{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from aisynphys.database import SynphysDatabase\n", "from aisynphys.cell_class import CellClass, classify_cells, classify_pairs\n", "from aisynphys.connectivity import measure_connectivity" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "db = SynphysDatabase(ro_host='sqlite:///', rw_host=None, db_name='/home/luke/public/synphys_current_small.sqlite')" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1366" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "query = db.pair_query(\n", " project_name=[\"mouse V1 coarse matrix\", \"mouse V1 pre-production\"],\n", ")\n", "\n", "pairs = query.all()\n", "len(pairs)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "430" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# find reciprocally-connected pairs\n", "reciprocals = [pair.reciprocal for pair in pairs]\n", "recip_connected = set(pairs) & set(reciprocals)\n", "len(recip_connected)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1366" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# add a few interesting columns to the query and convert to dataframe\n", "query = query.add_column(db.Synapse.psp_amplitude)\n", "query = query.add_column(db.Dynamics.stp_induction_50hz)\n", "query = query.add_column(db.Dynamics.pulse_amp_90th_percentile)\n", "\n", "pair_df = query.dataframe()\n", "len(pair_df)" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "pair_df['recip_connected'] = [pair in recip_connected for pair in pairs]" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAD4CAYAAAD2FnFTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9eXBb532w+7w42AFiIQmREiFRlEjKlmTJsUVZVlzLjmOnWRW7Te3JpOM0TjLTxW06t3Pn5maSOO11v2Qm6Ze0Sdqxk7Rum9auHStU8lm2Yye2vGiBrIVaaG6iRIELCJIASOzLee8fB6RAipRIiRRF6TwzGkAH5+C85+Dw/b2/XUgp0dHR0dHRmYphsQego6Ojo3NtogsIHR0dHZ1p0QWEjo6Ojs606AJCR0dHR2dadAGho6OjozMtxsUewHxSWVkpV69evdjD0NHR0VlSvPfee0NSSt/U7deVgFi9ejWHDh1a7GHo6OjoLCmEEGen266bmHR0dHR0pkUXEDo6Ojo606ILCB0dHR2dadEFhI6Ojo7OtOgCQkdHR0dnWq6rKCada49gMEggECAcDuPz+WhqasLv9y/2sHR0dGaBrkHoLBjBYJDm5maSySRVVVUkk0mam5sJBoOLPTQdHZ1ZoAsInQUjEAjg8XhwuVwYDAZcLhcej4dAILDYQ9PR0ZkFuoDQWTDC4TBOp3PSNqfTSTgcXqQR6ejozAVdQOgsGD6fj3g8PmlbPB7H57sgo19HR+caRBcQOgtGU1MT0WiU0dFRVFVldHSUaDRKU1PTYg9NR0dnFsyLgBBC/L4Qok0I0SmE+H+m+dwihHiu+PkBIcTqks++WtzeJoT4SHHbSiHE74QQrUKIk0KIv5qPcepcXfx+Pzt37sRutxMKhbDb7ezcuVOPYtLRWSJccZirEEIBfgTcDwSBgBBit5TyVMlujwERKWW9EOIR4DvAw0KI9cAjwAZgBfCaEKIRyAP/l5TysBCiDHhPCPGbKd+pswTw+/26QNDRWaLMhwaxFeiUUp6WUmaBZ4GdU/bZCTxTfP8CcJ8QQhS3PyulzEgpu4FOYKuUsl9KeRhASjkGtAI18zBWHR0dHZ1ZMh8CogY4V/L/IBdO5hP7SCnzQAyomM2xRXPUB4AD051cCPFlIcQhIcQhPTpGR0dHZ/6Yj0xqMc02Oct9LnqsEMIJ/AL4ipRydLqTSymfAp4C2LJly9TzXl+0tMCLL0JPD6xaBQ89BJs2LfaodHR0rlPmQ4MIAitL/u8H+mbaRwhhBNzAyMWOFUKY0ITDz6WUL87DOJc2LS3w3e9CJAJ+v/b63e9q23V0dHQWgPnQIAJAgxCiDuhFczp/dso+u4FHgX3AHwK/lVJKIcRu4L+EEP+A5qRuAA4W/RM/BVqllP8wD2Nc+rz4Ini92j84//rii7oWobM00DXgJccVCwgpZV4I8RfAK4AC/ExKeVII8bfAISnlbrTJ/j+EEJ1omsMjxWNPCiH+BziFFrn051LKghDiLuCPgeNCiKPFU/2/UsqXrnS8S5aeHk1zKMXt1rYvIfTifTco4xqw1ztZA/6bv9GFxDXMvFRzLU7cL03Z9o2S92ngMzMc+yTw5JRtbzO9f+LGZdUq7Y9