{
"cells": [
{
"cell_type": "markdown",
"id": "fce7707e",
"metadata": {},
"source": [
"# Logistic Regression\n",
"\n",
"This is the first notebook for a tutorial on \"Practical Bayesian Modeling with PyMC\""
]
},
{
"cell_type": "markdown",
"id": "0c6e9b43",
"metadata": {},
"source": [
"**Abstract**\n",
"\n",
"In this tutorial, we explore Bayesian regression using PyMC -- the primary library for Bayesian sampling in Python -- focusing on survey data and other datasets with categorical outcomes. Starting with logistic regression, we’ll build up to categorical and ordered logistic regression, showcasing how Bayesian approaches provide versatile tools for developing and evaluating complex models. Participants will leave with practical skills for implementing Bayesian regression models in PyMC, along with a deeper appreciation for the power of Bayesian inference in real-world data analysis. Participants should be familiar with Python, the SciPy ecosystem, and basic statistics, but no experience with Bayesian methods is required."
]
},
{
"cell_type": "markdown",
"id": "89c73067",
"metadata": {},
"source": [
"**Description**\n",
"\n",
"In this hands-on tutorial, we will dive into the world of Bayesian regression using PyMC, with a particular focus on datasets that feature categorical outcomes. PyMC provides versatile tools for iterative development of powerful models. This tutorial guides participants through the fundamentals of Bayesian regression, starting from logistic regression and extending to categorical and ordered logistic regression. It also introduces the PyMC package, its syntax and capabilities.\n",
"\n",
"Outline:\n",
"\n",
"* Logistic Regression with PyMC\n",
"\n",
" - Overview of Bayesian inference\n",
" - Modeling binary outcomes with logistic regression\n",
" - Introduction to PyMC and its capabilities\n",
" - Hands-on example: Happiness data in the General Social Survey\n",
"\n",
"* Categorical Regression\n",
"\n",
" - Extending logistic regression to multi-class outcomes\n",
" - Differences between Bayesian models and GLM\n",
" - Hands-on example: Political alignment and party affiliation (?)\n",
"\n",
"* Ordered Logistic Regression\n",
" - Introduction to ordinal outcomes and their challenges\n",
" - Implementing ordered logistic regression in PyMC\n",
" - Hands-on example: Political alignment and party affiliation (?)\n",
"\n",
"* Conclusion and Q&A\n",
" - Recap of key concepts\n",
" - Resources for further learning\n",
" - Open discussion and questions\n",
"\n",
"This tutorial is aimed at data scientists who are comfortable with Python, the SciPy ecosystem, and basic statistics but are new to Bayesian statistics and/or PyMC. By the end of the session, participants will have hands-on experience with Bayesian regression models and a solid understanding of how to apply these techniques to real-world data analysis. \n",
"\n",
"Notes:\n",
"The material for the tutorial is in this repository:\n",
"https://github.com/AllenDowney/SurveyDataPyMC/tree/main/notebooks\n",
"\n",
"The dataset from the General Social Survey (GSS) can be found here:\n",
"https://gssdataexplorer.norc.org/\n",
"\n",
"\n",
"[The slides for the tutorial are here](COMING SOON)."
]
},
{
"cell_type": "markdown",
"id": "48c2f26e",
"metadata": {},
"source": [
"[Click here to run this notebook on Colab](https://colab.research.google.com/github/AllenDowney/SurveyDataPyMC/blob/main/notebooks/01_logistic_regression.ipynb)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "f0a5bca0",
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "fce89fc0",
"metadata": {},
"outputs": [],
"source": [
"# Get utils.py\n",
"\n",
"from os.path import basename, exists\n",
"\n",
"\n",
"def download(url):\n",
" filename = basename(url)\n",
" if not exists(filename):\n",
" from urllib.request import urlretrieve\n",
"\n",
" local, _ = urlretrieve(url, filename)\n",
" print(\"Downloaded \" + local)\n",
"\n",
"\n",
"download(\"https://github.com/AllenDowney/SurveyDataPyMC/raw/main/notebooks/utils.py\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "f24d9f87",
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"import pymc as pm\n",
"import arviz as az\n",
"\n",
"from utils import value_counts, decorate, load_idata_or_sample"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "860f08d5",
"metadata": {},
"outputs": [],
"source": [
"# Make the figures smaller to save some screen real estate\n",
"plt.rcParams[\"figure.dpi\"] = 75\n",
"plt.rcParams[\"figure.figsize\"] = [6, 3.5]\n",
"plt.rcParams[\"axes.titlelocation\"] = \"left\""
]
},
{
"cell_type": "markdown",
"id": "f6d12ba9",
"metadata": {},
"source": [
"## Data\n",
"\n",
"The dataset we'll use is an extract from the General Social Survey.\n",
"The following cell downloads it."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "0ad453fb",
"metadata": {},
"outputs": [],
"source": [
"# This dataset is prepared in GssExtract/notebooks/02_make_extract-2022_4.ipynb\n",
"# It has been resampled to correct for stratified sampling\n",
"\n",
"DATA_PATH = \"https://github.com/AllenDowney/GssExtract/raw/main/data/interim/\"\n",
"filename = \"gss_extract_2022_4.hdf\"\n",
"download(DATA_PATH + filename)"
]
},
{
"cell_type": "markdown",
"id": "4e2794fd",
"metadata": {},
"source": [
"The file is in HDF format, which we can read using Pandas."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "b91bdaed",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(72390, 60)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"gss = pd.read_hdf(filename, \"gss\")\n",
"gss.shape"
]
},
{
"cell_type": "markdown",
"id": "250d175e",
"metadata": {},
"source": [
"The dataset includes one row for each respondent and one column for each variable.\n",
"\n",
"To demonstrate logistic regression, we'll use responses to [this question](https://gssdataexplorer.norc.org/variables/441/vshow)."
]
},
{
"cell_type": "markdown",
"id": "10535f31",
"metadata": {},
"source": [
"Generally speaking, would you say that most people can be trusted or that you can't be too careful in dealing with people?\n",
"\t\n",
"```\n",
"1\tMost people can be trusted\n",
"2\tCan't be too careful\n",
"3\tDepends\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "b924e423",
"metadata": {},
"source": [
"Here are the counts of the responses -- there are a large number of NaN values because not every respondent was asked the question."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "13d77833",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
counts
\n",
"
\n",
"
\n",
"
values
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
1.0
\n",
"
15783
\n",
"
\n",
"
\n",
"
2.0
\n",
"
24890
\n",
"
\n",
"
\n",
"
3.0
\n",
"
1966
\n",
"
\n",
"
\n",
"
NaN
\n",
"
29751
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" counts\n",
"values \n",
"1.0 15783\n",
"2.0 24890\n",
"3.0 1966\n",
"NaN 29751"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"value_counts(gss[\"trust\"])"
]
},
{
"cell_type": "markdown",
"id": "3515c58c",
"metadata": {},
"source": [
"Although there are three possible responses, we'll treat this as a binary variable.\n",
"So we'll recode the responses so `1` means \"most people can be trusted\" and `0` means either of the other responses."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "dbb2d5e8",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"time_series = gss.groupby(\"year\")[\"y\"].mean() * 100\n",
"time_series.plot(style=\"o\")\n",
"decorate(ylabel=\"percent\", title=\"Can people be trusted?\")"
]
},
{
"cell_type": "markdown",
"id": "2506ffe4",
"metadata": {},
"source": [
"Sadly, levels of trust have been declining in the US for decades."
]
},
{
"cell_type": "markdown",
"id": "a05bc2da",
"metadata": {},
"source": [
"## Who is most trusting?\n",
"\n",
"Who do you think is most trusting, Democrats, Republicans, or independents?\n",
"To find out, we'll use another [GSS variable](https://gssdataexplorer.norc.org/variables/141/vshow), which contains responses to this question:\n",
"\n",
"> Generally speaking, do you usually think of yourself as a Republican, Democrat, Independent, or what?\n",
"\n",
"With these options:\n",
"\n",
"```\n",
"0\tStrong democrat\n",
"1\tNot very strong democrat\t\n",
"2\tIndependent, close to democrat\t\n",
"3\tIndependent (neither, no response)\t\n",
"4\tIndependent, close to republican\t\n",
"5\tNot very strong republican\t\n",
"6\tStrong republican\n",
"7\tOther party\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "e12935ee",
"metadata": {},
"source": [
"To simplify the analysis, we'll consider just three groups, Democrats (strong or not), Independent (leaning either way) and Republican (strong or not)."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "8c65cd07",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors = [\"C0\", \"C4\", \"C3\"]\n",
"table.plot(color=colors)\n",
"decorate(ylabel=\"percent\", title=\"Percent saying people can be trusted\")"
]
},
{
"cell_type": "markdown",
"id": "19c06d2d",
"metadata": {},
"source": [
"It looks like Republicans were the most trusting group, historically, but that might be changing."
]
},
{
"cell_type": "markdown",
"id": "bebc180b",
"metadata": {},
"source": [
"## Logistic Regression\n",
"\n",
"We'll use logistic regression to model changes in these responses over time and differences between groups.\n",
"\n",
"The fundamental idea of logistic regression is that each observation unit -- like a survey respondent -- has some latent propensity to choose one of two options, and we assume:\n",
"\n",
"* The latent propensities, `z[i]`, are a linear function of explanatory variables.\n",
"\n",
"* The probability a respondent chooses a particular option is `expit(z[i])`.\n",
"\n",
"Where `expit` is the function that maps from log-odds to probability (defined in `scipy.special`, also available from PyMC as `pm.math.sigmoid`).\n",
"\n",
"As a first example, we'll make a model with `year` as an explanatory variable, so we'll assume\n",
"\n",
"```\n",
"z = alpha + beta * year\n",
"```\n",
"\n",
"In a minute we'll see how to represent this model in PyMC, but first let's prepare the data.\n",
"We'll select the rows with valid data for the response variable and `year`."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "3c8e6e93",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(42639, 62)"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = gss.dropna(subset=[\"y\", \"year\"])\n",
"data.shape"
]
},
{
"cell_type": "markdown",
"id": "2ab91000",
"metadata": {},
"source": [
"And we'll extract the values as NumPy arrays."
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "b1cb2fca",
"metadata": {},
"outputs": [],
"source": [
"y = data[\"y\"].to_numpy()\n",
"year = data[\"year\"].to_numpy()"
]
},
{
"cell_type": "markdown",
"id": "9dc91d9d",
"metadata": {},
"source": [
"We'll shift `year` so it's centered at its mean (and we'll see why later)."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "ca9e87a2",
"metadata": {},
"outputs": [],
"source": [
"year_shift = data[\"year\"].mean()\n",
"year = year - year_shift"
]
},
{
"cell_type": "markdown",
"id": "7be70c97",
"metadata": {},
"source": [
"Now here's the key idea of PyMC (and MCMC in general): if you can describe the data-generating process, the sampler can generate a sample from the posterior distribution of the parameters."
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "43eb6e01",
"metadata": {},
"outputs": [],
"source": [
"with pm.Model() as logistic_model:\n",
"\n",
" # Priors for intercept and slope\n",
" alpha = pm.Normal(\"alpha\", 0, 1)\n",
" beta = pm.Normal(\"beta\", 0, 1)\n",
"\n",
" # Linear predictor (log-odds)\n",
" z = alpha + beta * year\n",
"\n",
" # The inverse logit function is called sigma\n",
" p = pm.math.sigmoid(z)\n",
"\n",
" # Bernoulli likelihood with logit link\n",
" y_obs = pm.Bernoulli(\"y_obs\", p=p, observed=y)"
]
},
{
"cell_type": "markdown",
"id": "c2a59f2a",
"metadata": {},
"source": [
"Objects created in the context manager are registered as elements of the model.\n",
"Here's a graphical representation of the model."
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "29062a7f",
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pm.model_to_graphviz(logistic_model)"
]
},
{
"cell_type": "markdown",
"id": "ce41d872",
"metadata": {},
"source": [
"## The posterior distribution\n",
"\n",
"The function that samples from the posterior distribution is called `sample`.\n",
"\n",
"```\n",
"with logistic_model:\n",
" idata = pm.sample(draws=500, tune=500)\n",
"```\n",
"\n",
"`draw` indicates the number of samples we want from each chain.\n",
"`tune` is the number of samples used to tune the chains before we start saving them."
]
},
{
"cell_type": "markdown",
"id": "e4d27bd8",
"metadata": {},
"source": [
"For the workshop, we'll use the following function, which loads the results if they are already saved, or runs the sampler otherwise."
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "4bb6a14e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loaded idata from logistic_model_idata.nc\n"
]
}
],
"source": [
"filename = \"logistic_model_idata.nc\"\n",
"idata = load_idata_or_sample(logistic_model, filename, draws=500, tune=500)"
]
},
{
"cell_type": "markdown",
"id": "09b8c8c0",
"metadata": {},
"source": [
"The result is an [ArViz `InferenceData` object](https://python.arviz.org/en/stable/api/inference_data.html), which contains several groups of data stored as [xarray `DataSet` objects](https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html)."
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "8b56d08e",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"az.plot_dist_comparison(idata, var_names=[\"beta\"])\n",
"decorate()"
]
},
{
"cell_type": "markdown",
"id": "500bb996",
"metadata": {},
"source": [
"Looking at the posterior distributions of `alpha` and `beta`, we can see that they fall comfortably within the prior distributions of these parameters, which means that the priors didn't have much effect on the results.\n",
"\n",
"As an experiment, try increasing or decreasing `sigma_prior` and see what effect it has on the posterior distributions."
]
},
{
"cell_type": "markdown",
"id": "0c1af0d8",
"metadata": {},
"source": [
"## Sampling diagnostics\n",
"\n",
"After sampling, we want to check that the process worked well — meaning:\n",
"\n",
"* All chains have effectively explored the posterior distribution, and\n",
"\n",
"* Successive draws within each chain are only weakly correlated (each draw should provide mostly new information).\n",
"\n",
"We can check these properties visually using `plot_trace`:\n",
"\n",
"* On the left, the distribution from each chain should look similar — this is evidence that the chains all converged to the same region of the posterior.\n",
"\n",
"* On the right, the sequence of draws within each chain should look like uncorrelated noise (sometimes called \"hairy caterpillars\"). It shouldn't look like a random walk and there shouldn't be flat spots, which would suggest the chain got stuck."
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "40880262",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA3wAAAEkCAYAAAB0VjORAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAAuJAAALiQE3ycutAAEAAElEQVR4nOy9d5hkZ3mmf59UOXR1jjM9eTRZAUVLIJEERoBABtsEE8xiWwYbex0We23Mb20vtsEsIIPBBC+wNsEgokASiqOs0eTU09PTOVTOVSf//viqaqY1PUmaUeLcunRJ3V3hVDr1vd/7vM8jua7r4uHh4eHh4eHh4eHh4fGSQ36+D8DDw8PDw8PDw8PDw8PjwuAVfB4eHh4eHh4eHh4eHi9RvILPw8PDw8PDw8PDw8PjJYpX8Hl4eHh4eHh4eHh4eLxE8Qo+Dw8PDw8PDw8PDw+Plyhewefh4eHh4eHh4eHh4fES5VkVfB/72Md4z3vec94v6+Hh4eHh8cuE933q4eHh4XGh8Dp8Hh4eHh4eHh4eHh4eL1G8gs/Dw8PDw8PDw8PDw+MlylkVfH//93/PihUriEajXHzxxTz44IMnXWZ8fBxJkvjKV75Cf38//f39fPKTn1x0GV3Xefe73000GmXTpk089dRT53QfHh4eHh4eL2a871MPDw8Pj+easyr41qxZwyOPPEI+n+c973kPb3/729F1fcnL3n333Rw5coQ777yTf/iHf+Duu+9u/e3222/nN3/zN8nn87zhDW/gwx/+8DO6Dw8PDw8Pjxcj3veph4eHh8dzjeS6rnuuV0okEmzfvp3vfOc7jI+P87WvfY3x8XFWrFjByMgIa9asAeCjH/0oCwsLfPnLX+ZjH/sYjz76KD/72c8AOHDgAJdffjnlcvm097Fx48Zn8fA8PDw8PDxeuHjfpx4eHh4eF5qz6vB95StfYdOmTcTjcdra2igUCqTT6SUvu2zZstb/L1++nNnZ2dbPvb29rf8PhUJUKpVndB8eHh4eHh4vRrzvUw8PDw+P55ozFnzj4+Pceuut/Nu//Ru5XI58Pk88HudUjcHJyclF/9/f33/GgzjX+/Dw8PDw8Hix4X2fenh4eHg8H5yx4KtUKkiSRFdXF7Zt83d/93cUi8VTXv5v/uZvqFarHDhwgC9/+cu8/e1vP+NBnOt9eHh4eHh4vNjwvk89PDw8PJ4Pzljwbdy4kQ996ENceumlDA0NAbT+uxQ33HADq1ev5pWvfCV/9Ed/xGte85ozHsS53oeHh4eHh8eLDe/71MPDw8Pj+eAZmbYsRXPI3JONeHh4eHh4PHO871MPDw8Pj/OJF7zu4eHh4eHh4eHh4eHxEsUr+Dw8PDw8PDw8PDw8PF6inDdJp4eHh4eHh4eHh4eHh8cLC6/D5+Hh4eHh4eHh4eHh8RLFK/g8PDw8PDw8PDw8PDxeoqhnukAsFmNwcPC5OBYPDw8Pj19CpqenX/JZcd53qYeHh4fHheR036VnLPgGBwc5cODAeT8oDw8PDw8PgA0bNjzfh3DB8b5LPTw8PDwuJKf7LvUknR4eHh4eHh4eHh4eHi9RvILPw8PDw+Mlxac//WnWrFnDqlWr+OxnP7vkZcbHx/H7/Wzbto1t27Zx9dVXt/5WKBR4wxvewJo1a7j00kvZv39/62/33nsvGzZsYPXq1bzvfe/DsqwL/ng8PDw8PDyeDWeUdHp4/DJwNFWmqttsHozzuXuO8OCRNLbjEgmodEX8DHeGWdcT5ZLlCdrDvuf7cD08PE7B4cOH+fznP8/OnTtxXZdLLrmE17/+9axateqkyw4NDbFr166Tfv+JT3yCLVu28OMf/5if/vSn/N7v/R73338/tm3z/ve/nx/96Eds3LiRt73tbXz961/nve9973PwyDw8PDw8PJ4ZXsHn8UvLgdki+2cL/NplQzw0mqZQNdk8GOeKlR30xYOoikSxZpIs6eyfLfKtJ6a4YmU7F/XG2DGRY1VXmI0DcbYMxumLB5/vh+Ph4QF8//vf5+1vfzuRSASAW265hdtvv50//uM/Puvb+N73vsdPf/pTAF7/+tfzgQ98gHQ6zejoKIODg2zcuBGA97///Xzuc5/zCj4PD49nRalusnemwNWrOp/vQ/F4ieIVfB6/dDw5nuUffnaYPTN53nrJILdcOsi7rxpu/f1lw+28bLgdx3HZPppm70yBx8YylHWLvdMFchWTwwtFshWDn++fZ2ShzHBnmDdt6+ddVy6nI+J//h6ch8cvOdPT02zdurX187JlyxgZGVnysjMzM1xyySVomsaHP/xh3vGOd7R+PzQ01Lrc4OAgMzMzTE9PL/r9smXLmJ6eXvK2b7vtNm677bbWz7lc7lk9Lg8Pj5cu6bJBvmo+34fh8RLGK/g8fmkYT1f4Xz85yMNH0/z2tSv50m9dRjyonXQ5w3L4j8cn+epDxyjVLd60bYB/ecclXLo8gaosHnudL9T53W/u4MBske88OcUX7j/Kb109zK3XryYWOPm2PTw8nj1XXXUVc3NzJ/3+lltuAUCSpNbvXNdd8jb6+vqYmpqis7OT8fFxXvWqV7Fq1SquvPLKky574m2czW0D3Hrrrdx6662tn5vuabmKQVm3GGoPnfK6Hh4ev1xYtkNPzNss9rhweAWfxy8F335yio/9cD9vvniA+//kerqiJ59YXdflJ3vn+MTPDhHUFD7y6rXcuKkXv6qc8nZ74wG+/3vX8NRkji/eP8bdBxf4rx3TfO+paf7hlq1cv677Qj4sD49fSh555JFT/u0Tn/gEk5OTrZ+np6eXzL/z+/34/eI8MDw8zJvf/GYee+wxrrzySgYHB5mammLlypWA6PgNDAxQr9fP6rZPR6ZikK0YXsHn4eHRoli3mM7V2DbkosjSma/g4XGOeC6dHi9pbEfswHdH/fzbuy/j727evGSxN1+o89v//iQf++F+PnT9Gu74g+t407aB0xZ7J3LJsgRfeNel3P1HL+e6NV3kKia/+/UdfOyH+zFt57w+Jg8Pj1Nz88038+1vf5tKpUKpVOK73/0uN99880mXSyaTLYfNXC7HnXfeyebNmwF4y1vewpe//GUA7rjjDlavXk1nZyeXXXYZMzMzrTy9r3zlK7zlLW85xyN0T9sZ9PDw+OXDaqwTmmsWD4/zjdfh83jJYtkOb7rtIf7+LZt5xSk6ba7r8t0d03z8Rwd41YYe7vrIy0k8CxfO4c4wn3r7Nt5/7Qrqps2f/dceXvPPKb71366kOxZ4xrfr4eFxdqxdu5YPfvCDbN26Fdd1+cM//MNWp+4LX/gCs7OzfPzjH2f79u381V/9FYqiYNs2v/3bv80NN9wAwJ/+6Z/yjne8gzVr1hCNRvn6178OgKIofOlLX+KWW27BMAyuu+463vWud53T8bkueGs6Dw+PE7EaJwXH2wzyuEBI7hm2Gjds2NDazfTweLFQ0S3CfpVdU3k2D8SXlEiU6iZ/efs+th9J8w+3bOGVF/Wc9+M4MFfkfV99nLBf5WvvvdyTcXl4LMEvw/dM8zGOLJRIl/WzduOr6BZBTUH2ZF4eHi9Z7j2cpFgzeeVFPUT8Xi/G45lxuu9ST9Lp8ZLjnkMLvPwf7yNXMdg21LZksbdvpsBNn91Ouqxzxx9ce0GKPYANfTG2/9kNbBtK8NpPP8AH/v1JshXjgtyXh4fHi4Rz2MS/++AC2ap3zvDweCmjm56k0+PC4hV8Hi8pfrJnjlu/uZO/vmnDKaWZP9o9y9v+9RHecskg//d9V1xwqaWqyPzjLVt43aZeHhxNccM/3ceP98xe0Pv08PB4YeK6Z1/vNRd/uuXNAXt4vJS5fEU7miJ7BZ/HBcMr+DxeMvx8/zz//Tu7ue0dF3PT1n5AzOjVDBuAO/fP8wf/uZOPfm8vb9420Or+3bl/nrFU+YIemyxL/OMtW3ndpl6CPoW/+P4+/uQ7u6ka1gW9Xw8PjxcWLi5nO6ZjOaLQ88ScHi8EJjNV7tw/f87XO7JQ4ge7Zi7AEb00cByXREjD5xV8HhcQr+DzeEnw4JEUf/ifu/jnt29jY3+cPdN5AP72Jwf5h58folQ3+eSdh3nkaIbv33o1V6xsJ9bI4Ns1lWc6VwPgN7/0KI8czQDiy+18uuk1i76N/XEG2oKMpSu88XMPMZGpnLf78PDweGEjOnxnd15pLv4kr+J7wbJnOs+OidzzfRjPCbbrEvKd+3yZaXtFzOmYztV4ZCzDpcsTS2YDv5Ap1k1+tu/kTFSPFx5ewefxomffTIEPfn0H77xyGTdu6mX7kTTfeXIagFuvX807r1jOW/7lYbpjAe76yMtZ3R3lTY0OH8Cf3rie69Z2AfDR11/Ehr4Ypu3wptu2cyxdwXFcRpOl83KsqiLzud+8mGhAJRZQefnaLjLeTJ+Hxy8N5+LSGfKprOuNEjjLeBiP556JTJXpXPX5PoznBNN2nlHM0GB7EE3xlpunYqg9yCXLEiTCPnzqi+t5Ktet50xyXjft5+R+Xqq8uN5ZHh5PYypbpTvq50M3rGH3dAHHcXnrpYP8f2/eBMBYuszb/vURrlndyVff8zLiodPvnm0aiBMPaWiKzKMffSUrOsMcTZV515cfx7Qd6qbdyst5pgQ0hS++6zImslVcV2T4/XTvHN/fOf2sbtfDw+PFwdkqB0zboTcWeFZRMR4XlrU9UZb9krgvp0o6xbp5ztcrVE1M28E5j3JF3bJfMnmWZd1ClSUeOZphKvvi2jxobgA8F6/FfYdTFKrn/v7zEHgFn8eLlkxZ5/WfeZCFUp3ffcUqvv3BqxZZl/9g1wzv/LfH+fAr1/CxN25EPccdRr+qIEkSa3qiPPCn16MpMt94dII//s7uZ33s8ZDGV37rZXx/5zRff3Si0fF7cUk5PDw8zh33rAWdkK+a3D+SIl3WL+gxeTxzXFxU+ZdjKTWYCD6j65XqYlbdeJabpSfys33zjGdeXMXRqXj4aIZi3WLbUBu98RdXXq/UmDB+LkYPN/bH8Gsv3s/a+dzweCa8eJ85j19avv7IOP9y3yhVw+amLf1c1Btb9HfXdfn03SP85ff38S/vvITfunr4Wd9nU47ynquH+YvXXwTAR761i18cXHjGtzncGeZf33UZf/eTgzguvPKiHh4dy/DVh4496+P18PB4YeK6nLVNZ9O0pVj75d7VLtbNF6yZhW46S0b/vBSJBjQC2rnLi5szqM9EDno6Xioh5a7rIkvgU2XkF9nAriyL9dFz8RFYKNZb8RUvNpLFOj96nt3ZvYLP40WB67rsmsoDcMnyBH2xIIOJIH/3ls2LOnd10+YPv7WL7zw5zXd+9yquX9d9Xo9DVeRWjMM7r1zG5sE4pu3wyTsPU9HP3XHz8hXt/O3Nm/j9bz7F4fkSQU3h03cf8Yo+D4+XMGfb47MaZhcvlYXtM8G0He49lCRTeWF2OZMlnaMX2OX5hcKh+eIzmqNqvn3Pp3lLW8hH8BkUn88Gy3aYzdfO++06LkiSxK6p/IvuvRQPamzsj535gueBmXztRXsuLD2D9eH5xiv4PF4UZCoGH/6PnWQrBrP5On95+17mCvXFlynrvOPfHuNYusInbtnMw6MZ/vX+o4DI3nvtPz/Amz63nd/44qN87p4jAKTL+jMq1AAuXd5OdzRAsWaSr5oENIVkqc7kOcpM3nLJIO+9Zpj3fe0J+tuCfPW9L+Offn6Y23d6NtYeHi81XJezjmVobvaf58bIiwbHcVFlCb8qn1NY/XNJ1bBetIvQcyWoKazrjZ7z9RzXpSviJxY4d4fPJW/PcbFs5zl3tCzWLXY3Np7PJ06jw6fKUmuT58VCNKCxe7pA1bjwhiqXDbcTOU/voeeapzdAn4/50xfnM+fxS8Mde+fQLYc3XzzAPX/8cqZzNf7o27v4u7dspr/t+DzBobkiH/j6kwy3hzmQrvDf/u8OXjbczuUr2gG4dHmCP71xHXXToaJbrZPGvz14jC89OMbLhhO8ZkMvr9vcS1/83OYUOiL+lknMAyNp7h9J8dnfuBjDcs7acesjr17LWLrCf/v6k/zHB67kX955Kb/z9R3EQ9p571J6eHg8f5xNDl+yWCdZ0tk0EEeSJLTzqJfKVgxSJf0ZLdyfa360Z5awX3RxzBeopDMaUFszai91TNulXjl3ebHrQiyonTe5omE7lHXrGclLnw1hv8LVqzvP++06LsiShCJLL7rNg5l8Ddd1sZ+D457N1wioMh0R/wW/r/NNJKAS8R8vuX64e5Yb1ncTfQ69G7yCz+MFieu6SJJEJKCiNjTbpu3yO9/YwVsvGeRN2wYAsXj52A/386Pds/zmFcv46OsuYt9sgYuXJRYVW/1twUUFYpM/f9163nHFMn5xcIGf71/Ap8q888rl7JzMsWkgfs5W0rdcOshbLhbH9ltfeZzfunqYGzf1nvF6kiTxT7+2ld/40qP89+/s5jO/fjGfuGULv//Np/j271zFxv74OR2Hh4fHC5czLer2zxUp1kyWdYSI+NRF7sL3HFpg00Cc7ugzM3co1U3SZZ11nFzwzRVqJEK+53whfSquWtVBzbDZNZXHfI6s38+VNd1RJl4i5iFnompYFJ7BPKnjuoynKwR9Cqu6Is/6OKxG8T+brzH0HDqkzuXrjKXL3LC+57zdpuu6uK6LIouCz3iBvs+XYq5Qa7lmuhf4sF3XZTZfe1FsVC2F7biUT1CTPR9zv56k0+MFh2k7vPm2hzg4V+TaNV28ekMPruvyF7fvJeRT+GjDNOWzvzjCFX93Nz/eM8sHrlvJx9+0iXBA5YqVHeeUZTPUHuI916zgP/7blbzzyuUYlsNHvrWLq//3PXz2F0fO2Qa46RT6j7+2hV9Z00lZt/jD/9y56MO+FM24hl1TeT599whv3NrPB1++ik/eOXJO9+/h4fHCRQSvn+ky4hJT2SoPH00zkam0/laqW1T0Zy6fEjmASx/B7qn8Gc9Tz5TxdIXcOWaOJkI+wo2g76aBzQuNmmkTfZHKzM6VzQNi4/HpboM1w15yts+yHR48kiIWVLlkWYLhjvB5OY5mNNJzbeRTNWxKdetZRzOdiOOKxb8kif9a5/iYyrrFjonceTuec+HxY9nWbO2F6PDNFWr8YNfx0ZbLV7S3zgdPp2bYz3g857kgFtDwndBAeHoB+FzgFXweLyhKdRNNkfnz113E6u7jO4H/7/FJHhhJ8Zlfv5j9swWKdZO7Di6QCPv48Yeu5aOvv+i87Zj4VJlf/PEr+MRbN7N9NM1rP/3AMzrBDyZCRPwqtu2ysT9O2KcwlirzxHj2lNfpivr5yntexlcfGuf7O6f5/etX87nfvFhIJl6gkiYPD4+zx+XMM3zN2sZ2XAzbIXfCplPEr7ZkjufKeLrCkxPZU1qo65ZDqnRhzFF2T+eZPMeMsZ/unWP7aBoAw3rhnP/KutUqeoo18xm/Hi82mqMQT1/c33lgnvsOJ0+6vOW4ZCsG/W1BemKB8+bS6VfF832h3hFT2eqSBWzTbOlci7LTocgSb9jSj19VnpGkczJTZTp3/HN176Ektedgnq5J8/VNnCHj+JkgIdEXD7YUX9O5GplTRNTcdXCBu5+Fa/qFJqApXL9ejOc0N/TKz7EU3Cv4PF4w7JrK86bPPYRlO1y1qmORnHKhUOePXr2W3/nmDv7427t502e30xbycecfXseGC+AQpcgSN6zv4VsfvIrbb70GVZG57d5R/uy7exg7RxeteEjjA9etRJIkDswVWyeldFlfcnB3bU+Uz73jEj76vX3smMwR8qn8891H+Oe7vE6fh8eLnSMLJXZOnnrTB4534CzHRZakRZs9Zd1iKnvuToGu6zKyUCJXMZc87zTv43x1YZ5+38+El6/tYkNfjGPpCrplUzWs53xXfCl+cXCB0cb3QLZisH+2+DwfkWAyU72gZhAPNYrvpe5CX0KKGNAU3rRtgNl8nUfGMhyaL52X4wj6FPriQQzL5sjC+bnNExlZKJFdohvd/Iycz4LPcdzWWkCRzt205end5XLdomZe+M9I833WGwsw0BZ8xs+J45x6M7s3HuDyFe1IkpC6zuZrpzRtuWlLH2/c2n/S70eTJfLVc1MWXAjmCjV+vn9+UXdceo4jOLyCz+N5p6xbJEt1tg7G+b/vv3xRzELTYECWJf7mRwcYbAuxUKzz+i19fPU9L6Mt5Lvgx9cMQn3Nhh5M2+HGTz/IB7/+JMfSlTNc82TesKWf//E6IUn94Nd38LN980te7uVru/jor17Ef/u/TzKRqfC2ywZ599XLn/mD8PDweEGQLOlntKdvrgn8qkwkoJ60698ZOffzniRJXLe2C5elpXDN2aELkSHefLznatoR0BQCmoJhOaztiXI0WeFo8sLY1o+lyhycO/vCTT9htvyFgO247JzKLVl4PVsOzRdbcrmrzmFkombYPDCSAlwCqnzepJDzhTqKDG1BH0cuwPvhlRf1LDnz33yt7fP4mhu2w67JPCDGSy4bTpzT9XtiAa5a2dH6OV3WqT4LyXeTVEk/bVB48xwSD2kcSZafsTLgvpFkayMhWarzw93Hs+pGFkr8YNcMZd1ClSWuWtVxyiiOimFTrJ1c6M4V6s9o7vR805y5thvdyoG2IM+19bBX8Hk873zx/qN84b4xJEliMLF4APtbT0zyqbtG6Aj7+dUtfWwfTfPJt23jT167/jkfel3TE+VTb9/GfX/yCoYSISTEIuneQ8nTnhhPxb+/73JeeVEPqZLOWz//MFVj8cnqXVcu5+aLB3nvV58goCl0Rfx86s7DjCbP/46mh4fHc0NfPID/DKYozd3zjf1xLh5qYzAhFp/JUh3H4SRnN8NyuGPv3GnPQ5btNMxFXOwl5uGMxmJ8Jnf+c8aat93xtEL1TOfNn++f56GjKRzXJVcxcBrmFhcC3XKe0QzQMym+LwSKLPGmbQPnbLhzNh3BiUy1MbvmslDUT5Jmnuo1qZk2uapBXzxIdyxw1l2gPdN5dOvURUtZF8ciyRcmo/IHu2aYWkJ+3CxYzfM4TxrQFF61oQdJEnLOEzt8Z2Pgki7rZBrdSMtymM7XWp+3Z8PDR9Mcy5x6U1tVZIY7wowmy+SrxjMeOVnWHmJFp1AVVHUb13VbclrHdbl8RTtBTUGWJY4slJk5RQ7igyMp7hs5WVZsO+4pJezPJc3nx3FdDMthJl8j7H9uZ3+9gs/jeWPfTIG6aXPrDav56OvXn/T3n+6Z5T8fn+Rtlw7y3aemOTBb5PZbrzkr18sLSX9bkL98wwaGO8McS1f4k+/u4VWfup+vbD92TjtJEb+KT5WJBlQ+cO1KQj6VnZM57tg717rMX/zqRWzoj/HuLz9OsWahWw6///92PqPwWw8Pj+cfnyqhnaGN1pyRmivUUBW5FRUzmamSKtfZO1NYdPlkqY5hO6c1TrAcl0PzRVwXllpLNxeXjisWkTsnz58RRFBTeMW67pO6Jj/aM3vKBRyITsv63ihVw+bQfInxTOWCBVPbjnvW3TGfIrfm9tb0RF8Qrqam7fCzffOnfT6X4oe7ZxlPV3h0LHPa23ZxcVyXsXSZ2tO+f5ozdcCi76b2sI83bRtgLFUhU9bPqiioGTbH0pXTzrmatsN8sc7RhfIFmW3vivhZqhndLFjPZ1aeaTut12yhWG997mqGzR375k53VUB8VkcaslYHF78qLylHfSacbkOmbtrEglqjU3X6wrtYN09ZwA93hOmJie5Xc+Og2S1c3xujLx5EkSWqhsW9h5JIwNFUme1H0otu53Wb+1ru7Yseg+u+IKIukiWRG32iaVZv7LjT8jNpGpwrXsHn8bzgui5/f8dBHh3L4FeVRTLOumnz3q8+zu//x05uWN/Nu7/6OFsG4tx+6zWLjFxeCKzrjbL9z67n929YzQ93z/In39kNiByts/0iCmhKq4jNV02SjZPdyEIJ23H557dvoy8e4D1fe5zfefkq/JrC//rJgQvzgDw8PC4oo8kKxfrpF2TNU8dossxossye6TxAa2Hoe1pcTK5isqIzjKbIjCZLzBVOXvTbjtuaGVnK8bLZpGnOEp0uksayHXadQwC1BOimzegS8rtC1TitHGxdb4xLlyfOWep2roxnKqRPYQjxdLYOtdEZFVlgRxZKBLXnfylVM20c16UjfPYdx2JdbFBWDOu0c06245Iq6bx8bTeqLJ9kwa8p4s1TqYtFeZN81WD7kTQLxTqW455Vh695TM3/LkWz4LIaC+cTF8uu657StMS0nbNaWF+9uvMktRHANas7aQv5zqtjbNWwW2Hug4lQK+dPVSQuHjrze765znBdYSnTFw+cUvZ4rgR9p76dqmGzZzpPvhnLcIqn1XFc7j2UZGdDtvp0HjiS4qGjonhrPpZMxWidY+4fSTFXqOFXFYY7w5i2S1fUz9qexWvBQtVc8vNbrlvPKBT+4aPpJbu8zxbnBAO+5ljQY2MZnnwOnFaf/7OUxy8Vruu2vhD+/b2X84olQsX//qcHuX8kxdbBNv7rqRn+8ZYt/H9v3vSC2EVdioCm8JZLBrn91mv49K9vA+Cj39/LlX//Cz7+owM8NpY569mF69d381tXDwPwVz/YxwMjKTRF5jO/cTFBTeGD39jBP7x1Mz/YOcvdB164jlQeHh6LcRFSsVWd4VNai7cu21g9ZSsGVd0iVzVJluqkSqJL8nRJXVtIQ5VlbMclWzFJFk9e+Diui3wa6/eOiJ+h9hCOK4wgNg2cOvuzZtpMZCpnbRAynavxyFiGZLF+0t/8msKTp3Au/sXBBX5xMEnVsKjqNqu7I8SDx+Wspu2cJIV/Oqc6xlzFWKTI2DwQp+ssA513TORa84iz+Ro+5cJ/Ny313J1ILKDx+s195/Q92Sy0XRfO9BUlS8ejA57eSW7O9FUNe9HfKoaQdNqui6bIS0qJn06xZtLfFlwyZ7LZPexvCzQKr+MyuSYLRZ07Dyw9G799NN0y2zkdp5J05qsGV63sYDARombYi4rHyUz1rObYTrpt9/hmi27ZrcJbU2SOpkqnLXzh+OZQ8ymwHZfu2NlldB6cK/Lw0cWdsgOzRXZN5YkFxTnlVDSL3mLdZNNAnOHOpc2eZFni9Zv7uHy4fcm/L2sPs7Ev1rhN8SBM28GwHHyKxGXLE3RF/CiyxPYjKXZP59FkmdDT5JCPHcu0ZgFPZCZfW+Ri2sS0T+9I3BsLEAueP+fR5uvjnNDhS5fFa63I0jOSho8slJgviPNC1bBYOMM5wiv4PJ5TCjWTT989QqqkL+rqATw1mSNT1nnwSJpoQEWS4CcfvpYbN/U9T0d77oQaC7kvvPNSPvlrWynWTX73m0/x2LEsruvyzccmODBbPKtdxm/+9pXcsL6byUyVmz63ndt+82IUSeIvvr+PP3vdOv78e3tOaVHs4eHxwqL5hR/0q6zuOTulwnSuRrFm4rguFd1GlWXmCnXyJxQq4+kKsYDGkWSJuimKosFEkGSxvqjYcVxQJIn2sI9UafHCoKxbHJgtki7pOK7LA0dS/OgE84Sn0+ywnOo0NpZabOLQnClaqtCUGn9fqjB77cZeemIB5gs6j49nifjVRZ3HyWyVvdOFk67XpFA1+cnepWVxDxxJLSo0K7pN6Sxn+AYTQbKNxVrVsHlq6tx356dz1TMu0Jrols0jYxkMy2EiU1lStlk1LHZMZNkxIR7TkYXSGQuQZi7i6bIZQUgcI36Vn++fJ+RTUE5hvlPSTewTXBcH2oLctLUfnyLjU+SzkkLeN5JiKls5aWyhZtj8fL8o5DoiftpDvpZ5yolvK1WRWh2ufTOFRdmPly5PsOwsgtpPdZmnJnPkqgZ10+bOA/OL3Fl3TuV45DSy2CYTmQpl/fjnt2niAaJTv7PR7ZvJ17j3cAqtUQ3edzi55Pf9UGO+12505pd1hCmdoUhsYlgOpadFAxxJlpjIVCjWzEWOuE9XLDVfy1hAIxbQTrnx4jguFd2iYlhLrnuWtYdahZVzQsf2roML+DWFsF9FkSXyFYOKYaPKEntnCvziaREMr9nYe5Kk84ljWQ7OlSguMWpT0S0ePpo+5YbQ+c5bbN6L67oENIXeWKB1+5cuTzCQONkk6Ezkq2brtX50LHNaWTZ4BZ/Hc0SxbvKzffO0hXzcfus1J+1AfePRCX7ji4/w6198lPFMhV9/2TK+9cGrGDqLk/MLEVWRuW5tF//0a1t54i9exZUrOyjpFnfsneeWLzzM1o/fyfu+9gSGJXaoJzPVk06GiiwhyxIDiSD/eMsWEmE/v3/9ahzX5dtPTrNpIM5Hv7/3gtpwe3h4nF/2TBfOeqEf8Sv4VBnHcZnN19g0EONlw+0ETnBJnMpVKekmsiThImRCqizzxQfGmMwc39l2GpLOoKYsyvUDUTQ+dixDpiwKvsuG21nfGz3lcTVNK04lW987U1gk3zQsh5BPXSSFa563mhL2pebndNPh0uUJVndHqBgWRxbKLQOb5t9P55Kp2/YiqZlpO+ybKeC6wnzkxMLpaKp8xtno2XyNQ3NFemIB2sJikTpfrJN+Bg6FC0X9rGe+jxfYLrP5pe+vXLewHbio0S05MFfkkbE0+2YKp8y/a75+dmPO6VTfJamyLjpjLly1qoP40zLXmldrvoam7VA3beYKNR45mqGiWyRCGq/e0HPGx1qoGhxeKLeMSJo0a0zHcdk9lSfok1neEWo9L03yVZOaabNrKs/DRzOLirJizTypwFmKzQPx1vtsKlttRTHdsL6HhWKdmXwNRZaIBRd3mc70Xey6LuXGxk0T0XkXD06Wjt9G1K+yqivc2oQo1Exm8yefN7qifq5d04UqS9RMm4Xi2Zu2xILaoo75iVy9qpPhjuPrrx/vmeXACc+lT5XRFJmQT2EmX2sYQp2MYTs8OpZh+5E0lSWKwvtHkq15PMsW5yhRBMPRZJkdE1lGk2WCPoWBtiAdET+bB+KLnElBqCGa3a4m45kKddNa8jVvbj6dam7XsJzzuqHefF2lhlx+qD2E2TiGo6kyd+4/s2LLdV1+sGumdd440ZDmbN7XXsHn8Zwwnq7wg10zrUVHE9tx+dgP9/PJOw8zlAgxmizzqbdt43+8/qLTzpC8mFBkSXw5BDS+8dtXsPuvX8M33n8F16/vxqfK7JrKc8Mn72PL39zJWz//MJ+88zAgdl9TJR1ZgkuXCznEgbkib9zWz2AiyJGFEltOI7vy8Phl5dOf/jRr1qxh1apVfPazn13yMuPj4/j9frZt28a2bdu4+uqrW3/70z/9U9avX8/WrVt57Wtfy9TUVOtvw8PDbNy4sXW9AwfOdp72uPYqXTZOuzi0bIeaYTPcGaE3HuCivhjpss5YukIipC1apNiOcK6UGy5/tuMynilj2g76CQu/pqRz51SeXGNx1NyV96ky7WEfkYCG64oZwdPNS59YgJz60Z7gNmg7tIe1RRl/jitkaz0xf+syT+e+kSQ/2DXT6nKajrNIGaJb9unnqdzFDpK65XA0VcZyhFOebtnsmMgylioT8imt7xzrBCONExlPV5gt1HhiPEugYVQS0BQsx8W0bGbytXOQuVbPOgai+Xy7rujGLrVI7Y4FuGx5onVcAHXD5miqfEqbfscVXdL5Qo3JbPWUHVsJiblCDdNxmC/UT3IzbT7k5izfkYUyjx3LUjOERPHugws8Np5tzXudDkWWaQ/5TtoAbb4ejutS1i3uOZRc9LsmauP11k0bCeiNH5fp7pjI8dBomsIpjsNuvC9+sneu9Vo+NZlj70wBy3aYK9TYMtjGqq4IYZ961vEUTaxG9/PEWbPm5xIA6UTpn9iU+N6O6dZll2qs7psRkRmSJFHRLQ7NlbBsF8dxz6gk2jOdb3WBm/EHvbEAffEgQZ9y0mbKiYZJnRE/24bamC/WmS+c2rNAeBT08brNfSe5C4N4zuMhtfWYfYqE64IqyUT8Qlre3xZElSX8qsSxdBnLcU6aL9w9leexY4s7XJoi0x0NoFsOtVO8Z09VHE9kKyjnMaPGRRj+Rfwq+arB7qk8Eb9Kuiw2ftpC2infl08/5uY5xm38c7a8NFbUHi9YRpMlHj6aZstgG59/56XIT7NvzjTc4EJ+hYlslc+/8xLefPHJTksvJTRFZutQG++6cjkgdtL2f/y1fOuDV/Ibly9r5f79cPcsL/vbu9n28bt46+cf5svbj/GB61byqot6+IMb1lComnzxgTFu3zXD7Dk6s3l4vFQ5fPgwn//859m5cye7du3iM5/5DEePHl3yskNDQ+zatYtdu3bx8MMPt35/ww03sHfvXnbv3s1b3vIW/uAP/mDR9X7+85+3rrdhw4azPramG926nuhpXQiPpSscmCsyl69h2W7LzW2hUOfIQnlRN8ZpSLliQRUJWN8XpT8eYHlHaJGBh6rIdMcCdIR8qLLE0VS5NevnuC7pkk48qLGhL8bP98/z+DEhDVyq63Vgtohu2qd9DCdm7m3sj7F1sI2VXceLSEWWeMW6LnTToVAzl7Sgv3FTLyGfQkk3cV2o6hZPjmdFJ7Lhqnk6c6yybi3qbkX8Km/c2o+myEQCCu1hPxXdYqGoE/Grra7mRLa65FzhpcMJXtaYRWoufnsbBWtZt3lyPMudF2C2ulnUmo5QhCz1muQqOl9/dJx/+PkhQMxhOq4ocp8Yz3Ln/pPn2lyEGUumYjCRrlCoLW3cki7XuXRZOz5FZixdOakz2Sy4mm6dumUTC6gs7whzUV+MaEBjZWeYx45lz1iEvHGr2NB8+nurWZg0Z6BWdoZbx3HiTSZCPnyKzHyxjtOYHWw+9uvXd+M4LpnK0p2b8UyFvTMF1vfGSJd0frh7lnhQIxbUKOsWuybzlHWLQtWkWDc5NHc8Iqk5O3m6LrGmyMSD2qL3rOtyQodPaj2WqWwV12WRTDGxhCFPSTd5ajJH1bDwKTK98QAjCyXG0uVF3c1FjzNdwXZEZ/G6NV2tc0m6pBPQFEI+hTv3z/P1R8dbnx9NkRuxEeLnkYUSpZpFUFM4OFdcVHSX6mZrFtGyRaesoltLmum0h33YjV9bTnPWU2zuJMI+NFlm30yBx8dzzBd1XFfc9z2HFkcwXL+++yRJ50KhTsWw0GSJb++YWvS8N5eip4q+KNTMRdLbZ4uEUAjUTbv1OHMVg4dG01y6vJ25Qn3JWcMTkRvRK838adcFxzkeF/J0M6+Trn9eHomHxynYN1Nkx/jJ8w1zhRr/8fgk9xxKcni+xFsvHuTJv3jVi2pe73ziVxU29se55dJB3nGFKAR/6+ph9v/Na/n6+y/nHVcsa8krvvrQODd+5kFcSXwB/NG3dvOxH+6nUDt918DD45eB73//+7z97W8nEokQjUa55ZZbuP3228/pNm688UY0TexGX3bZZUxMTDzr45IbYbuOS6tjtRTFmknIrxILqMwV6qQrokMCYkF0LFPh0uXH3fuau/HXrukioCnsnMwTD/oI+9WWbKmsW1QNiy0DcQYSQRRFplQ3W/b6jgO5qkG2olMzbV69oaclu39oNH2StOlYunLGGIjOEwxQbMelbjmLZmYs2+GuAwuMp4UTad20SZbqrQWz67qU6hYSoMoyygmL4e2jaSazVXTr9JLOE+dmQBQiu6byuK5LxKeyLBEkVzVZ1xulYlgcaHTcfIpMR3ixgUuhZvKDXTPcfzgF0JIszhd1+uIBDMsm5FN5+dqu1nWevvhvdoxsxyXkU8/aTbH1OjZkW0t1+Ao1i86Iv9WZlSQJFxfTcqgY1klRCuJ4xEI0qIou5T2Hkks6vB5LV/jmYxP8ypouFElqLZyzFYNfHFxoPc+FmoFflVEVmclslbsPLjCaLBHxK0T8Kjdu6l206btzMndSzEaypFPWrZM6FzXDZlVXBFWWqOoW+aqJbjajRI5fdrZwXNKYLNZ5YCRFzbSxHVdIOnWTurn0It+yRYdveYeYK4sGVNpCProjfgpVk0PzJaazVUZTZXyK3JLPnsjppHW1honNibOsQhoqzjXSCY8lHtKIB1UOzZeOXy5wstlTs8EtXHjFfGNn2I9uOafsXj12LEO6VD8+M3fCUy1LYn0mSRIdYV/rtX795j40RRYB53WTPdMFRlMlshWx7mgWrc3u60OjottWNW32zBQYS4nu+PHjdpkv1Hn0aIY9M3lAnPvURmFp2y6ZssGRpIgB6Yn5aQ/7sGyXTQNxrlq1WNKZLNVPMtoJ+RX8qohQqRj2ovdJR8RPPKgtKXfOVgxqhsNs4eyk92fDyq4Iwx3hllOs3vhcgtjM2DdTOGO3rqJbQtJZbW50CCl2svFanqnj/Nym/nn80nDn/nlWd0eW7Nbtmynwvq89QdCnUKoZrOgK87IV7cRDL4wA2xcSYb/KlsE2tgy2tX73P9+wgT9+zVpGk2IH7859c2wfTXPtJ+4l6FN42XA7Lxtu5/Wb++iKnp3rnIfHS4Xp6Wm2bt3a+nnZsmWMjIwsedmZmRkuueQSNE3jwx/+MO94xztOuswXvvAFbrzxxkW/u+mmm3Ach5tuuomPfexjqOrJX6W33XYbt912W+vnbDbHWMOGe7ZQw0UserJVo1Uc2bbDp+46TMSn4EoSjuvgNiRgYb/a2pVOnDB301x0zuRrJIIaEb/KkxNZ9s8W2TrURk8swMG5IkeTZVb3REiVRXD2zinRrbioL0amrJMq68SCGkeSZZZ3HA9DNu2TF47XrO5gZKFERbeEJOtpc0DXrekiesLidO9MgYhfJVXSG7vbUqtQC/hUeuMBDMthx0SO9b0x1vVGcVxRbI4slBhoCxINaKzvjTKaLAsHP1VCbyzkz4TrCjmc4wgJ40V9MUq6xaH5ErmqQX9bsFVcgli0P70LFPIppEoGQdWiI+qnbto8fixLsW7SHw+QLhtkG4Wx7bjUTJtfHFjgurVdrc6MYTtMZaus64myrie65I7+aLJM2K+0shdLdbMlvZ0v1qga9pJB58OdYTqjfrYfSTUes9syY/Gr8qICvIntiCVmsiwkebO5Opmy0brv5u3olkNIU1Dk5pyZ+FvNtCnrVqtgMS0XpVGcgyiwV3REuG6tjwNzRSIBla6IvyXLXdkZ4emquSfGs0KS+LSXtWrYDLWHkGWJuuVwYK5IXzxAtxZY1DVsGo2EfSoBnwKS2FywHZcdEzl069TvFxGKLcxhgppCe9jHdK7KobkimwZiSJLYRLBsR7yfTiggmtLqUxVZjuMyW6gtMrUBsTHSfG1kSWo9t35VFCk7p3Jcv76b9pCPfNU8SRbZ7P46LsiyDC6s7omQOY1s/NB8qdXN3jWdb83DDSSCjC5YtAWFvNB0nEYXyW0Va67rMl/QCfmUlktuV8zfcvWdydUIakrruYkFNK5fwo09VzV47FgG3XbY3N1GvmLw5ESOy1ckMCwXyxXnieHOEKbtkK3o5CoGM/kqdcMhqClkyjrRgIZPlTk8L4rPE30fVnSGqRo2AZ9KoWYter0qusW63uhx9USxTlfEjyxLHJ4vkSzVuHZN55LP37ngNkx5yrrFcGeYaEATBlyKRHPfZjJb4fLhBPHg8TVwsW7iV+VFGZeaIhMLaq33mOOKz+K9h1JoinTGc6HX4fO4IOybKSw5xHvvoSRv+9dHMB2H3pifn/3hy/mHt25tyWQ8zo6QTxSCv3H5Mr76viv44e9fQ91yyFcNwj6FOw/Mk24s7D599wh7pwte98/jJcNVV13F8PDwSf/+9//+3wEWzQmf6n3f19fH1NQUTz31FN/61rf467/+ax599NFFl/niF7/I3r17+cu//MvW77Zv387OnTvZvn07e/fu5ZOf/OSSt3/rrbdy4MCB1r9tibbGjJNYZLuu2P1+aDTdWrCajsvKrkijA2fhuCDJYFoOpu20pDw/3DPXClfeM51nZL7E7qk8FcPmor5oqzvXul3LETNwlkNFt4j4VVyHVjyET5XJlcUCIxZQ+fRdIzzRkDSK+bQTJWguIwti130qu/QcWr5mMnfC7rjjuByYLVKqW61FSdCn0N8WpFA1CfuUVuHYNMJQGnbu63qi+BQZvyojSWKBazoOj45lOTBXxHKcRlGy2CbftEWxDMc7fUGfwpu2DRDQFKaywiVTa7hH7p8ttIxCnm5KAsLh9Pp13azoEoVw0zEQF46mKtw3kuJYpsLP9s2zb6bAz/fNka8t7ua08uNsl5l8jXVLGOPsnc7zeGP+DeCeQ0l2NDK6nhzPMZWtLhnNMZGpcN/hJHpjNtFxxIbhNas7uXFTH5c1vmPrps2d+0VA+0y+Ss2wyZQNinWLRFg7SXIpScI4bCAR5D8en6I94iPQyB1suR82ZIm261I1LAYTQS7qizHQFmJVd5h7Di3QE/Vz3+FUq9M4la2SqegnFTCxgEpAk1uf25phUzdtNvTHuO9wkopu0R0NcNWqjtZ1F3eoJMo1i2hARZNlJEQRVjdtXnlRD91RP21LvL5w3ATj4qEEJd1iJl8joCoMtYfQTUd0L2UJ3bLxa8oiExPLcQlqCuYpJILjmQo7J3IENHlR4Hapbra6qrIs4W90aZKlOtmKQVBT2DGRI1Mx8C+R99gstFzXRZMlfKqQazuuyCN8eqyD47is7YnQHQvQEwuQreitQuhYusLemSJj6Qp1y6HYKJJ2TGR5aDTNqzf00Bbysa43iovLwdkiNdNGk+WWCmA2X2N5R7i1oTOWKjOTq6Jb9iKlQNiv0hcPEg2oGJbD3YcWqOgWMhKOA35VxqeK82CqseGlWw7tYT9HU2XuOZRk+2iavTPCpffaNV0tSWfdtHFdYe4zV6jTEfYx8DSZcLZiCGm6Jd4bB06QpSbCGpbttjrqp2LvdKEVqH4qfrRnjnsPJZnP13hgJEWpbpIIa1yxor2Vv7xtKMFDRzM8Pp5pfa7vPZTkp3vmFgXW+1SZ69d1tzbyHdclXzMY7ggT9KmnnMFt4hV8HucN13X5yvZjFGomf/SadVy//uRdnTv2zWHZDu+6cpg3bOln93SBzYPxF2zG3ouF1d1RbrlkAFWR+f7Oaa5Z1cG6niiFmsmRZJlf/+Ij/Mon7uX/3H3EK/w8XvQ88sgjjI+Pn/TvP/3TPzE0NMTk5GTrstPT0wwODp50G36/n85OsYM7PDzMm9/8Zh577LHW3//rv/6Lz3zmM/z4xz8mGDze8WjeVjQa5QMf+MBJReLpWNWYYXNdUfZZjSLuwFyRx8YyVAyL2VwNWRIdpUTI13LVfGoiJwwr6hbgthaGk9kqR9NlrMYu+J5p0U2D41JAy3EJ+8VMlW46jcWjWFzqlthtbgtr5Gsmhu2wdbCNrogft2ECc2LXwrRdpnJivmioPcS2oTZAzMLsmylgOy57pvNPM6YQ8nOfIrcWNHXTZiYnDFAOz5fIlEUu3kxOLH5tR0i6gj6FoE9hZVeE/bNFrlndieOKBVu2EdB8z8EkP9s3v0hOd++hZCu+wjmheHhiPIvtuORrJooss743xorOML3xAIWaiW07PNm4zIlMZKs8OZFlrljHdWks3iz8mpjL0k1bRA84DjXDauQZaovytZoFX90S8tWApmBYDv/vsUmcRqfmwFyRZLFOqTE/tLwj3Cps+uJB2sM+ZEkSz98Js9vZskGuYrJtqA2fImM3Fvzf2zHN93fOLMpb628Lsn+mwNFkhVS5zkKxTnfUR19b4CRRme2I99zBuSJT2Qrre2MnuWw7ruhuNZ+zXNXAsGyOLJR4eDSDLEksFOvM5qqtRXQ0oJKpGCfFaiTCPqIBtdXFHE2WmcxWWdEZRpGFMdFDR9IYlsNQe5B81Vhku1+sGUzlqowslLioL4YswWy+zt0HFshXDaIBlY6nZZ4ZlsORBdEhWijW6Yj4uHlbPyDmT7cNtaEoMi9f282xdIXHj+VY3xtFUSRqhs3IfAnXdRtGJ6dwfbQd8jWTiF/Df8J6p246LTObeFBj82CcXMVgRWeEgbYg4YZb57F0haUUf50RP6/e0EMsoFGomTx2LEu+IrIPR1NlDj5tjs+wHA7NlZhIV5Al4fIL4n1WM2xCftHJbnYOA5rCbKFOdzRAzbRb+XWuAw4uflWhrFscbkhP66ZNIqQJuaHjsm+mwM6pPMWaxdFUpXUcAU3hor4o2bLBvtlCY+PleLbfWKrM7qkc0YDKqs4IhumwrD1Ed9TPRX0xrl4lzt3N68wX6oylyjiOy8/3z1M1bPI1g3xVnCPmi/VWxAWI7vTIQon9swUCmsK6niiVhrnRobkSFcPmR3tmWxtrS1Gsm63rnIqmjDsW0ogEVCq6jV9VaGvMmr5ibTfzhRoLRZ27Dizw3R3HDcLG0hWSRb0lDU+VdH64a4ZvPDohPs+N90NJN9EU6bQmWuAVfB7nEdsRJ5jc0z4gjuPyiTsOces3d3DngQX+7bdexpUr2vnbnx4kcYqdNo9z569u2kh/PMjNFw/x2XtGee2nH8B2XG77zUt46q9ezV/ftAHLcZAkiZ2TuUW7kx4eLxVuvvlmvv3tb1OpVCiVSnz3u9/l5ptvPulyyWQSyxKLz1wux5133snmzZsBuOuuu/jzP/9z7rjjjlZRCFCpVCgWxefGsiz+67/+iy1btpzVcRmWcN5c2RWhZgjDk7aQj4t6oxxZKDFfrBPxq6iKxLF0laphs6w9RNCncvnKdtZ0R9g7nadu2miK3DIbsB2XgCq6VMFGkfhkY266ubljOy7Fusl4Y/ZOtxxUWSZd0TmarDCyUEaWJApVk5H5EooiirnmAv7EgPM79s0xlBAL0SPJUmsGK1XWGw6Y4rjkp3VZVRnWdEdaEqWybiFJtOzWm/OAzeLSbNi5P3EsS75mMpOrYlgOharoOjSLAsN22NAf48ZNvYts8mumTaLRETUbkj7Hddg1KZ5DWZLIVQwh2ZsvMtwRFkYKDeMSIa87UbInzCfW9cQwbIfNA3EOzBXZNtRGxK8iS5KYoWkYpfhUmY6wb9EcXzPOotm9e2g0Tbpc59B8kYWSznSuSn9bkLaQr7WQzFZ0qoZFRbd4dCyD64rux1y+xpPjWUp1k1zFYLgzTCyosmM8h227DUmnSyLsQ5ZoLVwDmsKmgThre6JEAiqOIyIA+hNBjqWqJ0lZLcehM+zj6tWdxIM+xtJlksU6P949Q75qoMlyy3gk1HBO3D9bxKcoXNQXI+xXCGgKB+eLHEmVW2ZAbSEfm/rjrY5pk5GFEtes7mR5w9G1vy2ALEncP5ISr6EDC6U6B2aLHEtXOJqqsG/meNE4V6gzmavSEfbx2k29dEUDLdnzjokcmiIvyid0HLHxcmCuyM7JHAfnitx1YJ6nJvOA6MI/MCKcPb/95BQS0B7W2DWZp1gTctvxrChkgppy0nzlj/fMUqybDZmqmCM8OHf8eLsaBQyI4mX3VJ6ZfI1Mw71xz3SBtpCPa1Z3ki7rJxXIdx1YaM0kpso6c4U6tkNrs6Yz6l/UtXURv39yIsey9hCSKzGyUGLbUBtbh9qQELOfjgOJkCY+Y5bDRKbK7qk8+arJ/tkCxZpJR9hPuS5cY1tRLa7b+oznqgaSJLFloI2uqJ/LVxxXcs3ma4wslFnZHWG4PdzKZo74VRaKdcbTFVJlA9cVs3im46IqEhPZKpmyjl+TuXpVJxv6xXMnupMFTMch3JiPtZzjzqYSi2NkTMtp5XhO56rMF+vodnOmWXx2uqK+JWdfm4hzyumLrMFEEFWRSBX11uz2VLbKI0czSJJENKAyla0y0ObHdeDh0Uyrq6dbDveNJEWxjzCd6oz6xflYFzOJYb9Kpmxg2mc+Fq/g83jW1E2bLz4gXPD+7ubNDHeGF/3t/f/+BF956BiHF0r86Pd/hZ5YgN/5xg4+dtPGlszE49kT0BT++e3b+MHuGf7+LZtZ3xvlNf98P//x+CR+VeE1G3v549esA8QX383/8hC//e9PcGShdIZb9vB48bB27Vo++MEPsnXrVrZt28aHPvQhVq5cCYh5vL/6q78ChDRz27ZtbN26lWuvvZb3ve993HDDDQD83u/9HtVqlZtuuolt27bxqle9CoCFhQWuu+46tmzZwtatW9E0jT//8z8/q+MSNut18hWjtSlWN0WgdkfETyygUTNEcLoqS0jARKZK1bCI+jVsV8gce+MB6qbD0VSltYDpiQXpivkZS1VY3hFiY3+M9b1ROqOiE2PaDrrpkC4byLJYDDYXclO5Kl1RP50RH50RH4WayfbRDP/rx/tbeYELxXorK8txXSazVYo1E0WSWovnZsexboiFnyTRCgW+enUntgOdUR/7Z8WCNV8x0U2bimHhIh7bqq4IUb/YBAxoCsvaQ7RHhKtoU6L+wJEkkYYU1XZckkWdaFBrzKuJ57olB2ws1vbNFHn8WBZJkuiO+fGrMkFNIRHWqJuiEHccMdczk6tTrJnIsrRIAmY5LpsH2ogFFHIVndl8jUuXJdg0EGcmVyUW1Aj7VRxE/p9u2Xx/5wyTJxhJtDp8Jywim8c8l68zk6vRGfHRGw+0og9KdUtI6xyRxVgzLfyaQtV0iAU0pnM1RhZKHGs4L+6fLZKrGTiueH5mC3UR6dEozOcKNX6wa4aFYr1lktETD1ComiiyhE9ZrLZxXZgp1JGQsBxRkExkq+ydKfKtJ6aIBVUc10WVJXyqQiwoujtTuSrxoEZvXHThQj6VYs1ix2SOUt1kNFninkMLJJ+WSbmxLy6MjeqisPjh7lnqpoh3aHb4EiEfq7ojVHThBnriQt6nyrSHxCzqfzw+Qalu8uR4FsO2edX6HnJVg2LteCf40WMZclWD7migtenwsuF2dk7mkSSJJ8dzohvvOrSHNKqGTaqkt2bFAprCRb0xJElqRXQ4jtt6jXXT5gc7Z9BNm55YgK6of5HMN1WsM9UoGE3bFZm8rsueqTzZioHtODw4kuKpiRwLxTpj6cUmN7WGLPypqRzluklvLMCBuQK2Q6vDNnfCc2y7sLonjOu6/OcTU8IIxXF5aDTN7qk8IwslTMtBUyUyjXNV01Dp2jVddEX9dIT91C3xmpi2g0+RqTc2MRwXVEVCkiRGk2UOzBZYKNaYylQ5MFc8wUBJRHzkKgZPTWVZKNbxqxKyLCJLdMslFtBaURk10yJTMfApEtP5GvceSorNrka39KpVHbxp2wB+VeGa1WKTrhkDFg1oDCZCVEy71RGMBjQkxGxoWbca3UNxvowFRWdeN51T5hS6rovlOGd0nU2EfMzmazzZkGU7rsvu6TyH5ovsnynwz3eNNOJgJNb3RSnWzdYGxkSmQrlmMd94/YI+hbXdUcbTFR4/lsFxhWR2uCNMf1vAm+HzuPDopsOhedECP5FC1eSmz23nwSNpXrWhmx9/6FpUReI9X32c91yzgl+/fNnzdMQvXTYNxLn1Fav5zD2j/MMtW7nl0kH+8vt7+R/f27vIEvm3r13Jg392PQNtQd7w2e2Ldkg9PF7sfOQjH2F0dJSjR4/yoQ99qPX73/md3+HjH/84AG95y1vYt28fu3fvZt++ffzhH/5h63JHjhxhZmamFb1w9913A7By5Up27drFnj172L9/P1/84hcXyT1Ph9so2JZ1hOmJB9gxnuPIQomApnDtmk6uX99Nrmowlq4gSxKDiRALpTqm7TTkdFXiIR+XLEtQN21qpjAZWdsTYa5QQ5VkHj+WJVsx6Ij6kSSoNbpytuM2wp5dOiN+XFe4Ic4XdHTLoS2oMtQewtcwBeiK+JnJ1/nig2NUdBFcXG90LgxLFI6qIjHUHmpJqzojft60baBlwhEPaPzbg8fQTTFHFA9q7J0psn+2QEW32DWdY75Yx7JcpnNVZnM1prLVVifRbMiwVnZGCGgKGwfiRAIa0YBGPKQx0BZksJHP9eBIikeOZlozQs0u4UKxjtoIh9421Ea+anJkoYRu2QQ0mXU9MbpjfgYTIUq6SUW3WNUVYSZfY9tQ2yJHyaYs7M4DSbSGy2l/W4B7DyVZ1xfl0uUJOsN+HNflkaMZRpNlogFtkYvoiQYbg4lQo1MpFp51y6ai2zw1kce0XaonnK9txxEySdshGtAI+RQhZayLY642iovNA3E2DcSIBUTR5SKK2CtWdGBYDpbtkAj52DwQx3Zc1vREWd4e4miyTM2waQtpBH2Ll4WuC21BjSfHsw35a4RC1aTSkJwemCtiNzYQMhUdWRKuk0eTZb715CRjqTKlukVfPMA1qzt57zXDRAMa7WE/k9nqorgI13U5vFDk8WMZxpJldk7mOZaq4FdkJjNVrlrZ0ZDFma1iY3lHmFUnZEbWDJuqYRPyydQMB8txiTQcaxeKdZJFfdHCON+QBndF/a0sS0UWGwNv2NzHJcvaiPg1rhjuwKcq1C3RYV/VFQEX8lWD/bNFJESxaVgOj49n+HnjcflUYWDiAOmyLtxtHZdksc6OiSw/2TvPA43NlKBPYctQnEPzJfw+hd64KK7W9EQWmb00i/9i3RSze4rMgZkiIwtlIn6VtT1RjqbKjGeqzBVqiyTKhZrJ4fnjkSKjyTLZsnj845lKa46xLajhU8Sxd8cCJEI+MmW95U5b1m1m8zVM20W3bWFE1egqK7KEJktiRrAquuiZqsE9BxdaxW7TVXT/bJGFgoiESZZ0HjuWJVUyqJsWuYqB44rokINzJUKagixJrO2OcO2aLh4dy7TmW2fyYuPDtB3uPCDk3Rcva6M74qdq2IylyjxxLMtP9s4B0B7xsW0ogSTB+t4YpuXwtYePYdkOpbqJ7YhzpP8UzpfbR9PsmymccW5uZKGE69JSH9iOS0fYz0y+xvbRNNP5KvvniiSLwtAqGhCGOdes7iSgKeTrBnrj8z2RqfDjPbMUaiZbB+MNQyaFimmdNiKniVfweTxjshWDbzw6QTyk8am3bTtpJ+TugwscS1X4sxvX8bnfuATdcnjPV57gujVdfORVa56no37p87uvWEUsoPEv943yP9+wkTv+4DoOzxd55afuW2Sw0B0N8Ddv2sSdH7mOjf0xDswW+c6TU96Mn4fHBUCSJGRZIl2ukyrpTOUq5KomyWKd/3pqmkeOZmgP+YWBStWgZtq4jovrQG88QNCnMNdY5GUqOguNBcLKrghdUT8H5wv0xgL4VJkf7Jzhzv0LTDaMsyzHpRnRFAtorYBs23GJBVRcJMJ+ldmCKDAHE0F64wEcR3QZm5Ev5bqFpshcujxByKeyeyrPeEZ0J+qmWFSpssyrLuqhJx6gbtqYtstTEzl2TGQZTZYwbZdc1eCKFR1s6Isz2B7iqlWdaKqQZy4U68zlazxwOMX+mQIPjKRIBH2EfSpXrBBxFJoika0YrO6JsLIrwkV9Ma5f3013LMAvDi5w14EFuiJ+lneEKddN7j4wz5HGYrBYtyjrFhG/xq6pHCPzJeYKVcq6xVSuSqluMtwZFt3YqtFyfRzuDFM3beJBlVTZ4KpVncwW6pR1i7CmiW6mJBa8pi0K7KAmt2SOcLzDJ8s0FvGiKHcRG6d+TWZZR4i2kEbFOG5w47jHTUEcxyXkU1pd4qphUzdsLlmeYGVXhGDDAKdpgnPZcDuGZdMe9re6UCu7Ihi2Q7JYFwvuok5PLECuYiyasxKIwnF1TwS/KgpdEfMgZL5VXZjlyLLUMssIqAqyLCEjsaEvxkAiyJ6pPIWq0Qpubw/76IkG6G07vmFiOS5j6QqKLHFwvkimotMR8fPYeIbpXBUXkTmZCPtIlQ3mi3Vm8zXiQY1j6QrZini95op1rlzZSUfEx+b+OF0xP4mQj51TuZbhDIgC87FjWQ7NlxrvTWHMcvfBBXFbhkXIp7JQrHF4vsR0rsoVKzroifn52f55dkzmCPlUTNvBckSna65Q42f7FlqfL8d1uXaNiOqYb3y+LNulUDOZztWoWxbJos7DR9PojbnWmZww0wlqCkdTQm7d1xbAdcXn1nQc4SRZrOO6Lj5VwsFFaZhCre2JIiNmAgtVi2RJb0nAm93tqu4Q8gkJecgnuunNV9vFZedknpl8FceF7qifgUSAg3MlUiXR3Q75FC5ZnsDFpS2oEdSOd1olSeR+/nz/HIbp0B0L0hcPsLE/3uhmNTehJOJBjVXdYSzbJR4QEtKApqDIEpPZKvmqyVy+xnyhzkJJ57FjGY4my2iKhCQdjyiZy9c4OFfEsBy6In7iIY1Ll7dzUX+MYs0kXdYXzRVnyjrFusHyjjCjyTLzhTqOQ2MDTGMqV6U3HiBZWjqzMRHy4VOVJbtqddNmMlPhaKpMtmKQLhutDfcjC2XG0+VWZuLG/jipgk48pKHJMssSIeq2jW6IjYWOkJ+Fosgx7Iz4CQdUNEUmX7NwXZfuqJ/5xnnoTHgFn8czJlc1WkP6J/LASJJXffI+/uoH+/jSb13GB65bhSRJfPruEfrbAvztzZsWueh5nF9URea2d1zCb18rZGxre6P8229dhu243PwvD/Efj08uKuqWd4SRJIl81eAff36Yd3/l8UVmAB4eHs8eRZZQJIlCzaI7JhbfE+kKpi3c5JKlOjMFYWm+daiNdFkX0Q0IR8ZizWKgLUimYlDTRZ7X4+MZvv7IBD5Vpqxb1EyLeFBjuDOM5QjHRNt2GpI7GUmS0E2HFZ0RTNthTU+YV6zrxm64VJYbXa7DCyVsx2WgLUB/W6AV6PuNxyZ47FiGiUyVbMVo2dY7jssPds2wayrPfLHOfLHORKbKlsE2nEbBIFw7RQdlLl/nkaMZJrMVYf9uOQQ0BdcVBjFT+Rq263L5cLuY4ZIl9kznmS/qJEs6+2eL7JjI8sSxHI+OCUle1bAwLIeOiB9cEQWRqejcP5IiWdK5d0RIwC5dnsCnKI2IA6ux054hWzYYTIQIagpXrexozRg1s71KNdGlGmoP0xXWuK+Rxxf2q/xs/zzzBWHmYtliIasqErOFeiuAGkTu3GSmwkJBZyxZ5pUXdbfCww3LoW7ZRAMqA21Baobd6gjajrCorxk2W4fihH0q+ZrJhr4YflVmujHPt3MyR9ivkm3cZ1tIaxjJuHREfCiyxL6ZPP/nFyOthbth2/S1BVgo1amZNhXdanRunMb7VhStzed9Nl9jfW+UfM1AU2SqppCbqrLE42NZ5gt1+tsCtId9xIMaQZ8iIgIkiWxV545980xkxNxdUTcJnWBgYjuis5mrGKzoCBMLaIAw7wn7VbYfyZAq1VndHWFDX5SoXyNbMXhsLMtkpsJTEznCPpVYQASl37F3jmLdIF81CfkUXr2hl1hQIxHSGp8pU8QsNO63KdG9fLidsF9lx0SOuw/OEwtozBVrDCZC+FSJsXSFg3MFNEVCtyzW9UbINTqFcNwkSBR3Dnunxcyb5Yj3fiygsqYnypu2DXDVyk5kWRSDddNmNFnGcWE6W0NVFC4ZSvDwWFoYG1VF8eE2JK+PHM2wtjfamgnWZJl3XL6c8UyFzqgfF7fVBWx1lx2Xi/pirO2JsHemgGE5mI7bmq10HHH7swUR1eG6Is4i0oiFGc9UMBrv8flCnQ19MTE3mamQrRo4jktVt1AVCUWWqFs2B2YLPDGeJV3WW4VPV8SH60LYp2DYDr1tfhRZJhbQEE01CQdhXnU0XUG37FZ+5cNjGe45lGTXVJ5UwyXzsuF23rRtgIpusaE/hmk7fPWhYxyaL5Iq6xxLV5A4vu4s60IqnSzWqRk2Pk1mMBEkqCmMpirkKiauyyJH1SaiwBfn5RMNoZqbMD/bN8f3ds6wb6bQ6mg2Z3Lrlvhcl3Wx2TedqzLYEWxITUW3VAIeOpqmUDXYMhjnypUdjdnuCpbloKkyo8kSP90zx5PjOYYSIdb0nOz4+3S8gs/jnBlLlfnZvjlWdUX432/d0nLTcl2XL28f471fe5J0Wee7v3s116/rxmnsNv7pa9dz2zsuaWXweFw4BtqChHwKf3/HQdJlnfawn0f/xyv50rsv4+9+epD3fu2Jk+yar17dyV1/9HJ6YwFe/38eZMSb7fPwOG80c7rW9kSxLIfRhRLZqsGlyxOoiiwWu7qF44BPkdAUic6IH0WSqOgWZd1k40CcK1Z0oCgSuuWwoS9GR9hPqqSzUKgzma2hyhJhn8KKzjCFusXtu2YAGrv/wlQhU9bJlA1sBw7PFynrFtmySbpkEA1opEs6U9mqMN9Q5ZaroERT0qkT9Cn0RANcu6YL2xUyJVmSmMnV2DdTYCxV5rFjGdyGgUS0YbfvOC57ZvLsmy0Ip82awchCiZH5MrbjMp6u4Ngie/BIusyG/jhBn8xMrsahuRIfvG4lq7ujhHwqmwZihP0qAU1h95SwSO+M+KibwmDlWKpC2K8S8ims6Y4wni7z4EiKXEUUjtGAxnBHmIhfpVAz6YsHqFs2//H4JKmSTraikyrpTGaqfOOxCfZM5xldKLF7ukDVsFjdHWE8VcFsGMeEfCpXr+4g7FPxqwqXLm+jK3p8wZguG4xnqjx8NM320QyOK7ojly5P4NNk0iXhsppu5BXqpoPjwnBniFRZp2JYSJJEyK9QqptkKgaZssFcvsb2IyKzcLAt2Mp1q+g2B+eLdEX9TGaqFGombSEfly1vZ3lHiJBP4eJlbYQa3Rl/Q5I41pgPTZd1JjJlJjNVpjJVJAniQR8rOyP0xQO4rkvddLAbpi19bUH2zQr3z3RJZ65Y58EjKRaKNSzb4fLhTt64tZ+qaZOvmgy0BTm8IBwuk8U6uaqObTvkqiapRq7h3pk8sYBGTywAuBRqFttHM9i2S2fUhyRJ1AwRxJ4s1RnPVIg2pL+yJLFrsoAmywR9KqlSHUWW2DGZYyxZ5vHxHPGghuuKonI6X2O+qOPXFN522VAjgkFIHG/eNkB/W4ADs0UCqkLEr7G+J0a+ajGZqQFSK3vyor5oK6C+ULOQZQm18bOqSKiKzGy+1pphvGx5e2M+sZGt5rhc1B+lqlscWiiyLBESHaqSzkBbEE2ROThXJORTkFzxmdzUH6M97OORYxkkCdKlOvOFOh1h0dH/8Z5ZHMclWRLPab5mcO3qTmbyNdHJrlvgig2m6VyNjrCPdb0xgj6l5Z4rSRKZso6EiM/IVETsSNinUq5bPNCIJvneUzM8NpbhypWd9MWD6LY4VzU3FQAKdYtS3aRm2kxna6zqjFAzbQo1k6BPdLJ1027EwjjULYehRJCOsJ9oQOUV67qwbLc1AzqVrXJgtsgDIym+u2OafNUkoMpkywZ+VWZZe4grVra3Nq8KVRNNkZnO1VrOqM3mxeH5YiMDT2rJKZvMFWr8dO8cB2YLzBdqLSnlzskcDxxJoZs2h+dLSBLctKUf23aRG5mNIl5GYbgjwqpGl92vytRNuzH7Kop2uTEvm60YRPxiRvbAbJHdU3n2zhQo1UzW98eIBFRURch0Tev0bqHgFXwez4DpXI39Szg8fuKOQ/z9Tw+xvD3EnR95ect56vP3H+Vvf3KQoE8h5Ds5oNjjwqDKEgFVaUk5JEni2jVdvOWSQdJlnZs+u/2koi4e1PjHX9vK//n1bazsDJOrGK3re3h4PHMsx0GWJLIVndFUmal8rWXQMpkROVXLO8K4uNx1MIlhOQwkgmKB7xNW8r84tMCxtJBNmrbDXKFOoW6I3DJguCNEsWZy3+EUU9kqrns8wFqShONjc3Zm21CcvTN5frR7joPzRW6+uJ/hzrC4zZqJpsrIssRCUW8ZszRNEl55UQ998SBPjGeZztXYM53Hch0M2265PMqyRGfYR6AxE9aUcsWDGn5V5upVHXTHAmzqjzHUHiIaUBu75m5rbvGR0TQ/3DXLdK4mFsK4jGeq2LbIJVQViaCmgAs9MT910+Ene+Y4PF+kbjmUdYueqJ9j6SoPHknzxHiOkWSZkWQZBeHsV9JNchWd6VyNWEBlNFXGr4rndzZfJ1c12DGRRUIiWzXZ0BenatoMd4SYSFeIBjUkSWTxWY5wEV3VHWFDf5SIX6U9fEKYcs3EtF3mi3V8qsxdBxbINGWOddGdXd0dZiZfw7RsDi+UWCjU0WQZ2xbzOk9N5An7VKIBTTiHVkRxOJ6psFCs8/BYhkKjw+cCyxJB8lWTYt3EsBwGEyFWd0XYOhjHtF0WijpzxRpRv4q/YTqyulvMMZbqFhNZUSj+yupOLl2eEDLFxiyo3XD4lCXRwe6J+ZnJVvnp3llM2+aKFWLmLqCqzBdENyNXMdg9madYM9gy0MYbt/ZT0i0eGcvw+LEcLsJQY/dUjtlCHZ+ikKkYJEt1XESHpGYII4uFQh1ZgslclftHkqSKOn5Fxm4spDsiPjqiGss7QzwxnmX/XImAJhb5kaBK2C/C1TvCPkxbuDbO5Kr84mCS7UdSKLLEdK7KPYcXuPPAPLfvnBHvqbifuUINRZFEJIrjEA2oRAMq6ZIuOmIBVWyERHys7o5guy6JkNYoqMvUTZuHj2a4fyRFqiwkl3bDWbMpZSzrJuOZCsmSTndUqALmCnWSpTpVw27EXehct7aLtb1RSnVTzPGWDaqGcHE0bSEFXtkVIV2uYzvCoXfvTBHTcYUbqgt7ZvKNTD2JoCa35oT3zRQZT1co6xayBKosM5mtUDZs2sM+1EZXLlcTTqQhnyq6WLbLbfccaR17oSpiQ5qfhyMLJdJlnRUdYWRZBJNvGoiJDaWSMJcKaArFxrmoVDOZL9SZzFaYzFZRZJmtQ3F+pSGXFZsTFTRVpi8uzHFKutXq7vbGgxQasTPChbMxN2tY7J7KU6iaTGarTGYrhPwKLi7pssF/PrF4zGU2X2+cTyXiQV/L6EdrzPqV6pY4zkyVA3MFOiIifsFxhfw+7FN4fDxDvmqyojPCJcsTlGoW7SEf/fEAk9kqyWIdy3axXdgzU2D3dJ7RZBlfQ467sitMVbeJBzW6owEyFZ102fBcOj3OHzsnc+yaynPd2q6W2yOIVvaxdIUf7ZnjqpUd/PjDv7Iop+c3L1/Ge68Zfh6O+JcbSZL4yKvX0hsLsGsq3/r937xxIz+89Ve4fDjBGz+7fdHQfJNXrOtGVWQ+ddcIv/avjzBfOH24qIeHx+mRJWF4ft9IijduHSDiV0kW68zka0T8YjNsNFnCp8hsGYojSRIPHhGLQdcVs0v5islYqkJXw7ly73Se+YLOzsk8mwbiwmVRlXnVRd0MJESnR5ElVFkmEdRYKOoYto0kSVQNm6ouMvjqps3BuSIrOsOsaMyqJYt1wj6FvnigFTtwJFmiZtiEfQqZss7yjhCjyTITmSoj82VSpcW5ass7w+SrJo4jTBXagj4CmsrRVIU90wVyFWF4UTVs4iGNl6/toi8ewKfJLOsIs74v1gqbdlxhn//dJ6dIlnRKuph3sl2X7aPpxm3mGyYSDrGAynSuRrFuEQ+p7JkuUDPEIunwfJGyIebIinWLyWyVrUMiD7Zctwj6FDRFasktZVlClkRBfaQxh3gsVWUmX8e0HGQJprNVdkzkeHI8iyKJYnf/bImf75/noVFhyuHTxO1UdYtliQDJoujMzuRr5GsmZV1k+ZUbJjk1w6Zq2uyYyBEP+egIa1yyrI2gptAR8ZMsGdRNcf+aKmafZnO1ljNosSZMgJIlXcjrTIt/f3icz98/yk/3zjNXqCMjDGSyVRExUDOErHA6VyPsU8iWDeIhjScnsuSrJpbjUDccDs+XqVsO0aBwJrUchwOzRdpCQjoaCQjZZMin0hbSGEwEKdVNdEuIfA/MFfn5/nk6wr7WpqLjurx8bReqAhf1xehrC1LWLUzbJlsxeGo8R6ait0LDHVdY1U9kKpR1G9t1WdEVxq8p5KoGs4Uah+bK7JnKM9wZ4vq1XRxLVdBNm4OzRWbzdY6lK+RrohDpDPvQFJmN/TEmMtVW+HZvLMAvDiVpC2kYtsNkpiYs8sN+VEl04iMBIQFtFm9XrOgQs4ySMBUq1EyWd4SRJSH1XdkV4fLhdrIVg+mmWZErNmZesb6bofZQK0Lj8HyJsm4zkAgwlauSKRts6o8zlasxV6jx2LEMD4+mMW2XLYNxDi2UCGoqQU0lWdLJVkxWdIT5zo4Zbt85S1dUdMl+sncOTZEZSASF0YoiYdjC2TJZ0jk8XyQREh3odFmnpFsMd4aJ+DWWtYco1U00VWI6XxWmJJI4fk2RSYQ1zEYczL7pIj/ZO9dSFzRfa9N2mchWqBk2j45lePxYtuFCK9Me9tEVFbN4EsLBtG46BDSVqm5z1/55kkWd9pBGvmqwaSDODRd1s2eqgIx4r1d0m+6YTzQpZgocmiuysV8E1fcngnSEfeiW2KiSZYk3bxtAVSXCPo2BtlBr8+nEsSXdFHE5tiPmjadz1YbUVKggFkp1FEUm7Fc5PF/CclziIa1hlFUnVdbJlk0WGrL3+w+nsF2XmUIN0xHnrmLdIlcV70mzka+6fTSNKgujrJl8je1HUuybLTKRrdIZ8RPQZA7NnV6V5RV8HmfNvpkCe6fzi353ZKHEK/7pXt7w2Qd5/eZevva+y1tdvP/aMc3f/fQgibCvZWHs8dwzmhLB609N5lq/k2WJ12zs400XD/CRb+3iM79YOpD9L371ItZ0R3jTbZ6Tp4fHs0GRJcJ+4S45liqTKunsmi6IQPRGodU0IJBcCd2yMSwHVRLBulPZWmPeyCEW1LhyVQc3bR3gdZt6yNdM+tqCDbmURHvYz/reKNmq6IyoikRPLMjrN/exslM4Go4my5QNC1UWszZi8VBBwiUe9BFqzImF/SpBn0LAJ+NTFIY7QswVatiOS810uGJFO25j3u53Xr6K37h8iJBPJd5YAO+bKfDI0TSaLJOtGowmS4wly1R1q2Vq4AJ7pvLsmynQHQ1g2S6pYp1MWW89J4W6yf7ZIpbjsLwjxPreKFeu7GRdb5Rc1eDho2ksR5hnmLaQJVYMS+yuO9AZ9qHbDrmKQbURHdHfFiAWEIH0pbrFWLrSMKmx8CkKvobcqr2xMLQdlweOpET4dEUnU9E5tFAi4leJBlVUWWJNT4TpXI2q4TCUCJAq6Y38OBcJiRWdYQbbQ2weShANqOiWQ2dEhI0fTZbYO1Mk1TDZqJs2ly5rY3lHmKlMlXzNIlvROTRfoi2okSoJs4bhjjCXD7cz1B5isD3IsnYRjVQzbQ7MFTFtB0WWGu6VCtuWJTi8UCLsl1nbG0VCGOE05WOZisiAa5ruzBfqzBXqrUyzfM1AlmBZR4iwX0U3RZh0NKDiU2X0xvN/5/55ZvM1BhJBNvTH2bYsQSwozDS6Y2I280sPjlE1RHdTQmpkLtawbJeFxkbj2t4ojuNy8fI2OsN+Krqw6Ldsh62DbVy9urMlG06XDXyqTL4qZrBM26FiCNngRLbCRLZKzbR59GiGuUINTZbZPVUQjp+dYSzboaJbDLaHWNEZxrREbmW8IbnLlI3GrKyPkF9GVcRntSOs8cp13Qw0chSb6pmxVAW/puAiXGMlSYTO/2DnDA8fTeMi5kAdV8itLUcYuszma63/v3iojd6YH9sWrqCT2SqqItEZ8bFQrPOzffOkSwYdYR8H5kos7wiRruj0tgXojQUo6xY/3TdHoSrUAJNZEcXiV2UOzwuJ6qquCKu6I6xoSH0v6ovSFQ2IGVRJ5DniuhyaL5KvCcMcCYlESBMFr19Fk2QUJEzboWaI91xP1I+sSJi2S1hTWu6zsiQRC6hMZKpoisyVKzvI18zWvOZkVsyRPjWRY223cClFgoAm0xbycdWqDkYWSvzdTw/xwJE0P949x5ceGGMiW+G+kSR37V9AUSQ0RaGjUTyu6Y6yczLH9qMpwj6F7miAroif9T0xfmV1JzuncjwymmW2UKM9rFEzRObniTEaa3si7J8tNmJudEYXyuI1yVQ5NFdkvlBHlcVGxJu2DTCVFTEbyzpCrOqK4OLS1xagvy2IT5HIV4U023aEbDMe0NBth8uWJ/ApIhs135hzPjxfoj3kw6/IJBodQZ8qs3e6QMSvsq739HN8XsHncUZ2TuaYK9R411XDvOuq4dbvf7Zvjjd8djuZssGf3biev/jVDa15vh/tnuUvb9/HdY12u8fzx9qeKB951Vo+9P92toaKAV69oYdPvHULt73jEv7twTH+8D93niTfDGgK/3jLFt5z9Qr+9Lt7zpg54+HhsTSO4zJfqCEh8cixDKW6xWAiiF+V2T9T4JuPTbChL0Z3LIBlixm0aMNB03UkkMQs3EyuxmPHsty+c4a903meHM+RKRsUq2I+q2ZY/N9Hx7n3UIpdkzkRoSBL3Hd4gdGFEnOFOo7jIEkSjgNhv1jsbeiLocoyT47nCWgya3pEEHlVF7M2IU3MjaXLBteu6WI2X+eOfXM8OJrCpyrkagaPHE3z0NEM/fEAW4baWN0VIVPWGUtXiAVVEZ5uO3RG/bxmUy9tIY2oX+Wmrf10Rv2Mpspkq6JLKMsSmiIzXxBmGW1BMcdlO8IhrysiTCkSQY2xVJn2sMbq7gilRpHqU2Uk16VuCYObaFC44JmOSyyo0RH2s2sqj2k7dER8HJwt0hkRocaXDyfoiPiEmYyqYNsuq7rDrO2J0h7S6In56Y0HmM3XKdYMUmWD8XSV0VSZyaxwk7Qch8msyNXLVw3uPDDPQrFONKBiWA6fuvMwo8kydVPM6uyazFExhGlLOKAyX6zz6FiW2XwN3RKzTH3xAIcXyqzsCnPp8gRBTRFdNL+KT1VQJKkVBi5JEmu6o6ztiRJQFW7c2Es8qIni1KfSEfHjuhLj6QoH5oqoje9u3RRdOdd1qRg2qbIoKiMBlZ7GPGJQU+iK+EkV66QKesuhUlNEMSEj3CAVGS4fbueqVR08OpZhPF3hqcksdx+YR5HE2MHmwTZch5bs7eBskVzFYOdUnlzV4MqV7WJmLqCyvjdGW1ijO+qnqtsU6xb7Zgs8fiyLaR/vHOqNGUFFklqxGAfnxAzUcEeYzQNx2iLiPTTQHmA6VyVZ1CnXLIJ+lZ/vn2ffdEE4pbpirtSyXTIVg6FEiMlsjSPJEtGA6FhP5WocnCvz0/3zXLmynatWtpOvGswXa2QqemOu1G50x1VKdYt0RRfHKNMoJsVxZss6jx/LNuZ2LWZyNcIBlStWtnN4XrxHp7PVhpGPTEfYz8quCCGfzKH5opjv6o2JDnx7iLBfIepXWd0ZQVNlVndH6Az7WsW05bgcWhCbDImQD1UR55qqIQx8HjmWoSsS4OZtg0QCWquLVKpZRAMqcw2pLsCWoTjxkIYqy9QtW2zYmMIFxsFlqCPU2vwP+1W2DLWRCGls7I9SqJq8aWs/v7K6C58qjILKdYv9swXmSzUkiVZEjGELRUKhZnJRfwzXdSnUjBN8CSQsx0VrbGaZtkt/W5CyId4vM7kayaJOslynJ+ZnLF1BU0TW50yuypu39ZMtGwR9YgNkJldl+5EUyVKd2UKd0WRZzCO7IgLm4FxJyLINm4VSnY6In5l8lX0zeYp1C9sW0RIhn0JAUUiV6vhVGdt1WdMdwTRtEiGN9oiPFZ0hfIqE4TgENbllVDOYCHLN6k4M2yHoU5FlkXVYrpsU6sLxtWm0dCq8gs/jjPxw9ywPj2YW/W40WeYP/nMXAF9692W8e1EhOM+ffncP//KOS/iVNZ3P4ZF6nIoPXLuSTQMxfu+bT510UuhvC/KWSwY5kizz/n9/4iR7X0mS+N1XrOJ7v3c1kgRPjmefy0P38HhJ4FcVclWTmXyVroif4c6Q6Kq7oClKKwerPx5k40CcuuEwX9CFC2bD+nxNd0RY66syxZrF7TtneOxYlvaQRsivkG+EJK/pjqLKElVdOMfZrsgri4dEfEBnJIAiS6zvjfKGLf3M5mvMF+utRbOmyBiWS1CT6WsL8oYt/RRrwo5/tlBj32yBQs3gV7f0UTdEHtexVJldU3keOSqysfbPFtk4EKNUF3mBtcaixnHFLNuT4xlcV8QSjMwViQc1+uJBbtzUi2HZdEb8LO8IsbYnSs2wKNZNZIRsMV3W2T9TYDpbYzxTpbsh73NdF1WRifhVuqM+HJdWB6EnJm5v62CcRFCjUDdJhPwMtoUo1y164gHCPuGQ2hn1k6+ZrO+LEPYrZKsiC8txwHKgUrfQDafhfCk3iiOR4Xc0JSRqpiVmLOcKIvrg8HyJXCPmQXRFfLQF1VbExFSuhu04LEuIbMGpbJW6JSIGjqbKDLYLIy5VlvA1sgV106ZUN5nMVBhZKDFXqFHRRUi2LAnHxaphUaiZ7JzMs3Mqz+GFEk9OZJnPCxdG03ZF8dYwjMnXDMKt2AcXw3JZ3hGirFs8Pp4h5FNE/p9hY9oOmaqB49AIUy8T8im0hTQSYR+aopAq6dyxd46gpmDZDsmizni6ysG5EoWaSapYp6iLOa1YUBVzTn6VvniAdb1RUiVDyAVd+NYTk9xzMMnKrgj9bQGiAZWZnIgqGWoPsSwRpiPs4+LlbSgyBBuRCSBiNa5a1dnqRs3na4CLaQkzpXBAQVFEjMTanig1U8x/aapMX1uAYt1kVVdYGN8ENS4eamNdb5SAJnMsVUGWYf9Mgclsjacm83RG/OQqYrNlIlPh/pE0K7vCrOmJEAuodEb8vHpDDwNtQhqpSFLLTbUjrDGRqVI3bLoifp4cz/HYWJb5gs6+mQJVU8iq02UdWZYwLId9syVmC3ViIY2JdIVCTRRLY+kKPk3Gpym4rih8l3eEWl3QmmETD2jUDFGg7ZoqMJ6uIAHlusUlyxLCQRdIhDQuX9HOu68a5mXDCXJVE1xRHCbCPop1k2RJb2VpSo2Cu2rY+BWFIwslDs0VqepCvrp/togrSRxZqLD9aJqSbnHZcILhRraiqsjYLoylqhRrFook5kQXinW2j6ZJhHz0xAJIknAbX9UVwbAcQn6Zkm4yV6jTHfVzcF4Uh4fmirxibTdbB9soNyS06bJBTbf4+YEF+uJBDNtBQqJi2sLl2HG588ACj45lxGbd0QzZso7e+HupbjKRqbTyRwtVk46wj5l8nV1TBYqN/EyzURjOFmrEgz5kSWIuX2c0VSZXM1ko6JTrFoWqxWiywk/3zOMA7VE/miIktrolNurCfoVksc6xdJnxdJWLh9rIVk1hvHMavILP45QcmC1SM2z+6g0beOulg4DI3ts7nec7T04R9Cl864NXcf367tZ17j2U5CPf2sWnf33bot97PL/IssSn3raNXNXg4z86sOhva3uifOyNG/naey9nMlvlbV94mGTp5Jm9gKawUNR5/78/yafvHvHy+jw8zgHDdrhsOEFvLNCanyvWhX25YTuU6hbFmslktkJ7WJgBrOwKs7IzTMgnDDUG20Msaw/R2xZkWUeIZZ3C7GS4M8zBuRLjmSpPTOQI+RR64gESYV8jH6/Cut4Y8ZBYaEzmqhRrJiXdompamLZwKWy67tUtm8msiF6wHIdYQCOkCTdM4Yyni4WzT+MNW/rxqSJTKqCJXKqZQo09U3l+sGuWkm4KqVojNNxxhGvdaFLMLYX8Kvtmi0zlqkxnqzx4JIXtigJi93QBRZYo6RaZsoFu22wejAvzm5rB2l7h7LeiM0wi5GPXlJCdzxVq5Gsit2qwLYjjukxmquyazDGfr/HEeFYEHdsOWwbbmMoKp0LDdpnL1ZhszG+lyyaPHsuSrxrsnMwzmhJFm267lHSTqm5hOw5tjed1KBFElWUcxDl3bW+UzYNxrlvbhSxJWI6YTbtubTdruqOUdDE/GA9q6JaQEh5OlhlKhIQboyy3XBnrpkPVsHGB+0aSHE1WGFkoM5OvkQj5kBALcsN26IkFUSSJ0XSZZFGnalrMFWtUdIuL+mJcu6azFQTdnLlrC/nojPgYTISwHJepXI39M0UG2gJISFi2MBOJ+DVqhkNX1C+KrPYQsiwcKjMVUYAUahYLjZiBHRM5clUT24XVPdGGPFhhfV+UZYkg9x5OMZGuoCkyyzvCrOgKC9MMF3BhJl8l7FNxgULNYjRZZudkjqppNxwvJRzHpaLbxELis2A3DAtv2tpLLKjSGfHR3xZk12Se7UdShP0qkYBGumwwli4LCWdbqOGuKvOajT1s6I8zni63OmnL28MMJYLsn82jKRLvvGJ5y72y1MhI+5U1XcJh0oX7jyS5/3CK2Xy9MZsp0RUN8LLhBHXT4ZGjGe47nKJUN+mLB0mEfTiOy8rOCH5NoW7a1C0Hw3ZY2xshVdIZbA/iU+TGzJ+NIouuVFm3GE2Vmc3XKNUsirpwBtVNh5ctT5AI+bjn0AJV3SLsVzk4X6K3LcD6hlRWVSRes7FXZDR2hrEdF1mS6G5kM84Xatx/OEmqpPPASIpvPDLBkUYWXlvYx6ruCLONqJWyLqS0MmLNcPGyttZ84IrOEGOpMp+75wg/3TdL2CcT9YtYho39MYY7QqKTHAtwNFkiW9axbRefqtAd9bG2N0p/mzCy6o0FaAtpjdm8EqMNI5ygpnAsU6FQM8k1DJF6YgF6on6m86JTeHihzJFkCdsV56K2iI+btvSTKRtMZKp856kp2sOisFxoGCpF/FrjeQFVFXOYQ4kQHWF/y33Vp8pUDdFdToQ01vREUBWJjQNxtg0lCPsVaqbDUHuIofYgKzrDBDQRl1O3xHdA3RadVd0U3xG23XT3lNk7U8B2XaJBjVhQ44b13SzrCFHRba5Z3SEMeE6DV/B5nJJP3XWY+w4nW5l5T4xnecNnH+RD/7GTn+yd43u/ezXbhtpal3/wSIrf++ZT/MMtW3jtxt7n6ag9TkXYr/Kld1/GT/bO8Y1HJ076uyRJXLWyg9XdUd76+Ydboc0n0hsP8K0PXsn/e2ySj/1wvyfx9PA4S/JVg/F0RSzaGx+bNd1RqoZNuW6SLOqs7IrguC57pwv4NTFHk6+ZDCUC3Lixl92TeXTLFnlYqQqTGVGoRP0q4BL2q/TGAjx2TGRenZgltX+2QLpUxwECqsymgRjjqQq/OJCiK+LjmjUdrOwMU23M9a3oDDPcGeaR0QxffGCM8UyVjrCPSEBl80CcjrCP+0aSfOfJKdrDPvJVi6ph0RbSUCSJeEhj80Ac123Ohomw4+6Yn7aQr+GiGGAwERQLJd3GccXjKtbNxuLJ4siCMN1IlwxSRV042DkOw+0hxlIVynWLFR1hNvXHifqFLMq0XVKlOkGfQlfUR3c0QM10KOgWkiwR8ClsHYqzUNaZzJZRFImOsOjIPHIs0+hqyFi2g2k57JzMNwxCNLYMise+sjNMqREg7ldltgzGSZYMTNtm22Ac03ao6hYrOyPolt2QAwZpD/vIVXQeH88ylRNFmOuKua6VXRH6YwF02yZT0jmSLJGp6GiKkEdqiiRiEByIBhQ2DcaI+FT62oIMtYdIlQzmCnWmslUkScK2HTrCQv5YadjuyxK0hfxcsbKDtb1RuqJ+VnSGuHxFO64LR1NlxtJlogGVrqiPvTMFKrrFxr4Y16zqZDZfIxZUGUgEsBth8DO5GvvniiRCPuFS2hVm27I2lncKCd9QIshCsc5YqkJAVSjVLXIVscHw2g09dEX9qLKE5EK6ZDDcESFfNxlLV+hvCzKyUOZYukJPLIALzOTrTGarpEo6fk10u4M+hUpd2PoX6yLC5FUX9bK8I0xH2E9AVbAch5WdYWbzNfH4wn4M02l1/VJlnYlMlacmhSviWKpCxK9Sb3RSd0zkqVsuM/ka394xRa5i4LgQanTPXjbc3oiXMMiVGxsqhsVMropfFcVNtiJcI5d3hFhoZEE2o1csx+WJiWzjsyBiCTIVAxnojfupGhYru8JsGoyj2zYywh1yXW8EnyKTq5qUDZOabmM7DpIERmPDZstgnMFEiKGE6NbunxGznWt7IowsiBiBqmFTM0UhKctiNvH+w2n2zRY5mi4T1BRGFkqMZ4XE9bLhdo4my0xkKjiOQ1BTaAv5uHpVJ4WaiSyJzr4qCzfdqiE2R/bMFkiXDbIV0Zld3hHCrypsG0pQM2wOzxUJaCphv9roQtus6YlSNSwOz5coVE3qjYD0d1893DASsgj7FRJhH8sTIeJBDU2RKdRMwj6FUEDFth1+tm+OhWId1xEd8HTZ4NBskVLdIhZQUWQZ03KJ+hV6YgEyFQOfJrrPjx3L4FMVemNBJGDLYJxUWWf/bIGuSICL+mKE/Qohn5BXj6dEREi50V3MVgwMy2bXVI6ZXB1VkdnYH2/FM2xb1kZAUxpOrDq6JZxSS7pFbzzAJcvaOLJQIls20C2HPTMFyrpFripmAJcKgT8Rr+DzOIm5Qg3HcfnCOy/ldZv7sB2Xf75rhHd9+TECmkJAU/je717Nyq7Ious9NZHnf715Ezdt7X+ejtzjTAy1h/jCOy+lbp6c2dIV9fO/37qFT/3aVgbagtzyhYc4skQW3/reGP/1u1fz4GiaXU8z8fHw8Fia1mLOtFnbE6U7FmAmX2UyW2049iXIVQ1qptPKihpZKDOeqTJXqJMq19EUkbHXFvTR1xZgLFUWxi6KzCXLEpi2w1S2xhu29LNlIM6y9iABn8LoQpn9swUM223s6MtISEQCKqu6QxxJVZjK1ljfIwrQdFkUp8vaxY57bzxARRf5WG1BjYVSnXzN5OpGIPB4pkLNsLBsl1hAyBXn8jUUWWIyU2lkApoMtoeQkVpFSaluMJWtkS7pSBKkyjpVyxYFY2Nmb31vFMNy2DIYR5bh7oML3Ll/nmTJ4FiqQmfET6EuOqPJUh1cWNYuujWqIjGZrbGqS8Rf2LbLhr4YPkXEHCxvD5GpmGJ+DJgt1KjqNj5Vpivib+VnGZYwoJAlyFdN2kJiZq4z4mfbUBshn8ranijr+8TzZ7siA8+wHD7xs4PcdyhJrmpwcK7IvYeS9MQCDLSJIsh2EMY0jQy2SFDlyIIoQvvjQXyKgqbIXLKsHZ8qY1hiMa8qQpK3rCPMkWSJkKZSqIuu42xByEPHMxXKuonjutQth/FMlYWizp7pPA+OpAhqMhG/kOtNZqrYrsjiqxriPdobD5Is6tQth1TD6XOhWGe2UCNbNgGJmXy1kT0m8hxXd4fpiATY0B+jpjtkKoYwFYoHhPupKiNL8MCRNHumC1y2oh0AnyrT0ZA6xwIqIU3IcMu63ZAT+qjoFgdniwwmggRUYVyRCPlIhIVrrV+T6Y8HuGF9N8MdYf79kXEMy+GxY1kOzRcxLJEtOJ0TklIXl2tWd7ChP0bdthuGRRr9bUECmkzAp7BQrHPJMuGmGQmohBrziz5VGLYcmisyma1w9aoOgg0jkP54AEmWiAU0lneEGp9fnYNzJe49lCRXNakbNt2xAF1RUVQUaia24zLcEWZTf4ygJt5flyxLsGMiT7ZiMZWtMV/Q6Qj5eN3Gfi5ensAwRXxIpqzjVyRWdIhNm2Jd3N7OyQIzuSqDiRAVw+ThsQy5ismyjhDZisHFyxPM5us8fDSNbjnM5GvEgxoyEumSQTyk0hb0UdFtaqZDX6OT7+Iyni4znatiWC6yLIsC0xSy8I6In/des4JSXRRnXVE/e2cKHEmWUCUJRYJ9swV2TxVIhHy0h3yMJssNUxwRsr68M0RPzI/juIylynRF/GweEOeB3VN5gj6VoUSIim7REwtw8bIEA21B6paDjETYrzKQCFE3HeYLNSqNKItkUSdbEdJlANN1eXA0RXvEz2BCuBJrqsw1qzu5+dIBBtpC5Coiq7Cim0T8Kv1tIQ7Nl3Bcl6BPzDf3xQL0xYNEA5pw8k1XGEyI7u1Cqc5YqtzKuEyW6uyczJGpGGiNDmhXxI9tC1fPofYQsixTqJrMZGukyzqaKmT6pu2gmw75RmzWWKosMjxn8qf9DvIKPo9FuK7Lrd98il8cSqIqYjZBliBT0VnWHqI76ufbv3PVotiFXVN55gt1/uBVa1rST48XLpevaOe3r13JeFrYmD+dmmXTEfZz09Z+3v7FR5d05xxqD/GzP7iOS5YlGFkooZ9F6KeHxy8zQighsak/juU4xAMqc/k6siTxuk29RPwi8HzXVA5VkehvuG5u7I9hOy4H50psHmpjVXeUSEAM7W/oj/GyFaIzlyzpBDSFtrCGTxFzHkiwvD2ETxPGI7iwuitCVbc4MFtkfW9UyDBth66Ij+mCWOx1N4K7HxpNYztiMS5JwjHOpyiEfSpbBuPYwCsv6iHsUyjpYlbMtMWcyVSuxv2HUwQ0GVWWiAc0YRAxXyIaUIkFVXyyjO04RALCHKFm2PhkmdFUiXxjNizsV7Fcl3zVYHV3lKH2EImG5DUaVLlpax+bGjOPC8V6IytMLPb2ThdZ3hFGlUVxGwsK04mxtJB8KZKYrZRlESiNC3XLYSpXpSsaoD3ix6/JouiNBeiNB9g9ladmOkT9Cn1tfh4YSTPQ5hf5Y6ZN1bDZO13Acly6Y35cF/ragnRF/GwbTPAbly9j2zIh7V3XE8V0HMIBlYphcSRZoli12DNdwHaEdKsrKgrPIwtFynULw3IwbZfd04WGJM+hqtvULZuIXyUe1EiEfByeL6GbwmEyFlCFG6rrcuOmXi4bTtAZ9RNr5HjN5GrMFmqs64myrCNEb8zPjRt7mMhUaQ/7aAtq2K5LxK+yrEMsfnMVg1hAJV026Yz6WdkZoTceYKg9RNinsHMyz0KpzuhCCdN22DrUxuruMAFVoTsWYOtgGyXd4l/uHeXAXAlNkcnVDObydSYyFUzbpVy3sW1h+rG8I8TGgRiv2dBDyKdQM2xKukUsqNET9ZOrmWiKwvIOMWfnurCmO4JPEZ3O8YyQEO+bK1LUhXx6Ol9nZKHM9iNpJtIV2kLCtCdfNVnXEwUXtg61sVCs090oPER4vcZ1a7rwKTK6ZRP2qxxLVxrdPZOeeACfIrFtWRtXrerk4sbrvaY3whu29hPxK/g1hWRRR5EkdFt0/bMVg6putwLIHYQrZV9bgKppCuOjQo0vP3SM7++axnFd4iER79LM67Qd4ajZGRHFx0yuyqH5Eo81ZtBqjS6eKkvctLWf3VN5qobNDeu6mSvUkBA5iEPtQZBcIgGVdX0RXNdl+5EU+ZpJRbca88EmAU1lY38M03aYyFSRZYmHj2aI+FWqhs2KzghbBuItl1vHEZ3yzkgAXEiWdGJBjVes66Ir6ifoU1qxEK4LPbEAndEAFcOmZjmEAgrtYT9tQWGqpMoSuuXy8FiGH+ycYSZfYyZfQ1Vk1nZHWNUlPv813SHsVwn5VHJVnZJuYjguq7oj9DY6zDXDIlnUiQXF52jvdIFS1RLzwnkR8RIL+jg0XyRXNYRb8soOLm643j46lmEsVQYJrl7VQUcjC1C3HPyKzGS21pAYi89eV9SPYdqU6sKMplAzWdsTIaDI+DUZ03KwHPHe1y2H3VMFokENWZLoiPhY1hFGQjhAR/wqly5PnPY7yCv4PFrUDJHP9NX3Xs6rLurmh7tn+fUvPspkrsrDRzOs7IzwtfdeTiygLbre7TtnWjlDHi8eto+mufvAwkm/jwY0bnvHJfzPN2zkujWd/PoXH1nSqMXXCBr9+I8O8Dtf37Fk19DDw0OgyTK4LjVDfLlnq0ZrMX/PoSR37JvjWFrs/vo0Gb8ii3Bg00ZTJGq6zY7xHAv/P3vvHSfXVd7/v2+b3me296beLEuyJMsF29jGYIONwTQbXAADIcGQUBMghOQH3wSS4DgQAiSAgUBsMM0Eg3Evcrd6b9v79D73/v44M6NdaSVL9qpYPu/Xa23tzOzMOXfunTnPeZ7n84llmUjl2T+Wpt7nwO8UZYwb+6KUTJO5dV5+tP4Az+yPsns0Ra3XIVQjLQsLC5uhEHAZtNe4iXjsDMdydNd6ef2CenRF7CDPa/DRGnIxr054+z24bZj2iBuHTahxaqqCacELByb55QsDaKrCUCxLPFOgUlS0rDnA4iY/dkOoEjoNjY19MVL5Ai1BJ+9Y2crSliAdNR7WdIXxOwxCboN1cyK0hz3EMwVqvTaGYlnm1vlY3hai1uso+94p5IslfA7Ri2WoKk0hJyvahdz/cDxLNJ2vBn/P7J/grNYANR478xu8BJwGa7rCvNAbYyCaEaWqdiHagWURcNrYM5bE7zRY1R5mQYOPkNvGvHovTUEn8+p8aJowZ88USkykhK/WjuFk2bvPIpEpkMwVCXvsOA2NVL7IomYfmXyRB7YPEysrClqWVZ1Tc8CJ06YRdBuMJvLsH08J4RBNZSJVIOyx43PaMC2LJc0+OsJumoMuQm4bLSEnXodO0GNDU0Rvm9Om0RRwMhjL0hx04nMYhN02ktkifofOSDyHrimE3DZqfQ72j6foCHs4MJ7hqT2TJDJFEXhbFg5DozXsYjSRo38yi9epi+xNocjukSR90Qy6qvLg9hEsYEVbkO4aD+0RYRmxeyTJjqEkQbdBPFMgVj4+S5oDNAUdQu20nHlJ5IR9hN1QOX9uDamcMFrXyj5kNl0T/nxFkQkaT+VZ2RYsZ2TLliO5Ij6HgddhcOHcWtZ1R5hb7yHktjEay+Gx60TTIvvoNDTyBYvBWIa68vkzEM3QEnJS57MzmsgylhCCO0JlUuGXLwzgsGlEvA4a/S72jqZ4Ys84EY+w8BhL5nh4x1j1evc6dAaiGTL5IiCuwZIpguhC0cS0hJLj0/sm6C+/dlfETSZfYiyRx20zWNsV4Q0L65lf7yPgNIimiyxuCuB3GqQLwocwnhWZ+Ca/g5aQk6agixqvXajBpoWVRZ3XXs4K5mkLu3DoGgVTlJL3TWaEOmg0zWSqwN6yQumN53bgduh4HcIXr2RZnNUWBCyKJauq8upzapzdJoLk9XvGyRVLOAyx+WSaoi/Z69QpmCYowr7A59AZT+VpDDhx23SUckCzfzzNUDxLJl9ERSGdL7JrKEmhaNIcdJAtil7F1qALv0Onwe+kNeTi1vO7sBsqK9qF4Mx4Ok8iJ663fFH02MXSBUzTJJbOM57Oi77gVB6lXM7eO5HBKFcvbBtOiM2NRI6hWAa7LsSsMvkSO4bi7BxOUOd1sLI9RLZgsqItRNBt0FnjplC02NQfYzQpBLVsmkYsU0RRYH69j546selmApNp4auZLYkMZXvYJfoPfU46wqKXuynopMZrY0V7kKFYFlVVCHnseBwGdl076neQDPgkgLgQr/3W4zy+awxNVfiruzbw+V9u4rJF9Vz3rSc5pyPMHe9eLi7cMi/2RollCnzhygUys/cq5D2r2/j4pXMZSWTZN5Y67P5C2QD0xnM7eO/3nuKRnaMzPs+/v2c50UyB9//gGTJ5GfRJJDNh01US2SL7J0TWxOswsGkq8ZzwiqvzORhP5vHYjXKvkgidMvkSO4aTmFis64lgWhYqUOd3iJIiUygfdtV4qfU4eKE3Sp3PTmPAgQI8sWecA+NpTFM844u9MXxOG167MGVO5oplC4E0E+kCuVIJRYV4tkh72MH5PRGWtgRZ1OQn5BJm2sPxHLtGEpzdFqRvIsPWwQTRjPA/U4DRRI5HdorsntPQKFkmiWyBrhqRBcoUTB7dOUbvZJr+cumn3dCw6yqZsvl4pmCRLy80V3UECbltGLpSNkFXCLrszKv3AWA3VFRFYTieoVgyMTQVQ1dJ5IpsH46TLQr/vY6Im4vm12HoChv6YmVPL7GBGc0U8DsNFjT62DQgFEDDHjt+p0EyXyTiFYuqBr+TobJyZjYvSvAAQm4bF86pwefU0VWVWp8Du66VxXkKDMWyPLpzjO89to9SSdgQjCfzQsK+UKTGayeeFfYHVtmTzWkID7E5daLXLuAyuHxRneizUlQ29ItsVb5osqk/jl3XaPA7sRkqhiqEdNrCLnRVYWGjn7FUjhd7o+weS9EfE5YRQbcNp6HRN5Fmz1gKXRXHs2CaLGvz47KXxXpMi/2j6XJpowgkNVXBskDXhF9hKldkYaOfQLks0rIs9o+naQo6WdjoJ+Sx0R52o6pC+r8j4i6L9WR4ZOcYWwbilCyLGq+NVL7Ie9e2sX0ogd9p4LZp7BhKcvdzfazpDBHx2quZnuagqD5SVQXTEqqbiWyBx3ePUyiZ7BhJ0FXjwdA0aj125jf6yJdMdE1hWXOAzloPbREXmqpwXk8N53ZH6KzxcPG8OvomMrSF3SRzRVZ3hgl7bITcNvaOJfHYdIolE12jqkg+FM9iVgK5UomhuCiF3dgf5w9bRnhq3wT5sjBHZ62HGq8dyuWHNk2lOeSiOeRCU1TmNfg4r6eGeFb4sG0eiJMpFDmrNYDbrtPod/Dc/kmR7bZrOG0aCxtFj2mmUGLfWAqHLkotxfWl0Rh0ck5niMVNfnaMJEjlS8Knb+MgTQEnHoeO26YRzRRp8DsJuWyMJESAbNeFKX1jwEnIY2P3SJKhWLbsLyg2GB7aPsb+sQxdtR6uW9lCybRI5YSvZcRrpzXkwtBU2sMukaHTFHaPpdg9mmLzQIx4Nk972IXL0GgOOGn0O0gXSsyt97Ck0c/8Rh+Lm3zEMsIiBsBl11jQ6OeSBfXMrfeysMnPWCLHcweioqdYVUQWLVPkzcsaaQw4yBbNg0JVBQvTEmqiYvNHp87voDnkYnlrkM4aN/mSSbYoymodhkY0nWc4nuXpfVG2DSWE+q7bYFmLH02FaFoI5IS9NsIeO0XTpGSKjYCmoBMFhRf7o4yn8vidOoolNqdqvXa8dp3GgAMUseEXzeTprPFQKJkMRDN0Rjz0TmQA0ZNb57UTctuqPplHQgZ8ElG2qSrc8a7lrO4M86m7N9A3meb/vXUx//rHnbx9ZQv/cPWiqscewFN7J3j3d9bz2K6xqqiL5NXJr14Y4G3/8UTVKLaCoal8730r+cSlc7lpXQfv//4z/H7z0GF/73MY/OCmVWQLJb776J6TNWyJ5FWFaVksa/Xjc4gMR41XfKGHXTZ8Tp2WkJOlLX6chvDWGoplqfcJpU2HTZRRrmgP0hQUi7LWoJMGv1Ps8LsMzukM4XMZxNJ5CqaFx6bTVetBU0Sw2VPnxbLKfoDxDJsH4pRMCwXRvzWSyIkdaFUjmiqQLhTZOpTEbdd469nNbOqPMRDNEnbbCbttLGj0k8mXWNriF/5SZa+0NV1h0vkihq4yFM+yvDVQNnX2iuBOUekIu4hnRYDVU+Olb0IEfrtGUmwbSlDrs+FzamwZiKNrCgPRDI/vHmMymWd5a4D2iJt3rGqho9xHXudzlC0R0mQLJufPqWFtl/DzWl0ueQ177JzbHeb+rcMcGE8zEM3itAkBGruugaUIA/POEAsaRInaCwcm6ZtM0xZyc1aLUDvMlX395tb7yiWNOVJ5IeFfLJqEXHY8Dq0cNLhZ0CD6sYqmyOIsawnQHnHRHHSybk6EtrCLlpC7KrrhtRtV38FCyaTe72BZi5/heLZqRj4azzEcz+J3isW5hVDQFN5lBfJFk4GYWIQrgN9lY9eIKK00LTinI0RnxIPTphN22ylaQglQZINFOXHBFL1h3TUeFKDWZydfFgLZ0Cfk/p02HUWFRr+Dm9d1EHLb8DkN9o6neO7AJL2TaYbjWR7eOQpYXLW0kZXtIS5bWMdN53bw5xf1sHcsxc7hBD21HlQV7LqwJ9g2mGBTX5zBWJaiZbGyI4zPqdNd6xVBjmnhdui0hV2kcgUe2jlGsSSOsaqIwC/ottFZ4+ZNSxrJFUVgY1qwYzhBybSo8TqIeO3sHxdCQSG3jaf2jmNhcU5nmF2jSVx2Db/LoD0iZP/7JtPkiiXaIwcDfZdNp1AWsAFI5YsieLfpNAWczKv3srYrzNw6L5cvrGd1Z4TNA3F2DCUoIawYWkMuwh6DkMsgkS2yaSDOk3vGGUvmqPHYcRgqLUEn+8YyPLRjtKoM2RR0ki9aLGz0oSoK/dEMO0eSxLNFRpN5RhM5xhN59o4mRca0u0Zk6RRY0xlmMJrFblNpC7mIpgvYy36IbUEXKztCeB0GxZIlTOIt2DqYoDUkMk4jyRwBl0FrSFjM9E2KktDJtFDXrPE6uGh+HTU+h+hLtmD93gmKJZN6nxOf0wALcoUSK9qD1PkcBN12ar12YUyuq+L9Lx1Upgw4DRqDLpa1BLm0LA64sNHPeLk302lo/OzpXlK5EtmCSd9khnzRZG69UKfdPpJicZOfXKFEPFOgOegkni8wlsyRLgixnN2jKVoCThoDTvaOpxhPZHHqulArtmnoqkqx3G9Z6xObQhPpPA9sG8W04LkDk0IARlFRUaotL4uaApzdGqSn1o3brlPntZMtlKjx2lnQ6MNlF5/Zdl1l+3CSRFaMZ11PhKUtAfaNpxiOZVEU6J9ME/EeLCXvnUijvcRaXAZ8r3GKJZO3fesJXuyNsrE/hqLAl65ayC3rOvjYT1/kE5fO4eOvnzMtqHtyzzg3/tdTfO6N87liccMpHL1kNrh5XQfvXNXKdf/xxIz9epZlsaEvxq0XdPGx/3mBXzzfd9hjvA6D79+0ig9e0FU1jJVIJAdRUPDYDSwsSuWetE+/YT7NISeT6QJDsRwhtw23XWdpsx+3XafWa0dRFMaTeRQFvv/4fvomM2iqyBam8kX6Y2VZ/spntKLw9N4J+mMZajxid3levY/FTX7cdg3TsnDbdC6aV0tjwCGCx7CL83oiLG8N4nWKRavbEP0uv988zN3P9nFgIl1W3rMYTeYA2DGSJJEtYtOF0fKe0RTpQon5DT6WtQZY2RGmuVyCt7YrTLFk8rp5NcxvFJmji+fX8pGLuskWTLwOnWWtAVpCwoZAZKsc3L9lmGT5NXLl7CJAIlOoVhRkC0LIoDXkKkvAi/7zfNGkaArhEACXXa/28TQHnYwnc2wZiNPgt1Prs7NrJMnAZJbOcpCTLZbQNZVar53WsHjua85qZm6dl4vn1aKWjZ0dusZEKsf+yTQtISfzG3w8uXeMiWSeFR1BPA5dnAEKqIrC5gHhCzaRzGNZkC6LnazrDpPJF3HoCi67TtBlYyyZw2nT6YgIifcNfTHevbqNufVeoQSaL9EcEGWdZ7UGyBZMdg4ncJXLOU1g71gKv9PAZRO9ghGPnTVdETRVYTKdJ5UTAUwlMC2ZFntGU/RPpumPZaj3O3jd3FrmN/golCxCbhuqKgRbNEU8xzP7Jqn12klmC5RKFgsb/cxv8NEUdLKoIcCOkSTr9wrRosFYllgmT8ht46qlDbSG3bjswpNwcXMAp66RL5psGYzT6HfSP5nhiT0HvYBHEjlhm5HIUSiYZe/DIhZQMkWGr2SKcsEV7WGWtgTojHjwOQ2WNPkpmhZ2XWMolmH/eIoFDT4mUwV6J1IMRDM8u2+SezcOks6VqPM6SGQKmJbJhr4ojX5hQ5HIFkhkRRbMpglxjaDbxmUL6/HaDXwOg6DHhqrA9uEEy1oCGLpQWQWRAfTYNbw2nWSuSCpXZN94mp0jCUJuG2e3BQi4DPomMhyYTON1GtT7nSxp8bOg0VdVLK3zC0/NpoBL+EMWTCZTonzRaZSN1r3CUN2misxtLFOgWO5HbAu7CTh1nu8VPZcum8a8ej/NIRcTyVzZ6FvDpmvMr/eiawpjyTyFkomrnPktmqIk2a6LkttM0cTvMnhg+wiTqTxvXNwgrCWSOUYSOfFZpVDNCuaLJvGyjYqmKDx3YJK2sAsLi4lUHpumCsP6XIHtwwn2j6foqfewujMMQGeNG5/ThsPQCHvs1Pkc+F0GdT47DkPD59ApmSY7hhPE0wWhDhp2YSH63xp8TgaiwopqYaOfhoCDnSNiAzyaKhDNFJnM5JlIifLmSjlu0G0AYoOhVLLIl0y2DyWIZ4plxdMiLUEnyWwRl6HhsWv4XAbjSVH2vbg5QGPAid9hMJHKoykKO4YT9EUzJMuWPS6bjqYo2DQFl6GRK5bYP5Gm1usgls7jdxqAIj6bVRnwSY6Crqm8d20bX/ndNv7x99sZTeR4YPsoH/3JC/y/a5dMM1QHeGL3ODf/99N8/soFvHNV66kZtGRWURSFj79+Dh+8oIt3fvtJHtg2ctj9/33jSj72+jl88aoFfO7nG2e0dXDZdAxN5d8e2MUN311PvNyjIpFIwMLi1y8OYNc0umo8FIomT+0dJ54R3mgumyZ6SBSRXY947OwaTaEqws+qKegkVygxkRZG1Ks6QgxGs/idBgfKZaJ1PgfZQom1XeFy71auGtTsHEkSTQshCNOEZK7ASCLPWEJIeu8eSdIScrGkOUBz0IlpiazkSCJHPCuk5FvDbtx2g77JNNuH4ixu9NE7mWb3aAqHoRPx2klni0RTBUZiOXRVbBB67cIAu6vWQ9BlZ/NAjIlUjif3jPOdh/fQGnZxTkeYyxbWkyibB3eERVZuYZMIDjsi7qpCYO9EhrGysiGIstfn9k/iMjQunFtDT52HlqATgJ0jKbx2nVROlIAJYRInN61rF1nKQpFcUfSomZZYtOWLJnMbvBiqCM5GEiLILJkWu8eEKEPEa2dunZelzQECLrHYXNEWZMtgnKf2TuKxGcKTLl1g31iKXKGEXRceYbqqcnZbELPco2kBqXyJgMvGZKbAzpEkTl3jnI4Q58+pwW3XWdURJFcwaQk76ZsUoiYehxAL0VRhGN4YcNHgdzCayAmbA0WIOWQKJdrDbizLYjJd4Fcv9nPvxgFABAWqolAomdUF4wu9UdK5ovAUNEWgPBzLCuXHkslwLEexaKKrKh0RNx67zkAsw3gqz4Vza3nbimYxl3QBr8OgLmBnabOfjrKAjmVC70QGVVWo9QlVw53DCUYTecYTOVpCIovdU+shVTa/jpSVODf1x2jwO5jX4MFj11jU7Of1C+vwOwxMoe9S7jG1iGXy/PKFfrYOxtk9mmQknmUincdQVSbT4j0Num1omhDtMTSVGq9Q4Aw6DWp9dgZiWVZ1hMkVhGpkrU9kuPeOpXm+d5LJdB5NU2gOOVnc5BfCSS6D7loPq9pDOG06qVyRh3eOVvsANw/EqfHauWFNO4uaAzgNjUyhxFgyR4NfXOdOm4bHrrOyI0ShaGKoQiBmYDKDQ9cwNEXI8JebZnNFk+vXtLGsJUDRNElUN13FOe00NLxOg2UtwXIWVJReex2i1HMwmmFNZxiv02DnSJzNgzFMRPDsLYsKFUyL+fU+PHaDfMmqqsuOlUuTa71OxpI5cnnxGaQqVK+dpoATvWwS77ZpNAedaCqMJXL0RTPsHk0Iy4exJIqiEM8UmVPnY0GDD49DJ+i2Uedz0hpyY9c1NvfHeXSn0I7YN5bi4nm1eB16OYh1ieAuI8rla33imtg8EKfGYyPg0nHpQhwmWxBZYY9dR1cVmoNOnIZQW631isDx6uVNhNw2euo8hL126n12DFVlJC6CUYchfPJ6aj0sbBL2Fx6H2LCxgPPm1BDLFnhu/yRP7Z3A7zJY0hzg+QNR4TFatijZN57CbmgsafKzsEn0aQ7FMjy2e4xs0cSmq8xvEL278VyBQkl8PquqUIF+iXhPBnyvVXLFEh/58XP86Mn9fO4Xm2gMOLn3L87jF8/388VfbeY/b1jBm5ZMt1d4bNcYN3//ab5w5UKuWymDvTONWy/o4stXL+IjP36O7zyyZ5qxeiV78PCOMd53bgdf/b9tfOuh3TM+z19c3IPXYXD9d9YTS8ugTyIBsRD1O21013oYT+YomMLAfN+4MNoWptqiP63Si5Qvq+lZlsVgLAvlL3S3TWdunYfPXDGPZS0BQm7RV9Tgd9AZcVPvc+A0NPaNpcrWC27awy52DCeF+iCwfs8ElmVhN1QOTKQZS+bpnRRCMD6nQdBtMJHKYdNVHIZGV40bs2xloKAwp85LMl9iXr2X+vIiaFV7iDctbRTBg6awbzzNZCpPfcDJlkEROFX6vup9DkxT9DwVSkK2fSKVp1iycNl0ckUTQ1UYimcZS+SqO/BLmv3YdZV13RHq/UItWtMUUuUMT015odYUdAHQEXHhd4lMp8eusWUwTiwtsimijFClOeTEYYj+p+WtQcaSOWESXw56K31+CrBzJEmpZPH7TYPEsgV2jiTQNIXtwwkSuRJBl43moJM1XWFCZd/CfNHigrk1vHlZEz21Xs5uCxJ025lbL1RHNVUlX7LYO5ZkLJmjaFoMJ7LsGEmI1xxO0DeZpWha7B1Lc/v9u9jYN8m5XTWsbA+yfyLN4mY/lOfvdQoBB8uyUBDZB9OCs1qDGKpCNi/k9UGck2IDIcwHzusEYH6DF69T59kDonSyUBTBoILC/AZ/2RNQpSXoQlVUIl4H1y5vpmSKgLIvmmHLQJw6r52SafLwjlGUcqmow9B479p2rlzaiGlaPLR9hPFkjgvn1LCuJ8KKtiBD8Ry1Xgc7R5IEnKIHq6vGQ1NQGFZPpPOs7owQdNkxLYvOsAcUhZIlvMg0RQRD5pRgaFO/ECTZPZoilslj10UZcjRdYGOfCG4qFiPxTAFNU/jTNmHSnsoVmVvvxWnobOyPCZsBj50L59bidRhcMKcGQ1UxynYqZ7UEqfHa2D6cwGPXCbttmJZQt+6s8bCwwcdkOs9DO0bZP56iq8aDoyzsoyjimtg3lqZYsphM58r9ozqdNe5qf2KuaGKaVM3A8yVTbLrqKrmiSdhtA0UhXzIZLVsd2HXR15kriwSpisJQLCce77Ezmc7TU+shVxR9wi6bTqlk0eR3oisK24bibC+Xw2bLQWlnjRuPQ6ch4GA0mRO9urUe+qNZTIuqN9xz+ycJu204dLHB4HWI4LO7zkNLwMlZLaKks8bnIFcocWAiTVeNh8agk7awuJYLRbEZs6I9hMMQnnsAXTUe9o2nGU8KUZqiKQLkZK5AV42bsfIGSMhjQ1EVDFWlaIm+vaXNARY2+rn6rCZyBZN9Y2n2jKa4cG4tLSEnJdNiIJqlwe/ApmssaPBiKwfouqawpFn0U9oN0T87t05YwLxubi0lS2RRHboKKLSE3LxvbRsXzq1hSXOA83siFIsWIY+NiMdgNJHD79RpDbkZjeeq/pLnz6kh4rGhayqNASeRsn2Dpip014rNrVI5y3o0ZMD3GqVYMjm/J0J72M3/u3Yp/3jtEv71jzv49sN7+PH7z6k2IFeIZQr82Y+f40tvXsTbV7acolFLTjRvXtbEj98vjNUHY9nD7v/n65bxycvn8a33nM23HtzFP/1++7TAEEQ24ts3nE2N185tP3vhJI1cIjm9UVWFkNtgNJljOJ5DVeDc7ojoM4mmy6V2InADGI5nyZe/xIumWIAp5YgvmSty76ZhJlIie2doKiPxbFXls1jOcqBAZ8TN0pYAPeVAr1Aycdk15jf6yvYNOp0RN+d0hsRC2YL2sIvzuiMsbwvSHfHgc+gsbAoQ8drZNpzAgrK/lSjP8zkNxpN5NvRFKZkW713bxl9c1MNVSxpJZIvcu2Gw6qnXVePm6uXN3HJeFx01bnxOg2imyOImP2e1Bnn7yhbOnxOhaFqs6QozHM/RVevhisX1uGw6fqeNWp+dbUOJqjKwpoh53LSuA01V2DoYxzTN8n0q8UyBc7sjVeGIgMvgwp4aHt01xmAsQ6kkTK7fclYTS1sCRDx2huJCHKGn1lN9TxQFFjT4eMtZTeiaKuwJ0gVqvSLrMxDNkC2U2DWc5HebhhhP5uiIuFna4sdQNUJuGyXT5JGdoxRKIgtTLJkkcwU6wm46I146Ix6uWNxAT60bFYX7tgwzmszREnRSW+75uXBeLbmSxa7RJIWSEIKIl7OdrSEn4XJ55+vm1dLgdxBy25jf4GNdTwRdUyiYJnPqhODNRCpPNC1Msi1Ej2ciW6S7nIVOZAvU+exoqkJ7xE1jwMGiZj+GpmJiMZrMsn0oQbFkoSgiONXLSocBt42QW5QU7xxJ8vAOIfw1kc6zoS+Gqio4DI1zeyJMpgus3zPB/ol0NdOmKHDDmjZhaxAQgcCixgABp40ndo+TyBUZTQorE59DxzTFIt7j0NHK5bYgDOvTeXGOXTS/BkNT6axx4XMZjCWF5ZTIQlsEXXZy5exlMlfAY9fYPZqidzLDeCrHggYfqWyR8VSOTf0xCiVhJr5+7zhDcfGdWe8XPWjbh0TAd8mCOnGNdYRQFCiYYlPD5zREOWO2wAu9UcYTBcaTwsxd1xRsusrO4STFkshA9U9mmdfg46plTXjswspE9CIK43iRvVTwOXR8do2lzWIDY169F7uuVpW1K32lrWEXXodOsWRRKlkMRDMiYIt4qPc7GYpliWbyOAyNSxeJ6y/kFuWhuaIwC98/niaWLjCRyrO4yc+CBtGnPJrIoiI2TCzLIpYVJYceh46JRa7ca9sccNEQdJItlPA7RSlse9jN4iY/D+8cpW8yUw1kKqIlqZzwdcyXe+NCbhthjw23XcPn1Omq8fJXl83hzy7qoaPGQzovlI79DgOnTWX3WIpktkCj30nRNNk1miRTFNYmok/UzWAsQ8BpQ1UU9owKpVLLgu5aL00BJ3PrPWiquH4S2SL7xlLsG0uxfyJNxGvjyT1jbOqLkcqXeGrfBJOpHCgmuaLFvRsGeWTnqLAU8Tmo9Qml17PbgmQLJpNl6w+nTaiB6oqKTRMbCkPxLC676Je2aSr+cqlvY8ApAz7JdPJFkw/d+SwX/OODzKnzcm5PhIvn1/KX//siv9s0xF0fWsuS5sC0vxlJiLKhP3z8Aq6VapxnPMtaAvzh4xfQGHDy6xcHppmvV74w/m/TEFcta+J/n+3lb3+9BdOcHvTZdY1/f/fZ/O1VCwGkZYPkNY+qiI2zkUSuuhs7EM1Q67VX5dm7aj0EXCK4yORNzJII3IolE5uuUeezV5/LrqscGM+gKAqjiSy5okkqVyRXMplI5ZhIFlBQ8Dlt9NR6URWFefVetg8JifGa8m53IiuMufeNpRmIZkhmC+iqyr7xNIua/LzjnFbesLgBr11ncbOPZLbIeFKIMgCMJ4VputchdrnX753gly8O8vU/7CCZK9IaduEwhJn33DofuqYScttI5orsGErSO5kmky9WqwgchkadT1gsJPMl3rGyhVqfUB+d3+Al6DYoFE1hUl/u4TPKFhbP7hf2MT6nQchjp6tGqCtOpvL0jqcZS+WYU+vF6xC+cvU+BzUeO4auThMlK5ommZxJXbmEtBJoK4ooSfvliwMUiiYNfiFeYWgic7Kk2U+mUGIgliGeKfCmJY3kSyYjcWFs/asXBqp+iU5DYzyRYyCWIZs3sekKQZfBnDqvCOCy4tjNq/extDkg/LdUhCm5TaM97GbbUIItgwn2jqXYMyqUlufVi/LgomnhcxjomkKN105HxI2CyK7G0gVe7IuilDNhAOOpPC/2RjHL2eRar4P5jT68ToOWoItCyWTbYJyiKfqqdF1FK4vC5IpCzMWyoKfOQ3vYjdOm4TCEAIiuKqztCrGwyVd9jysCJ5qq8PCOUZ49MMmWwTgLGn0UTWF0f253hCf3TLC42c+cOi+xbJGdownetKSB+Q0+VrWH6K71lkWB3JjlrM2ylgC1XntVxMKmqZiWGKfT0FnU7COVK6EpCmu7wkKIo9w3+tazm7lwbg0+p8H8Bh/9kxkWN/toCTm5fGE98+p9LGoK4LEbDEYzmJbFk3vGiGUK2Mvfj9uHk+wYTgoBDkOUZ+8ZS4neR0WhbzJN0bQ4uy3I3HovXrvOkiY/DX47y1oDaKqC32kwr16os46UA8mKmm46X0JTVZHRtCxKJsSy4nxrCblQgD1jaXaPJBlJ5Ak5bcxr8DG3Xmz6tEeEUurcei8dEbcQb1JF6edQLMvzvZOMJnIY5R4yRQHLtIimC3zkwm6WtwawLAvTtKqZQ1UBj02jbzKDs2xormlqdT1pmhYOXWNuvZdV7SHshuhDHoxneXL3OPsn0uwbS7GpP8riZj/NQScKImCsUOcTvbR2XWU8JSoSAJ7vjYoNiPJ7bGgKiVyJOp+D5w5MUiiZOGwaIY+NyxY0MK/eh9OmU+93VMvZn9k3SaZQwqmruMufxU6b6COOeMTxyxVLbCt7RoLYTJpM53GWrzevUyeaLtAacrN3LM1oIksqV8RpiGNY4xbZ1Vh5g0tTlbLirkJnjZt94yl0VWFJk4859V6WtwZJZIo8tnuMfMnC0FRchobD0Ihni9XKA79TqAfLgE9SJZEt8LlfbOSPW4f5s9f1sKwlQDpf5AM/eIYtg3Hu/tBaOsrKUxX2j6d40zceJZUTDbWS1waVxc+ukWRV+nhqJu9zb5zP37xpAT++ZTV/2DrEp+7eUF04VLDpKi0hFw9uH+FNtz9a/dKSSF6L2HWNroiHtrAoMRTm5GlSuRJumzBSf27fJLG0uN5UVaEhKAQZQh47YY9QQATRey2UBENiUehxoCgiA5XMFvHadTwOTSzUENkCTVFwGmpV8n/HSJJcQWQyDkykGUlkafA7yZdMFFVhIJbhxd4o2UIJV3l8lUxQNJ2nzmdnTVeYxc2BasB09bKmsphFAZ/TYDie5dKF9XTVeknnS1UvLIDdo0nqfHaaA87qvKbSERHB2lDZzyuZLWIv99ac3R5idWe4WtJlK5eq7SnbyzQFnHjsws9rQaMPv8tgIJbFoWtsHIiRyBZ5vjeK06bREXEzp9bDOR3h6mtnC6ZQKR2Mc+HcWuY1eKv3FU2Lvol0texWURCmyuNpofoXcNIYdDKvwVe1ZjB0jXq/g5DH4Po1opzR0FSagqIn6V2rW9FVtSw2YpLKCTPmvokMrSEXm/pj7B9PVbNvA9EsTkPDpiksafbzurm1nNstqnIOTKTZNZpi21AcgHq/MIz/49ZhHtw+gt9psKJ8/BRALa8CmwIOzukMoWsqZ7UEKZgWF82t4dyuMHZDw7REZllXRZBn18R4Ay4DXRXlfxZg6Cov9EbZPZok5LKhAA/vHK2K0IAQU6mUoOqq8B9c1S6sAhLZEnZNJVM2sd83niKVK1UXs+1hN0PxLOl8kbFklvFkDlVVhEl7uYxzNJlDV1Vev6COBr+TWp+Ds1oDwk5jJEFXxIvHYXD+3BpqPA7cdp0ar51cocR/P76XTL5UXUyfP6eG4ViOC+bU4LTp/N+mQfaOJVnVHqK1bMlR8T+rBHyVQDOeEeqtTkNjfoMPh6GhKtBctqx4ZMcoz+ybYFGTn3O7IzSHXLSHPcJWRFNZ1hrErmv4nAaGLkpiE9kCz/dOoioi4CqZFj21HjojbgaiGUqmiVa2edk3lsamqaiaEDKqHP/KsdQUBRPRm7i8NciKtiBBt42Qy0BXRbCXzYvSzfu3jRDN5PnfZ3uJeO3lc8vJ3DovdT4HIbcdE5EF89j18uuI69iyxGaJ16mzfzxNyRTJh5DbxluXN1PnczCnzkutz45N19gzlqJQEpsIZlmEB8BCIVsoUSqXiq7tinBgPE2+VOL5A5PsGkmyuT/OUCxL70SaB7aNUOOxCw9RQyPgtJHMFWgNuQg4beSLJt6yr3R72FX2r9TYNZKsrneXtwVZ3Sl6ole1h1jRHkRTFQolC00VmxcNPgeGLsSdSiWLjf0xFjf7cRg6y1uDtIWcXLmkifPm1LCw0UfQbeB3Gth04eU5Vi51Ny2E4nF5M6Sx7Mt5Xk+kPH7RF6wpCi6bRmNA9CknskWePzBJV+309fuhyIDvNYJpWvzDb7fSO5nmT5+4kPed285EKs+7/nM9qVyJn35wDXU+R/XxomdE+M/8/mPn4y5fwJLXFre9fg5rusI8snOUd3z7yapfn8PQMDSVezcOsrItxPO9Uf78J8+TL5qHPce67ghLmvxc9+0nGYxlTvYUJJLTAlWBxS0Bgi6b8AxTRP9UybRI54UxuaKC2yE+a22a+FLXyt5My1qDDExmwRKquKs6whyYEBLs2WIJRRHlcem8kJ4POA0ibjuGpohFugqb+hNYWMyp9XL1sia8Dp2SadFV62FtV5glLX7m1wuhhHO7I6QLJYamlHbrmlD98zlFhq7W66At5GIimSeeLbBlME53rYfVnSGag04cNg2HLoQ97LqKrh5ccmiKQk+dl/aIe8bNRKF+qfLbjYMEnDacNq26kO6IuBmKZaty5yBKYJe3BgFhG5Qrmty8rgPLEsdSUcBp01jXFeaDF3Ryfk8NQLkXR8VmHBxbyG1jYaMISPxOo7qjD3DxPBFcrWwP0RJ0cXZ7CE1TqPc7GE3mCXmEFcCWgRj90Qx+p8jaiTI7g4d2jHDXs71oqkKuUGIkkSOaKqBronfTpqus7AgJLQ4F/rB1mEyhRKPfidtukMyVhKn13glsusripsC0zQChulmksj/XXevlisUNtIVdQp2y7D1oL/uzaWpl8egiWzCrcvX1fgdhr4N0XrxexGNjcZOfxc1+3rSkkVXtQQIucWz8LgNNU2gLCaVIl02nJegiXF5st4XdDESzbJxBBfotZzXzhsUNbB9OYloW24birOmKYKiiZ6wt7GJDX5RoKs/CRh9euy7UKyeFH9pgLEsqX0RVqZY4xjPCVsRlE+JGfqfIdF7QE+G6VW101Xq45qwmNvRGeb53khXtIRr9TgIug72jKdbvHSfisXP5onrqfA4mUnk29MZ4ZKfo6UvnSjy6a4ytg3Fx3ZbPy0rgVwlQQm4b9T4HfdFMWXlWRSmXaIssqI7HofPs/kl+8+IgvRNpBqNpUuXAGiCaEf13Dl3M9fo17bxrZSuaqlZ7TM9uFxYFzx2YpGRCS9CF06bRXuOmKehkXXeEhY2+slrswYBPV1UWNPgZimXZMZwk4nbQEfHgcRjYdKHYWjCFgq6mKlzQU1NWFxXn2lmtAYpl/7popoBN11jS7C8H82K36cHtI+SKJivagwxEs+wcTrKxP0Y8WyiXqWYIe2yi1NwmxJmS2SIBl61sr0H1+kvniwzGsuwZTRH2CL+8TQMxsvkSHruOw1BFmaTfwdltQc5qDdASEkJGCgq7x5LsG0/zqxf76ap14zBU3DaN/miGrYNxNFVhWaufa89uYX1ZFTbktjGv3kdLyMWy1iDNQReqIsqFFzaJz4iBWJaw20ZnjQePUxclv+UgriUkSmMPTIrMrKuc/Xxm/yQRj52rljbQFHThdRgsLivIbihfJ7qmlq8x8X61hJ3VcyiRLbKhLwqIjb7JdB6X7ejrdBnwneFk8iX+9tebRQ1xOs/t7zyLlpCLvWMprvnm4zQFnfzg5lVlaVdBybT44q82c8N3nypLz9pO4QwkpwPLW4PMqfNy+b8+zD/+fhvpvFAAe//5nfztVYv4n/efw56xJO//wTOkDrFk0DWVf3zbUla2B3nHt5+U5uySE86//Mu/0NPTQ1dXF7fffvuMj9m3bx92u51ly5axbNky1q5dW73vi1/8Ig0NDdX7vvKVr1Tve+CBB1iwYAHd3d3cdNNNFIvHbkFiWcL83K6rhFw2Ai4Dt0PnrNYA7WEXHREPvvKOs6Yq7B0VCoz7x9McGEvREHCUezWE/2VlhziVKxJwGqxsD3Hh3Fo0VfhxuRxCuENXhVBCpexOZOTEgn8glqFYEgbZu0dSVaXGwWiGVLaEoR9cJly+sB5VVbhkfi3hcpD20I5R7LrGms4ICxp8DMay7C6XFyoIG4EGv6MsjuCrPpemKjy4fYRHdoyRyc98DBVFoadsTj21J2vLQJzne6MUSgerCkqmkOkHqmqezUFXVTLepqlMpHLMqfdR47WTzotFdSxdpNZnnzY2gOayyueh3LtpkF0jSWq8djb0xwi5hE9ZS9DFggYf0ZTw0msJCfPoylz3jacZTebEYlFRUBVI5IoMxjLYDIUV7SHcNmEbsX7PODZNKPLNq/dy4dxaXHYhyT4SF4GuqkCD30lTcHop10F7DvG/iVSeoViWlpAL07J4eu8k6ZxQBlUVIcSSzpeYTOWE1xowGMuwaySJrywX3zuRrpbfDcayGJrK/EY/53SEmUjlyRZKKIjs59w6L3PqPNh0Ubo7nszhMjQu6KmpBuRTCboMNEVhMCaCIk1R2DIYJ54t4igLkABVe4w9Yym8DqPcU+hhUZNf2JIgrBhMy2J+gw9NUfjj1mF++UI/sUyBZ/dHeXjnGM/tE2W/I4kcpiUW9I/tGiORLRJy27GAsWSB0USOFw5E+dWL/bx1RRM+p/AsrPc7WN4eYFVHkHzJxOPQcegqCxv91ZYHTRWejtee3UxrWPS69k2m0TVxzcWzRfaNpwi6DZY2B8iX/QPHkjlc5WCqkuWxGxrpsn/gxr4o6/eOMxDPCisA06JYEiI1PofBm5c1sbY7QoPfwUQyRypXZCKZ59GdY8KWovLZUj5HVFUc/4Folr7JDC/2RxmIZVAUsOlC3EdVFLx2Q3h4lv0a68ul5dFMgaFYlgUN3mq5uYXIkDcFnLRF3MSzRUqWRVPAxWQqj4XFgkYfownhJfnY7jFSuSJ9kxkGohn+uHUYVYX+aIauGnfZ904ozor+Phceu8aO4QTbhhK8bm4tNV5HVcykPeJGUxT6JjPV8viAy0ahVMKhqdR47Hz4wm5WdggF1Xz5M6Q/mkFXlWqvXKX81VHudRxL5vj1iwO80BtFLwdg48kcXodOjcdeDaYvXVDPZYvqMYF8scTzB6Kc0xUhlStSKJWq12ex/LrpgkmhJEqYB2NZGgNOzu0S2XpDUxhN5Hh8lwg+FzT4q1niOq+wn1AVkb2d+ll4JGTAdwbz7P5J3vCvD/PQ9lHqfQ6+df0KarwOnt0/yTX//hiXLqjj9necVf1gAbGD8sEfPsuju8b43vtWTutrkLx2cdt1/u4ti7jr1rU8sXuci7/2kJCY19Wy3444x7KFEu/49pOMlhdeFTRV4SvXLOH/u3oxTpt2mNCLRDJbbN++nW9+85s8//zzvPDCC3zjG99g9+6ZFWVbWlp44YUXeOGFF3j88cen3feRj3yket+nP/1pAEqlEjfffDP/+7//y65du0gmk/zwhz885rGZlgj6fA6DoNtGo1/s2HbVeLHpqshklEs66/0ODF0EBx676I3x2DXCbrG4rfHaObstyPxy6aDbrlezESXTxG3XyZQzPboqAgxNhYaAg/kNPjL5Ek5DCIkMRMVCvsZrrwY6AaeNbLFU3V0GERwmMkUag04my952C5t8LGrysaQ5wMImPyXTwlBV4U+mi9K8rYNx2iPuaZUiDQEHHrtGwG1US80OxWvXGYnnqr15le+jWp+di+bVVkvHAN6wqB5dUzFNi5aQq7r4vnBuLYqqYAKaqvL4rjGePxBl61CCgMuG3VCw66JUdCo+h1HN2ExloPw+KIr4vnx01xjLWgPsGUsRz+TJlRfv5/XUVDdLdVXh3ee0cv2adt6wqIGrlzejKAq1XlHKtrgpgM9hsKDRR1vYzdLmAKoigtigy8ZvNgwwFMvicRjVrJrHoQu/v93j0/qcVEWU1NWUA/JKIPHMvkkxlrJoi2WKmLCSSVIUhcsXNeAwNJa3B8kWSsQyBVrDLmrKJXz2ssIiwO82DeK1i96kTDkw6J1IM5bM8ciuMfom0+XMmkrfZIaSZc24nvifpw/wf5uHaA25ePuKFs6fU0MiK0Q5aryO8kaFWNTWeBzMb/AyUlbxHIpl2TWSZGlzgFqfg2JZqGcolkVTlWoWt1gy0VWFAxMpnuuNksoVOTCRJl80SeaKor82W2D3SFIY1Tt1iqbo0bxkfh3pXIk3LmnEXc7OtATdzG3wYddVPHadRU1+oYpZZk6dlwa/o/o953cKc3Lx/ig4DY1C0aRvIsPT+yZZ0OATYiiqis+po2vCCgGg0eckUraKWNjoY2NfjCd3j1etJ8zycbUsi10jCfon00ym87RG3JimhYXFtuEET+wZr/rjKuWVv6Yq9E9mcBgq8+q9ItutqngdYrw2Q8VpqDhtGgrw2O4x0oUS9nJW0+8wuGxhPau7xGYPwNIWf1mV1CKTFyrDiWyBB7ePgALpfKka7FTsEDojbtojbkJuG0uaA2wdTNA7maYl5BIqpOXPr0JJ9L9dMKeWdd01nNUa4L4tQySzRV7ojZIrmDyxe4xopsDesRSP7BQiQRGPnWSuRNG0cNl1XHadFw5EOas1QGV/xGXTOK+nhoJp8diusWmfLSACP1f5OFQC5lha+DDOa/DisesiKDYtxlM5rljcgNtuMJHMs3csJbz4yhm47lpPNaC0yj2uHrtOe1hk+irXm1a+fXVXuHr9VVjU7Gdpsxi/TVMPa6mZCRnwnaGs3zPOu7/zJFcsbiDisVVrrv9v0xDXf3c9f3FxD59744JpRo2jiRzv+PaTxLMFfv6hc2kpf0BJJBUWNfm569a1/OWlc/nbX2/hXf+5nlyxxFXLGvnSmxfxg5tX0R52cc03H2P3aHLa36qqwtruCCOJLG++4zH2lstDJZLZ5Be/+AXXXXcdHo8Hr9fLtddeyz333DMrz/3000/T3NzMwoVCjOjmm2/m5z//+TH/vVU2zSpZFrliCb9L7MqrqsJEKl9W7xRfywoKuqKiawphjx27obJpIM6esRRTEjpC+t+uM5nK84ctwwxEM+iqSiInfLM0VSkvmJRyr5MwAT63J8JlixrK/lJu1nSF6a71VHtazpsTEaWY2sGgJ54R2bCdQwke3jmKZVmMJwvlkj2h8HdBWV5/UZOP9rCrvEg73J5lXr2PjhphUdAQmDmbtrozTCpX5IK5NVxV7nsDsYAbigk7hwpOm87ZbSLr8vCO0epi+7n9kwzFssypFb5tTWWZ95XtIcaSOY60ThpOZPE5Dy+ROrs9xBsWN6Kroieqs8ZNndfBgkYfmYJZVuK0+OUL/dUSdl1TGYxlGT6kjzlbKDEQzVSD5wqqqmA3NGq8dnaURbNqvHZ0VcHt0FEVsfPfH80wp85L/ZR2jHqfg/ed214VWIt47Cxo9DGvwcu53RG8Dp1swcRC9B+qqoJdF15lsXSBZNlHsbvWg9PQcBp6tVeoMeCkI+KmJeTiTUsaqQ84qfE4aA2LMjcLhEqh206D34miKLxhUQPvXt02bbE6lXq/g64aD267UK2stAtctbSRc7sjnNMRQldFAOR3GVw0r46Ay+CcDlE2PJHKC4/IKRnZ4bgw+M6VRDWJBTQHXFiWaDGIeIWgT65YIl8U1hWaCvUBsXGilzcsRLDroGhaPLBthNFEvroYr/Taeuw6Y8kcT5czhyCyqk/sGa9mc6aW2qnlXtvuOi9+l0Fz0MkjO8cYjGex6aKftiXoqpY5hzw2fA5R1tdV4+GiebW8bUULqioyfCVTvIdF02LzQLyaJbpsYT1ntQXwO22sbA9WffDEGMo9fKowPjc0pRrM6ppCKlckky9hWRb5koVdV1naEqAr4sFpiCzslUsaWNoSwGGoZAulajtHV42nPB6TkYTIRFaqfgJOg0LJYrJ87AxNRS/3w5VM4YXZEXEzp85Le9jNwzvGiGcLaOWseMkSwdT2oThNASexTIHOiIfhRJagy0BR4LyeGpoCTtb1RDirnFEWPb0iYHMaKg9sG2FBo48aj52zW4O8c1UrbWHR52fXNZa3BXnuQHTaeeqxC4VSu6FW180eh8ZoIsfO4ST1PgdBt42iafHc/kme3TdRVmQ12TYYo2AK4S0Q5u4V5d/moIs3LW2kNewqW21YVcsUVVFY1x3BW876Vq6hkmXRGnLTVC4vddo0FpfLS4+GDPjOMITXTJolzQH+4S2L+eTl8/jpB9fgtml855E9fPxnL/DP1y3jfed2TPu7DX1R3nLHY7SH3fzw5lX4XYc30UskIL5c3np2M3/6ywt469nN2HWNLQNxsoUSz+ybZCSR44pFDbz1m4/zzJQvwQo1HjurO8O87VtPsGmGng6J5JXQ19dHS8tB65jW1lb6+vpmfGx/fz/Lly/nnHPO4Uc/+tG0+7797W+zZMkSrr76anbu3Hncz33HHXewYMGC6k8ikajuwraH3TQHp2+ohd120edWjq8sLFRNBGo7hxM4dI3Xz68j4rHNmClRFYVcUSjTqapS7W+rBEmqInoB49mD5ZPbh+I8fyBaLemcdhwnM7SFXNO+Czpr3KhlRTkQ3l/7xpP0lzM4hZJFwGUTqs5bhmcM9CrsHUuxsT/K+j3jh6n8VhhJ5HjXOa147Aa/enGgevtEKs/mgRiHFgrsGU2SyZfoqvVUF9tuu47XoTOWFPYDbWE3Aaetugg9UiACVJUkp5ItlHhq73i1xLSSBWwOOlnaEqAzIl7bbdNxGWKhr5fLtQ7tYcsWhdn2obNvCTqZV+9lXr2Pzho3b1rSiNMQPYw3rG5ndWeYOp+DyVRemNZ3HhScqfU5sGtCNRCEImfvRIZarzCf9tgNsoVSOduj4HfqeOw62UKJJ/aMUzTFZsQLvVFsusqCBl/1XN0/luK+zUPAwWyrKBO2qv+fU+9lbr23agKtAG77wT63Q7FrGvmiyY7hBPvHxWZGvmjy6K5xGgNOopkCCxt91ezwxv4YpiW+hxY1+VnVEWIgliU1RQlaUxVGEjk29IrjbVoWPqcu1CzTBdK5Ii67zvx6H+u6I2IBbymE3HauWd5MU9DJ3rEUIwlhdRJw2sgUSvTUe/DYdbYNxYllxPnjcehs6o+TmfL6ew7Z7Ay7bdXzpNL/lSnbsMyt91LjtdFT6yHisZHMFkW/WEsAEBYKFeXNJ/aM8+z+SfaMJqsBUNE00coZ0Dcva2JFe4iL59cRTReEIbqmsG8sRUvIVa3mqrw3WjlYqGRgAYxyNi1fEoImtV67MCgvlqgPONA1EfAoikKhZNI3KTY13HadQNnvEuDsthBvXtbEWa1iHh67Xu2nq1xzuqoQzRTYM5pkIHqwv39Fe5D2sEsEx4jjpSgKYbeNyxbW0xJykSmU2D6UoKdOlPXWeB0UShbu8rn8/IFo9fp12jTes7qdq5Y1YdM1rlzaSJ334FyC5X7BSqmmbUpJZwXTtDgwIT4jcwUR3PrLvcyZsj1NIlvApqtcPL+OiVS+WooedNux60Jk6UgoUPUhVRSFyxbWM6fOi9Om8+COEfEYRWFNZ5gaj71aFq4q4NC1Y0rQyIDvDCFbKPHV/9vGtd96nGf2TbJ9OMH/PNNLyRRSu3911wb+4+E9/OiWc7hsYf20vzVNi8/9YhPvWd3Gv75j2YxlLBLJofgcRnUX+el9EzyxZ5wV7UE+dkkPn7liPh+/pIfrv/sUP39u+oJYURQ+84Z53Lyug3d++0k29smgT3J8rFmzhvb29sN+/vIv/xJg2uLySOXDDQ0N9Pb28txzz/HTn/6UL3zhCzz55JMA3HrrrezZs4cNGzZw9dVXc9VVV1X/7lieG0RJ6JYtW6o/Pp+vGqB4HcZhypS6pgjD57KwSTxTxKFr6KpKKi/8oer8Djx2fUb5bb/L4IrFDaxoD+G167QE3KzuDKNXA76DO/uVHeoFDT46I256J9L0TkwP+HaPJnmxLzYtGBuICtXIlpAI/Aoli09cOpdlrQGyhVJ1IVl5ndFEjrNagjOWbI4mcrSFXDT6nVUhg0PZNhTnkZ1j3L91eNrtHrsufPUOCdaECbVC05SMYUeNG10V8ukW8OSecZ7cM87eMdEf2RSYeaE0Es9VF3hT6Yx4qsHH3Hovmqowkc7zf5uGmEjlWdDgozXk4pIFddVgWQTyyrReeRCfoUuaA4epYzsMDU+57LfB7+SXL/QzmsihKAp7xpKYpoWCUCf90zahvlmhdyLNgztGDgbbCozEszy7f4IdwwnWdIbLyp9xsVg0dFL5IulcicsX1VPrtdNV4+Hy8jqhNeyitpzVqohhTMWuCzuDSumlAvx+8xCTafH6vZNp/m/T0BFLzibTwoOuYgSuKaI8cSieIZYpMJkqTGsRaA25SGan93zuH0+xe0QEWZWFu2kKI/WWkAufw8Dj0JnX4GUynSNTKNE/meHCebU0B534nSI7tKE3ykA0Q8RjYyiWJZUrEXLbSGQLXLG4AU0RGxV+p0HIbaMz4iHgtNERcU8TvWsJHSyDBaFuOlVgCCCRE/1cLpvOud01XLqwnrDHXu3JrVy3FTXHoin6wzRFBLOqQtUapRJ8b+qPcWA8xS9f6EfBKgueKByYSPPwztGqPZJd12gLCxP3gNMg4rGzpFm8r7qq0lPrZX6D6HV97xqRHNg+lKBkCq/eCnq5bNZl01jU5OeCOTWHvb91PhGIuew6EY+dep+DhoCjOu56n4P2iGdaz2zvRJp8yaQ1JHr4KrYPlYCuKejC7zRY1OjnT9tGUBVI5gosbwvQHHRiaCoRj42pn5IBl41F5SxY70Sa+7YMVT+/HWXBpsrm2LP7J6rZ0AqVz8ySadFd6+GCOTUoCkS8osJiIpknWw4EDU1laUuQ3om06DdVxEa3qh4l4Cs/xmlTy2MSgl01XjtvXNxQfVytzyGus3J2XlEUTEzu3zo8reJhJqT04hnA3rEUN3//aTx2nf++cRUum8aS5gA//cBqxpJ5br3zWfJFk1/92bk0+A9eVNlCiV+/OMC1Zzdz14fWyEBP8rL5wPldAMSzBT74w2c5f04N/ZMZbn/XMj7+0xfZ2B/js1fMr36gKorChy7soqfWQ3etp7xDLPtFJcfGE088ccT7vvrVr3LgwIHq7319fTQ3H+4farfbsdvFoqy9vZ23vOUtrF+/ntWrV1Nff3BT7IYbbuDjH/84sViMlpaWY3ruI1FZ9FZ2ZqeiKkL0ohJgRTw2GvwOdo8lKZkWAbeNe54fQFE4zCu1QuX6umBuLfdvGyZbKE0TgRlLioVz5VLzlBfCLpubdT2Rac8VdNmwrOmlhiACQVu5dylfNNk5nKpK2Feu4amXckW841BsuorX4eR18+qOdLiIZQr0R9NctbSJF8uKdJW/nUnZs6fsYffU3glWdYQAEaRWpM69Dr0adDX4nfzsmd4j9qkfKZR32zVSeXGc59YJDzhdVVjc5CeeKdAecdMadnHvxkEWlnvyumo83Lyu47Dv2GLJ5MBEhpF4ltopAYMQmTk4rjVdYSE6kxaZTY9dp2RZ1cX01Lg3VRbAMaYEDMvbgmXhkAz5kikk+8dTuGw6iWyBbEH0uMUyBYbjWTSVasABBxeWFVGZqVQyOooiepMKRdFDGSyfExW1ziMd54VNPkzLoj+aEaXHZcGTsaQo1RxPiXN2RfX469N6FkGUuxaKJtGMsEBQENeaoalVoZjGgIP+aIZrzmoimSthaCJYDrvtLGvxs3kgVi4/ztMc9NM3mSlbE2hEMwV+t2mIsFvMqXLuVQKIBYcI/jQGnNUy2MrvlU2NymaIrWyVUjIt7nm+j4lUAbddw2PXmVd/8PkqQUKuWKI94iboFhn0sWSuusCvHNvdo8lqee/cep8QvjE0zmoNEp+SbddUpZpBdNp0blrXQa3XTn80DYoI6golk71jKbxTypo7D9mYUBTlJUX9ntwzTq3XTmvIxWA0Q8itEnAawuJFVcgWTbKFUrWUHESfX8mEeQ1enjswia3cO2phsXc0RSpXZEGDj3ShxPlzanho+yiLm32YJtgMca521niOOKbdo0kWNvqneX/CwX7W+Q0+tgzGWdkemvZ3bWG36G3UVWy6jTl1XnJFN9sG4yjq9M90C4tar52Ix86o207AZRx1jaMqarnU3+TQkU+9Fg8+Xqlu4hmaSjJXfMk+PpnhexWTyhWJZwvU+xzcuLadn39oLX2TGf7n6V4ANg/EefO/PUpjwMn/3rpmWrAHYnH+u01DpPIlGexJZgWfw+DuD62lUDLZPBBn/Z4J/uvGlTy+a5zrv7ue8eR0MZdLFtThtGl84mcv8t1H956iUUvOJK6++mp+9rOfkUqlSCQS3HXXXVx99dWHPW5kZKSqsDk5Ocl9993H4sWLARgYOFg++Mc//hGPx4Pf72fFihX09/ezZcsWAL73ve9xzTXXHPPYKgtVpZzNmIqmqhRNs7r4MMp9X4ly6VgsXSCTL5Ivmi+5OaKVe/ZimUJ153zqa1b+n8oV2TqQIF8yD8tmVSwCpu5KOwytWnL0unm1GJrCL1/oZ8tAvHz/wQ2dCuOp3GEL9Mpj1+8d53uP7qkK1cxEc9BFW9g1LbNwJIZiWaLpAl01Bxemkykh/x502YhnhMiCy6aTzhc5uy1IY8Ax43M1+B3T7BgqbOyPVTNOD+0YZSCawbJEL1r7lAXxOR2h6neuqopMzqFBT8m0hIXCIa/htGlcvmjKrr7XQcBl47yeGkLugyW9XocoV+2aYXFrK489kS3w/IFoVbGwIj8PooysEogoqigdrthUHEolS3komXyJ3aNJJlN50vkiHTVu5tYdLIezOHomXC3nYWq8tuqC+cBkGgtRcnheT820zNHesRSJQzJ8a7siXDC3tnrs1HK549TLZM9Imh1DCZ7aN8FYWS01kRXiLY/tGieRKaKqChfOrWXzQJzJdB6jLDhTUW+s9LPuHk0eVgJ9NDRVqQbGlTlWfBhVRfjZ+Zwic5/KlxhJHO5Ze7CM8KDSZr4kPgsqgcqblzXREhLZL6HmqGDTDprcz1QZUDItdo0kiWWK04IkVVFY0hyonkdum149h44Hr0NnPJXHbRdenvmiic9pq34eWZY143U2VvZXBLHBIwRMDNZ2C0+8ommxYyiBpiic3RZk90iK+7cNkzoGFfAL59ZOK4GsWB1UxuG0aYeVdAIsawlMC0zHk3ncNrGRVFsWGKrgcxh01wkxl546D8Px7FHLx4slk2f3TxLPHrkMfip6udxfnJviva6U1x4JGfC9SvnjlmEu/eeH+eET+3HaNBY0+hiKZ7n27Gb+/i2L+NWLA1z3H0/wrnNa+cY7llUXEdlCia/ft51//eNOar0Ovve+lYepEUkkr4SeOi//cf0K7v7QWrYNJXjbt57grNYAXofOlbc/OmMJ5/Vr2vi3P+3k736z5ZjUpiSSIzFnzhw++MEPsnTpUpYtW8ZHP/pROjs7AfjWt77F5z//eQAeffRRli1bxtKlSznvvPO46aabuOiiiwD49Kc/zaJFi1i6dClf+tKXuPvuuwHQNI3//M//5Nprr6W7uxuXy8X1119/zGOrBD5CMfOQkiFFYVlLkPpyw36D34nXoeMsB1GD8QwWYpH+UuLJXoeOw9A4pyNMz5TFt88hFoKVP3fbdV43r5bheO6wvqOZ+urS+SJBtyEWcckcsUyBle0h1pVNv6f67DUFnARcNiZThRkFmiIeOy6bWAwdzT9qQ1+UF3qjR59wGVUVAUx4SvbP0CoLY6Hy98y+CR7cPlJVejzSZqddV6uZy6k4DI35ZSP2WEaUIyZyRf6wZZiJKeIrYY/9sJLTw17D0Lhwbu20csCXwme3VbO2brtOPFNkczngBigLVVbVVR2GNi2orQhlgDhedl2IdqgKrGgP0V3rnTF7etnC+hmPlcPQKJQsRhJZka1MZLlvy1C1vK13Is2fto0c9ncV+ibTTKTyXLW0qaosCqJ/Ml0QJZVTA41wWRTnSDgM7WBf4ZTbd48mKJoWg9EsliUM6hv8TtEfVxac0cplqZcurMNpaOiags9pkCuaXL6onpqy9YDD0A4rzz1WKkFBplBiOJZFURRWd4ZxGBo+h+g/mzhExKc56KKrdnpQXw2GNKW6wfL8gUkmU/lyKWweBTB0hfPLAfPMvb+itLs97GJRo5/XL6irPrYj4q6+TipfPEyI7VhoDrgYiGaYSOVRK0Eq4n20aSpvX9FSFVeZimUd/Jyzle0s8sUSvRMZwh47DkMEZc8dmCz7Tlq8cXFDVXzmeFAU4flZuV63DiaO2Fc8lXxJCG85DI06n31awBd029BV4c+ZyBSJZYqHlYlORVcVHIZ6zMmX9rCb+Q0+VneGq33dfZNH34SQK/1XGcPxLJ/7xSae3jfBpy6fxztWCgGBezcOsaTZT8Rj50u/2cJvNwzyr+84i0sWHCyXeXjHKJ//5SZcNp3/d+2SUzUFyWuExc1+fnjzOdz55D7ueWGAyxbUsawlwNu+9Tj/cM1irll+sBTurNYgP//wudz8/aeZTOf5+tuXnbqBS1713Hbbbdx2222H3X7rrbdW/33NNdccMTv3gx/84IjPfdFFF1UzfMeDAlVFyI4a9zQ7HBALrFLhoHR9fzSNaVnVAFCrqHcqM+/UT8XQVIIug7Bn+o68TReKelMzcHPrvSRzBS4sZ0gqnNUaPGyB113rZfNAnHimwHgyj6pUyq8s/E5DSMSXl9kVxc8jBT0Rj50Gv4OOiPuIj+mq8aAgFjfHQq3XwZ7RJJv6Y9Vyu4DLxtquMMua/WwfTlLnc9AcdFHvd/BiXxS7odLO4c8fKHu7HYrD0HAeEqD6ncI0eapwx7FwTkeYZ/dPMJ7MTQtSj0bYayPosrF5IEauYB7WG9YUcBLx2qpZOkNTaSsfv3qfQwhJaJUMn0I6VyqXhYrbNvZF8XSFOVbWdIWrQZ9lCS/E1pAw/gZoC7uqPVszYdNVopkCu0YSLGgQ75muKrjt2owL5IoJ+JFwlkt3E9nitPPcbmjU+x28dXkTqqrSU+upBjNbBmJoKuRLBe7fOsyFc2vJFETZp8euV71jK8Ik53VHZnztY6EyJIdx0OLiNxsGWNkeIpEtki9ZXDhn+rV4aN8kTM8UVjgwka6WdFZ6KlVFYSQuMtIzHTdFUajzOyhZwsJhMJadMWMsNnCOP8j1uwwWNvrxOw0qQ628r5oqrDyyR7huquWvVTsQhW1Dove0q8ZDsWSxujPMQztGCLhsTKTyx3wdHcr5c2qqn8lNAQe7R5Oc3RY66t8kskV6JzIHqyAOObzJbJFBMkxm8oBFtmBWr4tDsRkaCxv9h/V2H4lDPzNXtoeq/shHQgZ8rxLyRSGjrKsKDX4Hf/rEBXgcOt/4004+cH4nf/OmBewZTXL1vz+OTVf5zUfXVVPW24cSfO2+7Tyxe5yPXzqH61e3zViyIZGcCN6zup13n9PGx3/2Ao1+J16nwRd+uemwvr6OiJtffPhc+stlCfFsobqTLZGcCVQyE0GX7bAyJkURGcDKYqjSnzNVBXIsmSOdL71kwJcriizBoX0sIbdBT51nWoawxmtnWVlgYGo20GloLGqcWeq7ULKEMXPBpD+aYfNg/LCA8aEdo6zpDLOiLUjJChz2HJl8qWz2nuSas5tnvNYXNvpY0OA7qtjBodT5HFWfr8rrDMayLGsR8vAht61qFg4HSx8Pxe80ZsziRNN5nj8wSVNA2A5Ylui7jHjtx/15VeO1V9U0j5V4poBlwesX1M2YGXXYVHLpmRfQqXyRBtVZ9RFDOejJVjmnumrdx6XSXedzsKDBRzxbQEGhLSzk4isUTYtktojdc4SFrq5SMk22DiZoDLgIuUW538Im/2GbIgBD8SyZfGlaj1wFt02nqSzCYloWw/GDLQSZfJF4tsizB6I0+B3TVHLP7Y4IQ21VLJgr2R2bptI7kZ5mBzKTMMnxUAlC7bpWtcu6cG4tPodOY0CZsZRwJirB29SF/5uXNTGayDEUz6KqB4WajqaWC/DAthHmN/iq/oQzBXwTqfwxByOH0l3OTlbm7rRpnFsOmsdT+WlenwCrOkJY1sHg2K4LAROXTeOieQc/Z3aPJvE7hVXHL1/op3cyfUyl3zMx9VzzOY1pPbVHI5EtMK/ey1N7Jw6rvNA1lb1jKbKFUtmT8sifY6ZpVX0VXw5CJOjowa4M+E5zLMviD1uG+cr/bePd57Rx87oO/u4tiwCxIJhM5Ulmi9y3eZi/vmcT71jZwicvn1f9EPjCLzfxk6d7uW5FC/d/4oJjPoklktlEURT+9s2LUCw4f24NI/EsX/2/7dy/dYQf3LSq2vtSWWRtG4rzzm8/ye3vXH6YmIRE8qpEmdLDN8Pd2pRdbwCf00bQZeC2i4VIyG3DaWhk8iVeIt6rBjGHBjM2XcPnOFw8oCIWMJVn90+SK5a4eP50UZXGgJO2kIuheBa7rvHhC7uPOI5Erkitz1Ht05qKooDTUJnfGsA1w8JePEZ5ybkeyqGiIvly4Fwxgd/YH2P/eIq1XRF8U0yOj5WpvT+LGn3sGE6SL5k8sG2E86eYrR8Lmqoc9wI1mSuSzBWrojSVoLPCtsEE+8ZTMz7v2a0h3PaDlg2WZR2WKfI5bRjq8W0It4bFMdk5nEAB7t86XH39ZFaY0x9pnoYm+uM8dv1gIAo4jpD1ndofeCiViqaK8XrlGIEQMUlkiwxEM9NUXGG6Lx2Ay67xhkUN2HQVl0172YvwI7GuO8JkukAsI0o3X0556EHxl8M3jir3t4ZdYlPA4qjlfstbg1ULgYVH2OTJTFHhfblU3t+pCYeFjb5pKqwgjoeuqtV+NpuuVkuy94+nq9n71rCLfeMpfGmDjX0xFje/tBfdsbB3NEV7xH1MGzheh0GD30lXjeewrJumKsxv8LF1MM6iJv+MvYoVFEVY8xxpA+qleHTn2GHZ/kORAd9pzK6RBJ/9xSZ2jST52CU9vHNVKwAPbh/hNxsG+ae3LeVjl8zhr+/ZxBN7xvn625dy6cJ6do0kebE3ylvPbubi+XW8//zOwzyfJJKTTeXDU1dVfvjEAT59+Tw+dfcGLvrag7x3bTuff9OC6kJ0Xr2Pz1wxn/f/4Bk+fGEXH3ld93Ht8kskpyOV/qqZRFcOXXQKDypwGToumzCjTuVLVSP1oyGEHNTDSuKOVArXFHAetgiuqCMeSkW5LpkrMhQT2ZaZMkI+p1GV858Ju65ilOXhT2TFSdhtI1csiSxcuYy0UtoYzxaq5XrHQ+W96qzx0BFxoyjCE65gHl0WfSZ++UJ/VYzl5dBV455m6J4+ynz8VTVVEcCY5sFS4crGQsUn7njI5EtMpPNcvbyZ3on0tPVG0G07alC7sNGPoWk8unOUSpzpcxh47DMvto9FzVlVIFc0p1WJ1Pkc1HqZMSioXE/LWgL0RzPoqlo9Bh6HPut95WGP/WWXHlaYWu44lUpQoalKVTQoVyyxpKzKOROVTYzJVJ7+aKYaUE3l5WbOZhrz1IzeeCp/2PX/hy3DRDz2arbTrqvMq/ehqwoPbB8h6LbRFBCZ6nkNXrYOJl529nEm/C6DwVj2JXtr630OQm4bG/tiBN3GYf13+aJQOm0t+w8eDUU52Gv5crCwyt6aR0YGfKchu0aStIVd6KrKirYg33nvCnwOg5F4lrDHXt0peGDbCJ+8ewNLm/387INreLE3illW/ar0XrySE0giORGc3Rbkfz6wGlVVeL43yv7xFP/92D7ueb6fr7x1CZcuqENRFN6+ooUFDT4+8uPnWNzsP6xkTCJ5NaFA1dx4piVrJYtQET4plkzGUnmWOXTS+RKj8Sx1Xjtep35MO+1F08Q4wmLwWFjc5D8s6zeVzhoPA9Es0Ux+xoDvdS9xvSqKQrZQ4n+eOsA7z2k9qnDLK8FuqBhl0YdUrojHoTOayJEvmpzfU4PHcXyv2zuRRldVlrUEeHb/BLmiyZrOMCGX7WX1OJ3VEjyuDM+K9tC0QN5paLinHLtlLYGXLOGrBDMly8LQlKqNAcwsKPRSpPJFtgzE0VWFkMs4rpLQQsli14hQiq0EBPFsgfxRzr2XotbnIDOeYv9YuhrgxTIF0vkS49tzzKv3VXtj4WA/nM9h0E9m2vxrvadnVVRljIde04faP4AoiTx0Q2cmtg8nGI5nZwz4ZoNKQD9V3KlQMmccWyJbqJa12zQVh1vM63XzaqtZsH3jKTwOnWUtQk30pXrYjpWw+6UFl0D0hTrLAj5bBuLU+aYr+wrLE9ELmsgWT9hnHDAtO34kZCPXacT2oQR/9uPnuOIbj/Bib5T2iJtPXj4Pn8PAsize/4NneHjHKKZp8dOne/mzHz/HBT015Isml//Lw3z/iX2MJXMsbQnwycvnnerpSCRHpLKjOrfey5fevIg/fuJ8HIbGh+58lqv+7bHqB/2iJj+//9j5XDi3lk39Mf60bfhoTyuRnNYctGU4/D4FBbuuES5neiIeO36HTsBlMKfOQ65ooqqi/895hBLIqbx5WdNhCszHE/B11niY3+A74v2xdIHxVG5GRcdj5Q2L6rloXi2OE2gL1OB3srI9hKIoJHNFdo0keXb/JEXTJOg+vJfypQi77XTVihL0aFqYgpsWPLxzlLHkke0ljkRr2HVcAVZTwDkt87BlMM7QlAyf06ZNC2aOhmVZaJrol9PUg759h5bFvhSGplIomWzsi7FvIs0DR1HlPJSJVJ71eye4YE5NNVhZ3RmmKfjSAcqRGIhmKJrWtGxe0CVKpGOZAtYhRhiVxfIz+ydf9muebCrnzKFS/xXhoOMN2k8GM2X4RhO5wyxhQKh0Vu0kynPJF012jySr/XY1XjvRtFAB3jWaZMUhvnkvl/5ohlj6pe0RlrUEqPc7CDgNag9R6QRY3RXm/J4ado8mX3IT5pVyLO+3zPCdJvzbn3Zy+5928bYVzfzpExdUSyJe7I3y2O4xPnxhN99730p+9eIAt/7wWZw2jWzRZMdIgisWN/Dltyyu1tFLJK8W3r5CqMw+u38Sp6Fx6wWd/Ocje7n9/p2c3R6kxuOomtr2RzP85c9e5PJF9fzNlQukoIvkVUdFDGKmsrS1XeFppZp9UZFpMFQVr8Pg3O4Ij+8eJ+iyvSw/LOCosuDHS2UBc7zBwVS8DmOar9WJps7noMHvpKZsCfFyEKW2lbLbg2W4ojTx5C+yV7aHXlZZKkDJFHOw6wdLGJc0B477eQxNoVAy0VRhJj6ToMqRCHtEZnRqKerx2FTMRCpXpG8yQ9Blq5bKVr5HVszw+Mp1t7TZz97xwy1ETlcqpttT0VWFgMt2WgZ8mqqUs+0Hx2ZoKjO1SCqKUMq9amnjtNsOTKTpjHjwuwzcNp1an52xRH6apccrRVeVY/bDA7HpYmjqYcd86hpltvtAD2VRk/8lM+sy4DtF5Ismv988xBN7xvmHqxdz+aIG3np2Mw1+J5Zl8dTeCZY0+0jmCrhtGn/+k+d5YvcYbrvO21e2sLjZz7ndkWNK00skpztntwW59y/Ow2FoTKYK3PVsHz9+6gDvXt3GgkYfY8kcly2sZ9Ftfj511wYu++eH+Z8PrK7KjUskpz8KR2sFmqkvzyxnYECoyE212Xk5HG8262i0hJxHlds/Foolk99uHOSyhfUzKjLONqK8SiGWKQmftuNVhEFkUCoKn1Pfs4Dr5AavFV5JcFQqq8JeOLf2FQWrNk2tZltqfQ7mHUc/ooLIFj/fG2VZS+CoSobH/JyKWLDvH08dU29kJXCv9dkP87s7ndFU5bDSQ5dNf9lKol01nhO6aaEqh2861fkceA8pq17TFa4KBx0aHL5uXm21hLlvMoPLptEads1qwqPB7ziugDlfMtk9mpxm9TGVNZ3hV9yz+VK4bBpzao+u8CoDvpNMJl/ia/dt5xfP9+Oya7x3TTsl06K71kM6X+TxXWM8tXeC/3h4NyVL9FEowM6RJDesaeMjr+s+KV+MEsnJpnJev21lC9evaeP+rSP86/07GZhI85tNQ5zTEeK9a9v5/o0r+d3mIZqDwtBVUag2p0skpyuVPqljDTLqfA7suir6V8pm0q+U2VhMV1AU5RUvDnVN5YrFDbMaiB6NiVSeAxNpdo0kaX+ZC8SpqqUdYTf7y4fgsV1jrO4Mv+Ls1MmkEvS+XBPxCrqmsrYrwhO7x4/7HMsVhTeZpry0v+SxUjkvj/Vaq5R0buyLUeN1zJra44lGVQ4P+F4JNV77cavWHg8zZST7JtM4DY05U9RXj9Q3WSiZ7BhKsLxs1O62a9W+6NlkIpXHpqvHXElRGcKRTreToY7/zP5JBqKZoz5GBnwngT2jSe7dOMgFc2pZ2OijaFp8451nsbojhKapbBmI8Y+/387DO8ewaSoXzIlwzfJmNvTF2DoQ4wMXdPFfN648JbuHEsnJpvJh3lnj4cW+KDtGkjgNlWgqz1/+7EV8ToPrVrYwmshx78ZB/vkPO/izi3q4eV3HrH75SSSzilJeYB/jw4umiVoSC7rLFtbPyhBaQ6df2f/JCvYALl1YT7ZQosZrf1nZvUOZmllY2Oiv9qC9Ftk9mmRZS+CIxtJHQlMVOms8wl9ylsoQK71fx/psFS/CRK5IIpd81QR8K9uDBF9mefepQFWUwzYEIh77MZeaq8r0UsuzymuF2abnKNYfM1G1tZylDYuXw1Tv0SMhA74TQGXX7MfrD/D9x/exdyzFeT0Rzu2OkMoX+atL59A7mWHtV//Ezed2sH7vOGu7Ily/uo2xZI7/enw/T+2b5Ma17Vx/86qX3a8hkbyacRga33nvSizL4o4HdvGNP+1iYYOXs1qD/G7TEP/0++1cv6aN775vJZ+/ZxM/fmo/37lh5TEb10okJ5uSZR1zpq7O65jVjByI4GomU+XXEpYF6VwJZvljwufUD5Nlfy2xdzTFZCrP4mb/cR8Hy7JwGbMX+DvKQeexXmuVDF9z0IVjFsdxojnRZYKzjaYq0xQ6gaoB+7H+/UXzXllZ+4lgtjLTr4RDhYhmQgZ8s0AqV+TF3ijP90Z5cs84IbeNf33HWTT4HXzkom4WN/mrFgr7x9J85KJufrdxkG+952yaAk6Wt4kF7B0P7iLksnHDmjauW9l63DtlEsmZiKIo/NlFPbzv3A7ueGAX//nwHjoibn78/tXsHk0S8djprvMQcNloCTnZM5ZkQ2+MNy45eaViEsmxYFocs3lxrc9xTFLbkuMjnS+ybShBe2R2+3+f2D0u/PT01+YGrU1X6Y9mmNfg43h0fFRFwWFox7XwfykqGb7iMfrnGZqKXdewLIvoMagzSl4eogT1zPtMOy1mdAynugz4jkAyV8TQhEz2eDKH266jqQpP7B6vysjuG0vx/711MQ/tGOVzv9jI2W1Bzu+JsG0owc7hBNuGEnz9D9sxLZhX70VTFO79i3V0RDy8eWkjv904yK9eGGDfeIrLFtbzzXefzerO0ClNC0skpyseu86nLp/HO1e2cvufdvKe766nK+ImlSvyycvm8fvNQwzFsrzljsfIFkw+94uNXLWskY9fMpca36trJ1Ry5qEgMhmqemybEArHnqGQHDthj53LF81OiexUTmYv4unI2W1BckXzMCuQl6IijjGbKoaV9+FYMy82XeXyRfX8buMg+dLL9/+THJ2g28BdPPMSGafD5/TiZj/xrDRePyr/t2mQTKFEvmiSL5pcubQRu65x4T8+QEvIhceus37vBF9721LmN/h47389RUfYzbKWAI/sHGX7UII3LKrnJ08d4NYLukjmiowkcvzkqV62DMZ479p2bljdRq3PwdP7Jvifp3p5aMdotczz1gs7ef2C+uP+kJRIXqu0hl3849uW8pHXdXP7n3bx/36/nY39MUqmxUXzarn/4xfwwR8+iwXc9UwfP3umj7VdYRY3+fnzi7txGPJak5z+eB36aVEqJDk2XsvBHgh7DvfL2FernOGzbUq9sNF33NdPe8TN+MvwUpQcG2equFqdz8HesVNr53EsFjev+ZXPfz22D8sSOzyGJuSJ3X6dNy9rJOi2EXbbuWF1G+fNiWDXNfb8wxXVDJxlWWwdTPDth/fwg5tWsX7vBL9+cZCvvX0puUKJLYNxnjsQ5Yu/3sITu8fxOw0umFPDx18/h7XdkVesjCWRvJZpj7j52tuX8mcXdfP9x/dx97N97B5Ncd3KZtbNqeEjr+tiJJ7lTbc/ynk9Eb5x/05+/lwfF82rJZYtcse7lhPPFqoqiBLJyeBYl6Cdr/FeO8lrA1VVcNv0WfWIBMgWTILHYQ8BML/BN6tjkLw28DuNqtjc6cxrPuD76QfXzHj737xp4Yy3jySyPLF7nEd2jvHYrjGi6QLnz4nwbFkSNeQ2uPabj7OxP4bD0FjeGmB1Z5hPXT6POXUeWa4pkcwyHRE3X7xqIZ+8fC6/fGGAH68/wPahBNuH4rxxcSPfe99Kzm4LsbjJz2d/vpE9Yyme2jvBHQ/sJFcUgjCLm/ysbA+yqMnPwkY/HRH3aWlcK3n1I78CJKcDEY+dVO7oJWAni1fqLzkTDX6H3MiTnBTimQI7RxK0nIYqyFNRLOvohdMLFixgy5YtJ2s8r4iReJaRRA5DE9k6Q1Ox6WL33mXTjrnkwrIsTEvUlj+6c4z2iItGv4NL/vlh9oymaAo4afA7MHSFsUSevWMp7LrKvAYfc+u9LGsJsLw1SGfEPWsywxKJ5NjZNZLkly/089uNg/ROpFnZHuKiebVcOLeWrho3T+4ZZ9dIksVNft7xn0+SL5rU+RwUSybRTAFdVfnYJT188IIuHt81RlPQKU3eTyCvpu+Zl8u8+fP56k/+iF3XTkgPmURyPFiWhWUh1ygSySukZFoUSuZpscFwtO/SMyrD9+sNg3zj/p0USyaFkkXBNKuGiG9c3MAd717O1+/bjgV84tK5/H/3buXB7aPVv88WS0TTBZLZIufPidAecfOHLcOYlsVkqkCmUCLssVHns9McdNIR8TC/wcv8Bh9NAaf84JRIThO6az184tK5fOLSuewfT/GnbSP8adsI/+//tuNz6ixvDbKiPUjJgkc++Tq2DMTZPZrikV1jXDinhv3jab5x/05+t2kIXVXorvXwkdd186EfPUuxZNFV46El5KLB76DO56De72BOnWfW+1AkZx4ywyc5HVAURZ6LEsksoKkKmnrqg72X4oxandy8roOb13VMu61QMknni8TSBbYNxWkLuxhL5rn9/p0cmEjjNDQmM3kmU3ni2SJ2TaUl5Kx6Wty8roOWoDBXbQ465YJOInmV0RZ2c+O5Hdx4bgfZQokNfTGe3T/JU3sn+OaDu0nlSsyp97Cwwc/r5tawoMHH+T01tEdc9E6k6Z3IsHM4wd6xFLVeOw9uH2UkkeXFPp1MvkTAZTCSyLGyLcjli+r5p/t28IlL53DxvDo+dfcGFEVI7PudBvPqvTQHnQzGsoTdNkqm+Iw6uz2I26bzqxf7KRTFZlWhaPL2lS0UTYvvPbqXYsnCLFcffPKyuQzFs3znkb3l2yzsusrn3rjgVB9uiUQikUgkpxknJXr532d6+dp9O4TpoqaUzReFAaNNFz92XcWmqdUyzOqPVr6v/O+p96mKQrZQIlMokc2L/ydzJaLpPBOpPNF0gYl0nmg6T6Fk4bZp1Pkd1HnFjnxr2MXK9hD15V361pCLiMcm++wkkjMUh6GxqiPEqo4Q0IVlWewbT7N5IMbmgTj3bx3hG/fvYiyZI+Kx0Rnx0FXr5uy2IIWSyUdf18M7VrYQyxSJZ4sMxzLcfF4n33poN/c8309/NINNV/nKvVs5qzXI5oE4Q/EsNl0Fy6Le7yRbKDGSyNHod6AoCqOJHPf+xTomUnn+9ldbMHQFm6Zh11WSuSI+p8Gz+ydpCjgpmRbWIRaruqqgqVJ45vRHmfJfiUQikUhOHicl4Ltwbi2dNR6KJZOSaVE0LUqmRb5kVu0QKv8ulExyh9yWzotSy8rvufLjTMvCYWg4Kz82jaDLoDPiJui2EXQZ5f/bqPHapfWBRCKZhqIodETcdETcvGlJY/X2WLrA7rEku0eS7BlL8fS+CX76TC/7x1NYlpBhbgw4aPA7+d5je2kLufjKW5cQ8dgJugxCbhs+h8GTn72YSpv01I0ky7JQFIV0vsie0RTdtV56J9Lc9vo5xDKF6s+GvhixTIGIx85X3rqEnz59gHs3DqGpCr94vp9fvdiPz2ngL//8xU+ex23XWdzk57w5EZ47MEmpZNEUdLGpP8ZYMkfJsiiVxOdvrmhSLJk0BZ18/PVzeXD7CJ0RD61hF3c/28dkOk++ZFIsiR6FQvn/71zVQnet96S/X69mKu++3FCUSCQSycnmpERANV47NV5pfCyRSF4d+F1CZvlQqeViyaRvMsNALMNgNMtgLMNgLMvDw2MMRDOMpw5WFKiKkGsOloM/l01sTDlsBzepHIaKpqrcu3EQVVFQFREQuO06dl0l6DKqQdan7tpAoWTitmvc+F9PEc0U8DkN0vki48k82UKJfOlg3zKI7J9NVwk4DVK5ItmiWe3bEa8nXnNBo5Ajf3D7KKqi0Bp28dyBSSZSeQxNRdcUDFXF0EVlxix6JEskEolEIjnByJSXRCKRHCO6ptIecdMeObJip2VZpPIlJqeUlcczhWr5eaZcfl4pRTcts9qbZ5X78SqvZdNUdFXBaTMwVEXcpqu4bRoum47bfvD/TmP67w5dO24hqS9eddCO5u+vXvzyDpJkRhQFfE4Dn0N+7UokEonk5CK/eSQSiWQWURQFj13HY9dpCZ3q0bw2+Zd/+RfuuOMOTNPkYx/7GB/96EcPe8y+ffuYO3cu8+fPB8DlcvH4448DcMstt/DMM88AkM/n2b59O6Ojo4RCIdrb23G73RiGAcCPf/xjFiw4NrGc182tnY3pSSQSiURyXMiATyKRSCRnDNu3b+eb3/wmzz//PJZlsXz5cq644gq6uroOe2xLSwsvvPDCYbd/5zvfqf77zjvv5Ac/+AGh0MHo/fe//z3Nzc0nZPwSiUQikcw2x+ZELpFIJBLJq4Bf/OIXXHfddXg8HrxeL9deey333HPPy36+O++8k+uvv372BiiRSCQSyUlGBnwSiUQiOWPo6+ujpaWl+ntrayt9fX0zPra/v5/ly5dzzjnn8KMf/eiw+4eGhnjiiSe4+uqrp91+5ZVXsnTpUv76r/+aYrE443PfcccdLFiwoPozOTn5CmYlkUgkEsnL5yVLOvv6+o65P+GVMjk5STAYfOkHvgqQczk9OZPmAmfWfORcTk9OxlyOFJAdiTVr1jA4OHjY7ddeey1wuAXGTDQ0NNDb20skEmHfvn1ccskldHV1sXr16upjfvKTn3DllVfi8Xiqtz366KM0NzeTSCR4z3vew9e+9jU+9alPHfb8H/nIR/jIRz5S/d3hcJy079IzmTPp2jqVyOM4O8jjOHvIY/nKOdp36UsGfPF4fFYHczQWLFjAli1bTtrrnUjkXE5PzqS5wJk1HzmX05PTcS5PPPHEEe/76le/yoEDB6q/9/X1zdhvZ7fbsduFXVB7eztvectbWL9+/bSA78477+Qf/uEfpv1d5bm8Xi/vf//7+e53v3tMY+7s7DztjuOrkdPxfHw1Io/j7CCP4+whj+WJRZZ0SiQSieSM4eqrr+ZnP/sZqVSKRCLBXXfddVhJJsDIyEi1HHNycpL77ruPxYsPWlFs3bqVgYEBLrnkkuptqVSquglaLBa5++67WbJkyQmekUQikUgkrwyp0imRSCSSM4Y5c+bwwQ9+kKVLl2JZFh/72Mfo7OwE4Fvf+hYDAwN86Utf4tFHH+Xzn/88mqZRKpW45ZZbuOiii6rP88Mf/pB3vvOdaJpWvW14eJhrrrkG0zQplUqce+65fPrTnz7pc5RIJBKJ5Hg4rQK+qf0Or3bkXE5PzqS5wJk1HzmX05NX41xuu+02brvttsNuv/XWW6v/vuaaa7jmmmuO+ByHlnKCKMucycbhWHg1HsfTEXkcZwd5HGcHeRxnD3ksTyyKdaSOdolEIpFIJBKJRCKRvKqRPXwSiUQikUgkEolEcoYiAz6JRCKRSCQSiUQiOUM56QHfv/zLv9DT00NXVxe33377jI/Zt28fdrudZcuWsWzZMtauXVu975ZbbqnevmDBAjRNY2Ji4mQNfxqvdC4A3/3ud5k/fz6LFi3i0ksvPRnDnpFXOpcvfvGLNDQ0VO/7yle+crKGfhiz8b4APPnkk2iaxp133nmih3xUXul87rjjDhYvXsyyZctYuXIlDz300Mka+mG80rl88pOfZN68eSxdupTLLruM3t7ekzX0w3ilc/nNb37DsmXL0HX9VX+OxWIx3vSmN9HT08PZZ5/N5s2bT9bQT3seeOABFixYQHd3NzfddNMRjdol8NGPfpTm5mZ0fbq8wCc/+Um6u7uZM2cOd911V/X23t5ezjvvPObMmcMFF1zAwMDAyR7yaUlvby8XX3xxdW3x13/919X75LE8Pl7/+tezdOlSlixZwrXXXltV6ZXH8eXx4Q9/eNr1LY/jScQ6iWzbts2aM2eOlUgkrHg8bnV3d1u7du067HF79+61urq6XvL5fvjDH1qvf/3rT8RQX5LZmMujjz5qrV692orFYpZlWdbg4OAJHfORmI25fOELX7D+7u/+7kQP9SWZrXMsl8tZ5513nnXFFVdYP/zhD0/kkI/KbMyncn5ZlmW9+OKLVnt7+wkb79GYjbn87ne/s/L5vGVZlvWtb33Luvrqq0/omI/EbMxl+/bt1saNG63rr7/+VX+OfeYzn7E+85nPWJZlWb/97W+t888//4SO+dVCsVi0Ojo6rE2bNlmWZVlve9vbrO9973uneFSnL4888og1NDRkaZpWve33v/+9dd5551mFQsHq6+uzmpubrXg8blmWZb3zne+0/uM//sOyLMu64447rBtuuOGUjPt0Y2BgwHr66actyxLfZeeff771y1/+Uh7Ll0E0Gq3++7bbbrO++MUvyuP4Mnn44YetG264oXp9y+N4cjmpGb5f/OIXXHfddXg8HrxeL9deey333HPPy36+O++8k+uvv372BngczMZcbr/9dj796U/j8/kAqK+vPwEjfWlm+305lczWXP7hH/6B973vfdTU1Mz+II+D2ZhP5fwCSCQSszzCY2c25nL55ZdjGAYAK1asYP/+/SdgpC/NbMxlzpw5LFq0CFU9tZX1szGXn//859xyyy0AXHHFFezatYuxsbETMNpXF08//TTNzc0sXLgQgJtvvpmf//znp3hUpy/r1q2jrq5u2m0///nPed/73oeu6zQ1NbFu3Truu+8+LMvi3nvv5YYbbgDgve99L7/61a9OxbBPOxoaGlixYgUANpuNJUuWsH//fnksXwZ+vx8A0zRJp9OAPCdfDrlcjk9/+tP80z/9U/U2eRxPLid1pdHX10dLS0v199bWVvr6+mZ8bH9/P8uXL+ecc87hRz/60WH3Dw0N8cQTT8xoqHsymI25bN++neeee441a9awatUqfvazn53wcc/EbL0v3/72t1myZAlXX301O3fuPKFjPhKzMZfNmzfz2GOPceONN57w8b4Us/XefOc732HOnDlceeWVfP/73z+hYz4Ss3n9g/BUu/zyy0/IWF+K2Z7LqWQ25tLf3z/tOZqbm+nv7z9xg36VcDzHVjIzRzqG4+PjuN1uHA4HAG63G5vNRiwWO1VDPS0ZHx/nnnvu4ZJLLpHH8mVy1VVXUVdXx9atW/nEJz4hj+PL4Etf+hI333zztE10eRxPLrPuw7dmzRoGBwcPu/3aa68FQFGU6m3WERwhGhoa6O3tJRKJsG/fPi655BK6urpYvXp19TE/+clPuPLKK/F4PLM8g4Oc6LkUCgV2797NI488wtDQEGvWrGHFihVVk+BX01xuvfVW/vqv/xpd1/nBD37AVVddxdatW2d9Hid6LqtWreLDH/4w//Ef/zHteU4kJ+OaueWWW7jlllt46qmn+NjHPsaDDz6IzWZ7Vc4FxObCxo0beeCBB2Z5Bgc5WXM5GZzsuRzpOV6LHMuxlRydIx3DQz+j5fGdTi6X49prr+XjH/848+fPB+SxfDn86le/olQq8dnPfpZ///d/B+RxPB42bNjA+vXr+fKXv3zYffI4njxmPeB74oknjnjfV7/6VQ4cOFD9va+vj+bm5sMeZ7fbsdvtALS3t/OWt7yF9evXT1tY3HnnnTMa484mJ3oura2tXHfddei6TnNzM2vWrGHDhg0nJOA70XOZWo56ww038PGPf5xYLFYth5hNTuRc5s+fz+bNm6uZo7GxMX7729+SyWR4//vfP8szEZysawZg1apVWJbFhg0bqiU/s8nJmMvdd9/NN77xDR588EGcTucsz+AgJ/N9OdGc6Lk0NzfT29tb/ezq7++nqalplmfx6qOlpeWYjq3kyMx0DM855xzC4TDJZJJsNovD4SCdTlMoFE7Id86rkVKpxLvf/W5WrFjBbbfdBshj+UrQNI2bbrqJt771rZx33nnyOB4Hjz32GFu2bKGjowMQ52Z7eztveMMb5HE8mZzEfkFr+/bt1ty5c61kMmnF43Grp6fH2r1792GPGx4etgqFgmVZljUxMWEtXrzYuv/++6v3b9myxaqvr7eKxeJJG/uhzMZcvvvd71of/ehHLcsSjcGdnZ3Wtm3bTt4kyszGXPr7+6uP+8Mf/mC1tbWdlLEfymydYxXe+973nlJBjdmYz9atW6uP27p1q1VbW2uNj4+fnAlMYTbmct9991nd3d3WgQMHTurYD2U2z7Mz4Rz77Gc/a332s5+1LMuy7r33XinaUqZYLFqdnZ3W5s2bLcuyrOuuu06KthwDU0Vb7rvvPuv888+3isWi1d/fb7W0tFSFHd71rndZ3/72ty3Lsqx///d/l8IOU7jpppusG2+80TJNs3qbPJbHRywWswYGBqq///3f/7113XXXyeP4Cqlc3/I4nlxOasBnWZb19a9/3erq6rI6Ozutb3zjG9Xbv/nNb1p/8zd/Y1mWZd19993WwoULrSVLllgLFy60/vmf/3nac3zmM5+xbrvttpM57Bl5pXMpFArWLbfcYs2fP99auHBh9eQ+FbzSuVx//fXV+8477zzrmWeeOdlTqDIb51iFU70Yt6xXPp9bb73Vmj9/vrV06VJr1apV1u9+97uTPYUqr3Qu3d3dVmNjo7V06VJr6dKl1sUXX3yyp1Dllc7lj3/8o9XU1GS5XC4rGAxaTU1NViqVOtnTsCzrlc8lGo1ab3zjG63u7m7rrLPOqqpSSizr/vvvt+bPn291dXVZN954YzVolhzOBz7wAaupqckCrKamJusDH/iAZVmW9Vd/9VdWV1eX1d3dbf3sZz+rPv7AgQPWunXrrJ6eHuu8886z+vr6TtXQTyseffRRC7AWLVpU/az813/9V8uy5LE8Hg4cOGCtWLHCWrRokbV48WLrbW97mzU0NGRZljyOr4SpGzryOJ48FMuShbESiUQikUgkEolEciZyavXAJRKJRCKRSCQSiURywpABn0QikUgkEolEIpGcociATyKRSCQSiUQikUjOUGTAJ5FIJBKJRCKRSCRnKDLgk0gkEolEIpFIJJIzFBnwSSQSiUQikUgkEskZigz4JBKJRCKRSCQSieQMRQZ8EolEIpFIJBKJRHKGIgM+iUQikUgkEolEIjlDkQGfRCKRSCQSiUQikZyhyIBPIpFIJBKJRCKRSM5QZMAnkUgkEolEIpFIJGcoxxTwtbe38+CDD57goUgkEolEcuYiv0slEolEcio4oRk+RVHYt2/fiXwJiUQikUjOaOR3qUQikUheCbKkUyKRSCQSiUQikUjOUI454Hv66adZsGABwWCQG2+8kWw2C8A999zDkiVLCAaDXHzxxezduxeAiy66CICFCxfi8Xi45557mJyc5IorrqCmpoZwOMw73/lOotHo7M9KIpFIJJLTEPldKpFIJJKTjWJZlvVSD2pvb8fj8fC73/0Ot9vNm9/8Zi644ALe8pa3cOWVV/Lb3/6WpUuX8vWvf5277rqL9evXiydXFPbu3Ut7ezsA4+PjPPzww7zhDW8glUrx1re+leXLl/P1r3/9hE5SIpFIJJJTjfwulUgkEsmp4JgDvs997nO8//3vB+C+++7jQx/6EK9//etpbGzk85//PACWZeH3+9mwYQPt7e2HfUkdyi9/+Uu+/OUv8/TTT8/ejCQSiUQiOQ2R36USiUQiORUcc0lna2tr9d9tbW0MDAxw4MABvvKVrxAIBAgEAgSDQQqFAgMDAzM+RzKZ5MYbb6SlpQWfz8e73/1uxsbGXvksJBKJRCJ5FSC/SyUSiURysjnmgO/AgQPT/t3Y2EhLSwtf+MIXiEaj1Z9MJsPatWtnfI6vfe1r9Pb28uyzzxKPx/nRj37EMSQYJRKJRCI5I5DfpRKJRCI52RxzwHf77bfT19fH5OQkX/7yl7nuuuu4+eab+eY3v8mzzz6LZVnEYjHuuuuu6t/U1tayZ8+e6u/JZBKXy0UgEGBwcJB/+qd/mt3ZSCQSiURyGiO/SyUSiURysjnmgO8973kPl156KZ2dnbS3t/M3f/M3rFq1in/7t3/j/e9/P4FAgIULF/Lb3/62+jdf+MIXeNe73kUgEOBXv/oVH/vYx5icnCQUCnHppZdy1VVXnZBJSSQSiURyOiK/SyUSiURysjkm0RaJRCKRSCQSiUQikbz6kMbrEolEIpFIJBKJRHKGIgM+iUQikUgkEolEIjlDkQGfRCKRSCQSiUQikZyhyIBPIpFIJBKJRCKRSM5QZMAnkUgkEolEIpFIJGco+ks9wOfz0dzcfDLGIpFIJJLXIH19fcTj8VM9jBOK/C6VSCQSyYnkaN+lLxnwNTc3s2XLllkflEQikUgkAAsWLDjVQzjhyO9SiUQikZxIjvZdKks6JRKJRCKRSCQSieQM5SUzfBKJ5PShZFrsGU0yGMsyHM9iWhYOQ6Ml5KK71oPPYZzqIUokEolE8qolli7gtGnYdJkTkZw5yIBPIjnNiWcL/HbDIH/cMsQTeybIl0xchkZz0EnIbWfbUJxEtkiuaNIacnLV0iZuWNtGrddxqocukUgkEsmrigd3jNBd62Fho/9UD0UimTVkwCeRnKYcGE/zzYd2cfezfcyt95ErliiWLJY2B1jU6OPq5c0sawnwi+f7GIhm2T6U4MW+KI/sHOVbD+2iPezhry6by2WL6k/1VCQSiUQieVXgcxjUeOynehgSyawiAz6J5DRjNJHjS7/ZzL0bhrDpKis7QvzoltWMJnIEXAaGNr3M5OqzDlf+29gX5c//5wU+eOez1Psc/P3Vi7h4ft3JmoJEIpFIJK9KLCyeOxDl3O4wXtkmITlDkAGfRHKaUCiZfP/xfXz9vh1kiyVWtIW45bwOLppXC0CN99h3HBc3B3jgLy/k+QOTfPKuDbz/B8/wqcvncfO6DnRN9iVIJBKJRDITliW+bw/dXJVIXs3IgE8iOQ1Yv2ecW+98Frdd59/fvZw6v4P5Db5X/LxntQb5w8cvYP3ecT599wa++eBuPnPFPK5b2ToLo5ZIJBKJ5MzCsqA15MJhaKd6KBLJrCG3LySSE4hlWYwnc8SzBQDS+SKWZVXvz+SK3PL9p7nu20/idxr8940ruXBe7awEe1M5pyPMvX9+Houb/Xzq7o3c+F9PUSyZs/oaEonk1YllWdM+lySzz+O7xtg1kjzVw5AcIxv7owzFsqd6GBLJrCEzfBLJLJLOF3l4xygP7Rhly0Cc7cMJsgWTv3nTAm5e18F7vrOeG8/t4MqljXzq7g3cv3WYyVSev75iHrec33VCx+a06fzw5nP4yfoDfO6ejVz6zw9z71+cJ3cxJZLXOM8dEIvbNy5pONVDOWMpmjKofrXQEHAwFMuSKZRO9VAkkllDBnwSySzx34/t5f/73TYaA04unlfLTes6mFfvoznoxG0Xl9p/37SK4ViWa/79MTYPxPE6dAxd5VsP72HHSJJL5tdxXk8NTtuJC8LeeU4rK9qD/Pn/PM91336Sf3n7UjpqPCfs9SQSyenN8tYAJyMWsSyLomm9ZnujVFU51UOQHAMLG/1kCyUKsgpGcgYhAz6J5BUwlszxgyf2c9slPaztjvCLD5/L/AYvinL4F7tpWtz5xH6+9ocdqAr87VULedc5bRRKJs/sm+SPW4f58m+3Mpl+kfWfvRhVUVAUsOuzH/z11Hn5xYfP5ZbvP83FX3+Ib777bGnfIJG8RsgVReai8tmSyBUBIUd/Iknmijy0Y5SFjX6KJZOeOu8Jfb3Tid0jSSbTebrk5tppz6b+GLmiibP08nZBUrkiA9HMCTm/s4WSrMqRvCxem9tsEskrJFcskcoVcRga8UyBbMFkTp2XBY2+GYM9gL/99Wa+9ocdzK3z8tBfvY53ndMGgKGprOkK8zdvWsBDf3Uhv/6zdbhsOvduHOR933sagJFEtrpImy0chsYPblrFivYQH7zzWb776J5ZfX6JRHJ6sqEvxvMHotXfH9g2wgPbRk7463rsOvPqfWzoixJw2U74651ODCeypMuBteSliabzrN8zfkpe22Go2HWVovnyMnz7x9NsGYzPrzZU+QAA4ixJREFU8qjEMfn95qFZf97TlXzRZPNA7FQP46RSLJkkypoPs43M8Ekkx8me0SQf+fHzvHFxPX92UQ9fvGrhER9rWRZ3PdvHzpEE//P0AW67pIcPX9h9WGlPybTQVIXdo0l2Didpj7iJeGyc0xEC4LM/38ijO8e4ZEEdF8yp4fUL6mZlwaSqKj/9wGr+/CfP83e/2UrJhA+c3/mKn1cikZy+eOw6ueLBxeyblzWdlNe1LGgOOumIuNFeY+WNuaKJKVv4jpl80WQofmpEU7prvewYTpDIvrwAfW69l+7a2c/keuw6F86pnfXnPV3J5EvsHUuxsNF/qody0hiMZdk/nmZdT2TWn1tm+CSS4+DXLw5w1b89xtquMB94CZGVkUSWd/znk3zm5xv5/aZh7vnIOv7soh5UVaFYOrhz9diuMd50+6MAjCb+f/beO0yy9Czv/p1YOXaO09MTd2Z2NketskAEGRAIy0hIIIFMxsbpw/Zl+7Ox8Wcj2xgsI6IACQxIRgnlXUm7q807OzlPz3TurpxPDt8f7+maPBvQatGq7+vaa2d6qqtOVZ3znvd5njs4HIt+XkjG2D4ibhrvunua9z2wlZmBFL/++ZPc9mtf4Uc//Dj/4hOHeeZC/W/1niRJ4rffdTu/8Y79fOhr5/jgl05tmgtsYhOvYizUeqw0zP7fq12bliG6yh3z5ekuA3Qsj6+dKlPuWBxbeemd+5bh0vs2m5bdOplnIp94pQ/j2wYD6RjftWfkFXntAwt1HC/4WzlZnyt3++7c30wsNQyCV2nnoNq1L/t7EIb432FmR34QErxM73ez4NvEJl4AwjDkv3/lDP/yr4/y3//+Lfybt+1BV69/+RxcbPDGDz7Ms/MN3nnXFF/6lddx01iW85Uuni86l+//42ewPZ9bp/L83nvuAOC+bQP887fuBuDmyRxv2z8OwJtuGuH/+Z7d/LO37uLpf/0WPvdLD/DDt0/y7EKDpy7U8IOQt3/oMc6VOvhB+JLonz965xS//947+PDD5/n5P3sO/1V6U9nEJv6uwHJ9jiw3v+Wva3vBZXS1x85VeXyuih+E/MaXT1+18fpmIZfUeOveUTJxjdFc/CU/z0K9R8NwXtBjN/RUrzTcIOA6bP9XPU6vd/j0oZUX9Tv1nsPhpVeGzldu2xRT+kue0l2o9jhb7nyTjwrKHZu5SpdX453ZdHweO1e9rLjb+JP3LdyLmI5P7Zu4/n3tdJkzpRd+Lvhh+LJ9v5uUzk1s4nlguT7/9OOHObTY5P/+3P3sGr2+EDsIQmo9h//xoDBm+chP3snrdg7j+QF+EPK+P36GD73rdvZN5HjiV9+MLEvEVPouni8EmiKzZzzHnvEcP3a3CFA3HY+e4+GHcGS5yTt/90lunc5z90yRO2cK3LGlQOYFGDLcvXWAH7tnmj9/apEP/Okz/O577vyOddTbxCa+2WhbLidW29w7O9D/mfw8VUDLdMklvrlmKoPpGEOZWP/vG5TOIAgYy8VRXqbKZKMZlY6ppF/Emnclbp7IUe85BEH4vM6Xh5aaVLv2t4y2ej2styzqXZfX7/rOoeRt4KVsoGVJsGS+lehYLufKoqBKxdSXfN3NDqZeHtpyGGJ7wauSDu1HhV4QghK9vY1Jlx+EfKt8atZaJqW2zX3p2PM/+AWgbbqEYcjOSwx8Di42mMgnGM5e3fR6OSeamzu5TWziefDk+RrltsWnf/E1Nyz26j2HH/rQY7zhN75GXFV4+J+/kdftHOY//s0JfuuhsyiyxFd+5fXsmxB89G+mRXdCV/nyr7yeXaMZ0jGVwYzO39s/zlLD4N986hi3/Psv8/2/9Si/98jc8z7Xf/iBvfzgreN841yND/zps990s5hNbOI7Fa4XUO9dnEyZjs9y48bTp8fPVft0y28WgjBkY/UJgpCVpknTcAgCQbt8qeYifhBiONf/3Zbp8tg5sZ4+t9h4Sa9hOB5ny10OLDRwXgDlbrqY/Dvhalju2BjOy0eX/buM0Vyc7Issnoopnbfu/dY6RyuyxFrLYqUhrodHz1Ze0vN4Qchyw2Ch1vumHl/Lcim3baxXOB/QD0JcP+Czh1dZqhtUOn/7idilxd0GNuqejc/z5aDIXonwkmP526DecziwUCepqwylLy/sWqZL4zpruij4/tYvf01sFnyb2MR10DQcTqy2ecOuYf7yH97H4A06PgcW6rz2v3yV46st/ul37+Lf/r09fOzJBQDe98BWfjoyQrkRDfSbhR0jGR79F2/iPfdtYedIhtftHOKxX30TH3jtbH/j89EnF/js4dVr/r4kSfzXH9nPP3ztLNWOzQf+9ACms1n0bWITfxuEwFylx6Vtnq+eLhPX5Bt2dP0wfEFugbWuzcNnLm5QHztXve51G1MVzpa7gKAaPjtf58Rqm/WOyYm1NvpLjII5stzkKydK1/33Ykrnu/aMkE1oTBeTgDDnOL1+NeVpwwn5SviB0PV8997RF1TIKbKE/neApZCNq9+S9f/50LO9y+iVizUDx3t58+Zmh9K88UVONtfbFgcWXlpT4KWgaTgsN0zetHuYwYxONq5x88RLMws5XxXma9/sRsNi3aTcsV5xucX5Spcjyy2CMOTQUpPH56ov+Hdtz7+mNjKMfnRpsbWxLvp+yNlyl4dOlOi+zNrdMNIN/m2hSBK6olBM6cS1y697zw+v+z78IOTlInW+8qvPJjbxdxQPnizzR49dAG48jTu02OTv/+6TpOMqn/qF1/Ce+7aQ1FVapovnB0zkEy97vtWV2KB8vP81W/m5N2xjLJdgqW70Hb62DqT6Gpr/9dWznIs2fxtQFZl/9tZdfOR9d7FQ7fGTH3nqZV9oN7GJVzss1+9Tl8IwhDDEfZ6sryC8SHe6EbIJjdnBlHiNIKTatWma19a5TRUTJHWxGY2pCj946wT3bx8kpQsa20udRN2ocPjaqTJn1tt0LJe4pvQbaMsNg1PrV1vYPz5X48GTVxePmbjGTWNZyh3rhqYaQRDy6UMrVDo2ueS3dv29FpIxUfCZziuj29yA6wfELik8Dy41mP8mT6KuxHLD6BeZj56tvCDDnaSmUu3a3zLDDjlqDMQ1BVWW0FT5BTlhO15w1YRr92iWt+wZYeQalL2/DQZSOvsnczeUWXz60MrLpsHdgOUGtE2XwXTsmrTX0+sdvn762jEvBxeblK4xEQz66+KlPxP/d4OAMAyp9hzmqy/vufpC19vnQ0yTmSomWG5cPQH1guC6TIjNCd8mNvEtRMt0WaobvOOOSf7rj+y/7uOCIOC/f/k0P/b7T/Lue6Z59F+8if/6pdN89vAqxZTOv3nbHtRXuLOc0BUmC0n8IKTreMR1Gc8PuG06z10zRfwgZKVp8X2/9Sj//OOHKV1hgx0Cth+w2rR4zx8+RetldPDbxCZezZCAO2cK/e6xG3V511vWdbM7wzB8wR1nTZGZq3T50vF1jq00Aa77e4eXmv1r2XJ9Vpsmta6N4fq4XkDTfGnNnemB5HWDxU3Xx/FDDiw0qHVtnpgTGWvX0zCO5xKXsSo6lsuFao+lukGpbXFitX1ZtMSV2HjnTdOleQODl7blviDXQ8v1XzJFLwxDJvIJbp7IU2pbXHiZN603ghcIHdiltMCXWxNW64rP3/ECOqb7gjR92YTK99881r82WqbLpw+tvGzTyGxcY2YwxbGVFkt1E9Px+cx1WDCX4ny1e9WEy3L96zYy/jaYyCdoGS7tG9yHXyx19qXA8X26tofheDhewFB0nVquj+n4nFpvX3evcNt0HkWSrqKl9imdl5m2iD8/c6HO4aUW1Y6N8QLYRi3T5cnrZDheqPau2udcCtGH++ZQOh8+UyGb0K76Tlw/pGdf+314mwXfJjbxrYHheLz/j5/htx46C1x/slfr2bz+N77O//raOX797XvZNZpBV2X+24/ewg+9wuYA14IiS/zL772J4Uyczx1d4wN/+mz/5//5h2/my//4dRiOz1v+28P8yePz/Y3icCbOn7zvbpqmi+n4vO8jT29O+jaxiZeAMIQTq2IDGES0xExcQ5a47qRq48b/Qgq+UttCliTetn+c+ZpxQ93fpYVSz/Y4ttLidKnDQrWHH4ru9ItBGIppWlJTGc5cm/quyhIDaZ037BomHVf7euh0/NrmLbJ0ebe/bXkcWW4ShCGyJPGGXcM3NLu6qAkKLstTq/ccvnpKTA6DIOTRM9WrtICn1ttXuUquNE0OLTVfkiV+EArnx7F8/BV36tw4/qZxsdDtWN6LdtF8MdgoKL9wbI25ao9Hz1af95xeqps8Plfrb743tOTfTB1X23L7IdfljsXZUoedIxnetHuYhK68oGZLXFVYb1k8cf5i0Xe+0mOpbr4oZs8LCdtumi5D2Thx/fpU0TfuGr6h/ORKLDeMy3TFLwQiUzKkYbi0LZdK1yYIQp6YqzFXEfTs69FZZUliqWFctY/Y+Jg3rlvXD3jyfJ0gCHH8gIbhIEnQu4FGeAMxVUZTpGteq0dXWsxVutf4rYuv/7dI4+hjPJ9gy0CKO7cU2DOW7f98I3bB9vxrNi+CcDOWYRObeNnheAE/97HnUGSJX/uhfdd93HMLDR74/75Grefw6V98DbdvKXJspU0QhAxn499UM5aXA39v/zj//e/fCsBnDq/SMl1mBlN86N2387/efTt/+I0L/NjvPclywwBEiOyH3nU7bctFV2Xe/8fPbGr6NrGJF4kQYY4CoovrRTQlSeK6Ez6/X7Q8/wagmNKZHUrxqYPLzFd72F5w3elZTJV57Y4hQOSdfffeUe7fNsi9s4MMZ3S6lxRIYRhybKV1w673hm366VKHJ67TWTddn6PLLVqmS0wV2hag79Z55fM3DPeyzd1EPkFMVUjHVIYyMUpt64bTHk2R+cFbJ4hfoUfsWG6/AJRlidmhFO4VO7xrFcvbhtIEAZxYe/FTGz8IOV/t8uiZKlKk4ny+wjEIwhuus5XOS6M7brg1m66PG2lDN0x6Xg76ZM/2LqOwqrJEyPOf0wNpnYbhUGpb1HtOn/r8zbz3nFnvcL4ipq0xRSEZU1FliR0jGeIR7fX59LOKLNG1PS592J7xLPdtG2D8BeYuOl7AV0+Vr3pvVxaBTcOlkNRQr7PH8CMa88a9+4Xg2EqLUy/inD651uaRSCs8mNY5tNTsF4C3byn0i81rnUp+EPL5o2vcPJG7qijdOPc2tHyW69M0nP7aMpKNkYqpz0sHrvccNEVmpWlheT5hKArRg5FJVBiGNyxww/DG52bP9njoGlTzaz1uSzHJV0+VqV/CMNhYa2KqzIMnS1ddc57/8sUybBZ8m9gE4gL/J391iGrX5g9+4s7rdqc+cWCZd/7uE+QSGvsncqw0LLYMpPjPP3zz3/lCbwOyLDGai4vF98jaZfzy1+8c4ov/+LVsG06x3rpIe3jdziEe/Cev549+8i6CIOQffvTZV9wpbBOb+HaDKstsG0ojSWLNaZku1a5zXUrdi5nwaYpMGMLXT1dYrBvcOzvAQPraGiTXD/tFXdtyWW9ZlNsWLdNhPJ+gHdHnABw/YK7SvSF9UlNkZEm6IXVSvJbH8RVR9H0t0vhs0NOu3CCmYyqjl2ig6j0H2/M5stKi1hV5ZNZ1HIQfOVPhxKqY0k1F5jAbG6tMXOuv764fcKbUuWqjbUZr26Wbsa7t0bVdjkZ02ReDIAxZbpg8M19HUV7YfeL4apsvn1i/5r+FYcjjc1UqL0GrldAVZgZSGI6HFxVRsejzeCGupzfCtaZvQRhSTOlM5BMoUbEXcvkUw/ECji5fnrmXiqlsKSb5vUfP8+jZSr+4N7+J953bpwt91+xcUmMin+BMucNHn1zoFxrP55cUhsIJNn8Jbc9wPEovwnRmY4t/6effsz2+eqp82TlY6VgcW2mxULu6oFusGZTbVr8x8ULxwI4hbpnKv+DHe36I54fEVBnPD4lrMqbjEYSCZbBxTl6reaDIEt+7b4yO5V1VuG0scRtNLtsL4JLiq2cLuvnzrYWPnq3w9IU6YRhiuwHVrkOtZ7NYN65wAA1f0oTN9oIXdA42DIcn5qp0LI+l+sXvywsEQ+H1O4dx/YAr304QXk7pdP3gRU9gr4fNgm8TmwB+/fMnObbS4k/ef/c1aRh+EPLvP3Ocf/fpo/zCm7bx1X/2en7th/bxpt3fvplKiizx4ffcwfbhNJ87ssYHv3QagKSu8p9/eD93zhT5yokS//nzJ/s/f+pCHdvzaRkuv/Bnz73s7m6b2MSrCYoMuYTGidU2rh8ymo3jeP516VwbG48XQvFZbhjM13rctqXArtEMR1eaqPK1b/G7RjMcXBKb0bbpstwwOFfp8uAJERLs+JdujC4/livh+gGW4zOeT6A9jwtlOqZE5jAKt0WbzGxC477ZgasaZqW2dZmZyMamZ71pYjg+928bvC5lrmE4fZ2c6froitzfWDUNp9+s2ih63St2XZYr1rWNicm5cpeVhklCVxjNJl60DX0YCte+XEKjmNR47Y5Bys/zHDeaLG0cX1K/mtK61jL53JG16/7uUl2cJ5oi9wu+jUHwxvO+VHztVPmy7LwgCDlb6jKUjnHnTJGhdAz3io08iHP3fPVymt1cpcsXj6/jeeJxo9k4MwOpb6rj6om1Noej6eNi3eC5hQY7hjO8efcwmiKjyNLzGngE0cRo43oCQekst+2+MdrzQZNlJgvJy9wcUzGVH7x1oj/9D8OQC7Uea03rqlD3MAyFDrfnsG8ix/RA8gW9Lojr7MUEm0uSODdjqsz5So+4puD6okg6udambXoosnRVIQOCuh4Sst6yLqNZw9Vrne0FYhIcFWauHzKWF5/nlRP5K7FRONtewGLdYLIgPg8/CImpCrmERtf2rmqo1Lo2zy00blhUBi9QUz1ZSLJ7VFA5945fdHv1/ABNkdCixs+V17l3RQ5f03B5Zr7+vK/3QrBZ8G3iOx4fe3KBv35umT9+393X5L53LJef+KOn+POnF7lrZoCz5R4JTWHHSObvhM32NwN7x7P9MOhLN5+7RzPcv30QEIvl/dsG0BSZiUKCtZbJP/qLgzd0ytvEJl4J/OZv/iY7duxg27Zt/PZv//aLftzf/M3fcOutt6KqKh/72Meu+bs///M/j6q+8PDwMBTUzYOLDRqGgx+EqIrMUCbWNzgIw5AzpU7/mro0h+r5MJZLcNdMkY7p0jJderbPynUy/qYvmXpNFpLcOVPk/m2D7BnPoioyLdPpF1Mbm5vrbXJOrXV48kKNWtcm8Tw29Kbj0+g5qMpFB8S4prBQN67K+7xy2rSxCSp3bc6UOqy1zBuyDDaKmJNrbXaNZvpTVE2R+3TSDUrjlWvYXTMFbpnMI0sSqaio2ujG13v2C3KZ3EDLdDldaqMpEiEhzy40+D9PL/LYuYsRGh3Lvcq5c7KQZCB1bS2WGwQMpmPXDK83Hf+Gtu6W6zNZSLBzJNN//xvfrX3F5+n5wQvSlsFFiqp9SdHoBgHH11ocWWnxqYPLSJLQ4knS5YXUhpvlpRvdsVwcw/EZzIjvKqEr3DKVZ2YwdcNjqL0IZ8+m4fYLyEbP5viaoC6PZOMosoQiSfjP66IbUmpbDGfEe2hbLnvGstw8mWPiBVI6ZVniji0FYpfQjy3X5/BSk3PlDqfW2wQhzBRTTBUTV33vi3WDJy/U+trTM6WLBeFcpXvD62Su3L1qunojhKGYxqmKjBeEuF6A6weEIbxp9zCj2XjUYLn6c1tvWzxzocHNk7mriuErC75CUiMMQ5bqBkdXWkhcnMi90NgE2xPrzXgu3mcL7J/MsXUwhabI7L4iVzmmKcR1JZqyXfs1Ns7z56Nkt0yXREwhE1cvYxBssCs26P1X9nWC4PKr99Gzlcu+v08fWnlR68+leHXsVjexib8F7p0d4A9/8q5r3kjKbYsf+tA3eGKuxk1jWX73vXfwoXfdfl3NzbcrZgZTPLBjkEbP4Y0f/DrlyMVqqpjk9TuHOL3e4W2//Q2qXYcPv+cODi01efNNI5yv9PinHz/8iucCbWITGzh9+jS/8zu/w8GDBzl06BC/9Vu/xdzc3It63M6dO/nYxz7Gu971rmu+xqOPPkqv9+KdFiUumpS4fiD0bJpCO3LFdH3RJb/SwOD5rq+vny7zxWNryJKEKsu0DKdPnbsSfhD2LdO9IKTSsal0hGvmuXKHIAgv2+T3N2LX6etsHUoxVUxiuj75pMb+yTwgNu+LV1DPurbHuUoXw/H44jExhVpvWaw2zav0hvsmcpe52/Ut2r0AXZFZbVo3Lvgu+fNay+pPBfwgZLVpsVQ3+rqwS6MxKh2bYkpnZjCFLEvENDHp8YKQC5Uey03zhkXHlTAdn2rXZnY4zZ1bipwrd6n3HC6tI+arxlXOnaos9Y1trkQ2rlFI6n2tYaPn8Ng5YRoiSRKFpH7dTaEXCErehWqv/5mcWm9HhcHGZMTnxGqLAwuNa2YkbqBrezx9od5/XhBa0o3X9qOCoN5zCENYaVosNUxs12exKs6NIAj7Bfel57np+Nw3O8CeMTEdObTU5NBS8yrDjZbp9n+2VDd4dr7xgu/PD+wYZO+4mMLsGs2SjWucKXX4w2+cx/Z85GjC9/i5KufK1/4cghBuGsuS1FXCMOSRMxWqPZtG72Jw+5XNjGt9jn/x9OJlcQqW6zNf6/HsvPgOJODmyRxecHmGW6MnqIOeH6DKMnfOFC+jBB5bad3wO3zdziFu35K/5r+5fnBVM2SykGAkG4vee0gqpkbNEDG5W22Z6Oq1C77JQpL7tw1Q6dhXuXhuPHzj/0ldGDvlEhqZuIosSyxHDaznq+c3CuKFmsGOkTSD6Rj3zA6gqzL1nkNcU+jZHsdXL9cuKpLUt/cN+sdzuZb2SurppXCi4jcIQk6stDi20qLatS9jKnhBwLlKl2MrbWTp6gnyhqkLiHPAcv2L94M+vfXa1/alMpxrYbPg28R3LI4sN/nokwtsH05z+3Thqn8/sdribb/9KIYTcPfsAH/y/rsu68C9GlFI6XzqF17DcDbOuXK3v7BsH05z61Sed/zO47RNl99/750MZ2J87Kfv4ehKi3/510deknvdJjbxzcYnP/lJ3vnOd5JOp8lkMrzjHe/gU5/61It63M6dO9m3bx/yNSiRtm3zq7/6q3zwgx980ccmSxIT+SSqLOMHYrqmKzKldtTtjSZuG7qN5yu2NrAR7/CNsxU6tks+Gbuuw6Af2fLLkkQQCh1h03A4sdbiuaUmsiSRS+gUoinYjTY4ABcqPXw/xPdDcglNbJoQVMqDS43+Zun1O4cYysS4a6ZIXFW4b5tgDri+mFZdmS3meMFlE6eN4jWXEBq8O7YULstJc7ygX/Rk4ipbBlKoskwmLvLcLNcnCC6+35WGwUK1h+sFl9GqDi42qHaFk2ej51DvOTheQBAG4ijCsJ8F5vrB87pGKrIkpj+hcFkMwxBNvnxDrKlXFyhLDaNvNHEl6j2Hs+UOhivW5+WGSbVrR4WVyGB8+EzlmgXxxjlxdKUl6JWAKkk0DbdfmJiOz8GlJmdLQrt5PRaH4Xh9qu3G837jXJXff/Q8IIpASZL6m9gNXVXX8TgXuTk+eq7KVyITjEvPsVPrHQ4tNxlI6/zgrRPYrnA1vFC5vDBuGg5rTbHRPbTUBMKrjjcIwmtGYRxbafVNhp46X+NMqRNNhBIcX2lz79YiuYRGpWtfl8YbBMJB8uRam0rXZiQbp9y2qfUctg6msD2fLx5bv+H90fF8Tqy16VwSh5JPive90SB65GyFU+sdPD+kYYhz0vMDErrC1iFR1EiSMDe6slFwoyiDuUr3ugXU6fVOn/K6AQmxJpxYbROEIV4QRtdHyIm1Npbr95lPV07JLNfvO25e6dLZsz3Oljr98+jYSis6f8S/XapzvtZaNFfpcmylxQ/eOtGfHq40TZbqBrIscXq9g+X6zFW6nC11+wwCPwg5sFBnqW5QN5z+NbBxHCfWLtfS3shI6wvH1njqfJ2u41HtOewYzvR1qxvw/JBdI5n+mnPl81way6ApMm+5aaT/3jeOeePvG7E9G3g+s57Ngm8T37G4kit9KU6utfn7v/cEcVXhs7/4AB/7qXvIJZ4/hPXVgA2++4e+do5PHxI5RIos8etv38eP3D7Jj374CYIw5D33zdAyXf7TD+3jyfN1/t1njn/LQnI3sYnrYXl5mampqf7fp6enWV5efsmPuxL/4T/8B37qp36KoaGhF3VckiSxZSDJ8dUWLdPpO3WO5eJ40XUT14QL5elSh0fPVvrF1vM5BYYhFNM6N41n6doefhBepqOpdW3Oljr9TjzA2/aPEVMVtg+n2TGSYcdwhvu3DTJRSNBzvH7m3MZG9XpTxpgms1gXk6/zlV5fy7ThRqlGWpWO5dG1PGpdG1mW+oHNYQjVrn0VdbDcti7TqAUBzAykmCwk2TmSYbVpXtbptj0xSQuCkDftHmHPeJbv3z+Grij9368bDkdWmmJyEYTM13p0rIvmJafW2zQMB1WWsF1RFA9lYsgSbCmmyCU1NFlhMTJhOLLc4munrh0wvYENXVa1a7NYMwgBVZWZvWRKODuY5i03jVz2ex3Lu645xIYJxMZ30rHFZ+d4AbNDaR7YPsiBhTrPzl9dMG4ZSLJ7LEsYiknRqfUOCV1Fki5q+BwvQEJsbk+ttzld6hCGIY2ec9n58MyFRr+48gIx3Xj8XLVfBGpRw0QYYYgNaj6pMRU1OkxHODHePVPsf0cb2DOWoZDU8XxB67O8gISmXEVvDsKLm/Cu43G23L2sIPD8gOWGeU3ji4bhMJyJiyzKlslkIUmt52B5PheqXWxffA6zg2lWmuY1s+UsTzz/7tEM2bjGQErnprEs24fTTBZEc+f26cIN4zg2zj/Hv/h9t0yXk2tt8gmNqWKSSsfm5Fpb5G2Wu3zh2BoPnixzYrXNcsNgNJfA8QI+fWiFw0vNy4/xBpPwUtvi6etoxPaOZ69qhh9carBU7yEhrt2m4TAzmCKuKewdz5LSVWLqxvd++fOdr/Q4V+6ycyRzFd01RJg6OVHB1bM9zpS6tE2PjuUxmI71WQDXWotsV4SZf/VUqc9QapkOZ8ti+uv6AUdXWpxcE9f4BoIwJB3TsL2AYlKn2rU5ttLqr5NXGmr1KZ3X2Ot4fkDLFNdI23Lxg4BCUr9sX+T6AeP5BDFVFoXyVedzSKVrc67codaz+dMn5vE84ehsR6Y1G1T9Lxxb59GzVT7y2AUMx7uhsRbACxcgbGITrxK0TJfnFhq8cffwVYtZEIT82O8/ybGVFpIk8W/+3h4Gr5Mr9WrHb7xjP4osUenYnC13uH/bIP/srbvIJzV+/A+e4mM/fQ9fO1Xh/z63zO/8+O184E+eJabK/Ovvv+lVR3ndxN8t3HfffaytXW1M8Y53vAO4PObgRk2IF/q4DRw5coSnnnqK//gf/+PzPvZDH/oQH/rQh/p/bzUb7BjJ8PhcDeIqXiCmeANpvT8V69oep0sd7p0tMpC6uFG41uai3nNoRFOEIAwhFBMX1wvQU0ITNFUUm6qz5S6ltkUuoZGKqUiSRKVrU0jqrLcssnGNpbpB23JI6kq/WLv0tdumix+EV2lvdo5k2DqY6hdulyKb0NAUWVCc1trcMVNgsW6QiWt88fg637tvtP/8VxpASRL9onDjOLwg4OhKk+FMnJgmE1NlUjGVAwt1YspF580vHS0xM5DkQrXHTWNZeo6HH4YMpHT+3v5xPvbkQt8MQpbFuh8EIfWuQ88RVD5ZliJbd7FxdfyA8Vyc0+vdfgG+MQ04ttJiOBvr67g20Og5mK7PSl1M4AopHQkJTZaodi9uOv0gZK7SZf9knlrXJpfQbkhb2ygE+wXSJRRgoeETNNVrFdG5pEZMVYipCj1HUMaIPusN19ONSUIQhn0H1krH5hMHlhnPx/mh2yYj902Nclt857oqMzOQYq1pUu2KTW9CV9AV8R0lNIVMQiUVU8klNFw/ZKUpqKy3TOYZuuI+m03ofOC1szxytsJzi41oOh6/6lq41FVxtSkC0y9l4jQMl7lqlzfuutpg7YHtgzx8uoIXBGTiGluKKZ5dqFFq2+wcyfA3h9cYysTwooiMa7np6qoo6Bw/IK4pnK8IQ5yBtM7TF+rcMplnvW313WKvhY3zqWt7PHtBOLmO5xMs1Az8ICAZU/uT2zXP7E/HbM8npsrUui5txeNtN4+hqworTTOKfBHHe6MJ3wPbhy4roERjKKTUsbhtKk+95zBdTKJGE3jLDfADaFkuEqKpJCGhyhLPLTRpmg73zQ72vxvlkrVkT0SfrXZtJEQkzAY0RWLnSJqjKy2qXYfjq206pksuoXF0pcXhpSajOaGtvNZaHYSCqtyxPAZSMYbSMUay8X6Rvm8ix1dPla76LMIQCimNIBDNqabhXmbMMpCKkdLNy14Hri46gyDk8HKLiXwCPwixHJ9S20a9wsCmYTgcXGqyfSgN+FdNK73od4MQlusGx1babBlI4UeT1I7lcnilyc2TOVw/YLlxMXP1+ZzTNyd8m/iOguMF/OxHD/CxJxcuWzTalsuJ1TZny12OLLcIQnj3vdNXdV2/k6AqMpIkcWS5yacPrvZ//tOvneWX37yDH/+Dp3jLTcPsHMnw658/yZ/+1N185vAq/+3LZ17Bo97EdwKeeOIJ5ufnr/rvgx/8IFNTUywuLvYfu7y8zOTk5FXP8UIfdykee+wxTpw4wdatW5mZmcH3fWZmZmg0rp6k/MIv/AInTpzo/5fK5Di+2hJB60GA54fMDqZpmx5dS9yoSy2L7UOpft7cxkahY3mcv0K79Lmja/zJE/P9iUet53BwoUk+qbN/Ms+z840+1a2vXwuFnfq9s0UOzDcwbJ+2Jah85Y7NcwtNupbHZOFi931jQ3K23OHAwuWTgI7lcnhJ/E4xrV+mddFVmUbPYbEmKFVv3TvKYDrGLZN5NEXizbuH+5lscJEmttGdP1Pq8vCZi9OzXELD8QIsN+CTh5aZKiT7G8Zq16FlCTrjRvbWhp6l0rHJxFUUScKJpj0bm8MwhHRc46uny3z0iXncIESP3BkVSWK1KQo1SYLnFhsMZxP84G3jfc1f3/DDcPqFzwbCMOSRsxV6tsfWoRTFlI4EDGdj/IO7p/raMRCTxQ3K4WNzNdZaFhBeZud+KWwvYDQbJ5tQWawZrDRNdo5kGEzHWKj3WKobKLJ0VUj18bU2Xz1VZqHWY7KQwA/ExFeVJLYNpftFd0xVyMY1cgmNpKaw1jKRZYm25fUL0ZWGKSz4JfFeY6rCWC6OLMuEiAlNveegqzITkaHQ7pEsy5EbZr1nc2K1zUYNdf+2QRKXBIo/fLrMHz12geORocht03nGcomrsu02aG0bE8swvNx4bCgT4zXbBlltXm1gdHKtw5GVFkEg9E9HlpvYXshEdP6PZOMkdZkz651oEnT1jMRxBa33xFqbZ+br7B7L0DRcal2Hm8ay6KrMatO8pqO1HzUaUrrK1sEUta7D186UkSSJkWyc79k3Sj6ps1QXk+FmT4Scb9CtQcQV7B3PitfsOSQ0mT3j2cuaWTdiCBxdaXEpc932AmzP5/apAumYSrXrXDZVtTyfnu316cAScGSlxWrTZK7aRZGkPqXzyuK8Z3tYrk/X8q4qvOo9l/mawRNzdcodm/WWScNwMBzhsqvKEjeNZZER35W50ayIEIQhSPCDt06wazRDPqlxeKnZp3IfX20R1xS2DaVF02sjDzMMOVcSa+tCzSAdV1EVub/unSt3+9Ed4vHR/6/4SLuOxy2Ted573xYsz2cwE2P7cDpiKVz8HAzHR1OkKJ4lvGzCF0Sss5gmk4urpGMaN41lIk2kWMddP6SY1PsFp6bIbB1KEVeV553wbRZ8m/iOQRiG/OpfH6FtufzWj9122YL4haNr/M+HzvCu338CSYKfe8M2fvV7dm9OqoA33zTCf3nHfmzP53e+Poft+fz0a2f5f39gLxOFBP/jnbdQbts8cqbKn3/gHv7P04t86GvnXunD3sR3KN7+9rfzV3/1V/R6PTqdDp/4xCd4+9vf/pIfdyl+7ud+jtXV1X6BqSgK8/PzFApXa4CvRBCGZONiuub5ooNsuT7juTiyJPQyx1ZbNA2XAwsN/u9zK/0NU8t0ObpyuZNeWldIRY5yIMwU9kyIImK+2uN8tcvfHFnF84PLDEtURWY4E8d0fQzXY+94joF0jNmhFIOZGD3Ho2E4VzmFdkyPxhWB5KosU0jqLNYNHj9XE9b60eNbpsuhpSY9xyUIROj8gydLLNQNJEkioSlIkY5w4/M5W+70Q4oLSe0y05apYpLbpgvsHc8iSxJnSm1apitiIVyfatfhucVmf9OzQf+qdm12j2bJJTVKLZtvnKuQjWvIssRYPo4mSyzUeiw1xTTlrpki6ZjK7VsKaIrMZCHB1sEUB+YbLNZ69OyLG81cQmOykOgXG5d/30JPNZKL0zScSBup4Qchnz28dpnOrF/0BiE/cMs4g+kYp9e7uP61ZQfFpM6OkQz5pC50kq7PVDGJpkgEgXjvt07l+7rI85Uuz87XCaIpgYTEvokcCU0VQdNhyHLDwIw0gUOZGCO5OBKQ1BXiqoIsCSv5uyM355nBVP8c7tk+S3WDLx8v4XgBO0cysKG9kiRqPYeHz1Q4viZ0WWO5OEldoWW57BjOMFlIcKHau6xhsH8qj65ItC4p3lIxlVuvyIwLQrH5DkPYOZKmZTmXfbam49M0HRZqBqfXO/1GgOsHVLrCoCckZNdoBlmCZjQ5f25R0FUtL8DxA4zIYfZK1A3x+L3jWW4ay6LKMrtGM0wVk1HBqHDXTLE/HTQdn0fPVnj8XJXHzlX5+pkyAZCNq0zkE9y/bZCFWo+nL9RYqPWYLib5/pvHCMKQe7cVSepqvyCfHUxzbK1F1/LwgoDnFht86tAqBxbEsV9aTCzVDc6VL28ahWGI4Xg8eqZ6yc/EZ5pLaqiKzN1bi5flEttegBxNrW6bzqPIErtG0kjALRN5imm9T+kMQzFV3vheL1R7LDcMZgZTV008E7pMy3ApJoUh0Vv2jJCMKWiKRDGloykyx1ZbrDRNnlmoc3CpcdmaGISC1vn5o2s0DAdJkjgdNVJM12etaVHp2MRVmS2XvHYYwvRAkvW2xXQxyUgmzr7xLGEgzpFyx7qKaQBX6wg3dIbnKz0eOlGm3BZmVG3LvWxab9g+CU3pN7v8SBN8rtztr9OyJPHkhTqnSx3KHZs37hpGjyigjhcwX+vxyYMrNHoOyw2DAwsN5ms9rjGAvgybBd8mvmPwPx86y5NzNf7oJ+8iFVPp2R4/9KHHWG9Z3DVT5Nn5Oj929xY+84uv4ZffvGOz2LsCG1OGjc7WD98+STau8b++do5ff/vN/Pi9W9g+nOFPf+pufvfhOf74sQuv7AFv4jsSO3fu5Gd+5me45ZZbuPXWW/mlX/olZmdnAfjwhz/Mv/23//Z5H/fQQw8xOTnJxz/+cX75l3+ZyclJDOPGgvjng+UGZBM6siRs1Ettk1rPRorog6W2xVK9x2LdwHZF0XUtKme5IxwndVUhoatYro8sSciS0EwldZn1tkWt60RFnY/jhX2jmFrX5munyiw1DNaaFs8tNGibLqW2hWH72F7AibX2VWYccU1hOBPjy8fX++6bCV1heiCJFwToqkxSV7l1Og+IDdBINk7PFtq6Z+fr3LN1gJ7tcWylxW999SyltnmVRrBni82hCAe/WAAs1nqst8y+c2DbdHG8AE0RlDo3ymszo98/vNyMJgkeay2TjuUyPZDkNduG6Noenh/QNFycKG5hLNJArbdN/CDEjAweQKx9xZROXFP4yokSnziwzCNnylHYtM3TF+pXTWAVWWLrYIq26bLatEjFVO6ZHaDRc+jaLk9foq/b+Jr9MOTBEyVKbZNkTGH/ZK5/H2oaDl88ts5S3aCQ0njoVIkTq2LDO1VMcnS5xWLdIAhFsHPP9vqU01PrHVaaZuSaGaIoEuW2xUrDYOtgClWSqHUdLEcs7itNk4Vqj6WGQalj4/gBR5aaxDW5/z57tsdoNo4qS5wrd1hrWQxlY6RiohHRtT0en6tS6lrIksRAWqeQ1IGQY6stYXCSiTNdTPYngpdOorJxjbfuGyUb1/oxGn4QcnipeVlB5wchfqRvWm/ZxDUFRZb7m+eVpkmpZXPftgFOrbc5tNSk3Lb4/NE1Xrt9kKSm0DRcXrtjiJim0LE9LlR6DKZ1zldFZEE2oaIr8lVZkafW2+QSGvsmchi2Tzqmcq7c5fR6m57t8fi5Kot1g9Wm2S/4Di41UGSJas9hOBsjpatUOzaHl1scXm5yptTh2EoLyw3oWB5HV1qcLXeJqUIjN5TWqfdspopJxvNxhjMxnjhf5UKlS1JXuXtrkUxk9LJRlBRTOsdXW1dRriVJ4v5tgzywY7D/sw1znS8cXaNni9DwDVrks/N1xrJxtg2lySU1qh1BzZwuJjG9gFLHZK1p9fM4wxCeOF/jyyfWOV8Rk7LtwxlqXZtS+3JHSU2RySVUSh2bgbRO03DJJXQGUjHimkKla7NYNaIpmHhP6qVGLtE16/oBx1fanFprk0vqaIpEveeILLsQHj5T4dmFOjFVrIcdy0WVJTIxFVWWWGtZzFW6/XMK6Lsaw/U1zWO5BKYrXGs3oqxcPySpK5cZUpmuT0JXmBlIkY6p4pxebvKbD57h4TMVglDQUksti4Vaj+1DaWo9G88XjQc3aj60TZcw+ty2D6fJJTS+Z98YN8Kmhm8T3xH4xIFl/vDRC3z85+6jbQq6xZ7xLL/wxu1IEvzY7z2J6Qa87zUzl/HKN3ERg+kYv/GjtxCGIb/xpVO8bf84u0czDKZijBcSaIrEz//ZAX76tbP88fvv5r1/+DRJXeXv3zX1/E++iU18E/Erv/Ir/Mqv/MpVP//Zn/3ZF/S4N7/5zS/IwMXzXngekiwLMyhJknC9kJbpcceWAuerPdqmy3rLomG47J8s0DAcdFm6po7ribkaWwZStEyHatembXqoskS163K2VEJXVQY0BVmWiGsKhi02QUld6RtchAinyAdPlpAk+PF7tgi6pOdRVDRiityfrq22RKFwstSmmNJ5+22TfWrbUt3A9gIcL6RpOGQTGustiy0DqUgLKBwkNzZJuiozmovzl88sMVlI8ORcnW3DaTRFxo82+xubuGrXvpQJxVy1y4nVNobjR7EJaYYyMUoti3LHvpipF4hA+3JbbEbPlXqkYxrZuIYkSZiOKIINx6facxiKqJZNw2U4E+f8Spt7Zwd4cq6GpkgcW2lT7Qpt43Amjun4HF1psVA3GEzHWGuZKLJ8lb7Lcn2+ca7KTWNZCikR9JyLq4RAPiGiCxwviOhvYlJW69r0HI/1ts2FapcTqy0e2D6Ipsg8cqaKFwQsNQzOrHfwQ7HBvX/bIH/17BKzgylGc3EahkOlY7HWssjG1csmvEsNA0JQJPH5nlrv0DJd4pqCrl4sktZbFosNg5WGSTahsVg3GM3GSWoq9Uh7+PR8nUxMxfYCTpc65BLCsOTQYpN6z2XrUJpdI1nOV7qstEyGMzFmBlPMDqUxHaFr3DGUYblp4PgBbcu7jDr3uSOrtC2XrUMpXrtDGCR1TJeHTpVJ6QqG6/f1qwvVHk8qMvWezcxAivlqDzcIuGNLke3DafwgFCZEES1uY8J8Jsq4i2kynzm0SrVrk4ur7J/MMZjW+frpKmld4fR6h7fsGeH4Squ/mQdBO07HFOpdm/NVEUI+kU/w4KkSQ5k4u8eyaIrEN85Wma8ZvOOOSSzXZ8dwhkrHxo1MODaKhyCEetdhNBdn30SOYkrHdH2OLDdJxVQqXYctg0m0poUsiYlnx3IZyyVomy6KBH4QTVi5qOmaLCT54tE1tl48dEBoAA8tNrl9y0WGwoZ+7TU7BkloClZUoFiuz0rTRJYgHRNrSbljc/fsAHOVHo4XcGC+wc6RDNWu1Z/eb+RYHl1uMZiJoclytGYE1CJn2R0jGZbrJj3bR1Ukdo5k+IunF8nEVTRFwnA8tg6kcPxATMxNl/mqyO68LfJhCMOL7qwDaR0vFKZL08UUhuOJYl0C2w+Yr/aIaTKm63NoqcmzC3Xu3jqA6fq0TBdVkXjyfI1dI2lANOiemKtx37YBgkgrvVDrXaY7NR2ft9w0Qjah8cyFOoPpGOP5OJm4ws4Rwbwoty0Waga7RtNMFZMs1Y1+A308l+BCpUs+pZPQRPNM80XA/ZHlFiPZeD/2wfGCPvV262AKVZFx/OCqgv5KbE74NvGqx3OLDf7Np47xoXffzu7RLF8+UeLJyIr5tTsGeffvP0W15/Dvf2DvZrH3AlFMxcgmxAbqA6+bZTwX52NPLrBnLMfPfvQAE/kEv//eO/l/P3uczxxeff4n3MQmXuXwg5B21CkPCKl2bLqWx0wxSdd2aRgOSV1lsd5jrtwV2qJrVXzRhmNDV9O2XBRZYrqYRJbB9X0sN2ClYdI2xTQpCEPimoLt+tS6gu40M5hCkSSG0iLCYc94lvfcu5XhdJxyx+bMehfPDziyJCZHqiyRT+oMpvW+8+Ray+T0ept0TGWtZXG+etGls9S2aJkue8azDOdiSJLE43NVji41aZsucqShGcvFySe1fjZePqlhe8LMYPoS6tVIJkE2obHcMNkxkqFtuZxab/O/vnaOLx1bp9S2CMMQWYZ7ZgcYzsaYGUoxlo/3O+nz1R5z1Q624+P5AVOFBHFd0FJbpovjCcMTJYoSUGSJfFJDU0S+4YVaD1WRKSRFcXO23CWuKQxlYlc5EoYhbB1MMZ6Pc67coWk4fONcFQmYq4hJ7ldOrOMHIbdM5snEVJ6KMu0kRDG92rT6U84gEJPXtumx1DAjd8mgP70EsVkfTMcopoSzaBCCcYnOabluCgMaL+DIcovVlsVcpUfbctAUuT/RcP2AQkJjx0iaIAgpt222DaWoGw7xSGf3xl3DrDRNVlsmq02TYystzpS6GK6PrkgYtsd05Epb6zo8faHOU+drgjaXjTOaj/PE+Rq+H6KrMglVZvkSzeJoLo6EyF7b0L+1LJeW4bDcMFltWn3NnheELNZ7lNo2ri9MXKodh5bp0jJcDEcEXS/WDapdm6+cWKdre6w2TN6wa5gDiw1apkMxqTMTFRYHF1voikRCVxjLJQj88LIIDj/SW1U6NifXO0iSxL3bBnCDgN2jGUZzcYopnUxcY89YFjmiuLp+iB8EHFho8Mx8g5PrbS5UxbUWhiHve2Arg6kYzy00qHZtMc1XJAzH52ypQ8/2mcgnUGRhlDJX6ZFP6gxn45ytdHnwZJln5+tYrt9vGE0VErhBwKEoYsFyfT57eJUwFFr9h05eMsGKKJ0btOcdkTZ0wxH39HqHSsfhTKlDx/YwHZ+ELtOxPXJJDTcIObnawfH8/vq1ZSDJyfU258tdKh2b8XyCmcEUDcNlpSnO34Qu0zSdy+IZ1lsWPccjE1OZiGi/XctHQrossmXj+3B9MZV74nyN2YEU58odSm2r7zobhOLa7jk+c+Uu24ZSDGfjvGHXMItRZl8QFY6uL4qqXaMZql2bcsfqv47tBn2n3g1sGBA9eKLE0eUmy02TC9UeH31ikb98drG/Vid1mR3Dac6VO1S7dn8Ku1g3qPTEdRjTFNbaJpWOxdlyl21DQgtoewFOpB8OgpBsXGOu0uPgYoO5crcfF3M9bBZ8m3jVY89Yll/7oX38u88cx3J9fuGN23n/A1sJgpD3//EznK92+eA7buFH79ycRL0QSJLETz2wlYl8go8+ucAnDy4ThPDwmSoPnSxx37YB/uFHD3DbdJ4Pvft2/p9PHOErJ0qv9GFvYhOvKIJA6KFGsjEaPYdsUqPSExEFlhtQSGqMZOPYUbZWIaUThPDcQgPjEvONL59Yvyxjr2t7qIpEz3bpRg51ubjKnrEshchm3HaFm1/LdHnyfA0pFNTQuuHQMBwen6tRalkcXWmiqTJxTcEPAzENjOz4swmN6UKCTx1c4bFzomHWNj3alsv0gDDT8PyQE6udqPCSuH1LAVmSWKqLyYDjBVS6jpgYrrep9Wy+eHwdw/bpOWLiVe3a/KfPnaRreQRhyGrT5Gypw0KtR8f0WK4bVLsWK5EjY61r96lcSV2hZ/t86fg6Z0udfjFqu6LA2zeR4513TpOMqdh+SKlt4fmiSBQGJqJQkyVJ2OhLwpDlfKWH4QjDiflqj9fuGKJleqy2TBZrBuutixER58pdPntoBVWRGMslOLHWYb5qIIF4T9H3psoSZ8tiaukFIecqvb4RRkJTKKZ0gsiEpmUK6undMwVszyehyTx9oU6tKyiMG8cbBOI9tQwXCaj1bI4ut6h2bBZqgu4ZIqIEDMfDdDwcP2C9ZTGajSNJRG6APpZ3McLDDQIu1HrkEyorUdZX03AiSqfM7FCajuVR7dqEYdg3jHnyfI2pgSQ3jWbYPpwmn9Q5ttpmvtpjrWliez6puIosSSw3zcsy3wzH55apPKW21Z88OpF+zPJEnpsXFXd1w2GpIc6xtZZJ2/L6GWznq10Waj0SmsLO0Qy7RzP4USTKrVN5Vpsmu0YyjOcSJGMKg9kYj56psmMkTTahRW6UYppnun7/e944pmIqxs6RDJoikY6pnK/0RBFtOnzq4ArfOFthtSUoneWOjR8IvWeta9M2HTqWiJLoRIY4Z0ptDiw2SMaEPvexc1WevFAnjDb4nh9wptRBliQUWWLfeJZn5uucXu+wfSjNG3cNUUzp/VBvWZJQFZktxRSW6+MHItvO8XwWaj1un85z61QuihRwObXWptmz+fShFaFz7NjiWnN9Sm0xOd45kua79ozQtdxobRHXnSoLzes775oiqatR8RgS12SGMzHG8gmmB5LUew5LdQMvCDAdnw9+6TSHl1oMpkXjZCGKL/EDQd0spnUOLzcppHRMx6PUtmiYLvsn8yzVDearPWFqEoiJ2FguzkrLopjSRZSHHyJLIp8zRBgzNUwX2w3QJIl8QiebEHrWDcdkotefLibJJzW2DqZE8egHlDt23xlzA9uHM6w0TL54bJ3ZoTRxVabUtjhVanNsRQS8D2fjjOUSxHWVQlInE2l6swmN6Wji53iBcNON62wZSDOQirHWtLCiNc71A0JgNB8nl9CQJNg+lGbXSIY7o3iT62Gz4NvEqxaltsW7/+BJ5qs9fuT2Cf7HO2+9THz8n79wkqW6wR/95F28/faJV/BIv32xbSjFdDGJIkv8r3fdhiJLdC2PsWyMtZbFG3cN8z/eeQu//H8O8o2z1ed/wk1s4lUKSRLB22sti7blMV/psW88x1JDaGTCEIpJFTkUxggd08X1gsvyu9aaJpoik0/qkQZFFEiyJLEaUUKnB5JsG85Q6zkMZeKcWO1wYk1QIdNxlT3jWXaPZSi3bRo9h6Sm0rVFhtNzCw2ahtN3CPX9kNftHGLvRJZTa22+cqKErsrcOSNoVNWuzcnVDnPlLlPFBCldEWYRIcIoJaHxxJy47mVJYjAdYzQXZ8dImp9/wzbhMNkwuWUqT0pXScc1jkebo/W2xXpbZI+dWGuzHnXqdVVBQkQFZOIab7tlnPe9ZoZdIxmWGyblttgcBaGgvLl+wHzdYLlp9rU8jZ5DGIgp6IbNvOOHNA0bVQZZlpgqJpjIJTm91uGpCzVOrXcghB+4dZzT622OLrdQEMYvgqYpKLBd2+OZhQafObTC43NVuqZLOqGS0FTyKZ264bBzVHTstw4mGcvHeXa+IXQ6wUWTno17le2KTd56tNlOagqxKMfv5skcO0cy3DKV57bpAjODKc6Vu5Q6glLX6Lmi81/rUe3aIvg9CCi1LGKaQjahsW0ohSwJvWFcU3D9QGy8g5Bmz2XvRI6BlM5SzaBj+6Rigib65PkayZgoNqtdm+FsvO9GmdQVupbHVDHB7VMFUjGVruWxbSjNZD5OXBMavx3DGUzH51ypS8t02TsuKJ2uH3Ch2uPMehvXD/pW/A3DYbqQxIlyySzXZ6lh4vkBigS5uMZoNk4QhOwYSbNvIsdt0wUMJ+DZ+QZv3DXMcDZONoonObHW4fham5FMnM8cWWWu3MX1At60e5jdoxlKURZkvef03+tGJMbGd2XYoulxbLXNXz27yHg+jusHNAwXXZHJxsVUumk41Lp2P+KhbXk4vsgnnCok8AIxnXrsbJUtA0nunikynImT0lUycQ3bF2ZBmqJQ7zn9bMNORBV2fRHzUjccZodEbuCptYsuqPdsK7LUMPj66TIxVWHHSIaDS02eXWhwaKnJWsui1LYodWzW2hbftWdEGIuEwknScgPyCY2m6aIqMisNC9sLiOsyuipjuh7nqz1iqsyXT5RoGcI1VxR8KjFN4WunypiOT6NnC3qiF2J7PhOFRH+qpssS81EGaCaucqbUpWG4tC2P79k7yq6xLLtGM9iuz1rT5LnFBoeXmwRhiOMGVDs2jZ7Lc/MNMnGNrUMpkjFhEJWNa31NqB+E9GyfR89VeOhkiVsnCzx0ssREPtF3i11vWxxbabN/Mk+lY3NkucnXT5WF7peLkzaAluHywI5BckmNs6UOg+kYIeK7TcXEGpuNi/NOlSUG0jGycU2Y8WwdIJ/SuGksSzKmkNRVZgeT3DyRZaIQZ7Heo2uLjMJsXCUZ5bWuNk0RcRIEfObIKp8+tHLDe9BmwbeJVyWsqKNNKEKHpci1bAM/97EDfOSxef7k/Xfzhmvk82ziheH+bYPcsaXI43NV/tPnTvL7772TC7Uew9k4MwNJ5ipdvmffGL/+w/v4mY8+K4TTm9jEdyD8QGxIzpW7TBYSxDSFRs9hx1BG6NYkicWGyVMX6izVRJB5y3RQJJl4lCsmTEUsPnFgiZ0jGRbrJgcXGgQBbBtOsWc8S8tw+fizS3zjXJWDi2I6qMgy7aijPZkX5iRqpPHbOZrB8QP2jOfYP5lHVeS+oYLti+mS7foU0zHcaFOqKTKeHzCQ0tAUEZic0ETWWt+cYrERdfFDxvOJaDJns9Yy0VVhrCEhMrAOLNQ5U+rQMlzKHQs/CBjPJUSAsSkoqWO5OJm4Sj6iUy7XDR45U6basSkkNWTEVKjSETqWDb2M6frcNVMQmq1Sh785uiqoiZpCiCiuE5owcOg5Qt+12jTZM5Zj+3CauK70u/5BVGRUuw4hIlswE1MZzyX6roN7xzIMpHUqXZs9Y1kmCkkaPZeYLpHSVbqWz5n1jojDcMP+dzRdSPYnaqoqEwYi9sENBLXMdHyePF9HVSS2DKTYPZZBU2Tmqz0m8wl0RWg+DUdQ+WYGU3z//rF+8ThVSCBJMFVMIUliGnXP1gEycY194zmqXRvDEVOE0VyCrUMp7pguUOlEVNsoQ3AkG0dVZL5n3xhz5R6W6+EHIZOFBBO5BNPFJN+1Z4S64XB8pc2x1RYPnizx1dNlnrlQw/VD1Mh5cSQrQs9vGhdZji3LZaHW45EzFYpJnWxCYyKXQJYk2qbH43M1tg+naZmCprlYNzhb6pDQhIFRqWMLSl4YcnS5xYGFhojW6Nh0bZff/upZ/s/Ti7hegGH5LNZ77BhOc3SlyVBaR5Ik2paL6fg8fq5GQhfF7et3DnHLZJ6O6VLZoPZF1Lpyx8ZyBc1SQmKhZvC6HUNsGUhR7dmEkojiOFvuYrlBvwja0KQ5nk+5LeIr7pktsH04w0AqxueOrtEyXZYbBpW2Tct06Tk+cU1m50gGPwgwbI9DC00WInrhhWqPR05XeXa+zmrT4Gy5g+OJc3alYRKG4ppvWy5PzNUEdTcpNGdt06WQ1CmmRAh5TBVF0nA2zlQx2Y8Ncb2AWyfzjOZE4RzTRHFPKBrACV1lx3CaWs/p00ObhsP5Spf1lsV8rcfx1Q5xTeHwcoOe7TOSjZOOC8qiG4jCft9EjtkhodGMqSLL82unSlTaFj1baPIeOVNhOJLhCAqmT8vyIvaDYCZUOzZBKIrHZ+brZBMaN0/mWGmY6KrMSDbOAzsGOVvu0DBcNFVi+3BaFL9tC9P16ViCPdE0XFqmGzmginX9oVNlWqbLhVqP85Uenh9yodbj+Kow7ikkdbqWOF8PR4X1keUmBxbqLNR6+IFwJz66HEX2eCG5pMZyw+L/PrfMSsMkHVe5UO3x+FyNcttGUyQuVHvEdYXzlS4HF5u0TY/JwvWzHmHTtGUTr0I8cqbMP//EEb7xL97In33g3sv+LQhCfukvnuMLx9b59bffzOxQ+hU6ylcXtg2leWDHIIWUzp+8727e/r8fJxNX+chj8/zue+7g7bdNYjg+7//IM/zZB+5h/2T+lT7kTWziWwo/CJkeSIIED54o9emLA1EnWJFCjqy2sb2AVEwlHdETFQXOlDrsHstSSOnMFJPISFyo9ZgZSLFjNM3xtRY7R0ThttQw8IOQQlLDcERH2PWFk2HHcvn0oRUSukImptKxXaaLCY6ttliodvvB3CFiA08o8ex8nfmawZt2D/P0hXpfp2L7AecrXeo9l2rHJgRScYW4qfRjChRZaOHWWha6KgxkKl2xeT251qJje6w2hKNoUldxA5+e5WO6AVsGkpxab/PM0To7hlPsGcsxO5Tm2YUGqiLc9GQZPD/kI4/Nk4qpjOUTdGyxKasbLtmkRj6hc3q9Qywy1Ng9kuXhVoWe4yFLwsQmiLRYcVVm/2SeQlK4GqZiKtuHBV0xrgmq68efXSab0JgZSDJfMzi01CKXULlzpoDl+jw5V2NLMcUDOwYJgpCjKy00WWI8Kwq6TEKl3LbIxLUohF5ktQ1mxPRzqW4QixxPB9I6auQ42bU9ghCKaZ2pQpI/eWKebUNpbt9SwImcVZO6ihcExCWZhmHj+yFz1R7DaWFr/8Zdw9QNB8P1kJCYr3XJxhXOlTsUkjFiEf3tfz54ht2jIv9rvmoQ1xQ0WeaBHYM8PlfjNdsH6VjCpXNjAgeQTmj86B2TrDRNDi81aVse+ydyUdEfJ5PQOLnWRpYkhjIxVpomt03lGEjr/Y205YoCt2E63Ld9lGxCR5ElNFXoVGs9h8NLTVJxVZgHhdBzhPmGmNxAy3DQVIn1lsn5SpcQ+IU37uDZhToj2TillsVay+TWiTxPz9eZHkj1Iws6lsfpUpefvH+Gb5ytcGylTT46BkWWeWKuTlxTyURTtbW2yY/cPsmjZytk4ion19p4vgilf3KuxkrDIKlrxFWlPx1cb4kpmoRwuhXXSYAqyxiuz1pTTFMH0jorLRNFkqh2RBFECGdLXR4+XWH/VJ7xQpyzpzskY6IZMlVIMJIV59HsoCiOaz2HtuWxZywj3C0lCcsVxeP24Qx7J3OcKXXZM55lMB3jxFqbjz25wHA2xt6xLG3L40ypTbMntMaWK777pmHzucNrjOTiDKd1OpbHXLnLW/eOsms0G00hw8g5Vma8kODEaotjqy0s1+XRszUm8jFUWTigijVLTIgVScSagERIyGLNoNZzWWyIxtG2oTRt22UwE6PcFdrNuK6wdyKHH4QcW2kxPSDYR5WORVxVyMZlTq+3mS6Kyf1y06CYjInHdEWzYL5mkE+ouEFINh4ylPF46kKdH71jiifmqvhhKOjBI8IMyHCEo+ajkcNmz3a5NQqsJxTavIF0DD8ImRlMsVDrMZyJEYYSjiemsgu1nmjg1QySmkKpYzNVSDJVSPK6nUOcXm/3czxVRepfb5IktJbpmMZ4Ps5oLn7De9DmhG8TrwqEYchfP7dMuWPxyYOrQrfhX2148Ct/eYjPH1nnX33fbt51z/QrcKSvToxk47x17yjLDYN/+ddH+d/vvo0/fmye979mK7/45weZr/Z49z1b+OU37+C9f/Q0p9c7r/Qhb2IT33KcWu9waq1DIalR6Vjsn8pzttQhG1eJawrJmKDraLKgP8Z1hXu3DjCWTzBX6fHQyRKFlM5wNkazJ5wjPT8kn9BYqPU4tNAgl9BIx1Vh5DKQJJfUaZpOX4c3EU16hAFLjLblcddMQVjju0KHM5gWTnifPbxKpeP0N/AAP3rHJLdM55CBpKbQMBx6rkdMlcknNM6VuxxeanKu1GWxZvTNLf7B3VNsH06zdTDFWC7OvVsHcHxhQZ6Jq0zk4zSjPLM37B6i1LbJJnTyCY2pQoozpQ7rLZMdw0JbNTucYjClU0hpeEFIQpPpmg4JTWGqmGQsF2f/RJ5MQuXgYpNDiw1OrbWp9YQRyny1hx1RA73oXtExXdZaJgldIabJrLVMTq62Ig2l0NNtHUrSNBzCEFK6guX55KNCZr1l8ejZCrbrsda0eOJ8ja7tMTuURkbimfkasgSKIpGOK3Qis55qz2GlYXJosYnjidiJluUgSdAy7CjoXSKmSiRUlaWG2ES6vtDLVbsOqixjOkJPBbBYMzlVamO7Hq4fsNI0OVPqMFmIR5mAKustm/0TebwgRJJBkcF0PSqRFu9cpYvt+RSSOrbr0bFcal2bru3x3EKDVEylZbpYnk/HFP/22cMrjOeEdf+WYoqYKhxMc0kx0ctElDrXD3hghygcP/HsMvNVg1RMZedImtPrbU6td3jqfINyRzhSJjQlco300FSZruXRsTxmBlMAFJI6haRGx3Ipd2y2DqQFfdL16VkeXz1V4tapPNuG0ozm4kzkRTHw5PkaD50s8dT5Gi3TIRVTuX/bADuG07Qtj52jaUpdi1PrbZBC4qrMwaUG6y2h/zQdMT3biDW5d3aAhuEwXxUGRPmETqVrCe2e5XK+0iWTUCMKcMhN41lGszFWGhZty6XasTDcgLgqU+s6bCmm2DqQIpsQdMRMQkWSwYuaKpm4xu1bCswMJJEliY7tMZqL07FcbE9MbJuG03dUPbXWIgDScZVCMsbTF2qs1g0OLzeEay9AGJKMKZyviKnSjpG0iEBRBUV1rWVxbKUFocRgJkYmpuGHIU3DJZPQ+MzhFR45U+5n+gUhxDSJluHSNF3ySR3LDfqTuyAMGc7EaPQ82qYrYiRW2sQ0hbgm47gBiiIxnI0JUxNV4euny7he2I8tcSNNpy6L51yLwtknC0mOr7bpWC6W4zGYjnF0pYWuyvh+yIVqhyfP17hn6wDlSNPbsYXxVbkjnsN0fJqGmMJuHUwxWUxQatt9bfW5SpdT623u2lpky6CgSOeSOsV0jJFsgqSu8MVj68Q1WRhmDaRoWy5+EFLtChObDbrn9ECKmKrgBUHUUAm5UBWmWaoskU1o5JM6KV1lodrj5sk86ZjKc4tNfvfhuRvefzYnfJv4tseGm9qBhTpfO1XmucUmf/3z9/etw0G4I7VNl0fOVfjFN23nH75u2yt4xK9ejGTj/IO7p7h76wCf/sUH2DaUwnR9PvCnz/K5X34tH3jdLD3H491/8BQf/9n72BrdrDexiVc7FFlidjBFGIYktBRHVtos1QxURViHrzRN8gmNhuHQNF2W6ibVto1PwPftG+V3Hj5Pw3Dp2qK4GssnaFkulY7N9ECKTFwDqUVSFxqfuCoKgPlqj0rbJq2L7NGkruB4akTVFFqpQlLnzpkiA+kYR5aaVNoWsizh+wFuELBrRGySz1e6HFxqMpFLcHK9zc0TOTRliIFkDEmClaZFJq7Sjqh5mYTGYDS9+T9PL5KI6GTljhVRSmU6lsdS3eSp83USuoKuyUzkEpwudyimNFRZbPAcX1BJv2vPKLbnk4mpLFQFlc32fBqGQy6hM5ZLcNfWIuWORRCEaNHr1HsO2YSIavDDgJbp0bWF8UNMlXH8ENPxqPdEYHwYhnRMT5iXBDCQiqNIgpbpBaL4kyQJCfDCQOS3VbtUew5q1eDoSpv33rcF0w14dr5GiEw6pjFfE5s3yw1FZpks8dqdQ3zP3lH+6Bvn2TaUIghhqW4S12RhMOMGbBtK8aVjIkah0rHJxlUkSbiHljsWWtT5H87EOLbSoud4DKR0enZEc5UkHM/njukimiIzmNYZzyc4sNhgz3hO2OT3HJbrJq4XsGMkw1g+wZeNEidW20wVhzlTEvlk6ZhKz/F4ar7GidU2e8YzVLoOY9k4622b89Wu2MwTgiQcR0NCBpI6mbjKjpEUZ9Z7SGHIsbU2Y7k4Q+kYXUu4WBZTOsOZOAu1HnvGcqy3LR46WWKu0mPncJp4FFxdbttkE2IivmHvv9a0+tEZYgKistwwWW9bHFlusWs0g++HBISUuwq3Txd46GQZTZXRFIVdIxmenq/zuaNrpKLzcX8+z0OnSkhSyJtuGuUzh1ZRJAldFefvybU2MwOp/jSmZwszHFWR0TWZm0azwiAoCOlG5iaFlMZ622Kh0mMsHyehi2Lqvfdt5fcemSMgZKluUO3YTOQTWJ7PhWpPNHsMsZ/ZcKv0gpDZwVS0brh87VSZJy/UxXqDKIYTusxq0+J1O4ZYa5rUug63ThWodi2emm8wHTVJTqy2UWWZJ87V0FU5ivYIheFSx2Y0F2fXaIbFhomiSGiyzC1TWdqmR2fUZ0tRaCyXGsKUJYyMn2KKoLDnUxpj2TiThQSrTZNy1yGli1iUniOMms5XejhBwInVFooskYyJJsap9Q4xRSYRU9BVhabhIEswV+nSNFxSusJnaz0GkqJRdGKtzYVKl0JC58BiI8p7dOmYnphe13q8dscgO0cyPLfQFNRp1ydATPGSusJ0McX5igiMX2tZtE2XmcEUHd+jGxn4hEGIF4SsNcW1c2y1TVxVmCwkmCwkmK8ahCF84eg6huNxutSh0rHxgoAgCDm01OTMeodMXMVwfFK6ytPzdSbySR6JJsd//tQi622LkWyMc+UuqZhKMR3j6HKT9UhrupFXeT1sTvg28W2Nr54q8ZMfeRqA4UyCJ87X+bOfvoeR7MXR9tHlFm/+bw/zzt99gu/dN8Y/+a6dr9ThvuqhKTJv2z+O5fr8208f49Ram2MrLX7m9bNR3hT8ozfv4Idvn+Ddv/8ky42/XZj1Jjbx7QJJgv1TeVxf0Ia6lsvZcofzlR6Hlpt0bU90eIuiU5+KKax3LL5+ukIITOTj6KrUz5Oar/a4d3aAmcEUXculErlxljs2r981xHfvGWHbUJodI2kmC8JFs2t7nC0JR0BZkmgYDq4vLOKfXWhwZFnQLG0vYCAtiqcgCFhrWeQSKgcWGvzvr8/xyUPLJDQRKLx/Ks/usWzfCGP3aFaYIyQ0RjKiEJyvdsklNHaPZTFsj67t8+jZqujCu8KMIp/U2D2S4dRqmw8/MsdzC01cL6Des3lmvtY3ePjy8XW8IKTUsvEDodsxHBHuXszEqHQdPnt4lc8dWaPUNtk9lqVpuHhByMxAintnB7l9uoAfhAQBxBSZSsfm9uk8t0zlGUzrbBsSE8Va1xaunbLEaDZGQhOauZ0jGeHoiaAAHphvMpSOcd+2QTwvwHBdhrIxkOCJuSqWG2A6Hobjs2csw/7JLHOVDo7vU+s5rDSMvuX+0ZUWJ1bbDGViFFI6MUXB8UR24PaRNNuGkgQhHI/cLuXISbRjuXh+SLljR46DUQC746EqwqF1NJfgfKXDybU2DcNFloXpx/GVFjFNptlzePhMBdsT1MqN4GhB7exF01rhNtqLLPmrXZuluslay2J2OMWu0QxHllusNE1W6gZJXWWqkGR2MMVQJkbLdFmomTQNQenbPZJhLLpfH1tp4QUB+aSOrshMFBJYnscjZypcqPaYiSh6ta4jpqxAXJcZipoKhiM28ot1A00WxXmpZdEyPYpJnemBJK/fOcSOkTQJTUGWYLlhcPdMkZmioNxuFFT3bB2gsKEVPVsR8Q8+PH62xtlSB8f1ma/1KCQ1cgmNru3z3EKdzx5Zo9azOVfuUutafP7IGl3H43tvHhMGTCGcLXcoRS6SPdunY3l9mcNzi3XSMRXHDRjLJagbDstNg0JCR1MldFUSuq6YRjElopGOLLf46ukK24bS3LdtkOliAkUSId8Sgj6b0FXSMQVFEfdp1w/43JFVJCTunR0gqStYbsD5qoHh+JxcbwMhZ8tdPvrEAitNs5/Xd2y1jSSJc3+1ZdIyPJqR46/rB+SSGoosmixzlS51w0FVJLYOpdg+lOZ8tcdS3aRlebiRnvjUeoehdIyxnMib28gCHc0lAOhYLsWkRlxXWGuKwisf6UBHs3HapmiG7R7JoijCqXMsJ/Sm+ZTeNyLacOzUFJl0TOXQUpOvnS7TssTUXpUvZoFm4xozgykqXZuzpS6HFpuUOjYrDeEi2rVEwVfqCBOap8/X0FSZwXSM6cEk4/kEz8zXMFwvKoBF8Xtwscm+8SyqLPLz1pomSV1kp56vdFltmWwppgSZNZqQOp6g4G5MAm+bzjOWi6OrMjPFFD98+wQ/cd/MDe9BmwXfJr4t8dxiA9MR9Il/9X038ZHHLvBHj13goz91d5/iASJw/Z2/9wRJTWH7cJr/8AN7+xSATbx8iGsK771vhu0jGd73mhl+8NYJjq20+P1HziNJEv/ye3fzxt3DvPsPnqIcGURsYhOvZrh+yB8+cr7vWtk0PaaLKZYbBglVZutgkrfcNIKEoC7NDKYwHV8Ed0f0S+OSqY3h+JxYbVPvuWiKTMd0RaSDpjCUjvHMfB1Zknjr3jG2j6SpdmyyCY17ZgfYO5bl+/ePMZaPR3oQoUVZafQYysbYM57lxGqHStdmoiBy0wZSMVRFZiClcfNEjqlikiPLLZ650GAkG+OumSI928PzA46ttdg2nOaWqQIHF1v4IXzXnhGmCwlURWY0yr5Kx0RhAsLNLp/UaVke24cyWK7HatPkjbuHKKR0cgmVZExhOBNDkYSWxQ1CbpkqcNdMEdMJmK92WWmKoHdZkrA8YUGvycI449hKi08eXGYu6pAL4wyfs6UuT1+o88RclVxSE9NSREGX0IQm8cRaB1VReM99W3D9gHRMJaHJFJNCz3e23OULR1fJJFSmC2mSmsJXjpe4UO2xZzxHOnLq2z2aYaKQZCyXIKkJjeAT5+t89XSZcscioamR62WMMIRPHlwmGRPGGAlNxvUhl9B4YPsgdcPhqyfLKJLEVDHJ9uEUx1Za0TRTFEGzg2lunsgBwgBnophg50iG8Xycnu0znovTNBwGUzEycZWpYrKvq7tQ7WE5Ptm4MPLQVZk37R6ibTsYrk+9Z6MqIm5g+3CamYE0HctFjvRu33fzGHvHs2wbTpHQFAYzMZK6eH8tS+jsiukYj83VsN2AQnRuH1lu8fDZMvOVHp87us7x1TaaItwgh3MxUjGFm8Zz7J/MMZ5LsNwwyMZV8gmdliVosnFdYaKQYOtQmrbpcGy1xTMX6jw9X2f7cJpbp/KstyxKbZtMQqVluQxnYhxZbrF9OM1AWmepbrJ9OEPHclFkEUPyjXNVglAYpFQ6Ni3To2MLKvBXT5cjYx/RqHjTrhFmh9KcXhcRIV87WWa9bbFrJMNgOs5oNsZwRscLAlE8NYWtf7ljEdcVVEViIp9gKB2PQshlkprQ6smyyHNsGkKHO5iO0XU8FmtdHjtXYyXKKQTEtDYnciyfOi9cOW1PuLGeK3dI6jJj+TgHFxvsHE0DAZOFBLvHsgykdQYzOsWUzvbhNPdvG8B2Ra7d9qE0d28tYHsBB5eaVLt2X3O6ZzzLV0+WOFvqslDtockyHdNjoWZgOWIiH1NEA2tmMMVEIcHusTSWK86zhZqYbq5EcRvbhjJsG06TiYsog44tikXL9VGiKb6uyjywY4DbpvIYrh9p2xKsNI1+XMj+yTy6qqCrEvWew/GVFl3L466ZIg3DIZ/UuWumyJZiksV6j6+fKnHLRI5tQ2lmBpNoskQQSARBSC+idHqB0LEOZmMUEjpd20MixPUDUjGNMAyp9xzapst6R0SgnCmLmI8gDNEUGVWRycVF/INhu0zkE2wbTlNI6aRjQodNKDFf7bF7NMNUIcnR5VbfifjEaptPHtx06dzEqwxhGPLfv3yGg0sNkrqKJMEHv3Saj7zvLm4ay/Yfd3KtzX/+/EluncyTiql86N13oCqbp/y3Ct+zbxRNkfn80XW+dGyd33vkPL/54Bn+5sgqkiTxaz+4jzumC7z7D54SAudNbOJVjpmhFAOZGLODKfaMZVAViTtmipiuz2Pnaqw2DZbqG9O/LqtRwPSGKcdQOt43eym1rcjkwCOf1NkxnGYyn8R0PP7i6SVKHZtjKy3+9IkLIhOLMKLM+eSSGtWuzcyAaI6tNk0ycY2BdBzbiUKFJdFdblvCGMH0fKYKSUKEM6HpeAxndOK6zFLdYLEmsuYsz2elLpwFe45LwxTRD3/1zBKPzdVYbBjYnigWJvLxvtHIo+eqnFxv0zYdDMejmIqx3rb50vEyjhdw7+wgg6k4b9g9TExTsD2f1aZJqWUJimdcoZjU8YOAdFxDU2WR11c32TaS5d6tA8LgoW2BJDFdTFBI6bi+cN+UFQnXDxnNxvnisTUG0jHunClGuiGJpulwYKHOXKXLatNkSzFJx/JAglu3FFiumxxZbjEaBckriowkS9w0nsWwXe6aKXDTaJYvnyjx5eMl0jG137EvtQT9NKbIyDLcMpVnrtxFliGX1KPvR2WtZXOq1GbrYIrv3z/eNwK5d+sAnh/SNj0xeYmmbw9sH2A8LyYdMwMpVFlClmRSuoIiCROdru2TiAkXwGrXpm26ZBNR0Rsi3Fn9gGxcE4W2rDBdSDGUjrFUN7HdgP2TOV6zbYChjHBM9P2QyYLIlJQQxdFCzeDZ+TqSFJKJqdwymScIoW26vHXvKKoqcWhJuBduKSZ47fYhKl0RHXLTaJb5ao8zpS7NnnDRVCQRgbHWtNAUQfndNZolrggDkKMrwqXT8QXls+d4nF7v8NcHVvjNB89waLEpCt10jLlyl5vGsvzE/VvpWC7nq10+d2QVRRZuryPZOJoiU0xrvHnPMD921zRD2TipmIrtCVfUO6YL3LN1gJsncqiyTEJXGcrowtzDDzm4JHLk9k1kuXkiz2t3DrLUMFlsmOiygh+IWIJiWscLQlRZ5tBSk4G0zmheRF7oioSmyqiyxGLN4KnzdUzHJRPXyCc16l2Hk+sd5mtCD5mNq9iex0MnS3z9dJmpQoKe7eL6QiM4ko2hqQrnywamI2i8+YSG68NwJs59swPkExppXWU0it2QJIkAMXXSVJmm4VFIakzkE9yzdQBNkZAliTPrHZqGy2BaJx0T12NSlyl3LWRFwg8gpim8dvsAiiRH+Y8iHzKmKbxh1zB2FEtz23SBgZSIbFluCG3k3vEclutzptTh0bOCBSHLEoeXWsKB1AvZP5VludFjKCXySNuW0JvuGk2jR27EE4Uk37NvlJiqkEsIbammyBxfbTM9kBJmN+PCeGixboo9pCTMl5bqRt9AJZfQaJseJ9ZaLNR6HFluU25bJKJ4lTCA1ZaJ6waUOhYtw8Hzg8gd2KPWsxkvJBjLxYnrKgeXGjx1oU7bcrlntihc5wlZb9ss1A2euVCjboiYmZblUu062J5/5S3nMmzufjfxbYNz5Q7/3xdOAfDRn7qb+7cN4voBu0ezPPhPX8/t0xHdYKXFs/N1bhrL8qN3TjFf6/GR9911maZvE986vPueae6ZLVLr2kwPJPnnHz/MkeUmsizxX9+xn+3Dad7zh0/RMt3nf7JNbOLbFGEY8ubdw9w2nedcpcdQJk6pLTb6ZmSHb/siP6zaE6HWmiohEfLgyRJLdYO1lslK02Q4G2MkG2fvRI7dYyKTqtpzSMdVVEXh5skc24eEy2K5Y3PPTJF33DFFz/E5vNQSwdURbe/miRyG63N0WViGV3si1+/m8Rwj2RjzVYNTa23WWhYzgykkRDPNcn0SuoquCP3bM/N1ghB+6U3b2Tkqsv6OLrfxg5DlhkG959A0HXJxjZ7lsVgXuXhxTSYMhc5ow8795FobXRFREm3TZbVp8uUT65TaJp84sIwfhCR0lYSuMF/rst62Gc7EyCY04bK43qZneWiKwt6JLL4fkE1o3LmlwGQxye7RDOfKPQ4sNrBcj7imMJDSow2ey33bBgnDkJbpoCkyWwdSzAwkGc0l+MLx9f6EIa4pLNVNHjpRIqkrFNM6P3zbJI4nNtRSCEeWmvTsgPF8ktu25JnMJ8jGVdZaJrYnzFQKKZ1mZN5yek1Q6cYLCaYLSYopncNLLSodm2JSZ+dwhoF0jE8cWMLxfTIJlVxC6MGOrbaIqTIpTSUIQ9JxHcPxObLSwvaEScp8rcezCw3W2ya5hMrukTSG43Oh2kWRJZYbBp87us4Xj61j+z7ltonhCIMUPwj5+IElTqy1aPScvtumKOAdErrC7GC6r6dcbhgYTsBEPsntWwqM5xNCh+r4mK44ByfyCRGQrSr4QciZUod0XKPcsUjpwrTDcD0GUjHumx0QjquqzNlSl6W6QcNwkBAmHU+cr5FNaGiyREJTyMaFbvWdd03z0w/MMpFPcPuWPD3bp24IzR/AeCHBbVOFyFlRomcLi/uW6XJwsUlclcX5UUxSTOqM5mKstUzWWxaZmMqbdo/0acVrLYvJYoKYKvP5YyW+eLxEtWuzeyRDQldo9lyOrbb4xtkKfiAiE3quMFoZyyWpdhyycY2dI2lmBkSkR7PnsHssw/fdPC6yAJ2gr8cdySaYr/U4W+oyEFEcp4oJtg2l2DKQEnRi10cGtg1n8EOQJJGtt1g3IYTRXIyuJdwlO6bXn9QLSmYPw/FoWR5JXeTitUwH0/VZb1mcr3RJxVVuGs/QtlwMRwS05xLCTMn1Q+7amicIQ3IbTpOSxOlSm1Lbpt5zGc/HycZV5ipdYprCVD6B4wfcvqUgCqoQlhvCTCkdU2kYDrbro0eusj3Hx3GD/hR9oW4wV+6QiWmkdQ0nMjfSFIljK22KSQ0zmijHVQXDFtPOkUyMetdhvtqj5/jYrk82ofFXB5Y4vNxEkiAdUyCUyCc0YUgTZRRKksR62yahijVn50iGXEJnrWUylhNGWTKC6bFtKM3MUIq7thYJQpgsJCgmY6zUDQ4sNFio9RjLJoCQPWNZghAmCgn8ELYOJim3LQIkerbQ+yV1JWrsJG54D9os+Dbxdx4i8yQkl9DJJTTCECRJ4mypw1t/8xEs12csl8D1A37zwTO848OPc2S5xcefXeLPnlrgI++7+zJN3ya+tbhndoChTJzbt+SpdkUo7J88Pg+Aqsj8z39wG8OZGO/9o6c3i75NvKrxJ0/M8+jpKqbrU24Lt8iW6ZKKqQylYwymYwykhIPdfbNFbp7M85abRunaPqtNi5WmxVA6xmQ+ya7RDMeWW1TaYjo+V+nSs0V8gISYnJiOT7Pn8jdH1zi42EQCsgmVVEwhHVeJaTIJXWE4E2c4EyOuyWiKjKZI2F5k9hGGDKVjOG5A03S4c6bAT9w3QyElKJKpyFnUdH2GMzEOLgqHzmbPYSwbI67IOJ7Y4MeirDhVkRnOxkhHFKaZgRSFpM7usQyDmTi7RrNYnk82qTGSi/P9+8dQokD0fFLD8wOKKXE/UGSZ3aMZEVztiinkQCrGUCbGYEZMF/xQ2LTbnghmPr7Swg9DxnIJtg9n2D6SwQ9CPD+g0nHIJQRtLKEppDSVk+sdql2HgZQoSnVNhCO/de8omYRwWB3M6Jwr96KgaRnbC1jvWIQhaKrE8bUmhu2hyjJ+KLJiAW6bynPf7ABq9DnpmsKhxRauL4qYQ4tNJotJ8kkNy/dZqPc4X+nw2h1D7B7JMjOQ4uGoeDAcUUQhQVJT+cqJdRKawt1bi6w2TU6udRhM6dw6nSef1Og6HlMDKaaiDDmRkSdz7+wAI9k4yw2TC1WDhC6mkY4vnBXXGhZBGCIBlY7FuXIXXZY5vNQUGqZMjK7t8qZdwwykdYyInrt7NMsbdg6hSNDoOaRiCiEiVsOMdJy6ovD4XJXH52q4gZi+tk2PdFzl3m0DAMKYZ6ZI23R54nyVmuFSjPLOxvMJtkdOnDODKUYycSQppNK1GcvH2TaYRtcE7XDfuLDw71keXzlZ4qkLNfIpjZ+8fytBGLJUN/v0QkUSbqjieFzOlrqC2htXObbS5On5GkeWW8Q1mZnBFNm4xv3bBtk6mKJhOKy2LE6vd3huscH5apeuJWjZ4/lEVDj1OLHawvUCZodSzA6lySd17p4t9u+LuiqmZ+PFOFsGkuwcTTNeSPDA9kGRWYfQnU0VkyzWDc6Vu9hewEg2zut2DpPUhRbzK8fLrLYsJgoJbpnKMZTRAYnjq21URRJuwTGFWlesLZPFJIQhI9kYb907QiGh0zE98kmVLQMpmobDqdUOyw0Dxw+odCzkKOh8djDFYt2k0rE5tNjE9oQUJwhFdEw6rpJLamK6mNSFxk6Gr58uU2qZkZ5Z5eZJQYuOqTIJTRSH9WiqFVOEE+xqU8hDRnNxUnGNhZpBQlc4td5hJCv0bpbn85WTZRRZEnrBwOfphRoJXWGxYQhGQkxhohCn3nNYqvfoRREZs5FcKBVTmKt02T6UomG46KqEKklM5UUTLpfQiWkSju+zdzzLvbMFhjIxvnvvKLdM5dkxnOlPqj0/YO9YHj8Mma8bhJI4vzNxlUxMmFadK3UxbJ/hVAzT8WmbLpmIDn/HlgKW53Ngoc75KCvxetgs+Dbxdx7/5K8O8xfPLDGUifFzb9iGLEt4fsD24TS/9Q9uI64ptEyXt//vx/j80TU+/jP3s3Mkw7/99HE+/ON3sGs080q/hU0A77hjig+96/Z+wKvl+jR6wur4d378DopJjfduTvo28SqFpohCLJcU9KjtI2n2T+TIxDW2DaZpmR4rDYMz6x0M2+PBk2WeulDj2GoTVYYfum2MmYEkhZQIpL5QFRsRx/cppDSSURwBwNMX6kBIz3FZaZr0bI9Hz1V45kKN85Ue5ysGnh+S1FQsNxAaoEyMB7YPMpqNk46prLUsaj0HL4TxfAIjul5LLZtyx8YPQrYPp3nT7mFiUYFTNxyevFCn2rU5XeogyxLpuMq24TRLNYNT6x30iLZoub6Ih0hodGyPlK5yYrVNGDlgDqaFSYrn+Xh+SKXjICOJph/03Sr9IKTWtRnKxNg1muGNu4f5e7eOs3ciS8f0+MtnFpkuJgUVLQiZKIjpQUJTKKY0UjGF26byTOSTpOMqEiFfOVGibXoMpEU2niJLNHqOcH4EMjGFfFLj1Lo43oSustIwafQcDi+30FWFrYMpXr9jiJFcgpWGie/DyfUOT8/XaRoOhVSMgXQsMkcJ+IFbxvECoX/ePpymbQotmuF49CyXfeM5snGNTzy7wmPnasRUmZbl8rXTYvMahCGOH3DTWJbxXIJUTGE4G8cPA9qmoNatty0UWSKhily9Utvi4dNltgymMKOivGuLSd72ERG8rsgSXctFVWTiqkIuoaFrMn4ASNC2PG6ZzLN3MoumyMgS5OIaY7kE56s9LlR7kctpjG+crdAyXW4azTI7lCalKyzVDRH+PS/Cv3eOZkjrKhOFBLmEhixJbB1MUjcc/vypRTq2RzKmMF6I4weQ0IRD53gujqoIQ6O4ruD5AU9H5+JcucdXT5ZpW8I907A9DNfn1HqbqUICy/W5eTzH90eaQxGxYbN1KEkuoaOpMrIk4QUB+yZy7BzJUkiKa87zAx4/V2ckE2f7cFq4yUbn/b7xLPvGMuyfzFGMJti7RjNk4xp+KJK7O5ZLUlcYSOt0HY9bp0VMxtGVFvO1HisNk7imcHKtw9dPVYXbb1E4clY7DrYboCsykiQCzocyMSRgOPq+HU9MA79+psxiTRiHVHs2Pcej0rE5tdbhzHoXWYLIDwo/CHC8MKJnwuGlFm1LmKIYjo8fhtwzW2TXSJbbp3MkdJWtg2l2DWc5vd7BjVw9e45HQldYa1mRwUnIlmKKLYMpEpqKIsu8654tjGTjlNsW5Y5Nx3K4UDFIaApLDRPb80nqCos1g9WmyXLDpJDS2D6cppAUWtta18HyfLRIshMEAbtHM8Q1mXOVLgNpnWrXwXQCCOH0egdVltAVmZ+4byvvuXeGpuHgeCID8vhKC8PyScc1CqkYG/pXxw/EtH8wRaXjUO06KLKEhIQkhWSTGrWuzcGFBk/N1Wn1PEazCU6sdXjT7mGycU0YbtV67BhJc2S5Sb3ncL4qjmfvWFY0JBSJs2XhPDpX6dIwHDIJDVkVNNimIaJyiimdAwsN4qpCx/IZSm+6dG7i2xBhGPLcYgOAf/yWHbz9ton+v33q4Ao/8uEnCEPYPpxmpWmSjav85P1b+ewvPYCmSvzcnx3g135oH6/ZPvhKvYVNXIEtAynu3lrkZ16/jT95Yp6f/egBfuIjT0dTCYUPv+cOiild0DuNzaJvE68uhMB4Pokqy/3u9HLTxHI9JgoJBjM6u0cz/NDtE+STOtmEimH79GyfatfB9aBhuJGOJmTLQJLhyCSg0hEUq6QunDO3DqXYPZYlpgpr8X0TOWQkLC+g1nV43c4hvCAkFVPo2h6OH3Ku1OPIchPT9SmmYmwbSpNPasQ1mabpRHlZ0DRdnrpQp2d7aIrMSlNMQWSJSGcCb7tljFxSY6lhEgTQMjxG8yJTKhtREFuGS8twObbaJqEp/Pwbt7FvIo/j+xyPjEdsNyCMNtody6NuOJxYbSEhMqmKSZ2kLlPtOoBEJqGxZSDJuXKXp87XySRUvmvPCG3TY0sxSUJXuGWqwM0TedZaFj1b5NaNZuO0TJftQ2kkSeI124Vr4dlSl47jEldl0nENXZVZa4uMt1ikpZJlmUxMUFtvm86zazSDpsiUWharLYuVpkFcVyLTBaH12TmSYfdImju3FLhQ6xLTZNbbNnvGM0zkE7Qtl1xCI5fQ8YOQxYbJfM3gji0Fdo6KTLRHzlYwHKEfUyRJhI77wh4+CAIcPyAXnUOLdYN8XKeQ1GkYLs8u1GmabpSTp2A4HvvGMrz/NTOEIZxYa/P4uRr5pIYkwe7RDK7nC2dC2+PgYrM/0U3HREzFXLnXf++yLKFIEkt1k6GMTjaukolrDGXiHFlpEdPFeZnUVUayccHACSV8P6RlOMQi3dP+iRyKLHN8tcMbdw7x5puG2T2a5e6ZIqosYfs+6ZjCcsOMigNhjX+u3MXxhHYvQND5tg2n+MADs7xlzwjTxRQxRcH2ApYaJnvGc9w2nY+y2wI+fWiVe2eLPLB9kJgmQs9jmkIxGaOY1JksCupcy3RpmR4JXaZliZxCQqj3HN66dwQkOF8zGMrE+dE7JnGCkExcxfeFqVDX8pir9EjHVIbScSzX5+hqi5WGyd1biwymYqw2TSYLCfaOZyOTJSh1bVxPTHQ7lsuDJ8scW26TjWv88O2T3Dc7yE3jOfIJjZvGRQNAkSRsTxSZuiqTi+uAKCxHIkfLbcPi/DcdUfhvGUyhSKLZUe04jOXEuVntOn2aZcPwKLUtLM9DliUOLTWodh1mBpKkYgrPzte5fbpAMXL93XDLdP2ApC7TscQ6UOs56IrCrtEsiiwiL7YMpBjPJ0jooql/55YiU4UkpbaF64fsn8zRMj0mi2LiO5zWhaOlfzGjsJjUhWZVJtLMCmnPmVKHveM5Tq4JXWAqpjIzICjUphuQS6noisRgWtCiu5ZPqWUznItz37YB7pwpsG04jSpLrDRNJotJpgtJ4rpCJq6S1FUM1+PJC1UqHYdTpTbnKiKHdaqYZOdIhu/dN0YxpbNtKM2dMwXGCwnmKl3imsJ37x0mqQuTqnxC5/R6u/+eC6kY08UE6ZiKH4QUkjr3zRb5gVvGb3gP2iz4NvF3EitNk3/2V4f7obUJXdwA/vKZRf7VJ4/yT75rJ4+eq/LW33yE//GVM0iSxDvumKTadXjfR57hpx7YyjvumHyF38UmroUfvHWcX/vBfRxaaqLKEj/7sQNYrth4ffg9dzCYjvHjm0XfJl5l8PyAZy7UWG6aNE2XhbpBuW1T7Qrt1r2zA+wYyWI6gaAFqorYqEaF14WaoAtuHUrR6HlYToAsSTw9X+f0epvRXJzdI1lmh1JiU9Sy2Dma4Q27hhnKxMgnNXaNZnjHHROkdFm4g2oKbdNlsWZQ6lh93UohJfQpI5k4r9sxyF0zA4xmhQ4lqSvMDCQZzMQ4sNBgrtxFU2RGcyL6QZbA9ULu3zbAVDGB6XrUDaELnComySd13rx7lD3jIsqhmNIYzugMpIWZTRDAcDaO4/nsHsvw3XtGmCommSwkiGsKt0zmCQlJxVS2DaW5Y0uRW6fyuJ5PIaHz4IkSc5UuE4UEQxu5VJIId07FVA4tNnB8H02W2DeRoWEIB8eFWo+n5+ukdJWEpvB9N48xkBaxCLYfUOta2K7Pm3cNoyhQ6zncHLlEThfF5PW1O4bYPZpFVwUt7uhKi6F0jOFMjDCy/B9Ii+/C8UJWmiYzA2nunR3EcX0G03F0ReZcuSPs7RMqQYjQh3UszpQ6rDVNBtMx3rZ/nPfcu4We7aHIEm/aPcLe8QwL1R6yLCHLUO24IMFgOsaJ9TZNQ5j97J/IM55P9M8LRZKYKKbIJoQ+bc+YmNbVeg7DmTh3zhQx3IBy22L3aIZa10aSIK7KIImICMPxOVvukNRVBtMxlhsm984WuWtmgF2jWc6WO8wOpfjuPaNkI1OdXEJjIB1DlqCQ0skkVB4+U6Fne4znEn02T9NwIkOLBHfOFLh1usB0MQWhmPDtG88S12TumC7gByAjMV8z2DGcZnYwzVQxyWA6zhPnaxxdbjE7mEKSoNq1KXcs5ms9Pn5gmcNLgpr5PftGScZU/ubwGkEIWwYSDGdiVLo2tZ5DK9KWyrJEQleIqSJjbr5mRBo6MVHeUkxy80SOmCqzUDeYr/REDInns3MkQzElGjvbhtPENZn5qsFa00JXZQpJnYmCCO0eyydIx8S0U5IkMjGVPeNZmqbTz+WcLCTIJzSeW6jzjXMV5sqCctoxHXaOitdSFdEYENNshYFUjExCZXY4TS6ps1A1KHdsdo1m2T+Ro2N5TBWTJHSZ2Yi+uH0oze3T+f70dMtAkrSust62aZku2bgmNJDFJC1DUJi/frpCPqlyZLkpMui6FsOZGLmETohoMNiuz2g2xnQhSc/xqPcc1lsWa00L2xOZhrdM5rhntsht0wUW6wbLDZOW6fDOO6eQZeG6ueHGuXs0Q1JXScdVzEjft+FmGwLve80Mg5kYj56t8siZCrIk0TQ8xnJx7popcv+2Qeo94YK7fzJPKq70ja/KbcEoWGmY/QiHYjJGKq4ykU/QsUU8iOeHDKZEU+QLR9YJArh9WtA7/+qZJXqOzxt2DXPrdIF0TGM4E2cwHUNRJBqGx2RBOKsOZnR2DAut9mrTZDgTYyAV41ylS1xXMFyPY6ttnplv3PAetFnwbeLvFM6Vuzx8psJkIcmXf+V1lxmt/OkT8/yHz57gt3/sNv7ymUV+8c+e4/2v2cp/+ZH9AFQ6Nj/+B0/xpt3D/KM373il3sImngeZuMY/uHuaP37/3ZgRTexff/IYADFV4Xd+/HZGsptF3yZeXZAliUxCZd94ju++aYR9E1lSMYW37h1lohBnpWlS7do8dKpEz/HpReYDfhDylj0j3L9tkMGUuNGHYYgbBPhBQFJX2D2aZWYwzS3TeRKayoGFOuWuDVGGXEJTuH06jxcElDs2SU1FliQKSWHdv2M4RS6hsW0ozd+/a1o4MspSn8JViPReiiQRU2VcPySlK2wbShGP8vgUSdARh7NxHpur8dSFBoNpvb/ZWqoLStbpUocL1S71nh1lmOmsNC1h066Jza3I40pQ6zq0TI+tg2lWm2aUu6YAEv9/e+cdHsd13ut32u5sb1j03tjAKhZREqneXCQrliNbtiVLitx9bSmyk9yUm+vEubGTOHZ85RbZSVxyI8dFtuUmq/dCSRSb2BtAEB3Y3mfuH2d2CRAAi8SueZ+HD8nFYvfM2dmZ853v+36/eEZkB01TqNzVh0QmQGS2hGrg718f4tldo7REPDSE3Cyo85PJlwjqDuoDOjuGUuwdSTGSzFPldSBLEPE6eGnvGC/vGyPiceDTNVojogRNliVe7R1n70gahyxxcCJrydiLstdqn+gVdygKVV4HLk2hu8ZHKldiSZPw/htJ5tg5mKBoih49SYLuGh89jQGWNQfxOBW6qn2kcyUME1wOkT3VVBkZibDHydo5UUyrNM0wDebU+nitd4KkZeOxrDnE3JoAa7oj+HXRB9Qe9VDl08kVSxQMg6awG49TFZttmsgkvNY7Qe9YBkkCn67icaiosszL+8eZW+sj6tfpqvERcDtoCLiYW+unzq8T9jiYX+cn4NJQZWHw3lHjYdtAkhf2jPLUjmGSVlnh7uGkNUcyWw7GCbsdzKvzoyoSIbeTbNGgJeLmo5d0kCuWWN4awuUQmx+ZfIlcwajMsUOVWdgYED+XJPwuFYcqzOpHkqJcscrrpK3KY5Udl9g6GGfbYIKxZI5MQYhe9NQHWNkaRtcUMIUo0Ut7x5BkoUjr0zUWNAg/x6jXiSJL3LSyiXl1fjKFElGfg3curqe1ykPJEAIgTlUBScLEZHV7hH2jaZa1hLi2p46rFtRyXmuI5a0hQi4H+0bT1PpFlq057MKpyBUVSeHBZvDYtiFS+UIlaJlIF0QpY0GUWOaKBhv7Y7ywe4xNB+LEs6JM2jBhh6VkmS0YKBLk8uJ8dGoKiazwKPS7NFyW52LY48DlUBhO5KgP6uRLYrMCE8u6QGNxs1A/z5cMNFWmPuDC5ZBZ2hwi7HHQNy6C29qAjolJjV+8TtjjQJIkEllhJ+PXNav0mMpr1fidtEc9wrQdExPRk/yTV/tY3zvB4ESOW1e3EPGKgHEgluWhzYPIsphvTRFzdGFnhIl0Aa+uUCiK7LciS3TX+Ng6kODF3aPMr/fx9kX1KLLE1T211AVcKDIErIy4QxPiUYYp/PlURfQmNoXcjCTzODRhsL5vTFhkpK1ztG8iTSpfwukQ/c0r2sKk86VKKacJrNs7RmPQxSOvD6LIWBUViuWtOC5sNzIFDk5kURUJw4SSYRLLivJyRZIRV0ORhZ04SjuMHfDZnFHsGEzwqlXKOdlC4V+f3M0//G4b//fmZVwyp5r2Ki+P3HMxt17QiiJLxDIFbvnuiyxsCPA31/fYXntnAYsaAnz68i4G4zneu1xkY03TxKkq3Pt+EfS9/zvPM5G2LRtszn4M02RFawS/rtI3kSHocmCaIvuCCZigyBJep4bPqbKgwU+1z0mmUGR97wSpXBG/W2PHYAKAkiHk97tqfNQEdXYPC4GGrQfjeHSNFivLsLI1THvUy5ruKE5FZsdgCkmWeOfiepoiouevPujm4ESG3cNJ4pkCAbfw2pMlif1jaV7ZN85wIksqVxS7/NVeMnkDl6aiKjJuq08nWyjRbBlYK7KEIoleN1mSOL8jQmuVt6KiN5TIc3AiS/9EhjXdVdQFXGhKuUdP2COk8kU2HYiRzBYIuh2YpsmGvhimaeJQZeqDOkGPRjYvyl5f64sBkMoX2Xwwjtep4tc1xq2d/31jaXwujYJhsnMkRe9YmmyxxMXdUSECoztEaaVl1v7K/nGKpkF90MXS5iDntYTZ3B8nning1BRGU0LFU5IlljYHaQyJUj9NEab2TSGdZ3aNiNJTp1hMS0BDyE3YrSEhNgKAioBPoWQwEM9yXkuQRY1CAEJVZAbiWfxujRWtITYdiPHs7hFe3j/O1QvqyBeFoM6r+8eZyOTpaQyyrDVIoSgW2Joqc0FHFfNr/WQLBut7J9gxmCCgq5xnmWl7dY1rF9ZRKBn0x7LsHUnh1VVhnxFw8fZFdTSH3ewZTnFwIsP+sTQHYhkCLpFF7ZtIV3r83A6VWLrI7hGhpCnLEoWSgYw4n0BsDixuClIwDHrH07g10ccmMiYSWwfiXNBRxer2CCXDwONQifqcLG4KAjCeyXFgIoOuyQzHc/RNZHhi+zB+XaPO78ShiOyjOE9cvHNRPfVBF01BN/UBnZaIlxq/jt+lcVFXFRd0VqEpMp01PnRNEUFzrZ98Ucj0N4fddNd48VrlqVfOr2NJUxCfrrKiLcKW/lhFUG7LwTiFksF4Os+uoRQGwqtNliHqE2JH6/dPsKF3gsawi0y+SDJXFD2ISDgsT7nWiKey+QIwzyp3PDCeIV8yWNwUwOsUIkYl06Dap1v9jSIj2Rh2s7Itgq4pdNf6mF/npznsoSnixqcrZAtFZIQoiiyJgMNtlU+Op/P0jWd4eucIrREPsXSBiM/B7uEUv9s8iGEYYGW8EpkCe0dTKJLoJeyq8aEpQlEzUygRcjvI5Eoio6lrSCaUTPC5xIa+21JjjVu9qk1hNy5NZX59AF1TUK1M6pKmIH5dZcOBceLZIu1VHnxOFZdT4dqeOhY0BKjyOnEoCrIkEc8WqfY5mUgV0R0KPQ1+xtMFfLrKUztGcGoKA7FsxQs4WxBqs5sOxNk/nqZQMqj2OjkwkcbnVPE6Ramm3y3OxbcvqmNVW5iAS2PUUq316xq1ASeNAReGaTIwkSWVF6JFw8ks63snqPY5cTkURpI5frmhn9UdEebW+nh65wi7R1K0Rtys6Yzi1GQWNgRwaJJQFXULjz9FEhsdYLKgIYjXqVIXcFEfOLI4oR3w2Zx2TNPkS7/dyvbBBNcurOMzV3RP+fmXH9rGvzy6g5Bb45GtgyiyxD1Xz6nspiZzRW77txepC+j80x8uRpbtYO9sQJYlrump43t3rOAvf7GZ+57cxUd/8DKFkoFTVfj6+8+jLuDi/fe9YAd9Nmc/ksSr+8dJ5UsUigY+XeyOv7xvjIF4ls5qLx6Hik9XWdwYYGlTiLaICNqKJSHIocoSrRGPZWwN+0fT7BhMICPRGfWSzolMV73fKRT7XCol0+TlfWOVTE7E56gsIMseUfFsgfaoV5Rn6aKkMZUvYhgmbocqzIDzQhRhRWuYqxbUUhfU2TqQoNrnRFNkljWHaAq76R0TZW1OVSadL1AommiqzLKWEJfOiVIfEGVL57eHKwIVln6FkJwvlPjwmnZURabGJzztkrlSRZL9ivk1uDQFXROlpS0RD5fPryGZK1Hn16kPurhibjWr2sJ01XjxWSVd2wYToteoUGQkmcOtKXRGfVT7dDxO0U82msrRO5piIJ5lbXdUCMeoMtlCiW2DCVwOETwE3YcW4dU+nc6oF6cqsiUggoxCyaTaL7I1XTVe1vdOsG8kXbHEaIt6iPqc1FmLtLm1Pla2hpFliVxBZOAMQ/QiqZJErV8n4nGwYyhJMlvggrYIdQEd0zR5bNsQ8+r8FIoGsiTjVGXq/C6Gkzku6oryzkV1/Pe6Pp7cMYymyJzXEkLXFJL5Ihmrr0uWqCx8W8NuAi5RmqepQsl1PF0g5NaEsXjREH6KBYNbLmhhUUPACnZEaeaq9gi9Y6mKqrYqS5imSdTnrAgLyZKErgkvwK0HEyxoCNASceNxKAwnszy/e4yhRI4HNw6wqDFIm6WQWKbGK7KVe0dSnNca4vy2CC0RN41hnUyxRMjjoCGos3ckRa5YondcBJomphCbyeSZW+PDryu8sHuMfaMpK+CCnvoAAZeG1+rr0jW5oniZK5asPsZxoj6hmrh+/zhDiRyypbA4x7J7qPI6ufuqbkqGKXoMCwYT6QLre0UPZMDt4JI51dQHXSSsfr7xVI7VHRGr79DL4qYgVZYYR8Hq/TOB1oiHiXQBEyGe9PnrelhQ56dvPIPXqVTsMobiuUoANZTMEcvkkQDTFNcSn0uU4MqSRNryKqzyOphX66chqDMUz1EyhK1J75hQvWwMudhwIE62IIJMSZJQZRmnJrOoMcicWi+ZfImGkIulTUH2j6XZNyasWTy6yHy2Rz1WHyF4HAoep0rJgGd2jdA7miaZy9Mfy5AplFBlca74nEKwqSXi4Zev9bN/LM15rWHqrOxiQ1CUfXudwp9520CCiYwQropaZeNep8qOoQTnt0dQFYmJdIEtB+OAKNMWHn/+SmmoJEHI5UCS4OoFtZQMkx2DSX698SAPbR7gF6/1E7VeV5agPqiTK5rUBsV1ZUlTkBqfk9GU2Ei6Yl4NHVEvpgkOVWFps7ArCXuE2I5TlVFkGY9TJWRtppQMIaSTzBV428I6umu8zLWyywvr/RQsC41MwfbhszmDMU0TSRLyuJoy9XQ0DJNYusBrfTEKJYP3rWzhr96xYMpz4tkCt3znBTxOla+/f9m017A585lXF+Ceq7r53vP72T6Q4JP/+Qq5YgmHKnPvzctoCLq4+V9tc3absxuHIqHJEk5VYmFjAIcq845F9ZzfHqE57GHPSEqUJ+ZKDMRz9E5kWN8bo8rrpKc+wLw6H4osEXQ7CHsc1FqldLqm0BB0cUFHFdV+nSqvg/5YllJJCLvsGRYL79Fknq0HE2iyWJyB2FlXZLHDP7/eT23ARckQ5VcjiRwDiawIrKo8+HWV5oibhfV+BuIZDMNkdUeYeXV+QJRCDidy5IqGKI20xhZwaVw2p5qNfTG29Mfx68IQWpaEsqRhmpWFiktTuH5JA6l8kV3DSWKZAjKwsCGABNT6debX+Qm6hW9dPFuiMegmmze4en41YY+DGp+OYcLK1jDbDiYwDJPGkIuQS8OpKVzcXV0JsgzTrPx9XmuIjhov4+kCj20d5r9e6sWrq3icGoWSgc+pEdAd5EsGJlLleqQpol/ulf3jJPMi4JtX5+eCjioW1Pt5+6J6Xh9IoEqQK5bIF4X/WcjtYK6lVik+C5Ww14nXqbGoMSDsLYZTRDxOmiNumsNuol4nQbeD1ioPD248SI1fZ/dwikKxxEt7xtAUhZtXNVWyIiDusaoi43OJOQ97hBBMU9iNU1XYOywCIQmJl/aOs6wlxJImUa5nAgsa/GzoE757bqcomazx6xXRkFxBlOEtbQ4RdB9SCVzSFMQ0hdCPjKjYSeWLlXGplrKoLEnkS2IxWx9w8anLuljWHOLyuTV4nAofWNWM26FOq9oJeBwsbwlX+txCHg1dU0lmSzhUBZ9TfHYl00STZfaPpYl6nQTcDnYNp9jYHydfMgh5nGSLJWTLp61QNHhhzyjreydY3V7F/DqRcRpO5gl7HLgdKqosyqFDbge5QolEtsiHLmjlQxe2sbw1TNCtoSlyxWNzRWuYFa0h3n1eI80RN21VHrprfMyr8/Po1iG2DyWp8essagzQUe2t2CEMxLKk80WWNoks7EA8gyxTUQyt8YtgyzBh/1iaPaMpsoUSpvW+2YLB6wfjvLxvnNcPxnn9oBD+qPI5QDZFkG6dw5IkspMiUDTIGyYXdVUR8jjYfCBG73iGXUNJVFmiIeiivcqDIotxNEfcXLe4jvl1frpqvMyp8SNLIsvt0VXetaSear9e2UCSJYm6gMvKUolsbyJTREIIqyiKhNfpIJEpICMxGM+xcyjJ87tH6Z/I0hzx0BH1cOncajqiXhyqzOYDcTb0TbBvNE0qX0SShMLoi3tGKZmGpQAqlEIDusZEOs+GvhjXLqzj2p46DMOkM+pFliT6xjPiOyFJeHUNn0tjLJVnKJ5DkSWaw27S+RL7R9PkiwZup7jO6ZrKeLpIU0go1Lo1lfqgi9FUnkUNQTIFkfV9Zf8Eb1tYh8uy0HnglQO8sn8cWRLnoCpLPL97lJFUnl1DCWJWSWmhZOJ1qrx+MMmPXtpPyK2xdTDBRZ1R5jf4KRjGEe9B9urY5rTRO5bmPd98jmSuyAdXt07ZwTMMg5vve55Xe8dpDLl45I8v4WOXdOBQD52ysUyBW77zIl5d419vWS7q723OSq6YX8v7VjbTO55hY1+M2//9JYolA4cq839vXkZz2M37vv288AWzsTkLkSWJNksF0qmKkiNFFsp5hlWi6FBlqryib8ShyDRH3BQNky0H4+wdTTEYz7JnNEUqV2QwIST2V1ueVq/0jpPMFemIerm2p47GsIuGgIuV7WE6q334dZV0oUTUp1eyU7qmcNX8WrprfPSNZdg9LN5j72iKBfUBFjUEaYu4GYjn6Krx4VBk9oyk2dQXZyiRwzRMeq0SvXJpYkfUw8FYlvF0geaIh5YqN1sOxuiq9lLt1wFx3Om8KJ9yqgo99WLhJ8uiN+/RrcMVgZp2S4l5bp2PqE/nxy/3EcsKO5egS0WRJUZTOQIuB2PpPPVBnad3jvCNJ3ZiAi6HMN8OuB0Y1iL2D5Y20FrlpiPqweNUqfbpmCZ4HSLIWdgQIJ0v8ujWIXy6So1P54KOiPAALBr4dAWPQ5SjHbBUIRc3Bqn2OSvzGvU5cTtUdg8nK3OPJLGg3s/8etGjJ0lM25XPFUu8sGeM81rDXD4vSm3AScjjYPtggqDHQbXPyePbhhmIZ+m2vMucDpWX9o6RKZR4Zuco+aIxqdJF/O11irmKZ8Xi8aW9YxVrDPH5iYV/e5VYQG85GCeTL6HJMhGvQ5T4jaWRrDF6dQXDNFnfO1H5/clMZApMZAriXLN6P9M5A8XabFBkCcMASRY9ar1jGUqmSdQvAo5MXlhzjKfyFEvTF7LpfJFUTgR32YJB0TCRJRH4hN0a2WJJGHmrCrIlwd8UdrO4McgV86pZ1S6EX8plhoqVpcqXDIJuB+1RD80R4X+4ZyRFR9TDJd3VlWxTa5WHWKaAQxV2KIoso1iB2PreCeGLWCjxxPZhdg8naQq5xSdhmqRyRUtsh4rCa8TroNqnk8kb7LH81OqDLmr9ulUuKXpxFUmyqgCCvGtJA9U+J6lckZFknhuWNrK8NUyrJVQzv95PTUBsDDWF3dy8opl7rprDHyxtosans7k/Tq4o7rOKJDwywx4H8UyR8ZQwgK/26aTyJUasXsaxVJ6nd45Y/YXCfiFXKPHrjQMMJXI8tnWIQsmgq8bHUCLH9sEETWHhh9hR7RXHq8qkrQoCEFYD8+r86JpiefRBulAk6tOJ+pwkc0WCLo3WqIe13VFe3TeOosi0VYnNEqGWK1Hj13E5ZDwOpfJYbcCFQ5FJWwGwx6FZhvJJagM6m/pi/GZTPxsPiE0Nv0tsuER9zkoQfGAiQ7ZgsPlgjEu6q4X6q2nSWeOlMeSidyxDsWRQ7RfeoH+wrJGmkJuDsSzr9o0RSxfYPZJkz0iKl/eN47Z6Jd+xuJ5UvojfJc4/SQLNOo86q71EvQ7qAm4arfOgLqAzEMuytDnIwsYgLREPl82rZlFTkOuXNIjWgCPdg478YxubE49pmqTzRRqCLj68th2PY2qgtnMowYf+fR1hj4Pz2yN84YaFNARdU55TFmgJuTW+/cHz7GDvHOBjl3Twh8ubyBUNLumOIklSpVfn/968lDm1Pm769nMMxLKne6g2NsdNrmhwYELsHCuTsmw7h5JISFy1oBbVKv9ri4jNL7dDpaNKWAD4nBpBt/DsS2aLDMZzVPuc9I4JZb2o10muUBK70k5V9JepCn5d44XdoyiyzMXdUW5Z3TJlXA5VprvGx2XzROarNSKUMouGQbFkcFF3lDk1IrvYHvXQ0+jH7VRY0BBg21CykiVrsfoBx63ya5eVZSoZJqOpAmGPsJ0o+/2FPQ66a3xUeR2MpcVGTskwiWdFj6DXqbHpQFwYYI+nuXxuDa0RNytbQ6iysERwamIOlzaHhNVDpiB6e6Iewh4nzWE3QY8mPLSKBi0RD79Y38+e0SQXdFSxoj1MOid6kJLZAo9vG0JTJZY0Ban266xqC9NW5SFfEibqJcOko9pLW5WX8zsiXD6vhos6q7ios4pCyRCm54exsDHAwsYgJsKcuT3qQVOEAfRIMsdocuomlqbIhDwaS5oCtES8vH4wQalkEHAJUZltAwnimSIXdVZVxE6GE0IhsSnkYkt/vPKZwCGrjGqfE6elHFg0DAZiWUtRU2TlJElCU2Tm1/s5vz0i+rYywhx6aVMI0xQL8+VtYRY2+GmzlC7n1/uRLPXIycQyBVRZJupzsLwlJOwfCsXKZoOmyBhW9k2UsYnvhVMVSqz7xlLsH0vz2y0DhDzT/cWcqoIJpHJF5tf7mV8f4OoFtciShMuhEnI7aA65KwrfsYzoyXx25wid1T6G4zkGYhkG4zniWRGY+nQRjMyzvPJe2jtGyTBZ3Biks9pHwK0hSRL5osGzu0YoWn168WyB3vE02wYTRDxO5tb6kRBB9tsW1pHMFXloyyAPvz5IvmSybzTN8tYwixqCLGkKsqI1RMCtsaU/xng6X9k8CVvlsROZAh6ngqaI4DVfEteSXcNJuqp9LGwM8q6lDWTyRV7cM0b/RAaXQ6G9yiuy+JLE6vYwHl1FdyioioRLU6n2OfE4FMsbU5SO7x9L49JE/6AkSQTcok93SXMQr65S7ddpCbvJFkoEXBp+l8bqjipkWfgA1vh1DsayaIpQWO2u8bFzKMFAPMtIIkdntY8lTUEaQ26xCYKwKmmt8jCn1seG3gl0TaYl7GYwnmEgliXk0Wiz1Id76gPUWoHPY1uHALHZVM48OqyS5Rq/jksTIk7C5N1Brd/JhZ0RPE6xiRN2a2w5GEeVZRY1BioiWUubQ3RGvQR0rdLnWuV1UBfQCbg1NKvXsmxzYZomPl2j1u8SvcuyRLYgDOjLFRCJTJHlLSGu6amtlPzWBVw0RzzUBYQp/NquqPBUdSrommrZOyhoqkxrlTh+0Q8qqhZ8uuiXzVibZ4XSkSM+O+CzOeV895m9/PnPNiHLYpFTvlGUDJM/+fFrXPnlJwnoKv/nhkUzBnK7h5O8+xvP0lrl4Zt2sHdO8YUberhpRRNf/v0OPnP/q1x/7zNs6Y+jKjL/fNMSzmsO8Yffeo4+qx/DxuZsQQJ0K7OnWosCgJ6GAHPrfBUxFk2RGUvlkSSJRY2ir2lOrY/lrWLR7HcJtUhdU3j7onrqQ4d2fyNekWH6/ZZB+ieylfeo8et4nCrJbJHh5MxZ8nl1/orf1WgqJzIxkkQmVyTgLu9AiwV5yTAploQ6ZIsVnJYXPzV+HbdDoWSK/jPDECWb6/aO8ejWQSbSeVRFZq0l1BL2OClaC5VylmginReqgMC+kTSmCb3jGfaOpWkIuQm5RRZiLFmo3D/kSiAh0W9J29dapZu1AWGKXeV1kMoXKRmiv+rZnaOiH1KRaY96WdEaZl6tn1ypxO7hJJ3VPiRJYnFTkDq/jkuTef1gnFf2jTOSzOF1qkS8wmphn2VqPZnagM7KtgjJbIGeej+1AZ3XemMMx7OkcyV0Tcz3ZK7tqeOuK+bws1cP8Mq+Md6+qI5CycTtUEjlSlT7nfQ0+Gm2euGqfE66qr14LVGJkCWSA7CmKyo87oDVHVU0hcTvuB0iQxH1OfFZvmSyJD7DjX0xiiWzMn9tUQ9DiRwuh0J90EV7lZe2iJdYuoBpqQYuaQxOP59q/GiKRCJT5KW9YzSH3UQ8DjTrcyqbxbscCu1WKZ1ijbsp7ObqBbUEXEI8qNtaIE9GkSUu7IjgciiossiOb+6PWYGRKFOuDerMqxO/Wz7OkVSOn75ygAMTGYbiOebUeoXBuyzRHvXSEfXywp4xNvRNEM8ULAEWc9p7NwRdqKpEyQC3pnL1glou7o6SyBZQZHE+mqbJWCrPosZgxW+wxq9zywWt1Pp1FjUF2TMqAlu3prC0JVQZy2Tm1PjIFQ0RMEtiEyWWKbB/LM32wThuTebV/eM8v2eMYskgWyyRLZRQJImxVI6fvtpHfyzLpgNxfrd5gIdfHySeLRDPFSpWD7IkPsuIJfKTL4lgbFlzGI9TBIX7rLLzbLFET0OAkMdRqVS4ZXUr1y6sY16tn5awm/7xTKWftMavM6fWS2PYRaFkMJTIsqYrWqnq8jpVOqtFtk7XVC7qjFITcFVeuyHoZtOBOJv6J/jaYztY2Bjkmp5aLuwSPsuqLJRsX+ubYCJd4IU94+SKQrG2xqeDSeV8b6vysKo9QsmqnKgL6nTX+BiIZ8lYGxJNYTfVfp071rRbVRkio5wvivNAVWR8uuhtrvI60TWFubU+oZ6ayfPUjhF6x4RYT8jlwKer1IdcZIsGB8YzbDwgxKWe3jFCoWjgcohr+tw6P+9a2ojHobJu3xh940LoZcdggmq/k3i2gCrB1v4433lqD5ossbEvxlBCPGfyRs9M2AGfzSlj70iKQsngD5c38udvnzflZ4Zh8sXfbuW/X+7jU5d18rWblxFwa9Ne4+V947z7G89ybU8tX71piZA+tjlnkCSJz10zlz9a08ZjW4eZX+fnxm8+y0ObB1BkiS++exFru6v4w28+x16r7MXG5myhOSwEP8rG6iCU4XIFYRIN0NPg5wPnN9MUclHj15Flifqgi93DKfaOCnN0WYK0pZi5piuKqkis2zdOKid6yLprfdT4nJUFdGuVB5dD4aKuqkowcDi/2zzAzqEk8awIQLprvHTVeNlyMC76S6xFqNsyzU5ki5WgA6iUW185r7ayq63Iwo9uMJalJqBbYi6ib7BkiMDOp6uVPrZy8JbIligZJnNrfNQHdVK5IvvHUmCaPPL6INsH4+gOoQBaRpVF2aBP1yiUTHIFYWsgytTEouy5XaNUeZ0sbw1TMkUPGmApFIreyFimgNuh0hR287ol5jCvzs8V82txOVTG04UpWZgyV8yvIeCaes8aiGX5j2f3cGAig9uhcmFXFTV+nYDbYXn8CRW+ySiyxK7hJD6nytKmECGXRjJXZP+YUA2MeByk8iWe2zUqzpf6AH6XhqrI7BhKoqpyJXAOexyVNojmsJuARyPscdBqZWNXWuV/5bnXLNGS/liG7dYGxLaBBGOpPOl8kZ2WWMVPXj1AviSM2HcNp5jplErmi3idKk1hFw5VRlVEQOdyKpXPyzChUDTon8gQcGmVscqSaPnw6SqjyTyv7J/ZX8zttDZQFFGyqWtCBENVZCtbKFfE3Tqsc8ypKtT4naIP0TBxa6KMV5EkYukCg/EsdQG9ksFM5ooUD+uNUmSJloiHeLpIe9TNu5bVs7EvRt94mkLJZHO/OG+Khsnzu0fZM5Ik7BE9f4os8fT2YR5+fZCBWLZinZAtGBRKJpoiT7GjAlEeO7fWT7VPR5YkIh4nHVEv71rSQNDtYCSZZ/9Ymmt6agm6HSxuDLKsJYQkWxljt0a/Zeb+toV1XD6vhpBbo1g0cVvvJUkSBcPAq2tkCyXiGXEtSWQKIrhVJLy6UL3ttcq/h+K5ymf/wp4xxlN5Ht8+RLpQQlUlS1QnjU/XiHicNIU95IsGgzHhf1je7CgZJq/1TrBrOEXBMBhJ5tg7kqQm4MKnq6zbKyxSanwuOqIe1u0dI18oUT7txN6UVCnjlCVI5cR3+4JOoVLqdiioisye0RQehyLURKt9DCdyPLl9mFzBsHroDoVFfeNphhNZnt81SrZgkLUykuVrTWdUiOqYwFJL7bbK6+TSOdVcOb8WVZbYPZwglRcB+J6RJPtGD21WF0riM2+tcjOv1k88W+AXr/WTKxq0hN3UBHRLTMuD16Hicaq4nSpz6nyYphDyWtgYqATGs13by9gBn80pwTRN7v7Rep7eMYJP14QUufX4d57aw1VfeZLfbDrIg5+6iLuvmjPjazy4oZ8PfucFPnNFN3/2tnm2Guc5zB9fNYe/vm4BCxsC1AddfOb+9Ty0eQBZlvib63t428I6/vBbz1WyIjY2ZwOJXFFIv1d7abSyLftG0/RNpCtZDEmS2DOS5ryWEOe3Ryq/W+3T6Yr6WNwURFNkgm4HuWKJhzYP0DeeoTHkqmTKyhnE8gL61f3jjKXytEQ8lWvv4bRGPFy/pJ7OaHmnXeH53aO4HCrdNb5K8Fjlc3JeS5j2qKeyiAaR0Qi6Hfz01T6yhbLyo8ScWlEOWvakK3umVXmdLGkSHmu5SaWQqizzB8saME0TXVMqwcJlc2roqPZxfnuEg7Esg7HstMxLrmgI+X8J2qs8RDwaJcOsLIQmMgXS+SKjyRyLJvXcle8l8+qEFUbcEosofyaJbIGfrz8AwPntYd65uJ7wDGWGh6MqEm