY5hsJeWXruDwMvIWQR10z9ckoeiOCuybeW8Mkx0dyf4YwmaaxJk93BLwj/kk2vBIdmN9D85zAyt/EXd+KuF8Y216lFKLH+n7g7dQjWuEspYJ03/arda52SN76BmGy/iaCwatBzs1fADQq3Q8ROnsjEmQF+L3A60lJf5+bFHilC3Vr7Ntly8jLvIKQ/5WH82HgtQSlVzJGXrHOCxsEBXdtpEOTeSOCELyF2a2x3nO13qY3RlD3GGyaYUBI7p8kGB7xakIwgn9A4rsP0YSz1Hbv4Xgj1CN52FeQ+mBMMMK/R5hYscqtCV8ur27b7HmySWjbGcJSKQjt3yG0+17yJ195/Ln+t0ZX+C2sERTbldQH4Ah4M/BG0vI1D56Hufo9+KjuMUK7r4z3Fbq/Hvgj6lEhBTpydftnJu73IOLcICj8S0mK9d3AvydMYOZweFr8WMiNCescTAnyNiFNaKnsfcDPAu+j/Y0xPs0mmbTRgi87IcjbWeDpZJTukqBR6e4SCLLWfYfAgA/He37w6buvh4b7FrzgPkjdqu4SBv2DhMGZq8srlTacuefHpFnba8zzZwke9uPMhnaluoQ/J/A5JdgjKLgHCUuYtPrgUeAugjHwuc023KV7/r48gvtNOYXJ98W/Et9t3Z7/Fpp4NSG023rhEPj+EdJqjpLRKMlhm6Ik4nyY9BJUDc5zBA/bRnK5vrN4moxbjjej2O5zpJTRfvx9Nymlk2u7hRJduTKehgep53T3CFHVfdQ3aORkOEdPmxyorn0Cf3cISl98v4OgcB+nriht/f5aE+ToGxPGlN+AcsHSCwoV+tRzkBa8l9UEPgTPgbWQCu1s2KJ0wT5lfLJuCpkFOUXTNFiVa9Sfwkk/WdXUbtseP8j9PX23M/AbzC4DKk0mlXB3ua461L4+YfDL0CpktHzvgrdNZgQaEOLrRsSt/ts2370Xlfve5AQ0KSXl1dep59EV6XjPKUdL7nqOZ/7IypH5PXXXc32ewytQH3YdkyPShJtkbZfA9yYDX6LJepl9yvRK5sYEr3PlYuiPw6TYo6TJ5xJOj69JucOsXMi4nso9dCHSCzY/Yt32k+SVcBePowvYZ9epH4TRo/kkfV+PwCu7kvJTWeW01sy9QaSlC/4mQWjiTd99lxLejng3MvX4unK/m/oqV59wqc261gXalHHOG/N9tRbxKm21OUc7YJaPHod/Xv27SkhlQX01gcrmFEsOmjzOUhsU6ivE1hyC3Rbt+9zjLNGRw+95tGauiQb/Gpvcs74PSt/t71x/D/VjCitrsLHbrZ1tUYT9natPslaDC+Xp+g6WEOq7rJSgZGW6eLe+o3KCpUGRm4HP4cwp11y9pbqG1Jfp2LZqEDTh958lYc+BNS7Wu7TGtyR8UB4ITd6AV+CabNG13IqCUj1t0DQIBGqLVpHk2ms9qlx9tr1N/LL3NPEjpWdTCqV25KCNV75Oq2Ctk2MnKbvKblvf+2gAUgqxR1iStTGdPd2tSbF3kbFWo2EGWhed5+srKfXcM4IRYWXIU3OVLwEala5deqPlPbLGoqmJLivQudnGUlmrOPRdSl6eV9NzmGu4622KMlef9XTUjtwkRRM0eVu5stazVLs1+CzkvKm20LPLdS+oQ0K+zRuxw0Cbd6glS9b4nqP8jrpc20tedBM98i71XTKfk8d5oQvP7fpXGXybVmuq57B0WAUk3FrHKiNb2vjQVHeubGkM2PbZi36ddSmymIcuf006ftlHSFooTQYCiel2DZ5+584YbfMEulqu0jUpPe9xNT03j5DmymrlgIRigxRy5bzzeepuo2WfOu+V49b9rkqlDXK8zHlhTcpyUdAneXqqd4cwkZaDLtHGPPetXMvLXHfXusBheaL5iz5BzuyW5FL9XaKPLrRVeeS43q+k5JrqaBoTJUVsI5YqnB7kDU3XaCMXaTbBur9wQPKuDvPXAI2errWACncn1HOLufA9V4dda5or1+Zl9anvwGkKJ3Xd15nzhJtyQdbbVPt3mQ3xu3jY/rrHXRIci3/bfPc42n43QY5ORRTqZ6vwfRtydPt+yNHnv+u3FM8JksHbb3g214YclHjtZVhrjHfN71KInZPbpja21WHXW68Wnmvr87ayObnrYV4Q0July9fZ5MnaMm3KzjtUkL5Yh8PXV+J1zgB1GedZOo/qzRSgNadriZQSkBDm3GTfKLv0JscEC7lBrNSGNjz4NZq5Ae2v537ba7mOkGLTDL7K+I0YVihynVdSpk1equqSVy/+SRHl6utaty/TJRIZkpRBE49zNJUGQtN3uzpEin7P3M8NtDbjVaLbP+cdDcn6mOZ6PD4PJTm10CNMUud2Adp6fL3z4GnyclddwdUe9J3XljO2pXGVu9+qiDcInT2eXTWR81rbeN0G0mMzvLpQE2leiej3FvVBYO97yG2YyJXNMVS/e+76WqF8E6ObBkfpnhSsJu9sfq8L7nnpsffsfYWXng9teA/LD323aRUIO8G6PNvlugcNFEUUA/NbXlhbn3fhRVMZu0JACg9ShFF6rgm68Kpv/qwjY3ONoq2t/7uOB3vfKukVeUl7MJnO7nrrUnfXPhfIuPWhplhKHnwb3nnHhF8VVMGFWjI2IC3XEXO0fQ/KlqZ0z5Zps1LyrO2+df3OCcI8dbeB6u8TBrxfF9yYDO8ATZ63FM069Uk85dys99tWv/d8mvoLU7/+1ghKx68a6dK3Tfz23qo/F0PRhfr7UpL8lXYxerq6hre2zIDgba6TNoEozC9Fdk04u8qi9W5zp9GRqaeNv/Pcq5SeCWX7ExhOu/X5PJCLLqot1NLy+2mpYhvueca1fw5mowlgqZ5uq+6w3o42B/TN74n5E3ihg1n6fZmSotZ1u3Qntw3Ulm/yutrCeoENpTXolGv0Kwjs86V8l6+/i5Do/FNIh/+ItjZoGqATZmn13vU69b319tNDUxqjib7SgMq1Lzd5mqvL89inA2ybczJpnQt/JgiF55r6VTRYnJ4mC7nzM9qgSeY8ji6yWerwNh3k+ZrjdZMxXrFeXeH5HFge53jRJp9jZrdYLxMala6I0oC3i7RtmdIAb7O2bcIiUF5X+dVcXRZvE+QGIuTpsPQN3WeJhpxi87R5ofR80ASojMuqKVNaNtVEu+dLV6/A56+9N1qio2Q423hs8crjHFLnUW5XmMU7b+Tl+0TRFaSws81bL0Fu8JfSHVbZrgyg36sfoFOqt6ltpedyBqoChRaRCdvk8fnf84z5nMM1EGH6c8LWpX1tzl5ObhTJbuQqvBCrF0SUjlfcIiW39VnqkJyF82V0vWlQ2pORVIednCsx19ZbEoaSErADQuG2tsLas3fbvOUSPU1gy+r4RusAlM57aONvyRuz960C0HkLUoDW0y7RnaMr1y5PQ64OqJ/Zukfz4Uj2dxN9/ndJgdmobkJ+IrENh7+WUwr+3oBwuhbmt/WMSmOlDXfTd+Gu9a9RHl3GTVPbSr9noh2bY2F2WWqX8aO6mnST/S2UMw7FhZpIg0DUdUD/Yph8sq5wc9BFwfgyOS9Q9+3g9yGAVxb2t/2+n7lmcZVoyJ1zkDtBqqRwmvhQosU+s09SPH72vs3ANQm6vbfvyuQiAU0ibhfwl6KHHDQZ4wmzilW47eHkJfnJ0Z8zvv5eTql4Ofdl2jb5WMhFOB638I0Jnu5kXD/e0Xr4fVdPE95SmRy/dtUwszTJj4E2Q9dF/r1SrAyL9WbGaeK6i4HROM/d9zJg9YEM7AxcKKUr6z6FmtTJ+6FAV5drvhNL7dslKFu/YsF2RlOnWAXay9wv0aDOUcdYq1zaHdSFDtXd9Iz1OPXbejs5j6uLV5P77cHTaZf75TyINnxtuHPX7ODxu9NKz80jC6Vn7MCFFFF5w5CDw7bbKzFNJvUnsD8Nhs6nVA5r4Drds+HxJO9ld6Vhnusj4dbnpG5k26Ar/0vt1jsGa3AhVi8on3YP8Pzzab2s/koDoc0S5zyLJquo8NYfxtwU9jTlgNpC2wlppcSGKT/v0hnV2yUf5etTWuck+ZUT89Tpacj9Fk79aZmWNoTYCUTvJTX1Z04WfFmB8K6TVhDkcOTSFF6G5sXrYTXmc/qkNyp07es22jxOXx4CwtUxbIybJxGb+nJe2NA/DbYh9M2Zh6X+ztHh77XRtAppuQxUvC+N88O0L/e8xvlTj7ocaQ5oXTLWp/4q7E2q/pjZGWXfQuCh7z5zAmjPTxWzN0gHqK8RwmwNzlxonlPeXTrIdq6+VwetDILwT0jKx3r6bWFc6b733O0zPfepSZVe4Zlce0p8KRkOK4hSfP0eTKf1sl4B5nDDbH+W6PR8qdZtnoDBXv3VQSUl3NSuEl4P2gW2DnAifD8Y199tZ+nM1dVEQ85wWNormRaiEzAYJ9pKTknJIJWgNG6AunXdgOFu2cjnZKqLk+WvVwdpbRCYPwbWksPTZkA9LZ6O3D3v3MzMkF+o9ILN5diF47qW26FE5lrOEucgV5fOEu1T9/ZLeeWu19rKaBfSbrwpJQzlcK8tnLKfbTzRRA4kw2d50NYmf/8wPJhAtUBe24C7hntdcZbK9QD6aQJxQnkiqylkjNXMBRMSMk0qHgZ/6VrTMwOoLVcR7U2R7ry6IdvPwl19CWDzyV3qOSwdEwi5FJ2qNUkrJ3J6YR5ammjXOD+04jgEdF4yZgW3S6jl68hBF8VhtxvL29FKgkVCY2jUD7ux+tS3BJfKd/U02mBAPNR5UD7fdBkwJb0hZHWQP0R7EdDEKymZlcFseN2Vjlxo2gY98+VgGnifg67Ow7zQh9Rg430dR/Q7FgEGt8ZgFzhMH9VwQ9rrvt59udxRoD/zJcISD7xp5GcpRJjSfhSa94rb6syFbNbKq64RKcXQBgtTEoN0/kDO654XX1crXB3qTAo/jwJdFYXdjXcwnp1gKOX05sVd6sMpacDtj9M5CG3PWVxtjkuTsp8A7IXvB+NZJ6MU5pbSRU34PPRs4XE9qlwWKH21KdxaLnJIsPzp0u6aJ60BPmp/F57vgyMZwhyyyRH+GqD1aEdLU9yS3YmRfeqKc2Kul8pbEO3y7hTmaJ1sl049iuXVM2OA0azQNzFuHmFoNR67YeBXtBSgi/fdlu+zA1zP2E0aJZ4fxfso5VZ3CYj7NLe7VGeTUvTfvcFZ15cIHn8Xgz+vhz3zXCRKW96PAjaV0eQM7UDapWE04bwKvy3nn4Nqnaxc68l8byo5bHSp5w6WadUctK7ThTRxpPWyMH+42VX5+me0MH6D/MaEnIJrG3D+2VJd+n0wrR/EUhoEXQ1KVxgBkzji/alb8+Bo8w5ySkr5bCnqpo0Bufpz3k6ub3LXoqNTgc6U7SJvpf5vArWxlsaYdp+0XCRUeOLSoUWkFXKTXLl+GEPycE8A0+Npd5VCFFEDYH2+NFIJusjDhLgF2YLSC0uATkp3m7qyhZTvbtul42HeXLAmMRTeVxb5CPWXlGsJVk7AReOwbhIybw6dE5qsrlWAI0JO8WCcJpSs12k92MNA7lmlMfSWCik85XW7Qldvp1TOvi/LGoA2BXgYXng+jAFOwArB6HV5oWobdH2+Wq8a275LWjmxKAVYckomEFxO82LAo8p6V1pmJrP680c4TfU3wSrE3IqDJVmcRqW7TqDlGsKEzuouDKLi2SSdQGUnl3LeoxfqLm2Jxo4zxGVb8WzPPulllf5gdI9f3+224TbQc2uE19NcI2JMgvwU+dCn5El0bb89Z+QUcC2EwT+A1Zjf2SC9qbZHfrLB0tIETsYrOjcIuxAvjda/P60fal46kF4ecSn/2uQpq5514OmEtbGcCP0+2Asvi9xgdjvuUVNIUFshxSngMlXco1oyp2gv5/3aNucOyLGQkwt52ZcCVxOJMEvFNpmVt5LxsfgtX5Wnz0UMNXlbqz+8SeBLEy47tuxvz4fc9T5haeKNEAb7Rryxm9bJNx1wdRhn1OLfAJ4FcJUrdKGWjJ0BXgS80lwbEgbGrYRXqJyL1+0gcCmhmvIjc897bBoE1wJfA1wUZ5JP9mA0hecAHwIeiOXWSEus7NZJW1fX9IY8+MuAbwA+4xIqaV09Aaf24DbCORTbJMHLheglobN05GhaA14GvBTSi7oiTS8jvERvyzxjjwC0g0xtz+Wjtb1TKRybM34+8HIRsge9aOxuBG4B7os4/bps9aPykF4BNKUItPb7WQS+9y9Jla9GvC8CHiREOrnznEmP1LzTrCfLrCI6TZC3z7iYmjW7ai/I+4D0VmbZYai/7UHgFZF4oPXtlv8jglH5KuB6vYo4auJn9OBFcWfatqG5CXzE1IttWwcejtfkQUNQPC8GXnYxQcsK0Sa89JNhc9TD1Cc4bcrJGwDJX44Xlj4iP24CvhmCl6MBOICXAG8nyJthSa0++0YTc0BZTQ+JB5B4rjXZ1wDfBsHieVhSemHl4OCgeHOysnJwP/DMS6gmdCAo2kcIHXGe+qtNdDiOFpRDmv0V0xSuSggVup4w1yAM8jNr1DTCp6YB/32EATggGAcbevdICvF0pEkTgXb5mRUiYplzscwNwLMvJrmVJtZ5eBfebdquTtQBTSXP1qZmctt69cxp4LYBSQiVT9mFj03hToLStUrVDkbxWk6DyliwKzH07A6Bb88FbrR874cwe4tg7B4ipSDsJLf6YDPyYof68ZA7ptzU0DcJTeNExH31xbEChVFTONgNg18Te4/Hz9LJZ6pPSk088TKwauq6nsj3U4b4HnAePjQO+LcI3qgm+yYk2dKEr+YhRMsGybhpfOgsC8n/BvD5Cq+sdZrCpx6BN0fcp+NltUtyJ+PxBMkxsgpSSvfRWO4cabxcCdxygqCBNki5nB7wILz/43BvvKV0k+rFtGWVtKRRB5VJzjTeZKylENeALz5BsPSbke8amGfh0bvhLsM/OQhqvx33RDo2SRHZDmlHq71PvHYzsPLi+MDvH6yonpufvXJwx89waFj5Et5zcHBwc/Zek9LlhpUDPhK+HoyTLKiRIn4ljtrJOIRjEDxTXZ+JvaahPnt+5kRrIvXMiGoyYbJXt6jypkbAeg6fB9VrTWKfmiKtJa1lBq37Z91o+2yccJiZiTEeajW6rSUSSPpkjVSHpVejeuL4ZM2+nelUPRaEQ23y2idqiYNxyGFbF3B/mkhaWQsKcMXk/SxfD/bcuagaKeo8LX+xYY20ofgRcVfyZGVIuR+7a8a21faT5Y11zbS/XTQY76pyk4Ur55rbNWTCZ/kr3tozOeV6WvlWXapH7bC7MewOMfHHW2nVYd18v5NH5dRfKjtmJqVQfdenFsYr37tL0vY2x6BrI5JF9P2nkEbt1ez4hnlu3fBP1m2fkIcQ5EJlKYWBuw5JC/vVGXa8vfZ4lG7zRNo0rJOE1EeSA3kcU4IiUK63P03tnsbrVs/UXP64Bk3yOjITRj1CDlm47WSODSOeEN5Ir591hjh4SXI82KvXIXx2XAhWTgSlLzrwZezqgmgcVqOrPZkGpaFPq0wnolsKyg4GKZNJMCY+nBqOo02KvOsPgiIcA/296E3s1WVLMmlPWKp0w159DLOXbJ5OOtM25Ensk+Hu7NhX+yfTQMdEdJhcgLwd5ed749iGXuKJoEecvIzXK89+1/HVNmYcDbA1hhIaa3AG7r7py4NxfWxqMnNM7FsZDuW1RKw6yOYNJFTTVH8tB7Rjyu8YZuq7FAPMOgLWyFvv2DoQ+r5nyljlPiWEbL49apPqkDLtmbaqfRZMdFK5tWNTzk8A6feWqUOe3TZJAYs/cmCsF2ZzKTZ80nOSBdG07vCU8jWlXNgRoVnp7oS87Wb8afMkI/One+pPa+AFMwPUgDc8Kj8kRHqqyzt+TzCrKK3xtWGHlyXv5FhjrTG5Bpzcq0/e9AnyUSkP6o7IlGBoqrEeEcsAgZOXaVBKMirDqKA2pnXHQ/TvAI8R5FGhqpaVWd1jZV7KU/V4Z8Y7akP3jB3XSkHIQRKN1nkq5ZKFq+/KgzFCpDDW49Y4HANr0RjtT4Nit+3oAeM9074pDKLh3Y2/Gdd103gvTd6aM1cCP8YG95TqZY1rn4y0m3bbNlv5t7hsu6xzPAT6Sm3YSvqwf27WiVM9Vvf0iAaHWWJqxqgXohLRs3oxdcFcJyhqWd2z6bmah+0HtVW4NnKTl2OjOCssUuwurcRZkqKxQuGFTN69Hdgqq8hIgueNkn1Fi+BCLRk7eAjeS5hE2KSeG9si5Fo+Ql0QFE2OSXy1eSZcPYqGpoTBJkdin5CrvZEwm63+VR7tQeCOiEORg5xG8X07fto+hzQbqwFsI2H1+RohzXQDKXepQb0F3E3Ia2+Q+lD4bMSiQTGirsRshKX7kpMRYXLhBlIOT17+FvA+4M9J0Z6VZ/FBR2JuUo8+MWWVtrXZjR1CbvM6Qq5Pz+zHOh8E3knKjclZkLzbbcpy7my2wkbXqmNA6ovLCHndqwzdKn8vQebOEoyxDIjoh3o/27yh7QeBnWxTn99I4L09rIeI8y2EXOga9Xf32XrEV0iTzKJJesHqmwGhT4eE/r7xHKxqEjEy8PFPwtsIE8enqOsOG6FrPG3u1VOjckh2CRGIIvlJpHEA3PRJeO4noX8Z9cG8D/d/POSzLT8B+ufr2QkZbPHgHPW1/XbM75J04eXAs08QkuUS6Ni5B/eGcf44cAVJ3mQgbWDYMzgkk+K/gq0ThH7bjny/jDh3cz2zcCE83XcAv0Eg/lZSw0YERvx7QmLeQuW5kJ81z4H3cgVngC8lzOqukzrzAeDnCRNKuejAp/TsdZ/SKdF+iiTk15IGyy7wRuC3CIIAs0a3RIOfTZ1myklJPR/4JsKkqpbLjQnC/3MEb9fiUR25lF8mpT6zbAfzzDXAq0mTL+Lxg8BPERSfrUs4clGM9cC8o+PrgDAIvpywguFkTCH0CHL2i8B/p75JxrbL/rbt9nKlMj4SO0WYMb8SuGIQPNyVAeyMwzj4TYPb4xdYOmxU7Q2BzTbtEVYv3AJ8N3D1hJC/HMHkXMD9q9TXy9eiBIMzN11h06m456Q0nwv8E+B668UAH/o4/BDwYfesx+0zIDJwJToFkrdv34PbtiIj5GHdDT9AMHbW0bVyVBpzNl1rdZHNrIwJCv87PgmvPOsIu1Ce7jnCbPVdBKU7JB2E8pZ4r23xtI8+SikGD7KGdxKULiSG3UlQ+mdpNkb2XlPaxisdCO18P4HvKxcHYsbT4N3+PqHtYxYPyr1OCV7XrYRwWF7uawge36hUwQJgRFid8RKSR7dP8HDfTUoBLgOeAP6UoHg/o5/a/j6CzLX1+VFgi6Bvvhq44kR6HfmHgNcR+v6ofe5TOxZ3n7Ai6Ophuv448Abg/gXgLtEjebsTuH5IckHPw28Txto2Zb53HdM56BP69HLgNpvzHsMbduG1LLfPHwd+F3jl420lFwetO9LEB5t73iK9Lw1zvQRtnVW6r5BWIcs2QRYeJE2olqynv17CUbLCY4ygxYmvfYJSOE/ZU16EcExI8ysDwuDvTQM9Z5ldspODw9IiD2Uv4l6N3qb4Ie+lDf9h6RqTcvX6PSJ4uk19vggalHKqHJw4Kad10ePCc4eBnLxVUdsGVa7qsfhXyhXDbI53XhoVju9DmnQi0PAI3fg+D05P44g4j2ZzT+MQ1T3BfPI2b/vHpDTQDCxJ05ci/grngJBr6l+crg/dg220KZ/my3exjidIE6ZaPZMLjQ9bf5vi6scvmrzD4Pf1z4O3hE+fqwTrv3IKGKTDtW37m/DkBqbvhyY6TlFfdaRJzVydpTpyv0spHVufcfSqEHGNPK4SDf56m3zo+xCTl+5Hg9fyTAnmlYO+/RLDC7tYwCq+LpGbra5LPw11QRNaJ2bL2roOK+e5MbdREUCVH1nLlPO0dKm7CfqENGY1eSLQjrTD/jVAo6d7Mn4OATZDEv7kOC21g7oQzBt+dLVc8vaG0/oSxEXBJPO9lrfrpdfPn6Q9RzXJfHalw+ZhT0O1jKA/hsum9RUxXcHT0IWmPnEN9BDWx/CpcZoonBd/U/mcEhkS2xnPP1gbN2+71vd5PbFc//SIq3UMwuEn8ymoErR5nk2R2AYEwYtnym5+sj6x3iWK6xrl6Z4U2FS4zaxcz5XLjRULVu7bygg0rqpXBcWEbc5QerqboEnn2HsjyO+yWVJOt9HT1Qzoh6FKrNglQ/PAPILgy/UBBvUlkP5+aVBBe+d4sJZ8LX7RKUQ2vM4950OhLsJhwda9LYTTsDRKudR5ZaEL7z2NI8LuP0YwGafUQql8G84c+H60z0yhVchKzkU/c83j7DPbX1ptsYX5sVfmX5shKdHQRNdY/6KgR/3TGXdXKEVp1TKacb1cV+ehre0Uru9b3PvULfwc9fj7JefT0jmC+jphWKqn26h0RZQEYTItK7KjCoGgGBpFTWPXVi8adw5WAcZB6WnZTy6f20THYekbQ20AKNdqYZ4Qvwn8YNZ6awZ1b8iXb4J5FbNVPPsA06DwdynzvEu9uXttSpmIX9eOQ+YqmkzlWga5DFwexPMqeT3pZqDboJRqmrnm8he7hbKHoQHKfbgGswfeLBE6vZjSpxKWIQSCHGNGwPokbSqBw3uPh6KnZ4wP9fWAywDVu09AOhnXxgEY/F0UzGGgD2G