qXHMAiMW07UuE8eJ9Ho+Hqqoq4vE4zc3NSz83Ql8ZXxpdA16S6JnUS4WHHtIERCQCqnr+/UMPLfbIZs11WbxP9w3Njp4eTeMtZQlqwDcauoBYKmzapKnjXi8Eg9rrElPPr8vifaUrY4Ph/PsX9biKSaxapWm8pSwxDfhG5IZvGLSkbOKbNi0pgTCV8eJ9LpdrYtuSL953nfiGFpyHHtI0K9DuTyymaVuPPba449K5KDe0BqE3tLm6XJfF+/SV8YwEg0F27drFU089xa6uLoKf+9yS1oBvRG5oDaLUJg5MvAYCgWtXi1jCjBfvCwQChEIhfD4fO3bsWNr3+lIr4xvUgT1tQEJfHzu/+MWl/XvfYNzQAiIcDlNVVTVpm9PpJBQKLdKIrn+uu+J9476hUiHw2GPa9hs4tFNffF0f3NAC4rq0ietcfabzDbW0wF/+JQwOwrJlcPPNML4YuQFCO/XF1/XBDe2DuC5t4jqLz7jmMDgIlZWQSsG770IodMM4sPVugtcHN7SA0Bva6CwI46Gvy5ZBJgM2G1it0Np6wziw9cXX9cENbWKC69AmrrP4jIe+3nQT7NunbbNYNI3iBgntvC4DEm5AbngBcVW4XiJZrpfrWGjGy6JUV8Odd8L772vCwW7X/n3/+zfE/dMXX0ufG9rEdFVYYqUYJsWu79p1PidkiV3HolJaFmXZMti8GdasgeXLNU1Cv386SwRdQCw0S6gUw0UTB5fQdSw605VFWblSExL6/dNZQugmpoVmCZViuGjs+hK6jmuCqaGvX/gCTI3gucj9W1IlYHSuW3QNYqFZQqUYLlpMby7X0dICTzyhTYpPPKGbUWBO908vAaNzraALiIVmCZXpvmjs+myvo6UFvvY12LMHDh/WXr/2NV1IzOE5uC7LoussSXQBsdAsoTLdF41dn+11/PM/Q2en9n68/n9np7b9MpnRcb6UmMNzsNTLol8Xv5cOAEJKudhjmDe2bNkiDx06tNjDWNJcse37Ax8Ak0kL5xwnmYRcDo4cuazxjBd9czqdxE+eJPr22+x0OvGvX39dhoru2rWLZDI5qQTM6OgodrudBx98cBFHdmku+L3icaLRqJ6Aeo0jhHhPSrll6nbdSa0ziSuOXZ9pwXGZC5FJjvPubly/+Q2YzQQA/3Va/K6pqYnm5maASZPsjh07Fnlkl0Yv0nd9oQuIJco1G+WybRu8+SYIoZWXSKdhbAwuc3KbVPRt3z5wOnE6HITi8avS13gx7vOSyEKeIWlSL9J3faELiCXItLX2m5svqsZftYnuz/5Ms7GHw1qUjsUCa9dq2y+DSRV3w2GorCSezeJzOLQdFjDU9qL3eWRkQbPKr+ks5IuUMdcrJF9f6E7qJchco1yuatjkpk3w938PH/0o3Hab9vr3f3/Zk+ckx3llJaORCNF0mqYVK7QdFjBkeMb7/PzzN3ZW+UWSJvUifdcXugaxBJmrGn/V7cLz2Dt7krmlsRHfm2+yY+1a/GVl50NFF6j43Yz3+b//W9OKxk1cV8HUdU1xkaTJJWEe05k1uoBYTC6z+N1c1filbheeMLc8+OCF92y8e9sCMON9TibPh/COcyNllY8XIxwXjDBJk7umzWM6c0IXEIvFFbSjnG2Uy7jf4fDhw1itVjZv3kxlZSVwDdiFW1oI/uu/Ejh2jLDdju+++2j6zGcuPbHMo3ZyKWa8z5s3axPiDBPkdc+l+nDrXDfoPojF4gqK382m0VGp36GpqYlIJMKbb77J4ODg4tuFW1oIfutbNB89StLtpgpIvvACzT/+8TWVVDXjff6TP1ky2fELwhJK/tS5MuZFgxBC/D7wA0ABfiKl/PaUzy3AvwO3A8PAw1LKM8XPvgo8BhSAv5RSvlLc/jPgE8CglHLjfIzzmuIKi99dSo0v9Tu4XC7uuecejh07xqFDh3jggQcW1y784osE0mk8Xi8uiwWsVlxCwPvvL3y8/Hz0tBifIK+Sqeua5CpqcjqLxxULCCGEAvwIuB8IAgEhxG4p5amS3R4DIlLKeiHEI8B3gIeFEOuBR4ANwArgNSFEo5SyAPwb8EM0wbLkuSDM1O3Gv4Bmiql+h8rKSu69915CodCM2bhXLRS2p4cwUGU2n9/mcOAMhwktZDmJKWa9YE8PgccfJ7xjB74PfOCC671omKs+QV4x12wuj84E82Fi2gp0SilPSymzwLPAzin77ASeKb5/AbhPCCGK25+VUmaklN1AZ/H7kFLuBUbmYXyLzrRhpjabZk5ZIDPFXJvGX9VQ2FWr8AHxbPb8tkSCuNu9sH6RErNecGyM5oEBklYrVe3t016vXjRv4dAr1i4N5sPEVAOcK/l/ELhjpn2klHkhRAyoKG7fP+XYmrmcXAjxZeDLAKuuUSfhtGGmGzYQ8Pk0LWIBzBRzLdewoKGwU806GzfSdPw4zT09MDaGMx4nbjAQfeABdiykX6TErBfo68NjteIym2FoaNrrXbDoL71169yfN/2ezcwC3pv50CDENNumFt6ZaZ/ZHHtRpJRPSSm3SCm3XKvZmjNW53Q4tH4JP/uZ9jrPmbiXcmTPZozt7e1XVplzulalu3fj376dnfE49nickN2OvbaWnZGIlqG8UJT0ZAgnEjjNZkgkJhr5lFZMDQaDdHV1sXv3bvbt28fQ0BAwD9FfeutWYI4Va/V7NjMLfG/mQ4MIAitL/u8H+mbYJyiEMAJuNPPRbI5d8ixW+YG5xKNPN8azZ8/S1dWF3++fdUmPCcZXNb/8pVZu47bbzkdrAfzqV/gfeAB/qQ8mElnYZLOS8Eyf3U48EsGVzcL99wPnf5Nx80dNTQ3RaJRoNMr+/fvZsGEDiqLMuWjeJFv766/T5HCcv+4bLcmuyJz+Jkoj/uCGvWfTssD3Zj40iADQIISoE0KY0ZzOu6fssxt4tPj+D4HfSq3O+G7gESGERQhRBzQAB+dhTNcUS6H8wHRjPHHiBBs3bpy7Db50VQNaJdd334Vx04zbDb29Vz/ZrCQ8swmIKgqj99+PWls76TcZN3/U1dWxbds2PB4PuVyO3t5etm7dSiAQmLVGdYGtvb+f5oEBgqXd5