1VXgolk60DcbL5EvmiCGYn0gUWNgWnCJ0cmgMJVZHx6irre2M0hlx88tIuSoawlhiMZyuZ1WLJpH8iS6FoMJrK0xR0z7jw0zWlIpSzczApFojW4lh8VkKWvznipj7ooi3ioVgy2D6YEMGaLON3qThVmbaIG9Msv4c5Y0C2tDlEp9VjKEsSY0nhE9YYFOd9OcNXLnVe1nJI9CVmZdb2W8daDtoOx6EcCh41RWaBFfwqkkS1T2Rd942KjcF+q5zaMEy2DSQpGSbJXKGSiZNlyBZLuDSFD5zfgsehIjH7GuPpHSP0jacrCpiD8Sy9YxlL5VEE8Zoi885F9RRKJgdjmYry6r6xNLUBoUBbVp/VNQXTFEJLK1rDU95r70iKwYQQcKkN6LRG3EIcSZZY0hyiu8bH9UsaGIrnuHRuNb1jaXYPpSoBTNDtYGFjQASvJZNSycShKIS9DhbU+63PX2QOcwVhcVLezIllC/SOZ2gICt/G9qiXBfV+SoaJrh3aXGgIusgUSkQ8ThLZAn6Xhl8X9gUHYxle2jvGUDxDtV9nYWOAvSNpRqxqA1kSJeH3XNWNx6FSKJkUSyaDsQxjKVEm2hjSqfE7KRomLk3m0W3DlU2PkNtBldeJavW/6ZpS+X72jqUZSeWJep1UeZ1ISDy3e5SoT69cf1L5osisShKafCgs0hTZ6reGRY1B3rG4rvJ42OPgsa1DDMaz5Aol+qxe5u4aHyG3EIVpCLlZ3hZhVVu4YvWxtjvKIkusRpElSqYpFE5VmVLJFKJaikTI48CtCZ/Msl1NyTBxKKIE3wBcDoVC0aAx5GJNV3SKxsVMqEf8qY3Nm6RQMnh4yyDXLqzjP+88f0r55Ugyx0e//zKv7B+npyHAf39k9Yy1+sWSwZd+t43/98J+vvrepVw5v+ZUHoLNaeLG8xopGSZ94xlCHo2FjQFSuSKZQok/f/s8dE3hvd9+nu/fsYr51k3LxuZMxeVQ2DmUrIgBlJlT6yORLfBa7wSLm4KMJPOMJHPTeqKaI26awi7LtLiIUxVS5kG3gxq/yGCVqyJ2DSdZ3R6p9C/VBVy4NPH+YY9jxmBlTq0IbsqZOlmW8OsquipXBD9AXI8HYlkaQ+7KY+XHJ9J5+mNZFElifp1Q6msMuZhfL/zffrd5gGxBKCJmCyXi2QKNQRe5ScIlVy2oYSCWQZYkOmu8jCRzGAbsG0thjkJblYdiSQQK8+sPlfqVfVtVS8hmMJGlfyJbsQtQFSFKsbYrSqYgyspURWJB1F8RYJlT62fHUJJ0vsR4+lD2wgT8uoauicWz1zm9+mQmqrxOFjcGWd87QdTn4MkdQmylLeohkStO600v41Bl8kWDBzccRFMkGkNuAm6NxU1B5tT6UGURDAK82jtONl+iMeRGliXm1flm3AyNeEQP0mA8S6ZYqmSRyudZWe0xY9lvrOmOsrk/ZnnqFVjcGGRenZ99o2k29AlbAUWWcDuEEuHh5CyFyFg6T7ZQJOz1oclCrEN8XpIl2iGC9v2jadqiHlG2rGtc21NHPCvet8Y/8yaFplrlvJOyk4okWfPgZ+vBRCX4lSThgddZ7WUgngVTY8dQkmqfk0u6qytzFnBp3L+ulyXWXK/bNzbje7dWuZlX7+PpHSPIksjwgghWc8VD5/OBiQwdUW8l6w3iu9ZW5UHXFAolg1SuiEOVhY+bSyPqm3q8yVyRgVi2solzfsehjSDZEhYxTRF4L24MVvzk2qIe9o2mqA+Kfq+ndwxXNle6re/75KxqsWRatgvuyjFU+3RS2QJP7xzmHQvrGYhlGEnmuGlFI0/uGKmcPz1WprosfJIviN45r1MEX93VPjb1x0jniwzFcxWF1vK51xx2Hypvtr6zXl2lOeymKewmWzQpGbB3JE3Up+PVNdZ0RQFET55fJ5bJY5gmJcMkWxAl0yXDRJHEZtvOISGgpEgSe0dS7B9L8d4VTaTzBkG3Rme1l0T2UIl1jV9nPJVHkWVhYWPtLymy2Mh6btcou4aSSJJUESMChM/lUJILOyM4VZnhRE6U54c9laqBnoaAJVxksrk/hiJLLKgPcO3COl7YLQJZr1OtiNwAjKXytEe9lKwe3IjHwe6RFOe1CLN751ECPjvDZ3NSGUrk+Pdn95LKFacEe7liieu+9jR7R1P8j8u6eODjF84Y7I0mc9zy3Rd5dOsQD3zyQjvYe4uhyBKr2sN0VXt559ee4YfP7+VtX32KZ3aOcs/Vc7jtwlbe96/Ps6Fv4nQP1cbmiBjWIkT0yxxakJfl08vlidU+J1fMm36de3X/OE9sH2ZLf9wqW5PwOFRWtoVxaQov7hmrLKYv7o5Wdu5B9JK5HKK3SZkh+wPw+LYhXtk/XglyFEnivSub0TWF13onKgviYkkoM/5q48EpC9vyMTkVIcARzwqhiZf2jNE7mqatys2cWj/vXFwPQL5kcDCWYcdQkqpJC1xNkXlp7zg7h5K4HSp1AWHAvns4hduh8PrBOFVeIchSFzgUaHidKtctrkeSJKr9Ohv7YvRPZCoLS02WKRoGXqdY2O0bTbO0KURnta8SuJZnJlcsUet3MWj50vl1jUvnVuO07mHHWlwyGM/y0JYBdO1QMOpUFbwOUeq4dSA+4+/VB10sbAhw+bxqkGAgluHBDf2Ypig93Wv1fZVRVYnGkOidLHuKHU45yFatxerkhX757/OaQyy0FqIiCy02ChY3BVneGmLXcJIDE0JIozag0xx243Uq04TXAJyaRI3PyYWdVZV5G0rmKllZl6aSLRgYljXAtsHElIzttoEEmmU4X1YCPRyHFeTXBnQaLNN7IYgk0T+RIZErVDY9HIpQVo16nZzXEsKhyRSKBqoi89CWQQrWhsWGvphQyA2LTOdM/YMgPodxy2xbkoTH5r5R0baycyhZed4r+8fZO5pi93CyEkxcNreaR7cOic0PRPZGVUQwp8rTl+XVPp3bL2yrnO+aIldKDxWr/06SJN6xqN4KwkVpq64pvGNRPU0hN1Gfk2t66rhucT3XL2mg2sr0uyrntMjwqbJEoSRUUkEoqBYMk1hG9PIGXBq7h1O8sm9C9BpbY3x4yyCv9U7w5I5hEtkCXl3FoSq4HCpOVaExLL7/mXyJ7Va/2eTv0cYDMZ7YPix8OQFZtjKTDUGe3jHC3BofndUeFlmWNk7LH7LM6vZIJWiWZSrllz0NAVa0hfHpGul80fIwFZ6BXqfKj9cdYCSZRZIkumq8Uzax+sbTDCdzRH1OodA7qUf39f44uYLYHHGoMu3RQyrzUZ+TlogHVZHZOZxkKJljIJZFUyWq/c5Kb3FPg1ADNUxx3sbSopKg3It36dxqOqp9XDa3BlkWlhklw6Cj2kt90EU8U6xs1AFHbXGyAz6bk8ILu0d54NUDNARd3P+R1ZX+lGLJ4OkdI/zLIzv4jztW8sKfXc5nruyecUfyuV2jvONrTxN0azzwiQunlA/ZvHW4ZE41l86t4ZOXdfD6QJJbV7fwke+v457/fo0PnN/Cpy7r5P3/+gLr9s68E2vz1uMrX/kKXV1ddHR08LWvfe24n/fggw+yZMkSVFXlBz/4wZTfSSaT3HLLLXR3dzN37ly+9a1vHdOYCoZJpiDKDSdf7vpjmSklermiMeMCtzags6wlRFeNEOhY1BhEkSV++Vq/JRvvpbweSeSKjE7yrdzSH2dLf5yWiGfG3miAlW1h5k/KQiiyxGu9MfwubUpJZ3nx7lCkKQuMcqnoeCpP/4QIlDRFZjxVYDQtdsmXNAUJe8Tz/LrGwoZgRTJ9Mo0hNxGvg4FYlpIhFjI+XQg7rGqPcH57BK+uTlmcAVOyorIkPNXE4lGoVTYEXTyzc4QDExlWtIanbTKW70PZgkHE66QzKhZTqVyRn68/UBEcOTz7OhtOVWZenfBb02SZKq9TqGVqCrF0YVqvVhlNkZlb5xdKlKYY1zU9tZXAsa3Kw2KrLEwEsxKtVV4+dEErpSMIN8QzQqTDo6lErM9hcpZFtso8y1R5ncyv89MR9fDyvnFRjhz10F7lpTUijOPT+dKMQaZDVQhZfpHLmkNWiV62kr3y6SrJXBHTpCI2VD7HssUSu0eS9I6lK7YfM9EQclliPM5K2WeV18GKNmFgH/E6KwHNwViGvaMpfrtpQAjBVPtoj3rw68JoW7Yy5/miwXVL6nE7VF7dP86W/jiLZxCleXzbEEOJHBfPEVmm8XSe4UQOv65VfPMArl/SgCJLbDwQq5zn6XyJqKWaGvU78ThVPA7VUiudfm4lsoVp4j5lfLpWybDuGUkRywift/5YhkLRIF8yWN4axjBMRpO5yhgiXifX9tRVjq3s7SdJEm1VHuqs1wy6xff/mgW1bB9MEvXr/OHyJvaPpxlJHuplbQi50BSZgEvDMKHGp+Oz/DYT2QLP7hrB61RRZaHOappM2fgq/7vs7adIEhPpPPvGUrRZ9ikuh8r1Sxpwaco0gaR0oYiMVNlQK5fjBt3CO1G3vv/LW0JU+0Xwu7AxyFAiR8l6LWG0PnUzLlcwOK9FWNu4HYe+r1VeJ7Kl7NpT75+iKaBYQbMsSaztiqJZmVldVaj26ZVrpfDuE1leRZJIWRt25bnQFBHMK7JQht0/lqa9ylOpSBhP50hbfduAXdJpc3oolMxp/kJD8Syf/M9XSOVLrGwL0xh0o8xglJ4rlvjy77fzvWf38SfXzOHWC1qP+QZrc+7ytp46fvLyAX698SB//wcLeXTbMPmiwW0XtuFQJG797ovcd+sKVk8qd7F567Ft2za+8Y1v8Oqrr2KaJsuWLeNtb3sbHR0dx/y87u5ufvCDH/ClL31p2uvffffd9PT08L3vfQ/TNBkeHj6mccmSyGSUMwJlOqJeRpM5NvbFRJ9NtljpbZlMXUAo3KnWoqSscNcScRN0OUQJlBVAPLdrlESmyHyrl6i1yo1hisCvIeiaMegrL2bKC0KHInaty/1FsiWbX16Q+vSpr1HO9tX4dfZYfVPDiRxdNV7ylnz9z9cfYFVbhNqATt7q3aqydq0nk8oV8ekaoykhmT+31scr+yd4ZucoS5uDSNZt44j3BQlKVnmXbAUzmiL60DL5Er1jaeoCeqUU9NDnJDJhXl2tzJPHqXJhZ9WhrMoxpviCbgdBt4MXdo9SF3BxIJYhkS0S8ojM1kz9e5N5bOsQ4+k8PqfoJysf7+SxdES95AolUtkC2wbjlb62mbhucT2/3jSA363RXj11A3WmQ9oxKDJVJUMs0NujYrPh9YEEQbfG+e0RHrWk8Q+nVDLZ0DdhnbMymiJ69sZT4tz26Sq5YolcqURXtThHysktl5WZSmQLvG1h3az9+k5VqfTLlZEkCb+u4dM1WiOeSsC3tjtKrmDw+PYhXu2dIGCJJ5VVGUEE1slcgf96cT+r2iMV4Y+ZguiVbWECLq2y6XHZXJGVT+aKjKZyNEcOCRp1WOqfZcpqnSDK9Mq2Gk5VqfThTiZTKNE3nmFxU3Daz1wOpVJOubk/xtxa0V+36UCMeKbAhr4JvE7RS/f0zhF0TeHqBbXA1ABBlkX2XlyfDp3jPQ0B3A6F320e4JI51XidKlU+IRpTLCUqFQHlktX5iL/X75+wjM7FdWlFa1gEQbIQszFMc8rnWr52XTa3mm0DCQwzhkOVaQi4qA262HowXgmE3reyedpn8lpvDCRwqhLZvFS5RhyaJ5mJdIFc0eCCjgiPvD5kZYZ1rlkgevNclrhLGckKgoUNTnZK//PcOj/ZomEpElM5VqAi/gRiE+PCzioumVM97Txeb1lQjCbzdFV7SVnXXtUqT3aoMrFMged3j3LZ3Bo0WaZQMgm6xcGZlil9tXUulTeEZsPO8NmcMEzT5K771/PK/nEu6qrifSubKz97aMsAa770GCPJPD/6yGr+1zsXTEnHl9k2kOCGe5/lqe0j/OKTF/KhC9vsYM8GgGq/zo8+spoLO6v454d38L4VTQTdDr715C6e3DHCpy7r4o7/eInHt828ALF5a/Czn/2Mm266Ca/Xi8/n48Ybb+SBBx44rud1d3fT09ODfFh5VSKR4MEHH+Tuu+8GxIKgurr6mMfm0g4ZdpdJ54vkigYRyw8t6nNy1fzaab+7oW+CX288SN94ZsrjPfUBvLrKK/vHK2VYC+r9LGsOVp7jdqgMxLIkc0UU5cjXU0UWC2ZZFsIqO4eSbDoQs6TPRbkcMEUhE6iU43XWiOyP16kSdGuc1xJidUcEr1OjrcpTkcc3TJPRZJb+iQx+19TAJ1c0iKULFe+sjQditFd5qPY72T6YmJINmI3yc8xJpWN7R1NU+3U6oh56x9IzLuRFwGdUygXLVHmdqIpVMnaMt6ShRJafrz/AloNxdIcoQ8sbQrQl7HFwcCJzxN+/qKuKNV1VtEU9PG/19QDsGkoyZmVwO6o9vGNxPfMaAvRPZKcphU6mYno+Q2ZlJqGXiNdBfyxDfyzLpXOr2dgX45HXB1neEmJZc0iUs82waQti0VoomaIfi0M9gvGsOEd1TdgpxDNFJtJ5S2VRvJYkHdpYGEnmKuV5x4MiSVMsDnRNwWMphA7Fs/h1DU2RK/6RYg7EuedyqDQEXUiSOE+3HpwuDpYrGGTzhzYqXto7xq7h5BSFyDKZfIlNB2KV7+dkFtT7ubqnlmqfE12TZ/x+LmkKsqItNO3xw7l+SQMep1DBXd4SpqchwCXd1RRLJk5V4folDZVg73BEhk98V5pCbqo8h4IbEXgUK5/15n5RLu2wvg8gNiee3TVS+Z3zO8LMqfWRyheRJKE03BLxoMoyJaO8EXPo/cvXv1S+SK5YQpaEGIuBCIzKpZpwKJs6mUvnRlndEaEp5EZ3KFPkdlojHubXBUjlReA2khDnVKZQEv6Wkzaxyn2BUM7UmSRyReJWmWqZjQdiNIVdzKvzkysYU/rngm5HZf27YzjJ3pF0Rf14MhJgGHD5vGqCbkdlzOXkpUMVGdPL59XgUGXqgjq942kkSSLk1vDpKq1Vh87fwzc/DscO+GxOCIWSKAW4ekENrRHPlJ89vWOEu+5fT3PEzX/euapS3jmZbKHEP/xuK9f936dZ2x3lZ5+4gK5Zaudt3rq4HAr33bKcdy1t4IPffZHP/fg13ruimbDHwVce2c6ario++v2X+cnLfad7qDanib6+Ppqamir/b25upq9v+vlwrM+bzO7du6mpqeGTn/wky5Yt4/rrr2fv3r3HNC7FUl48vEVnJJFnNJmvlGUpsjTjZlh90MVlc6unCWT8ckM/O4eSU3qNLp1TTU1gqrKhx6nQbZWDHglVlkhYZUIv7xvD61St3pZD2cl3LqqvmAdPPj5NkfE4VS6ZE+XyeTX4dGEXUOV1UuN3sqgxWLn+65rC4qYQg/HsNPPxVe1hIl4Ha7ujLLRKzvwujeawm6XNoUrAcqTA68KOKqq8TkqGWdk0XN4apsryzLugs2rGnhdZEvej2cqjRJnVsUV8uqYwp9aHpsi8fjBBS9hNlVuI9ohsx5Ffp1Ay6B3L0Bx2c2FnVeXxXNGojM+pKuiaEDr58Nr2Kc+bdmzW+01+3/I/Zzokn67hcaqYpsmDG/rxu1RqAzr1QVflc+yu9RGaIVMpyurAoKJ1gWllXMvv53YqxLMFCoZJc9g9LYBPZIsVW4jjRZKYph462fS9NqDztoV1UzLVlfJES+REkkSG6+2L6qa9/v6xdKUED0RWOpkt4naoXNQ19TMYSebYNZwkXzIOfxk6q30sbgyiWoqQ6gznREvEM6tS6eEkc0UkoGgYwq8vW6j0jA3EskykZ55LWaKSDW8Ku6dUATis0uTBhCjVLpfoDicPCRs1hlxEJ2XA3A7hC5k+LPgtX/98ujrl++fTNa5bXM/r/fFKRtKlKewfSwvFUIlKmea6feO8dFgLR65o4HGoLG0O4VTlKYmCxU1Bqv26JbyksOFAjN0jSaq8Dq5eMLsuhCxR8YJsiXgqVRUgNup+ub6fvvE0+dL060XQrSFJEstbQtQFdA5aZe6TUWSJ8XS+IqRTF9A5vz1Cwfp/OcAuGSapnAhWy16aPl0jky8Rn5RZPBp2wGfzptkzkuLKLz9BJl/imp66igLcwViGK7/8BHd+bx1/du08HvrMWmoD09W8ntoxzNVfeZKnd4zwk49dwJ9eO9f217OZFVmWuPvKbu69eSlPWH5Gd185h/s/vJrxVIH/ff0C/tfPN/GV32/HPIoRqc3ZyerVq2ltbZ3255577gGmlvod6Rw41ueVKRQKrF+/nuuvv55XXnmFd77zndx+++0zPvfee+9l/vz5lT9GNlUx/Z5Mc8RNlc/Blv6ZxTbKlGXHD18Pzq31UxfQp4gYPLd7lD2H+VTWBVzsHZ15p3kybofCVZY4Vme1jxq/XtnJrwh8WMHrZNL5IoWSQSJbZN9hfVdRnxPThJ+vP1ARQjEMk+2DCZRJmZ0yE6kCWatEVLNMjhVJeAXGMoXKIvNIgZcsT13EgljIS4iy1dl8PCVJIlsszZq50hR5xuBoJvy6xtxaPz5dtYyavaiKjITo7zs823s4u4ZT1Ph1frXx4JQWibXdhwzVy0yk8zyzc+QIRgICpyV4UUZVZNZ2RWe853ZWe7lzTTtz63yUDGFcvaA+MOV7E88UZjynyv2AhmlW5qvK66QlItYAEhJep0o8U8ClKRX7hMk0hd1c3VM7ZaF9rNQFdGoPm6Nypsk/Sxa0PM7y0XVWe5Fg2ncJRFnt5M2XS+ZUz1hyCeI4rl/ScMTsK4BTm7mH73hQZZmCYfD0zpGKt2bZkuKFPaO8sGfmXvdDPXwzjEtR2NA7ccjawgRNFZs75XOhq8Y3bZM+5HZUgs3J4wORjTpcLViSJFa1R+iq8XFNTx3ntYRoq/IQtgzey2Nzz7Ah9syOER5+fbBSaXC4CflQPEs8W0BXFWFOXzCYSBcqHqCzzYlkBX1jqRyx9KHzXJVlSqZQEc8VjWkKmY0hd0VECmnmDRVFlhhJ5iqZfkmSKv6Q5f+bprjuFa3rWLnkfv9Ymky+RPI4Aj67h8/mDVOW1W6NuLn3/cum7Er/5wv7+Mufb8brVPl/Hz6fJTNcCEeSOf72wS08/PoQ91zVzQdXt77pi53NW4dreupY0hTiwQ39/PUvN/GZK7r50UdXA0Id9qsP7+Dl/eN859blOOwNhHOK5557btafffGLX2T//v2V//f19dHY2DjteU1NTcf0vMN/JxwOc+211wJw8803V4LMw/nEJz7BJz7xicr/u+fOA+DwOCKVK1IomtOk2A9n04EYu4aTXDm/Zop4QHvUQzpf4vFtQ9QHXeiawlXza6ftOPdPZBhJ5Jhbe+TKCUmSKorKAZfGK/vH8TjUKf17M9EQFAbbL+4Zq2RxJqNrCh1R75RFb6FkEvI4KuVcZbYMxNk9fGiRncgWCXudzKn10TcuPAsnl/3NxHO7RhlM5Kjy6VOC5JDHga4pbO6P0TpDIFEOEmfP8MnHnOEbSeZ4ZudIRSJeVURvkSJLtEe9U5SrZ2JRQ8DyN9TQjyLIICFERxLZ4qzCPABXzq+dNm8zKWSX8TjVyvm2byTFur3jvG3hoYzXSDI34+cNIqNQ3khRZImGkIuI18lIMo8iS+iqIoROXGrFu/FwxlOFN7Qu2DaQmDGD2lblmX28h0V81T4dv0tj20DiqEHns7tGqPI6Z1T1zORLbOibYGlz6IjCGo0h16w+mcdK2ZPwirk1eHWVX208WOkvu35Jw6y/d6TSXqcmo6mHvO0G41k6q71MpPJHzLKv7Y5Oe0yRJWvzKUVL2DOtmmEslWfHYIKQx0F3jejdVWXJ6n8Wz1nVFpmiEAxYCpYmmiIR9TqnBWDlLJpTk1naHGI0VWDfaIoVreFZv4eyLDGWyqMpslWdcOh5iizRN55B1xSawu6jCqbM5OnYHvXQP5GZ9v7FSbuCsiwqKmRZWN2Ug90lTUF6LT/HY8XO8Nm8Ye57ajf//PvtSJJUqR1OZAu8tHeMv/nlFtZ0VbHuzy+fFuzliwb3PbWby/7xcTKFEr+/ey0furDNDvZsjpvagM4dF7Vx5bxavv7YLp7YLgQ0/uiidj68tp1ndo6w4gsP8+Ke0aO8ks25wg033MCPfvQjUqkUiUSCH//4x9xwww1v+HmTqampoaenh3Xr1gHw+9//ngULFhzTuMobzvJhagKxjFDgO1rA1xR2c/m8qcEewCOvD3FgPMOcWl9lF3k0latYNJTxOFUWNQWOGmRMZkt/HIci0xH1WBm+2a/RkiRR7dOZLVFaFpcov78sS2IHP+KZYrwOEPU6aAkf6k25Yl4NAZfIli2oD4gF7bzqinDJTMiS8CYrWmp5ZeLZAn3jaZYfZm5dpjy+2RZw6nGUdLo0hfl1YsyNIVdFjEGalK04EuWApT7ompZRPZyyJ93hYhWH80bus+XfaYl4pi3im0Lu2csNpUM2IOVSRaelVChLYsyFkkHI7Zw1GOlp8L8hn9W2qGfG4OulPWPos2wA6poyLbPbEHQR9R1ZXAdEL9ZMgisAE5k8A/EsJkeuInCqylGzgEejfI5lCqVDwiHW3B+YyDCUmF5aCFNVMg9H1xTevrCu8jnPq/Nzfnuk0tN6vKxsCwsD+BkuFtsGEgTcWsWXL1Mo4bdM0cuRuEOVp4lGlX1JJUmasVxbtczLdU0h4nXidSpIkjRrJh/EhtfSphBLm4OVHt4yKavsvTnkJl80jlqVNtM0abLw2zz8mlw47DzKWL6KLodSEWi5Yanox5ypL3Q27AyfzXHz1I5hVrSG+aM17VNO4nimwCX/+Djfv30l/3LzsmmeeaZp8vDrQ/zdr19HlSW+dvMyLp5hB8jG5niQJIl3n9fI0uYgn75/Pb/eeJBPXdbJ566Zy/tXNfPef32ee/77NX74R6solMwjlnDYnP10d3fzkY98hMWLF2OaJp/5zGdob28H4Jvf/Cb9/f18/vOfP+LzHnnkEW699VbGx8f5xS9+wZ/+6Z+yfft23G433/jGN7jjjjtIpVIEg0Huu+++YxpX2dtMO0yUoT7oIlc02DaQmOKpdDhepzpN+RjgkjlRSoZJ73i6sujYMZRkTo1vyqIo4NJ4cU8C76SMzdForXJXeuCUwyT7Z6Orxjtjv0osXeDx7UOs7ohUFo6vH4zj0dVpc2KYTFkaz9T3fbRjWNkW5vndJoWSOW2xlcqX2D+anqKkWKYh5GI8nZ814HNpyrTxzobHqdJV4yNXLGEYoifn/LYIWwfis/ohvlHKpXIno4q9PFZNkaf1gDaEXLNmGWSJSlBe8WlU5YqScnmxfaQg9GhKprMxt3bmIDFfMhhMZGfMgnqdKvPq/ByMHTp/d4+kyBZKnNdy5Pc7vG9vMnUB1xGzaycSVRalwuPpPBkra1rOoK/bOzZFpXMy5dNxNqXH/365l+WtoYoiKAhj9NmC5yOxfTBBe9Qz43dYksQxOC1PvSVNwUoZ9ZEuP3tGU5imOWV8kykUzSkBcFl590jXNGEjMbN36eLGIKYpKhT2jKSmZP+Olf1jafIlY1qJauGwuv8X9ozSXeObsikoSRJz645vI8QO+GyOC8Mw+faTu3E7FM5rETukj28bYiCW5VcbD3L9knoWNARYcNiXbnN/jL/79ets6Y9z91VzeN+KpqPuWNrYHA/tUS//decqPv/L17n8n57gf1zeyccu7uTRP76E//WLzbzja8+Qzhe5pqeOu6/sfkN9ITZnB3fddRd33XXXtMc/+tGPHtPzLr/88lkFXObPn3/EktLZkBBB1+E74qlcEdM0qfEfOcO3bu8YA/HstIWjrilk8iW2DSRor/LiUGUunTNdOTSeLXAwlpmxvH423A6VF3aPEvU5RcB3DDFK0DXzAl13yMyp9U3JYJgmNIfd03a4S4Y5q+/YsVIuby0cluHz6xotYTcD8ZkzHQ1BF5sOxGYtoVzcGDzmHr7RZI6nd45w1fzaSula2OOoeIWdSByqTEfUi+8oojxvhEPqmdN/JkzAZ/69RY1B5tb42DIQF5mnAlOysuWgeiahkpPJbJnhTL7EtsEEjaFDvXlvRCH0cGKZAq/uH+eSGb6XJxpZFkqX8+r8SJLIopc5YknnpAzsTATdDvyHZdXOb39jFkjFksnm/jgLG6ZXHMiSxOb+GIosrGfKvaqSdGQbFtVS1JyN2oDOckWsWcsBXPAo2dTyJtXixuC08u+AW+PiOdVk8iVq/PpRM3wziWUpskTE45y2oXV4/2HZ8uPNYgd8NsfE3pEUP1rXy2evnsP3bl+JJElsHYjzpd9u44XdozhUmfNawtx1ZfeU39s6EOerD+/g0a1DfPD8Fr7+/vPedMmCjc1seJwaf//uhQwlsvzHs/t4YvsIX3z3Iv7uhoX01Af437/cTO9Ymqu/8iQfu7hj2vlqY3OykCSYX+eftsBJ5YukciXao0fOZPQ0BGbdvdY12Vrgzf77TlVmZVv4qL0mk+kdS1MombRGPOweSR1TVmookZ0xY+NUlWlZl/n1fl7cM8bChsCUXp6uai/Ds5SeHQ+TDZCnjjE3631I15RjWhgfCx6nyqLG4NSsySThmxPNbOfHm0WZVIp6PPicKnnLY3GymXSZ8rl4Kts5rl5QO2tZsySJHr/JpaB+l0a+OHN/4bGSyhXf9AbGsVLOmprm9AC9dyyNJAlBkcMpfwSH976VuWROlOqjlJ0fK/Pr/Ty4oZ+5tb5pn0V5zIdvAtQFXISO0Ju6tjtK6QgBn8MyXgemKSXPhu6wlHCP4G/ncigzqipPZrKq7WQKJYPR1HTP1eWt4Sl9fKlckYlMgZFEblZhoGPBDvhsjohhNTd7LQldw4SBeJYvP7SdBzf084fLm3A7FG5Z3conLu2s3MR2DCb4yiM7eHjLIDetaOKJz156XM2lNjZvFEmS+LfbVpLMFfnED1/hyi8/wWevnsPtF7Uxp9bHx37wMqvbw5Wdzx+91Mua7irqZlCQtbE5kcxkNeN2qByMTdDT4D/iglqRhU/WTBRKJtlC6Yg9bQ5FZudQkrDHccwqyLUBIWVumCZOVT6mYFGIeEz3hEpkCzy6dYgLOqoqpUn7RlPkiqVpC/54pjilrO6NMpt9Q8ijHVcv4xtF1xSaw+4pn6t8FLGZM5FykOY6zjnbeCBGd0mc8+Us4eRz1GmZxJ/K+TjS565rCtU+Jwdjmcr9YG3Xm287qQ+eupLOoNsx63tlCqVZM8vl78ps14ZlzaEZH38jDMazU9RzJ1N+5PBr2dEqco5mNzOZ8rHGMgUiRxDJcapK5c+bIV80Zsxi+13ajONuOMx6Z+tAAo9Toe5NrqHtmjqbI/LnD2zk+8/vo8rr5NNXdPGVh7dz+T89Tr5U4ks3LuJv3tXDQ3ddzKcu70KWJXYOJfkf/+9V3v61pwm6NB675xI+f32PHezZnHK8TpW/ePs8/uSaufxq40F2D6VY1hzk159eg2GKc/uVfeM8uWOYS/7hcf73LzfP2tBuY3OycGsKq9oiR82e7BxKzio+ZJgme0ZS03o/DkeZpR9lNjRF5rW+CQ7GsjSGXMe06MvkjWmCMSAW0wvq/VMyax6nyvw6/7RAciCeqYgivBlmy0xV+/Rp5Wkng5Fkjgc39E/JEAm1wbMr4Cubdh9PdhjgqgW1lQVtWbBEnSHDd6pLOmcjVyzxxPbhKcbpR1OnPRaGEzke2zb0Zof3pumu8dFZPXMPe/k7cqRs1omivHE107yWx6EeY5/sG0GRJTwOdcas22QS2QK5YmnWrOexMq/OP+N7VXmdXD7v6OWa57WEmFvrrwi2vFHsgM9mGoZh8sJusbC446I2rl1Yy2u9E4Dot7j35mX0jmX4ztN7KJaMStPq3fev523/8hRuh8Ijd1/MF25YOM0k2MbmVNJV4+POte187/aVvO++5/nqwzv4ztN7+I/bVvK+lc3cfN/zdES93P+R8+kdS3PDvc/OKtltY3MykGXpiDL6ZXoaArP2cjgUmZ6GwBGDOUmSuKCj6rh6pxNZ4bHWZGWpjqUM8fJ51TOKQmiKTGe1b0rQUOV1zrjD7ndpM2ZDj5dyIHG64gmfrnJeS2hKGaOqyGdMgHM8/Hz9AZLHGYTrmkw6X0KSpMp11TFDD9+ZkvEst061n+D+bp+u0niGr4WOVtJ5IvHpswda5Syydqx1l28ASZK4Yn7NUbP85Z7ANzsnYY/juDdLJpPKFdk+mGBjX+xNjcMO+GymcWAiw1/9fDPJbIHOah+b++P840PbACE6cNf965lf7+f+D5/Py/vG+fD31nH1Pz+JIks8fNfF/P27F9EUnl4jbmNzugi6Hfzm02t436pmumt8vNo7QXuVhx/ecT6/2zzA5368gU9c2skvP3URiizx1Yd38OWHtp2yvgsbmzeDLEt0RL0nvC/M61S5oKNqSj/J0dA1ZcaFVCZf4ufrDzCanN6zcjgnKvt2qKTz9AQUDkUm6nNOyTAGXNqM/mRnOqvbI8dVNgdi8Z7OFyvehjA121rOnp0pAV95aPvH0if0dXVNOSEbGKeCN1u+eCz4dY3ls/jfza8Xpe0nM8N3rARdGvPq/KddYPBgLEMiW6Qh9OY2DewePpsK9z62k+awm7cvrOMTl3bwrq8/yz/cuIhLuqNcbNWx945n+OvrFiBJ8J5vPce+0TQ3r2zmf123YFrdsY3NmURZ7SuTL7Fu7ygPrD9ILJPn7iu7OTiR4X3/+jw3r2zh7qu6ubAzwj/8bhv//uxePry2ndsubDtq+YeNzbmGJEm8un+cnoZA5fvzRnGoMosbg8ck2uV2KITeoBz/ZBT59AZ8I8k8z+4aqRgnlzkV/YMnmjdSTuYsey5Ks/efOhT5jAn4yufJwVh2mirjuU758zkVGT6Y3qdWZiiRxTTNMyLgk2VpRi/HU01n9YkZg72CeYtTMky29MdZ2Bigp8HP9oEk13z1SRLZIh+/tJMF9QF6xzL8+QMb+dNr55LJF/nWE7twOxRuu7CNG89rtBfCNmcVN69qBuAD57dywd8/yhd/s42agJO/uX4BP1rXx6X/+DifvXoO//lHq3h+zxhfe3QH7z6vEVWRMAyOqshlY3MukZvBGPiNoMjSMS+iq/36m+5XgUN9QEczIz9ZBN0aq9sjJ0WR82ygrE4qwayl8gGXdsy+kCebcsB3NIP0cxG/ruFxqKf9XE1khaXEkQzR32rkiiU29MVwO5RpYljHw5nxLbM55ZimMNPdNpDgrvtf5dNXdHPvYzsZT+f5xKWd3LSiCaeq8OuNB/nsj1+jPuDiD77+DMuaw/zdDQu5bG71ab8w2Ni8GTxOlZ99/ALqAjp//9ut/M+fbeKCjiruXNPGVx/ewX88u5e/ePt8/uvDqwH4yct9/P1vt/LxSzp438rms3KX3sbmeLlyfs0R1T+PlXzR4DebDnJhZxVVR1DGO5Eo8lTT71ONIkn4ToE4zJmKU1VY1BhElSVetXQADmfVG/RyOxlUljRvvXgPl0Phivknxu/tzdAW8ZAtlo7bAuRcJpMvkcgW3nS20Q743qJ8+Psv86HVLVzYFeXz1/fwmfvX8/FLOnivtZA1TZMv/mYr335qNxLCQPUr713ypnYXbGzONNqjQrHsQxe00Rbx0DueIVcw+MINPTy9c4Q7v7eOngY/n7mimz9Y1oDHqfLPv9/Ot5/czf/5g4WnxEjXxuZ0ciKCPfE6EitawyekVPNYmc2W4VSRyhd5dOvQKZPkPxMpy+m/sn/8NI/k6EiVDJ/N6WL3SJLN/fG39HfmcIJuxwkxX7cDvrcQr/VO0D+R4dqFddx2QSv/+NA2HJrC6o4IT37uUnRNIVso8YVfbeHRrUOMpfJ8cFUzH7+sk2qfbatgc+7SVuWhraoNgP9e10vvWJoHXj3Axy5up38iw53/sY759X4+fXkXv/4fF/GrTQPU+HUMw+R3mwe4cn7NaW/strE5k5EkiRq/fkqDr9Pdw+fTNd65qP60vLfNG8OhHJvfpM3JIV80aY28tfonj4XHtw0RcGksfRN+iHbAd45jGCab+mMsagwykszxu82DxDIF3ruymT+3fJEkSSKeLfCV32/n357dS75kcMeFbdxz9Ry7bM3mLcd7ljcBcON5Tdz72E5UVWFRY4De8TR/9L2XaI14ueWCFtqqPAzEs/zdb17nH363jc9c2c07FtbZpc42NjNgGCYPbuhndUfklG0glgO+01kdZl8Pzi5aqzzkiseuSmtzYsmXDOK2OvY0dE0h4nlzpfB2wHeOkswV0VWZ4WSOj37/ZT5+aSf3PbWbomFy8ZwqQJg5bu6P8Z2n9/CL1/pRZYmWiJtvfeA82qIzm3Pa2LxVcDkU7rl6DsOJHN99Zg8v7x+nNeKhPerhz36ykS/+ZivvXtbIratb8ThV/v7Xr/PY1iH++aYlp3voNjZnHLIscWFn1akt6TzNGT6bQ1zSfXaUv28fTJwRyoxvVYYTOdL54/N7fCtw/gnodbUDvnMM03IOvfEbz/LpK7ron8iCBPc9tZuPX9rJDUtFXfSvNhzk35/dw4a+Ca5f0sgP71jJ9sEk71/VYu9I2thMIupz8ifXzOWTl3byo3W9fOfpPUR9Tq6aX8NrfWLDZHlriKsW1LLpgDBG/ej31+FQFT5//QLcDhVVPjbTahubcxmfrp7Skk7VDvjOGALus0O8ZlVbhLDn1G1K2EylZNjZ1ZOFHfCdQ9z72E6SuSJ/cs1c/v22ldz4zWcJexz82bXzuLanllimwLef3M0Pnt8HQFe1F1mSuXJ+Davaq1jVXnWaj8DG5szF41S57cI2Pnh+C7/eNMAPn9/Hdz+0nMF4lp+83MeT24fZNpTko99/GRN4cc8oq//Po8yr8xF0OfjubSv46St9jCbz3Lm2nRd2jwJCpW4okcWpKGfNosjG5o3w200DXDKn+pi8+E4EhzJ8p+TtbM4BSqbJYDxLU9h9uofylqSnIUA8Y2f4TgZ2Z+pZzrM7R/jI99cB8LaFdbhUmX95ZAe1AZ3/+vD5/OxjFxDxOLj7R6+x+u8f5ZmdI7xneSMlwySWKfC9O1Zy5RkgxWtjc7agKjLXLa7n/o+sxqdr7B1Js2Moya8+vZb/uG0lnTUeBuM5hhI56gI6+aLBe5Y3sPVgnG0DCZojYiGxbzTN3tEUAF95eAfffWYPAHffv55/s/79tw9u4bebBgD48kPbeG6XCBK/+cQuNveLbOJ3n97DnpFU5d92OYzNmcp1i+tPWbAHIuCTJMmWeLc5ZtbtHSOZs6+hp4vGkJv59f7TPYxzEjvDdxYynMjx0R+8zA//aBXdtT6WNof4mwe38Bdvn8fVPXUoMvSOpfnFa/38aF0v8UyB6xfX85nLu/joxR3sGk4yp8bP2xbW2jdCG5s3yRXza7h8nuhP+dG6Xp7eMcL1Sxr4k2vmMBDP8tjWYf7qF1sYS+ZwagrffnI3rVVu3rmogQ+ubsE0Tf7uhoWVcuzPXjOnYjp75fwaaiwD6jm1fqI+UWrkUGRUy2NsPJ2nUBJlMH3jmVkNjm1sTjen+n6jypKd3bM5Lny6SsQu6bQ5B5HM8ipjFubPn8+WLVtO1XhsDsM0TUqGiSJLvOebz/HX1y1gQb2f+9f1MprM818v7SdbMHjfiiauW1zP718f4jebDrKlP87qjghvW1jLUDzH95/fR9jj4D9uX0ldwHW6D8vG5pzEMEye3TXKT17p4zebDtJe5eXd5zVy3eI60vkS6/aO8+KeMdbtG2MkmSOWKSJLIoALujVCbgfVfid+l4PlLSFuvaD1dB/SKeGtcJ95KxzjmcZoMscLe8Z428K60z0Um7OEn68/QK1fP6MM4W1sjpUj3WfsgO8MZDyVJ1MoUR908dHvv8ya7irev6qF53ePki2U+OVrB3lwQz89DQGWNgVJ5Yu8sGeM3rE0F3ZWcfX8Wla2hemo9vK+bz+PicmH17Zz6ZxqO6NnY3OKSGQL/HrjQX78ch/reyd49k8vx+9SyeRLBC2lwnS+yOPbhnly+zDbBxPsH0tzQUeEuXV+frG+H0WW8DhU/C6V+25dcZqP6OTxVrjPvBWO8UwjlSvy0t4xLplzdihE2px+fr7+AB6HyhV2q4vNWYgd8J0FvLp/nP6JLG9fVMffPrgFl0Phj6+aQ+9YmkyhxES6gKZI/O9fbiGVK2KYJntGUnREvVzYWcWSpiAl0+SZHSM8snWIS+ZE+ep7l5ItlGwvPRub08xALEttQOfJ7cP8zYNb+P3dFzMQy6IqElXemb11NvRN0D+RIZ0vUSyZ/OGKplM86lPHW+E+81Y4Rhubs52frz+A26Ha2gY2ZyVHus/YPXynANM0SeVLeJ0qg/EsL+4Z452L6/n9lkG+99xevn/HKhLZIgdjGfaNprigI8KrvRPc/u8vIUuwvneCkWSeoFtjQb2fpc1BQm4HuiYTzxS55+o5/HbTQb70221cOb+G735oOUuaQgB2sGdjcwZQGxB9eGu7o/z04xcA8N/revnnh7ezoD7AJXOiXDKnmiVNwYqy4KLGIIsag6dryDY2NjZvSY6SB7GxOSuxA76jsHs4SV3AhcuhsL53gu4aL26HypPbh1nRGsahyvx20wCXz6umZJh884ldfPryLsbSeT734w3824dWsLk/zs3/+jzr/+oqdg0l+ckrfSiyxM6hBGGPg1u++yJ7RpIcGM/whV+9jiJLlEwTj0OhrcpDa8RDZ7WPb31gGbFMkbX/8BgBl8a8Oh899QFKhsnVC2q5psfuU7CxOdPx6UKl8FOXd3HTyiae3D7C49uG+N5zL1EsGSxpDvKxizu5qKuKXLGEU7U3bWxsbGxOFXa4Z3MuYgd8R+G2f3+Jr753KUuagtx9/3q+fct5dFb7+NtfbeHfbltJtc/Jt5/azar2MNlCiR2DSR5+fVAYnptw1/3r6ZvI4NNV5vzlbyiUTCIeB/3jGRrDbppCLl7cM8ZAPEu1z8marihXzq9hdXuEbz6xC11T0DUZl0NFUWQaQi5e/PPLiXqddj+ejc1ZTrVP58bzGrnxPGGVsm0gwcv7xwlafnxXfPkJvnLTEpY1h7j3sZ00htw0hFw0BF3U+PVKNvDNUigZJLNF0oUS6VyRVF78nc6X8Okqq9ojrNs7RixT4PJ5Nfxm40GuWlB7wt7fxsbG5kwg4NIqPdY2NucSpyzgS+eLyJKEKksVb5yTzbO7RhhO5AAhBy0BkgQSEuW3L4+iZKlhGqZJyRBqeyXT5M417byyb5yntg9z1YJavvfcPpK5Iu1VXv74R+sZS+UZTeZZ8YWHMU3wOlV2DCWo8jkJWYu25rCb+oBOOl/iA+e3cMmcaq788hN84tJOljUHOb89wuKmIPXBqeqZn7tm7ozHVe3TT8Z02djYnEYUWWJ+vX+KB9FPPnoBfpdGrmiwezjFo1uHODCRYSiRQ5YkAi4Nv67yk49dgAn82U838q+3LGfXcJIvP7QdSYJ80SBXNMgVS+SKBh6Hyg/+aBWPbxviG4/v4v6PrOa/XurlLx/YBIDboeB2qHic4u+VrSFWtUcYSeYYTuYBcb0UZU92wGdjY3Pu4HdpuOxWGJtzkFMW8F371afYN5o+9MayhKpIaLLM1z+wjDVdUa796lP8y3uX0Frl4cZvPItDlXGqivW3XPn7z66dh6pIfP3xXdxz1RzGUnl+vv4ATk3BqcioioRhiubb3rE0YY+DXNEglSsScDvI5oskc0VMwDTFHyTxH6emUOvXSWQLFEom9UEXo8kc4+kCsoQVKIpFjgSsaA1zywUt3P9SL21VHv5oTTsfuO8Fnt45gs+pUhvQqQ+6qA+66Kr2VSwRHrprbSXovdaWjLaxsZmBav+hzZ0v37Sk8u9cscRgLMdEJk8iW8Tv0kjnSqzpqgLA41BZ1BjABJyHXUe9TnHZX9oc4gs3LATgPec18u5lDeiqgjxL1m5yyfg7FtWf4CO1sbGxOf0MJ3KYXruo0+bc45QFfL/81EUUigZFw6RQMiiWTIqGSdEwaLAyW39z/QLqgy4k4CMXd1g702JX+tAutSECOgPiGRGElaWXy88rGmYlm9dZ7eW+W1ewoW+CHzy/jy/duJindgzznaf3IEsSmiKhKbL1R6I96uWjF3fw4p4x+icyvGtpA8/uHGFTfwxVltFUGcek32mr8tDTEBCll1avzTc+sAxdU9As8+SZsMsxbWxs3ihOVaE54qYZd+WxgFvmltWtgBCJ+cjFHUd8jYBLI+ASVQi2uJONjY0NrO2K2qXqNuckti2DjY2Njc1p5a1wn3krHKONjY2NzenjSPeZ2VNQNjY2NjY2NjY2NjY2Nmc1dsBnY2NjY2NjY2NjY2NzjmIHfDY2NjY2NjY2NjY2NucoR+3h8/v9NDY2nqrxnDWMj48TCoVO9zDOWOz5mR17bo6MPT9H5lycn76+PuLx+OkexklF13Xa29tP9zDOes7F8/90YM/jicGexxOHPZdvniPdS48a8NnMjN2Af2Ts+Zkde26OjD0/R8aen7MT+3M7MdjzeGKw5/HEYM/jicOey5OLXdJpY2NjY2NjY2NjY2NzjmIHfDY2NjY2NjY2NjY2NucodsD3BvnEJz5xuodwRmPPz+zYc3Nk7Pk5Mvb8nJ3Yn9uJwZ7HE4M9jycGex5PHPZcnlzsHj4bGxsbGxsbGxsbG5tzFDvDZ2NjY2NjY2NjY2Njc45iB3w2NjY2NjY2NjY2NjbnKHbAdxhf+cpX6OrqoqOjg6997WvH/bwHH3yQJUuWoKoqP/jBDyqP9/f3s2TJksqf2tpabrjhhpN6LCeDkzU/AMlkkltuuYXu7m7mzp3Lt771rZN2HCeDkzk3ra2tLFiwoHL+nI3SxSdzfsp8/OMfR1XVEz72U8HJnJ8rr7ySxYsXs2jRIm688cZz3vPuTOKxxx5j/vz5dHZ2cvvtt1MsFk/3kM5YPvWpT9HY2DjtO/y5z32Ozs5Ouru7+fGPf1x5vLe3lzVr1tDd3c3FF19Mf3//qR7yGUlvby+XX3458+bNo6enh7/4i7+o/Myey+NjtmunPY9vjMPv0fY8nkJMmwpbt241u7u7zUQiYcbjcbOzs9PcuXPncT1v27Zt5saNG80PfvCD5ve///1Z3+vyyy83f/jDH560YzkZnOz5ufPOO80vfvGLpmmapmEY5uDg4Mk/qBPEyZ6blpYWs7e395Qcy8ngVHy3nnzySfOWW24xFUU56cdzojnZ8zMxMVH591133WX+9V//9ck9IBvTNE2zWCyabW1t5qZNm0zTNM33vOc95ne/+93TPKozl6eeesocGBiY8h3+3e9+Z65Zs8YsFApmX1+f2djYaMbjcdM0TfN973uf+a1vfcs0TdO89957zVtuueW0jPtMo7+/33zppZdM0zTNXC5nrl271vz5z39uz+UbYKZrpz2Pb4zD79H2PJ5a7AzfJH72s59x00034fV68fl83HjjjTzwwAPH9bzu7m56enqQ5dmntr+/n3Xr1vGud73r5BzISeJkzk8ikeDBBx/k7rvvBkCSJKqrq0/2IZ0wTtW5c7Zysucnl8vxp3/6p/zjP/7jST6Sk8PJnp9AIACAYRik0+mTeSg2k3jppZdobGxkwYIFANxxxx389Kc/Pc2jOnO56KKLqKmpmfLYT3/6Uz70oQ+hqioNDQ1cdNFFPPTQQ5imya9//WtuueUWAG699VZ+8YtfnI5hn3HU1dWxfPlyABwOB4sWLWLfvn32XL4BZrp22vN4/Mx0j7bn8dRy7q0s3wR9fX00NTVV/t/c3ExfX98bft5s/PCHP+Rd73oXbrf7zQ34FHMy52f37t3U1NTwyU9+kmXLlnH99dezd+/eEzb2k82pOHfe+c53snjxYv7iL/7irCsLO9nz8/nPf5477riDaDR6YgZ8ijkV5891111HTU0Nr7/+On/8x3/85gdtc1Te7L3CZvY5HB0dxePxoOs6AB6PB4fDQSwWO11DPSMZHR3lgQce4IorrrDn8g1y+LXTnsfjZ6Z7tD2Pp5azs9nlTbB69WoOHjw47fEbb7wREJmlMuYRHCuO9Xkz8YMf/IB/+qd/Oq7fOVWcrvkpFAqsX7+ev/u7v+Ob3/wm9913H7fffjuPPvro8Qz/pHI6z52nn36axsZGEokEH/jAB/inf/on/uRP/uRYh35KOF3zs2HDBl544QX+9m//9niGe8o53deeX/ziF5RKJf7n//yffP3rX+dzn/vcMf+uzRvnzdwrbASzzeHkxw//mY3Iqtx4443cfffdzJs3D7Dn8o1w+LUT7Hk8Ho50j7bn8dTxlgv4nnvuuVl/9sUvfpH9+/dX/t/X10djY+O05zU1NR3T82Zi48aNjIyMcNlllx3HqE8dp2t+mpqaCIfDXHvttQDcfPPN3HPPPcc7/JPK6Tx3ys/x+XzceeedfOc73zmeoZ8STtf8PPPMM2zZsoW2tjYASqUSra2tvPrqq4RCoeM9jJPG6b72ACiKwu2338673/1uO+A7BbzZz8tm5jlctWoVkUiEZDJJNptF13XS6TSFQqFSgvdWp1Qq8f73v5/ly5dz1113AfZcvhkmXzvXrFljz+NxMNs9+tprr7Xn8VRyCvsFz3i2bdtmzpkzx0wmk2Y8Hje7urrMXbt2vaHn3XrrrTMKS3z2s581P/vZz560YziZnOz5Wbt2baXR/IEHHjAvuOCCk3cwJ5iTOTfJZNKMxWKmaZpmoVAwP/ShD5l/9Vd/dXIP6ARzKr5bZc5G0ZaTOT+xWMzs7++v/P8LX/iCedNNN528g7GpUCwWzfb2dnPz5s2maZrmTTfdZIu2HAOTv8MPPfSQuXbtWrNYLJoHDhwwm5qaKsION998s/ntb3/bNE3T/PrXv24LO0zi9ttvN2+77TbTMIzKY/ZcHh+zXTvteXxzlL/f9jyeWuyA7zC+/OUvmx0dHWZ7e7v5L//yL5XHv/GNb5h/+Zd/edTnPfzww2ZDQ4PpdrvNUChkNjQ0mKlUyjRN0yyVSmZjY6P52muvnboDOsGczPnZvHmzef7555sLFy4016xZY27ZsuXUHdgJ4GTNza5du8zFixebCxcuNOfPn2/eeeedZjqdPqXHdiI4mefOZM7GgM80T9787N+/31y+fLnZ09NjLly40HzPe95jDgwMnNJjeyvzyCOPmPPmzTM7OjrM2267zSwUCqd7SGcsH/7wh82GhgYTMBsaGswPf/jDpmmKjdKOjg6zs7PT/NGPflR5/v79+82LLrrI7OrqMtesWWP29fWdrqGfUTz99NMmYPb09JiLFy82Fy9ebH71q181TdOey+PhSNdOex7fOJPv0fY8njok07QLY21sbGxsbGxsbGxsbM5FbJVOGxsbGxsbGxsbGxubcxQ74LOxsbGxsbGxsbGxsTlHsQM+GxsbGxsbGxsbGxubcxQ74LOxsbGxsbGxsbGxsTlHsQM+GxsbGxsbGxsbGxubcxQ74LOxsbGxsbGxsbGxsTlHsQM+GxsbGxsbGxsbGxubcxQ74LOxsbGxsbGxsbGxsTlH+f+sBN/co+ooIwAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"az.plot_trace(idata, var_names=[\"alpha\", \"beta\"])\n",
"decorate()"
]
},
{
"cell_type": "markdown",
"id": "d59ff135",
"metadata": {},
"source": [
"To check these properties numerically, we can look at two key summary statistics: ESS and r-hat.\n",
"\n",
"* r-hat quantifies the difference between chains. If all chains converged to the same posterior distribution, r-hat should be close to 1. If the chains are exploring different regions, r-hat will be larger than 1, indicating failure to converge.\n",
"\n",
"* Effective Sample Size (ESS) tells us how much independent information the chains actually contribute. If successive values within a chain are highly correlated, the chain isn’t exploring the posterior efficiently, and ESS will be smaller than the total number of draws."
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "ab460206",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
mean
\n",
"
sd
\n",
"
hdi_3%
\n",
"
hdi_97%
\n",
"
mcse_mean
\n",
"
mcse_sd
\n",
"
ess_bulk
\n",
"
ess_tail
\n",
"
r_hat
\n",
"
\n",
" \n",
" \n",
"
\n",
"
alpha
\n",
"
-0.538
\n",
"
0.010
\n",
"
-0.558
\n",
"
-0.520
\n",
"
0.0
\n",
"
0.0
\n",
"
1986.0
\n",
"
1506.0
\n",
"
1.0
\n",
"
\n",
"
\n",
"
beta
\n",
"
-0.015
\n",
"
0.001
\n",
"
-0.016
\n",
"
-0.014
\n",
"
0.0
\n",
"
0.0
\n",
"
1854.0
\n",
"
1213.0
\n",
"
1.0
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail \\\n",
"alpha -0.538 0.010 -0.558 -0.520 0.0 0.0 1986.0 1506.0 \n",
"beta -0.015 0.001 -0.016 -0.014 0.0 0.0 1854.0 1213.0 \n",
"\n",
" r_hat \n",
"alpha 1.0 \n",
"beta 1.0 "
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"az.summary(idata)"
]
},
{
"cell_type": "markdown",
"id": "d0bc8cf7",
"metadata": {},
"source": [
"## Generating predictions\n",
"\n",
"[Note: I cut some content here that I think would work well in the slides]\n",
"\n",
"There are two ways to generate predictions:\n",
"\n",
"* We can use the results from PyMC to compute our own predictions.\n",
"\n",
"* We can use the PyMC model.\n",
"\n",
"With this example, we'll demonstrate the first way.\n",
"With the next example, we'll demonstrate the second.\n",
"\n",
"First, we'll extract the samples of the coefficients from `idata` and convert them to NumPy arrays."
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "d272e139",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(100,)"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Collect posterior draws of alpha and beta\n",
"samples = az.extract(idata, var_names=[\"alpha\", \"beta\"], num_samples=100)\n",
"\n",
"alphas = samples[\"alpha\"].to_numpy()\n",
"betas = samples[\"beta\"].to_numpy()\n",
"betas.shape"
]
},
{
"cell_type": "markdown",
"id": "e9a478af",
"metadata": {},
"source": [
"Here's the range of years we'll predict."
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "c403beca",
"metadata": {},
"outputs": [],
"source": [
"year_range = np.arange(1970, 2031)\n",
"year_centered = year_range - year_shift"
]
},
{
"cell_type": "markdown",
"id": "4071586c",
"metadata": {},
"source": [
"To generate predictions, we pretty much reimplement the model in NumPy."