78TiPp0v7D4NfuNS/Os5zEccrtoHyp0qrcYLK0102bkGVV42LbCXvy3QsBOsVARGm+UnbeWlpMlj6PoKgZUeETthYnmx76MNsVLXEU8YaPV0N9DHJ05Mh9LuVFg02jB4TvGy7YzLHj0WlYGzdO1C5l+LFImexSxAj+wqRjE+XlQtHhQlh1nhnXO/3iflclqdnc4H74/qmj+NQPBAHxT4cxB1nWuQvWIbMq21VWmUE7Oajm2XBGMLAlqXrHY+xkU6p8oe7wPnj6fM+cYw/kLk5nf37z/8dtmPe9Uf+C3zVT8J778uUbYDW1Qu5xcdHsXpdQbksTaRZL7vkabfmSgpQ4lHV/kndACwbarPDfapDhKB5RndRuG10szpIq1WOOmvdBTekc3tXB6nvlUs/jkE4BlhNh/rY3aUsiYZajtnsYpAOtNDFuTiMAzLRg1q90D/8mJoXNiAtT4oCuGHpWhJUdXulUsjp/m+vgY1VePuH4I0fgL/zhfDtv5wp2wCNPLVJ/NUT4VzbDepLidrgqN5ntTV6kPbkb7DY8L6JCWsAw/q+fK90Fj3JqXatQ7VDZ0iYVT+uMBdiP0/iSoZ47bCDsAvd0bniJPDUHrAWZM5uuV12+2uDsMfxvH45Qoyq0yAbmFUFrlyXuuaFNUhrBaPStbiXNJmfaNXGjA1gkCKsZcMq5AUr4+n2V8Lnf70TvvU2+LIbYf/TmbIN0Kp0faF5Fd1hB+nMhF0MdaT4j8sC28E+Ib+yZBm0VGtDYz5DEecyd6JZsCkkSAvk55nQstD1mSkxtaGYMwrAMucRPAz1z+BeNv7aRKYU/mTxuJv0gSZOq7MPhnXZXiYPqlSywqyd5tdyLRJ60Nm4XrEJ3/Yf4T+9C155I+yNYdpwOm4RXwnk6VeKr59OrVrEW0qbYGZd5DQqvuMwfYaGHsAgzSIr3bVsvFPMjO6J5Okueo1yDiakw38Yhgm1ddIpe8sGGRjlNfyBKcsCefQbkI5wG+Zfn7UMiCvUAsSdMIv27Ev9pzReNeBjaqVpJ9wioE/QJRtQ8Vtn6vpNWMsA4Z8ZWIX0wm/9PXj5Z8MffSdsnoBz2/AdL8qUbYDG1Qu1Z6Mm0GRW1w5Y2EAZhImVKfXTw0p1LwJvdaCGq+i4JnQGIoKQ1x1PZz3dZSgipVJWtB1wUj9LWziXpQQHmLdejOvytuxVI31CKqtaL3pM+Rzpuh6kBk+NMjwGOAf1Y8Ems/nkZUDVnydIg3t0PFGdVsZkQ4CMoP3468Pn3Q/FIlP4lXfB33tBd5yNStdObDBJBzlroby8sWUu7VCUuepm8dvC3KPitZ42pMNPpix/HNZCzSgM+9MQdls4LB1tfSb5O9iDlfjjCdI5wjX6lgBVu+Koy63YWJbynRDfnqFwY5pSK8uGarKyV7/WtGJnUaCjS3M5yWUHl32Mgt2gYriN+JbOf4+gcMrYurGA4wm89aPw1c/Lly1Bp1ewV0hIZ4NqOV3OErYxyd5vK1vltMahrH2h3jw45wFb1wRgLxx8onYvK8yyUPOyx/XVG6VjFG1d8xokX1/NqE7NErZM/d5AzUuPLVfbDDCgelNFdRiMozVX9zz4rBzq9zZwUjmWUXprRls7D0ODf6bm1Y7TKX5tdc0T9ZV4psnSSvj6s2nELni68smWG0BorCZNpvVNaU3R1WHHfi11mlMqmUq/94vrv//Ji+HzfmI+AlqV7sTQI4Xblmdpwz8pfM9BxZh+CK+tMpxRjgsCCUG1frAXzlXVa3+WAZZ+HbVXGbRBeKOEX7rkn2u61hW/6h+SlqrZQ1dy9c/T313AOg39eMJaqa+P0n5fT+05dcKkPoF4mLq7Qp8YVaoTBt1z+PMY2ZLRHUD9zZMFWFR0axV0VfEw3ujV57Z83y9i7Ou5KcwqtY7n6X5iBy67uFtZQWtOt5ZgN9BhZcSRofJsovszjMJgD3JeFEyZ5Xu1hGcQFsrbg5eWGe6o7mp3Uj8o/dVxfaPCsqBSsmbN4HHMX9pB5I3QcayPhoy3uXp8y/S0N6A6uPoY1wdWefSo8OTe+zGxzJReDdl6s8e8aCerq4Df+GOwEl9feXAA938CLl1L1//H/6e9ju6e7jgN9uOYVRTufcLBKxeNkue3Sj0c9HCYcMO3R/mkcfyhPtmjntddVqqhSi/0gN3gZR/XcjEwy4diA6vVDMcE1RjoB09XsExjI4V7kd0F1AtLpY8LagfeTObzrheCW4MnWgA5V8vOq1bGRies7dTfdLFM3OuQ33WUQfrab2mprAOhrRNpfWLjB9CfQH+aBqA/g8AaZn9tJpTI0NekRCEogieo51VL+cWSUizlk3NOxSTiUu/LG7avAWnClbvneVSiv3omDkCF2cVyDTjbIMf36tSnRMLMuRdNOTaLv2u/2+f2gfWoBfWW6DZD6+tuojPXD2CUvRTvbnovXxfcOZxtOfBsX8aLfvuxl90mZ7ip/3Nt2fQVm/RSW1834e0yVoaQtGwUNuvclfq3cexk7jWN9xoUzl646uTstRocVenWwtw4qdB0gHYXBpQEpSRE6/H6ZJrOHrChpheGpkGRu597tkkB9919/73EgxK9ttyEOg8q49tLy+VyMO8EhseZo7VawTBNK5iqGW4DJVxdDJIvO1NmHya7s1uAu/Sn53FusJb4tj+FVc0kDtMi/ZJStfX676XBXRoTfV2Iy9XsMj27gi3Hszal2DYOR5DCybgTp4viLuHN0ZbDW5W1DwzqaZ4uyrJUJmesLB3FJWNLyqk1Kl3hrN72aWaxuyi5koLNPZNTfFYQtVJCKY7S2sUS7jblkLveJ22F1coNH4WUnm8SyJIy8LCtAtN6WXkeJT52CceaFFKFY5q++x2OXZRoF4WbM7bV993ymQ96xhvNVg8mU84PwBGwKkHbSa9n8nj9822KvYsxrDzb1fBjk/IW6C5KtgtuPWOjunS2Z7m8p8E7D5aOpvIQvexNam/RPOwhQ03jzdNQ9b0vdKFOGRPsAmwHgdyhfupRyaLPWO/CM16AfXl1oPJKMsRNRqhJEdrvvvM9LT1ix0+Tosu9iLNNILwB6QqrEbeOlhS9diKtC+4SLSU6PQ/Ed7uKIdcez0dvQJvkwMPY3fA7o6zHgrtnyzTJZ4mHE0j57HH9dT0ebFt9G7sqWs9vJoRF0b2U2qjRlvlur+U8Ss+HnENS1adlSpmtuFlemeslz9/X4Xkz0MNmRtumtGx/+X737fT9XqJZ9yfQ/obdBUKjp6uBtkPYC28H4HamfMmKde0I/7tPYLr4oUXiWxk8OQHLhZBdvC+V0ylzE5PP2GF2K7APO3O4m4xQjj9VmXFYrD8i8Fx90mZAsnVl7nnaLd8Vzkr4FXHn6mrC3xTxNHpvvTSZmfN6unh+vnyO177d28BTY2MP9oKn29amXH/klHCujL1W8XcA7JkVDZk6fF25+yXnIuft1yZqY4f7VSNenq3x8wbI4izJmX4/CIHReoe7ySf7enxbyHwvGV9frgJ/9kLG0/3QWfj9e+HhuEvpipPwldfBZ/v3q7VAo9LVOQub1F3iXernYthQX9csdFW0FhTKXxXxS/ik7IfUjVM122++q37RZ5eFWZrtdTtZtkl6NxoED39MWiyv700KFXPdC0WprJbvXB5/TI3kW+Xg6/eepW2Tx5nLzeuZNeCyeE0Kb58kD+PCsyVoMhCepiHhRYEbhvAJafK2pPhzuKxM5PDrt5WTDeBS3dwPS/U2xuH6ORI9hch7pg/8dUujbb9wb0KycjG1YSeUSvWXZKtNAarPJe9MCYIec3nxCIjaJGrOWHTt45xRGBJXEAxM4XPBwVmN5JSUbZOxaQLdl7ylk+sNGOH5l38Cv3E3/M3Pgc+7PFx76An42t8O137ghS0IDTQq3SHwfOBFkcgd0tbsGwgCsUNa6aEBkUsBiDm2AzWYVNYK5jpwHfBqUpiveq+J9x6krmCs8lRna3BUqQLzjA+rpEAnhAHwpYQO2SYo+J1I103UPYOcgrNGyvLBKoKSt70O3EwwOJPd9K66fmy7Xost8EKuZZZDkrGyHovlkZ7V/TXgFuAF8Z487DHwrIj/LHkPvjFcL5RTRAnB2bgaeGWkX4eYT4ErTdsFotkbEBsJqG32t5U1rcXvE041fDmwfjG1d8VcTpB38bHUt77Nffdpr2scWHm7BTijzQlR2E8BzyH1Qw48PT5nqGveKRE9a4T+vgXq7u4a3HoePkTy9r2cWxr8GLZtzBlDjf9rgS+HZFUjg14AvJPwCnpBzkOHPK9LEYDVRdcC3wizr7p2nu4vvA8+8K0wcML9PZ8Hn/Nz8ANfQGdoVLpXEZTeGmGQ68WI68BtwBXx95WR5seAR0lKAtLMt1dMUt6y4nuEtIF+rwMvjXU/Ql0WricMzPsIayi1VbEf8WkgaV2pFLvq2DQ0Sb59p1xBUHz7pLeIjAmD44Wxvdskz0+HxEzMbw0u8cAaHLv23b6FY0LwtL400vl4xKO6XhhxbpFO/bKDSm3dIBims5F/MoZT0rpTHeq0bXhzGfBcgrHZom5YriYMjvsdv8TvXfPdbpsdmXIYHmnbqQzDJsGgXRefsasGrgVeRV3pim/rJJ5LPuUIbMX2iR7rufcJb1xW3vRG4EtU+Vb4OJgGpfuqyJMR6UzlPrOyA3WZt3Ra0O5CzZFcR1Q8PUKnxYafJoxB9cc6iZ8aJzIkZln1jIHzK2/sIoUrgNuB/tNJ54fGUPalBP49bmi2Y8Y7Tbm+VTm1F1PPBvDVwDM/izRD3w8VvDK2+b2kI3792l2RKocJ6oZRUantD6HZJPD82Z9N3qIZy9IDHnkCrnKLtv/nE9BboWx9M7BycNBwGOSlKwefOBcI3yYxVMyVN3WCFO5rsIjRo1jObmzQ4JeitF60FOiQIHAxnw8GN+b3pdQVj/VqdE6BLQ9170bKWV76wJQRbuvhiAZNJgpHLkwXWGsvWnMDUYIziO2S/Au3BFVGTWGhnh2Z332CQE+o89CHgvKGp+b3CdM+21dqi73m74mfVgmqbqsURLNgnzSwJEu2fImHflBJdqxXt2v4N3F1ybGUvK6eCAX2x7O4zlN3FHwk573XVXPP4pXygiRfZ4C+clkSVMPcT+0lnq6SIkzvQVbb1SUc0/DbR0KqvnruFLNLc9SRZ+OnBrqE0gu6rVTPeytgO3VE0HxnIm650xukjtuO+P36MW9tNEhiLnwm5LXtgZS7OE3K577zYEUobv7MlYM7vjmh/MM/h+/4I7j2FFwZUxF/cR4+8gn46S+BVzyzzoaVH+U9BwcHN5OB5h1pGzA9N7s+024QkKCdIwmazQNJ8FTe5gYh8WOT0Ae6DrOTJzYkUq5Zy5hy60f9QBANygX3MEcIUrecVlng6FJ/WzmwA1SDQ7JgV+GovVKIU0KfW4VrUynWYxScoT7ohUdGWDRYvCdJBkL3xSN5zHskhetlXKkG5dqtcYt6qtIXPn0kY+HHgfJ5tizUHK0qVTIxz2A+h+6e9fBWo6YdjhN9K6rUMOci01YRv9oL63X7vVDnRUO4yOYGbEjjPQldl0Lou/vGC1lXY+R52A6fpGcu2oCLjCdz0iq9KUkZQnihqLnXn8Rrgr758GGJzceo0y4nCdk69dDMelbe+5Ar69sOdUVgPR792UF+JfWwBtNuCZUE3npUgpzltl5Pzkt16YVXXA1/9vfgXf8THo5e8RUbcMuZaOAmmToK0Kx0x8kgWGsNoa3bJA9K18U/S4PPt1iP0w9GeSWSg3XqSmJqPrdNnXpetEnuoT4mMGVWDT7JmQ0XNwzuyI5qHadtg2jwSkFyOqLuaVnl0DM4bY5S3pqvd0JaxSCvUN6SxpkNwWx+XW1WfltybqO6J0j9bcNk6yBIvjU+VL9oF0hR2/4RTdbpsIZxaH5L+UqRy/mRzMjjs+2wxrE3hb6ZjOsTvD7rpQ/3UruUIrL078fn+7vJKFu9299LZWsyvlc3JHYM6bf63crCihVoSFb5XEh1rPgEtmXuJJa5mLrizw0Q4VFIsUndM7WTAFZRbZlnbWdpINkQFpIHYTtGzDhvykr5WgUBaeDKAzsf+SEDIJdfzyiXZGlXe3KTKX2S1+DBKdIe8PmXAZfB2x+CdzwI25+Cl12debYBmpXuWfgIIbcrJSAFskvI3z7GbK5uQF1Z675VTva39Zh3zPcNQi7vFHXe9yPeB6l7pdaJ8HlOeeEaOFa+VNbm2YYR92lHs2h8JOK/lPrBTJKhU7Hs49SNhhSj92BtuNkn5FavJMmC2rFNeHHpo4Ze8V5KUJPP6jOrZH1obA2UlOQmwbkR31V/H3gI+HNTl+oYEcaAjWZ8asdGmOpH8VX1nyJMmG3G63KiJoRc8qPUjYqNuGQURYdPR9jxZx1ECP20TpgsvCLet3J1DriHYJROMivDI9K7+2wO3+o5lRePrEOpScTLd403HsO7nU8G3NsEQzIgbN6wkeBwatr5ydjuvTQePP+ll84C63tw1WPwGfF9fDWrtgWf2A39bnWqdYrsGLb9avGI7wLLp1PARRI4K/CTQOCnHkvzJ+sEr/1g7NIjUsT9dK9v8k6TcXKYbPZhE1j9LGZfD+JOGfu8X4d3fV34/u/ugp+5E25/JvzwO+A9j8IPfB6doVHp3jWG/wf4CoIwQhLS9wG/TxgEUpLeQNnlVDYnCfVQV6AQV/B0QjJdM+l7Ef+DwO8BH6ae57UGLwc2P+dDdk/jKcIkwkupez8Twozq60iTC2q/VfKKwrbJD0TlUi1+SMrr+cBXElIJUib7hMH3G4TB4tsgAbcGAHOtb6751IRVCtcQZvFPERTMfix3H/CbwF0k5ZHrQ+/sWO/b4va0SPG8hDBhqEENQc5+E7ibuufvnRob0WPK2hSJnpNDMCI4EWcIE2mvIoxB60D8LkHmLG7PXxv1KPfr877CrQhI5U8RVgl9FXHJmjzXMfwB8KvUJ1S9s5ZLn9rIR06kd4BGhD5+KfC15+GkGB6t8+O78FPA+6mn6Ww9Ki6nS3yR4VXfW5oVpQwIqya+8RF46imS4AyAe+HXz8PrSeNiQEgX+ehvuhdlwUQ203GkJV7bJa3xl266Cfjmj8IzpOAsGILHxvP6+f8Bb3gVnF6D73sefP5vwQ98bub5AjQq3QcJyvUFhGUrYt454A3Au6lP+nkP3XtUuRDUgx2wjxMGwk2kNwHvAncCbyMonlxU4PHNC8r1rgG3knLHI4KH/fuEwT92zzS1p0vbBVLYX0BQgFqnOCIo+/eSlIdNa3lcTWCVo6VtQBDMawirN2wkegfwFqqJ/UY8vp25sjmF/UjE9zxClCFFeW/E/Rh1T9Ur7hxuD7myU4Ji3yAYnNU1GOyG6x8hGLr7mDXqJX5bGqbkabJ8Xyf08wsIRwUCMITH9gLuO1pwt8lY09g8QfDgnwN8IQTBnwaC/j3B2G1l6hT4jMg80Cfw9wzwNcoBjwINf3AefoIgE96gdAGvmAWWT/dF3N/mH3Y53elBODt3SjjS8fSJcH+9B09ZYS4GtB548wRByW4QOn07XnuQtH7TNyoHXTumyokROvrBeM2ut3043rNe7iKhT1DuD5GWMp2LuB8kCIG8zxztubaq80vPWJhGfOdIOe0hQSk8SFridJi2t/WDcuW7hD5XeHo2/imnuwy+Q+hXefGbkY4pIao5R/7NHbZNCt3nAT2/jTHkQ1gZwWQa0hpnSYbuKAqmJB9TQt9uRdwq8Hi8buXtKEouBxOCTD8CdRf9kRDVbLGYPi+Ni7OEtcC1HN9ucC4epflUwaPS8zjBiWuD8/vwuf85KNyVFfifO/CZ6/DJ/XBtHmhUuoo0NoGLBsGtV5hqJ3q6wLzlFL5uEjweuxpg3jrnBSm0HiHsWz0BG3sp11vCPelwr+t1pThWL4HN88HQbWIOH2psQRnantMWZ3lfqz0YTFNqZ54+PyxcQsgpr5xIE10blA3NpPC9K/hnLtG/Xjg4fv18uexh8JTqGBDy+JymynloHBy1jW0wJaY1NdgAHoTxeHF9Xuq7CXEV0WnSOtFHZ+cBS3UchZ4qAtjIFDDhwf3fkL/fO4DfewX5cKcAjZGYeL8R/630wqA/xfG8jrtPwrcR/9YJwiFhXASOpntDAtL1XtqmaXNmywLNYzAM30+SJpgPw/d5aZXCJX5uEMJQm6tdNPTNn9re76W8+bL7XPJ2kkjApcB6fTwus8+1+ow1QqM36ktnl4n7BHFTlp102Owu60ehzY6zarJnMzl989Q9Lx09opEduBuFV7D7v7UefNZ65l4Lzm43Y8JPS+dsIt13jB8c/ntuEqsEJwkez8qJlF/3y3qa6m6DHH/sRMkQqrVZq9TPYvA4+3SjoYk3OQJXokAo7Ldlm3jtqunEm5pnpVAz4rerbtrqaKOnVE6pJYvfT8SV6lgEVLPeGwTEUetllrk2Ku8mGW+SkTWo7RrRssDDhNUlOkq4p1Dv80Fd3pvkOydfXeRc3zcwiFaBcbdDjnJ0eCjxXp9FmZ4e4a8BOr05ogeBERuwAgz28tq6FD758MA2OmcYrNIDqgWz/SkMxuVw4yihh8232WvrImQSvC7L0JygdaGhNCmQfTYuyeiPYG1vduKmidclvIKmgTwQ7lhozSwrsc/k6jhMn3herp6gsq4rEb/P6x02v9f0TA+Sa7sOjFKY658vDfDDpkDkVDCkWoc4aHmmCbqkuawS2oD65oPBfOm8rrLXWI887RP15Yr22Xn7vSSfSi/sQ92Tg5mJtD/9GHz+6fR+tKNAa6Qqz4MTVHHASWY3BcwDbbktQTV5oHVAg3zqZRFgO3OGLrnXw1lLb8sfhg+lZ6oZb7k6g9ltnyXo6v2VjF31fZ3A8EHytn25ReQ4bZ2V4lGsH8PsVVPmsPyeCxTKDfJr7UtwVH6MIYVY6/U9BcsAyWAlbz1SbmsQeH7YnG5XB6RSQidJi6CHZc95UTIHKXXXxuhf+Qh87mvgb/4x/NKH4dHd5vJN0Ojp1nK6q1SLcftxYgnyVuewHoh9tqbclMjsxcE/bq7/sJ6QVwKVAnAr/ds8vSaaukKFrk+1jMavPy3BYb1A621uQlB6E0L7T4SJ1CYrfZRBYRVp5e3J2O4u76Wclk81pTegcrV8ONpF3u210ncPVVrFxPF92ldj+CjtsGNPqzYqYqZOKRp8R8Fj65HCH6lCzeDuNkfER9Ex/vke5PNXBsHP3ho+P3QeXvcw/O23hRUNLz4Dr7gCvvB0jIQ7QGMxLd4eqWQvPWEP85gXmvJKMwoX6ltqJrMpihKOpt9Nz1oYiyiA3nzh/GHKqWwVzvaoErldc8HzGIJSnm6kAjrFaJp3Bkpef6lMGz0Qea5lFHFRrs+pNsnQPLizfBqTjhKL4PP4bXWUwulcSkpQbTqI6SxG7etjbf1NkVPTOKmcC0jnIQxmy+mzLbqdJ9JS2VVdsDeZX+F3lQsL01yF2pHm/q7fgO++Hv7wJfCml8ILT8N/vh9u/QMWk9PVIKvVEVslo+SZ0KXBXTqsVkZCELcI9ff8U+lZKxBNYbBXWv6ZyujGmVQAdmHzk+1tLCk974FbXLnvfait0xqcnx38JQ/Lt71LrtHWUYWam1QLJZt2+9ln2+q2NOXKTqBKK6hQF8WVa2NTP+ToqmbRdXLTJJ3BkUuHeHq6htQlWqo+B9ie3dVWiuI8X3M8ysm5vTeAdPpSXEUwj7NQGlNtvyfECcQzJMuzPXvoWZeIwY+fEv0z8rbRUigDF63AK8+Evy7lBa0TaeDCvRgD1bwxmhWewAtLF4+sr39DKo/PjMXsYJwUfufuQZ7mPu6h2O6c0vOfXTo6R7unoQe12eQ+KfdW4uHEfeZw5XjnI4ch1M9e7JcHTUnRkylf8gAt/g0RIE3gl/Nk6te1kvJrkgtbpjI2JqYv0ZzD3TXK8M8po6FlelK8anqbwsy1vcmr9jRqq3etso2Q77QGp4sB97KUw2d/V2mzCbVxnlPiOT2TqzvHo9K9aoWShQv1Ykp5NtUgkAQM8gz11yaZ775c7rctexrS4ti1RIPqtOGE/WzzInPgebwKtTbTn/X2Sl4FhWv+XqlMFUVI8QwTLhm7Jp7a6znh9bzzbR9CveOcpJQUfamv55HfGt8hrFzJ1EnmWhv+NnoqT3M9FfTRope5Eo4ufaJPRaUHQhYPc7hoMHvOQakth9URfcxE5YTauswRSRZzsuSvW/ny8uCft1Cdm9CyX75tDHsaSnXkCTgeaJ1ImxDPV9BevLgnO7eGrs3boUM5/8yOxa2XlGWgZH1LnqAX+qIH7CS6tIKgSeBLNOTosfj7kPZej/NbiHHPNXkiOXpyQlyti43L1bT3167TbfMovXL39/yz9voI6icfzbFyow2a+FLd65O0zWpzWqXk/efA388Z7DGw2idNZGUmjUsORdd7JTrHkGa1YqOblqw1RRae3iZDPyXmrt0eb79cLcc/+6lyfizY53Ntr9rtYY5dZvNA63xbn2hpXcu8IPoGllx8b5Vz1tJCNZHVp4qBxpnyM8rKfebKl5R07buL79qEq0RDU7mSMqlmdCf5unIRhr3uv+eeyfFkijF2KjQu93mpDV7IvUdc8p6AmW1gPvpr8iIt7qbyOfmsQAj3yxFF1zpzcpGTv9rvuHriCfLnHjQpvJySbhoTKr8hvCq0Xhf/nJdr8ZVkPqcL7LWevxG9fPuC3tK4snxsMk7+vv1etdtCYUfaf/4L2I7G4Uc+AF/1J/DexzNlG6BV6Q4I5+lWh8buhxDIC0LJe9G9NiVT6rhNEWFCvtKhJ7Yua119udJgt7/NQo2U1Oqnw2aa2lCCxkGeubamC3HJnJcLO2By/G3jexMPqzyXmNhL24B9+bZB53meM4D2e5VXNYpvp0BvSbGX2uV/W1qUV60lzc29JsPShCMzdmdoV/2raneMMmxavalNuWtNCsle03M1oxrlzupgXc71XZuxaRqTEIf2WvxyArh0dr+Cx+npKTkSbQYim1korF743z4EG314+1l448fg7zwDvv19mbIN0Kh0JfMje2E1PdgkhBTuN3WS/z4g5nS1t7mX6Gmybr6uDsZnpq6prUeN7dXPLS3hVF05GkseWq7OalumQRDJaK2vVL9VUJ5Wa0yqwa4p5H5dnmz7Ssp8Hp5bmalwm2O1uuyMajMsORnLGh7lMiIxGxwN2pTWTB+OqU6Tb1qz7xW4ruVw5fo9yytL0Eb9hY++fo+jBCWdYOvq2YtD4PG0XK7UVyVcud+2Wb7MqPrnIGMt+/H6f/2f8K3PgC87Hd8usihPV89Oq3/hCZ2D0GXweui7sjl8tuwazJhbv2az1E5Po//un/Oe7gTS8hmzF72rIJY6uYTb11PNJlcuWL3DrHJr++7ps3Xk+qomg/K8WuppG9Q5KA5anWcZ2507+8DX08XLhQ4Gw+Lu5T2uklFtMgi557zMVYcdxAb1T82+IcQ+W1JipWs52auVsYw8O3vgf1Of5jz6HA3FOqynOJqdMO7izOXw+etZ2jqmF644Ad92J/zmI/DKS2FvP5y1uzClawxe2g++EW60WR3fQE9PSfn6clMRoMXq/W7W39LQVTBn8ELojJNUXs+lGfpx10p04Mpag+EHYIzuakumVi5ujl5KiiRHU+k5fa8W6fcJOZ7N+glnnvZSnU2/S3Jafdda2fVZxVeSqTZavFdo71XRjdaEx9hzkCmf86A8HV6umrzOqs54xkl15Nh2/g0jOZn2xl44m/SApwsIzI67EXWAvsXT9N3S6ett0hn2YCmlE/17DUu4bTv99TYjWI2zzQbiDPzW8+DlT4PX3wKbAzg3hv/zum7PCjp5utWONGOFJJMqV1JwudAqx4yc8poQV07skhbLb87muXKdmvveFArlPIcBpINcdeQcyQv27WvCre85BV+6X63TlWScnJ1N9oPGf+9nyvj25vjSg/SysbhDy23SmnneCn6Th1nim6CWV43vKfLRXw5v26BrG4hVQKG+ngDj+q6wnIJtuufxN/FoAmnlQOHs1CZ5stDmFOQUf083dqjGXFMOv83YeRqboNp+rZz2tP5WGluf7e+cjHcBS9MI8sgyOd1/8WfwVZ8B114Ufn/mKvy3j2fKNkBrTrdaGD01F0+1DzBBTrGUBrqvq1K6bqT65H4THblyTcrSCskepEEQ89nWy7ad3VW4muj0PNGZsvZ0odoEX6aukgeZU/a5sqqv5ukD7NYnT0t4ct5+ji9Ng3QMaTuqvjeU7wIl5WPvV22WsekDG+G9bW3yVmpnk7HLPmfXw0fFm1Ps9neprqxSL9AHke/uaEc3pdDoKJSut/EpBhRJYUVBK9Fv5TQnzzndUjKO1fPeqhfSC294fPba6z6eKdsAjet047b3QOQJggv+eLjQtifaWz/72yu9kqWa2X4MlcclyHVgqc25gZO7J6hyqhuEdvfSeRQlPCVB8wo6B7ovj2tDFSncHdXfhOsVZa7+nHEsDUzvRVXrdOMOrR2a1+mWvntoUmDVADxBmrgdNysQL3MlXpeMo/29DeH9MU+neinf2Uw9Hq/ns+8byMuEylYO0oj6K3yH1Ncsu2dz0OSE+DIWqrSmhLCfnK7SuLZ4uij83POVoXVbLf04b5Ib2985XULmvvi+DbPrIV2DfvZh+DcPw32fgr/yp+n69gRecEmmUQ3QqnRFbOX2xjB/47FwXd6PHTRNitdCiTn2+r4elESszh5i7hVPDjfuvn++CDbkieebaq7DG5GmeroYAoHJ4qT3RsdKum69zt0rGTtPS7VaK6OhZGy79nkOV5tSqOX3okDnlssJcm0oeTYlGlWmWhe+TsgrDOrGJoezTaHk+Ox5ZuZKZxjV5Cz4azk+t4HKVdv9ZeQndQewzYlqUrRNTlZ1X/plJ123cwg5XE3OU8kYWMVbOZW5bcCm07/uNHzpU+Gf3gf/v2vS9Y0+nBrQmlKw0LojbUqw9FfbtyHu5nek5X43NVzXPUMtbNsbQ2Cr/nZQDzlrZq/7AeA9IwtVrkfWZwCrz4Er7g5vSW5qX+6ap6vJKO0TXsR4hc0RTWsfxQFY8q68ksx5D30yKaV4rOces56ub0uJ310Gh6A6qnRENbu1nWln7lnbjqbfJdwVXoNbKd4mwzqvV6lnZu7JvdOkyRA4X3+mVG/J+JXkzMvjeeCpW6Q1coXdcLn+zI03T2+J7gmxf+XdQ+2skdxzuf5vG1M5mipPN7dkzMAlTwl/v3g9/O5ZuH8EnzYvpPznVzc/b6H1bcBVmKu9oWPgiXzeuQmaFLP/LUtWHfBle3o3GELrLXRR+vZ7ThB8uYFwb5Is/xQmdwcj1PR86VpXWuy+gMrTHsDBbmivvOwu7SiBX/am8vK4qpUTQthL93KTWjl8TW0s0dsj6p1dwqlT28BWcDpLfT5v/zdB5e0JdgIpbfLrr3fBZcvNyNuIgPhcEoEmw5W71tZ2S6uCilpIsV0uX4Iu/M7x8hJIufsxsBXGeelUvbb2dIUe8d1wl2RuZqzlX7s7KN/PvRhOrDSXLUGj0t0ArgGuv4SwbOoJqkmdqyOxcoDlFffcp6VHSfmS1bVWbUjYCfdSCAyR+9ODGwn4HzbP5GYERYdw2vpt2GI3gcjQXgZ8KRHRNBXYie2+LJLUuqWvI1ja1oDnAzeeombuV3pwwzS8jtywY6aOUr695Knp2jTivgn4ih7V4el6+EbCW3rPZerPeSHif44OW05p4yFB3l4N4bW441TB8+O9BzNt8JGd1RttaQ97gtZp4EXCLQsQ8V5DcoCp365gbK57muy1XJ9dBnw5wA3u4cvghofgMZKz4ds2Yeac/Rne4+7Z59cJ/H3qdbERWpu+Ea6/l6R/Lb/aogwf+eQivAFwLfByiNovwXXAFYTpFI3LkrPRREcO1E9ngFcREVlw6QXBQ3vwhzdkKlxUeuEZPfj2KUES5e0NgMvh754PDXuAtIRXjdSC6l3SGkOt+LIM15yBdhib1CUnCUL4OS+MhfYi7kvhlY/Ao1O4I5bXHm15qIJtqrfsVCFMj5QT1lnVL4jPvoPgUW0BLwP+xnWxck1kbMLJz4J/8lF4HfBovDww9fnBaBW+jRwlFHFnNUOS0j8NfCfArbGgrMK18M33hq+PkN5mIxzqHmvcRpGXZrlvLS82iu3Qpr/TwDdB6PMd05B1uJ0wAO6JeC+NPF2j3p5tkrjIgVCOWl60VYBn47NngK8Env3iWOm5eOMU3HYKvv0cvI2kYKauHvFecgZ1w2jnKEYkgxydaW4FvuUq0ivQo0VefR589/vgt6lPLp+KNNioWPVrjan6omfKrpo6tuLny4FXPi8yQXue14Ab4Z88FHh9f+TdJkkBx8CTk6QxaNOykMaVxqVkRXriOqK8Pd8QG8f5P+jB9jQYO9ngc6SDyIaRf5afEletPCPySjIug7Adm/vNwMrXx4KS9034a5fBI4/B3ST5Urtt/w9M3eKJ2qu5WD1v+T8AXgk898uYzemKFgcvuBju2oYb/WG/c8DKwcFB+e4rVw7YIgihNKgk9hxwP0z2CG9P1TvUrJmLHD4Yx9fs6GhGldshjUBvQofAswg9vUfa+xtTDDwCB+eC91cxrEedhhFJAvUckQ6NgHXi4RIEC7JD6LVrSe6NtKQsw4jgenicViJkAaRtRGff1CNe2NXv0rqXk2axp+bz8dD2yR7016hP8UrratUBkaZLDQ9Up+jQKWJ2mdJlpMPLRaukWi5XXDpYG0UKD2XdptRPLdkjrUrwGnAc6ztNUjzS3hD67ixBSw1j/XvUXUjJmGb9xROlxtQOqxXjPAHbhD6/IZa3/T4MPOfDJNn01nubNAagblll8fysMxH3KsmdtqGi5OpR4F6C5tuMbZSG2YbJOeg/jbRzx1s1G3qIDhnUXYKsPZ+0Jn1q6hgBd0YaNklpDwyNmOfMenalR9iIOCRDsgLSujcQ+n3D1DmJz95JCGk1kS894N1lyZTl8x71dfaSNfvM9ZHv+8CPHVQJg5vXVw7uyHi0N9wNH96Da1bhRC84xCvA//icermVO3jPwcHBzbM1tCndb1s54GEC8yTIMutquIRbDNBva4Zs+Vx+QYNC9+yAUcfn4gU7eK1pF50S+F2S0pHrJ0Vn3RFvBqslBOZZLVyXMrDPSelad9uEyBX9dlBYQZBQWp5J4QoU+lm84rMGouq1A1i0eCMnXNZFV7vtwBNI0Vg3UQrXttO68HawC9SfNkSS+6O2y0CojSqrvrF7VIfUZQzDN9FjlYT4Z+VVvFc/Whn3uTEfK6t9Kmvp07NS/OqXgalPrqfPCVhZ8a6dfguvdf/WXT2Wj7Yd3hCofpW192Q8rLGTM2Fzc2q/D63WqI8h6RKVVzmrtDdMG9QX1gHTdVw5H1LomjWKOwRDIh78aLvSfaDw1pqrTtR/NyndxvRCLWbVb6gLi1eIfr3bmHoHqx4bF4+oxz4qs0o9iWbv63ndtzMNT8RntZPNejryYqySmpAsvxSQBoqu2c6bkDpVysUm7Mbmu8rZusUTK9wYGqQUNYNiPTmoljLZheS1DQRTU5doVj3W0kPdixXNlvYR9XaPqCsG0e73qur6bqasNUTbpr0D8yca/Mv4FHFJWWqfqjU4UoBjUnpozZSzRmBEnXfKaYp/4rGNpuQJSo4E8gK9kfX5HikYOwash6i+H5vfNsqUIzE09VjjKIWk8aO6rEdonY4Raeux8nDKJeTGoPrFjhn16dTQqX6S0yNdoRU5J8zzffOcjRbtWLGf9rpP+FqdJfmWkrVOon3WK27xxsEvfzxTDvjnn5m/noNmpdsnDPBLDVFiGoSQS7MqCuv0nJhjE0ACG257j9J6WJcSQl0JuFVQCjUFssBipFVWSnpZj1B1jRxtqn+NMKGiTuqbZ8aEUG+b+mkkFrcG07ap34Y5GmB7pAFgvYsrSWkBSAN1FNv+GGmgWK9StFqwfafBmPPSICViryS9K8wag0cJa4us4hU/fQpDCXsbqtv0hsAa5ssjbtGtcidiux+K9cnrlTzukF4Zb1MH1qu0StKmG2woeg0hzSG6Re82cB9BgUiBy2Ozis96bsKl3z3qUZc8MdFxOSHcFj90utKIkNDdinScJaRChFPjS/htZDIkpVCmhj/EZ9Q3lxEmkzZIMi3eC6efIVRksk7oHynfDep9Klwwa6iU3jhNkl/r8DxOmjiyhk483TFlrUzYqM7qGB9Vie+b1KHwup6aGjuA1z4Bn30iX7YEzemFK1cO3v8QPPdmUt5TxN8H/+Ve+FNSekuGxMqfZMwary3qiXg7JiHx7VbgKy4nZPpt7vIh+JM74Y3xp/pKuCDJxw5JpiHJg8rrea9DrgD+DnDRi02DCA/vvxl+PJDBJdQjaI0/ybkcH02kqf8xPFKbNSY3CDP41z+HlFeWt3Mn/F/n4SMRt9WnVpeK19ZxsHpPGRQ5TLFp7BBWjLzi6YQ8nzpnCDwCb7gTXk/dOZWdsTrf8mGX+kSLDQTEb2J9LwC+5mLgNuopnIfhv78Lfj8+v0nSbzuGb7L9OX7bCFs02UncawgTR7yUoATEoC342B/BTxHG6SbBjvtMks/0rJs2ytlSW20m4hxheH0b0P8ygvDtExyFHeA34Kd3Q2rzbKThetKkoerR1IcyPn2C/RiTdK6cS/XdduTBtwBnvjQyQZ26ATwC+7+SJpnPUZ+w2iItN1PQoSkTydwZ0oSbdETsUvqE1QNXfyUhtyuGDkNjJ/8afpq6/VHGQfTLP5Psq9vsNIr1NwaR7kcIIn7bzYSJ4x836YWLVg7ueBatsDeFl98Pf3xN/frK3YdMLzz6UFAuP3cHrEvp9gLFv3sv/BizWyRhNkuQ89xzZS0MgHcCw0fgZc8hSHoMLf/iTvhhguNhHbZcXfa3p6NEm4T1CeAH5VXIO3sQ/lfg90gDL/e86p+437Z8KSW1Htv2C3fDylWxwC6wA//uPPwi+bNGm/hs8eVw2uv3AFc+BJ9zLbWc6113wo+S+O6dHl+Px51LWeqalMC7gdEn4Zt2SB7vGHbeBT9EmE/yfMvJn67nnH71i/0NcVnwFL5/m6B8tmOBu+F7CA6Gjcpz7fZ15vo7B5cSgqcf/QhB3lTxA/D9u/C71DMTb6eeovY47Jhow79OMOL/4Z0kpRu16vt/Bf4RSdm2ybTA37eZE9y9NwK/8hp46jXUPICDfx1WF3wkQ3tpHHlnXJCTOwgO/r+8A267KfNQriIHuxN4SFa+IzQq3ScIA+y9wG3WNJ6DNxGEZFR+vBWaFEWfEFG9E3iZXNJ94HzopPtIiqerwpmnTHQqAxKTDzz4YKApZ2x8PU0DoImuEUHx3Qtcr1BgCHwI3hxx+9T5YSCnGKJd4Z3A5wxI3taj8AZShJ0zbt74+YHXdm1E8D7ughS674S/1xIGXw73Udpr4RHiMsRHgVsS/kcfCf2xNQcerxSa2g2hue+FwGBIeeZ3B0N03tDfRZa7lNP9PUL7Hj4HVyjvOwIegF+NJHUZ5yX+to3z+wgG7ZVQW3Xzs4QxsN0BdwlfF169BbjNTzwW0gs3fjSsVlDdZyfwzy/Nly1B6yvYq5y0fPptYD+59V0FrFR/k6darSKTtxVTG5GEWj0WmpShL2+vZTvHTuxQX21TghI9OWud452M5hDSZF3MPewwu7qurb/byvh7lULfIMSj0cVSeiLX7zmctu6cwigpkSHUJ5bGaV6mhLvJ+y15njncvYoAqn7363B9/RbUp7mowrc32+7TpFxrnJgrGZomD1+/c/z2dSgkv8KuRJgCW3XcXb3oXLkcbj3fI6QSq7d+xwnc7cJzTU5Nbqzl+GSvXQXBw+8Ar316+v4U4LKnwFNWisWz0DyRRiBwE1IsEzvGptugbF26GIAmC74Btdf1fOKO4JGUvPm2AVnqjNygXIcwCFbTjdUB9DNuZtMgLIGn1Q/+DRycho0H6vN0/rk2Orooazk7ldWNBJ0ulG/DnaOjCdYgNT5aITu3IlxtPMjJYFOYOiAudb2UYGzOh4tXZOjuGslQuOfpHxLSG9wcCdmPn5fA4OOzz3kafPtyCqikhHvEMf4i0kE/UQBzL4cs0WLrzNFUKlfpmA2SZb80L285J61Uf1elP4a008lCRslc5ZlwEP/mgFal2yMOAln/daCfLLpfcZEb3Pa3hZL3YXHbgvv/Fb6RsEbdrxLJCVuJ6U2Wz3qbE0i70SIxB+O6x9ckdPMoxpzg9CBI/Q6Vt2sn4Q5j2HKCaq+r7QN7YwicLEcDbXXbqko49Sl01QzIANiobxhqosHeb+N9TolsQPB6TlLNDGnlni2X40VJ8eY8X0+bJjarWSfNVm1A/+P1Z3Nts/JYandJCVeLhx6JF4yFs+O8SYG1eZO2nOXdJNb9YeB6rX4AWMtvEsvVlfNuc789fRBs21mY3dteSC8A3LkHb4v5ltuGcNOJfLkS5OYBKlCHPAZp180I2JkdXKXB1jQIbRn7KdASSbaBB8M2zA+T8qklIfL12t9tnpa9P4b6Dpp+fZnqPIq0STD8gMxNkDABdsuGyit/e73k0ds/W3ZA9LrWSOufXVLPKticAioppZxysP0yIHo4Z+KFOOXfxbCU6PB4yZQT7Isgs0Y5lz/PKZmSEfRyl+uPGM3Dh0gyNwL26ivscsrb90GTB+ifVZ07EAbXTr1Sv/LL11W619RffixMiI6mHdj3hWu5iLYkc56OpvszfZBLWk9m/37yE/D1H4OPfTr8fcPH4P/+RKZsA3Q6T3cgAmTyGmZxunp6vnNKCnGkf/0wmb1JEM4uE0le+LpYaa8Aaru5TDK3KWQp8bxNcfTd96dqnYxhlp/99d+bBnxJ+VolqCU110E47EezKJN6Hj2Ho1R/ji6L28PUPhBdITsmcrLSNaop8UPXppDW+kXcWw20txneHOSUYrSpYRZzHAspkZ2h08tKCb/lSc7QWaX/qSlc5JD0THnc9yZZz93P/RbsQhhfG+Q1PbMy5evJyZw3RLacIJuqLBx48wufhHd+BqxHxnz/xfAFH4N/dHGukjw0erpav7qpH6K4X98o5BvnG13yNkpen65Xaz83gDW4bRDWzmo5X85bg9lOsfV3hQr3GdIa4fX6ur9cvW1CWLLAfgAAaTLJGryGenN4SrhKEPVMiG6s1zOpby7z9TQZmnm8oTFhPXy1HTjmOnz7SrJUwtXFO4NoV7WhJy6AzYW5JSPSBCVPXDCCtPHEhTtexmz7vWPhcXV1Aqb+wZ26yLWNqzaDV8I9Ibbd7krMILPtmWS++/pLegcyfO+oHA6Avpk466/MndJtP0+3T9iwUa2TjSve27wef62pTEk4+oQli9Uxfy+Ev3cfPPJAyus2MbPJu8pZae+Zr0GY2tTq81E8YGeab0fJq/B1d6FlH9g5D+uS+iGwAYPzSSk34egi8CVeTTCKTzscVuv7U1SuSztL+EtQDcDNWOFOM61dvM5cmz2tU1yhmFsdUpfRnPKxDkYTflu9p3sAYYG4vXAprH58VjZ9P5faNY88bhHlTRN5/bJnnfMq26DkqYKZN9IWYWYdzZKXnKOr7Z7tr9qcVQlhhG++CG59FG6P5f/LCP7OWr5sCRqVrgzP6mXU98VP8p2RgzYrWxIQQeXp7hIG4VVw5oH5vNlcZ5SssxWiXQiTCydJW6tobnNO6R2GR1NCimsdaryfkJzfkpLv2v8lHkyJayOldPtU3mZu4LYNvC6GztZTpRcmVN72IPOMb0eTB+vB063vY0geRQzzV3swmdbrzLWnq5EtGYoavVo2tlVfKperz7fL3+8qI31I0QXAYDYUburvOfTOTNvH9kb8sxOYOZ6V9Ma842AVZpcKuYm0j3waHpvC91wEX/wUeHsk+Kc24lK7ORrfmF6oIM4g06dK+g0yxXKd0Td/vmzJI7bPn4VggtUZ03rKJ+dptim5HE7/vZrYeIywSwSqkK+Ep6mNTX1SondDN7VwezjLd8uzpraX+qHxWYV50dCOqbenxLtc/W1lLFTrdPvxx3r9MLKSt4m5nlPmORp8PeuQ8ugqPJw9d8d/b+JvicZGMMSvNhTpWlWX8icgCVhcpmkP1Soq6szvJl4U+0BGFqo3b09dmSaF2yQXJX0xIdrY7cxD0/T3j7eD78UUnt+H7xyGv6cS7tmybbvTWifSRhAUzza1k7xKgzcHJSa3CUHVB7Yho9kyJa/BW/fS9xJUkyqr8ccqcAL647xH0VZfyUvyA7mPWUKkwwVgJqnq2+gFK6cgugz4CrdG+zQ8qLMlPP4m5dum8HI8G8HMjgCreJqikxJPPeRwV8sjL6G+ZGAw+1zOy/WKockjbzQg2m8bQ/0es31acljIlPW0+O81uu2Nabm/uxi1tnFnn63WhVtN2wBNUUauTBP/pjC7esF5uo9N4MaVWUQ3rsD9XQa/gUZPV87Gx+xJHQNgdb5QQpBruP8rUqkQe61OdJsSsV5cF8Vj29WDdLCy4p9xXWis4JW8d68I2rxRMMvloHZaT5OnWmpH0/US3/uQ+B4PHvdGzX76+izP/eD0OP3vHeHeoDq7uM2TzvGgyesq9UUfgoZXHn8C7OZ3QM4je14+irJgcuiKcKwOajKoup9TwPpe4klsZhpn+0CvzNMcLU0GtzT2BQNIOzEiDZrI9+B512TYPe6cLIwrAsqw1TBb9qk5Z9Iale5MqkKWaJCfSG9SCDlr5xVS0QpNSYI4bF803YUme2/G2vsKtI5qmC/T5HnlyncxjNXqCZ34FEPe7UL5kvfUxbPN0bSthwdUO0WyXllLnYI2Q2fLruufVu0PkvNn6yv1m79eUspF6JGOpeyHDTFNhrIEJTm3NM4oz514Q2uke7P88QbN0tGmdEpyp66urH3MJfl1/56PbQ5NaSx4nmxDmqiviCnTautsM7i+rP0EF9VZMOmCm/vw7z7FTBrh338KPrc/e70JWifS+sQlY6uk82p7dcXX1OhcR3sF0XS/Wqyu8023Zuv33/01Wx53vfS7WqQgj0vh3jqwVxc0P3By1tQPEn/dl58S3ybUJx0oPZjlu63H1le65iFXh2xcdf5mVH5NfM61JdfHTcphhqYeIdR/qL5WNqeASm3KXW/yyLagfvA3sHIK+ufSs03t9PwveWE5GisHQ599YD1FnE3erW9HTiZLvwVr1T8qpac2jMz3JgPvFWFXL7zCaQ4WsY5drj4o92kn+cLoNw8uvfCvV+H2T8Gv7cPnRlf1jinsH8DvXdSC0EGj0hX/V63iibkumwJpGtQeungedvCPoL5uLzOJZzskZ/0mlDsth1e4T0DqkSGV8u+dq7fF0gFz8b84OORs1XaFnZqdxddz8whZF/oGKqxEZ7++E6/J4Njr3hPKDTovC5sQ5G2ToAVPFAaGw+O/5wxDE37puWq1ig69NX3ehL/L71Id1fk+a9Tdy9Nl+nM0+O+e77m+UDePgIv6pMhqkKc/Z2hzOJoMre2byrHtE9o+TbhzR0GW5Ldk0NtkvrhO11y7DHjHEN48gbsjUV/2FHhJn8Ytwzlo9XQnxJ0qPYLXs0tlfS14QS8p1ZySyimvmvXuU81iM559bZJXOm1WvTTYc55bdRL2hApx0wDP1d9FCLyxmBIHoSbxYtvlDHSpr8T/NiGsJm6U0hkzE2eW6rADqQRt9A4gvYAxLhW0a2Wb+JdTUE1ekqdzH1KIr4fGs2ujmzzPpms5yHmqQHalUFfHoVQmJ4tgDA7MzJiWnImc15ujIzcuPO8v1RelGLbLqbQmA5cb6yVlr2fOeuKhuCPtxSvwYu+dzQmNOV1NHpxV5RMqk9iU020acL58333PDlgJQfT4cmGH/Wvy7NqE1t4bQzrIVERtNFvaNmXjcTSVqbx8tb+fTz15r7LJ4rfhrYHB64XL8x2a21/q25yyHEE6wzJTNoer1O42jzPLIx2lqXx6P1OmQIevN0dnjg4wqzakAWNKKWdISuAdEA9+jKj8PvH8g516Yb9qxNM/z1hv+r0FKaUTD3haZ/ack5JMd3HyfLsFA1jMAdUdodXTrUJ87VSJcVCTlzMveMuj79UW5A3S+z6or5zqgq+pw63y8IK4A+E070tI70fZTnW0eRPeK2oLtywonVojslefRZ+JCFx7cnSVPAF7r0qtaPo4HnGoDItvZw5Hk0ftaS0qPhnacXkOwfM217YSjqJ3OnB/+83156CpjZ722nWr7OPyqdLuzy60eFkvyUCf6G32SamVwnr8Nmjz+nPe5hjCnNFmvNGwYqVNBi10MVib1b8GRAuE1tULPeKiYIXZAMMU4ntlYn/nlIL97oUgZ4U2iQRIGFqI7uoJ5EJNS98YuBv4mjG86b8SdqYBXJoXxFK9ucFQEkr//KoGoHkja5V2oOxtNCkh3S95qFG3JwUgV2eY9seUINd/ORq7KO4qnTQkbI3N1FVSIhZK8peTzaq5GQ83hyfnPXvacuX8dX1Ws+h+qUYLWBkryYIfox4GRDZbZvRnjUaujy0dJYVeikQEI/tA3BXXJ59Ka5J7X9a2v0RfVp8oT3vYvwZoVLpTW0gVxfWD8jyaGIkp03Q/6+lE2IckhCOKORTfVu+1NuGxHWJp3SK8vuW3IR1yvJ9ewOfralN+OcVT8sKnwCcUZohAsyOti+Hw4HlRUnhTYjShkCLOqPrJ06bvpWt+ADZGKjtUL8bUpG6uz7wC9X2Ra3fJCFQhvt5cCZUCaOJdm+LPOST+2QmkpYkKKx4tpw1zY69NLot4MXjEoF79J5nPNrxNPLNjYABpwjgeq7mVqbOEq+m3xed5NSEEcm070ub+a4DWbcDVyYL2iMFhe65H0EHxzyjlmUHgNNSlGRwlJZOr3wtEDq/KrQHPgnCwdTS9JzL4coM5p4hLNOZ+b0K1OUCvrc15ex78AG/D3+htms3vPu3VNuj9gMs5A02eE6IhIvLrxrviykHunpbpsUNw+2ThdtoNGg33c8Y3Z+T7KmxfJT6cPemrDb+HJiVljfwO1FcKjZoPnWmrvwtelRuLCC3LnKR9SR5PU/1+HLYZ/yaYx7HtInOCxpyuZK56fco+wSJspIY1Tai1KUOVteWsBzMlWqER4YjF3UCMP9S5yWsqeZS5a76eS4CXAN/zdOBGglQ6M1VqY6lD/SCbMMuDGmzEzykzx3w1WfjSd5jlv65ZQRxDdbKZJnZyBrzJq8j1rX8md63yqNdJ7+w25XLGrYQ/d90+ky1XufpUu+Kme/UibX2e43mTTEDk+S4hlFKuY9J8zkkTniaDk6trGzipuZto7Pw4L7W7ZPxzZXK014ZVPF3Nb4Jq4q+ts8kI5OjfnyFg7lVgc0Gjp1sTBiX61oD9o032eUtT8pTl4FUeV6Rhnom0JoXcVMeQcKzkT54CvoOk8Mb5vGpTfavMCoynywvgkHiMpC7sA+fqq5lyOLt4QTlL7/FPIL0miHBhlHmuCYf/LNGd5YXWB8cVFNsFWktQOiSmrd19Il79jeAT52bLzgtd5LTakDIhud17ibYudbV5dqV+qM7bEBPiRqStFrq70GTLlPp/D5JWPBdwP1p45rC0lK5P4S/P6oUe8HTgpN4JP6HainsDIfx9Iv9oBVJQtfxw5re/1ic4ty+B8P4WHTnXC07nZQSZzCnAnOdMw++4FrtGy2ngywG+gXCe71mqNcpXEg7416qmJsuV8+qaoB9Q8ByALyUtzO0Dm+Gtqe+l22up9ajlv2+/jxqGhBdGvBLS8YL74cYXEPhu69EqnzYPwz5jvWrvdV8p3KfrldxIeEFk2+tjBBLVpvSN8Is3m8BNEBigSqfw1KfBlR+ffQt1vD0jw03ykCsPobm3QmgoJOE+FYz//dTeGjXTFns9BzkvT8+rzz/j6SSmxK3ANxAW8GhviB+/R4UB4bzuL4Ew4OVxTEK7NzFvJC/QD0kWp+5em8LeBJ5PJMLBotrooVHpPqMH3zUFvp70Go0I3wDcRVA+Wk/nhQLK4Y41LKraMncIvBq4/naCx7FNpY1vfDp800PwjnjZREPVOSUanMI5NXUrbWUPc/JpiucA/+A5hEPMt0ie9jXwvXeG1MNjiaSaIpEis5ONOxm8ffesnJxrge8DeHm8sB95cBX8gwE8NoY/J03w2zZCkltbp9om3EOqV3BVinNESGX+XaD/rYRGxoksNuDZz4Nvex+8JT5zKWn/gtosJdYzOMYGt2gSWIXdB24HbvxaghYSsZtw6Uvh298I/w/1vrSbJnRNeJQRI9IoPNvUVyHKgF0HfM8pQv5e710fAC+C7/4d+NVY1p5ZrbZaXSUFgGmvnRPVgpQJ6TC1FwDfdxlhAqFPWjJ2A3zvmxPdmmPbN7jict4qE1RaYiYa42F5nIvPXk6Ut5dQH5iXw3cRFu58mHQcheaz982n9tFAXhaEH8MPCCL2DcBT/zp1D+AMfN0avHcX7qUeAJChQ2cUTUw5a1Tss7au24GveTEzuYxlphdWDg4ajsh51coBZwivZoa0cPos4d1ZdxBeMSCvRNpr3dSxFa9rdNok0YDAudOxnPKWY8LofxHBBFvNOCJIwb0ErT8i7V6aGlok4ZIE5QbtqB8Teux8/K38KQSte0ukQ9bkXHzmYYL5P0+aVbOulXCoI0W3tIXaovWQkNIXuwRFfwthAG6TLJJw30Fwfa6glvYAg9cue9onjUjhluQ/ThL0nci/FxAUj/pHyzXOAfcQRuCA9CojadYR6XAgS9co/u2S1iCKPntg+AS4jeBuSsvIop8F7iRYWqit56z4aM5LAMMHaVWNImngU4QY9oFY9qbY9qeTRq205T0EazNiNtmo/Kv4YC2CeK3+0/PSnNJ8N0bcp0laSu36MPCmWPZ05IlCzFXC2JHWjWt7K60s3nrr2ye9CPJygrxdaXBLlh8EXg+fegguupgU/YzgYK9mk1nR2JXLabTWZAr9E6RzRHTfypv1VCYEGX87QddIf8iiRd4efDKw5dIBQYOrXuka74WZJZgHu7ByO6HfB8APHlQv4nn+ysrBWzg8nIT3HBwc3Jy716x0f2TlgGsIikUDT4pXA9gqF0jWSiZYboftCAmTTOUlJIYKeuY5u0bLuhNjVx6S6+eVjhS66LLKdzs+s0HdTRqSkqjqNG1TVHsyAgauLScIHS233MbZFqzyWCXlVK3QrFKP6SG5XiprXUfvgmswjSKvbI5Gn9Z46D4k42NXNXj3ZRTvrZtrE/OsNXjCnwuNvNuoPpD8yYj4HKiUn5VJtU20Cb9kQJpD7dJ3m8vw/WVdShka62INTBmfmLTr/rQ0zYclqsM+K574eqTQ7bpu5YPFO7XTxsy2j+36YLXd0jkiLtiPdWpiReGMrtuw0cqG1wMWv56VgdfYs3Spbhsm2bBRhgyDqxSOSEd4GfihpHSft7Jy8GYOD09tULqN6QVOUF/CoEYrzrGKzA564u81ZgVZHqe8XzFojVlP0cYElkFjU58HWXwNPCsEGgjWw+xRfy+VaLHLV6wykzX2wqNYVfdsx6sOd4JTLTGqvK1iRQnJ0JUT3UOS9ddvSANOeOxzQ/Pb0iE+SEnsR5otv6UEvLc0IsmArtvYV6Acktpt+8gqAst7tcn2laIoS4MduGqX+KbfI9KhTVNSn9gBaweqzcEIv+0Pr9it/A9MedGVS/aqr21cLDmyys/y3MqOXEzbT7uGDrPcbybW9+NAtKxR7ycZtk1TzvarUl8yihrD1oEQv62BtXklG+1NTb02KpAzcIIk83KObF+IBvHKOlmSS4vPGtZjgmale54gAKdIDIQk+I+TXqXjkzg6BtJaOOL3x0gMGUccspZ2sPUJMzfWc5aHrGSctWKQlNw+dYbbtMcW9RAPZg3IBkHQBtS9Qf3eJr251XqjdnCo/ZAERe3WvQFpaZRNkG2Q0h198zcmpFe2qW8Rk1eg520UotDeGkA7kKGupFSvHfTq2zizXIV43rOxBkKKTeBnkNR+gfrocuqDVvXuEtIBlt/r5tmSJyiFuhV/W/5b2V0nhLvimTWA5yNuyVOfumKTwpNiF16lSSTT1mmwkYvSHeLTvqlnL9K+RYoghFPfd0j89so9F4npWcnnBsnQWuOzT3xLqXnGR4s+SrBldU9jyHrXlu8D86wM5JQg69b5Ek/lQPmoz08u9UnRkcbDtis/pJ4SZbk53Wal+w7g9cA3E5SfrNiEkFP9VfiLj6S0m3j4CEkWzhOyB0rjjeJ96TQIfSqjrb46B9yyFnFfR5rG1N9r4G13zqbI9H0U67DG8xrqOn5EivhPG/xbhFnbk19PyDdtUF8v+k741C+EFOMmSb+cM3yQDOnzbHy0R0iFWgdfMrxOSKENgOc+jzCTeCVJIU+Aj8ATPxVSXZeRTj/0zvgO9TTz2Vi/1QmQxsQGaXb+Cy+PfL+G5NWpU34a/uSxoF9ki21bJP9ilezULsm+EOkT79W0CSG1efJbgReSBliPICS/Ch96V0j1rRveQdLJsvdrpPeZQpqLtTbdOrOPRtzP/NqI23r428Br4Q/fHr6eJgUupyNbZAM3SG94kt19jDQfux7xnaXufF0DfM4XkeTNEnkP/PlvBHlT8Cj++yDzFMkXuYx0XpN8lampeo0wFjeBW55FmLjdpJ7XPQf8IvzJXorKFZyMCPbxDNDvhbztiNC352JV+6Shu02CHZIP9fkD4KtjRVISSim8BT5wd+q7AWFIiLcPRRxXU9fbW7FvJiT/T6JM5Ns5wrTJRV9JXLZShwuyeuHxN8NPAf9igzClDaEF+zD5YfgmQo7bGhoNHqjPplt9bVOHUJ5tvX4X/u3PwMkfo+4tvx6+784wtyAmS8mX0qz28bErJxqt8TwDfPevwctOEzSwjjh8DN7wC/Cj1B0nDSA/W2udFYvH0iWwEeNXvQ++7waChJmbf/5T8PdJcyCW7zZysxFtP3PNg2gdALc8Aj/3c8A/IUzW6eavw7c8Fpas2fqgXrdPodk2+pSq76OrgP/r5+GZ1xFGtEb3a+A73hXmL3eZbYOPnO19i8fSq3uSoacD/9/fgNueThrFAA/Bv3k7/Dz1wMlmwWzdFjyPVM63+xTwzW+Fb9kEXkrKv56D3/2NJG+Wl/Z5yPN6PFt8ptwa8MqPwI9sEFYwyHrvw+RnwhK+BzI4J6Zob1rPBMJsEONlRd9vGMOv/xr0/yH1ZUi/D992d/D9bEBlszdSoj7TI/y2/V5GIPT5T74Grt+st++CeboPAm8DPvFmeKqUbjRjPwf8Kc2vj7HglUvTPf3eI5x78C3SmFFaP/RWeCMp8lAdTUxqwp8rew74DeBl9xCUrkK+d4SlQ/dSP4vAPuuFOoc3R6+eOQf8AfB9v03wfAT3wS8CHyJ//kNTezz+UpkeQbH94cfhFfbiNrzng+GevPYc/W1tbLu+A7wO+I5zBPcvuk5/9saweOAx6n3e1q4S5GjYIcjbbfcRTpWTN/A2+D3SmUfz4PM0lmjeIsj0t3yYsGpHlvy98MuEsTjNPJur339vGhvKurwFePx9YWlepUkfDMr+XuoLj6C7jOeu+/tjwpj6pm3Shpiz8OvvC46VFhd5nCVc88AOYUz9y63ZexdE6crzq95goIuPBCFQSqwLNJXz98Tcag5DHI1x6odJcw1d6u9y35et8usbpBhyDDweQtFSfRP3OQ899toI6rHwDnA2pTTnbU/XMmr7eai7lI8HpdPU57l+nIcWeUNPwIxLrJVVVokcZVDknlWqpHKntAJga3bV2WHxND2/A3UGj4FzoS9yadm2+rvIokU1guRpRm18lrq8ie9tTk4b3ixu5VenAbd0TJe2zGsILe6deSs4IuQizQrkxq/bVQwjYD+/2ycHR2lLD0Ngn2p5zbD4xOKgmii/2lwYA3tBJuR1tFnYw1jgKvWySVD68jw2ZrcULwsugRDzmgmMjQXU24X2zYivemBSn1Nc1vjQmAeDJE6aLntMToh9fpK0kiWuJmgcpAuCASGllrQQcDrN7VlYtPwpT1vLYw+WN85tX2o+J7c5YnqEvyZo7M8qH6KazMytXTDQBEftoCHMJmcWAF3omkD9/AGYeW3NIj1sQeXV+OVBk3qebBmgTM6m8BuEpXzwIsEuAbWzRPMeXH9YqCIMeXurzD2jcuR0h6LKKAjHYWQnmJdGiJhpfS5k2fgrYwO1MXcYfs6TehtA9rCOyRH+mqB59QKR4TZzHQfisjujlr/R+sGo8M4xX1qjlHsq3RNUOVu7BKt0ksoyQOkFTZUfI1SGX253VDzLmtG1MID6mtdxfROTYBle76T6R+L9aaq3AXeBwyrJgf4pxO4Dm7NLbpcFff3rUWnhbRbX56XxFrMoaZlc1DNH8XS79oH8Ga/MCq9IWwg0Kt2+RTyhNu04YbkDUEybQkruxosbdGdqU7lOqQErhHFG9zi8PSAJ4RrVUonchMkiQXVu64fJb25RX5XQBQ5DZxXdyOoN8rnkRbZfsjCEtK5Nxj43Y7oEqMaTTWTu5g1OG7Q5FDnYAdY1eRjX0u00lJ8XSvTU0jpq+/h40qwTTHSTubcMaNUfAwixphZex4WFuw3PLBKGUF+bM1is0mtK0PcgSbwWf0/rxkZR6NIgDjzldXMz2G0wD3015SOvPm5CsCnerjCv4PaJTv06ad/8IK1JXRavrTFDZwQopbbg1FYT/mqNqmB7fvSH4dMqMbc5NRfG8yv7w0DV5y61cBxplThVMpO3W+Lbepr1lxy86ocGwqjby/IWAQOoz6iy2M7ou097fR3SUVVSvm5SpQuT54VKsa1T37G0n3B2zklzOPpqghEbqbW5yxyEtbbpRz/ZvMPi7jr/MLA/hGwwi3dpCkHpBTNpMi+ueaIQQQ9Y0U5AbUrpH85jngdq48+Gt4O0YmTZyncXji2agQ453T7UJ7Jirum4LOAE0nkAcQAucwZbeCE2OXp5tT3tS4ZqvGmbHVQ7L+ZRpH5N4zwpmQ09ZBTPIhy+LnTsQH3bKMnmlfq+TSbmmQOobS0+Yn1doZoj8bmzOeRt3nFhy04h7fYRo9eWP5UgeejphzyO8ymfvGw9M4Ts0pxlpU9bI/VqIm1Yv2jn1uznIiFmExICI4DLsv62bA+Sl6383qnlL1mrdfZJauc1LNPTs1BbQQCVxj2qIHZe8aJ9tNHT13Ol9h+GLzlaplA/cOYk+ddzLwGGkMIJ5bSHR0unzTOhNPHng4yOL41YebqaPJ0ci38DRP46j2KZ6YVGT7caYAo3BCbJfZQQtg2qiTybWzykdj+Mkq68fFjurKGDapAphw41L7/P8tKMNaHRZvuI1M6iLwPURyP9k+KZ1st09fLbytn7tVz2mrkY162q7cv0uqp2S86VWjoCzEPvPnDRPrX9w9bBOIwn3TUNVq0g0I/h7IspFw21yfqC0l0GtOZ0gTShodn00XLnFmY6ynh6nDo+CziCsJbFnvi0m9q+LEMzc0E5Po4ntVKlzwckT3uw/NyaosupfoiG3vw8n5dHtehGO1CMEtB5HUeBTjRJ1jV5OgfSo8jFhJhD1RkjMLMhZt78bueoJtbNKsnQdGjMUcdBzWHM5HQvyOaIPVWgvYAye+vLHYCWGdWspvLKW91flndUqPKqek8JwMjNdC8YaoL0BPVjkfz9JcIapDA3rulZ5uSpeFkdCORyOHaD2tIndnTOhlE+C6u7ADMKTYZ+53iCLL3upjoKLlrAbVdu0fJXU3xPUON7G9sXIQfVhPl6S8EFQuuLKavkvno+eryLYn6b9dyFMLNyisryL2PFQA4GEPfDUs2oMjjGTMM6KcSNDT4Ob3PmQqRhm+WmNQTVYDPLl3Yy5ZYBfaifCas3FxwDVF72iLQhpX98hnYdaukk9he7TrcJqjfci/eri2e71TX2+xoUl4wtA7qtXjhFWMT3MFV+dVEJ9k5KxFqhY1R6E0gTGz2CFGwtzuMrGZxa+5RaiHQse2NGLdyzqzV69fN6lyWQyqbUEsg7x2NoY+asfgaAaFkyVHn6bepu/9rxnDUi/va1Sid2RGZSfyG4vNxPYGYRul3MsAjoZ75XMpXp4wuyI61atHAL4WzTxwlCcYxbYaulJEoxHMdG8Ah9mDW3C+yJksGpHfKjpVPx9zGs0wcMHp0hOWzu9nnzfU3wBNT34RutcywKv0d6H9gxeZtV/TraUBemx+fpVtuQtWpkbDzQBUJO+dVWKa0D5xYyj5gFK6vVZP0xTqS1bgMeQzhLUYeoRu4cl+6rJlUmVJsF7HK1ZU5m9fTDKtre4pRLE0wgxHbSdFrG1AKL4Ik9ZLpi9ji9jSJX/6J4UlPeGvyj+pmqy4IKrwyNZs98YnOZ+OVua8naMlzNAkyBvjog5hWs/hcsctzVggk5VW6Vksd3VPxWVit5/suyDbgi6FHSaVuaVT0mqPZF68i5nfnPNj3sTPaM4gHYXL7SrZw8SZcIGrW3xd8/rOCchjShEis6rk07k+pfhEGgZ9mTaDW0OyTlc0zphWrwSwHsMndS9TD8mTlMZ4dqO7IOFrSwaGVUTWZBOlzX7HpdlEyXcB9H+sZCo6dbWyC/Qe2tm8fh7fUJWQ02CWHXPjCoL6PsumbzMFAZvx2SJuwfo82xucVDhhaHabtWS9XeacPxOV2VwREMM4phCVB52UpeR9xNOZ1FplWqSTy7Ln40X0brsPypDJrjuzvWeOFQSy9UoTXHGlHuwIxHcUFPGQMCR/ZIDOnXcyLLdMNrZ/pGydAmsRwsnB47qo5pGzBEJXOC+rGS68eTTq+avEp6k2K/O+7D9oEG/gBC27U5ZFp/8/px5Tgrr6NBAbQphrnptRXGg5ZOsLyNGT7U7rs4flFeYIkP8ieqjSHaA98hqlsETUKbc2ou2OoFIOUTlWTvHY/nMSUq3YwglHKLR6XHCkcP6q+8HnAsSrc2kab1yXGtsGRymRNqFd+1aiO6vvbtu01w2D4wzl062S0anNpbRFiO8q1WL2Bway7hCHXOVdYeI3oM1sWiGAOr4ntcJ7yocd70fC2NJ49qfflLZ0XTXo2IABd+yZjiSuVbdo9vFr0HiSFbwHayAcsaeBB03AYkUy+Fu308ba+Umz1blVqwsdQxuQPB01OEMa6/FHJZUHnZI2pJPb8jbFleX3Wcp6z6OeDB48lnV+kF28l9s0mp5dmj8KSWzzVOhj8BYNFQW6DiEsgTU2aZNJywyAxckPQCRFq2qUvd48vZFebXzlXpBQnBOrCTXge9bAUwhrB+aUpQQOeBR45nAFZrNuVtjYGPpLdm5GaUyVyfF+RRDiAoPXk9u2kBy2HBDp7cQFJ6oTpqT1tSR0fH3ZW2XRJOvZ/o0d3jWRteGXPLmA/Xj98o9e8ixsKI6F1uEwTgvrBwaZkgus8K72bE/eDy+1ywB9mc7gXxdCdEb+80YfDtUuW5NpldTTUPNE1AKKreAK5V4ScImn4cNomdJL8f3i53suFo7pq/Z+sYYibx5HVthb8NylmGw0ys1JZoxbovh/AKckgHW4/CPpVhhmb7LMy+z8y3v/R7SHhJ4DOuojo7WaHmZaT5VFu/0h09d33KbH80zQf2COy+FQIDFO9vB7Fbo3kyP9f3XeVTx0VfSUSkB7dTux/vWNdhYEBcMaLT2qX4B0kP+fOevNwcBfcp4FJ5OatUr19ep1necmDHgF/q5aFH4O3VxC87BKSPJ1L2MvX5XHQJcsvNLAyIm06Pa5aYFqV7BvhygFdRLdeiB5yGLwXuIwhijiG6Zq20zu/QNb1ROHeQ1yDivv7LCJ2g83TX4G/14C1TuNvR6ybbq++lJScl77APXAd8zyAyQbAB3Aovf2t1DIQ9a7qG1xz/OzM4zCqs2kSFBtVp4FshMGBIWiB7LXzt68IKvscMDhsC2skuCb+l0R4co+cU0aq530r8t0nQdrGT/sbF8OZPBu/HzikKt/rW9n/TAJy4+2vAy4FbviwSIu2+Dq+8HF77CNxF7S0+M8vIbJtFj1VWvi+sobgG+GaAS0kRxgasvBhe/mZ4AykCtmfReHmyE8CTQnnPkyuJfL+BdNJYD3gmfPlH0+ox+5zqsXgtL8bUcfk2q69OAd8Ggfl9UoRzKbyI0N/bGZrjfFeNpzmlaPFC/YzcdeClwC2fTd2ynISXAO8g6H+zqGFmTJccqpzRF0hGrga+AaLFm31+GbBycHBQvnvtygFXAz9A6sHzhFH/e/Cht8MjwNMJ1uhBgtWQdRwTHNTt2ICrYrUKkfvU3zAOSccMgGd/CfBNJPdqRIg57gR+A/54HHCcIp017jetSQnZgaCVb1JYW6TOlEf1zGcRRsG1JInbim3/LXj/vYGUU5GkS0mRQXTOOENSTNskx3En4tmIf7Ip5+O9W4GL/j5hEIjgccT9dnj0NXAPIRd1MtKg+i+h7ihpeZ14Y7dv90y1Or72ilPA1xKsqqzidvy7C/htePShSPfFocKDaejfx0n9rqzEHuk1Yxps4gOxrGjcBFZvB746MlSCsA3cC/wyfOCjoZ4NUj9fSlKu6/H6anz80djmIfX0/LmI106m3Hgq4r6J+sh+CPh1eNNHk0fai3XYjTrjyP/VyAvbXk0JaJftPqHvtuLfLcCZLwWeHwvuxAcfAd4Ef/zRUO7SiG+btHlNuDWWpiQ5E20T6op/QArfbwCeeXP8Yq3QeeAd8CePBTIkQ+LliOR0yShIb66bqoTbyqU2Wl4FvOIqgtCvkQRmHNr9pofgfuor96Qjdk1R8XnD/BbYNsuRVvlXAut/PT74iwcreuZZKysH/4rDw1+D9xwcHNycu9esdL9t5YAvJ8RXI9JOnXMEbbobr6uluwRNYN2tmA+sNKw9vUkSazWjek1u1yZJe++Z56Ut9Lye3aPugknS1Au6Z3sMkkTovmJK6wbK69slSJtfUyla5IZYuqC+p1JW5wRpVMh1OEPKI1jtpHA7hn7VSFsz7dGBKRPq2sm7utK40nrnIy2XkpYpjBy/eoTRLi02ICUCn6DutmvgWp56l1PWz8qDUllTkoevUS3LJP6KBvFcG3eUK9BchO9ra4HFe/HqEuoKV338aMQtnohuaY8eSfase7Vj7kvOVYedJF2PNMp675p7Y4K8aRwJrOvoQ4yRK+f7AYIWl6srT2nflJX1EA9Fp+0vK5fezfU5ODsOTSTBGWblQJr1HGkCSf0iL2Vs6pLMDmL5dVOXcFuDIlf3JKnPnNL9MQ4Pf71B6TZPpJ0iNEauqhi7RjKzUB/oUjaQ8gjmhK5qkFrmWxOsZ9ZJA9/GSNYl3qSuvKTUdE0CK7BMH5syQ+qKT8r6vKFbA0zGw7bft0ODYd3VaT9Vp1UEKq8Y9hyzA0ZvENwwdY1ISXbMPWtw5NZrwPsY7VLqrweysan4eIL0klKVtcKuXKjtQ/FNihFzzw9A0Wt3PWowit+bppzqlfK2CV8f06vvVdaeWqT5ChkvKzPEei8lOQBQ571CcrnXwit594nuHWaT42rPFsl46fuQlOayToBoyOURRIfu+7hcBlt8UiQpOvdIiv80yeGRMlMYJX6UJldOkIy0HAXJic9TiM4JydM/TQr9VV7GVu22LjCRV3Ztpa5b2ceU2Wamzy/Y5ohqpkqdYtdt6r5e2ihFKyESE21SUdZyO5a1QmNjEats5fVI+WnRvHCLWU+YclYQrUehDrC/e9Q9DquIZXGt0pIy3CDFqALLlyFpFnjL3BM/xBvVLz5aD0p5E8VEtr22Tss/DWZI3qkdpGNSLsLyckDKB8jj3SLl92zZbeqLKIV7mzpskzxAq1xs+Lxj6h1SXwzsDZQ+d6nLjiKuLZIhliyNSblpRR1b1A2Pojjr2duBOY7PWA9U8qHoTvkVgfrNjg0ZbdWnchi81sBb5btjftv4eeq+nzDXrLdrvUKrgEWfci3ikTUUj1FXzMpF2ahDdYuvGsOiWX1hlZuN9TUu7PWpeUZjWXhUXkZP9a+R5Ez6y9Kh8rjyNkpbMjQr3S3gQ8D1zE5hbhFyqx8iJVZ1X+HqPmHgbVBXdlZ49JwEUp35BCGf+nxSWkKdMiLM4t1J8opkeSUIGySl55X/OdIsscJDhS0QQsnrgBcQrKYV6lGs97Wx3JWk/BeE8FRpGLVHyU4pbXkIol2CKqXXi7ifQxrcxDJngT8lJHU3CF6A0j17Eb9NYmGeJdKiMF7hsNp3jiDwLwFeSPKYNdB2I97XxvKnSN6aHVwKlQfmWQ1ODZAzBp/SOOcM359lymoA30uYWVHeb5v64BM/RYv1QMUPayAs3x8k9OVthEkKtUXPPgC8jaQsFWmp/eLjVuTtmLoRlRMxJhg0ld8l9OllwI2EJKd1HlTn75HCYUV1quMx0uy7FIhkVfI/gsku9C+O5WxkNiGMtWtIiVv77J2w8wisX2LuKRK1HqXoGRj8kneYdX52YvuvjO3eNDwXnrOR93IUiPc2TF0+rQF1L1y8V+QlXfR4xH01QZYdTGYvLQSac7rDlYOP7cFn/FQkDJLl/wn4ubfCewn0yymz0Tuk/rEpPMnhxP1W9RpLXwq84huB20kWeg94C/zxzwc53KHe5zZVZB0iS5P47q9Z2Xgu8H3XAf+Q5GVOgbPwiR+GHw5f2TRtG5ui1rmxzoGNjKAeJcqR2AS+G7jihwlGR8K6A/wY/MsPhjktpaO2TLtlN2y0qe/WUZae8xHpEHg18BV/n7BqZWQq+H349V8KOtdmPKzMq6jSy+ofm+a0KTvvCL4I+HtfBHwn6XUG+8Ad8KYfhl+OZW02QXiVXZJuxdy3n54/ouMG4EfXCMy/iuQdfwT+5Kfg50kBhmwlrl3S+xNzDdLYkGyKBunjqyPaq7+apHhj2z/2fwYxlF9hswTSbWqv5Ew4beZCVdq270d6vgr4qs8mOFgK/wfA2+C7Php8K+ljOdTiqU3hakxbm2N1u/itrFAPeBnwTZcBN1Pf4/8o/Me3wutJY9YHotZxtTZW9O0R/BFlxKzeHxHmTL//4kjE76ac7jUrKwc/wuHh6w+b033/Hvws8HOvA76dNClwD/z4W8MA2KJ77sNHEX4ph41oICiW638Frv4CgibaAR6D9/88/C+EWc0c7pwSsPj9fagPSAgO3el74ZvuI61g6AFvge8NH3499UxazdIiHFb5YH7b6zIY/+YtBE0gjXpHULi/SnAKcziOCsNY91f8PGFKXRHDDtz1S/AThJnsEk7fhzCbPi5BH/gIcO1b4YtfRfB6t4ARHPww/BAhwFmWB/IAcGYXvut+gudJwM3vBnn7MLPpXku7pSvHhya4h6BEfvxegvelnOz7wuKhd5CfHhAumDU0XfkkJfnyD8L61SRv+RH4yY8GIysD53F5eRfkxoK9JxgQ+H7NY3CbUjfRA7nrrUHeHnPP+XFdwmczlp5Wlb8HOPNJ+Kazs3RekJzumBB1cRcpT7YFvC1EWmcpC2FTnU1gGXqWYGGvVk7wPHB/EIIHaX97xdh9dv3ej6jugeTtAJyD/TeH69vkhbppUHbl1QT4cwjhtMLyLeDDcAeH43tX6BOirg9M4XNsXvBcMDSPMmtsPHi+dKVVUf/dwBfLqowD0tcSlL2NJhcJ/Yj7fqjvBNyFjz0UBr6yRjnItdGXbVKEu4T21Tp3F3h3yuBpCEJdIUzcZ4meEkwj7oeBZ0vWd4H7g7JXBsXWb9O4Jcjdyxmns4RM4W0jUgh2Fn6XxI5c23z9bW3Old8m8NfDBXsbsEKRypdXrBypn8fD7Qq+7CqkGc2YT+1lyh0Vb+65KiVqE/XkX9dTsuqHpWUqAjRJtBv+7MDrAvPiVfl1+yNOUi1LCD3uKr2mtm+ngXcUWeoCJ6E+0TJOCueo7e/0vGJ0rXJwgjXJ/C2KJqWmquV5k3qUuAjw9cjBugRS3qYHbIWIyyv7ZeDfhPqE+JKhdRvwKkSqSLOcm/NN9rUppFx55edrW/SGwOlEzqLxevwDSEm0fv2+h0UrpB7UJ9EGVO/LkqXsGrLPC31idL1JbVJKecnDQFO4ibtX8V1h7kZ9bqwrr9vCTw9Vn9u84iAdoL4IKNFRTaBL6ZoZ9WWFuRha4rCuT2KtzpciaYNS2wfCrcmRaSi4jAUFHn+fiMfduHBLxohMH5A6I86SLEoIIZ+fsWhrC50Hx/e25GoADqnWJg8an1gc9O0XMaifDyUXDZqoqN4CHfvcT1DNA10iAZvvZzP+bQPrzW8L6aKIu8hrtQhjjTATMwm4+5dA7/x8Cr+NDp+fhShbm6TVHj2W+957A3Ks1xVGKrJlcbJWMoJV+mCV5OCsJ7u7bCi174KkFyBq+w13cbjYnGK/8F1yVwlBzIxvszxQyDYlzoZrCYQhbt7O6OrhzVzT4DfETVmu51PLGWqJQlzmsUhDW4LK87BT8FvNumeRg6OSLWlELSlZMJ7ciorqu/KaY2DvePRulT3TwF4FrugWVS4izVGlEaWBe93k/DB4vRxPMxUpp3vYvyZoVbo9SIpHTNmuL5sVLEIofZJ9ZG9EQVym9ZvxuDX4Yy77MMamiS+5e7IxwMyOqmPJKxIHugZAzLW1TaAtAiZEG2/XEPaXN4Fm8YLhuyzvBD61lxz+ZYGWdVWbKnpUSwYWgbetjj5x45c8zRjqd+nzw6awBNUcjUvgdhnnh8GdlaNMRdMj/DVBa053DGlxojtLwFe+aKHsEVMJU1J6Y9I9t3iUcLAKf5RbiyFfl4mFLvnDtjJTTAGt6enVQ/xFWPlGsAufp8vftKP2TCFtzQXopR2rywLpmSqyiikVRst7FbiHMaRlmatUkUZ/AWFlF1kZA6taF90PtOzSfay14W+K6ib6dwm1nWvLjOoEA5iJ5i/Y6gWlWKrjiybp4mrDc4skdgwpvxRxz7P06rBQ5Rc1mXUJsFFfn1gStC7KoS3lUOXSNav6/2/v/IMku6r7/unu7dnWzPbusMugZSWhjZAQFlAGIVmW7ZQCBQU4GBJCogj/BidgW7Gxg+UyiZ0Qm4AMNknwL3AqhBRC2HHAFkQgR5hyQYmfRqbABFmy0NZqlZWXHWa3d0Y909s9+ePe773n3X7v9ZuZfr2pypyqnu5577577j333PPrnnuf38kgJtxJ36rEPy/SQTzaBTBfXfBst22Z2CbERcyFKHTrErwybMMkl8KZI+7iqhlakH09VIuZLCJklLgNNi9kF253AnkGkL0W5rR2MXSy5eqC0LfVslLThYkLaR2IpwAZtVQWfC4KmFexAFNo648e3LuzBZ0tg1wef8JT4wC0/JbfaYVTUpoolMgpoiSYoiabNB4tyJ494V2Lqspuu5Mks5hmt7I2xw9zqwOCpZsEXIfnpp+6lAdDiDsAzba2WfF6R3+0BbhZrc9l89rey+PzDG67xayZPRKldshx4y6IpRuCwjZtycd6yjYBFP1fxQWxkNnVo5PNDkVPoO6FnRbEvqshvXoWVHLB7hUGt39+CjiTdcHMtRBfSxNjZ8L5DjK85feQ9pLmlMGOwy4mnMRGPGGyThhLV1OObns2LraytTKH4p6avAEJtr5QvJNyVWArayja7ZyCUsYuSEwXcBSxR/6dqWdFtZDw0n5rQG/nGrCqxZ0ZDL/AsTrKxz2NdKK0vmDeJas8VVd1izyOstia6t5cg4a2iHnry3q92+nrJLqr3g5Es9PTwO6x3wqOqlZYBvrm05pxmuCQqGH8ovUs9F3gqRaZBdSZeZRqhA5FWJ8cS58UJ86DvHsDyE2JumAx3SFk30LpZ0Ydu9EsGMMy+pw+ca+K9q0KRe0LuekHyZxWs7A3v3wtA9QlWj4+1lc1xrZTy6Gx1yNa9LhNEH+nMdsi0CTqqrBOSulUf4VVnqdl22t1WOEEhHh2bCcbWasd5NEJOuVu+TRAsi6sn2jR/OBscuJbmPxoEXt+8iaxaY1JHj3rtHRL5692hdEhHuXmCTNp4pcxtr1fBGp4l4hTbt9OV9GrhjwybVwgCsEtwHZd3Q44gXeQeEziDjpelUHDuGqngOKL7bhZqAh2KgykWxfA0VqnjHV3NsHS8c6rS20PscX9hLiqPYdlK7AVeoR2ic+7hLeH5HlV0wSFNroQY3reuKjDmEjrHOLtOh075tcTJsmQMqj6zBB/KmvdqTkGSsML4fi6g8RT85P94LIkqizODJP/837bxZQ2/p1QmoArhLQpMaldbM1rU3o/r5157ZKyp4PLXFDe5GC8P2Urs62cshZ/WR3B0pPw6eQzYtGkzOtXXjvy0DLP2AHTcveKhFYavijqW9kYhIW0tvmMYngh5TdbT9GiZApFZYU2FPBxBYXS7JkfVUIsKY8X9VcQnCgtZtnXOxXgzOtvEb+V1RVCKCakIw3bIqts8+hdNp/ycKe0CWOuMxwTnGX0qxq2KpJLRV5UXeGFidkLAZQ2tUIIL+jotFZSLL2WV64I0sFYBGd1bPjvVozpKuyXV3cqAIru590bEywt82nnx5omxZaK8Ite9lomtDGPE/bz48+mz5Xhn9QOC+GwHWn/FaCbTSKxUOT1TPIo8iaeQpphBd0Lvyq0rNLf9Lo9WjPjYajvA3jSXmiu57d5K2Bx5kHYBQhRCnYymzEn4qzC73llFV6Ys8xVEMzOw1FlfPJAtFiCeLaLfygVlFXxlZURHS3+vFewX7A83TDICuz0CJxZtLiQasT0WnpvErRk8urU40HMqtnpqm5RG1TvPESOlJWbc9LX0Hzn1Vl03eLKbZve16WNAv3xI/7SNhRB0f28tg0hq1m8ZsgrV9SWNI5a1J703gjjaooBB+HQq4kwCW96z257DuV7/rNC3KyQPFtEtypttLnWY9amFI2U/MGtCfftCgotmQQwubJlvDOpLeknfdYabwxx1r3XAFvZhWjrL+OBvA1d65C79e6CZC+EVEGzJZEmcGRc6Oa5S5NcsLJ7mu+bI2hI+/uDZyyOdLNAmYtT5JqSlAUzyRXsWiW8Hqf1WHy2yNXOg7xQSB5uLWyEN9NCeBWD6F4myGx9ReWK3PCghfWqgRBjyqZy5QmcIlfX/s6bEOm1gKcAdx5+QRGOonspT/Qh7nFvAQuwORhPly5y27faPls+WPi64NO2pNiq8m5ZSKXourcnsgtnrSj7izblVOW5vPLqTxCuxrqnOZnGefjK+CzvWb/R8/8dSxeM9tWqYhtYy0r0tIOpZquqqW2sZ0xbSAr2s0yYp0GLGGOSRUpyPWhAWdpa0CqpexJMYsgMzWQGGCSpJi2jbZklNtEqExLtue5HD6OMvmWTsiqNWsKrsz6S3ULbVeRliko8NQgNIGwDXp4CnqptCNt/pfBG417VdizPKs+0cxDYrMUq47cdQdXCezcDMlsPq2TpVDE+JvW9D7NJhvYwMU83tGUBx33eza2aK7uVQUjLNvGpS+aYOa2ib0XIbTX2prrnIXvM0jqFJ15tB08eKLaZOfBG6VrDcdw70calbdYs6+BeMtWe3QJvH6IZ0ia8gnurfd3RmIwIZxAUTf5pWkLeqHagXYDrwOlqgmWrkNJmAZjTQpYm/UZ91l4KixB3pHnmn8Z8qlJPC8YG+YJZuqGxXtgEi3dYPWl6J4QbAEPFeLSC3yqvcytB/DIIz0nzyOI8mH/uRBU8VS2FoOjkXutiKwrlaUDhIhrEN4Q0CXnKszrwJtCpH7/X0nsVYNKY5NU10A2tGs7Dk+azDkddEOrXIPtUyapWZmF9OZAbXpKSNavhs1C0mYVrEbqipTsNaEPuFtsLkqcr3gvHynfiZ1paaBJ+wOXSmHMAys6mmNbECIyuQ2fU9972J8FW4r8DiELHhHfEG9sRKFuCwzhXb7//f+Tej1anF6Y+dSHG0tv5ZXYKpVZw+urmy4szN6riqlJmAVwcX/8onLdN3FtdgNvU4KrfrVxZtGUoc+9lT3QgG0D2kqlq1lMZvkn078OYdrlg5+mGgLSN6frY6qzcjj7EeKrXAuH0s5pAdZ+B7EsKff5kXQe4j4GVsE3gbPUY8k7o0wL3dspVYix9dbo7AYtghI+lD/0PLwiKjrPcSky76nMZ06sFLO9szKuORU9/FD8rSoquAbSQZi1NmM48n5TSNcT3XVuAk/NdttqGrXi7Q3y/Z5i9UM2CT3u/PJa3nQs74RftTFqwAU6/mnt2i3Vt10qYhxho83uinziXrXMSQ20Hb+bwE3vgwfr0widFEHDL6tAB9j1zCleNsBdv6arvTWDZva3WLrQKti1YcyCkTdlB6MOJx6t7GNuFEDaaI745oo87aa5maHmUCzrCUmsoJ+JR2nXizmRJybjrT+cNMZWNkxkpN5iwkNYBvhvge8iu4HTgUtzrqkPKBVHCF20ckOU8zLlnQ6daVHgOwM3EAHsHWHTN+RTZIyFsXVr0tteEI8Vpn9X/3qPkFoAjxCOYenDR5XD1MWcE9snGd9P61RaollcrA2MJeAHAjUSOHAJXwrX3utfPrxhcotkkAaT61T5lhdl2d4Hr8J3v4oTuHLAIL8a9hv1xxse4TLtPKqs8zXngucD134cLb5gUohcCf0I87RLG6Z0mvpOUs2DpJbpcBtwEbgDk1/YcC1zmy6X2h6XrJMgro2m1hOsjR4jx9AFwGK56LBrAlRaFPNh5kILaP8JFDp8LbsJ5gaec/CuAB3COTwpF8z2vXF4ZhRWeDrxYVpaI2XG4lwj7scbqSjc5pG2qYnEuAS+HsFgrqHMhrVToXjIPt84D1xIlYQe4Cf79x+FduIQGnbushcdUEARN6suY3bRBsZ3CMWAHR6xrgFv/DvAGX9APBFfAP74Rlj/r3ldv35cJzlKyBto8caC0z0B590NzzWcHBdn+SuBJv46bbbp4EPgn8O53uL73iZvl7EtUh6a/ELLsMkelrhNP0ZMg7Pu6rgV++EU4jSeh1wFugLf8IRxYdoLvAPEUQrVBW0nzNm8MfBcO4SbRGaLyUBevBX7geZ4AgjZwFbzw78Nt/xO+QnxD7irZjWu2L23chBadU4EhT1J0WgRuvhJ4o/9HWm0Jrv9HcPv/gE+bvg2S5y3/dYhKpZfckydp290BXgY8/xbimHt3p/Fj8Pb/Ch8hricrsUL7Vix/Kc3KZ9oFGmgcZMT7Q/NYxSm0V32fx20lx3XwlrvgPbjx6hocGjed9T4gvvThMNFWWMd5hxJyG/6a+O25wJsOAkeJobRF4HL4pa+5IThu6LVhyKNEiw1Tv3VMbZ9Fe9uuS4FfBMdvImwLOAQ/7vEe92Q55W8vmH7aPoumigSmm/vEh3aZ4GbguT9C7l7guoRuY3Nzs/ju6xubvBx4EY5KK4Tj5vgKbgacwc3+Q8Qj6cDNbu2oahMO7wBTj5hrL46ia6bMdTiTVhNgSJQSJz3+Y8RR1kczWxS30n8NR1xJ3VXiooWua9Cvw0mgRRzHqi+ncCb+530dB00fhafn69NAymqx6t7i0ixdxXHidcANOMmmQKo4/WHgS77soum/8jqlZXpkt/KKOw95eq/7Mhumb03gauAq3AS0Kx0DHPc/6L8P+7qlOTSLBXIVJRGlbcwreEK9XVP+CtyYa/wkWZZ93x8hO6tFd81w5VQPyZqGp4kaYYM4e8XXCx73lZ6uK6b+NY/7QbKSxCaLC6f1l+UfHyZKfo2HNPSK/36Ox7+A4zfhXvf0/gaO/7U1vONpIq0n/OLnRUO/FbISR/yvNl2Fk356Ru3r4ObY18nmTUuDQdwpap9rmd+rhibS0gu48Rjhxvpqj7vp+zvv8awAX/b9PGJwHyRqNNU3b64NiNYX5tu6srLErsXRHeDfbTbUjac0Gps3s334LfiLzc3N6/LulQvddzc2ebX/LfNVjCSGswNgTRmpYnBEmDf3NRnEpPM4xtYE1vOLOMJbf7KNGwT7vASr8NlrEjYyoTXZ7QBYM0yCcYFMWCGYk5jydqFDDKE61V4JQ6vmJWj1nFmko4VTYjrgR6DJL8aX8JAJIZw2t8pkfGQElMxiCQH9r753De3sRLMuQ7qcn5oVutYla+b5N3DE1BiyQlTP9BhXGGqH+txM+mvjUyndMHVAdiL2kmtye0bmGWv2iKaWJqJXmlozwgkAyx/qv8kFzo292bIYmmg+rZNVLqKN0vxkygos39qx1HXF0K2rYn9LSTZNPT2cIbLkP9pJYg0OW2efqOxaRAPAzmXNGSmvEVlZkfbDgh1/GTMpWKGLKf+2rNB9dfrcFuB3S4Tu5ANvbAOlUSEcgjJmwUk7y8dOhbKIIo0LkciHGWdMCT8rOBZ9GQ2EGF3C2+KyuFumDjvh0+s2YKeFDTFxmzhJNUkkRDVZrQC1wSbVr76QlFUdECejBKKCnsJvBUsabFzwNNFz6iemfTagaeMTat8akcFTOo3Ip5m14jRBRbOOuWbrEn00kaxCtMFSCRvF/aw/L3pZpQRRaVoL01p8EgQS8rYtaofwWSEsPOJj2y+rjIbEswTESwI7jtZAWSAK+aH5PSKm7Yx8GywPy4sTXhtDUT+tAFf754jxPjuP1SeLs0kUkqpDO+is0WM9JI3HOlEBrBBPLbT8ZeeqVUBNsrQVrcUHkDWKNO+swFUbTRZU8NQ0zgYuWEyXEdGl0f+aXB2chjtFNPc1kJrwlnHUKetuSGOLIcRgYtol4GKyAldtOEnU/KmlZLWgDdyeJTK5yujeKo5pRzjX55DHn1rGK0R3V+2W8oEovKwlp3ZZS9jSAHN9DcfYl5FdydakeBznYlshLNdeVqudxDbndAU3XkeIwUhrTaivRzzdbdhBbT3u+y4lDFkhY91I4Veb1NdFQlbCmAV/mGhpqx9qV9/jt21VO0bEtBZdl0DReGtSqt+ia4dsSOgA2bGToD1OtNQgG6QXf/bIejfy3iSwRXeNh+rpEAPlVvHLRT+D43m50QKrbGXkYOqxBoK8mRXcYoRorlDVYeKcFX17nq5nGF8Ns0rvpLm25vsiwyoNxyjkYQ2rRaIw32v62CMeOrSXbBhH42nPHFU/rQGmMdLYib4KZSwwvuBQI5QL3XtwE/wniat7YpZ7gJ+GR9bgqCblyB0OsoLrxylin/CPLRMXAxaBVhuGA0c//77HwKdPewXwqzghIKYd4eI8/ww+d841S3NTYys5M8TNE3A8Jnkv/Jr3S7ixXSSGTW8AFn4bt5wtwS139j/DX98Rn7XGEL7oInHxQvNRYSotZvWBE0Td0fXt/W7g8BuAn/CVr5gK7oW/fKtLobrMX37Q37qYqLtWTF+7vtxj/nMl4yFIa3hd/zzgLbhYlxXKDwP/FO5ey8oF6YbUi+wQjW6Bxr1H9H41F5eBV+0Fbjd0lwA9Bfw83P01V98hsvpf/KNrmnN9siFAiPKw58dvw+N+DnD0FtwahoimCf8+uPtLbnwkTzoGn+TsCnG8ZUAPyS5XiG4ynldxLP4PLgdeghtIa91+Hv74fviaLyd+SZ0sK8MkZx7y97q+DRv++at8+Ud8udcACy8zxBKRTsJf/yl8xtDaOhNyRGXEax7KaV3x1Vzhu3UMx4OCVeA7gWc8D7d6DlmBezd8Yj0rNxRZ0RiIxotkHRDZdNI7EBNTVnH2y/OAJ92CS1dKYFL2w3ahVOie/jh88ePw0peQfRvkA/BnPw6/hjd6RmQSd61hCFkDVQypqhhE5rEKcR540V3wtsuAXyHO8lMwvAW+Hzd41ujJA3npFlLPPL0Gjknu+mlofAbHiD0cZ90L/+YOuJtooKnNqXem+m3frKDz3R9rwxJw6+/BzVfh84g8fBX++K3wVrL5k1Y2WdDcsWUENpxlvbku8ML74Z3vB/41MR2iD/wL+IG1KOStsak6bF9TKLuntr5/HT78Rmh9DCcZNMN/EW7+mls/TT1hW3feOKRl89oFTon92zvhe6/0uFXBn8GtX3JpihLcaThQYPs3qb8WloDHjsFPPYiztGVFnoJ33g8fIAqXFKelv22THXPLp5DliwWccL79qzhlJ++zDX/5py6Z5GQO7jLj0M5JG+WzkRs5m1cBv38/HLrGFAKe+Aj8GG4dT05lGrGzPGghdXbz2jzErRf/hzvh6W/IPn/Bwgs94I+Al34Jl0kgc+6P4HdxxEg7NS1o47Qr7wdu8xdXgS+7dK0HiOkh0wYx8PuA154kWtqngT9wuarHasAtvD3gw8DN9+HymAb+4mfgDpy1NSiqZJs49buHS47gXhzdu7h+PwS/fwy+yvTonjeJHwI+B3yvJIwPKXz0ftcuXd4JniIY4ATr957CWV3eVN68w/HiqRzcVmHtxEPt4xJifuoxnAGj1fcvw//CGRiT8BTdm9S2nkPD6UfhkHUJTjlh/zfUsxuxZb7vBn54hehRH4P34pTsMvXNtT7wB8Cbl8fLXBBLV24Rp3Fqo4kb/S87zTdIyuZZkFCu8W0ZCxr7jXPmtTne/9WCso2b52n5STjK2i45N3bxVDZZ297Ow2PblWdV51mHge4jYlxkDVjOnqld1ueia2X/W7c3xMZMjPgMWcu8qgBIaZDXf/0e4sNMdpFl3bGddiSn7S1rg8WbBynuvnCPCPGAU0Q5ZMfLClyLL69ue61IcPfBddKaocdj2KQIj4UibyOvDfZbofMQIx8CyzE3Nq2nqkdT1F9bl9brQuzdr3+sEte5UtwplPUvr32SHX08vyWVXjBLNywoHiKuqnaAa2D+s5MFSQpbtQRawNwBXLBGQceF8fWbvLrzJrgFey+vTNOjZZG4gtsBDkLzzHj5IjxpGydNfoufA2RTli4ufztrFZqXKaUM7gWiteUDaHpVXF7dVVzPVGC2cn6DH18JHh936DAOk5R5EX/mtUeu6yJkd/s04Sn7oF2y/bssxJB3P68tbeFeImaNDMufKevbpLmW9qOFF3wi2hyZuSZ8ef3OU5xF+PLuNTFvrVDBrl/zMU2q2ifbjbx2ptfnw5/ZQGm4S4vXADSaTgB0yR0MC2XaPP2kYK+Hya/Un4LyaRuKrIL0Wp41kFc+ZAm0Y18qPZfcr4o31K+sD5N7uJGUS5k9j6559/Ks8UIB5h/MO29DdRbVtx1rYR7i6pTPTtEiYVk7y+ibtjfPUgVPXxuwlbdRUk+KJ08AlZUXtCC7kr4OLGVTn8vmWh4+cr7zIAi+JP0zpXneHK6iyIvaO3ZTpu0gu/ekjJeK5EiKLxXeur4CuQc95PW16qcMJp69MA/wZH9BPsiz81/OmNex9N4ksGVGEHfnmNSYUU75SVZWUVkLdkUfvJzvk82JbGW1b159k+7ntSmFLsQlevl/I/ezaS7vBEd6X98jiIccKA+zn28MlFlxVdtklYdWpOkSl54HxYtIefgmeUBl/wfe0sLtkHDwQBlfpW2rYt2m5ZuQtWa8om+XPJP3PalcClroaminm2J3vbiApblRBlW8vbQ9+t3BI+gQPMt+Uiav3kmypmhuWjgEMS3Wwyb1xXRLLd2hEAu7zgBYyIadBNsVtKUNWyBKf0/hFOd2caSQauC28GvnjQ9q2lhyWV1V25U3+VqqRDlnTWC13FKaBgS6t8gmrney+07st4XttslaTcG7GsTPyjbrLYJSvpFrb/pf5j5PYxyGeCW/Qsyx8wsLmn7T4vM8GAEbyrETdLOKti78silCGoJx56pauEVtK7OC9VwTcj3pC2LpZtzcjZGrbQW4L+aAF3Wm7FoVCGkgSt4WNKcveIoEZMf+UIxzNadgSb1VwKa1Sc6GBZ0knjCimgauYgHngereHPhXJeWo5Sru6nYh1NnDJXt6WCQ/bLVjPHmgsIJgbXvZIpMUr+2PdGtYVZIQ6EcWqIPewq3c6hDXbQGdfOMqD6oYGUU8OcRY82bnWzOn7KS6twOtnEZduB1pQiyqKON4WBhinRqEPL8OLqamUTkaT1DaDkxyUe21EF5YIHval6lrGpCHfwTR1zZZ/VX7vROrpAk0FESVl3Eo6+bWAZlYm/o+AJbGTt6rDdrglGuH2OEONLeRM1VVCI1B3m6/miGEdeyFLaDfaugwhRHEOIefpKmS3Yr3WBWCZzUjOkOF7IUADZ8/1AYWYlwxZZw0GVvX8jYOqFxe0j627rk54DyMRnCdOxhIQfai5PeyTRP2mfR+uv2eeeIJX37UtTku7U9e0nZ63eLJa5vouqFGaDYsAL3stvwyXHlty/ud4g7QTSpYyb5Eo8omhK3ExNTvAYb/7bY3Yr+nHWtTuwNdLZF9eMOOeR2xvkxXZXL6LAbr8NQVZwT/YkqlCbbdd59sIsW08Wc8O8gc3rNClt/qwC8LP2XeOmO6E/N0W+An4Pnodgzi/aKGpde3U24IjhibG1EAPR4TxScNRBnRyp4R/dsQ+6ttkYvAsWJhPul3Ffxavwr+laRQP8r+reDaTpkg/cysSCd+1TGuApbuQ8iavasxnFXHREjznjOH4TSBLgyX6xV4IbzQ8xd6hHWMugTeGLTJ+vT+uw5FJ5AyCzHdzGru2M9aoMiDuyDhhbHtlkNcNsGJ+t+XlVnokPbrAV+Fv6T+CaA2hO1XhhjaJ1JnG5oQY3vKEh/MYOLhcUjgSPAuZo9brQvvEM9bovmITHJy3XQPIEnjpYIWXOrEnYkba/tzZzaebxhziJsjBtPb+VgGLUyaoGIcB+rnN0EHxgb2gmUvZNqiV4X6003q0gJjIAYQPB4PxtluXHcSqN55iMHELnAJcEN+ov60YQBZwbMGnJ4N3TMZDIbI08wUmYhffqVfPk+jHXVByEWWS9EEFuq19gQtcGaX1g4GwGL9sXTw0RQpGQ10waaUOnCHbB2dzjOYnYxpQeGC8cyzF0JbOmRjulXeSrlDyDRclo5f2CmKx04LMvXuJZ70peyNGUCILcrlmwcumd1ilj30hBawmj3JrQ7IhHWE15u/dS/cZkCbUpSovxrbV6fg3QvxrRB9f6E/G8s+kzolK5vZWbphMcvEkOr2psHsu8qxdOvi9VJjUXzvsJ+PgacZMEKwqtKclb31a18RJbgdYgYvhOrqux3kENPVQpr3wfSzLghWx4i4K2wI9PLTBGsD5Uf7Rs1i8oMXfF0i8/vtsHVDCKUqnLORvTcLaNgX7HXj9bq9m5AytmE+zKbfIZY+KyJPQpUN7u+JtvNGvF8nDG0jNPnX67d6hCqkjG2YC5+P56BOGyxzN8GFM3SxC9yUSV2tBTJx9IG52K7fypZ+W4eYD+3PnugWPTRlmFNDFNrBNWoWLn4mpCSYocKhTdwN4b3KWR1J0BdOZW606zcwBEVCcLSDTxmUhheCsh35op2N2XAfJjYid0eW10acE3XDCmRP5u8Dj8VQX51KpwWZBPk0faouCHNeB77o4n73s26DQLQFohRemO7GiEn4xw5iPT0bwRemlnZf+lXFWfQ7M621jrKaeyTB1CHj1UrwDuoPZ1n8s9wcUTqHsucr7Ak5ugpyFz08jcaOhRcEC/VMfNtmuXqL+kdbkQH6Joe3RliFeK7eAGf+PeQuzQwU3vASLx2KupgypOppY8aGO0q0bqvHy/dsylQfnljf/phvmUbCrQW1dvV+b3c8goGzRlbZ5GxQ2Gq9VSHE8U04cVYWfvAwErggC2k+RdG9Ipl9wFlX43I5E05jcoSGW1XrNXAdk69wG/ACGSacKSisoWMtr63fzQ7pO5cRrFuGwMH46jJbdpogZbcAITmfdWA0O9IH785vRbWTfzveTdV2h1AeZI6VpDvdXWFl+MOi7ZT4fcvKQp7NHDNJURR0hdvABU0ZCwtpm4/FOF9zhnHnRWCPx2aCubMI7oe98AKfTTALARD2wIsRB4R4ct0wgnjWRBvHlde6l4fUOe4yslYguzljOLvQQgfiyx9HQDu+/61u76YJcau9sfSrRPSmRh+7QWE+Hqk8M9D26xmsIQj6MDtkVEgZCwev6LsG3zqsmBsI4YUlYo6w3yAwqzQWwBGgRybANIuYbhBuiiX3gRPZk/RrhT7xlQV+U8o91C945vCLhSZVi2FcQKyb7iOIbz1cdRcaF+PeYlgzBL4W829hoKchGJ9Yh4vshf7YWeq1QdgQI89ubiZJI4BRdgnU1e+JQrcD2bNFPVGmuUOniGEyxLCvjaV+RpCnFV6z6gXf5gxylBVKpUsUui22fdrVtsCcHxzeGEL9ebpB2cwRXy2/mD1/pnawgbk+bD4+mx1pmcXTFeIbXWsCa+xIr1+UHD4i+V8n37VwbyUJYRW/+7RH/VZ2SEnOWUiri/SlQjecMLeGc/HnfDPqzluy0AIa+6F1NnPYTt3gD7dy6raLO+n4DDT2AefqxR08vCXia5KS3MnaYZVI6APANdkMtrrAe/TuzwGcf/tMuP5SaD1aM3K8ca3jFf2usMZeGKzX79kMIUq4bvyui+ZpiuIixDUMr2VmlUEwl15oZ/Zo1AZKiio7wnTaMPHAmxjX3Afds24UTs5mIEbgXj/LuZg9cDpqwDoHpIn3KOXi+vja2ZoFrnAPIO5+k9m9MhtLdwMckU3GBvfCp6kXvxyZY8DT7U6M++DTj7p7dYc3euAIoOMV1+CRGXg3oV8t4tGSMLOteC2gIVdCpw/NaCvuEDghvMaw6DGbc05Owlha0AU7T7eFe/s4V/gLfjcaD0ctmXdk41aPMrTP262gB8Gd40gHGkBrDUZuXPaSPV5xmtDC4fgecARoNGE4ggHsn4fu2vRTt2zfOx4th4nhBS8El4in7xW1fRKki9OWuebxw30Dcf+/D+wdJUY88urLa4fFNYmJO7guvwAcAbRw+6DTfcooqmsy7Md1m6uIh+evxl3Y5qhXMO2wY7ddmAeeCXClv6BgassZ/EVjPg3cgd+uJObo9oG1eAZNHs3tfJ8kFPPkhK53cMkyGX5biUdZ903ZnQjf9HhTcGN6CcwugMwEobsE/AR4wbcntvSV8PL3wsdwssCkcgawjGnjYXnZKHkDchC4DeBXwU3FR52kvRx+Fvg6cJziQ1iE18YBbeqP2ms3XcnC7LoucviXgSfvh82zrlAb+CF49Xvh47gD1/SsfV7X7HZlGyZMmdXea+GE3u0ALyTmzQyAm+DWu9xPCf00ztlJ6rVtsGM0JDseavdVwO8BvB7HiGc9ksvgTQfgkTPwcNJfIx8y1qjaoRj1urme0gFcBOcHgcbbcQygipfgpd8BL/7f3vFJ+qO9I3nbwyfRWuH6DvAi4AfegEuRVOEuPO0H4fV3wIcJL6QObZZsVljE8n26QJw3P3wyEE/H8/szk5uXw6s+A8sejx1D6+1Z3DD+NhKLN/UYLgZ+BuAm4kJWHzgAPwo8iDtONZ3jqQAcMs5j9t1qefN0r0f7956Nk/wy7JYcC34ex2+WlltZY9RzRbR4NvCmS4mGpYG6rOvG5uZm8d1XNjb5PuAXjgDngW/B2RE8ArwdTtzpBN8VREKs4ZjoENmB39+E06OoNdfwwXPixNTxBn3gkn3Ae4DX7Me9GXMFNpcd7o8BvwF/e8y/IX0fMcFzAzgDTwzgon04ee21NhvEmJVm6Cm3ONY4QJQglwI/h+O4/V7orrp6OQG8D/hvMFyDVhuGnvNbe2G47pntAE5rrRADVn3XhcZewqQ+O4oCTJNo4UbcDLzJPzfAzfZHgLuAD8LZbznl0NhHOOCcDm4GCUbEhUDNSmlJ1XuWbLzmBb7fNyaDuoyTeHf6dhz2908TTzef92X7Bm/P06Ht65CUsdpC5tRh4GXAS3CdU/k+Tsu+D7gPJ5CNhN141POA3ACrxbVnW9pIWQgbONN2Ly6eMQ+8BrjF45Zvu+77+GXgI75/VxI1Xw9OP+6KH1Viu3+R6RNrcNEBMguwy0T2a+HYaR14zhHgR3wfrJVyGvgsnL3XPXuQqCjmfdOXDAkBWk34tpcYGlYJm65/VmToAdfvA15FFHoaxybwEHz7I/Ao8d2NEv4r2WEI7HaSuBSh7DspNn3v9f0+ADztO4hjDmFTCF+Bb98JXyK+LcYu/M0n9NQ0a5rmdw1e0WIRx/brwHO+A8fvB4A3bDbUl4sajc0cOVwZvg5/sbm5eV3evXKh+8HGJrcAjWt8s1fcZ3PkfqrHeWoEooSVupOKtSOxQfSdNFKrOCo/ZT+OROd94XOwseHurxFSyMLJTLJOxGUyScSlZhU+aHTvyoRdZxrNJWDPfnfhiY04siu+vScNnhHR99Pqo/wm5VxC1EJ6pmnuWw3V9d1W+yByuvqtOlTG7uYRSNi0TTm12fqMNidWfe8QhbFZyQ9HP1n6rRG2aGdcCNGTpI/Cb31jmSOKZ1o6KnVtFTdTjNIK/qdmldpm+U7tsDSwtJKQg6ybKRNWfCZen/d1y9VZNrituyMFY2kiJWCD46u48Z43z6lN4lvRPeUZ8YAyHaxZKZ5RXERl15JyOkkPolS0Zusycd6oT3auqX5JvbM4hZa83w9MvarLexPBKOgk5c8STU5rLGgsNbZ2nLtE3s9zL2w9e4lC/qei0O00GptH2T48UCJ0y1PG2kDjIHHmnMPFVzvwpPPwpHO+ij3uOud9ufPmY+/p/h5Tbk9yXaPewVm4WrnyaQPyIxdxx01u+pG1zBJ614TzI9gzD5ueaxtzWSHawgeUiPVc1IxtOb8Rha1WtcFZBRI2Yj5ZRva0Jk0SMTtkfVob42iberrmes88p+CiXk9urVj7agdNdivwm0ShpjiKnQxWSKhvMhnE+HpGx/13TX1i4FVTTtaLje2MzDVr9WrSSDBaJWgnmvVT28lHIAHTN9ctXSWk01iMhELP92ctaZ/qtgJvydBvRJzE1sSUALNGgcbpyaYNonfqx2vcpQxFH2vV65qU20JSj8rL3BXfiEetIhXeITHUIwPHCnjLX1JyGnOJDTsvbfkFomITH1vl2Sa7K9LOWZXtE03wdPwtbexckEEkBSihncAFSRmLIOrJV19x/2567mvIEu3E8k+M4nlte87HDQ6NOTi/ZiaVlxRD3IE6e+yrUL813tTGHLT9M+c2sppRrrOIe8777mtrxvLciEReI1rJg+S5jlHTjTnobrj6NfgSeKllo7rF1H2ygS0xTpOsxepJlREWapOsVbnumpgKlK6SCWGMHYfZMd+2Xiv453DDaoX5kKzwloBaMf1eM/X3TNl1slastYpEd1mvHVOXrD0bFJUwEI1XTb16XjS3VqvosWaunSHrVUEUUn2ioBJNrEUqC1FC0F7D3LPttkpVYyves22UQLXWrtojwZCGhkQDaxFbhWSFovhNz6guCVCr/KxC0P/Kme6Y+jSe1ptJvS2IRsNeU3ZE3IRiaSCaYa5bGtq2zxHHTYZC2jYJaUwd4kFrZCTtvnBvA34YOLEMlyi64S1d9sG3l+HP8Z0feSvL97qPI6haPW90xtxGPBAcYmihh2Owg17YDdbghjV42jzOrJVV3XcDdh/wWbLL2V3iQDZxAS9dh6ipxZw9opaUm9XDxer+Li6+ua9JtMR9uYdx8b0Vsq+ptS6f6KDvRWKwSW7xaf+/2jDCBcmXgFcD32nqFsM8CNyLC8pdTKT1ir9vD8F+CBefHhFduFNEC7TrcUuY9/zzNwHX46x5MbUUzceBPyEyapds+AGcO3qV/32K6I6v+LKi2XFiGKHn63oZLoXgMuLEF02/iqP7SdOHDtFaEtj/1UaN9ypxPNS3Pm4snoNbQb2G7KqN+vQe/63YZ8s/J+Gv9nwJuJzoKUi4SVioX3O4WPXQ0+tG3wYJAIXHesAHYfhNaD2ZrBCRELTelWKysmi1JgDhqExZmRvrMDePS9W5mujByThYBj4Hwy+4WHFwQiXoNd8W/TWtLyimbxXvqnle1voQt3ioCKZ4FV/mOE7OaH5i6hMP23CL+paualsFpHnQwY3TNczuDEsmxXSPNja5GvgE0HgGwdX/28fgu+H2b7q2Kxwkg2GF7KqxQizqt/jcKhcpUdG7A/wSMPc14FlP8bj9rL5txH95RxwL63nYcN0Zc11yYSHWMnavRRynVwI3/zrwCz7UsLERFnT+9kb4BWKoyxonMhIUdtQ18aBVxvJSZVyJLkeB9xzALZpdZSo5AzwffmgUeUa0s7pGbZGhJFD0Q3NHRrR4dYibO28Crr8DJwCtVfZm+KU7nEwRzazHr2uaN9bgt7QVzWUYQ/RKXwi86R8Cb8Tl8oip/gQ+fJtbS5PBpnG20RRrFKlMGkK0BqeeH+Lk3e9cDrwDNxnP4AbyAfj0P4e3+TYvMq5nLK4VonNijSs7J9RW0eAqj/bQz3jcCv/04fS/hNfixtwuFkGUa5aOKiM6KyQtsAvXGzgd+KPAq17hidAxhd8Fr1+GB0w/LH7xnT4a52ZSjYxRa5hrHF4I3Po83GKaGHMDuAd+6wtwd0JDa5xaQx7GeUHts+NulwmuB95yKfCTwJtjTHdvo7F5hCxccfXVvPiVr+TwJZcAcPLECe696y7+5hvfIIVHthvTPX0M7jkGr3kQeIZEwjl4L7z2m/Bn5Odui7lS78beKwKV6wBfA/77fwLe48MXmyP4CvzxO+A3yObKWlfACmLrbdl7eWDb+gjw8ttg4cdH8OTzbrRWgTfD64AvkmXkacJDwM+dgXd9FjcJ8Mg+Bj87gk+RpXvan1bJ9WFyP/VGZZx99AM4S3/R4z4On7gD/ohqOcopnSf9r2sngVd/BI6+zhTowYnb4NdwzkvV/qa4Jo39SeA9x+D1x3GWtiTTb8Mv44zSDVM+D2cZjrS99vnHcEL9nX9DTAcCuA9+HqfoCkKPY3UWtaPoWQnHVz2A8zLkuj8b/uKXnXFTZczL2mXpb9vWwvX9xvvh+S8iaqpl+MQXnHPxeEHb0z5PgjzefxhYehRuTTqYhhd+8rbbeMUtt/DRD32I+7/wBQCeeuml/Mc77+SjH/oQv3P77ZXbMXFH2n3Aa74KPAOg7+KoH3Bv5F1hshDdjmCSZ3Ac3IhzHui4kMMXnYd7sqTuVKtXbY9d61n2qL9/DWCPiwUvw9lPOQ9fmtquC00D5E0eAyf58Qh6wNfdxE+96RSK7o1y7qdl+/gJ9hWc9FVM8WEXzelNwF1U76T/BT1cFOGoYrFt4LhT8Jp8VetK708qt4bfnWQXz1Zh4yvuuo0cTaJxlfZYWMWP+SkiUw2Ar0d+K+PdrfB5Cn0cbc8+APuFdwR8KkbR8tZBLRRdH+T8Tq+dxhlYz18jhn1WnXW9QvHmiO3IlhT3CvANyH33oRW6N7/udbzgWc/i/PnzmTK/95u/yaf+6q949xaEbrPsZguXb+ticIvu0wdW6303pXXDXLzBB4Kari15sfppwxCf8joPLrwAbIwnSEx7hTOTHbNobuwFmvVZ12Mg/9D3u7alXAM2QYIWLnfSxx26TF/BpbgVCuMA0Ree8znANUNYmztE1uW6YTZHbnSA/RcTLc0+8LAzPsqU9KTrVeGIGqE4xaGYWTotHHnQwu+LeGb2ug68CZ/RiKccOZK9Biw99akMR6Ox62UwMXuhDTFtQzrHc0Hd87AFfjT2ACtB+5e5WdOEDvhO7nGNGUULt86+az2Cg8QglFfLdfdbcV6+k7j66xdFpyl780I/Gfxt8097NgdaByNDQfYmQdLXTfcQAz1ITBnrEl5VVCeE+qXZdOFgdu2qTvxL4EI6it8ccetbpVbhFCDQfQKiX3njG/nDT36Sbz74II8dPw7AJU97GkevvJJ/deutW8I58c0RTfCU77jiPn1lFkKvBV7q7wH2wXA5JC94GVgvbvAE6IcVgmlOgCLBA77bWpXQQlZFM7es3irQhvFVkP50reyi9rXwenaJzMpY1bDGTqGjP97KZT2meG8H/5bHokXMAOgBf55N9qkDtP4RArdKHxvMzrMaQszJ9tkQR6lf4Shyx3JBmzzce889fPIZz+Da7/ounuoX0v7PiRPc/8UvMhptjTNKhW4g+Dq4nFmfN9uqnxjg5V2aktWaTXgB/AmW+3EbMPzmgj7T075lNOyoAUoDULrNDuutDErL0DLxwdm4ucp4CIT2/DwLfgOfGSF6J5JuO+GNqu1WKDXEFrtkY8s1Qwtimp4a1J+NolMWRwhrrAEPuUPzZ2HcDaFanu7mJl/4/Od3jG+i/AhuLovAPjcZF+o3+6XwXb7npQ63z/2YhfYNk2Wu6c7zBejElNq6YRXcFkhZXLOQeB764FYxbb5TJ5uSVgfIq34MYq7PPNCtrG92DG2IaRz73YXGgfqFvt27MLYBYwYQFJ3yvNvAs128cxZzPcxpG9dlNkJ/XY1III3TbuVTBqX0VN6rm/DncS4+cDbm4tUJffAJgufcp9Hc8uzbbhvD5P+WUflGG9bZd8nZkECqbL1ZqH2PP6SKKfF1bjau3sijziQ6r9V3jKeFId7DVtK4Jv+gftIH9hIik4Q9CyOjI9zaGNEGjmbPT6oDpGiH+kfQym7aqxPmYcyokaW73U8ZlMoOrSW4eMcKwfeZwaHO4JltFZzAX3Rbi7cod3eiKVftP34HUeNAQeEpQxNibFG7GhbKnpgOBIZRno5m/NmYSVSXwtGixjzEg318W2YRXvDqNc7207hOH5wN/jVwUn9EXLVcqD/CEPJm5V2IEF90eax1guZnH+IuG+9SaarVaeAM8WmCD9aIJIFqr+vpAZxzKwpmy1edpn8Q+B3wZAlbTOq2esb6tbkRsgc2ztS/iAdevs4TEzSHwPH6rR7J+JA5oJWgQXbbfF0gwzqzjWx+NqHNsJItC9dsUa5b6AZlJ8WqLb7d2eAeQvbA3hbBuJrZAmaLuK33VNxZV/eC+X7ITY+pC2/5NuBd2IVd2IX/D6HRaHwCd/7bduFbm5ubL82te1fo7sIu7MIuzA7qXgvbhV3YhV3YBQO7QncXdmEXdmGGsCt0d2EXdmEXZgi7QncXdmEXdmGGsCt0d2EXdmEXZgj/F8fdEKhKbP+tAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1,1, figsize = (6,6))\n", "fig, ax = gr.ShowImg(img, meta.dx, clabel = meta.pxdwelltime, fig = fig, ax = ax)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calculation of the reciprocal lattice\n", "\n", "We calculate the absolute value of the Fourier transform of the image." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "f_ax = ft.fftshift( ft.fftfreq(meta.nx) )\n", "imgF = ft.fftshift( ft.fft2(img) )\n", "F = np.abs(imgF)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Measurement of the harmonics coordinates\n", "\n", "We measure the positions of the peaks of the reciprocal lattice." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "idx_max = np.unravel_index(np.argmax(F), np.array(F).shape)\n", "peak_idx = peak_local_max(F, threshold_rel = 0.2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We have a look at the grid in the frequency space.
\n", "We highlight the positions of the peaks with a marker." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAFlCAYAAAD76RNtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAw+ElEQVR4nO3dfZAcV3nv8e8zM7url92VvZYlFtuSJVuAeLG5oLVIyhBLNqClEslQFJebVOIQKhCSYBtcEFKpwjGpey8YKhf75qWsgHmpW4EQQ5BCIQmEDDg3+EXkEjAYW/LKll/GWmTZWkm72pfpc/+Y1s6Z1vTsSjvT3er9faq2dvZMz5xnTnefPf3M6W5zziEiIue+QtoBiIhIa6hDFxHJCXXoIiI5oQ5dRCQn1KGLiOSEOnQRkZwopR1AM53W5RawOO0w5i+L/J3GDFfzgkhpiq11dtRCmJhMJYbU28EiG4OmO6fqGC8cds5dGC3PdIe+gMWst2vTDmP+iu7EafTohWLtcVBJvn6g0LGoFsLUWO2JJDu1tNshC9tC2v/UMmS3u+fJRuVKuYiI5IQ6dBGRnMh0ykUEF6QdAW5iwvsjpUP9tNshCymOLMSQcRqhi4jkhDp0EZGcUMpF4ukQt8o07tG0xXODtlQRkZxQhy4ikhNKuYjMJO0ZJlmgFMs5QSN0EZGcUIcuIpIT6tBFRHJCHbqISE6oQxcRyQl16CIiOaFpiyIz0ZmiOlP0HKEtVUQkJ9Shi4jkhFIuEk+H2SLnFI3QRURyQh26iEhOqEMXEckJ5dAlnnLmAFixNu5xU973CmofyRiN0EVEckIduohITijlkmWFYu1xUEm8eivVbx5uaiqFGDpq9U9OtLEii32qcOHS6cfBM+XaE66N6yQSj3V21qodH29fvTEx+OsBwE1Nen8klHry94foTUeSiiFuO8lI+k0jdBGRnJixQzezu81s2Mwe9sr6zOy7ZrYv/H1+5DUDZjZlZu/0ym4Il99nZje09mOIiMhsRuhfBDZFyj4GfM85twb4Xvg3AGZWBD4FfMcr6wNuBdYDVwG3Rv8JZIJZ45+kFIp1P1aw6Z/EeJ/bSqW6n8TaxI+hs2P6p63rxbn6H0/lJedP/8TF2e546tZDCqxYqPtJJ4bi9A9WqP9JLIgU6jwDM0blnPshcCRSvAX4Uvj4S8D13nMfBL4ODHtlbwW+65w74px7Afgup/+TEBGROTjbfzPLnXOnvh16DlgOYGYXAW8H/j6y/EXAU97fT4dlpzGz95nZXjPbO0lCX/6IiOTAnI/fnHPOzE4do34W+DPnXGBneQjqnNsKbAXotb5kvzpO+5vqyEwW5xJMtdQqnX4YTEzGPpdYDGMnk68/ojD0zPTjij+7IsF46tohKVnYFvwq05hZE5XCbLMzcbYd+iEz63fOlc2sn1p6ZR3w1bAzXwq8zcymgGeAa7zXXwx8/yzrFhGRBs425bIdODVT5QZgG4BzbpVz7lLn3KXAPcAfO+e+CewC3mJm54dfhr4lLBMRkRaZcYRuZl+hOrpeamZPU52t8knga2b2XuBJ4F3N3sM5d8TM/gp4KCz6hHMu+kWriIjMgbm088ZN9FqfW2/Xph3G/JWFG1z4MaSVQ1+wYPpxcDKFXDak3w5Z2BZk2m53z4+dc+ui5dmcTCkiImdMHbqISE6oQxcRyQl16CIiOaEOXUQkJ3Q9dImnmQwAuEow80IiGaARuohITqhDFxHJCaVcRGaS5PXos0rpt3OCRugiIjmhDl1EJCfUoYuI5IRy6BJPF2QCwL9Zy/xsAbKxLaR9gbJzgEboIiI5oQ5dRCQnlHIRkXOD0iwz0ghdRCQn1KGLiOSEUi4iMykWa4810yI9avsZaYQuIpIT6tBFRHJCHbqISE4ohx4njXxd9Gw88/7fBpVkYvCr93PHgJuaSj6GUket/smJNlbU+IqK/e44by8e4Jrjj9BbGWOETu4trGRbYQ3PBovqF27ldhKJxzo7a9WMj7eunlnG4K8HADc16f3Rxv3Dj8HbHl0QqTOp/cNfLynvn41ohC4SY8CVudN9j3ErcctFv83m1R/i5tJ1jFPkjqndDLhy2iGK1NEIXaSBfnecj7oH+bhdzb4LXjddXrYevlC8kvvtIm6r/JAbuZaydacYqUhN9jt0s+RSHoVi43LXxsOpuEM4IoeYzruvZTvbw2sD/zAfwFW8dkjqMHtBV61K/zC/1TFE3muL288OVvOIXcDYa5ZNly86+DQAjxSWsqOyms1uP3fZa1sXR4xCV60dKkmlXDzWGUm51G0LyaQbrOR1V5H0n3NtSpFGU1/Fxn1E2+qPiyemCqVcRBrYyEF22Kqmy+ywVWzkYEIRicxMHbpIA72Mc4hFTZcZZhFLaOMXtSJnKPsplyTPCEvjm2r/80UOXRNLs/i8NgjGxuqfSyoGr57gxGgy9UcOrUdcF8vtJGXrpufB2ih8yptdscyd4Cid7Ykr8p6V4ydaX8cZxBCMnax/Lql9xY+hWaqpXdtG5H0TSzvGmaFOjdBFGthjKxl0Q02XGeQAe1iRUEQiM1OHLtLANlvDoBtirTvc8Pm17jCDHGA7lyUcmUi87Kdc5rO0L0CUdv0AftqprfXUf9ayLeJ2G+ATwX3s/NUhdnasYdi66a8cZZADDHKA2xlIbspiUu2Q1fohI9tjBmJoQh26SIyHrJ8buZYtPMlfj+1giRvnKJ3sYQU3slHzzyVz1KGLNFG2brZ2DbC1awCA4EQKX06KzJJy6CIiOaERukgjGc+Vzku6wcWMNEIXEckJdegiIjmhlItkWwYOrdO4DvzpQWgKayZiyDiN0EVEckIduohITijlIjID82ZXpHbQn/YMj+gt+pT+yCSN0EVEckIduohITijlIjKTQgbGPWmnONKuX2YlA1uqiIi0gjp0EZGcUIcuIpITyqFLtqU9XS8r0m4HTVs8J2iELiKSE+rQRURyQikXybYMHNpbydtN0k59iDShEbqISE6oQxcRyQmlXOJk4dA67RgKxfq/g0q6MbSz/ugsDquOdfrdca63A2w49gi9lTFG6OTewkq2FdbwbLCo/jVtXEdWrLVDGtdn9+sHcBVvXSS1bUa3R19S26a/nZg3Hk5j32hAI3SRGAOuzJ3BbiasxIcv/m1+6/IPc3PpOsYpcsfUbgZcOe0QRerM2KGb2d1mNmxmD3tlfWb2XTPbF/4+Pyz/HTP7qZn9zMz+3cyu9F6zycweNbP9Zvax9nwckdbod8f5aPAAHy9czReXvoly5/kEVqBsPXyheCW3Ft/IR92D9LvjaYcqMm02KZcvAn8DfNkr+xjwPefcJ8PO+WPAnwEHgN9wzr1gZoPAVmC9mRWBvwXeDDwNPGRm251zv5ix9kKxtYcz0UNr/6lSR8NyNzUZKWjhIaYXT7R+66itnuDkeO2JVh/e+TF4h9aF7sV1i1VGvM7LBd7jFh9ye/EU+86r1X/kxfrl/BjqymcZT5OU1hb3GDtYxSP0ceSNL5ku7xs6CMAvuIAdrGaz289d9trZ1XcmIttp4fzzpx9XDh+Ojbul9XophUJPT91iwbFjtRBamQKKSX0BFBbXUlzO3x8AN9dtYZbxWGdn7Y+g9t6x9bc6nlNpp5guYMYRunPuh8CRSPEW4Evh4y8B14fL/rtz7oWw/H7g4vDxVcB+59yQc24C+Gr4HiKZtJGD7LBVTZfZYavYyMGEIhKZ2dnm0Jc7N51AfA5Y3mCZ9wI7wscXAU95zz0dlp3GzN5nZnvNbO8k440WEWm7XsY5xKKmywyziCVMJBSRyMzmPMvFOefMrO44wsw2UO3Qrz6L99tKNVVDr/XpzA1JxQhdLGeUMt2xyyxjlKN0xj4vkrSz7dAPmVm/c65sZv3A8KknzOwK4HPAoHPu+bD4GeAS7/UXh2Uza3W+uEkO67Rc+SxeM2fee0frr5sa1s5pUX4MXp11OfN2xxATT/Di0fbV76/XSK50DysZ5AnutitYtvPAdHmlUFtusHKAPaxobUyNYiPSDgltj7hae/s58+pTbdoWop/Nj+HEqFceyVm3q00i7+smYo7Ikpq6OcM+cLYpl+3ADeHjG4BtAGa2AvgG8LvOuce85R8C1pjZKjPrBN4dvodIJm2zNQy6Ida6ww2fXxscZpAhttvlCUcmEm/GEbqZfQW4BlhqZk8DtwKfBL5mZu8FngTeFS7+ceAC4O/CO6VPOefWOeemzOxPgV1AEbjbOffzVn8YkVYpWze3F9bzieDf2DXyArsWvYrhYjfL3DEGgyE2BUPcbldRtviUjEjSzGX4AkO91ufW27XpVJ72WZpZiCEL18BO6kzRqPCz97vjbCk+wYbKAZa4cY7SyR5WsJ3Lku3M02qHRvWnFUPa+0NWYgB2u3t+7JxbFy3Xqf8iTZStm61dA2xlAIBgdHSGV4ikR6f+i4jkhEbocTKcipIExM2Aycght0gjGqGLiOSEOnQRkZxQhy4ikhPKoUu2zfYqdu0MYdy7ptB8zZtnYD1kQsbXv0boIiI5oQ5dRCQnlHIRmYl/P80U7ucpGZLxaasaoYuI5IQ6dBGRnFDKRbLNu6ekf23sRAXZO7ROnEXGfmmti7RlMM3i0whdRCQn1KGLiOSEUi5xMv5tdiJ0mA2AFWvt4GLuUtj2GLxb3+kcnxRlvF/QCF1EJCfUoYuI5IQ6dBGRnFAOPU4G82OSAWnf23M+q/tOJ/JFQtr33M1If6ERuohITqhDFxHJieynXMySO5ypu3ek978uqUNrv37AvItCuaQuCuXF4NcP4FJIMVhHbRN1422sP6bt+90xri/u55rRR+kNTjJCF/cWVrKt+DKedQvi3y/unqSz3ZYj8aRygbBm24I/d7Kd+6cfQ93UzQxMqc3CWcwRGqGLxBgInuWOqd2MW4lblr+LzRf/KTd3vJlxitwx+R0GXDntEEXqZH+ELpKCfneMj1Qe4NbiG3nsvFdNl5ethy+UXsv9wUXcNvUDbuRaytadYqQiNdnu0K16qOcq3uHMXA/vooey/lOdnQ3L3USLv1GPiSFav5W8dIN/gajoqYItjMc/tC4sXli3WGXEXw9tPOT2ZpIUemqdZWUykmpoZQyR12+eepQdXMovgvMov2vldHn/Z58D4Bf0sYPVbHb7ucte2zyGFrRPXTtMTLT0vevEpB0L3YvrFguOHauF0MoUUHTf8GKwhd72eHK8bjEXd/psi/fVun3U2ydj629xPNN9QswZy0q5iDSwkafYwaqmy+ywVWzkYEIRicxMHbpIA72Mc4hFTZcZZhFLmGi6jEiSsp1ycW2Y3dHkkKfu7u7tFBNDtP404vHbu/Li0WTqj/Jm01SeP1IrTyi9ADBS6eIlpXHK1sMl33i6Fo8302JZMMpRvEPwVp5oEnl95fDzc3u/s6nXm7lReeGF5OuPxOCneRITiSexfTLGTP2hRugiDdxbWMmmYKjpMoPuAHtYkVBEIjNThy7SwLbCGgaDIdYGhxs+vzY4zCBDbLfLE45MJF62Uy4iKSlbD58urue2yn3sOnKUXT2vYbjUwzJ3jMFgiE3BELfbVZqyKJmiDl3iRaeQZeQCRC0Tky+uPmU8yHJutI1cP3aQz4x8hSXuJEfpZA8ruNE2UmZxOmcxp30hqrRikBmpQxdpomzdbF24nq0L1wNQ8b+YU6cmGaMcuohITmiEnmVpH2ZnQRYugFSIP7s4MVloh7Rpf5iRRugiIjmhDl1EJCeUcpFsm+1Fj1per3f27MRkw/JEpdUOck7RCF1EJCfUoYuI5IQ6dBGRnFAOPU4aU6Sa3HwjMc3uI5nUvSw9Vuqo1T+ZzqVqrbMWA6OphJB6O2RhW6i/ImaLb/Iy6xhi9tGMTKPUCF1EJCfUoYuI5IRSLr4spDx8OjswPd624CpBw/LUDrMVg8TQCF1EJCfUoYuI5ET2Uy5mCX6DHfP/Lal0R6R+f2aB888UTKg9rFS/ebiK1w7tjKFupk2tTdxUOtfktgULan8cP55Inael/wopz7o6bd9QCjCLNEIXEckJdegiIjmR/ZTLfL4YUhoxeIfWLtr2acy6KXh1nnbY38I0VDTF4dVlpaL32DvBZ2qy7iUtj8F/ykt/uUnvpJ6gxeshJgbraJZ+a+O24Kff/BgqkVsGJnSiU10aNIi/hWH7AgjbI2ZT0whdRCQn1KGLiOSEOnQRkZzIdg7dqrnDlubHmuUpvfyYdXRNPw7GxuLfr4U5fr/+fneMLcUDbBh/nF53khE62cMKttnllK27fTGE0+P63TGuLz7NNWOP0RucZKSwgD3BxbX6C97Fmlqc6z/VDtUY9nPN8UfpDcZOb4NmF2uq/1AxxfHT8k7la/uDY/xm4T+49tB/0js5yghd3FtaxfaOV/Cs66p7jaucRR7Vz9U3iKffHWNL5TE2jB6cXg/32kq2l15OudBD4F+nqxXrwY/HWw9b3KNsOLmvFkNpFds711Iu9OK8/eOs2iCm/uqfVq0/2MeG8YP0unFGrIt7Oy7jXzvXUi72AhCM1q6adlYx+PtQszPGvX200FXrPoOxk957zXI9nM1+Gze1+lRMM77e7G4zGzazh72yPjP7rpntC3+fH5abmd1pZvvN7Kdm9jrvNTeEy+8zsxvO/JPMHwPBs9wx+R0mrMSHz9vCb13wXm6yjUxQ5E73PQZcuf31T+1m3ErcsvSdbO7/ALcsfWdi9Z8WQ/9/ZfPKGxNtA4B1U8/w2bFvM1Ho4IOvez+b3nQbH1o4yIQV+ezYtxkInm1r/ae2g3GK3LL8XWy++E+5Zfm7qvWP72Rd5Zm21u/HMGElPtz3Dn5r+fv5cN87mKDEZ098i3WTT7e//qndjFPkw4t/k9/qvYEPL/5NJqzI/zrxLdZNPtXW+s81dtpMhugCZm8CjgNfds69Oiy7HTjinPukmX0MON8592dm9jbgg8DbgPXAHc659WbWB+wF1lH9fvbHwOudcy80q7u30OfeUHprciN0bwaD/416YiP0jk763THumPwOt5bexKPnrZp+rnKk2lRr3fN8wv0bN9q1tZF6C2N4aXGMO6Z2c2vxjTy2/BV1z009d6hWf+HNXv2tHaG/tDBai+GS19TqP1jtPM44hrMYob+0OMZnx77NXy7YyM/ecPV0eemhR6sxVH7FX57cw02l6yhbTzWEFo7Q+zkxvR08UriQ4vILp58LDj9frX/i+9xYuK6168GL56WF0dq2uHRN3WJudIy1U8P85dhubirOsQ1i6u93x7kzqG4HjxSWUli0qG7RtVPD3Dq6mw8t/k2eGfdmAbVxhG6dnbXHpRRG6OGR8e7KP/3YObfutPhm6tABzOxS4Fteh/4ocI1zrmxm/cD3nXMvN7O7wsdf8Zc79eOce39YXrdcnCWlC92vLXk7wbFj02X+VKG6HTLKT5/4K6gQOaTzz4Z8SW2nwZuq5p6sHwm58fGG8dS9b+T60f6ZfnWpHf9a2/3LeN9zu5mwEl9cfg2jq86bfmrRA49PP/79F/8vHa7C1s7q+vT/4cXGE20rPwavDf6o8DPGrcSX+q6mvOmiupe85F+qMbzn2I8oTYyztWvgtPqB06aUTcfWbEfzduQPlB6utsHCdTzxwVdNl1/6N49MP37P6IOUpiZqMfjvHdMG1QVjdrZIh/5HU3sZp8gXiley8+De6fJNK2r70B9UfkoHFe4qvf6M3rtOzHbx/qn/qLbBourne+JP104/d+n//jkA7xl7iOL4Se4q/Jfm9dNgezwlUu5vC+8P/l81hp438NzbL6tbrn9ndZ/4/SP3URo90XhbiE4tnMW2WVf/xF4mOhfwxcVXATC6vhbDogMvAvCeQ9+nw02x1V1Rq8e7B2yz7SJue6yLp6s+rWYrvX1iynv9c7+qvW90fwhq66Wuv22yP8T1c4We6j/OXUf+oWGHfrZfii53bvqY9zlgefj4IsA/Bno6LIsrl4gNR3/OrvOvbLrMzuLlbKg80Zb6rzn+S77T8+rm9S98JRumhtpSP8CGicfZ1fmy5jF0vYINlQPtiyF4kp2F1U2X2VG8jA3Bk+2pf+JxdnW9vOkyOztfzkZ3sC31A2w4uY9dC9c2XWZXz2vati1sqDzBrgWvaLrMzvOv5Jqjv2hL/eeiOc9ycdV/OS075jez95nZXjPbO+FOzvyCnOmtjHGoY0nTZYZtMUsYb7rMWdcfjHGo1Nu8/mI3S1x76gfodeMcKnQ3XWa40OYYmOAQi5vHQBvXgzs5uzZoU/0AvcFJDhV7msdQ6mnbeuhlFttBRy9LKindRiqDznaWyyEz6/dSLsNh+TPAJd5yF4dlz1BNu/jl32/0xs65rcBWgF7rc5WjI7FnwzVNVXmHM03/23iHw4VnvNf4aYyJJrf8ism9uan44Px4zHvvwjOHGLEulj/1OOViL4ueOTT9nP8t/rLKMY7SRXDq0HIWObvTTmTzD/e8xyPWxYWHn6Jc6OUl/1L/DzU48iIAy11Y/6m8YYtz6CN0sWzsCOVCD6u+UBsBV46fmH58KoZT66b+rL0zj8ciGYkRunhJxyTlQg9v/m/vmS4vdT46/XjZxAscpf6QvBaCv5b9syqbbBfetjhCJ0tffHY6P77qy7UD3FPtUG2Dzlmu/5jD+2haxDsLdYROlg4/Sdm66d9WP/ar/OowAMvCGIITJzhbdded87dFOll65JnpNvDTjsFI9SJpp7aDyotHz7r+0+Jx3n48Wv/PovBE7Utgv61OO2u4/g3nFo/XPn76uZGzHaFvB07NVLkB2OaV/1442+UNwNEwNbMLeIuZnR/OiHlLWCYR93ZcxlsnH2u6zKAbYo+taFP9q9k0sa95/ZXH21Y/wL3FS9lU2T9jDPcWVrYvhtIqNk3N3A7timEPKxh0zVNKg8EQe2jfekg7hlnV3+bt4Fwzm2mLXwF+BLzczJ42s/cCnwTebGb7gOvCvwG+DQwB+4F/AP4YwDl3BPgr4KHw5xNhmUT8a+daNk08xtqp4YbPrw0OM+iG2G5rGj4/V9s717Jp8tEm9f+KTcHjbasfYHvp5Wya2s/ayq8aPj8dQ+Hy9sXQ8Qo2Te6Lj6ESxlBsnus/W9vscgYZYq17vnH9wWE2BUNst/a1waxj4LKGz7e//vaug3PRrGa5pKXX+tz6wnXJXaDLO1nG/2Y5sQv/hN/wDwTP8pHKA+wsXsaO4uUM22IunHiRQXeAQYa4nQEesv72BFEoMuDKfDR4gJ0da9hZWsOwLWaZO8Fbxx6p1m9X1dff6vUTjaFjDcPWzdLRw7U2aHUMkalqVuqoroepH7Gr+1XsWvQqhovd9B06yKAbYtANcbsNtC8GK0y3wQ5bza4Fr2i8HnjJ3Opsxl8P3ra4zJ1g0+S+ahsU1vOQW9a2EAZ4jo+6B9nBanaWLmOYxSzjBJsqQ7X6rb/1FymLE3eN+KTqD+1295z9tMW0zNcOHapn5212j7Oh8gRLGOdoeJbkdruc8gxf1s1J4dTZgcfZUhhiQ+UAS9w4R62LPe6Sav1tPFP1tBiKB9gwNVSNwW+DVsfQoEOvxnCMLZ0HuWZsH0uCMY7SxR5bwXZbQ5n6edGt7tCr9R9ns9vHRg42Xg/t3Df89WD+tui1gXW3tzMzC9tgPxt5qnH9oA49pA7dl6EOHaibI1z3xWwCOzFAYUH9F36xJ1i1qUMHKCys3S0oGG0ym6FNHTpAcWnf9OOpQ14KJvplZBs69FP8dVG3HhLaFk67fG47L+Hrs8bz9E+b064OHdDFuUREciPbF+eCZG9w4Y24krpefV310alldVPxEmoHvw0mmxyZtDOeoPH00bbGEHkvfxqam4qZdtjqNqh7v8joP2jt1NBZ8T6rRY5gXMo3X0ntnqYzXByr/fXrBhciIvOCOnQRkZzIfspF0tPqL/1myz+8TyPtFOFOpnAJimgKqNLGVM8sYkhqYkDTGCqzO+O2rdK+1/AM614jdBGRnFCHLiKSE0q5SL0snJeQsRisWGhYLglLO90RlcFtQSN0EZGcUIcuIpITSrn40j6EOq3+dA8x53x/yFbE0Ow600nFMJGBGFJuh9O2hcztKzmvd5Y0QhcRyQl16CIiOaEOXUQkJ5RDl2zzL4aU5BXT/Mu2dtYupcuYdxZrkvnUtNpBzikaoYuI5IQ6dBGRnFDKJcsyPkUqEVk4OzB6d5w0ZKEd0qb9YUYaoYuI5IQ6dBGRnFDKReJl4RC3nTFEbqtW91Tx1B3vj3G9e5xrjv+S3mCMETq5t7CSbYU1POu6I7GmcM3ypOTt8+SURugiMQaCZ7ljajfjVuKWl76bzZfexM2l6xinyB1Tuxlw5bRDFKmjEbpIA/3uGB+pPMCtxTfyWN8V0+Vl6+ELxSu53y7itsp93Fi4jrJ1N3knkeRohC7SwJZgHzsKq3mksLTh848UlrLDVrPZ7Us4MpF42R6hG1ipNPf7GTbJldYtVvLOCCzUXuMmJuoXnGs+MSaeuvoBW9A1/Tg4MerV3757fVqptkkUenrqnqscHWkcQ6vzq177FC/oq9X//JH65eZar//6yDrZEDzJTYXrcIHjqXdcPF3e/9cHpx/vcCv5LPdyV3AFLeHHYPVjrWLfedOPK0derD0RtPis0ZgYir31RyHB8RPTj+vv9dnifcOLobBwQa2aSJ9w2j7apniss7NxNXH1tziGU9/tEHPxTY3QRRroZYJDLGq6zDCLWEKTHVkkYerQRRoYoZPljDZdZhmjHKXxiE0kDdlOubjTD63O7n1md8hTd+g41caUQsz7nXYTgbEx78lkpsT5MfiH1UnG4L93cOz43N/PYi6o1SQVd2/hUgY5wBeKr+WSrz05XV7xUlKDk0+whxW192llCihyAa66dmh1mmUWMQQnxuoXa2WaJa7+SAxufLxx/a2Oocn7ukmvP0phf5jppjMaoYs0sK34MgaDx1kb/Krh82uDwwwyxHa7POHIROJle4QukpKy9fDp0q9x29QP2fXiC+zqfhXDxR6WuWMMBkNsCoa43a7SlEXJFHXovrQvgBSp3wX+NbATOlOv2eFdGmcLtuLQPu51Td7PVSo8yHJuLFzHltHH+cyxf2IJ4xylkz2s4EY2UKY7sTapO9RPQRa2hbalec5EO9NdszHD51aHLtJE2brZ2rmOrawDIDh5MuWIROIphy4ikhMaoftmOQMikfoB0DWwU1N3aN0Ru5jMM3EzpjJCI3QRkZxQhy4ikhPq0EVEckI59DgZzI/NRy4D9/N0FX2XkfqU3qzIeL+gEbqISE6oQxcRyQmlXOJkfHpSInSYXVVIYQprlNaFzIJG6CIiOaEOXUQkJ5RyiTNf0yxyuhmuQS2SFRqhi4jkhDp0EZGcUMoljma5nHbn+eht0XLNv9N6V9f045bcEvFs+OtiPq0HOSMaoYuI5IQ6dBGRnFCHLiKSE8qhizTif28Sd+OT+frdynyW8fWvEbqISE6oQxcRyQmlXHxp3Ee0Wf1pTFXzp+tFLkqVxvWhrFj06m9jG0Ta/lS9/e4Y17OPa8Yeozc4yQid7LGVbLM1lG1R/Xu08RDcXxepXKcrOoXVv99tUqmHuhgijZBG+iOD6ReN0EViDATPcsfUbsatxC1L38nm/g9wU+E6JihyZ7CbAVdOO0SROnPq0M3sJjN72Mx+bmY3h2WvNbP7zewnZrbXzK4Ky83M7jSz/Wb2UzN7XQviF2mLfneMj1Qe4NbiG/lS769RLi0hsAJl6+buwhV8vHA1H3UP0u+Opx2qyLSzTrmY2auBPwSuAiaAnWb2LeB24Dbn3A4ze1v49zXAILAm/FkP/H34u7lCEeZ6qD3LVIqVOrx6vUPciYn6Bed6eBUTT139gC2onaEYnBj16m/f4aaf4ij09NQ9Vzk60jiGVh9ueu1TOG9Jrf7Dh+uXa+Nh7ubKPnbYan7BBRzZtGq6vO+LhwB4hD52sIrNbj93ceVpcc86trhtM5LiqGuH54+ceT2z5cfjxVDs7a5bLDh+ohaCf/GyVsdT8LZHb39wk/Vn7LqpyfbEEE3FRfbRhvWf9mQL4znVHjFd4lxG6GuBB5xzo865KeAHwDsAB/SGyywBng0fbwG+7KruB84zs/451C/SNhvdk+yw1U2X2cEqNnIwoYhEZjaXL0UfBv67mV0AjAFvA/YCNwO7zOwzVP9h/Hq4/EXAU97rnw7L6hKRZvY+4H0AC4h86SSSkF4mODTD9jfMIpYw0XQZkSSd9QjdOfcI8CngO8BO4CdUDwQ+AHzIOXcJ8CHg82f4vludc+ucc+s66Jr5BSJtMEInyxltuswyRjlKZ0IRicxsTtMWnXOfJ+ywzex/UB11/0/gpnCRfwY+Fz5+BrjEe/nFYVlzrZiqNsscVl0ucKqNOeKY93ORGyk4P2/ezil7MTEEx47VP5lQDH77BC+80LC83e4trGSQIb5QuJIL73tuurzi5ZUHeYI9rKjlWc8mvrjXRKapVo68OPNrWqHuDNlaDJWRyJe/SW0LXj3B2FitPKltIVJP23L1szVDu891lsuy8PcKqvnzf6SaM/+NcJGNwL7w8Xbg98LZLm8AjjqneV+STdsKaxgMhlgbHG74/Fp3mEGG2G6XJxyZSLy5nlj09TCHPgn8iXPuRTP7Q+AOMysBJwnz4cC3qebZ9wOjwHvmWLdI25Sth08X13Nb5T52HT7Gzt7XMNzRyzJ3nEE3xKAb4na7irJ1z/xmIgkxl5EznBrptT633q5NO4z5Kzqlbj6djRfW2++Oc33HQa6ZHGKJO8lROtnDCrZzmTpzSc1ud8+PnXProuU69V+kibJ1s3XherYurJ4yURkZmeEVIunRqf8iIjmhEbpII156J7X7iPoyeCEoyR6N0EVEckIduohITijlIvGycGifhRiyQO0gs6ARuohITqhDFxHJCXXoIiI5oRy6xJvPZ4r6gjRu4ily5jRCFxHJCXXoIiI5oZSLxMvCVLkMxJDlC9iJ+DRCFxHJCXXoIiI5oZRLlqU9w0OzXKohlGq7iRsfTyWGLLSDZJ9G6CIiOaEOXUQkJ5RyyTIdWmePUh+SYRqhi4jkhDp0EZGcUIcuIpITyqHHSSNXGp0m6EtlymDk/72rpBtDkvUXigD0u+O83e3jmrHH6A1OMkIne2wl22wNZVtU/5p2rqO02mG6fk1hPRdohC4SY8CVuTPYzbiVuGXpO9nc/wFuKlzHBEXuDHYz4MpphyhSRyN0kQb63XE+GjzAxwtXs6937XR52bq5267gR+6lfCK4jxu5lrJ1pxipSE32O3SzNh/K1g7jrFhsuIirRA5xWxlPk/r9MxQD/wzFdrZHoRZDYeGCuqeC0dFkYvAUuxdPP64cO1b/ZJvWA8D17GNHYTW/LF7I6FUrpssXbj8EwCP0sYNVbHb7uYsrWxdHTDyFxbX0TnD8eO2JhPaNwsKFdU8FJ73tMWhjCsjfP0od049P3ye9a9YntH/UaWcb+E61R8xHVMpFpIENwZPsLKxuuswOVrGRgwlFJDIzdegiDfQywSEWN11mmEUsYSKhiERmlv2US7sP7b33d4FXV1KHcHH1A0xNta/eON7ndhOTydcfEaR0MawROlnOCcr00POz4elyf40sszGOuk7vMLiF20nkvdzJhFJuMTG4icg/rqRSDH4MfprFBbHLtTeehPqF2Pqb16kRukgD9xZWsikYarrMoDvAHlY0XUYkSerQRRrYVljDYDDE2uBww+fXuucZZIjtdnnCkYnEy37KRSQFZevh08X13Fa5j13Pj7Cr9wqGSz1c6I4z6A4wyBC321WasiiZYlm+X2Kv9bn1dm3aYaQn7TPj5vPZgWG9/e44W0pPsmFqiCVunKN0socVbOeyZDtzbQvi2e3u+bFzbl20XCN0kSbK1s3WrgG2dg0AEJw4kXJEIvGUQxcRyQmN0LNMh7Xp8ds+elaiSEZphC4ikhPq0EVEckIplyxLe2aDiJxTNEIXEckJdegiIjmhlEuWpZ1mSbv+jMjyyXeJURucEzRCFxHJCXXoIiI5oQ5dRCQnlEOXeLogU1X0xiMiGaURuohITqhDFxHJCaVcRGZgxdq4x6V/m9V0KP12TtAIXUQkJ9Shi4jkhDp0EZGcUIcuIpIT6tBFRHJCs1yyLO3roVvk/71L4VZsfgxJ1u+1vS1eVCsfH/fiSXCdpNUOjepPLQbdH2AmGqGLiOTEnDp0M7vJzB42s5+b2c1e+QfN7Jdh+e1e+Z+b2X4ze9TM3jqXukVEpN5Zp1zM7NXAHwJXARPATjP7FnAJsAW40jk3bmbLwuVfCbwbeBXwUmC3mb3MuTSO3URE8mcuOfS1wAPOuVEAM/sB8A5gHfBJ59w4gHNuOFx+C/DVsPyAme2n+s/gR3OIobX8HJ2fMwwS+p9TKNaHU6z97SYnkonBa4NCZ0fdU8F4UPsjoRxmYeGCWv0nTrSvouiZkN76D1ZfVCs/8kL7YmgST107jI7WnmjnesjYtlC3P0QvmJbUPhrdTk7JSE5/LimXh4E3mtkFZrYIeBvV0fnLwvIHzOwHZjYQLn8R8JT3+qfDsjpm9j4z22tmeycZjz4tIiIxznqE7px7xMw+BXwHOAH8BKiE79kHvAEYAL5mZqvP4H23AlsBeq0vG//2RETOAXOatuic+zzweQAz+x9UR92vAL7hqjdifNDMAmAp8AzVEfwpF4dl2eSCmZdpc51pf7vgKim0QTSGqanaH+28QFT0vbyqis/V0ixTdcskF4+bmIx9rm28eurWQ5Ix+FX6aZakUiynBZHtMeZcZ7mc+sJzBdX8+T8C3wQ2hOUvAzqBw8B24N1m1mVmq4A1wINzqV9ERGrmemLR183sAmAS+BPn3Itmdjdwt5k9THX2yw3haP3nZvY14BdUBzp/ohkuIiKtYy7DhxC91ufW27VphzF/ZeEa2GmdHejP8Ojqmn4cnDyZXAw+nSUpnt3unh8759ZFy3WmqIhITqhDFxHJCV2cS6QRf4ZHBmb7pC4L6TeZkUboIiI5oQ5dRCQn1KGLiOSEcugiMjPlzM8JGqGLiOSEOnQRkZxQykXi6TC7Ko0LtYmcBY3QRURyQh26iEhOqEMXEckJdegiIjmhDl1EJCfUoYuI5ISmLUo8XWGvyjTukXODtlQRkZxQhy4ikhNKuUi8+ZpiidKZokq/nSM0QhcRyQl16CIiOaGUS5b5h7lpHOJm4TDbn2HiKgnWW/vs1tlZC2FqKrkYfGm1g5xTNEIXEckJdegiIjmhlEuWRFMcKR9mW6mj7m83OZF8DB21TdSNp5NqKFzQN/04GBurPdHOFFRkW0i7HaxYrPvbVbwYkkrFRfcPn2bdABqhi4jkhrkM/2czs18BT6YcxlLgcMoxpE1tUKV2UBtANtpgpXPuwmhhpjv0LDCzvc65dWnHkSa1QZXaQW0A2W4DpVxERHJCHbqISE6oQ5/Z1rQDyAC1QZXaQW0AGW4D5dBFRHJCI3QRkZyY9x26md1kZg+b2c/N7Gav/INm9suw/Hav/M/NbL+ZPWpmb00l6BZr1AZm9lozu9/MfmJme83sqrDczOzOsA1+amavSzX4OTCzu81s2Mwe9sr6zOy7ZrYv/H1+WB77uc3shnD5fWZ2Qxqf5WydYRv8TvjZf2Zm/25mV3qv2RTuE/vN7GNpfJa5OJN28J4fMLMpM3unV5butuCcm7c/wKuBh4FFVM+a3Q1cDmwIH3eFyy0Lf78S+E+gC1gFPA4U0/4cbWqD7wCD4TJvA77vPd4BGPAG4IG0P8McPvubgNcBD3tltwMfCx9/DPhUs88N9AFD4e/zw8fnp/3Z2tQGv37qswGDXhsUw31hNdAZ7iOvTPuztasdvM+8B/g28M6sbAvzfYS+lupGOeqcmwJ+ALwD+ADwSefcOIBzbjhcfgvwVefcuHPuALAfuCqFuFsprg0c0BsuswR4Nny8Bfiyq7ofOM/M+pMOuhWccz8EjkSKtwBfCh9/CbjeK2/0ud8KfNc5d8Q59wLwXWBT24NvkTNpA+fcv4efEeB+4OLw8VXAfufckHNuAvhq+B7njDPcFgA+CHwdGPbKUt8W5nuH/jDwRjO7wMwWUR2FXQK8LCx/wMx+YGYD4fIXAU95r386LDuXxbXBzcCnzewp4DPAn4fL57ENfMudc+Xw8XPA8vBx3OfOY3vEtYHvvVSPWCCfbQAx7WBmFwFvB/4+snzq7TCvL87lnHvEzD5FNb1wAvgJUKHaLn1UD60HgK+Z2eq04mynJm3wAeBDzrmvm9m7gM8D16UWaAqcc87M5vU0sEZtYGYbqHboV6cTVfIi7fBZ4M+cc4E1u2BYCub7CB3n3Oedc693zr0JeAF4jOp/1m+Eh9cPAgHV6zc8Q3X0esrFYdk5LaYNbgC+ES7yz9RSS7lsA8+hUymk8PepQ+q4z53H9ohrA8zsCuBzwBbn3PNhcR7bAOLbYR3wVTN7Angn8Hdmdj0ZaId536Gb2bLw9wqqueN/BL5J9YtRzOxlVL/oOQxsB95tZl1mtgpYAzyYQtgtFdMGzwK/ES6yEdgXPt4O/F446+MNwFHvsDQPtlP9Z0b4e5tX3uhz7wLeYmbnh7Mg3hKWncsatkG4fXwD+F3n3GPe8g8Ba8xslZl1Au8O3+Nc17AdnHOrnHOXOucuBe4B/tg5902ysC2k/e1y2j/AfcAvqH4zf21Y1gn8H6r55f8ANnrL/wXVb/QfJZwFcq7/xLTB1cCPw7IHgNeH5Qb8bdgGPwPWpR3/HD73V4AyMEn1qOy9wAXA96j+A9sN9M30uYE/oPoF+X7gPWl/rja2weeoHsH9JPzZ673P26ge2T0O/EXan6ud7RB53RcJZ7lkYVvQmaIiIjkx71MuIiJ5oQ5dRCQn1KGLiOSEOnQRkZxQhy4ikhPq0EVEckIduohITqhDFxHJif8PNiQ5NLN1JXcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure(figsize = (6,6))\n", "plt.imshow(F)\n", "plt.xlim( [950,1050] )\n", "plt.ylim( [950,1050] )\n", "plt.plot(peak_idx[:,0], peak_idx[:,1], 'ro', markersize = 10, markerfacecolor='none')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We change the reference frame of the coordinates, such that they are relative to the zero-order position." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "rel_peak = peak_idx - idx_max" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We select the first harmonic on each axis and calculate the corresponding period in space." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "peak_x = np.abs( rel_peak[:,0] )\n", "peak_y = np.abs( rel_peak[:,1] )\n", "\n", "dfx = 1 / meta.nx\n", "dfy = 1 / meta.ny\n", "\n", "X = 1 / ( np.min( peak_x[np.nonzero(peak_x)] ) * dfx ) # pixel\n", "Y = 1 / ( np.min( peak_y[np.nonzero(peak_y)] ) * dfy ) # pixel" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calibration\n", "\n", "Knowing the real spacing of the grid, we can calculate how many pixel fit in the period of the grid." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "T = 10 # um\n", "\n", "px_x = T / X # um / px\n", "px_y = T / Y # um / px" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Lastly, we convert the pixels into volts to find the calibration values." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "calib_x = 17.303 um/V\n", "calib_y = 17.409 um/V\n" ] } ], "source": [ "calib_x = px_x * meta.calib_x / meta.dx\n", "calib_y = px_y * meta.calib_y / meta.dy\n", "\n", "print(f'calib_x = {calib_x} um/V')\n", "print(f'calib_y = {calib_y} um/V')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.2" } }, "nbformat": 4, "nbformat_minor": 4 }