RYzyW6Ruv/N6W+ip+fGTky8GAt8b65Ygyj6FP4CeAUtzPVnUsqTQoi/BQ5JKXcDPwX+QwjRiaY5PFI89qQQ4n+AU0Ae+PNiBBNCiP8G7gEqhRBB4JtSyp9e6XgXg4uVH7hWIjmmG+OaNWuora2dtN+4Df6i4y5d1Xg8kEpplV1bW6GqSjPz1NRcebLZ5dhei9FHfmBn8Rqm/iYvvfTShO+hsrKSyspKVFWltbWVgwcPzqlIYqmtfWhoiA4pGTh7lp5YjMe3bsXvdkNXlyYwv/CFq2tfn2NU13wyp5Icl8jcvqFZ4HujNwxaRK715iozNa5JJpNks9mZx/2FL2j2UIMBBga0Mt0WC2SzWtnvSAQ+9SnYvVt7sEuzcWebcFU6uV3O8Zdx3S2vvcamWAzX6Kjmt7jzTkYrKi7ayOepp56iqqqKkZERDhw4gCORwHL4MCEpuW31anaazfhbWrQy6fX183odl+SJJyYml2AsRnNbG55CAafXS/yTn7x2nsUF/K2XPPN0b/SGQdcg13pzlZkioSwWy8XHXbqqqa6GO+/UuskJoW0bj9ZqbJxbslmpxnD6tKaFLIDtddrrPnmS8mPHcK5YAZWVEI/Drl04d+4kNDICx45Nq8mM29o7OjpwOBzYfT6SQlB1+jSeeJzA8DD+bdu0ezHP1zEdkzS/vXtpuuUW/MwuqutqMa12eqMnJs7EAidt6gJiEVnsInqXMm/NZAZ46aWXpo1AmRj31Fo9FgusWzd5VTMX81BLC/z4x/Daa1BRAbfeCoODMDICLpdmtho/1zzYXqe97lSKwPLlxM1mLeu7eP3xX/0KXz6vjWmamlrjwmZgYIDq6mqSySQJu52Njz2Gs7yc0He+o2kOpSyQff2CxD+Ph+aWFnbeeivhRIIqp/OCqK6rXdDxosmJTzxxVceyZFjApE1dQCwii9lcZbZNh6aLhLrkuC+yqgkGgwSef57wc8/hq6igqb7+oq1Dg6++SuDJJwn39OBTFJoyGfz792s9r/P5834NOG97nSJ8gtu3E0gk5uTnueC6f/UrqK+nuaMDAKfZTNxoJNrezo77759RkxkXNj09PYRCIaqqqti4cSOVlZWMjo7iW7nyqhX+u0BjveceeO45Au3t+ByOGaO6ribXulZ9o6ELiEVkMXoPj2sNr776KhaLhc2bN09EKMHs/hBnNe7iqmZCS9m/H3HgAIODg6x+7z2qKiuJm800d3Swc906LexzilklGAzS/P3v47FaqQLiRiPNiQQ7HQ78oGWgDw5qr11dcOIElJfDrl2wYQPU1xPs6aH5pZfwfPrTVG3YMLdQ3VJWrcIfibBz3ToCfX2E4nF8UrKjrOyC7wkCgb17CT/1FEIIhBCUl5cTiUSorq6mvLx8Impnx2OPwX/+p3bgAldGvUBjravD+ZnPEHrtNT4GNCsK3H8/ztpa4uPju8p9sBdbq9aZjC4gFpiLmXGudnOVUq1BCIHBYODASy9xRzZLZSKBs7KSUGOj1nfhIsx23FO1lN/97ndEIhFWDA5i8Ps1Uw2a/du/bh0cPao5Tosr/4DbjScex7ViBTgc2upWUQhks/iFgI0boa9P0xi6uzWh0Nur+TpOngSXi0AioRUFPH4cbrnl8lekRbOZ3+vVxjo+kU/RAIKxGP928CBDUjLy9tucO3eOiooKPvrRj2Kz2Thx4gTJZJJ169adv2ejo/DDH2pjr6mBv/iLBTEZTKv5+Xz4HnsM/4MPsjMY5OWXX+atPXsQQnDbbbfN38lnaVLUW5ZeW+gCYgGZjRnnajZXKVXfPR4PmWAQx4kTdDgcVNbXE49E8L35pvbHfIkJajbjnmouyOVyVFRU0HH6NJWJBDidOM1mQvG4pgF0d0Nt7YQtP/zyy1S53Vp4qMlErL8fl9mMR1G0idRohH/8R23iqa3VJunWVm0lnk7D++8Tdjqp8ni0ftZF0uk0b7311txCi2cym8Ekf8ueY8foDIWouOsukskkVquVSCTCkSNH+MhHPkLF1KinlhYtmmvzZrj7bk3Y7N6tOa2vQEjMtDB5+tvfJt/VRVWhwPKaGpTbbmNHSb/wTCbD7/3e701ohpelbU1lDr1PFkOr1pkZvR/EAnKtFXsrLW/Q0NBA4uRJVIuFKDCazRJVFJrWrp1VT4q5ng/A7XYjpSRWU6NFAcXjxDMZfFJq5qENGyb1x/BVVHA2HudATw8ZwLNqFbFCga5YjGBj4/kJpjRZaFw4WK0Qi2m29Wh0wvE6NDTE3r17sVqtcy8St2nTpNIowfJydnV18dTq1ewaGCD4/vscjsXwbt+OvbaWVCpFWVkZTqeTzs5OYJpyEpfTF+QSyW3TFcJ75plneOWZZ9h45gzLFIVBReFEMMjWI0cmypss2PM6h2uca4kYnYVF1yAWkGvNnlqqvldWVnKHzcaxXA61UMBuMrGjtlbr9TxPETRTzQUNDQ28+eabeKqrUbdtI753L9H+fnZs2wYm0wXRPE319ezZswfj5s3YBgZIjYygrlzJxg9/mMC2bVrJbZgUVhtcuZLAW28RLhTwlZXhl5KDkQjs2IFTVTl27BhCiMvyvZQySTu8/Xbi69bRHI0yWCiQjcVQDx8mEomQz+exWq1kMhn27dvHwMDARDkPv99/QV+QYCxGoL+fcCCAb/PmC7WbWazGp3P0hsNhOHSIzStWUFcU2qOZDMFMhqai72fBntcZep8ET50isGvXBVqO3rL02kEXEAvItWZPnaq+m5ctoyESYeett2oZvaBNOPMUQXPB+cxm6uvrqa6uJqSq+P74j9kxPgGWJG2N4wfWrFxJdO1aIsuW4Xa72djQQHl5+eRJq+gfCI6N0Tw8jGfFCqr6+ojbbByMx9n6V39FsLgiHTehjLdeHR9bKBSaU+htIBCgUChw8uRJYrEYbrcbi8XC4OAgxOOUJ5M4R0fpzmaxV1Tgqq4m2tGB6fRpahSF5uPH2fmVr+AvFW4lyWpVq1YRL2o3k1bQs6i9M91En81mIRqF1avPX7fZTCiTmVgQLNjzOk22bzAYpDkex1PUcubNnKUzr+gCYgG51uyppc7l1tZWIm435