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "b6cbc192",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAD/CAYAAACHFRPuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAAuJAAALiQE3ycutAABmJUlEQVR4nO39d5xkVYH//7/uOTdW6jSBcRISBhgZGAkOKFFFQFBRYUGCEszgR2VXZNGf6wKuup+fusIOuK6urgqKC4iuogRZkh8YlGACZBGYYZjc3dUVbr73fP+o7prpiT2hZzqc5+PRD6m6Fc6pHuvdJxtKKYWmaZqmTVBiTxdA0zRN00aTDjpN0zRtQtNBp2mapk1oOug0TdO0CU0HnaZpmjah6aDTNE3TJjQddJqmadqEpoNuAlm2bBmlUomBgYE9XZRd7sILL+QTn/jEni7GNp1wwgn8y7/8y54uxm71iU98ggsvvHBPF0PTtmhcBd0JJ5yA4ziUSiW6uro4/vjj+e1vf7uni7WJPfWlPGfOHBqNBh0dHbv9vbVd76WXXsIwDKrV6qi9x2QMZm3yGVdBB/DlL3+ZRqPBypUrOeywwzjjjDO2+zXSNN31BdO0PUD/W9a0bRt3QTfEdV0uueQSVqxYQW9vL41Gg8suu4w5c+Ywbdo03vve97a78Ib+Mv7Od77Dfvvtx8yZMwF4/PHHeeMb30h3dzdTp07lYx/7WPv1n3jiCU488US6u7vZb7/9+Pd///f2tc9//vO87W1v47LLLqOzs5M5c+Zwyy23AHDddddx0003ccMNN1AqlXjNa16z2fLfdNNN7L///pTLZWbOnMk111wDQKPR4B3veAfTpk2jo6OD4447jt///vcArF27Ftd1efHFF9uvE4YhXV1dPPbYY5u0AC688EI+8IEPcM4551AulznggAO4//7728+tVqucddZZdHZ2cuCBB3L99ddjGMYWP/MTTjiBT33qU5xwwgmUy2WOPvponnnmmfb1rf0OAH73u9/xhje8gc7OTubPn88Pf/jDYZ/p6aefziWXXEKlUmH//ffnJz/5yRbL8te//pW3ve1tTJ06lblz53LttdeS5/kWH3/PPfewaNEiOjs7mTFjBl/84heBVnfvSSedxNSpU+nq6uK0007jpZdeaj9vW5/h5rzyyis7/Blt6HWvex0As2bNolQqcdNNN3H//ffT2dnJjTfeyJw5czj66KPb923ojDPO4POf/zwAfX19vPOd76S7u5vOzk4OP/xwli5dyt/+7d/y0EMP8elPf5pSqcSpp546ojI++OCDLFiwgFKpxLve9S7q9fpWPw9N2+PUOHL88cerr33ta0oppZrNpvr4xz+u5s6dq5RS6qyzzlLvec97VH9/v2o0Guqcc85R559/vlJKqRdffFEB6owzzlD9/f2q2Wyq5cuXq0qlohYvXqyCIFDNZlM9+OCDSimlVq5cqbq7u9Utt9yi0jRVf/zjH9WMGTPUvffeq5RS6h/+4R+UZVnq5ptvVmmaqv/8z/9UpVJJ1Wo1pZRS73vf+9THP/7xLdaj0Wgo0zTVAw88oJRSqr+/Xz322GNKKaUGBgbUj370I9VoNFQQBOr//J//o+bNm6fyPFdKKfXud79b/cM//EP7tW6++WY1f/78YfXs7+9vl6NUKqlf//rXKk1Tdc0117Q/L6WUOv/889Wpp56qqtWqWrFihTryyCPV1v5JHH/88aqrq0v9v//3/1QUReqqq65S+++/v0qSZJu/g/7+ftXT06Ouu+46Fcexuv/++1WxWFQPP/xw+zOVUqpvfOMbKkkS9bOf/Uw5jqOef/75TT5T3/fV3Llz1Ve/+lUVRZFaunSpes1rXqO+9a1vbbbcTzzxhPI8T916660qjmNVrVbVI4880v7M7rzzThUEgRoYGFBnnnmmevOb39x+7rY+w135GW1s49+nUkr9z//8jxJCqA996EOq2WyqZrOp/ud//kd1dHQMe+473vGO9r+Tv//7v1enn366ajabKk1T9eSTT6re3t52eYf+PzVka2Xs6+tTHR0dw35Ptm2r973vfVv8TDRtTxt3Qee6ruro6FDTp09XJ598svr973+v1qxZo4QQ7f/zKqXUc889pyzLUmmatr8wnnzyyfb1L33pS+rEE0/c7Pv88z//szrjjDOG3XfVVVepiy++WCnV+lJetGhR+1qe58q2bfW73/1OKTWyoPM8T33jG99QAwMDW61zf3+/AtTy5cuVUkrdeeed6tWvfnU7+N7ylreo//t//69SavNBd/bZZ7dfa/ny5QpQ69atU2maKsuy1G9/+9v29R//+MfbDLqPfOQj7dtxHKtKpaIeeuihbf4OfvCDH6gDDzxw2Ot94AMfUB/4wAeUUq3P9KCDDhp2/ZRTTlHXXHNNuy5Dn+mPf/xjtXDhwmGP/eY3v6ne+MY3brbcH/7wh9VFF120xXpt6Mknn1S2bassy9rvu6XPcHN25jPa2JaCbnP3bS3oPve5z6mjjz5aPfXUU5st74ZBt60yfu9739vs70kHnTaWmXumHbnjvvjFL24y0eO3v/0teZ6zzz77DLtfCMGqVavat+fMmdP+76VLl7L//vtv9j1eeukl7rzzzmHdQVmWceyxx7Zv77XXXu3/NgwDz/NG3IVTLBb57//+b77yla9wxRVXsGDBAq655hpOPPFEgiDgb//2b7nzzjvp6+tDiFbv8rp165g5cyYnn3wySZLwwAMPsP/++/PAAw/wve99b4vvtWE5i8UiAPV6nTRNSZKE2bNnb/bz2ZK5c+e2/9uyLGbMmMErr7yC4zhb/R0sX76cvffee9i1ffbZhwcffHCzrz10+5VXXtmkDC+99BJ/+tOfhv1+8jwfVpcNLV26dNjvbkNr167l4x//OA899FC7ey6OY+r1entSz5Y+w56ens2+5o5+RkNd6ttSLpc36arcmk996lOEYcjf/M3fMDAwwNlnn82XvvQlPM/b5LEvvfTSVsu4YsWKzf6ewjAccXk0bXcbt2N0G5o9ezZCCFasWEG1Wm3/hGE47MtjKDSg9X/O559/fouv9853vnPYa9Xrde68884RlWfD99mSN73pTdx5552sW7eOs846i3e+853kec5XvvIVHn/8cR5++GFqtVp7vEgNnqYkhOB973sf3/3ud/ne977HySefzPTp00dUrg1NmTIFy7J4+eWX2/ctW7Zsm89bunRp+7+TJGHlypXMnDlzm7+DWbNmDRv7AnjxxReZNWvWZl97qDyb+/KfPXs2hx9++LD3qdVq/PnPf95smbf2u/77v/97fN/niSeeoFartYNX7cTpVTv6GW1sS/+ONr6/VCoRBMGwMq9cuXLY9S9/+cv85S9/4ZFHHuHXv/41N9xww2Zfa1tlfNWrXrXZ35OmjWUTIuj22msvzjjjDC677DLWrVsHwKpVq7Y6meG8887jscce4xvf+AZRFOH7Pg899BAAF1xwAffddx+33XYbSZKQJAlPPfXUiJcyTJ8+nRdeeGGL11evXs1PfvIT6vU6pmlSqVSQUgJQq9VwXZeuri4ajQZXXXXVJs+/+OKLuf322/n2t7/NRRddNKIybUxKyd/8zd/w+c9/nlqtxqpVq/jKV76yzefdcsstLFmyhDiOufrqq5k6dSpHHXXUNn8Hb33rW1mzZg033HADaZry0EMPcfPNN/Pe9763/drPPfcc//7v/06apvziF7/gvvvu4+yzz96kDKeffjqrV6/mhhtuIAxDsizjL3/5yxYniXzgAx/ghz/8IT/5yU9I05SBgQEeffRRoPV5FwoFOjs76e3t5R//8R+396PcZZ/RxqZOnYoQgr/+9a9bfb958+ZhWRY333wzWZbxox/9iCeffLJ9/ec//znPPfcceZ5TqVSwLAvTbHXmTJ8+fdjrb6uMp512Gq+88somvydNG8smRNABfPe736Wzs5MjjzySSqXCsccey+OPP77Fx8+aNYt7772Xm2++menTp7P33ntz6623AjBz5kzuuusu/u3f/o0ZM2Ywffp0Lr30Umq12ojK8v73v59XXnmFrq4uDjnkkE2u53nO17/+dWbPnk1HRweLFy/m1ltvRQjB5ZdfjpSS6dOnc/DBB3P00Udv8vx99tmHI444glqtxmmnnTbCT2hT119/PY7jMHv2bE444QT+5m/+Btu2t/qciy++mE9/+tN0d3dzzz33cMcdd7S/NLf2O+jq6uKXv/wlP/jBD+jp6eGDH/wgN954I8ccc0z7tU855RQeffRRuru7+fjHP84PfvCDzXYvl0ol7r33Xn7961+z995709PTw7nnnjusm3pDhx12GLfddhtf+MIX6O7u5qCDDuKBBx4A4B//8R95/vnn6erq4g1veEN75uHO2NHPaGOe5/EP//APnHrqqXR2dnLzzTdv9nGVSoV///d/58orr6Snp4eHH36Yk08+uX39+eef55RTTqFcLjN//nyOPvpoPvKRjwCtxd733nsvnZ2dnH766dssY3d3Nz/96U/5+te/TmdnJ9/61rc477zzdvoz07TRZKid6aPR9piLL76Yzs5OvvrVr+6y17z55pv53Oc+t8VuvhNOOIEzzjhjVBbDf/7zn+epp57ijjvu2OWvrWna5DbuJqNorTVk//Vf/7XVFutI/O///i8DAwMcfvjhPP/883zhC1/grLPO2kWl1DRNGxsmTNflZPGhD32IhQsX8ulPf5p58+bt1Gs1m03OP/98SqUSxx9/PMcffzyf/exnd1FJNU3TxgbddalpmqZNaLpFp2mapk1oOug0TdO0CW3cTEapVCrDFhdrmqZp2pDly5dvcQnYuAm6WbNm8fTTT+/pYmiapmlj0Pz587d4TXddapqmaROaDjpN0zRtQhs3XZdjSRBnrK1HTC07eLbc08XRNG2M06u4dp2tHQ69JTrotkOWK770y2f43iPrd29/79FzufLUg5Bi+z98TdMmtiRJePnll4miaE8XZcIY2p/XsqwRP0cH3Xb40i+f4fuPLiVK8/Z933+0FXqfOW3LA6Gapk1OL7/8MuVymb333nuHWiLacEopent7efnllzc5M3Fr9BjdCAVxxvceWUqY5MPuD5Oc7z+ylCDO9lDJNE0bi5RSRFFET08PQggMw9A/O/kjhKCnp4coirarO1gH3QitrW+560Ft47qmaZOXbsntWjvyeeqgG6GpZWeL14xtXNc0TdseQZyxrNcf9Z6iCy+8kB/84Aej+h476vOf/zzXXnvtLnktPUY3Qp4tee/Rc/n+o8O7L11LcMFRc/XsS03TdtpEmfCWZRlSjp3vRN2i2w5XnnoQFxw1F9cUOKbANVshd+WpB+3pommaNgFsOOFt6Of7jy7lS798Zqdf+yc/+QmHHnooCxYs4Nxzz6VerwPwm9/8hqOOOor999+/fZCz7/u8853v5JBDDuHggw/mM5/5DABBEPDhD3+Y173udSxYsIB//dd/BeCll15in3324fLLL2fRokVce+21nHLKKe33Xrt2LTNnziRNU/r6+jjnnHN43etex6GHHsqtt94KtMY0P/nJT3LAAQdwwgknbPEA6B2hW3TbQQqDz5w2n8tPOkCvo9M0bZcamvC24axuWD/h7fKTDtjh75vVq1fz0Y9+lCVLljBnzhw+9rGP8YUvfAGAP//5zzz00EP4vs/hhx/OSSedxPPPP093dzc/+clPAOjv7wfgi1/8Iq997Wv5xje+QRiGvOENb+CNb3wjhUKBF198kdNOO42vfvWr5HnOq1/9alavXs306dO55ZZbePe7341pmnziE5/goosu4uSTT6a/v58jjzySN77xjTz44IM8/vjj/OlPf8L3fQ477DAOPPDAnfhE15tULTql1C5ZuOnZkjk9hUkdcrtrDEHTJovRnPC2ZMkSjjnmGObMmQPAJZdcwn333QfAOeecg2VZdHR08La3vY0HH3yQQw45hPvvv59PfepT3HXXXVQqFQDuvPNOrrvuOhYuXMhRRx1Ff38/f/nLXwCYPn06b3rTmwAQQnDWWWdxyy23AHDTTTdx3nnnAfDLX/6ST3/60yxcuJATTzyRJEl44YUXeOCBB4aV5e1vf/sO13djk6pFl+UKBRgopDD0bKgdMFHGEDRtrBnNCW+b+wN/S99/hmGw77778sQTT3D33XfzrW99i+uuu45f/OIXKKW46aabWLhw4bDnvPTSS5RKpWH3nXfeeXzkIx/h9NNPp7e3l0WLFgGQ5zn3338/nZ2dwx4/mpNiJlWLTgoDg9ZfR2muWsGnt+bZLqM5hqBpk9nQhDfXGv617FqCC47euQlvixYt4uGHH2bZsmUAfPvb3+bEE08E4Ec/+hFJkjAwMMB///d/c+yxx7J8+XIsy+Kss87i61//Oo899hgAp556Kl//+tfJslZPzvPPP98e69vYa1/7WhqNBldffTXnnntu+/5TTz21PRYI8NRTT6GU4oQTThhWlp/97Gc7XN+NTaqgW9+ia/3kSunA2w560bymja7RmvC21157sXjxYk4//XQWLFhAb29ve4LJ0LjcEUccwUc/+lEWLFjAH//4R44++mgWLlzIqaeeyvXXXw/AZz/7WUqlUntSy/vf//6tbm927rnn8p//+Z/tbkuA6667jhdeeIEFCxbwmte8hiuvvBKlFO94xzs4/PDDWbBgAWeffTYnnHDCTtV5Q4YaJ9/w8+fP3+nz6NIsJ1cAqrXSfvD+oQ9AGIbuftuKZb0+J33tgU0GywEcU3DPJ49nTk9hD5RM08YepRTPPvssBx544HYPk+iN47dsS5/r1jJiUo3RJUlGphS2JVEK1AaBp5QiB/JMIQ0DoQNvE3rRvKbtHkMT3rRdY1J1XUZZhp+kDAQxYZy2wi1X5ErBUAtPKTKlSLKcZpjqmYUbGM0xBE3TtNEyqVp0rikwDYMoV0RZRpRl2FLiWoLBrMMwDPJc8eVfPctNS5a1x/T0zMKWobGC7z+ytP3Z6EXzmqaNZZMq6JataxAnGVM6PAq2SZIr4iwjSjNsKfDsVpfml3/1LDcvWbbJcTxKwWdPn9zH8ehF85q2fZRSeinTLrQj00omVdBVg4BakDEQJpRtSXdngaIlyA1BkufEQU6SKW7aKORgcGbho0v5+Jv2p+Sa4+If7mgOaOsxBE3bOsMwcByH3t5eenp6xsV3xlg3dB6d4zjb9XlOqqALY0XDj2mKkJppU40zCpZkWkeBDk+SK8Er1YAt/cGggNX1ENcujulF53pRt6aNDbNnz+bll19m3bp1e7ooE8bQCePbY1IFnWeaGIYgziBVKVES07AsmlFKwZF0FV2ml0y2lF0GMK3skucKwwCVgzBaP2Mp8PRJ6Jo2NliWxT777KPX6e5C+jy6bbBMScGVeI6JZRikSPw0p9qMWNHv8+KaGi/3+rxtwXQcc/hH45iC9xw5q33/0KSVLM93eNH5aOwXqRd1a9rYs6dP5p5IPztiUrXo+v2Ifj/BNgW2JXEtSRylhJkCBQ0/wg9j3jyvm2aU8uu/tLobDMPgzMNn8qHj96UWRnimiSUFQ02/PFfkKIQwEAbb7B4cza7FkWwMq8fWNE2bTCZV0JU9k3okSLOMRpAjkoyiJShLSZikKFOSKkUaxpw0r5OTDughw2BOl8usKRUcaZAr8JMMkrQVeKYY/EtjfeDlytjqLiuj2bWoF3VrmqYNt1u6Lj/60Y9imq1Mvf/++ymXyyxcuJCFCxdy5pln7o4iAJApgWtJyo6DYwlMlTMQZPQ2YoQCz5JYlsCUJikGuVJIUlbXQv6yaoAX19YI0hTLUEhDEKQZtTAmTDKyrBVahgFZlpNmOUmWk+fDuzNHu2tRL+rWNE0bbtRbdA899BDNZnPYfYsWLeLee+8d7bfeRHfJIslSwijHsQRSSYw0ReWKZpJRSzIKltm6ZghIFWEGQa6Iak1qDYPeRkylYDKl7NHpmhjSHFyLp7ClxDEFQoh24OWGgRxs4Qlh7JauRb2oW9M0bb1RDbooirjyyiu54447uOmmm0bzrUZkRqVIwTJphDH9fsxAkOBYFobKsazWhJIozQj8FMcU2NLAkSZplpAKQSIENT+k4UN/PabkmezVWaDDtTBNc9jic8eUSNlqVaVZjjEYeD1Fe4vl21Vdi3pRt6Zp2nqj2nV59dVXc8kllzB16tRh9z/++OMsXLiQ4447jrvuums0izCMkIJSwWFqR4FXTy0zb3oHUztsLNvENCSeKam4DiVbQpYSJIp6lIABRdPCzjNMuT7wVg8E/O+KKn9aUWVVf4Msa4VcmufUo4RmmJAkGYZhoJQizXJMaXD+ojm7pWtxIp6Erk821zRte41ai+4Pf/gDS5Ys4dprrx12/2GHHcbSpUupVCo89dRTvPWtb+WRRx5h7ty5wx63ePFiFi9e3L7d39+/02VyLIlIIcVACoFjW5Q9G9+LaUQxfUFCI8qwbYkjJVGakhg5QSJopBElaWBZEpVlCNsiVVCPUhphQrUR0Fkq0O2aTO0o4Nkmmcpppgozy3GkaD1XKT5x0jxyBTc/1joEUXctbpteBK9p2o4atfPobrzxRq655hpsu9VVt3TpUubOncuTTz5JV1dX+3FnnnkmF1xwAe94xzu2+nq74jy6oZMKFK2tZNK0tQZOGZBlGUGc4kcJ65ohzSAnzTLIc2IFZBnNLCdNc0xh4DompikhzQmyDDAwshwpoFgo0OlKplU8KgUbBWS0xulcKbAG1+I144z+Zsz0ijtuthXbU77wi6f5/qPDJ/G4VutQSr0IXtO0rWXEbjt41TRN0jRl5cqV7LXXXhiGwfLlyzn66KO577772H///bf6/F0VdK3JGQo1OKsShmZJKjKVk+U5cZrjhwlVP6CvmRHnOQKFwKCRJGRpa/KJUGBbAmEIDKN15E+MgUoTLENSKDh0FS2mVzxKjokQrX01DYNW4A2uxVO0Dn21pBhzu6yMBUGcsfDquzd74KtrCp783FsmVPespmnbb0wdvHrbbbdx4403YlkWAF/+8pe3GXK7ioJ2uBm0DlgFEKZESkWeC9I0wxQSz7HoKLpMKUc0opTeZkgzynGFAGlgiYw4zWjGGYgMTwoc08LIEwzTJDIE1WZAM4hZ14joLDjsVXGpOCambRGkOeFQl6YwUEIQpZkOvM3Qi+A1TdsZuy3o0jQF4LLLLuOyyy7bXW87jBQGQkGuWoGXDYaeMAxMYaAGF3nnSpFmCkNCR9Gl7OV0FmwaUcrapk89UDhZhm3luGlGnuYEOVSjCEdKpCmxVI5r2yTk1IKYMIjprfl0ljymlSy6ih62bRGmOZEBltGayKKkbAeeKQxMOal2adssvQhe07SdMal2RoFWK0kaIDHaY3atn9aX5tCOJlKAZYrBbk0Dw5W4ttkKvDChrxHQ72dgSJRM8ZD4aUwQ54RphswVtm1iAEXbJMlzgiwn6K/TOyAoFUKmFi2mdZVaW5Epg0TlWFmOJSSGKYgzRZqrSR94Q4vgtzRGp7stNU3bmkkXdBsSwkDQmvqfq9YElUy19r0calFJQ2JKQa4USWogjRy7bFLxHKZFCfUwbnVrxmAbJq6AME9JMkUjSgADL2uFpyckCTmJkPQ2fOpNwapmwlTPYmqnR8mxSDGIshQnN7CERAmDXBmkucISRntt3mSjF8FrmrajdttklJ21KyajjMRQ6K0fy2uFnmG0ujyzPCfLVWt7LwV5lhIlGfUoYW0jpBbmZHFCnuUo1ZrV2YgzMgMsFI5pkavWWJ8PxFmGqwSOK5leKTCl4lB2LEwpyWl1t9pCtEJZitYY3iQOvNE8TFbTtPFrTE1GGes217W5YSvPkgJTgCVFK/AMkELiOq1xt7of0e+H9PkJUaogTeg2TdIso5mkNPMUkQGmQBqKimMS59BMM5atabCq5tNZcNmrw6ar4GIgCfLWmJ2dK4QBuSmRg12aky3w9MnmmqZtLx10W7Fx1+bGY3lCgiWt9pl0sZHRXSnQUbCZEiVUg4gBX9JIcmQmcaQgVDlJCs04QQF2JpEqx7VNUjOnHubU/Rq9VUm57DKtaDGlUsS1TcLBSSpysBszMyUiy7GkmHSBp2maNlI66EZgi608BpcpCIEpW628JMtJDJMOKSm5NtPLKQNha3lCPRRYcYZpZHjCIszBjxICFIUoQUqBKwSGMIhQ+ANNBuqSlbWYKSWb6WUX17HJcsikaIWcEOSgA0/TNG0LdNBtp8218jbs2nQtiWPK9jE9phTYtkV30aUZRKzzI6p+TJQonDTBlTaxyvHjjCjJyNMY17KQFtiGQQKsbvjUmzErqj7Tyi49RZfOkkNqGORAHOVIQ5DbrcCzB09Q0DRN03TQ7bBtLVMwB7f6Gpq4kogcU3qUPQe/HDHgp/T5MfU4xU1yHJENBl5OnGUQg4lCyJyiKUiylCA0qDUTVnkB3UWb6ZUinSULISW5gCzKEYYgUwpp6Baepmka6KDbJUbaystyRZxmSCnwnIzukkM9SultBjTCFOIcS+ao3CBOFPUkJ84hbiZYhoHnWigHamFCPYjprcVUShZTKi5Tyw6WaWEYkEat3V1sM8fMhA48TdMmNR10u9C2WnlSGBRdizTNSTKBbZo4tkV3waUWBlT9lKof4ycSR2RIEZMqgS8M4iQhDCIs08IyQQiJr1IG+lP66jErCxbdFYepJZeibZOrjDhtjRvapoFtmpNylqamaZoOulGyYStPbdDKyzKFEAauNHGUIskUcZZjmkUqbsa0Yky/n9AfJjRjkyzJca2M1BbUo5wwikmURBgKU4KLgZ/FNGsZ/fWIVa7PtA6X7qJDR8EjMXKSCKKkNXbnWDrwNE2bXHTQjTJjcLH5lpYptFpcgixTxFJgW5JCwWVaklL1I6pB6yT0PBZ0GjmZZxDECj9KiZVBnGWt4BIpqZT0hTF1P2WV41Mp+Ezv8Ogo2mSmJM0VYZLiWia2ZU7qheeapk0eOuh2o60tRjcMcG0Tl1YrLzEljm3RVUhpRhH9zZiBKKMepxREiiMN0jzHTyRxkpDHGa4JptNa3zcQZVSjjGojouiZ7NVVpKtgY9uSLE4J4hTbNPEcszWGpw8v1TRtgtJBt4dscQILrRmbtinIc0VkSlzHpFLwCJKYapDQ78c0w5QoSrGFIrMNmhkEQYSKQagc25SYQjEQR9SSjIEgpexa9FQceooOnmOSKUWUpjimiWtLbFPqwNM0bcLRQbeHbWsCi2tJXEuSpBmubVJyM6aWcvqbPlU/oRamBJGgM1MULEWcQJjmJHlOkikMFIKYpjRpNhL6GzErvYCeksXUikfZschUTpQKHNPEsyWWKfV5eJqmTRg66MaQrbbyTImFIlcSx8zxbMnUUkY9jOhrJtSCmGYskSLBtjKyzMBPDLI0IYoTTAR5npGbimYjoRYkrK2FdBUdesouZccktjOitNWV6VkSxzZ14GmaNu7poBuDNmzlbe40hXYrz8xwbJNKISWIc9Y1fQZCCz9KCeMERxj4IiExCwRxTJ4rSDKEkRPlOXEC9SBjbSOkw7OZWvGouCaubRFnJlacUrBNHXiapo1rOujGuK3ts2maEssUuJbEsxUl1ySMc+p+k7VNi0aYIJISeZxhyZwMgyRWBCrGThSZkZMpReAL6kFCbz2i7FlM7fAoOyZFxyJKM6w4oWhb2KbAlEIHnqZp44oOunFkc12b0ArD1qJwG9fKKXkWneWEZpDQ1wwZCBKc2CZIYlKRY6U5sSFA5cRJjDBNYgWJMmjEMTU/pWAbdBUduksOJdcmTjNsU+INTlzRgadp2nihg24c2lwrb+j0XHPwvDzHFBQdm46SQxhn9Pk+Vd+iEST4sSRLwI99TOGRpClxlmJhkOQJVQUDQU5fPaKv7NBRsAd/XAI7wU0tPFPi2SZy8FBYTdO0sUoH3Ti32VaeAbC+ledZOUXHZGopo9bw6fcz+oMIyyoSxjlBnGMLhzQzyJMM4owsSwlsg2ggoFqPKJYcKk5IV9ml4pqUXQs/tSmYEtcyMaUOPE3TxiYddBPExq08xfquzVYrT+DZJiXXoivOaIYRvc2IgWZEM7FpBCEJisSQJKbAyARZmKBMQVPlNOuK/oairx5TKUi6y0U8K6Cr4OK5FkXHwjUHlybowNM0bQzRQTcBDQXNsK7NdiuvtTC85Fp0Fl38OKHaDOlrWtTChDA2SROohT55oUCU5WRZjMgzwjwjyQwGYsXaekJnwaS/mFApWHR6DkXHpOjYeLapT0zQNG3M0EE3wW1pAoswwLMtXEtSdh2mVFLqjYB1fkLVj7DsEkGUIqII23TIFMgsJs9TkjAlkTkNP6K3HtFRtOkoxpQ8iy7PpuzalF0L17ZwTB14mqbtWTroJolNJrAACjAMgYXCFK3ux65KRhDG9PsR6xohjcihHseEfkyMQSZMDEOSxwkxGUFi4FcD+gZ8ygWXXlfS3VmkYhlUigU6vFbg2YNLITRN03Y3HXST0CatPAEGBoZSFJxWK6xUcJjaUWTAD+j1E/qbEY0gIYwz/CBAFRyMVKHSBKVyGrmiUVdUfYPeIKPDNuiopJRck56CS2fRpujYrT04paGXJmiattvooJvENpnAYhjkSmGaEpkrbClarbxiQrMU09eM6G2END2LZpQShCGJYZEJA5GlpElClELUgJoBfY2YUsGkv1yg0rDoLrp0eBZlz8ExJZY0EEK38jRNG1275Vvmox/9KKa5PlOvuOIK9ttvP+bNm8ett966O4qgbYMQBlIYrUkkhtFq9UmBKQ3KnkNPucA+0zs4eHYP82ZUmDO1xF49FTo7PDwhsDFwHRfLtnCkQZZH9EUpy9f6vLi8jxdWVPnrqn6eX13nhVX9rK761MOEKMnI83xPV1/TtAls1Ft0Dz30EM1ms3377rvv5tFHH+XZZ59l9erVHHXUUZx88smUy+XRLoo2QsO7NlutPNuW5LnAkoKCYzGtklP3Q9bWY/q9kFqU0ghijFiRY2BbHiJJSEVGLVU0BwL6GxHFQkCHa9NZam0o3V30qHgmBcfGsaSeuKJp2i43qkEXRRFXXnkld9xxBzfddBMAt99+OxdeeCGmaTJz5kyOOeYY7r77bt797nePZlEmhCDOWFuPmFp28Gw56u+3cdemIUAIiVQKUxjY5SIdRY8w8ugPYtbUQ6rNiLqfEEQhiTJRpk0cJxh5RopidS2j34/xagGdRYeeckS5YDO1YNNdcii6TmscT09c0TRtFxnVoLv66qu55JJLmDp1avu+5cuXDwu1OXPmsHz58tEsxriX5Yov/fIZvvfI0vZ97z16LleeetBuOyh141aeMIxW4KlWK89zbaaUPWp+xNpmxIBfoBYkVAeaYJrkmUAZUFAZcRbTwKG5rk7VjymaJus6HKZUPLqLDh2eQ8WzB3dc0RNXNE3bOaMWdH/4wx9YsmQJ11577SbXNvziUkptch1g8eLFLF68uH27v79/1xdynPjSL5/h+48uJUrXj2V9/9FW6H3mtPm7tSxDrTw2mLUphYGZCyzROry1q+gSRAlr6gHVok2vH9EMEvwgJJMSJSWkKalQVP2IWhZS9SNW9/mt7syyQ0+HR5fr0Fl0KDgWlqk3kdY0bceMWtD95je/4emnn+bVr341AFmWsffee3PqqaeybNmy9uOWL1/OokWLNnn+pZdeyqWXXtq+PX/+7v1CHyuCOON7jwwPOYAwyfn+I0u5/KQDdks35uYM69o0VCvwlCLLW8f5FAsOUZxSC1rbja2rO9T8lEYQElsGMs6QeU5KTpgn+M2ERpKwrh5SHvCZUvLoKTt0FVy6Si4lx8S2TL3FmKZp28VQW2pS7WKmaZKmKffccw/XXnst9913X3syyp///OdtTkaZP38+Tz/99O4o6i63M2Nry3p9TvraA5sEHbROKLjnk8czp6ewq4q604adjp7lpLkiyxVpmuLHKb11n95GSm8QUav7hKkiSxIUkjhLSVSOSltdpY5t01GQTCm79FQK9BQdukoOFcfGtU09cUXTtLatZcRuX0d30kkncc8993DAAQdgGAZf+cpXJuyMy10xtja17GzxmrGN63vChq08aRhYQJbnpFJgmpJywWGvzph6nLKuUWB1f0AtSKk3AwzDxFA5GBmxymkEPkFi0ggSVlcjuooW3SWH7nKBqSWLzmIBzzGRQo/jaZq2ZbutRbezxmOL7gu/eJrvP7qUMFnfGnMtwQVHzd2usbVd9Tp70tDm0kmak+atnzjN6G9EvLi6RqIU9TCh5kdEWU4cp6gsI8vzVreospAip+QWKJUE0ytFuoouXUWLnlKBkmtimVIHnqZNUmOqRTdZ7MqxtStPPQiA7z+ytLU/JXDBUXPb948HQ7M2pTDIlSRKUr7+6+f54WMv0/pTS3HawdN4+4Lp9DYj+hoRKwdCXENgGDmQERuwulGjGkh6qzHlkmRqpUR3KWRK0aG75FJxLRzb0uN4mqa16aAbJWvr0RavqcHrIx1bk8LgM6fN5/KTDtit6+hGw1DX5tfu/V9+9NuXh/0hcOef1+LYJlmmuOP3KxnqazhsVolFswukCQjLIEkyQuXTWGfS30zo8By6ig5dJYuppQLdJZuugtfq1tTjeJo26emgGyWjMbbm2XJMTTzZUVtq7UZpzo9/9wqWFCTZ+h71J19pYFsmx+7dgZ/EmIYkTVMyofDjiDCI6a81KTguK8oBU8o23SWPKWWXLs+h7Dl6eYKmTWI66EaJZ0vee/TcLY6tjdcW2Y7acObp1lq7uWKTAEwyxWMvVXn/62dT9WMaQULVDwnClCQ1gJQgyfDjhHpg0Ttg01Fu7bwypVRgStGmu+TSXfJ04GnaJKSDbhRNhLG1nbW5mafnvm729r+QYdBR8pg7tUy1EbC2XmBtI6AepARRiIhy4jwjzFMiP2UgMOhzHVbaIT1lmyklhyllj55ya/cVvTxB0yaPEc26vPDCC/nud7877L5LLrmEb3/726NVrk2Mx1mXQ3b3HpVjyZZmjO4/rcT/rmkMu98xDdK8FY4bc0zBw1eciGUaZGlOlKbUwpjVA01WVWMazYhmmuA3Y4IsAwWZyhFGTodXxrIFnZ7NlLJNV8mlp+zRU7Qpuw62rf/e07TxbqdnXf7hD3/Y5L4nnnhi50o1iUyUsbXttbWZp8+tqnPuorn88LFl61u7R88lV3DTks13906tuGRZTixzLEvi2iYdrsPMzpRqo8mqesxAENPfjKk3A+LYAAR9QQ0ZQK1mUa17lIoBHcUm08oe3WWP7qJNh+fh2kKfj6dpE9BWg+7666/nuuuuY/ny5cybN699f71e59RTTx31wmnj29bG4jAMLnrDq7nilAOHtXazXCGMLXf3SinwpMBVijgR2KaJ51p0FBx6OiJqzZA19Yi+hstAM6QWBJiJJExiAnKCep2+hkHBLbCqENBddplacugpuXSXXDoLLgVbYlm6ladpE8VWuy4HBgbo7+/n8ssv52tf+1r7/kqlQldX124p4JDx3HU5WQVxxsKr797s9mWuKXjyc2/ZYlfuSLt7lWptMdZeiJ5lhHFGLUxYU6uzrpYw4MfUgoh6MyRMcgwFITGOkFS8Io5lUnYl0yoenRWHKeUi3QWTkuPi6Faepo0LO9x12dHRQUdHB7fffvuoFEyb2HZm5ulIu3sNw8CUBqYU5LkizQS2ZeG5Ft1Fh3pnRH89YFU9pOYXqAatVp6VeoRRTJ/vI1BUGyZ9jYRS1WJqKWBql0NPuUjFtai4Dq4p9Fiepo1TI/p/7k9/+lM+9alPsWzZMvI8RymFYRjEcTza5dPGud0581QIA1uYmLnCMQWJlCjDoJnAQZUCYZKyolqnv16gHkTU/IhmnBBFMUmasao5QCEw6avarKy5dHsNplQKTKm4dBVdOgoOBdvEMnUrT9PGkxHNutx333255ZZbOOKII3ZHmTZLd13uGbtqxujunnma5Yov3tk6x28oYM85chYfPvbV+GHM2rrPmkbMQDOhvxng+yFBBlEcg2j9Beh6BSqWTbloMbXk0FWxmdpRosMzKdkOri0RekNpTRsTdnrW5fTp0/doyGm7364+1Xx3zzz90i+f4QdLhs/4vOV3yxGGwd+95QC6yi6z4ozems+qgdZszP4wYiCwCOKYLMkI/YAaPl5DsrLfYUqlQHdvk2mV1mzNyuBp6K4lsUyp99fUtDFqREF33HHHcemll3LmmWfiOOu3rnr9618/agXT9qyxdKr59trasoabH3uZy086gJLn4NqKjoLDXp0lqn7IqoEmvY2E/kbEQD3Ez2JECmkaE4c+jcBnlevySn9EV6nJXj0FekouXQWXsmtRsC0cS+pjgzRtjBlR0C1ZsgSAq6++un2fYRjcd999o1MqbY8ay6eaj8RWlzUA/X7C7G4PKSBXAtuUlD2baR0eNT9hbS1gdd2ntxbRVw/wE4kfRuQqJ4gDgjBkoOGwqt+nu+wyvdNlSrm1xVjZsynYJp41dGwQYyL0JvOmBZo2oqD7n//5n9EuhzaG7MqTF/aEkWyoPXSKglCQGwZCGJimwLNtuoouM6eUWFcPWVNtsLYWU/Vj6kFMEEUoBVES0UwjBgKf1TWXTtdhWsVlWmdrtmbRNSl7DgXbwpIGUog90rW5q7ugNW08GlHQ1et1/umf/olly5Zx00038Ze//IWnn36ad77znaNdPm0PGG+nmm9se5Y1bHgiep6r1iGvUuAM7brSUaSv7rO6FrC6HlBtuPTXA2JLEsUZqUpp+E2afsCamk2lz6W71GSv7gJ7VQqUXIuia1O0Jc5gK0/sxlbejnRB69afNtGMKOguvvhijjzySH7+858DMGfOHM4++2wddBPURDh5YUeWNQwdDquUGtbKK3o2e3WVGIhieusRK/vrrKkm9DabhFFOmCSoPCPNYtbVE2oNk1UDAWV7gL06PaZ3OvRUipRcm6Jj4W3Qyhvq2hyNcNneLmjd+tMmqhEF3QsvvMB//dd/8cMf/hAAz/PGxLiDNnrG+8kLO3NY7bBuTWWQK4XjWEy1THoKLrM6S6ypNVlTc1kxEFCtJ1SDkCTJSPOcLEmo1gMC02ZdI+KldTZTKz7TuxxmdlcoOyaFwUXoUgi+es9z/GDJsvb776pw2d4u6PE8AUnTtmZEQWdZFkmStMPtlVde0QtmJ7jxdqr5llpEO7OsYZNuTQGGkJSkoFToYmZXkbl+xOoBn1X9TXqbCb21gEgKHOWSZhFZHlJtRtSDiNV1i5dWN3lVV5FpHR5dJZvvPrKc259cMSrhsj1d0ON9ApKmbc2Igu7v/u7vOO2001i9ejWXX345P/nJT/jqV7862mXTxoCxfvLC7upuG9atOdjKc12bGbbFtHKBV0+rsKovYGW10VqI3ggJYokfpURZSpxGhNUmA6bDunpEpeBSduHWJ14Zdpo6tMLle48s5eNvmkfRkTvce7I9XdDjfQKSpm3NiILuzDPP5JBDDuGee+5BKcUvf/lLDjzwwNEum6Zt0+7ubhverQm5AFNIOk2XDs9l72ll1tV9VlR9Vg749A+GXpikpJmDyhL8uEEQ+yzLLPLNnL0HoBQs72uyz7QSwjBaPzsQ3CPtgh7vE5A0bWtGFHTPPPMMc+fO5dJLLwWg2Wzy7LPP6rDT9qg92d22SbcmgAGuYzHL7mBGZ4kBP2Blf8SqgSZrG1Frq7FQYsYpsUqRecyW999TCJUy4MfYUrQWoksxGHojn7U50i7oiTABSdO2ZEQDbeeffz62bbdv27bN+eefP2qF0rSRGEl32+4gROv0BFO0Wl4YIE1Jd7nIQbO6OGr/6Ry17zQOndPD3tM6mN5doNN1KboeB/S4yI0yyxQGh88q87+rary0pp/epk89immECWGckmQ5aZaT5YoRbFULrO+C3lpgXXnqQVxw1FxcU+CYAtcU42oCkqZtyYhadFmWYZrrHzo0OUXT9qSx1t22SbcmIKRByXMouQ6zukv0+SEre+usrkWsCyIqton11yp/Xh20uxb37zY5YIrkz8urLFtnMqXTZWpHgalll66CjWtamMLAHmzlGagd7trc0HibgKRpIzWioOvo6ODhhx/mmGOOAeChhx6iUqmMasE0bVvGanfbJt2aSqEMMC3J9I4iU0ourw4T1tR8VnQFvGpKmVUDdVZXUwyhMFROmmQ08hph7DDgJ6zsDenyTHrKDtM6PHoqLqWCgyUkthSYpsBQrRalATsVemN9ApKmba8RBd11113Hu9/9brq6ulBKMTAwwG233TbaZdO0bRrr6/2Gz9aEXCmElHQUJRXPYXZ3pdXK6yvQW4tZ3Qyo1kMaYUKSmQRpQpSEBLFFI5SsaTgs623SUbKwbIe9pxSY2VnAtSykEFjSwDQlWaa2ezxP0yaqbQZdnuc888wzPPvss/zlL39BKcWBBx44rCtzS0466STWrFmDUop58+bxH//xHzzxxBO87W1vY9999wVgv/3249Zbb935mmiT0njpbtukW1MpEAaOYzLDLjKl5FELQtYO+KyqhvQHMWvrTZpNSZApwjghSSP8MOCBNYo/rw7ar3vCft28/5g5TKl4dBQdzCTDlhLLEuSG0e7aHCsbTGva7jaig1ePPfZYHnrooe1+8YGBATo6OgC4/PLL6ejo4Pjjj+faa6/l3nvv3a7X0gevauPJSLb0andrDt4WhkGSpARxSr8fsbq/wdpGzNpGSK0WMBAlLFnW5Ll1IRsuvRuavHL2YdPpKRforrh0F208x8EyjNZ2Y2arDMbg++iz87SJZqcPXj3ttNP47ne/y7nnnjts9uW2DIVcnuf4vt++rWlj1c7uObk9C9g3160pTUnZlBRdm2nlArUgZF0jYl21yYpaxPef7GWj9eWkueJ3L9d47YwCxb64dRJ6yaar5NBVcqkUbJxUYksTKUEJ0e7a3NnxPE0bD0bUorMsiyzLADBNE6UUhmEQx/E23+Dtb387jzzyCPPnz+cXv/gFv/vd73jnO9/J3LlzqVQqfOYzn+Hkk0/e5uvoFp02mnbVDitf+MXTW5wcM5IF7Bu38lCQZil+lPHnFVUu+f6Tm+ykAiAMeMc8j55yAdsy8SwHx5H0lOzBs/IsuspFXMvEEQaWlEhTbPB8PZ6njW9by4gRBd3OyrKMq666ip6eHj784Q8DUKlUeOqpp3jrW9/KI488wty5c4c9Z/HixSxevLh9u7+/n5UrV452UbVJamcDClqtwYVX373JAnYA1xQ8+bm3jLiVuHHgqVwRJBmv+6dfb/b1pQFnL+ghVymCHMcGz3RwHAfHdqi4gq5i66y9npJDqWC3Qk+amBKMwb1rh7o29XieNt5sLehGvDPzXXfdxb/+678CsGbNGp577rkRF0BKycUXX8z3vvc9KpVKe2nCwoULef3rX89TTz21yXMuvfRSnn766fZPV1fXiN9P07bH0A4rG4YcrN9hJYizEb3OrlzAvvEidEMYFByT8143B9cc/n9bWxqcsH8P+80q86oOD8uyCVOLapzQW63TWxtgVX+dF1Y1+OPyfv6wvMpzy6u8vK6fdX5ANUgIwph8MEAzpUhzRZrlW9yiTNPGkxGN0X32s5/l97//Pc899xyXXXYZeZ5z4YUX8v/+3//b4nNqtRrNZpMZM2YAcNttt3HwwQezcuVK9tprLwzDYPny5SxZsoQvfvGLu6Y2mrYDdtWGxqOxgH3jNXmfPvVAMOCmJcvayynOOWIW73vDHOpBwtr+JmsbMQONBv3NmEBBPUxohjGOFVCKHeIko68RU2wIuvoiOos208ourmfhWRaulFimQBkGmVJ6PE8b90YUdP/93//Nk08+yeGHHw7AXnvtRaPR2OpzBgYGeNe73kUYhhiGwYEHHsj111/Pf/3Xf3HjjTdiWRYAX/7yl9l///13shqatuN2VUCN9gJ2IQwcIfn/nd5aTrG6HtJTsHEtgWEY5JWMV1U81jUi+moufWHGmnqTaj2k6sf4CYRxiBXEuK4kCG1q0mOV7bOq6NJVcJhSMimXCtimQcG2cM3W7iv54AjHrlifp08w13a3EQWd53nDzp+Lomibe+zNnj2b3/72t5vcf9lll3HZZZdtZzE1bfSMJKBG+uW8OxawG4ZByTUpuaX2WF6uFBiCctGlXLB5VWeBXj9mZt2jrx7S68f01RtUQ0EjgHqU4kc+rhlRsCRhBusaISvrJhU3YmrZpKvo4Lo2rikpmBa2KTCEMfh+bPf6PH2CubanjCjo3vzmN/PZz34W3/f52c9+xo033siZZ5452mXTtN1mSwH1qZMP5Au/eHrEX867ewH70BKFPFcIoxV4mTKwbZNZrsVeZZeBIKLXj6nWXPrDjLX1Jv31JtVGip9IGmGME9YoegZJYlFv5qyrQ8Wz6XQsuosmlXIB25IUbQtHCmxLomiN57FB6G2ta1OfYK7tKSOadamU4rvf/S533nknSilOPfVULrnkkt1Rvja9vEDbHTZuue2K2Zi709CavCzPyVXr9lBXox/GrG3EVBsh/c2QarPVyutthjRig0xlWEZGybPxDIHjFjAtQdm1KBccugsmXYWhVp5ojedZot3bs+HC943H83bljFRN25ydXjBuGAYXXXQR55xzDtDqytS0iWjDDY335Hl3O6o9eUVI8lyR5TmZgiRXOI7N3p5D0uHS5yesawQ0mh59YUq/71Oth/TVImqBQX8a4sUZnicJQ5MBP2OdpSi6Dt2OSWfBolJxcWwTz7RwLYktDYSUmx3P0yeYa3vSiILuT3/6ExdddBEvvvgiAPvssw//8R//wcEHHzyqhdO0PWm8fzkLYSCExFSKLG8tGYizHENKplZMpnd41IPWFmMDDZf+Sky1ErGu2aC/ntFIDYJqQsOMKToJjmkQRBkDlqQUmBT9hJ6CSdmxKHo2tikp2CaOaWJJA0OI9nheV8HaYjm3NeFHT17RdtaIgu7CCy/kH//xHznttNMA+PnPf86FF17I7373u1EtnKbtSWPtvLsdZRgGpjQwZWshepLlpINjawXXZh/PJu7M6G2E9HVGzPJL9DYDakFEXyNgXT2iGoDKIjw3o1CwCWJJNUjpG4Ci51KxBT1lh2LRxTHlBl2bEmG0WsrnLZrDzY8tG/GMVD15RdtVRhR0SZK0Qw7g9NNP55prrhm1QmnaWDBWz7vbGUNLFPLBBeGpUmQKhBTM6CqxV2eBWpCwru4w0Izo7yjxqkbIukZAfz2nHgt6+wJqpqLoRXjSIIhyarZgXRBTdCI6bUFX0cEr2DimiWdJXFNyxVsOQBhGewIKwHmvm8MVJx+42bLqySvarjKiySif+9znmD17Nueffz4A3//+9+nr6+PKK68c9QIO0ZNRtD1hqFUxbDbmBGpVKKVIM0Wa5+36mUIgBfhBQp/fOjKo1oipBhHVZkh/M6CvHhFkIHKF60gcV9Jp2Tiug2UoCgWXsiXoLlgUPRfHbbXwPMsiy3L6/YTpHR6ONXy/zaFJLGN58oruSh2bdnqvyw03dR4i5eCxHyPc3Hln6aDT9qTJ8OWWpjlpnjMULdZg4MVJRj1KWVdrUmsmVOOUejOitxnQV2vgxyZxGmNJKBddCpZBwS0gjRzPNik6DhXPoLvgYTsWnmXiWQLHMnEsE4Fqj+cNWd4fcMq/PLjZoHNMwT2fPH63j4/qrtSxbadnXSZJsksLpGnjzYazMScq0xSYCLIsJ80VSZ6T5CCFoKfk0lWwaQQJ/c2AaslleuRR7SpQ9xOqfkhfPaS/EVHLFbabUHANyrZLI0gZaErWOQkF22RK0aLo2liOiWeaFGwT25TYpgSlEFLQU9zycWB7anxUd6WOXyMKOk3TJg8pRevcOqVI0pxMKcI0QxgGpYJNpWizV5xRixN66z71ZkotTqk3A9Y1I+oDTeoJ9A4kVI2UUsGk5Ji4gU3dkVQDScFxKNvQXfRwHAvXFriWhWdJrFzgWZLzF83hps1MXjl/0e4fHx2PS0209XTQaZq2WYZhtHZA2Wh5gjAMTFMw1fbo9hwaQdxq0Xk2UyoJ9cFWXp8fUG3E1ALFQN3H8RLKscRzLYI4o2EK1jViOjybkiPpLHmYpmxNXrEkH3vjfuQKbn5sWbtM575uDn938gGkg+XYXZtMj/elJpOdDjpN07ZqaHmCFK01celg12aaZ0hhUCm5VIo20ztzqmFMfz2gHiZ0xwWazYi+IKIx0KQvzOitp5j1mIIX4zlQsj3CVFENBWvrMRXXpKto47kOpmnwgePm8sHjXk0tSJhe8Sg6sr2v5tDJCkNn6I1m6E2UpSaTlQ46TdNGZMNdV7LBXVdyBQ0/pq8ZM73iMr3sMaXg0ggjqn5E1XPoDhOalQLNMGFN3afWiGnGGc0opyoyygUbzzYpmBI/segNYip2RNERVIoetmVimoooTRGGGjynT7SDbWjPzaGdWMI4o7cZ79KJQxNxqclkooNO07Tt1pplKPjnO1sTNIaWJpz7ujl8+tQD6Sh5lFybqZWMWpTQ3whpBhk9XQV8P6XP92n4Kb2NkN5aiAQ8z6JkCzzXJbQy7KjVtVmybcpFk9BJsUyTomO2thwzTUwpkIOtuSxXfPFXzww7q++Co+by92/dNbMid8fJFNroGNHygrFALy/QtLFlSxtev+fIOVx56oEI0VoXh1KkOTTCiFoQMeAn1KOEZpTS8EN6GwH1ZkwjUWR5hmVIiq6JaxuUXQfPsZGWSVEIXBsqRZeiYyOkQdGReKaFbUn+/3c9xw8fW0aYDi/Pua+bw2dOm79TZ+htaDIsNRmPdnp5gaZp2oa2Ngvx5seW8Yk3749jSQzAMEBKg66SR8W1mVJKacQp/c0Iv+DQ01mi6SdUo5BaI6LaiOhvxhgBVMOcDifEtW1808JzLfrDJkU7omAZVFwHx8lQ5Nz02DLizZTnpiXL+MSb5+HZEgOFsZMHx06GpSYTjQ46TdO229ZmIQJUg4SZjomitb+mUgplKAwpKMjWmFxnwaUZxgz4ITXPpiu0aJYKDDRC6mFII0ipBjFrIoVpJLiuRcGHkucS2zY1y6AW5BStiEaSbfEw6NasyJC53UUUqlWmHTg4Vhu/dNBpmrbdtjULcVrZxZSidT6e0TqVXClFnqtWsAiBJaCr5FJ2baI0pRGlVP2InoJNMy3SDBLqQUS1GdHXjKgHCc3AoD8IKFkhhYJNxU4JbQslWH8g3mbK0+GaJPngkgQUBgYY23dwrDZ+6aDTNG27jXQW4tBMTaEgV0Z7my+VD6aSMJCmoGjaeJZJV9GlEUTUwpiak9LhWXSXC+wVxtTCmP5GSC2IqTYzBvyYqmtTsQ0Kns2iuR0sWTZAkq1PPNs0OH3BdOpRglJ56wghS2IYIGiFIBuE3u5arqDtXjroNE3bIdszC7G9NAGjdSDs0F7OqvVMZYAhBRbQXfaoeA5ReX0rL4xsmknKlJJHI4yp+REDQUItiAgjgQwyDp9VJM5SnljeHHxPOG6/Hk6f38O6AZ+GJbBsC9eUlB0T17ZaszE3Cj1lDF+usPFp6dr4o2ddapq2U3Z0FmKeq1aX5tAdqhVO62+3ujpTBc0gYsCPaEQZYRITZYpGkFAPY6rNiP5G2JoYk+UYloNQKdO6CnR4NkXHwZRgS0lBChxH4lgmtm1SsCVlx8KUsnVQ7dCYHTDU0huiQ29s07MuNU0bNTs6C1EIA4HR3mJMDYZcO0YMAyENbMAqupQGx/L8OKMaRJQdh644pqfoElQK9McJ9UZM1Q/IM1g7EFH3U0qFmKItKNoOvitxlIkbpbimpC4NBhwbx5KUbEnRsTDNVlgLoxVuKm/N1MwHI3iopberlitoo08HnaZpe9TQFmNKtbYYGxrHE4aBMdTiEwaWkFimwLMUHQUHP4yp+Sb1OCUuJHSlOfWOFN/3GGhG1MKEZhTRXBfguC4FEVIquZgip9Mt4rgS2xL4cYprWTQkOLaFY5lUXBPXMpFSYAyWY+PQaw0z6tAbD3TQaZo2JgyfuLI+8Fp7sDAYMCBNAwlYwmm38ppRRi2MKMc5kWsxtewRhBn9cUwzTOmtNqgn0Ih9TNekEdXwQpuSbVJwbZpxhisFdpRim5J6IHBsE8+yKLsmnmWSK6O1Bm9w1ubQhJpcsNXQ0wvM9zwddJqmjSmbTFwZbNUNtaoMYzBYpEBI2q28zqJDM4xoRja1OKHspVRii1qUMq1kUwsS+msBfhjS5wssK6dXQtEz6fQsCpaD60qsPMdJDIIooykianbrgNiCPXjckG21xxKHhus2Dj1jsMX3z796tn1mHeiDWvcUHXSapo1ZQ+N4QxNXhta9CcPAkqJ1P61WnlAKq+BSdhXdWUYzTKmFEQU3J0kSOos508oe9SRhoBnT1wwJ45S6H/GKYdLt+nR2uBRNSclzsa0cxxSYWYYVp9SbBgOejSNDirZF0TGxLZOhxpuxQegp4Eu/epablyzTB7WOAaMadCeddBJr1qxBKcW8efP4j//4DyqVCldccQW33347Qgj+6Z/+iTPPPHM0i6Fp2ji38cSVXCnywUkhQ62jXBnkhkJIMKXAkZJKwcaPExphSiNJyOKMzsyms+Qx1S9wy5MrePTFanuq52umebx+/06KtZhiwaTDMfFcG8vMcaQkVRGhMKgFCY4l8RyTomVRck2kEO2wi9LW1mOb2yLte48s5ZNvnkfB0e2M3WVUP+lbb72Vjo4OAC6//HK+9rWvcfTRR/Poo4/y7LPPsnr1ao466ihOPvlkyuXyaBZF07QJYHMTV1pdha0TFaQYbOUJMIREKoUlBSXHJk4z/DChGSfYccZPn1zJb18aINsgi55eGyCE4nUzS/ihSa9pUPBMOl2Hime2JqvI1oG0SZK2JsSYJrYl8GyTDsfGdUzW1IItbdQCwMpayNzugt6CbDcZ1aAbCrk8z/F9n46ODm6//XYuvPBCTNNk5syZHHPMMdx99928+93vHs2iaJo2gWxu4kqaq/ZWXu3tx5SBYSikBEsKHFNSzm2qQcxdT68jzobHUZrDn1ZHnHLQNPw0IYlTagM5fpTTVzdwXZOKa1GwLDxXYpuCTCnixMAPYmp2giMF5jbG4KYU7FYgG61ZnHrfzdEltv2QnfP2t7+d6dOn88wzz/C3f/u3LF++nNmzZ7evz5kzh+XLl492MTRNm4CMwa5La/BcOmjtapJkOUox7JoQBpYlcW2TKFHDFoMPf03oLHvsP7WDWdM66azYSBL8MKK3P2Jpb4OX1tRY2ltn3UDQ2oMzTUlySOOEepBQbUa89eDpOObwr1jXFJy3aA4FR2IMdbnmgwvj88GT27O8vRG2tmuMeifxz372M7Is46qrruKGG24Ahv/FsqVf5uLFi1m8eHH7dn9//+gWVNO0cW1zE1c2XNxtivWtvOkd3pZyDgPYd2oZQU53lhOUPQaCiDDOWef7pFFrzC/IMgaaCY4d0uFYlBxJR9HFMiW2hPccthdZlnPX02tas0YNg3cdNpOPnbhPq7tV5WAIhNHaEqa96TXolt4utltGQ6WUXHzxxbz73e/m2GOPZdmyZe1ry5cvZ9GiRZs859JLL+XSSy9t354/X89S0jRt2zacuDJ8HE8NjuMZVDyLC46ayw+WbLQptSk46/CZvKrTI8xygjSjI1V0eCZBmjEltOkPU3w/phlFJGmMXxf4UdraMLoR0uU4lB1JwbM558i9eM+Rr2LATym7JgVbsHwgoCBDKp6LYxk4ltVem2fo0BsVoxZ0tVqNZrPJjBkzALjttts4+OCDede73sW1117L+973PlavXs3DDz/Mv/3bv41WMTRNm6S2NY739289CMNYvyk1wLmL5vC3J83DANI8J0xzgijBSgWFNCexM8puil9waIQ2UW7Q5wfEUUQchESBJLAyHCFwvIguz6HstmZnWhIUBnEQkQADfoxjW5RMg6Ln4lgC2zJ16I2CUQu6gYEB3vWudxGGIYZhcOCBB3L99dczffp07rnnHg444AAMw+ArX/mKnnGpadqo2XgBens9Hq0TGC4/6YD2ziWuJdqhaCqBbSoKlkmUJERpTphmWFlKJYE4NfFTxZSiRb+ftNbkRRFhkhLGGX6aUfcTbMugaJt0eTZF16LkOgiRYQuTMIwIgf4owZYmJVtQGgw9U0oECjF4vIKCduiBDr3toU8v0DRt0tn45ITNbd214WPyXJGmGalSRIOtvChJW5NeMkWQpARZjh/EDIQZYZLSCALiJCXLBMpsBZdjCSq2SXfBoujaFFwLIXJMYZFmOQIQlsSWkrIl8NzWtmFSiFb5Bk9UGAq9oW/voZAbOktvMoaePr1A0zRtA1sbxxs6dHXYY4ZmbSqFbSpcU5KkKVGaE6UZdm5SzBSJZ9OdpDTDjGpoEiUGjTgkimOyIMWPDEIrZZ0fU3ACpjguBVdQ9HIcS2KaApUrgjQhihRGmOBZkrJtYVtmO/SkMFqht0FLL9Pdm1ukg07TtElrc+N42Qa7rghhbNL1KYzWpBbHkrgbtPLiNCVOBbYlKDkGXQWLZpISxBYDfkJYyAiCgFgpsjClERs0mymmlBSdgC7PoehJSp6DYwoMISDJ8dOcZhBjWRaOaVByLFzbam1PJsVga7TVItWht3k66DRNm/S2NI638dlzG7by2uv0Blt5SSpJs6zVyktSLMvAyy2yNKPHs6gninpg4Sc5kZcShBFxlhKHinpu0AwzZM2g4Ib0eB7FgqBou9hmhhQWaZySJdAMYyyzFXRlz8Y2ZTv0pGit29tc6GWoVnBPwtDTQadpmraBze6rqYYOYh0cCxsMiqHHSdEKPaUkbpaT2CZhkhJnOakpsWyLgoKeskMjjGmGGY3IJEwNwiSmGYXkSUacCOI8pdocwLIE3W5ApWBTdBLKnostFcqQRGFMLA2acYwpTQpSUPAsbNPcJPSkMFpjjZM49HTQaZqmbcaW99Vc36059DhpgBSSPG91a5qmaO2HmWYkWU6c5iQqJ8taO7V0uhlp7lINIvzIpBnahGlGmCREaUyetDaAXp1ErKnHFDxBtxNR9kwKtoXjWHgSEJI0ThgAanGMY7b24iy4Fo5pYpsCSwrEFkIPpdot1YkcejroNE3TtmKk3ZowvDUoBZjCwFGQZjlp1urSTCTEaYrMc6bbJbIsJYwSqlFOM4xpxg5xmlJKU5pJQp4Imn5KEKRQkxQdQY9jUypIygUPSxhYJmAIoigmkYJGnGBJk4IpcB0TS0ocS7ZDr3We3vrQG9pyrN1SHWy1TpST03XQaZqmjdDG24xtrlsThrfylFKYUpDlObYlSbOcOJVESUqqFJm0ME2TopeR5C7NMKIWpNTCmELuESYJaRYTx4o0gUaQ0owSRFNSsgK6XZeiJym7Dq4jQCmUMojSmDST1OMEUwg8U+K5FqYQmw09NVgfpVqL5RkMuokQejroNE3TttNIlicM2bhr05KtheiuJUmyrNWtmSkyZWDmCscq0FHMiaKUgTCmGZn4kUVs5cRZRpqEpBkEqaKeptTDOmZDUrJ8phQ8XMegVLBxbRNhQJZCqFKSNKMeJ1hC4Flmu6W3YfemOUFDTwedpmnaDtqebk1YH5BStFp5Vi5wrNbWZEmSEaUpaa4whcAyDAqeTZplhFGrhVcPM6LYJMlzvDQnjELIIUihP4mpNhIcT9BhWXQUXYqOxHVMCo5EKQNyozVJJs2oxQn2YOjZlsQ214fe0AJ1Brs3h0IvyfNhQbe5Oo5FOug0TdN2gZF2a8KmXZu5glQKnEyS5TlBnJEYBjk5Upi4pkXJs0mznHoYMxAk+GGK41jEWUoxy2hGOeQmQZSyJopYU4spFAw6HIdy0aJkm7iWiedIEJIsyQlVQpRmGLHANgw82xwMvOGh15pRyrCdYrLB0DOG6j6GQ08HnaZp2i60Pd2aMDz0rPZYntkay0tSojQjzcESEksa2E6BrlJOGGUM+BHNOCWIMkyr1forp4pGmpEkgiTJWRWFrKnH2NJgSsmhUJBUbBvHFq2F6aYgTTLCXBFnGUJKLANca/OhZxigDKMVeIMTWdLBY9qHZm1KIdoBOBbooNM0TRsF29utCYMhKSSmGhzLkwI3z1tLFJKcKEuRgBCSot1aRpDmGXGY0ReENIKMMDWpJBmpkyPzjCDNaMYQpgkvV1OsusQWAT0Fk3LJpuw57TAzpCDLMsJMEaUZUkoc02iF7GDoORuEnjnYXG0Het4K9SzNWqGXj43Q00GnaZo2yranWxM2auUpgZ0rHEvhZSZxkhImOSlgGArHkLhFk1LRJkpTmkFKrx8RRRlRluHZ4DkJSZiTCUE9NvDTiGYtxfYTSqZPxTEpl1xKnoVr22BkCGGQ5Tl+oDBEipASzzSQorUnpzO4OH1zobd+sX0r9AzDQORDm2dv2qodbTroNE3TdpPt7daE9QvXTQn5UCvPzklzRRinxHnW2ptTCAq2hWubdHe4hGFKLYipBTF+KEBamChcu9U6NJDUI0VfHNMXpLhBQtEUVByLcsGhVJB4lk2OwkCQ5znNUIGRIqXENRNMaSKl0Tp0dnD/TykEYvCAW9Wu4+A4ZJ636rlB6O2OBeo66DRN03azHenWhFZQ2oOtvDwfPEUhy0myjDDJSAeP7ZHKoOxalFybqZUM30+ohgkDYUIUpwhTkuc50yxaO7LEkiSFahRTDVJkM6TDMun2bAqujecJPMtGoUC1xhH9CCDDtCSRaIWeiIzWNmRyfehJYSDZNPQ2nMziWHJUP28ddJqmaXvQlvbW3FYrT0oDKcEyBVkucW21fgJLkpPkCkMoLCnpLEk6yi5h0pqt2etHhFGGn2Q4soC0MiwMwiQnjARxquiNInr9BCF9phRsOjybsm1j2YqC65CjQBkkaUaGAcSYpiBJU0Ihtxh6ptEKaUUr7HbHiag66DRN08aAze2tufGRQVt73lDXpmNKXDtrd21GaUauFNIQFB2bgm3SUXJaa+n8mD4/Jo5ae3LaoojjJGRpTpYbBLEgImVtLWJdPUJKgx7PplJKKNsOjqNwxGD3pjKI04w0NRAiR0jRGk+UEhEarcksUuDZEjG4Tk+areUVo00HnaZp2hiyo92aMDRr02i18rIcZ6hrM80IkpQoyzFEayZk0ZEUbItpnQUazYhamDIQxESRQWhmgEGHlWJhEyqoN3PiPGFVLWJNI8Y1m3R4Fp1ll4Jp4brgDI7pqcwgzVMyQ2BkgxtdpymxlDSj9aHnmALTlMhRnpuig07TNG2M2pHJK0OkFEgJtinITIlryVYrL0mJkoxEKaRsdSV2lwt0lBTT84xmI6YaJDTDhCA1yFAYCfSUUhQOSaZoRIo4i1k5kLdCTxr0FCyKRYeiY+PZAsuUpOSIVJAaGZkQRJlCGmBnGbEQNA0D0zSYWi6M6ueog07TNG2M25lWnjEYJqbZmjnpWiZJ1uqqDOLW/0Yqw5ISV0jcskNXpdAazwti+oKYRpASpaDIkULQIzOE4dJIcoIYoixh+YBCNGI8YdBdsikX3daemrbAlJIMBSmkRk6WK4SRYxhQNKxR//x00Gmapo0jOzJ5Zf1zBULQ7tr0bIs4zQbX5rV2R8FQWOSULIuSZdJZLhBGMTU/ppak+EFGkkCIwnEtyi6oTBIkObU4J8gzXq5GiEZEURh0lmxKnkvBMvE2CL00bb1XbsBeo/yZ6aDTNE0bh7Y0eWUkrTwY7Nqk1bWZmhJvaALL4LZjSZ5hGGAJQUfBpew5TM0z/CBmwE9oxK1z9JJUEQqB6QhmOAa5ygjinFqS00wy6v0xZj2iKCQdRZOS12rpFWyBlBKJGPXPSgedpmnaOLa5bs1t7byyMdMU7a5Nb7BrM0pzwiQjzjLCNMOWEltI3JJLV9kjSFLCIKbfb52sECYZcQ7KMHFdRdlr7YpSj3OCNKORZgxUFbIWUTZNKgVJpeDh2Sn7TKuM6mekg07TNG2C2JnJK63nt7o2TVPgWDkFxyJJM6KkNWvTT3MwFLYh8aRFucOiUmrti+n7EdUwpeZHxFlOmEOCoORJukXrdaphRphCLU4ZSHJELaLTtjhi3+mj+rnooNM0TZtgdmbyyhAhBLZodW26lqSYt8bzoiRrnWmX5YgMbCkpWyblDkl3BYIko94IqEYZzSAmynOCHLJc0ulKLLO1FVgtSAkSiAZPPhhNOug0TdMmsJ1t5cHwpQqeZZLmFmGSEaUZcZoSKgNTtNbHdTgmFbvMlLzV9VlvhlSjBN9PiJWimeUoJegqOHQKhW3qMTpN0zRtK4I4Y209YmrZwbO3vGfkrmjltZcqIHAsSZqp1j6bcauVFyQpvlLYorVDS7EgqbgWPVlGECYMNCNqUUocZ8SZIk5z0tFv0I1e0L388stceOGFrFixAiklZ5xxBtdeey33338/b3vb29h3330B2G+//bj11ltHqxiapmkTUpYrvvTLZ/jeI0vb97336LlceepByG2Oxe18K88wDCyztQuLa5mkWatrM0gykiSlmaQ0UoUjJJ6UlCsWnUWXKMsJwpj+RkQtSBjl/ZyBUQw60zT58pe/zBFHHEEcx5x00kn87Gc/o1KpsGjRIu69997RemtN07QJ70u/fIbvP7qUaIMm0fcfbYXeZ06bP6LX2BWtPFh/qoJtSTw7Xx96aU6UJIRpjhDgmiYlS1KyinQUXYIkJctGf6/LUescnTFjBkcccQQAtm1zyCGHsHTp0m08S9M0TduWIM743iNLCZPh/X5hkvP9R5YSxNl2v6YQBqZsHaAqDINcKdK8dSJCno88jKQUOLZJybPpLjpMKRfocC1sKYmSlP4woR7FgEGnazG97G13WbfX6I8CAr29vdxxxx28+c1vBuDxxx9n4cKFHHfccdx11127owiapmkTxtp6tMVrahvXt8UwWoemWlIgB1tzmVIkWWvrrpGeNtBa0C7wbJPOosOUkktPyaVsWxiAHyf0BTHVcMfLOlKjPhkliiLOPPNMLr/8cg466CBmzpzJ0qVLqVQqPPXUU7z1rW/lkUceYe7cucOet3jxYhYvXty+3d/fP9pF1TRNGxemlp0tXjO2cX177IqxPNjwKKHWeF6WW0RJ6zy83XFMz6i26LIs47zzzuOII47gk5/8JACVSoVKpbUKfuHChbz+9a/nqaee2uS5l156KU8//XT7p6urazSLqmmaNm54tuS9R8/FtYZ/hbuW4IKj52519uWO2FWtPGDwGCFJ0bXarbzRNqpB98EPfpBKpcI///M/t+9buXJl+0NZvnw5S5YsYf78kQ2capqmaS1XnnoQFxw1F9dsnevmmoILjmrNuhxNu2oszxhsEZpy9EfQDDVK7cbf/OY3HHPMMRx88MFI2frr4uKLL0YIwY033ohltY5muOKKKzj33HO3+Xrz58/n6aefHo2iapqmjVsjXUc3moZmbA6FyfbM2NxVtpYRoxZ0u5oOOk3TtLFtw7E8aI0XGrsp9LaWEXpnFE3TNG2X2NpJCts7gWVX0kGnaZqm7XKbm7G5I4vRdwUddJqmadqoGQutPB10mqZp2m6xcStPDYaeQAedpmmaNoEMtfIYDL3Rtlu2ANM0TdO0zdkd43Q66DRN07QJTQedpmmaNqHpoNM0TdMmNB10mqZp2oSmg07TNE2b0HTQaZqmaRPauNnUuVKpMGvWrJ1+nf7+/kl1tt1kqu9kqitMrvpOprrC5Krvrqrr8uXLqdVqm702boJuV5lspyBMpvpOprrC5KrvZKorTK767o666q5LTdM0bULTQadpmqZNaJMu6C699NI9XYTdajLVdzLVFSZXfSdTXWFy1Xd31HXSjdFpmqZpk8uka9FpmqZpk8u4D7qPfexjzJo1C9Ncf+JQrVbjnHPOYcGCBSxYsIA77rijfe2tb30rCxcuZOHChey3337DprX+6Ec/Yt68eey7775cddVVu7MaI7K9dX3hhRc47rjjeO1rX8shhxwy7NpYrytsf30feughjjzySBYsWMBJJ53EqlWr2tfGen1ffvll3vSmN3HQQQdx8MEH89nPfrZ97YorrmC//fZj3rx53HrrrcOec+yxxzJv3jyOP/54VqxY0b42Eev77W9/m4MOOgghBA8//PCw1xvL9d2Rul5wwQUccMABHHrooZx11llUq9X2tbFcV9ix+l511VUccsghvPa1r+WYY47hT3/6U/vaLqmvGuceeughtWrVKiWlbN93xRVXqMsvv1wppVR/f786+OCDVa1W2+S511xzjfrABz7QftysWbPUihUrVJIk6uijj1b33Xff7qnECG1vXS+44AJ1ww03KKWUevbZZ9WUKVPajxvrdVVq++qb57maOXOmeuKJJ5RSSt1+++3qwgsvbD9urNd3xYoV6re//a1SSqkoitRxxx2nfvrTn6q77rpLHXvssSpJErV8+XI1a9as9u/3Pe95j/q3f/s3pZRSixcvVu9973uVUhO3vr///e/Vc889p44//nj10EMPtV9rrNd3R+r685//XGVZppRS6sorr1Sf/OQnlVJjv65K7Vh9q9Vq+/k//elP1QknnKCU2nX1HfctumOOOYbp06cPu+9Pf/oTp5xyCgCdnZ0cdNBB/OpXv9rkuTfddBMXXHABAL/61a848cQTmTFjBqZp8r73vY/bb7999CuwHba3roZhtBdQ1mo1ZsyYAYyPusL21XfdunUopXjta18LwMknn8yPf/xjYHzUd8aMGRxxxBEA2LbNIYccwtKlS7n99tu58MILMU2TmTNncswxx3D33XejlOLOO+/kve99LwDve9/7+NnPfgZMzPoCHHLIIey///6bvNZYr++O1PW0005DiNbX8xFHHMHSpUuBsV9X2LH6dnR0tJ9fr9fb/72r6jvug25zDj/8cH784x+T5zmvvPIKDz/8MC+//PKwx/z2t78lDEOOOeYYoLWqfvbs2e3rc+bMYfny5bu13Dtia3X94he/yE033cTs2bN5y1vewje+8Q1g/NYVtlzfqVOnYts2999/P9Dq7vB9n76+vnFX397eXu644w7e/OY3b7Hsvb29FItFXNcFoFgsYts2AwMDE7K+WzOe6ru9dVVK8c1vfrP9x914qitsX32vvvpqXv3qV/PpT3+aG264Adh19Z2QQXfllVdimiaHHXYYH/7whzn++OOHjfMA/OAHP+C8884bdrrthv+txslk1K3V9V//9V/5xCc+wcsvv8yDDz7IBRdcQKPRAMZnXWHr9b3tttu45pprOOKII3jhhReYMmVK+9p4qW8URZx55plcfvnlHHTQQcCWy77xycxbujZR6rs146G+O1LXz3zmMxQKBd7//ve37xsPdYXtr+/nPvc5XnzxRW644Qb+7u/+rn3/rqivue2HjD+FQoEbb7yxffsd73gHBxxwQPt2mqbccsstPPDAA+37Zs+ezR/+8If27eXLl++SvTVH29bqev3119Pb2wvAggULmD59Ok8//fS4rStsvb6HHXYYv/71r4HWX5Lf+c53qFQq46a+WZZx3nnnccQRR/DJT34SaP27XLZsWfsxy5cvZ9GiRfT09NBoNAjDENd18X2fJEno6OiYkPXdmvFQ3x2p67/8y7/w8MMPc9ddd7W/7MdDXWHnfrdvf/vb+dCHPsS6det2XX13ZLBxLNpwwkK1WlVhGCqlWhMaFixY0B7YVUqpX/ziF+rII48c9vxqtapmz56tVq5cqZIkUW94wxvG3CDvkJHWdf78+ernP/+5UkqpZcuWqWnTpql169aNq7oqNfL6rlq1SimlVJ7n6iMf+Yj6whe+0H7OeKjvxRdfrC666CKV53n7vrvvvlsdd9xxKk1T9corr6jZs2e3B/DPPfdc9c1vflMppdQNN9zQnowyUes7ZOPJKOOhvttb1+9+97vqta997bBJGkqNj7oqtf31feaZZ9qPe/DBB9WrXvUqlef5LqvvuA+6D37wg2rmzJkKUDNnzlQf/OAH1ZIlS9R+++2nDjzwQHX88cerZ599dthz3vOe96ivf/3rm7zWD3/4Q7XffvupffbZR1155ZW7qwojtr11feSRR9SRRx6pDjnkEHXwwQerW265pX1trNdVqe2v75VXXqnmzZun9ttvP/Xxj39cJUnSvjbW6/vwww8rQB188MHq0EMPVYceemj73+inPvUpte+++6r99ttP/fjHP24/Z9myZeqYY45R+++/vzr22GPV8uXL29cmYn2/853vqJkzZyrbttXUqVPVggUL2tfGcn13pK6maaq99967/fgLLrigfW0s11WpHavv2972NjV//nx16KGHqmOPPVYtWbKkfW1X1FfvjKJpmqZNaBNyMoqmaZqmDdFBp2mapk1oOug0TdO0CU0HnaZpmjah6aDTNE3TJjQddJqmadqEpoNO0zRNm9B00GnaBJdl2Z4ugqbtUTroNG2MuOaaa7jmmmvat2+55RbOPvts/vCHP/DGN76Rww8/nDe84Q388Y9/BOCXv/wlRx11FIcddhiLFi3iiSeeAOCll15in3324fLLL2fRokX85je/2SP10bQxY2e2etE0bddZsWKF2nfffdt7d775zW9Wd999t1q0aFF7e69HH31Uve51r1NKKdXX19d+7OOPP66OOuoopZRSL774ogLUvffeuwdqoWljz4Q8vUDTxqMZM2ZwyCGHcM899zBv3jxefPFF9tprL/785z9z2mmntR/X19cHwKpVqzj//PNZunQppmny/PPPtx8zffp03vSmN+32OmjaWKSDTtPGkA996EN861vf4oADDuDiiy8GYN999+Wpp57a5LEf/ehH+eAHP8h73vMe6vU6XV1d7WulUml3FVnTxjw9RqdpY8hb3vIW/vjHP/Kd73yHiy66iAMPPJB6vc69994LtA6eHAq9Wq3WPpvrm9/85p4qsqaNeTroNG0MMQyDs88+myOPPJIZM2ZgWRZ33HEHX/jCFzj00EN5zWtew6233gq0Jq9cdNFFHHPMMSRJsodLrmljlz6mR9PGmFNOOYVPfvKTnHzyyXu6KJo2IegWnaaNEX/961858MAD6ezs1CGnabuQbtFpmqZpE5pu0WmapmkTmg46TdM0bULTQadpmqZNaDroNE3TtAlNB52maZo2oemg0zRN0ya0/w8hCMprNn5vnAAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from scipy.special import expit\n",
"\n",
"for alpha, beta in zip(alphas, betas):\n",
" zs = alpha + beta * year_centered\n",
" probs = expit(zs) * 100\n",
" plt.plot(year_range, probs, color=\"C0\", alpha=0.02)\n",
"\n",
"time_series.plot(style=\"o\", label=\"observed\")\n",
"decorate(ylabel=\"percent\", title=\"Percent saying people can be trusted\")"
]
},
{
"cell_type": "markdown",
"id": "01d13821",
"metadata": {},
"source": [
"It looks like the model fits the data well, and makes a plausible projection for the future."
]
},
{
"cell_type": "markdown",
"id": "05abf2a4",
"metadata": {},
"source": [
"## Centering\n",
"\n",
"You might remember that we mean-centered the predictor, `years`.\n",
"Now here's why: because we centered `years`, the sampled slopes and intercepts are uncorrelated."
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "a2659c2f",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAD/CAYAAACHFRPuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAAuJAAALiQE3ycutAABiTUlEQVR4nO2deXxU1fn/P5nsECAhBbKhuPAFA0kIqGhDEEmMgSBIrWXT4l4LfFXsAtUIgabf4lYUTa1WrUtRqSI1EowIKoVAVZaEhCAVf0pNMkExgCyZLJP7+yOcm3PPnHvnzpbMTJ7365UXZObec8+5MznPffYQRVEUEARBEESQYunpCRAEQRCELyFBRxAEQQQ1JOgIgiCIoIYEHUEQBBHUkKAjCIIgghoSdARBEERQQ4KOIAiCCGrCenoCwU7//v2RkpLS09MgCIIIWurq6vDDDz/ovk+CzsekpKSgtra2p6dBEAQRtKSmphq+T6ZLgiAIIqghQUcQBEEENSToCIIgiKCGBB1BEAQR1JCgIwiCIIIaEnRE0NLSbu/pKRAE4QeQoCMCFiNBtnhdJUYUlmPxusrumxBBEH4JCToiIDESZC3tdmzYVw8A2LCvnjQ7gujlkKAjAg5ngiwyLBQzM5MBADMzkxEZFtrtcyQIwn+gyihEwMEE2YZ99bqCbPWsMVh1QxoJOYIgSNARgYkZQUZCjiAIgEyXRABDgowgCDOQoCMIgiCCGhJ0BEEQRFBDgo4gCIIIakjQEQRBEEENCTqC8AMoqZ0gfAcJOiLgCDahQOXKCMK3kKAjAopgEwpUrowgfI/fC7rDhw+joKAAMTExiI2Nxbx58/Ddd985PW/37t2YOHEioqOjMWjQICxYsABnz55V37fZbLj11luRmZmJiIgIDBs2TDrOXXfdheHDh6Nv376IjY1FVlYWysrKvLU8wgWCUShQuTKC8D1+LejOnDmDnJwctLS0YNu2bSgrK0NNTQ1mzJgBRVF0z6uvr0dOTg5SUlLw6aefYu3atXj33Xdx2223qcfY7XZERETgrrvuwuzZs3XHyszMxF//+lfU1NRg165dyM7OxowZM/DZZ595da2Ec4JJKPBCevWsMThUnI/Vs8Y4PdbsmARBcCh+zHPPPaeEh4crx44dU1+rqqpSAChbt27VPe+BBx5QBg8erLS1tamvvfPOOwoA5fDhww7HL1++XDn//PNNzys2NlZ57LHHTB17ySWXmB6XMIetrb2np+AR972xTzl/yUblvjf2ee1YV8YkiGDD2T7r1xpdRUUFxo8fj/j4ePW19PR0pKSkYPv27Ybn5eXlISysq5Rnfn4+LBYLduzY4fZ82tra8Morr+DUqVOYOHGi2+MQnuFtTa47NSFXzK9mj3XXpEsaINFb6Paizk1NTWhqajI8pn///hg8eDCsVisSExMd3k9ISEBDQ4Pu+VarFZdffrnmtYiICAwcONDwPD3Wrl2LX/ziF2hubsaAAQPwz3/+E5dddpn02JKSEpSUlKi/Hz9+3OXrEd3H4nWVahcEPdOhO7S026UCWey8YISZLg2uHMfjrXXrrZMg/Ilu1+jWrFmD4cOHG/789re/BQBDP1xISIjue+6ep8f06dNRWVmJnTt3Yt68efj5z3+OvXv3So9duHAhamtr1Z+4uDiXr9cb6QntwlfBLc4iQ5lPDoDTCFJn/jtXjwO8t+5gi4AlgpduF3TLli1DW1ub4c+LL74IAEhKSoLVanUYo7GxUarpMWTntbW1oampyfA8Pfr164eLL74Y48ePx1NPPYWMjAw88sgjLo9DyOmpDdMXwS2uCBGzx5mdlyvHebpubz4kkAmV8DXdLugsFgvCwsIMfyyWzmllZWXhk08+0Zg6a2pqUFdXh+zsbN1rZGVl4YMPPoDd3vUHVF5ejo6ODkyYMMEr62hpafHKOL2dnk4ZcEUTMoNZIdLTEaSerttb8yetkOgOQhQjO18Pc+bMGaSmpmLEiBFYtWoVbDYbFixYgOjoaOzcuVM1Q44cORKLFi3CokWLAHSmF6SmpuK6667D0qVL0djYiNtvvx1XXnkl3njjDXX82tpatLa24i9/+QtKS0uxadMmAMDFF1+MmJgYHD58GP/4xz9wzTXXYMiQIfj+++/x97//HatXr8bbb7+N66+/3ukaUlNTUVtb6/2bE0T4yk/Wk5j1XQW6j8uT+be02zGisFz9/VBxfkDfC6LncLrPdkPkp0d88cUXytSpU5U+ffoo/fv3V+bMmaN8++23mmMAKMuXL9e89tlnnykTJkxQoqKilPj4eOXuu+9WTp8+rTnm/PPPVwA4/Hz00UeKoijKN998o0ydOlUZMmSIEh4eriQkJCh5eXnK+++/b3r+lF5gjp5KGeiu6wZ6SoSvoLQIwhs422f9WqMLBkij81+8qUkaaTZmr+Mt7c4XWqIvNU9xbFevFehaMeE5zvZZv86jIwgzuOPX86ZvUOZnYuOZvY63fFW+8Hn52o8WGRaq3hdXr0U+PsIMJOiIgMbdjS4yLBRD46IBAEPjoj3yM4mCjJ+TmaANbwldXwT2dEewELtf97y+z6Vr9XQgExE4kKAjAhZPNrqWdju+Od4MAPjmeLPbm6QoyNhc+Dk5i3Dkx5iW7nr6C5u7LyI5fR0dyn+GpVUNmJ6R5HAtvc+mpyNXicCBfHQ+hnx0vsUTP5uvfHT3vL4PpVUNpsdl505YtRV1J2wAYPpc2RoCzUcnroG/lpnPSG9u5LvrPTjbZ0nQ+RgSdL7H0xB3b26GbGOenpGENXMyTR9fkJaIsmptkQNn4faBFp7P32szASierM+TACASkIEHBaMQQY8nm5K3ohzZv7wZjn9d7zx2fFm1FSnnfIaAOVOct/yMZvFWwI7Mr2pUFxRwzTTpSQCQr4NbyI/YM3R7UWeCCCZ4zcHe4WgcMdIs+GLMTAM8ZWtDRJjFdLK56Gf0tXnRrKbK5sciKnnBw9iwrx6rbkgznPPqWWOcHiNipsi1OKdVN6Rp5qc3N0/ucTAWRggUSKMjCDcRN8vSqq7OGCyoQk+zYP9fPWsMpmckobSqAYvXVaJfVLjXalaesrW5uTItoqZ6z+v7dI9jGEWeuqqluSpYXA0AYv8605A90fYoQrRnIUFHEG6it4E703r4DbOl3a4KSHc2QH5D58/NfvhDpBVtRvbDH3q8qS5dX635nTfLMsQ1GUWeeru+qN48nAlIsYvEPa/v043E9VRQUYRoz0KCjiA8QLaBMyEn29xkZjxPN8DIsFDNBn/K1qbZsPWS2c3Az5chztPsmvhzfLHR6wkjZ+t1lt7A5qv3nll8KeAJY0jQEcQ5PMmlk/0fcNzceOE3PSMJkWGhHm+A4gYfEWZRTXCMDfvqccrW5nGwRXVRniaNQVwTEwJsTcz31R2mut+8uV/9P5uHs/WKc18zJ1P6WSxeV6kKQk8EFWlyPQOlF/gYSi8IDLqj07herp2rwRYyZPM/ZWvDsncOYMO+egyNi1a1PIbZcH3Z2Gby99gx7Nqu3ltXAj/Y/eTXBsB0eoLRtQItjaM3QukFRK/CTNko2WtG/hdvdOA28st5omHxQS2iJtIvKhyrZ43BnsJcByHnivlNHFvvfumZM9m1XfFtuaJ58vcT6NKUXfGLOXtP1MKJwIIEHRE0iJujUcAEDx9sIW6IRgWbjRCFgZ4Pi+FOgIM4N9kGvHhdJcYVb1FNmTMzkzUmRbPwhZfNCBD+GP7aZiJDXQ38EAURHwjkLb+YGB1LBBZkuvQxZLrsHkTzEtuU+LJSMvOTkVlK9t7S9dW6Jk490x1fA1M09RmN58p6ZeY08Zg9hbmIj4l0q2qIu6XG+Fw68djshz/EN8ebMTQuGtuXTNa8pzdHZyZGX5UCI/Olf0OmS6JXwEfFMSEHdGkEelqIkXYivtfa3qGracg0P2ch9Z4EokSGhaJPROdc+0SEmtKqxhVv0e0QIGpN97y+zzBdgI0vIo6nJ+TEyNBTtjbNHGT3xUxgiYi3Kp2Q+TKwIUFHBAV8VNyaOZlS4aUnVIyEDZ9rlVa0WWqGMzK1+Sqk/pStDWdbO69zttUuNQGesrVh9awxqC7KU4WKLIReFAZ8YIfM1Crm1THYONkPf2hY7qul3Y5+UeGayNCpT243LAvmTh6bt5O0yXwZuJCgIwIeWY1JPeGlJ2ycCSExsEI8V6+ihrPqJO5qHLygGBoXjX5R4QC6NCk+YbxfVLg0hH7VDWkOwuCUrU0T2FGQlojIsFCNT08vYEcWfGLUq2/Lr65Sz3cWsGImj008z9tJ2p4m9/c2/On+kKAj/BazfyhGZklvwI/PEM1+sooavLCR4anGsX3JZFQX5WH7kskaIXL3q3sczIKi4F+6vhojCsuxdH215t7xQjElLhpl1VZTDWT591M4rdeoVx//ulHACuA8j03vgcEbOYqyNVJ1E2P8rfM7BaP4GApGcQ93gh983V6lpd2O3Me3SQMoxB50p2xtSCvarL5fXZSnal083sjfY2Pw9IkIxdlWuzTQQxZYAcBBE+XnzwfvyPICGew+8NGPZoNajIJJjAJBfBUo4k5ADNEzgTsUjEIEHDJNx8wTorf/mGQalkxzk2kbU5/crp7DmxZFvFkVhYf57y4dNtDhPd7UmnLO1MqnDwBARJjFUEvW870x0x5fD5MfW6yYwo9pZFZ2pk16u12RWb8r4Yg/ar4k6Ai/Q/xDAfS7APgKMcEbkOfbyfyDfEQhAGQMjTW8lt5G4My/J4smZX4sBvO7ieOy+dUdb8ZdL++WJrcDkAphoyhM2QYnCkVmNnXFrGX0QKBnOjaLnk/Q3zbrQMLf6nqS6dLHkOnSfZyZvHx5Xd70AsChA7hRHh4A5Dz2MepO2KTHm9k0ZTlmRveDN//x80mJi0YdV36Lncded4bMrAkAqQ+9h7NtHegTbkHt76eor4upB+J8qovyTJl0+fHYWKdsbbrHGuXk6Y0HOP9ekZkyMCDTJRGw8BtMdz4hyoJP+A7gRnl4TFu57IJ4TEtP1Bxv1kEvyzFz1gaHv1dsPgVpiaowY5odO6/ueDNyRwyWXp/XCjNXfqC2sGlpt6Ol3Y5Fr+3F2bYOAMDZtg788u97AHRpbnrpB4DWJJoSG4W0os3S+yGaq40Ce4w0OqNcRzPBQCTkggO/F3SHDx9GQUEBYmJiEBsbi3nz5uG7775zet7u3bsxceJEREdHY9CgQViwYAHOnj2rvm+z2XDrrbciMzMTERERGDZsmNMx58+fj5CQEBQVFXmwIsJdvLXpmDFtyUpk1R1v1lTvZ/B+J37jfPxnGZpecWbNrxFhjn+W/Lk5j32svs4nL7ON3N6h4FBxPkrmjdUIYXHcPlFhatJ5qCVEHe8PM0erxzBfX2lVA0YUlmNEYTk27rdqxnmvphGLXtvr1JwJALmPb8PqWWMwLT1R1Xj1ku/58UTBz6Pno3P2cED0Hvxa0J05cwY5OTloaWnBtm3bUFZWhpqaGsyYMQNGFtf6+nrk5OQgJSUFn376KdauXYt3330Xt912m3qM3W5HREQE7rrrLsyePdvpXJ5//nkcOHAASUlJTo8NNHzxR+8PG4lsDma1Kk24fGwUgK7we9n4ekWEzVRgMZovoNWCeAEBQE1eFn2Fv3lzv0M+YWRYqKqVsuNyLxkCoFPAsWToZe8ccGjzIyNpQJT6/437rYgO79xOWKUWtp7W9g71uG+ON+P70y0OwpK/B7L+d7KcQf4cUaMTBRsbh/2r93mx8YjgIqynJ2DEa6+9BqvVir179yI+Ph4A8OqrryIjIwMfffQRJk+W2+L//Oc/IyoqCq+88grCwsKQlpaGkpISzJgxA3/4wx9w0UUXoW/fvnj22WcBAEePHsW//vUv3XlUVVXhwQcfxM6dO5GTk+P9hfYgvvB9dac/DZD7UfTC2PnNz2x7nLHnD8TWX6c7HR/o1O70xjV6jw/LZ9oVoO3vxs6t+uZDTbDLhn31WDljlGa80qoGaZg/75ebMjrBoQIK+7/oS+NhrYWAzh5wpVUNmJaeqAqvs612ZK36EPUnmjE9I0nj20yJi0Z8TCRmZiZrrrl0fbUqjNl7YgsjPR+deA47nr3G9/1z9pl393eX6B78WqOrqKjA+PHjVSEHAOnp6UhJScH27dsNz8vLy0NYWJccz8/Ph8ViwY4dO1yaw6lTp3DjjTfiySefxEUXXeT6IvwYX5hzuttEpBfm7kpUoAxRQ8p5fJtpM5iRZiBes6Xdrim5VVrVoBEAsjD87UsmIzm2S+NimqZMCyutasA9r+9zWH9KXDTeq2lUTZcpsVGa85e9c0BjcpyWnqjx3TFfZKglBIeK8/H03LEabbH+hGPJsYK0ROw4FyjCSpMx+PvIm4L5+9UvKlxakYUvdSY+dIglu4zKivE+zN5i3uwNawR6QNA1NTXh8OHDhj/ffvstAMBqtSIxMdFhjISEBDQ0NDi8zpCdFxERgYEDBxqeJ+P222/HpEmTTJk3AaCkpASpqanqz/Hjx126XnfiixDq7gzLdkegmQ1q4UtOAdAEdbBxZeMzmABmQRwy2DF8yS0evbG/P92iChIAWDljlMZ8B3QKFQaf07bqhjRUF+Wp62E+uLoTNkMtceN+q0b7E82CALBjyWT1unylE1ZyrGTeWM296BcVrlvWS5aCwBea5u9fWtFmXPLQew6BLc5KdvHfk+kZSQ6l0oI9EMXfqpf4km43Xa5ZswYrVqwwPGb+/Pl46aWXDP1wISEhuu+5e57In//8Zxw8eBCffvqp6XMWLlyIhQsXqr+npqaaPrcnMGPO8YcxZeiZrJzNwey8mMmvtKpB0yVbNIPJQup5bZCvmMKQ+aL6hFtwtq0DQ+OisenebMNKKnzlE3Ycbw6MCLNoWhWxqE9mymPvpcRGaXx+DKYlimkV7D0AmvvO7kHJvLH4E5fqwN9z3iy46oY0LF1fLS3rJT7ArJwxCg9uqNEIrZUzRmnuX/O5KFDeJG30/WCsnjUG9g4FpVUNCLWEdNt3t6dx14wfqHR7Hl1HRwc6OjoMj7FYLLBYLLjlllvw5ZdfOpgphw4dijvuuAPLly+Xnj9p0iQMHToUr776qvpaW1sboqKi8OKLL2L+/Pma44uKivDSSy/h66+/1rx+/fXX491339UIR7vdjpCQEFgsFrS0tCA01PjLQXl0WnyRl+Tt0mDi8UYlqvjyW7ww482RDDGXjj+X93ExZMJR1l+Osei1vZox+Bw4WW4g8wfy8y+vsaK5rQN9IkJx7agETc4d7zPjhbvePRAFm3h9nuqiPESEWRzyBGX5fszvKCt9JjZeZfdN7/PviXJV/kIw+SP9Lo/OYrEgLCzM8Mdi6ZxWVlYWPvnkEzQ1Nann19TUoK6uDtnZ2brXyMrKwgcffAC7veuJsry8HB0dHZgwYYLpua5ZswZVVVWorKxUf5KSknD33XejsrLSqZAjtJg1lbjqN3AWXGDWPKNXakyvRJWolfHmsUdvTNeYD8Vcunte36fxv23cb5VWNdErKjw9IwnxMZHq+/e8vs9BUC5dX60RrOL4oj/wvpzhqmZ0trVrbXxaBb+Gpeurde+BUdSjyNC4aKQVbdb4QFfPGqPJA+RhwTrMB8dIiYt2EHLsvunRmyug+Fv1El/i18Eoc+fORWJiImbPno29e/di586duOmmm3DFFVfg6quvVo8bOXIknn76afX3BQsWoLm5GfPnz0dNTQ22bNmCRYsWYdasWZqAktraWlRWVqKxsRGtra2qMDt9+jQA4LzzzsPo0aM1P+Hh4Rg8eDBGj+7KNSKc4yyAg68baVYwmSmR5Sy4gBcUYu6WM4ErSyxfur5aXUNZdafwYpsJH+xQWtWA+9dVacLm/zBzNKqL8hz8Vvw8+AAL1vdNpj2yNfB+rTVzMjF1dIL6Pt9dYGhcNK567GMw20WoJcQhOEV2T9m5/JhGofsA1ACYoXHRml55bEy2JtFkyh/DhCm/7jo3yn8B/rPhezMwxOxYvUWw+7Wg69u3L7Zu3Yrw8HBkZ2djypQpSE1NRWlpqcaceOjQIRw7dkz9PTk5GVu3bsWRI0dw2WWXYfbs2Zg6dSpeeOEFzfhTp05FZmYmnn32WVitVmRmZiIzMxO7d+/utjX2Fow2Pl7LMStoZJUynAUbyMyOIwrLMeHhDx0EhdHTvSh4xOhBXsNh4y5eV4m0os2ayMSyaqsm/yutaDPSijZr5sIEFYuc5Dd3vpkqy/UDuvL+xE7rE1ZtxaaaRqTERmk6n/PChvkx7B2KgwBi6xbrkPLHrZwxSn0A4QUILyBZAMw3x5vx4IYa6T3mozX5tbHrRoaForW9Q6PR6X1mzh6IgJ7f8L0ZGNKbgkzMQrUufQz56LTI/F+8j4QPoNB7wpa1wFn2zgFdf4PYQkd2XRE9X43od5LVngS05jrRPxUdblFNhK4g+qaY/4oXaPyxvP9N9AGKNSbVMc8Fp4jrAKAJyFk5Y5R6PjuXvc+OZY1VxXtkBH8NJiABOPjRch7fppo1p2ck4dEb06Wf14SHP0QdVwNT5q8zqqHpa/TW567g7a0+R7/z0RG9G/GPTtT0WCi6kRmpX1S4av7qExGKiDCLriYohpizp3v+umwsZ4h5VvxTM6+9sP/zFUn4XDJeyCUNiMSh4nxTlUj47unTM5JUIbdmTqaDCVX0vz3+swyNmVQsB6aOecKmRkGK2irfBZwP5V89awz2FOZqNLtvjjerJcPEe2TUbUHs4C6aQQFg8mPbNL479vmKGv3CtXvV47453oxf/n2PRjsGuiwDE3Sa44roWRn0TPFG8L5Ob/kJe7PP0QgSdIRX8YaPxNkfZ0u7XTV/sX/1/rhzH9+m/p8FPfAbb3VRnjoGQ7ZByEyPgKPwZPDlv1i/OgAICYFmjIaTLbj39UpsXzIZeefKcRmxdH01TtnaNAnmZkxzQFdH8kuHDdQIoFO2Nt0x+UR08YGAPVQsXleJccVbdIU1f4+Ars+bXWt6RpKDoBYfWPjAHT6HENAW0+YLNvM+vuhwC96raVSvec/r+xzaFS1cu1fv1gHQNwmKr5sxHcrC+73lJ/QXn6M/QYKO8Bqe+AacpQeIx4qCTfbHLfaF4zUSFswgNhh11n+t7ngzCtISNUEcehX4xXOBzujK70+3aI4pP9CISx4qx+aDRzWvywQH06Z47SytaLM0zJ4XTL95cz8AOGi/E85pNGlFmzVaclrRZixcu1eTiH621Y7qojwHHx0bjx0XFabNVWVzZMEz7F7xgTn2DkWzZvFhIzIsVI1iTT7nsytIS5QW02bmSTa/KaMTHEzFpVUNiAizOPhMjTQ2mdXAm9VVvKl9kSanhQQd4RV8VfpLT3jKBJv4x81rI0PjoqXtdEYUlmP3100wQgzNL6u2qhVGeOEp06xkkZky/1xzm/Z+Tc9IUn1cMr453uxgLuTP/d2UkRpNlWkxfAud/FEJGhOgqCWXVVuR8/g2zX3rFxWuKbclW5+tvcvtv2vpZE3ADdB5r5jgBYDo8FBNgM2ewlyHh43shz9EWbUVoSEhqD9hQ0pcNErmjTUMGGLfkWduGqcpfcbWEhkWih1cOTW+84GZhyvZ62arq4jneZPeUtbLFSgYxcf0pmAUTxJQZUEC3nKsn7K1qcnIMue/iN78ZUEtYiCG3rkt7Xa1GavZYJRdSyfjkfcPqdVMHr0xHUvXV2t+59cxLT0Rj/8sA7mPb5MKQBmsGgtPdHioRvAyP50YfCIG97C58fBaH7tHsuAZEX5sMfiIn5dsTux6soR7MfFf9h1j65B9lnrJ53pFBpzB3zdvJG4HUxK4K1AwCtFtmPENyJ42xb5hDG851pe9c0AdPzIs1KExqGgiZNqZONdHb0zXXZ+o2cl6pu1YmoNp6YmGQo5pjqGWEFy56kP885zg2Pff46qJlgkKXisCOs2ip23tukJODNMHOhunTjmXWzczMxnVRXkaIZcSG4UHN9So5lmZqY6tj5kfeZj/qbooD9uXTMah4nw8emO6Uy2GNy/3iwrXFLEGOjUzJuR47U1mxmTIEv9lmpWRZcJIQzNznN5a9a7nCr6yqvDjByok6AiXcBb44GqVEvGPU3zfU8e6kQ8FgLoB89GFADSVOvi580JSVq+Snct8Uvz9amm3O1QvmZ6RpOlEvmZOJnYtnawKDSY6WMNRPopUphVdX1KhafPDU3fC5tBodWZmMp65aZx6j8VozDHnxWmiVk/b2h3WygI79LS0e1/fpx7HTMbMXJzQL8LhfrB5sWOzH+5s+ZM8oLPcWf6oBLULAv+dkkVoGnU7B+QmSr1C077Am1GSvoy4DPTcPDJd+phgMl1mP9zZB43lJLmCkRlSll/lzfwf0ZyjZ97RqzAi9mbj6zKazQ3bzm3M7HhZDUkAuPvVPSg/0KgZIyU2CjuW5pi6nh75oxI044q1MgGtKU1mYmTFpGXICkRbQgCJoqcLu7eA3LzMikzLTLd8LVEzJm+9Wpl8Hz9v11H19TjeHouN5++5eWS6JLwCH8HItAtXMHralOVXefMPiQ+e4M1cfEJyS7sdj96Y7nCuGGAg1mXkw9714O8Xf7zY+gcAslZ96CDkpqUnYsfSHF0NUiQ6XH7vDjSc1Jhpi8sOajQaVoUFgK6JUU/IAZ0aI6+d7lo6WVfIyebIzJGiZjZUiIwEurqoy7QvM5qN3r3ktWWxLZCIMy3HqOSciD9HXAZDbh5pdD6GNDotZp+QvflUqhcwInsdgCbYw1lVD73Aij2Fubi+pEJzv8SuBWKlkaXrqx3qO7IAE1F7HBoXjUuHDXSYU9KASDSc1KYv8IhaHdCpJYVaQjTr4DUbo8CR5NhoTV7boeJ8tLZ3qE1SWWAMC8Bha+U15JTYKKQmDcDm2qPSABLAOHhI1rGAP1fve8Tup6wVkbhuUYtxpuXIrAaBHijibU3RmzjbZ0nQ+ZhgEnSANoJRD0//INzZEPTKOOmV+tpTmItxxVscXudb2zgbQ7ZBAp3mvdqV+Zp5iWviBbqZKEnZtcTXkmOjcfkFjsKPmQ+dCUFn6+LZtXQyBsZEIDIsVBONCjhGWP5h5mjVHCk+OExLT0Tlf49rTJ4y0xi7Bl9mjEd2jnjPZd8R2bhihKve91Av+hRwLOkle81M9Kbea97AnwWXq5DpknAbmZmFj2CUIZpzXI3UcqXjAGOCpMAzO05mAhsaF62p5CEmKYu5VKLphnUYKKu2SpO6z7ba1WRrptnIEppP2drQ2t5hKhVAFDzJsdEOr5Xfly3VOlnEYsPJFt1AFca09ESUzBsrXVfSgM6ozT4Robhy1YdqoAcr28ZHPPIFp6c8ud0hkIdH9OuxaFJ2/1llmWnpibr3iq+Aw87l73nWH7dIi4CLBbLZnHkTrt7DlljNxKiklxnzn8wU6qsgkEAPLnEVEnS9GCMhZCZCUlbfj3/fmY9DhrMNQazmL9YzZL4wfv7MJ5d5Xpx6HPuXD3vnfXbi+tkY9g5F02GAjSHWbCyrtmqiAfkuCkBXjcX8J7RNhfNHJcAZBWmJDmWw8kclaHyJPPwmLksBADqF/fSMJGzcb8U9r++TCpRQSwj2FOaqfjr+O9Da3oHIsFCHEmmA1hfJIkfZ90SMQgW0/jG+o4XsWH6NvN+Yv+fJsdGoP6fJ8seJ3zVZGTIR8fvBhLeZkl5GEcSyvy1fpQv4Og3BHyFB10sxeqLT+0NwJoTEDZ0PS3flj0lvQ+CjIkurGrBw7V6NVsOCGWTz/82b+6W+JtZnjfnAjNoFycaYmZmMZe8cUP1ZfLNVdv4pW5sm/21EYbkqSPiw+aFx0XhyTufa2Ws8Kef6t/1pVoZmU+4TEYon53QKaWfBMbI/+OhwCzbdm22YtgA4FlxmMI16ZOEmaaPUlDhtuTJe4xEfENhr/Fxkx4gkD4h0MEuyICT+oSAlNkpznKwYN7ue2NrJ6PthNmDDbKUUs1qgOwRDcImrkI/Ox/ijj85MuLCRn8xsQIk3ne96fjK2KRakJeJPszIcfEAsdJ8/V/RBsQAKPkBCFmbOj5ESF42t50p0ifeytb1DbRvkrBoIa2fDn8PSDoyYmZmMz776Xs2N44tbt7Z3GPrYxJY9/FxYcIy9Q3GYL5srv96k/hFo+KFV91osLULWWon57cQHCFl1EvH85AGRqpbG1q33HeP9gU/PHWv4/ZW1QJJ9/nw7KT41xNPvPvno3IN8dIQDZp7ojMwszv442PverKKuMUWd03ZYgvWh4nxEhFl02+aImmbJvLEOdS/5QslAp5mObWaL11Vi8RuVmvnUHW9WzXUspB7o9BWxDZmvhcmEMYP5+lgngQc31GgKRztjw7561bfFh/xv2FePsmqrqkXJOgOEh1pwqDgffcK1f/6sziSbr0jmeXEO5kkjIQd0+t9a2u2Y+mSXiTbUEoK0os3IfXwbRhSWI9QSot4bve8j36B1ZmYyKn6Xq86VrVvPasC+C4//LMO0JaOO+9zueX2fw98M+94B0IzHAoy8WdjZrDBy1QQp+qKDGdLofIw/anSMQHyiY+ZLPqTcbEKruF4WQWoUuu4MowRqXjMRo/rWzMnUreEoIyosRFMseWZmMnZ/3WQqkEUWqSibm15EI4+YPM/Wb1S/U0xB0ENPe5Jp4ABMaU6ihiXeA/H7oKdV88novIDQ+955IxXHFdzVIAM95YFBGh2hi78KOb0nTLH8lZHvUDYGv957zpWl4v1FQFfPNTN+IUA/gZqNueqGNIcuA0xLMCvkgK6OANMzklRN1ai7AY9MeJ22tWsiJPU6IfBMz0hyKBF2ttWOPYW5+NG5Civs/rH6mYBj/ziGGNnJPtPIsFA1UjQlThtdOj0jSdN7Tpb8z5D51Bii5siCg3Z/3YRDxfnYsWSybjI6Q88y0tJu1wQ8+VpjcleD7E1BKSToCL/C3bBnVjtx99dNTsfgg1o27KtHYcEl6nts414zJ9O0sJNh71DUNkDjirdoesPJ/HVmOowDWpNia7vzDggyWHoFP6fisoOaTVtWRPnRG9Pxq39UScfie9btKcxFlE51Fp4tv7pKY35ka5pwrrYlANVPBnTlt8kCQWRpLew4PqBlZqZjz0Gx6g+7r2a63eu1i+rOYA93r9ebglJcFnTvv/8+Zs6cidTUVFx44YUOPwQBOLf76+XHOascLyvYK25UzlIgRCEzo6RC43cqLjuo5m5Nz0hyKvByRwzW/F6QluhwDSPNj/flmSHn8W1qx3MzApLXUvlrib49lnrw2ddNDlpY3fFmjCgsdwhiEec9NC4aMVFhTkuVJcd29n6LiQrTRGWya6nHDYhUc/9CLSEO/lY9n5ieT435bHnEvoV8VKaZzd9VH7cvcPd6vaUbuUuCbtOmTSgoKEBrays+//xzjB49GhdddBEaGhpgsViQm5vrfBAi6HGmUem9HxkWqtlwZBsIHz7PNjVxo+Jz0cRuA7Kk5brjzZrNdcO+eo02sPy6VN219okIxZZD32qCP4xC/EUh2GbX18p2LZ0szYur44S5GQHJBFqoJURNpwDgkPPG5mUmGEaPS4cNRGRYqPThQDRnTjjXcZx1bd++ZDL6RYVr5lV/skXaFojNl+UpimZGsaYpYKwBsw4W3vSnyaInfYm7Glkwa3IMlwTdypUrce+996K0tBQAUFRUhA8++ACHDh1CaGgosrOzfTJJInBwNamcf9+Mb0PP3MI2qu/PtGpqObJrMOHKaxrJkv5sgKN/TlZFhcGESN25xPFHb0zXCF4RMex/434rHtxQox7PtBdWfcRd86QMXoADwNhzCfRGMFMfL3BTYqN0tVwmjP4wc7TmmKFx0aipP6k5lheoZdVWNUl666+uUqMwxfuYVrRZs4YN++qx6LW9qvbNapjyyfoAMGHVVmn1HB5ZCTl30fMX9pZKJP5GmCsHf/755yguLobFYkFISAjOnDkDADj//POxfPly/P73v8fNN9/sk4kSgQF7umY5RnpJ5SzSS+bcl73Hs3rWGE3uEqO1vcPBRMjXXxS5/IJ4Tc4Zy4kCOgUOfw4L2IiJCsP966rUc1jU4bT0RDy4oUbdcLcvmYxTtjZMfXK7U62rtKpBUwz5+9Mtah3OsmqrYdSimbqUsnshM6/yUZcsT5BPFVl1Q5o6R37u4hgsyCaaS1+Q3QP+eizNg91zZtI1E7DDzKmlVQ34w8zRDhVKfvWPKjUVg1VGcUWouRqdLKtrKs6pN2hR/oRLGl14eDhCQkIQEhKCIUOG4KuvvlLfGzhwII4cOeL1CR4+fBgFBQWIiYlBbGws5s2bh++++87pebt378bEiRMRHR2NQYMGYcGCBTh79qz6vs1mw6233orMzExERERg2LBh0nGGDRumrpn9TJo0yUur82/cMbXwvi2Z3Z9VCdHzC5j1Gcg2ivgYzp8T0lWnkDdX8lrGhn31+NOsDBwqzldrNbKIPgAOmsy44i0YUViuESxnW+1IHhCJjfutDi1e+kWF49JhAwF01YlkJPaPdDC3sc23uOyg5tj6E81SDYflBPLBGiIFaYnq+lj1D1ankw9GAYCMobHq/+u4oAwGP0egM1hDDCbhBRqfbtAnQmuWPlScr5ZeE+tkAp2fDZ87xxMVpl+vc+qT2zWf2W/e3K/xK4qVUZyhVwpPDzP+Qm8JuWCOkvQ2Lgm60aNH4/DhwwCAH//4x3j00Ufx2WefobKyEitXrsSIESO8OrkzZ84gJycHLS0t2LZtG8rKylBTU4MZM2bAKP2vvr4eOTk5SElJwaeffoq1a9fi3XffxW233aYeY7fbERERgbvuuguzZ882nMevfvUrWK1W9eftt9/22hr9FXdMLWKkm/iHmM0VXzb6Y3d3I2hpt6sBFXalc5MT+479YeZozTm/eXM/IsNCVQHHb1IAnJbU4uso8pRWNeD7013+pYaTNnWDtoQA1h86CyzLIgBlofAl88ZK0xQWr6tUAy3WzMlUN1Qm4ErmjVXLSbW02zWdwEXtd+N+K1LOmXOHxkUjIsyifoZ6m+qKd83liJ5ttWNU0gAAXX48AOrcRL+eUXsgW7vi8ODA+OZ4M+7LGa7+zkdcsr5+ZpEJLWd/F3pCzdtBH2QKdQ2XBN2dd96JY8eOAQCKi4tx4sQJXHHFFRg3bhwOHDiAxx57zKuTe+2112C1WrFu3TqMGzcOWVlZePXVV7Fr1y589NFHuuf9+c9/RlRUFF555RWkpaUhLy8PJSUlWLduHb788ksAQN++ffHss8/il7/8pdNo0ZiYGCQkJKg/AwcO9Oo6/Q1382uMnlw9bdxq9vr8Zsk2Sn5O/aLCHY6RCRe9MUXqTzRrfH18BKHYBsjWruDa1CFqM9IN++rR2t6hKRSsZ6pbvK5S2lZI7IawcsYo7Fo6WRVwQOfnyYokG5kCZ2YmY8fSHE3FlhGF5cg+FzQibqqyCFY9osNDVd8p/51i//KFAPYU5mLff49r5sV/Bilx0Wg42dnklb3OtNNQSwiueuxj9Xc+4vLpuWNNzZUhfp/Z3Nm/rEC1iJ5Q86Ym11vy37yFSz66uXPnqv8fOXIkDh48iH//+984e/YsrrzySgwaNMirk6uoqMD48eMRHx+vvpaeno6UlBRs374dkyfLI6QqKiqQl5eHsLCu5eXn58NisWDHjh246KKLXJrHM888g6eeegpDhgxBTk4OioqKNHMKNsz6ymTo+c9YgAarFsGbj4x6yZm5Np84zqql8D5CNieGeAwTfnxfMnYub4plHcj52ozseL5BqlHFk/drj2qqbrDjjHxtzkL1W9s7HHrasZ54fM6gHqxOKNB5LyPCLA7+STYP/rPlvycAdKujJPaPhPWHLq035VxELfNl8T7I0qoGh/k2t9pRfqAR0zOSYO9Q1PvEmyTPttqx7deTcNVjH6u/7ynMRXyMY3FsV3xu/Pd50Wt71dd5X6SsqohYRcWbePL32VtxSdC98sorKCgoUDf5mJgYNaWgqakJr7zyCn7+858bjtHU1ISmpibDY/r374/BgwfDarUiMTHR4f2EhAQ0NOj/8VqtVlx++eWa1yIiIjBw4EDD82Tcc889yMzMxKBBg3Dw4EEUFhZi8+bNqKysRHS0uSTfQERPYJlB7xwWoME6DESGheqWStJrVCrCl3Zix66Zk6npDs6XdpIdwwuzUEsIvjneOZ5oimWCjt+ImRDYuN+Kx3/WKSwiwiyqMBNLhOmZ5HghJ5bkctblWyZUz7bacferu1F+4KjueYxQS4gmEETUYFNio1B3wuZQ/SMyLBQrZ4xSz9MrAWb9oUUjyOvOafTsPGflwZgmKN4D9nmxz/WJrV9o3i8uO6jpJM9rZa6UvIoMC8WEVVs1ffP4hwpZgImvS2t58vfpj/i6HKFLgu7WW2/Frl27pNrMV199hVtvvdWpoFuzZg1WrFhheMz8+fPx0ksvGfrhQkL0HdLunifj/vvvV/8/evRojB07FhdffDE2bNig0XAZJSUlKCkpUX8/fvy4wzGBgjdNLWwsvts230iTj4YTTTOskr64aYj+N37DEWsO6h0jCjPxOPHJWTQTMS2G1wD5OYl+sFBLiNOakhlDY7HlXMQju55ZEyE/L1HIJQ2IQsNJm4NmJI4t/p6eEoutv+5KtBY3cSbM+4RbcJYTdqyjufq5nWurJGrRjOTYaFhCOr8LskhTXrDxtU6Zti7WLN2wr14jiPW+KyKymqi8kJuWnojwUIvmAYvX4LoryjJYhFx31Nt0yUdnJEB++OEH9O3b1+kYy5YtQ1tbm+HPiy++CABISkqC1epozmlsbJRqegzZeW1tbWhqajI8zwwXXXQR4uPj8fXXX0vfX7hwIWpra9WfuDjnuUqBgCv183iMSjPxwQ98NBzvG5mW3hUGL/ojxEopRn5B8RhZnUxAG9W4dH21g7+Fr8MIdGoxewpzHcLI9diwr95pugFvkjO7mTGfVHJsNPYU5qJyeZ7DMQ0nOzfr0qoGBzOp2EePZ1NNI+5f11n6S9zEvz/dogrzs20dmnEaTrYgf9QQrJ41Bve8vg9l1VZNNC7TkBn1J5rVsmAVSyc7RJiumZOpfh5MyAFdAS3sc+Q7xos5jbzvTs9CwDf2BbSVU1Jio/D03LFqY1X23RBz94yiLMmn1kV3+RudanQ7duzAv/71L/X3l156CVu2CE52mw2lpaUYNWqU0wtaLBZYLObka1ZWFl577TU0NTWpASA1NTWoq6szTE7PysrCCy+8ALvdjtDQzi9ZeXk5Ojo6MGHCBFPX1uPIkSP4/vvvMXToUI/GCSTMPnGZzR/itaTVs8Zg0Wt7sXG/VS3SC3SaZlrbO7Bxv9XBb8Y/cfP+N2d+QVYEmc2TbZ58aLue9scHfPCaRnJslOoHEn1WMsxU8p+Wnqheq19UOCLDQpE/KkGTCC/ChE39ic60gN+8ud/wGjyJ/SOwv+6E+rusH15ZtRVYu1dN32CMK96iHs/yEO0dijrX8gNHcclD76lmTWYCZsKJmUUZzNc4MzMZ25dMxvenWxAT1blNsc/AKL9y5YxRGtM4X4SA3SfRdyfTxNjDFROovNndzPdcz7TY090CzPaS7C66y9/otE3PihUrVFNjSEiIVKuLiIjAJZdcgmeeeQZXXHGF1yZ35swZpKamYsSIEVi1ahVsNhsWLFiA6Oho7Ny5UzVDjhw5EosWLcKiRYsAdKYXpKam4rrrrsPSpUvR2NiI22+/HVdeeSXeeOMNdfza2lq0trbiL3/5C0pLS7Fp0yYAwMUXX4yYmBjs2rULO3fuxNVXX42BAwfi4MGDWLJkCU6dOoXq6mrExMQ4XYM/t+kxgystcGTH6f1h85uL7DwxiKK6KE+6ycjmIc6PbVCywAwm7FKXlXea3yJCEd83QuM3ZNcUfWdMaMmabwJdQSvMtJccG4V6blMHOk0qMs8WO4dpEt9I/H0yQi0haooFY8roBLxXoy8kZTCzIjN3OiN/VAIiwizq/U3oF4nGU45pF7zJ0VmgjBggBMDhXvOIzXZFUyvQ1TxWfG96RhL2HmnSCF3A8fvu6vecx+zfkq9wNseeFMKeCliP2/QsX74cHR0d6OjogKIo+Pe//63+zn5sNhv27dvnVSEHdKYAbN26FeHh4cjOzsaUKVOQmpqK0tJSja/t0KFDatoDACQnJ2Pr1q04cuQILrvsMsyePRtTp07FCy+8oBl/6tSpyMzMxLPPPgur1YrMzExkZmZi9+7dAIDIyEisX78eubm5GDFiBBYtWoSsrCzs2rXLlJALBswmu5rJHxLNjnrniWHr0zOSpL47s2WW9IQc0JXvpprfWu0OfkNR22NVUphmtmFfvUPzzaXrq9UAl9qV+aguykPF0hxVcDETml6BLzafb443S4swy8i7ZLCDkJuekYRnbhrnYNYzgoXkT0tPRMNJm7RUWqjg6i4/0Ki5v42nWtTNha11Wnqiaq4UP2PWTDeFuxZ7X9Sy2b3mUxTE74bYhLe6KE+TNsHO5zU4UcgZVfYR3zeTJ+erxHEzeFKarzvw9b2gxqs+JtA1OoYrof7OnrbNaGKiedHZOEZPy+J7LKqQD3Dhoz8vHTZQcw1Ro2MaAx+pyF8XgHQu4jyMYJoZr2GagZkRRc2F3QdxbjIOFedrypwBrpUa47kmdQj++vNLNQ8a4j1nmqrMZOoM/jMBHFMx+AazYvDLoeJ8TaoIIzrcgsrleT4z8XW3eZDhzxqdpzjbZ10WdM3NzXj55ZexY8cOfP/993jqqafUKMTRo0dj+PDhzgfpRQSLoPMEd002ehuC7HWja/CmK7EzuRi8wgJixPd4Hx2fqsALPLZBiHl0enMxCxMyetGaTFCw+Yj1KMW1MJ+onvASBY47HdFl8+cxU8eSrYf57ZJjozHu/Dhdcyd7yOA/j1U3pDk85IgRvDJtn5nKgw1/89F5C692GK+rq0NGRgbuvfdeVFdXY/Pmzfjhhx8AAO+99x4eeeQRz2ZLBCXummyMzKRmryFGQvKRfrLgFdl77I+fVS4Rw9V5s5XYJ05cr1FJMVbWamZmMqald0Yv8h22vznejF1LHYsksAALoFNbW/bOAU21Fd6Ml/3wh2q0qxhYwhD7wbEHA77FD+tqwNfL5M2OfIkuFm3Jn9svKlzagogfm/WO275kMgrSElF/ohmlVQ26EaJL11cjMizUwYzI1xSVNVNlr/Hm3bSizT4vr9UT0ZfO/vYCUciZwaU8usWLFyM8PBxffPEFkpKSEBERob539dVXY/ny5V6fIBGYiE+GPZXgyhd0FoWOmadX3oQqPvXz44lRe640UgW6tKaWdnuXBjMgUiN0UmKj8LNnd6m/W0KglhNb8W6tJg1jw756jSa1YV89fnvtCHVedSdsqDvhPDev/mQLWtrtaG3v0DwwsM+ydmW+GhnZ2t6haml8AAsv0Pj0Avad4DUwFjXJYMKA1wiZ4GQ+UH7dfI4krz3nj0rQpIiIMAG5csYodQ3OcuA80X70TPOBqlH5Oy5pdB988AFWrFiB8847zyHxOikpCfX1rplkiODEqLGqHp4+3cqc6WINS16b4ueod20xWIHXDPRqGYrBHs5y/wBoyou1tneowqj+ZAumcs1K607YNAKUjztxVm0FAK5cpe3FxmtjIdxrYl7h0vXVSCvarB7PmuKydcXHRKrHyCgsuERzH/kgksiwUDWAZvfXTRpNin1Gv3lzv2ZO09ITpYWsjTT58gONmCDpRcd/Ni3tdo2maWR98KSosvi9Yjl7VKjZd7gk6Nrb23WTwk+cOKHR8IjeiTvRW974AxdNl2zjlZkQjSL0+HXwgmtoXLTG7KXnO9RLUOePWT1rjGqaBDo3OzaHiDDtn2RYqEUzll7UJP+e2H5HDz6KU+Fe27RfW+KM3Ss+EpQViRajF2XIOhywz3zCwx86RFdu2FeveUgprWqAvUPBoeJ8tSUS3wFDFvEoe6BgpcfEOSxeV6n+f+HavU4jKD2NUIwMcyw+zq+3J6Iegx2XBN24cePw97//Xfre22+/7fX0AiLwcNUf582wZrZBiQng1UV5mk2LN2cy+Gvz1TGcdTznkY27ckZXEQV+XL76CT8HQGvq4zW1VTekYcuvrsIH903UnLenMBerbkjTpCEkDXAsZmyWFnuXqpjYX94OhzcXtrZ3OKQv8MK2tKpBbcLKXmdrFU2zgH6XifveqFRbIokdMMQcRqArrYCHPUiI3zv2/7JqKyaYaCMlS4lxhTVzMjUWAiNNkoSe57gk6B566CGsW7cOM2bMwJtvvomQkBBs374dv/zlL/HGG2+gsLDQV/MkAghXem+5G6ii98cvloNimwh/Hq998Jvp0vXVhubK37y5X7cJp0yr4YMa9MadnpHkUHZswVWO3TWYljqisBzXPPEvzXvjirc4VEJpkPTIcwfrDzbkXTLE8BhmstxTmIvtSyZjT2GuRltM7B+pVkY522qXCsbpGUkYe762/dWjN6Zr7hOf9M5KxvHfA5k5WhQgDFHj43MFRc1PhhiA5I5FQgyMkf3dkDnTO7gk6HJzc/H222+jpqYGc+fOhaIoWLx4McrLy7F+/XpkZWX5ap6ED/Dlk6IrT6R6SeV6mPnjZ0/zorA9bWvX/P67KSPV/4saFR+lxwpLs+Na2rVNOEUzZ3VRnsYUpzfuozemOyREi4JsekaSQwduEVEos6jHlNgoh4hCnqQBne/nj0rQvM5rcpsPHlU1MT2z6IZ99RhXvAXZD3+I+JhI9TrJsVEOLXr4B49Lhw1U0wL4+7votb0YUViuNqddMydT1QqBzipNomAzShjn8xvZ67zPtv6ETa1hKraR0kMMQBItEma+y7KEdP58Mmd6B5cEHQBMnz4dX375Jf7zn/+goqICBw8exFdffYVp06b5Yn6Ej+iuJ0Wz12FRcnr+Mv7/Zv74WZi/GGzC6iYyBsZEaASELDwd0JoQWXg7Pw+xsawM3rTK123UC7Pnr81rQQCkqQGP3piOQ8X5KK+xqlGPrNoHu/ame7U1YlmlEL6O5rT0RIw9X1uMnKUw7Ft2jeZ1MdSfmRQzhsYCAC6/IF6dd0FaInYsmezwGba2dzhUSWGmXXbcotf2atoA8b7DDfvqpbU9xe+H+L0RNf8Pf30VqovyNO2inKFnkfCF35miMd3HZUH3+eef4+abb8aUKVOQm5uLgoIC3Hzzzfj88899MT/CB3TXk6IrT7t6x4obhpk/fqOne1nQiixikR+XPyc5tjOvben6ao3gWfbOAQdzqShAAajmR1Hj2FOYqzGj8tGPKVyTT9bBPGlAlIP/CejUWMW+cLmPb1OvLUZGyqqCPP6zDIeIzekZSYiPidTci6Hncvz4bg5D46Ix5Yl/aQQVq/RfMm+sw/0U/VPT0hNVPxz7HYDUp8neE1M/ZPddvCaDzQ3oykF0FfHByBd+50CrVOJvuFQZ5f3338eMGTMQHx+PadOmYciQITh69Cg2btyIY8eOobS0FNdee60v5xtw+GtlFE/K/biS6yO7jt61ZVXhjcp6GeXEySqQiOcDjuWwZFVb2NgLz/VTY4jVPQ4V56tVSfg8KVat//vTLRhXrO38cag4HzmPfaxbTFi8Jk91UZ5DQ1kAaoFqnj2FuQ7X1iubtWvpZE0qwrT0RDw9d6zmGL0qKeJ1ZOcy9D5Ddu/4hq/iPPmmtKxHHVuTUaPelna7mren19hWrIriTm5bIJfTCkS8WgIsLS0NSUlJePfddzWpBC0tLZg2bRoaGxtRXe0Yedab8VdBBxj/Abtbs9LZWM7KgekJLKPrGdW/5OtRysaQdSjn56CXMM4Sffn3+aagoqYka046MzMZtja7Q2cBvVJi09ITUfXNCU3bIeYnEj+r70+34PqSCtWMKtvMWQQin+jNEDsG8PeNlUqb8PCHDqXCHr0xXU14T4mNwo6lOTALvw5ZGTWGbL7icUbfa1mtT7FTgljn1BsPhJQM7ju8Kuiio6Oxfv16TJ061eG9TZs24YYbbkBzs2sVIYIdfxZ0erhTONkb4+vhTCCLcwJgWrCyY9g5YqsXWZ1EsZqFXvsfvZqMealD8NTcTPzqH1Uak1xKbBS2/nqSQ1UP9l7dic7u4H+YOVqqyclqd/ICgZ8TL8jMFFNm940VYhbP4btuyyqcOMNI85dphfzxfAd6AKYfjEShJmrcMo3dle+77IGJNDzf4NValyNHjsTRo0el7zU2NuJ//ud/XJsd4XcY+Rc8dY6zscz4HcTr6iHzubnq02NBIeLaAXmdRFaqi81TVhpMrJ/IRwxurj2KyY9t0wi5a1OHYMfSHId5MJhps7SqQaOlihGgfJUNMWGer/PJB8zIhNzMzGQHXxcfcCOe88efpGnmJCa+G6H3nVs9awxSYqPUBHEePpKSPXzwkalGvjF27vYlkzUpAuOKtzh0J3f3+24UESrzTxO+xSVB96c//QkrV65UG5QyysrK8Pvf/x6rV6/26uSI7seZYNATUs7+WGVBJWaPdYYsUZxFQhrNWUQvUIWvzyhGh4rniNdhaQ6Vy/MwhSvnxXcZTxoQhfdrj6rrFSMsRXifnei/Kq1qwMK1e6UJ8/xcU3QqrAyNi3YQIGw9/aLCNWkG/LpdEWw87Hsj+86dsrWpAl5MEGfw69YbR4ZRjVI+LcWdYBCxyonRvChPrntwarocPny4pq7lsWPHcPLkSURGRmLQoEE4duwYbDYbBgwYgB/96Ef4z3/+4/NJBxKBaLoEPA84Eccya/L01DyqZ5YyuyY9nxybh14LHj3foujrYma2ri7l2q7jrvZkY0Lp3tcrNSkC/PxlJujIMMcu7gzRZMeCM/RMoe76s0T/qFhAWewMLgv7l13TzOfsji/YDK58/7zlCiC84KO75ZZbHAo4G/G3v/3N/Ox6AYEq6Mxi9o/VlY1EFn3pygYgE0Zizzgz57Hq/+JGLtvEePQCHthcAEibtiYNiNJU/Wds+/UkPLH1C4fjU2KjcNkF8errLOAFcPQR6n0uTKNiDUjZmtSmqOeCZ9iaeV+hbHze3+mKbxXQRju6EnHL9xE0g5EP2hNBI87ZTE878t15B683XiVcwx8Fnbejv8wKJleuK4aau7oRGAWVyDZ9UYjxoefMJ6e3icnWpYbICxqabD48fFQm0JkY/uX/TVWvM/mxbRqzpxGioHY2V721irDgEKYR8tqY2YcBMdhGdryZ1BRXH4p8rUV5GpVMuIdXg1GIwMcXPgGzdf9c+WN2Vl7JlTk58zuKPpo9hbmquZG1ldGrnymulw+kmJ6RhLrjzZrqIaLPhi/JNT0jSSPktv16kirkGKKQ4yukiH431reNFxLiZyN2CWBr5ZPXRTbut6pCjpUOY4Ew/H1k6zUqDsCQHe8sEfv70y2a31lHBRaQI8PX1Ubc8emRkPM9JOh6Eb6siOKpYJJh1DTV7JwYRhuQuPnxtRpZ7zXZGOJ6+Y2Wj8YUg0dYmTG+HibQWcKLn8f5P9K2xJKVC7NzTeneWehYa5YJL9lnI4vMZGtdMydTt5M3b7YsP9CoEZSigGRjmv0uiJ+z+JnzDwh8lCQ/J77HmwzZd8HbfwuEf0GCrhfh66dZb44vPvXzBXg9mZ8eYmFpvm6lrB0M+z9br7jRTn7sY+l1+HXIwtedaQTsfVGgpMRFO9Tx5MeVlcAStS+exesqHSqysBSJvf89Lp2bmMLA1mtUxo0Vn2bwbY142EMEAM0DAouS5NveANoGrwy9lBVvWzkoXcD/IEHXy/B17Tyj8fncM2fIhKavNxB2DV6T5FvtyGDrFTfa+hOOQSUpsVHSdI09hbkOTUP1YKZFUaBsPVclRWYSFU2BzJ8maodM0+NNgjyshqZojmUpCeK4BWmJaG3v0M2RO1Scj52/y1H70PFdA/jPmo8OZTl6MjOy2OPNjDCTabqefM8oXcA/oWAUH+OPwSg9gdkgBRFPg1LcmaMeZgIXjGpTysZg0Y164fOy+ckCMfjQfFkdSnaMGH0qHsuiKvkITpHk2ChULM1BS7vdobYnG5cvD2bmM+cjJ8UgF7E6DatKI5aW04vKdBaAws8dcF5ZRQ9KF+g5KBiF6HHEYA/AvA/PFd+fJ0/isgAJXisya4oVE6eTuU7f/Bgt7XaH1j68idQogIPdA76DNh+EwZtEGRv2dXZxEMcQOwewBG3WludQcT4OFedr+tBdfkE8gM7PhjU/FYNE+EhTWZd3cW2ikGNjsfsGwKH0Gl9ey6gYgdkiCGYrq+jha9cA4T5+L+gOHz6MgoICxMTEIDY2FvPmzcN3333n9Lzdu3dj4sSJiI6OxqBBg7BgwQKcPXtWfd9ms+HWW29FZmYmIiIiMGzYMN2xtm/fjsmTJ6Nfv36IiYnBZZddhi+//NIby+sVyExqrmwEfBSgXtSkJyYjvUhD3nel5zvixxCF5Z7CXE3LGeafY3Nd9s4BqdlOthaZj+2e1/chrWizJhhk0Wt7Tc2Xh230T88dqwnCYW15fvPmfo12x1edkbHiXe2TNW9eFBFLZYmFs3m/JV96jWH0EMTP0ZnJXubHdEdQUVsd/8SvTZdnzpxBamoqhg8fjocffhg2mw0LFixA3759UVFRoZvIXl9fj9TUVBQUFOB3v/sdrFYrbr/9dmRlZeGNN95Qx77//vsxZswY7Nq1C//617/w9ddfO4xVXl6OG264AUuWLMH111+Pvn37ora2FpdeeikSE+VRaTxkuuyCCRRX84bEPC9+PFnitSsmI9HkxpvNAG1rGGc5YTLTl7PWQ4C2lY0z85femnmY+ZGvymKUHyjeK96MKJuvzBTJ7puzljf8OgA4rJWtTfZZi0ntDJlZ2xWTsGxupI0FFgGdMP7Xv/4VCxcuhNVqRXx8p7lk//79yMjIwNatWzF5svwL/OCDD+L5559HfX09wsI6I9FKS0sxY8YMHD58GBdddJHm+KKiIrz00ksOgq6jowMXX3wxZs2ahT/+8Y9urYEEnWfobfx6/jRXE3VlY7ONTubrkgkecQzmt+KP0SttJRvXyB8pEzxMsDljT2Eu4mMiVaFk1l+qVyqMzVsUTs6SuJ35xFy9X+I54udmpkKJryCh2T0EtI+uoqIC48ePV4UcAKSnpyMlJQXbt283PC8vL08VcgCQn58Pi8WCHTt2mL7+3r178dVXXyElJQUTJ07EoEGDMH78eKxfv969BRGmEMPAZdGX4sYnK6jsDJk5kL0u5pjx1+cRc/1+8+Z+wyhN5lvjOxvomcn4HDl2rsi09ERcds5nxsL/mT9tZmayQ94ZL7TM+kvFCE/ejMzOB7pC+o0KCIimRtbhWy/qVPZZM5MmD/97v6hwjQm2p4QcRWD6D46JNz6mqakJTU1Nhsf0798fgwcPhtVqlZoHExIS0NAgf8IEAKvVissvv1zzWkREBAYOHGh4ngjzwz300EN45JFHcOmll2Ljxo346U9/ik2bNmHKlCmmxyLMIdNmVs8ao4kqZAJKFnHoKmxs1t6HjSdWs48IsxhWVAGANnuH2nqHbeJ8lCN7nV1DXJc4JhNIopbE1s4anTINj4X/n221a7SYlTNGqRoOb17kNTojxPu9etYYtWs6AM17/GckE2p6x+vBP0gAXc1dnbF9yWSXa2B6E9naSbPrObpdo1uzZg2GDx9u+PPb3/4WAGBkVTUqNO3ueSJ2e+dT7h133IE77rgDY8aMQWFhIQoKCvDUU09JzykpKUFqaqr6c/y4PLmWcMQosEAvUo6V+GLnu3NNdj3+XzFPSxRGbE58RCDfX45pPfy4/P/5Nj/imGLis9j2ZeWMUWpwhl6gD7/Bi1GYoZYQTT82ABrNQxZoIibUm6k6I2rM7GECgCntW3yQqC7KQ6glxLSW1FNCDqAITH+j2wXdsmXL0NbWZvjz4osvAgCSkpJgtTrmJDU2NhoGgsjOa2trQ1NTk6kAEn4coNP+yzNq1CgcOXJEes7ChQtRW1ur/sTFxZm+XiDi7dJJrmwOnla3YOcsXV9tukKJ3nVCLSEOYfDievQStMUxxcRnMWUhrWizRtNh5j++kagIX5FFNAXyQnTCwx8irWizQ6NTwLEXn/ieDL3QfcD5dyf38W3q/9l98FUJO19AEZj+Q7cLOovFgrCwMMMfi6VzWllZWfjkk080ps6amhrU1dUhOztb9xpZWVn44IMPVI0M6Iye7OjowIQJE0zP9dJLL0V0dDQOHTqkef3QoUOG6Qi9BV8XiDaLszw72YYoniP6wwDHzVs8R9S02Bh8oWV+PTLfHDtXnDvrUC4WpWaw6/PCWjZnfi2yhwixkkmdTl4fAIciymYFjSx0X+wEL8LnGAKd5ldXH4T8QRD6WpPzhzUGAn4djDJ37lwkJiZi9uzZ2Lt3L3bu3ImbbroJV1xxBa6++mr1uJEjR+Lpp59Wf1+wYAGam5sxf/581NTUYMuWLVi0aBFmzZqlibisra1FZWUlGhsb0draisrKSlRWVuL06dMAgJiYGPzv//4vSkpK8MYbb+DLL7/EE088gXfffRf33ntv990IP8TXBaJdPV5vAzTSQHjhwScp6wlG8Tq8SZAPqze6H6K2aJQjKDMP8mZKPofOzGcgC/zgxy6ZN1Y3iCP74Q8xrniL+rs75jhXErP1AkrMPgg5ewgLBgFBwS7m6fZgFFfo27cvtm7dinvvvRfZ2dkICwtDQUEBnnzySY2v7dChQzh27Jj6e3JyMrZu3YrFixfjsssuQ9++fXHjjTfiscce04w/depUjQkyM7Mzb+ejjz7CpEmTAAD/93//h8jISPz6179GU1MTRo4cibfeegt5eXk+XLn/IwYo9LQPwllghywggN9wjRDz+Phx+OuGWkI0gSf8uWIIP59KwAJEnPVT41+XFWJeur5aVwA468TN/pUFcYjaFeBakW3Zdcx8d2RzMROu7+xzd1ZOLhBSAijYxTX8Oo8uGAj2PDp/3xSc5aSxqEi9nDIxb60gLREl88bqXo8f01mXb3FsdrzeBizL6zPTSVyW62em4zoPS8AGzOUqmqlRava7IxvL2cZu1EXcbN1Lf/etBdJcfU1AJ4wHA8Eu6AIB2YYq2zT1wtHFhGmxaod4LVeEl17iu5i8rtex3KzQcrXjOlsL//opW5s0zULvWtPSEzWRqO4UOea1aTFp3dkGrydI3RWCvsKTh0V/f9DsLgI6YZzwT7rDv+FLn59o9gGgJojL/B1iE1JZrzP+Wrwfjw9MkSEzATJzHvPB8J27+RY5RhGi4vz0Oq4DjrlqgNz/I6ZZyODv7cb9VrWWpzvmbTGnUKxF6swv6SwS1Fk6RHcIEE/9bCTkzEGCzs8xKp7bE3SHA9zX15BVRHEWHFEyb6xDRRA9XAm6EOfC56rJNvmZmckomTfWsJqImRQAMd2An5sngUai0Kw7YTPsXGCEeG9YJKqnwshIC+rOlABfBnQRWkjQ+THZBjlNPUF3/GEaXcOb19PTcIw2T7bRAnAqiGUh9WY2V1nYP7/Jsw1Ybyyzn5GRVueOZiPr3sDO9yRxWxQ8RjmOZjDzENVdWhIllXcf5KPzMe766PypMC2Prx3gzoo4+9Lxbjaiz1U/Tnf7YMzeKzOdEsxcW69Is79FAvaUD84Z5GfzHPLRBSj+UphWxNemHdlTbneZeGRlvrw9rqtju7MBip+RWX+ieC2zmpxekWZ/27wjw0LVv6mU2Ci/mZ+/zCOYIUHnx2xfMhnVRXku99PyNZ78YZrZ5GXmqu408RiZtzydi9HYvhCuzq7n6YOL7H7468bd0m5XUyTqTtjUjuxE8EOmSx9D6QVdeGp+7A4Tj1nzljtzMRrbF6ZZ0fzt7evx98AXn423x5T18vMX8yXhGWS6JPwCb5gfu2NDMquxuTMX3nQ2NC5aIyS8bZoV++nxaxFrdLpzPVFT9PZn44vIWzEAhwJAeg9+XQKMCB7EBqX+vMHIyonJcEXjYMLkG65oMjvf2+XUeMHJ+ukxHy/T5PhKMJ7kt/mi/JQvx2efLUC+sd4ECTrC54hh567USXTlGt7cuMxW/zBj+pM1TRUFjFnhCnSt1eyaWZsfIwEoG18Pbwvmnhif6F2QoCN8jq83ru6u+eeKxiEee6g4HytnjJIKGFdC+fVqc7JxZPdbfF02B7P30hXB7A6+Hp/oXVAwio+hYJQufBWw0BO5Ue5qdADcFsqyYArA9YAZo9f9Mc+MIJxBwSiE3+CLTbOnqku4EpbvSkkwI/i1yoJMZMe7+jpV6iCCEdLofAxpdN1DoFSX8GZYv6/WHCj3kiAYzvZZ8tERQYG3i/v6Cm/6nnw1d6NxZfeMBCPh75DpkuiVeJKn5WlHCU+EQnd0j3Dl2j05H4IwCwk6otfhSYJ2T3aU6Mm2LrJrezofaktDdBck6Iheh7tBF6dsbZqE7+7uFdiTwSJ6NS3dnQ9pgkR3QsEoPoaCUfwXd3xL2Q9/iG+ON2NoXHSPFdvuSZ+YN3x0lMZAeBsKRiEIHdzZXLcvmYxTtrYebZvkafcIT86XnevqeL4uIEAQIqTR+RjS6Ah/obsryDiDojUJb0EJ4wRB9Gggix4k5IjuggQdQfQCqOoJ0Zvxe0F3+PBhFBQUICYmBrGxsZg3bx6+++47p+ft3r0bEydORHR0NAYNGoQFCxbg7Nmz6vs2mw233norMjMzERERgWHDhjmM8fXXXyMkJET6U1BQ4M1lEoTP8bSbeE/jD1ooEZj4taA7c+YMcnJy0NLSgm3btqGsrAw1NTWYMWMGjFyL9fX1yMnJQUpKCj799FOsXbsW7777Lm677Tb1GLvdjoiICNx1112YPXu2dJyhQ4fCarVqfj7++GMAwNy5c726VoLwNYHsE6N0BMIjFD/mueeeU8LDw5Vjx46pr1VVVSkAlK1bt+qe98ADDyiDBw9W2tra1NfeeecdBYBy+PBhh+OXL1+unH/++abmdO+99yo/+tGPFJvNZur4Sy65xNRxBOFL7ntjn3L+ko3KfW/s6+mpuIytrV05f8lG9cfW1t7TUyL8DGf7rF9rdBUVFRg/fjzi4+PV19LT05GSkoLt27cbnpeXl4ewsK7sifz8fFgsFuzYscPt+TQ3N+Pll1/GbbfdhsjISLfHIYjuxB8DUVyB/IuEp3R7Hl1TUxOampoMj+nfvz8GDx4Mq9WKxMREh/cTEhLQ0NCge77VasXll1+ueS0iIgIDBw40PM8Zr7/+Ok6ePIlf/OIXbo9BEN1NMOStUSNWwhO6XdCtWbMGK1asMDxm/vz5eOmllwz9cCEhIbrvuXueM5555hlce+21uPDCC3WPKSkpQUlJifr78ePH3b4eQXgLbwqKnvL1kZAj3KXbTZfLli1DW1ub4c+LL74IAEhKSoLVanUYo7GxUarpMWTntbW1oampyfA8I3bv3o3du3fjl7/8peFxCxcuRG1trfoTFxfn1vWI3kV3mBO9ISgoKIQIRLpd0FksFoSFhRn+WCyd08rKysInn3yiMXXW1NSgrq4O2dnZutfIysrCBx98ALu9a/MoLy9HR0cHJkyY4Na8n3nmGQwdOpTSCgivEyjCI9B9fUTvxa+DUebOnYvExETMnj0be/fuxc6dO3HTTTfhiiuuwNVXX60eN3LkSDz99NPq7wsWLEBzczPmz5+PmpoabNmyBYsWLcKsWbNw0UUXqcfV1taisrISjY2NaG1tRWVlJSorK3H69GnNPE6cOIE33ngDd911F0JDyXxCeI9AEh4UFEIELN0S++kBX3zxhTJ16lSlT58+Sv/+/ZU5c+Yo3377reYYAMry5cs1r3322WfKhAkTlKioKCU+Pl65++67ldOnT2uOOf/88xUADj8fffSR5rgnnnhCCQsLUxoaGlyeP6UXEM4ItNB/Cu8n/A1n+ywVdfYxVNSZMEMgJ3MTRE9DRZ0JIgAgIUcQvoMEHUEQBBHUkKAjCIIgghoSdAQRJPhzxCZB9CQk6AgiCAiUXDyC6AlI0BFEgBNIuXgE0ROQoCOIAIcSuQnCmG4v6kwQhPeh6v4EoQ9pdAQRJJCQIwg5JOgIgiCIoIYEHUEQBBHUkKAjCIIgghoSdARBEERQQ4KOIAiCCGpI0BEEQRBBDQk6giAIIqghQUcQBEEENSToCMIDqK4kQfg/JOgIwk2oYwBBBAYk6AjCDahjAEEEDiToCMINqGMAQQQO1L2AINyEOgYQRGBAGh1BeAAJOYLwf0jQEQRBEEENCTqCIAgiqCFBRxAEQQQ1JOgIgiCIoIYEHUEQBBHUhCiKovT0JIKZ/v37IyUlpaen0eMcP34ccXFxPT2NoIPuq++ge+sbfHFf6+rq8MMPP+i+T4KO6BZSU1NRW1vb09MIOui++g66t76hJ+4rmS4JgiCIoIYEHUEQBBHUkKAjuoWFCxf29BSCErqvvoPurW/oiftKPjqCIAgiqCGNjiAIgghqSNARBEEQQQ0JOsJjDh8+jIKCAsTExCA2Nhbz5s3Dd999Z3jOSy+9hJCQEIefjz/+2OHY559/HhkZGYiKisLAgQMxdepUH63E//D1vQWAM2fOIDU11fCYYMNX97W6uho333wzhg0bhqioKFxwwQW47777cOLECd8uyE/w5ff122+/xdy5cxEbG4uYmBhMmzYN/+///T9T86J+dIRHnDlzBjk5ORg+fDi2bdsGm82GBQsWYMaMGaioqEBISIjh+VarVfP7wIEDNb8/9NBDeO655/DII4/gxz/+Mdra2lBVVeX1dfgjvr63jLvvvhsXX3wxDh486LW5+zO+vK979+5FTEwMnn/+eVx44YX44osvsGDBAhw6dAjvvfeeT9bjL/jyvnZ0dGDatGloaWlBWVkZoqKisGTJEuTm5qKmpgZ9+vQxnpxCEB7w3HPPKeHh4cqxY8fU16qqqhQAytatW3XP+9vf/qY4+/odPnxYsVgsSnl5udfmG0j48t4ynn32WSUzM1P5/PPPFQDKRx995Om0/Z7uuK8869atU0JCQpSTJ0+6Nd9AwZf3dfPmzQoApaqqSn3t2LFjSnh4uPLCCy84nRuZLgmPqKiowPjx4xEfH6++lp6ejpSUFGzfvt3p+RdeeCESExMxadIkbNy4UfPehg0bEB4ejmPHjmH06NFITEzElClTsH//fq+vwx/x5b0FgMrKShQWFmLdunWIjIz06tz9GV/fV5ETJ04gOjraudYR4PjyvlZUVCAlJQXp6enqa/Hx8Rg/frypscl0STjQ1NSEpqYmw2P69++PwYMHw2q1IjEx0eH9hIQENDQ06J4/YsQIvPzyy0hPT4fNZsM//vEPXHfddXj++edx++23AwC+/PJLdHR0YMWKFXjiiScwaNAgPProo5g4cSI+//xzJCQkeLbQHsBf7u0PP/yAn/70p1i9ejWGDx+Or7/+2qN19TT+cl9FrFYrVqxYgbvvvhthYYG33frLfXV3bBUTGinRy1i+fLkCwPBn/vz5iqIoyjXXXKPceOONDmNceumlyi9+8QuXrnvTTTcpw4cPV3+/8847FQBKWVmZ+lpzc7MSHx+vPPzww+4trofxl3t74403Krfddpv6+1dffRXQpkt/ua88R48eVdLS0pRrr71WaWlpcXlN/oC/3Nc777xTueyyyxyO++lPf6pce+21Tscj0yXhwLJly9DW1mb48+KLLwIAkpKSHJzIANDY2Ch9AjNi/PjxGs0iKSkJQGcRWEZUVBQuuugiHDlyxI2V9Tz+cm83b96Ml19+GWFhYQgLC8PFF18MAMjJycGkSZPcXl9P4S/3lVFXV4errroKQ4cOxT//+U9ERES4ta6exl/uq6djk6AjHLBYLOoGqPdjsXR+dbKysvDJJ59ozBs1NTWoq6tDdna2S9fdu3cvhg4dqv7Ozj906JD6WmtrK7766isMGzbMgxX2HP5yb3ft2oXKykr1Z9OmTQA6Uzn+9re/eWGl3Yu/3Feg0+SenZ2N1NRUbNiwAVFRUZ4vsIfwl/ualZWFuro61NTUqK81NTXhk08+MTe2S/okQQicPn1aOe+885RrrrlG2bNnj1JRUaFkZGQoV1xxhdLR0aEeN2LECOWpp55Sfy8qKlI2bdqkfPHFF0pNTY3y0EMPKSEhIcrTTz+tHtPR0aFcccUVyiWXXKJs27ZNOXjwoDJ//nwlLi5OaWxs7NZ19gS+vLcigW66dAVf3tcDBw4oCQkJyrXXXqt88803itVqVX8C1XxpFl/eV7vdrlx22WXKmDFjlIqKCmXPnj1Kbm6ucsEFFyhnzpxxOjcSdITHfPHFF8rUqVOVPn36KP3791fmzJmjfPvtt5pjACjLly9Xf1+8eLEybNgwJSoqSomLi1OuvPJK5a233nIY+9tvv1VuuukmJTY2VomNjVXy8vKU/fv3+3pJfoMv7y1PbxJ0iuK7+2rk0+oN99aX39fGxkZl9uzZSv/+/ZU+ffooU6dOVQ4fPmxqXlTUmSAIgghqyEdHEARBBDUk6AiCIIighgQdQRAEEdSQoCMIgiCCGhJ0BEEQRFBDgo4gCIIIakjQEQRBEEENCTqC6AWEhISguLjY5fMmTZqE3NxcH8yIILoPEnQEQRBEUEOCjiAIgghqSNARRIDzySef4Cc/+QmSk5PRp08fjBo1Co8++ijsdrvuObfccgsuvvhifPjhhxgzZgyioqIwevRolJeXS48vKytDeno6+vTpg3Hjxjl0dV67di0mTZqEH/3oRxgwYADGjx+PsrIyr66TINyFBB1BBDhHjhzBpZdeimeffRabNm3CHXfcgeLiYjz44IOG533//fe49dZbsWjRIrz11ltITEzE9OnTUVtbqznu4MGDeOCBB/DAAw/grbfegsViwfTp03Hy5En1mK+++gqzZs3C66+/jjfffBM//vGPcd111+G9997zyZoJwiU8KFRNEISf0dHRobS1tSmrVq1SYmNj1fYoAJTf//736nHz589XACilpaXqazabTUlMTFTmzp2rvnbVVVcpERERypEjR9TXdu/erQBQ1q1bJ52D3W5X2tralClTpijTp0/39hIJwmXCeljOEgThIcePH8fKlSuxYcMG1NfXo729XX3v6NGjSEhIkJ4XGRmJadOmOfy+detWzXGjR4/Geeedp/kdAP773/+qrx08eBAPPfQQKioqcPToUSjnmqKMGDHC8wUShIeQoCOIAOeWW27Btm3bsGzZMmRkZGDAgAHYuHEjVqxYAZvNpnveoEGDEBISonltyJAhaGho0LwWFxen+T0yMhIA1LFPnTqFvLw89O/fH3/84x9xwQUXoG/fvlixYgWqq6u9sUSC8AgSdAQRwNhsNpSVlaG4uBj333+/+rpeUAnPsWPHoCiKRtgdPXoUiYmJLs3h3//+N+rq6rBr1y5cccUV6uvNzc0ujUMQvoKCUQgigGlpaYHdbkdERIT6mt1ux2uvveb0XJvNho0bN2rG2rhxo0ZYmeHs2bMAoJnDkSNHHCIzCaKnII2OIAIYFsr/6KOPIiEhAf3790dJSQlaWlqcnhsbG4tFixbh22+/RUJCAp544gl89913TqM1Ra688kr069cPCxcuxLJly3D8+HEUFRUhOTkZHR0d7i6NILwGaXQEEeC89tprSEtLw1133YU777wT6enpKCwsdHpefHw8XnjhBTz55JP4yU9+goaGBrzzzjsYNWqUS9cfPHgw1q9fj7Nnz2LmzJlYsWIFHnzwQUyePNndJRGEVwlRWHgUQRC9hltuuQU7duzA4cOHe3oqBOFzSKMjCIIgghoSdARBEERQQ6ZLgiAIIqghjY4gCIIIakjQEQRBEEENCTqCIAgiqCFBRxAEQQQ1JOgIgiCIoIYEHUEQBBHU/H+zOApnbDmt1AAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"pm.plot_pair(idata, var_names=[\"alpha\", \"beta\"])\n",
"decorate()"
]
},
{
"cell_type": "markdown",
"id": "cdbc7230",
"metadata": {},
"source": [
"As an experiment, try:\n",
"\n",
"* Set `year_shift=1970` and run the model again. You might get some warnings from the sampler, and `plot_pair` will show that the alphas and betas are correlated. The not-quite-centered predictor stretches the shape of the joint posterior distribution and makes it harder to sample efficiently.\n",
"\n",
"* Set `year_shift=0` and run the model again. With the predictor completely uncentered, the joint posterior distribution is so stretched that the sampler diverges frequently -- and basically fails.\n",
"\n",
"Without centering, the intercept represents the log-odds of the outcome when `year=0`, which is way outside the range of the data.\n",
"This forces the intercept and slope to compensate for each other — if the slope increases, the intercept must decrease to hit the same observed points.\n",
"\n",
"As a general rule, it's a good idea to center continuous predictors in Bayesian regression models."
]
},
{
"cell_type": "markdown",
"id": "9cc3812e",
"metadata": {},
"source": [
"## Categorical predictors\n",
"\n",
"Now let's add political party as a predictor."
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "6258988e",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
counts
\n",
"
\n",
"
\n",
"
values
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0.0
\n",
"
25439
\n",
"
\n",
"
\n",
"
1.0
\n",
"
26705
\n",
"
\n",
"
\n",
"
2.0
\n",
"
18338
\n",
"
\n",
"
\n",
"
NaN
\n",
"
1908
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" counts\n",
"values \n",
"0.0 25439\n",
"1.0 26705\n",
"2.0 18338\n",
"NaN 1908"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"value_counts(gss[\"partyid3\"])"
]
},
{
"cell_type": "markdown",
"id": "80f84b7c",
"metadata": {},
"source": [
"To prepare the data, we'll select observations where all the variables in the model are valid."
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "633c1c80",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(41605, 62)"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = gss.dropna(subset=[\"y\", \"year\", \"partyid3\"])\n",
"data.shape"
]
},
{
"cell_type": "markdown",
"id": "d48456bf",
"metadata": {},
"source": [
"And again we'll center the years and convert all data to NumPy arrays."
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "c8d7c517",
"metadata": {},
"outputs": [],
"source": [
"y = data[\"y\"].to_numpy()\n",
"\n",
"year = data[\"year\"].to_numpy()\n",
"year_shift = data[\"year\"].mean()\n",
"year = year - year_shift\n",
"\n",
"partyid3 = data[\"partyid3\"].astype(int).to_numpy()"
]
},
{
"cell_type": "markdown",
"id": "015a5c10",
"metadata": {},
"source": [
"This version of the model add a separate intercept for each group, and demonstrates two additional features:\n",
"\n",
"* Data: making the input data part of the model so we can modify it to make out-of-sample predictions\n",
"\n",
"* Deterministic: saving the result of intermediate calculations as part of the `InferenceData`\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "0c29ec21",
"metadata": {},
"outputs": [],
"source": [
"with pm.Model() as logistic_model2:\n",
" \n",
" # add the predictors to the model as mutable Data\n",
" year_pt = pm.Data(\"year\", year)\n",
" party3_pt = pm.Data(\"party3\", partyid3)\n",
"\n",
" # Party-specific intercepts (one for each group)\n",
" alpha = pm.Normal(\"alpha\", 0, 1, shape=3)\n",
"\n",
" # Shared slope for year (assuming effect of year is the same across parties)\n",
" beta = pm.Normal(\"beta\", 0, 1)\n",
"\n",
" # Linear predictor (log-odds)\n",
" z = alpha[party3_pt] + beta * year_pt\n",
"\n",
" # Compute and save the probabilities\n",
" p = pm.Deterministic(\"p\", pm.math.sigmoid(z))\n",
"\n",
" # Bernoulli likelihood\n",
" y_obs = pm.Bernoulli(\"y_obs\", p=p, observed=y)"
]
},
{
"cell_type": "markdown",
"id": "b8815bed",
"metadata": {},
"source": [
"Here's the graph representation of the model."
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "edd6dcdb",
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pm.model_to_graphviz(logistic_model2)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "2786de1d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loaded idata from logistic_model2_idata.nc\n"
]
}
],
"source": [
"filename = 'logistic_model2_idata.nc'\n",
"idata2 = load_idata_or_sample(logistic_model2, filename, draws=500, tune=500)"
]
},
{
"cell_type": "markdown",
"id": "0c6ac023",
"metadata": {},
"source": [
"Everything marked as `Deterministic` gets saved in the `idata`."
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "01e677e8",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"