WfOEGhvh/p6LTJoHiNopnNmf/7zn59+Apihz/G6T3yC5LJlF2Q1T5q0iv6BwJNPak7t2lp45BFcdXUwOkqwxOY/niVdSjwex5dIzKlHeFtbG93d3TidTrxeL6lUikOHDuEWAm80Sgww2u0sF4LwwADLKyvxtLbSUF2thbhGIgSefBL/449rPgcg0N+Pp1DQnPHbt0+v3cyiE2HpRD80NERHRwdtbW3YVJWhoSEqi/cuns3ig4kFwYI9r9P8toGuLjwf+YgeznqNowuIBeRqRynNluHhYY4dO0ZVVRWVn/wkyePHaT54kJ3btmkZq/NcdnxW1zuDE7ipvHx2k9amTYTvu09bORvOu9am1o5qb2+nq6uLjRs3Ultbe/77enrONxOKxQgMDBAeGsL35JM0fe97F1xDJBJBURTsdjsAdrud0dFROHeOcpcLE+A1m9m0fDltfX18NhbDsGbNRIKd0+vVuuedOKFd949/THjfPqqMRrjppgvGD0XHcyJB+J138FVW0rRixbS1nJq2b6e5r4/h4WFOnjyJoihUV1eTFYI3uru5W0qsUhLt6mIHaJFYLS34N22a9fM6pxpi0/y24R07qNqwYdJuFzVn6f0gFgW9FtMNxLjdvKOjA4PBgBCCRCLBHXfcgdlsvmhNocVktpPRbGtHnT17lhMnTrBmzRrWrVunfd83vqEVrBsb08w8VitOk4l4fz/Rhx9mZ0MD/nffnZigvhOJcDqdxul0YrVaCYfD7N27F8/wMPfddBPpfJ5ENst6n4/e0VE2nT6tJaYVQ3tHMxnsRiMPOp3wla/Ad7/LruFhkmYzrnxec+I/+OBEracmh4N/+1//i6GzZ8nGYpgrK6lcsYLPu93T1nIKfu5zPLlrF+3t7ZhMJurr66mrq+Pc4cOkjx7lI8PDNFVX47/jDs2hP4f6PfNRQ2ym32raZ1CvxbTg6LWYdCacl7lcDo/Hg6G40u7o6OCOO+64ZpORptNCphMas60dVVdXd2G4adFOHhgY0GoSWSwQj+MqVp0NPPkk/pJyGo1Hj2Lbto0BRSEajTI8PMyGDRuIHzlCOh7H5nSSyuXY39vL5rIy/o+qsuz997ll1SqsRiPRdJod1dXaeYt+haaKCprb2sBqxelwEH/jDaL33ccOn489X/86naOjVCxbRrnNRmpwkM5kkj1WK18q1nIq1XwM//RP9BkMbNq0CYfDQSqVoqOjg6YPfYhCLMaDH/7weW2pr++i2tJU5iPbeU7mLL0fxKJVfdbDXG8gxsNO3W436XQaAJvNRm9vL7/73e84fPjw5XWNu0KCweCcutaNr2DPnTvH6dOnefbZZ/mTP/kTfvjDH2I2m0mlUpNCJFVVvXT3soce0nIvhoZwmkwTYbjceSfOlhbCRuOkMM2mtWtRjh9nw4YNPPDAA7jdbiorK3ng05/GkssRiUYRUhKPx/ELwX1/8AeQSvHa+++TymTYWV2NP5/XzlsM0/W73exctw67yURISuzjq/J33+VwMonX7cZuNiMqKrDX1eGtqeGwwaBljBcd3MlcjqrKSk50dTE6OkoikUAMDmIPBFB/+1t2fec7HD5xgl39/QSCwUnHJPv7ZxXyO6ducDP8vnMKZ73B+0EsZv9uXYO4gRh3XjY0NHDgwAEAYrEYPcU/tLvvvnvi4bta0SSzrQlVyngE0cGDBwmFQvT29mI0GnnnnXdYsWIFiqJMOn5W0TlFO7nvySeJ9/drmsP990NdHfEXXsBXXT1pDH6/n53xOIHiBOfz+aipqaGurk6LFNq3j9ePHWNNVRWuhx/GVVfHfTffzOgbb2CPRrXopXE7ekmUj78oKCaifoqhsNJsntyf12JBDA8jjUZ45RUCg4N4LBbNMZ/LkXM4WLt2LWePH6csGiVrNtOZzZJKp3lQUUgGgzydTrNx2TKy+TwHenqICYGpo4M9e/bwpS99afJNL/EB+BIJ4ps347rllpnvZ+nv+8QTeN5+m6pYjLjbTfNdd7HziSdm759atUrrVZFIEE4k8DkcWle+WUbbXSs9Vy6XxaxPpWsQNxDjXbzMZjNNTU0UCgXa2tpYs2YN99xzD8uK0UJXM5nvcpKzwuEw77//Pv39/cRiMcrKyrDZbITDYdrb2y84ftbdyzZtoul73yP68MOMfuIT5zvNOZ34gV2trTx16BC7Wlu1VfD69Tz44IN8+ctf5vHHH0dRFLq7u3n32DF2tbZyaHiYmtKVdl0dzkcfJfzII5N7kBe1FyIRra7U+PuHHtI+X7WKLW43w6kUyVwOVUqS8TjD+TxbDAYYHSUsJc5CgaEjR9jX2sppi4VQKIQrGsXicNAZj2MyGrl91SqW1dfj6u+nkE7TFg7z2/Z2TgwM0G2x0NXVxa9//evJq9PSDoEmE01tbUT/4R8Y/f73UYuaykzd4AI/+AGe3btxZTIYystxZTJ4du8m8IMfzPoZCW7fTvOJEySjUapyOZKHDtG8ezfBrq5LdsBbzNX3fDFXjW0+UZ64jkroPvXUU098+ctfXuxhXLO4XC5WrFhBOBwmHo+zfv16ysvLueuuu3A4HBP7mUwmBgcHuf322xd8TG+99Rbl5eUIcX59fKnz9+zdy56f/xxnOMxoLIbFZkMajZhMpgkBeODAAYQQlBWL6Y1f9+DgIB6Phw996EPTrr5K79H4vjfffDMHX3kFRQjKXS4S0SjHenpY8eijuNaunThucHCQf//Rj+jYvx8j4HG5GBkdxXjqFO3RKCfPnKGnpwej0Ug4HOatt96ip6eHsvp6XB/4AJw5A+fOaT00Smv6l5ez7MABguk0/akUbaEQfdEoNpOJT2/aRM3NN9PT30/P2BhH83kM5eW4t23jzJkzpHp7uae6msjAABWJBFsNBuzLljFUKHA0l+Od7m6GczlsdXW4/H4ymQyJRAK73X6+FtM//7P2msnA/v24rFZW2O2Eh4YYPH0aT10dH3rooUn3MxgM8vrrr/OLJ54gk0hgy2SwZ7Ngs2FSFAY7O7n98cdn9Yy83tKCUlmJq6cH0dKCxWpFNDQQzue5+ehRWLv2fEXfqce+/jqKouByuRBCYLFYEEIQDoe5+eabZ3X+xaanp4dEIoHFYpnYNjY2NvFszgff+ta3+p944omnpm7XTUw3GFPV+l27di1qMt+ck7NaWmh6+22ymQxZqxVzLkfq7FlkVRVOn4/BwUFGR0dZuXLlBeay2arj090jz6c/rRX8C4dx+XywYweBRILxvYLBILt376Yhn8e7ejVpo5HQ2BhD6TS/DoW49eRJLNu309PTQ1dXFzabbSLM9pL9DjZtwtxHJlcAACAASURBVP/Nb/LAP/4jT+/dywqvl6rbb2f5iRMcjMdZXlND0wMPsGfvXoyALZcDsxmfz0esq4tnAgEqLBZutVioHB5mqKeHA04nhs2biQwOkjKZSIRC+E0m7HY79fX1HDp0iC9+8Yva+cdzL/bu1SKebDb8Vit+gwHuuEOLKpoiHJqbm/HEYvjjcWJGIwdUVSsKOTRE3OPBEImwa5os6ukIh8NaSOzx47Bli1bDS0qthtc0VYDHnxNefJHwq69StWoVbN8OdXXAPGSHX+WQ28XMp9IFxA3OYifzzfn8L76I3+/nk+vXs6ezE8VsRi0U8KRSDEUi+Hw+VFWlsbFx3my1ExNU0eY+NDREW1sbwV/8YuIaxv0iy7JZhNuNXQiqysoYSqUwGI1ko1HcVivLjUYKZ84w8JOfULdhA64772QY+Kd/+ifWrl07ebKc2tdiwwZ23Hvv+QS49vZJ/a3XeDxEo1EiFgsik8Fut1NbUUEmmeQmReGdoSG8UtInBMl0msGWFsodDkSxFMi5c+e49957cTqdE0EMwHkfSSymNWgCrd6V2z3JWTxu63/xxReJRCJUnDtHmaIwVihQZjDQXigwJgT7+/qIO52sefNNbrnllgsE+VSfQTQa5dSpU+SOHsVdUUGDEJiNRnwOx/TO6pKwWJ/fr/W52LVLq1JcV3dlC6A5FB6cLxYzn0oXEDc4i53MN+fzF1ezn73lFnKFAuFUipFkkpGREUYMBjZu3MiWLVsmSmnMRy2hqZnJBw4cwDA8zMr+fpL/+3/T7HQy1tCAz+cj5XBgz2TAaiWbz9MdjbLa4cDt89FgtXLoyBE8ZWXEzGaIxxl69llOrlhB3u1m+/bt5zWKhgb8//mfWihqWRmBQIBftLaycvNmfIkE7T09OFSV6sFBus6e5W+7uhg2GsmoKuW3306iv5+KigoMqoqnupq67m4Qgl5FobcoIG6uqsIlBEG7nfLyctLpNENDQ6iqygc/+MHzN+Chhwh+61sE4nHCkQg+k4kmoxH/bbdNNDcKBoM888wznD59mv3792OxWOgOBvHa7RhGRqiTkn6DgWGgkMsh6+o4efIkra2tPPDAA1RXV0/4jUqDFs6ePcvevXux2WysdLtJxeO8GY9T7/Xy+Vtvnb65UklYbJPBQHM8DmYzznffJV5RcWULoGlCboNjY1pTq/vuWzAn+GLVp9IFhM6iF0eb0/mLq1m/18ujt956PoZ/+XKGzGbsx4/jGhnR+mBf6WqxSKmW09bWhqG7G/XQIRrNZlwVFZDP0/Ob32DfsYMjgNrTg8lspjedJpXJEAF+MzLC6//yL9iFQE2lsJnN7LNa6R0e5kwwyFhlJb29vdTX19PY2Ejgpz/FX11N0GCYSNzzW63EfvtbDktJLWDP5wlJSdRkwpJIEM7nUWtrSSYSZCMRBgYGUMbGqEsk2KcorLXbWWswsE1KfpVO48vlsDmdJLxeYrEYBoOBeDzO1q1b+ehHPzpx/cHycprXrcMTiVB16hRxRaG5ooKtw8MEQyHCO3Zw9O//nsHBQbLZLHa7nZGREVBVbCYTvqoqzkYirC8UuEkIfmE244nH8VZUMGYw8Oqrr/JHf/RHJBKJCyJ2BgYG8Hq9DA0N0aooyMFBajwequ12/OMO/amlYUrKkYyHDgd6ewn19OCz29nh8+H/yU+gp4eg201g1SrCDsfsJvdpiis2Dwzgicevy5pSuoDQWVqU1PXxu934q6u1PspCEPT5aC4UYGQE54svEn/gAaJu9xWby0q1nODx46w8fJhGu51KtxuyWZx9fRhsNk7t3cuy224jabdz7PBhYskk66uqGFQUzEYjmUSCASkRQnCn389gIsFv+/sxqSr1N92EJZ3maHMzxzIZKtNp2LaNDlWlLx4nVyggBgcZSyRIWa2cy2YZADpzOWryeYJGI1HANzrKaFkZsVgMRVHwr1iBv62NtMHA3nSa3zObaTIa2WO3Exkdpby2lsbGRs6ePYvH42H16tV8/vOfB5jwEXR1dVFTU0P2j/+YA++8Q28gQLCzk2e6uth+333cUltL2zvvIIvXZjQaUQoFFCAyMkJNWRlRh4OBTIYBIGqxkIpGqYrHKduwgYiUHD9+nB07dmjmvGQSfv1rCIcJDg4y6HCQUBSqly8nVigQLGpNNDUR/PjHCXR1Ed6///wEP6U4oN/t1oTJ+vWaQ7toIgqWldF89Ciegwep+sxnpi+OOJUp3x3o69PqZ9XUwBVUB75W0QWEztJiuppNK1eC2Yzf62Wn2621BB0awnfsGDtmkRk8Gya0nGefJWky4RpP3DKbiRcKqGNjfLCmhoGVK4m5XJweGcFntTIwMoKiKGQyGcYKBUzA9tpaMqpKZGwMRVWx22x4hSDZ2cloKgUGAz6DgXNHjvCclHxg5UqqnU5SiQTSaEQYDJzI5ahWFNJAez7PcKFApaKwKhLB2dhINBTCWyiQHh6mTUpihQL5bJZhRcFfX8+XYjGeHBjgrVCIwvAwy5cvx+v10tDQwI9+9CPefvttkskkhUKBsbExKioqWLlyJRUVFYSWL2cgnycSiXDozBla/+d/SCaTuN1uYrEYhbExfOk0MYOBtM2GlJKG0VHeNxqJ22wYFIVQOk3cYMDf2Ylt40ZCoZDmy3n+eeIvvICrvBwqK0l0dxPv6yNZWUm+shLvqlWMOJ0cEoLAxz/OwYMHL8yh2b5dM8/BhW1cS0xEgdZWrdtgLgcHDuD67GeBS0zuUwoPhoeGqCoUNI21yPXUIlUXEDpLj2K/6wm+8IWJhkATiWaqCsHghZVPr5AmKWl2OCCVwmm1Ei8UiBoMeDMZauvqqCtOFCdPnmRoaIhEIkFtba020Q4P48xmqbPbiUoJmQxph4NBp5PM2bP0ZTLECwVSmQzlZWW0p1JUSslgIsFykwm7lFQ5HHRns1gNBpyqyhAQA3JSEikUOGUwsLKtDVsqRd5koied5nQuhzmXo8bh4F2TicDQEC/G4xw0mUgODk6Efba2tiKlpLWY55HJZCgraiN9fX20t7djt9uRUk6UMAmHw5hMpgkTlaIo5CIRItkseSEos1joMRo5MDpKolDAJATL7Ha8VitDySTdQ0Pc7fNx5513ao2LnnuO5jNnoK8Pp8GAMRRiJJmkOpHAbDCQrapCMZvxeDy88MIL1NTUsG/fPrq6upBSUlNTg9ls5kvTdf/btAm+8Q1NWIyOEk4kqFqzBko6Dk4t7nhBlNWUBYqvslJLGixGSNHdTfyNN/BFo1o73EtEOM0miW8xE/10AaGz9Jmm38C0zst5wL9+PTszGQLHjhFKJvHZbOwwGAg4HMQ3bWI8WNdms5HNZrHZbOTzeYQQCIsFxeslbTTiTiTA7cZSVobf6SR36hT9qRQ2o5EqpxOXy0ULsCaZpHt0lJDTyUhFBdGREbpyOe6w2QgnEihAHrABBSnJG410hcMs93joisfxWq1UuFyQThNJJkkZjfx/VivHczkSiQSFQgFVVclkMhgMBp5//nm8Xi8mkwlVVYnFYpjNZkZHR4nH4yQSCQBUVSWfzzM0NITRaMTpdKKqKoqikIjHiakqRoMBVVUJ5fPkAAuQzuXoiUZZ7nRSYTKRBlKpFPLcOYJ79uAfHWVnRQV7urt5O58nWijgkBJ7Ok2ipwd7JMKy7dspr6vTIsmCQfr7+ykrKwOgtbWVY8eOMTw8zLrNm/F//OMEg0HNBPX66zS1teG3WAhaLHT197P/wAGqV6ygob6eSrQQayHExbP7SxYoTUXnfPj11xnu6iJy+DCKxcInb76ZYE8P/otEOI079sPhMNlsFrPZzKlTp3j00UcnBMDlVBqYT3QBobP0maGXxHz1tZh6Lv/p0/i3b9dKbIfDWje8r36V5nweRkdxFid4t9uN1WpleHgYi8WC3+8nm80y1NjI3XffTSKRwPTqq9hsNtJ2O1XpNFnAY7Gw2u3mTDZLv8PB6g9+kLMDA6hmM7ZsFs/oKGOA1WBgGVAAUkKQMRiwm83kslkyBgMK4LZYMBkM5K1WFFUl5/fTls0yUjQfqapKLpdDVVWsVivpdJpoNIqtaBqSUmIwGCb8C8CEICgUCiQSCc6dOzdREFFRFLwuF+WqSiiVIprN4lAUcgYDJsBisZDK5QglEoTRemaYTCZSBw7QnMmw0+WC7m6yJhN35fNsUVX+E01Luk1VMaXTJFpbWVFfT9upUwyNjeFyubDU1pI0m4mGQpgTCaI//znnamp4Vko+eOut1J49y9m9e9mTSlEhJcMmEzU2G6ZslujAAK/V1mL95S9JJpN4vV6qqqro7e2daAY1HmU13aQspWRsbIyzx45hUxTcdjvJQoHmgQGt5taUPI3ScOBz587R2NiIz+cjnU7T3t7Of/3Xf9HQ0DDJ/7NYfTPmRUAIIX4f+AGgAD+RUn57yucW4N+B24Fh4GEp5ZniZ18FHkN7zv9SSvnKbL5TR2eCGXpJLEhceum5rFa4915NaGzaxM7iH34oFGL16tWsX7+eTCZDb28v8XgcRVGoqKjg9ttvp1AosHLlSr75zW9y7Ngx/v30aVyxGFJRaCwvp0xKqoTgsMWC32hk/fr1GAwGEitXUtHeTufAABmbjWw6jdtiIZtOU2u1UmuxoLpchNJp1ni9qEC6UMAiJasqK+kqag5CCHK5HMCEAMhkMlitViwWC5lMZkJoZBIJyOexKAp5KUGICWFRKBTIZrPkcjkURdE0JrOZNbkcwmYjmc+TzuUwGgxIux21+P8sYLZYKPd66ejoQA2FaKqvJ2A2QyKBx2jEpaq4DAY+AfxaUTiZy9HkcrE+HEb53e+4yenk7VQKayaDfP99QiYTxuFhyh0OxiwWBoaGqBgcZKCri7LVqzmVyWA0mWiLx6k2mehPJml0u+kGTkciVBgMPPjgg7z66qu0tLSwfv36iYn75MmTpFKpCx6HQCBAXV0dyWQST1kZ9vJykvk8A4kEG3w+AvE4/pI8jVKNYHBwEKvVyrlz57BarbjdbsxmM7t37+ZP//RPqaqqYv/+/USjUcrKyuY1dHu2XLGAEEIowI+A+4EgEBBC7JZSnirZ7TEgIqWsF0I8AnwHeFgIsR54BNgArABeE0I0Fo+51Hfq6Jxnql9iEc5VGq5bOhHccccdF+2Z0NTUREVFBcnWVrIHDtDR3U3UaMSxfTsPb9rE6dOnyWQyeDweNn7sY/Cxj5F//XW6u7uJ9/djisfxWyy4ysqIeL001NbiP36crNnMmVSKMiEwFwqMLVuGEotht9tRVZVkMjmhDQghJqreer1eotEoyWSSfCqFLNr/jQYDuXweg5SogKIoGAwGLMWoJW8yqTne7XaGfT6sY2NYxsYYA+wuF2aHg0gkQk5REFJiUVXKR0eJp9P0Kwr9Q0NYly+Higqqxsag2Kum0e3mc4UChwoF1lit+KJRmjZu1Ir3qSqDySSJbJbCwADV5eVYbTbcViuxTAZPLkcsnaYjnUY1mRjKZDihqhikpHzVKoYNBlxWK9uamshmsyxbtmyij3gkEqGqqgq73U4qldJCd6cw3t41FovhLS+HTAarxUI0ndZauobDWvRUkam1x8xmM0II+vv7cbvdDAwMYLFYJjSF6upqotEoHR0dEwLialY6mA8NYivQKaU8DSCEeBbYCZRO5juBJ4rvXwB+KLQlyE7gWSllBugWQnQWv49ZfKeOzjXLXBMAm5qaaO7rw/NHf8QdU5rwBAKBC5rrbN26lZqaGgwGA4cOHcLr9bJ27VqWL1+Ooihs/cM/5NWf/IRYdzcZk4lel4twOIzBYCCdTpNKpbDb7cTjcbLZLAaDAavVit1uZ82aNeRyOVKpFJ2HD6MoClnAICU2NId4tlBAMRpBSoyZDH6XC4fNxsDgIPmREaJjY1TX1CDdbgqxGKl8HqWobRiEoEwIXEYjzkKBbCzGSD5PKBZjayikRYYpCi6rVRMSxQ54D5SX86DNpmlufj+MjXFqcJCcqlLh8WAIhYhJyTKTiYbycjoiEaLZLB5FITg6yqDJhIjHqTAYSKTTjA0Pk1YUypqasAiBuxiZVprRL6UklUpRKBTwlvq4iownUbrdblJ1ddiPHCGdy+F2OIhHIvjGS7oXKe0XvnbtWlpbW3E6nSQSCZLJJENDQ+drYAENDQ3s37+fUCiEqqpXvdLBfAiIGuBcyf+DwB0z7SOlzAshYkBFcfv+KcfWFN9f6jsBEEJ8GfgywKoFcErq6Fwuc63/dDGBMrUciaIoPP7449OWphivqlqVSmF7803CPT2M9vVRkU6zwWol6XTy2tgYWSkxm83I4ut4iY3Ozk6W2e1YIxE+KiVBi4UBVaU3kaBQ1B4EUCg6tlVFIZrL0ZNIMJrLoQBkswwMDJDL5TCZTBPX6XA4MKRSeBQFay5HTgikEKQLBYy5HE0eD6TTNAsBa9bg7OsjrqpEbTZ2lJdrIc3FJk7jyZIvd3Zy6MwZPGVllNlsbPX7Kbfbqc5m6VJVbnI4eC8epz+ToWAyaRVhVRWTwUC8ro7y5csZHh7mnnvuAaCmpgYpJYlEgkgkghCCfD7PmTNn2LVr16QoovEkyurqak4OD5O66SYKXV3U5nJEFYUdX/vaJG2zNCv/9ttvJxqNEg6HEUJQKBSoq6tj3bp1E/tXVlayYcMGeo8cIfT00/iSSXZs3qxFfC0RH4SYZtvUPqYz7TPT9unKkE/bG1VK+RTwFGgtR2cepo7O1WW24YlT9/vYxz42ab9x4bFnzx7efvttpJRs2bJl0uelpq2Xn36a13/xC+yZDC63GyWTQQ4OUldVhcPjITYywmqgvVDAZDKRy+UYGxubKJ3uyGQYiEQYlZIIEFcUNgpB2mAghLayK6gqUUCqKnFVJVkokFfViagqg5Q4HI4JB/idd95JfX09J06cIHjoEMZ8nhUWC1FVZSSbZbnRyJesVvyVlXDPPews9n8Ibd+O7+232ZFI4Pd44NFHobFxUrLkF9es4YteL3zqUwT/+78JpNOExsZYqSj8zfr1HB0dZaC/H2kwUON0YpOS4cpK1LIycLvZsGEDg4ODmM1mVFWlurqarvfeY4cQOI4e5a1EArlqFdt37py2AGSplhfxeCjfsoWVjY3T/t6lWfnl5eVsranhRGsra4B1bjf+T32Kg8XS9BOLgYEBHh8dxb927fkgjAWu/zTOfAiIILCy5P9+oG+GfYJCCCPgBkYuceylvlNH55qidKI3GAwMDAxQV1c3UVNoz549rF27lsbxyWNkhOC//ivN+/fjWb6cqrvv5uy5c+zZs2dyv+ziJJPNZrnrrrsmJo5nnnmGZcuWIaXE5/NhOneO3f/yL3R1diKkJCYEaUUhnk4zajIxGAziHRrCajRqkU+JBHkhUBSF8d70Y2NjZAAvWnRIL6AWCryGtmozAFkgjjZ5CCABGIvHqyX75aJRlHweqxCYW1tx+f08+uijvDY8TFt7O+F8nqSUrBCC/9vh0LSHWAwoCr2WFkil4MMfPj8x7t6tTYwzBCX4Gxu1qKGSSqvB11/n3ueeIzkyQsRoJFlRQbnXi09R+ITJxIP79mklN+x2QokEKwsF/sZgIGgw8Go6jQfYPDREZSIBy5YBEHj+efyxGPT04F+1Cv9DD2nFAC/BJE3xvfdYuX8/D23erP3GsRi88grLP/c5TTiOa5KplPb5IrRcnQ8BEQAahBB1aM/TI8Bnp+yzG3gU2Af8IfBbKaUUQuwG/ksI8Q9oTuoG4CDac3ep79TRWRSm0wz6+/t5+tvfJt/VRVWhQNhoJL9yJTU1NYyMjHDq1CmMRiM9PT309/fz/NNPc+/wMDgceKqrceVytP/Hf/Cq2UzabCYcDpPJZNizZw8VFRUceeMNxs6do0xKGmpqqLv5ZtqPHiWcy3Hvpk2ctdl47te/Zm02i0VKelWVISlxSkkSMBQKjOXz5DIZnAYDaVUlNyWMdZwsMAqY0UILrUASTTOwAE4hKEiJLG5T0TQGUdzfjDaxmHM58kJgNhjIDw0R+81vqNy0iaraWk6cOoUzn2e12cytisLZfJ6g2awlOYI2WUajUFs7/cRY2nCplGkCCML793PLl75EIBBglcOB1WoldfYs/W+/TdOHPgR+P/5YDP+RI+cFT2MjTV4v4UOHqHI6MSQSsG+f1vQpHCb03HNaqfPLqOg6ofEdOwa33nrB9fnffXdy6fdf/epCc9JVarl6xQKi6FP4C+AVtEXHz6SUJ4UQfwscklLuBn4K/EfRCT2CNuFT3O9/0JzPeeDPpZQFgOm+80rHqqNzpQR+/nOe/t73tHISVVX0L1/O81//Op3BIN58nsYVKzgFvN3ejnLqFO8ePcqmrVupra0lm83S0tLCli1bqBoZ4WQmw2AiwX0OB1kheDUcxmA2s+wDH6Cvr4/f/PKXVKVStIZCDCQSWG02HOXlnOzpoeXoURrtdnKKguHwYQbCYYxGI8lUCoeiMKqqSCnpyecpAKgqeUAUBUFSVSdstvl8/oLrTHM+AQ+0iSKHJgAUKTGhCZICYALMQpCTUjsXTPgpjFKiSIlqNOLKZjn8zDO81NGBx+lkeSpFeT5Pv8GAVwitv8a6dec76nk889KL2ufzkUwmueOOO+jo6CAajWLq7OS+NWvOty0tFT4lBfl8DgfxbBaXwzGRbR3fuxdfRcWVr+inFP6b8fquYiLoVOYlD0JK+RLw0pRt3yh5nwY+M8OxTwJPzuY7dXTmynyWKQi++ipPP/EERqsVq8fDex0ddO/fj9lmQ+bzeAwGft3VRVhKLYxTCJJDQ7zxxhvce++9ZDIZzJkMbb/6Fb1nzpA1Gqn2eHhVVcmrKj2JBN50mkIsRnpkBHVggMPZLDKdxqOqKKpKwmjEVyhwOp/nTCKBy+Hg5d5eTieT2I1GBgoFzELQq6rkiuNW0Fb1OSAFZIu+AgPaRD4dsrh/GZqgMBW/Z5xx4WAAFCHIG41QKGAYF0TFfbxoUU9xVWU0neZQWxsep5OVXi+5VIpzsRgrVZU+mw3r2rWQy8Hy5efrJs3DxDhu958Ucnz4ML9f0lMbOD85l0zITStW0NzWBokEzspK4qOjRPv72bF16/THzoXZTvzjiaBDQ1r5mPHkzK9/fW7nuwz0TGqd65apZQqm9QPMQVgEfvpT8mYzFpuN9uFhYokELqORkWyWdD4PRiMjxcnXZjQyls9TlsmguN0EAgHNVDEwQEhKjGYzjkKB6PAwrZEIq8rL8RiNJID+jg4SAwPYhWAsncYqJbmiWacQi7ECyEpJZz7P/bEYXpMJE3AmnycGmOTkWI0CkCn5v4mZI0RKsQDlxX0Txdc0msnJVnxvKJqQTHY72VgMs8GAXUpWS0l/8bh1qsofeL2cSKUoV1XcXi85KbE4HGCxMFKM4Lnjr/96wo4fDAZ5WUoO7dmDsFi4rbaWjy5bhj+fn3OG/LQRYtu2aRVeSxmfnKdUDN5ZXU2gq4tQY6NWLvxix86F2VYA2LQJPvUp+Lu/0wSoz6dFcu3erTnsF9APoQsInWuey9UCSpOShoaGJvwA40lgc61pE25royoW4+S5c1hNJtRcDpvZDOk0RkVhLJcjjTbxyoJmbBmTEls8TjKbpV4IhgCT2QxCUJXJEMzl8AqhfUcqRcFgIJ1IIIrHG4RAFDWS8TyEKNok70Fb4ccKBZJAqHhuwYVhgOMmHwnkhcBkMEycYyqKEFikpAxwoGkfXuBs8bwVJhNl+TyDQiAtFtw+H+UrVhBubSWdyXCzlLjzeaoKBdLAeoOBukyGY1YrOYeDSoOBnmLHOpPBwGAsRnl19UR47niNovYzZ6jYuhXZ2ck7779PKJHg81/9Kv7LmBAvCDkeL/sNF07OUzLz/atW4f/KV85PxIXChZO10Tj30i5zqQBw4gTcc89kbSMSWXBHtS4gblAWs0LkXAgGgzT/+Md43n+fqliMuNtNcyDAzj/7s0uOtzQpqaOjA0fRQRmNRieSzl5++WUqKioufR9eeAHfmTOkMxneVVU8UmJWVeKZDA6jkZSiEMvlJhy3OSm1KB+zGStg8XqJRyL0xeO48nlqVRXFbCYrJb5CgVqLBduKFZzMZBgYGCCdz5NAEwIqMIQW+rce6EcTAH7gMBBUVTxoCUQhtFW7qTgO0ITCuMYwLjzKTCZGVRUMBvKFAoqioAhBLp8HKfHabOSlZCiTQUiJGViuKDQ4HCSAZKEAdjtjTiexZJJ0Xx9xwF8oUONwcCaXozKbpT6fp6AoUFaG7+67iff2YujuZpXVSm8mQ8fwMAVV5eN33w2nTsFPfkJg717CySSVDQ3Y6+qgrg5DMslQoTCpD/gVcanJeabM/JYWbeW+ceN5c080qpl7Lmeinm0FgNn6K+YZXUDcgCx2hci5EHj+eTxvvqn1B/D5cCUS8OabBHw+/H/91xc9tjQpKRaL4fV6SZ09i/vMGWhrI22383ouxyc+97mL34eWFvi7v6OpvJy+cJj6XI7BdFqzs+fzNFZWsj8SYQxtIlbR/rAMQhAvRvKsr6rCG49jzGbpBU4JwYp8Hq+qYrHbqVm7lsrycvYGAphUFYFm3smhTepjgB0te/QmNPv+GSAC1BU/6wIq0SKQTIpCpkRDGB9XBVrV1+VSMiYEBiGw2WwYpERmsxiFAIOBnJSssloJORykR0cpk5KbnE6s/397bx7d1nXl6X4H80QAHMARIjWYlmWNtknJQ9uyo1i2Eye0/Jx2Xr90lMSOV/L6pavrdVYntexKXFVOJ929stLd1asqrUo6lXrpzGWGjhN5iCfFsSVDHkQNlkhRIziAoAgQxECCAM77415SIAVO4ijpfGtxATi4Fzg8vDz7nrP3/m2DgY+bzVBezm/Lynjv1CmGhoYwmUzYnE5EJkPGbGaj0YjF64XSUlxFRWCzUb1lC/0mEzdu2ULbq6/SHw5T7vHwsYceorq8nJannqJp6BfYcAAAIABJREFUwwbCdjvpvj6K338f7HaoqMBut9Pf309YdxTPC5cjz5JfcrS+XmuLRLQ7/Ecemb++TWSJHNXKQFyDTCzruJyrYIVfeYWK4mJwuehLJDT5hFgM+ZOf0PipT13a39bWsbvCRo+HFrsd1q+nqKiI/hMnyB06xIbaWigr4/B771HR3487EoFVq3DfdhuUll46Ds8+CyMj+FesoMnpxNrZySuJBGvMZpxeL68KwWA6jcNkQkhJLJslA2SkxCwlfr+fkpISrEeOkDYYsANeIRjK5egHLMkkKzIZYpEIK4Bho5GUwUA6k8GItue/Am31cAfgRgvvM6FN+nE0A1Gkvx4EyGZxctF3IGDMMV1usVBbW8tATw+RZBK700m10Uh2ZISeoSGGMhnKnE7MJhM+IUhUV2MaGCCUTiOAN8vK8DU0kOjspKioiLVr1+L1eolEInQfOkTYasVTUUFfOo0QgjutVmJuN0ajkS9+8YsEg0GODQyw7Y472Lx5s6Yx9NOfakV8Egl8LhcWh4Oh4WEcx49DRQWpVAqLxbJoGkSTskR38ouqWJyHMhDXIPlbL6Ms1ypYvmSSOJBua+NAfz9Omw1bcTG5VOrSu/3W1rFykqOx7U0nThDw+fB6vfSfOsWGykpKysqI9fbS29vLDqcT4nHtp7kZV1MTIYdjfCfOndP2moeG8JeW8nhpKfenUgQ6O3mpooLSqiqqrVaGhoYI62NoAixGI8JiIdTXR/pPf6I6FsMjBCkp6UNz8t7ocLByeBgX8NrZs9hTKfozGdxG47iktCbgrMnEUCbDUeAI4NB9BRG07aUGp5PORIIImmSy1PvhMpnweb2kYzEGslkEUOvx0FBdzb6ODhK5HM5sFntJCYbBQXJSUu1ycT4Ww5LNYiotRXg8OGpqqK6u5sSJE/RHIoAmBTGqYeT1ehlZsQLR2cnA4CB3r1mDTKXIJhI4HnyQ7frfqrGxcewaNBh0b0k4jKu0lFAiwcfq6znW20tbKkVpXx8yHicSiXDdddeN+SmWjKUKOV1MxeI8lIG4BsnfehllMRUiLyHvrh/dgcvwMNTW0uhw0BII0C4EdqsVMhmS58+z7aabsHi94+/285b/wYEBAj09hKNRfPv385nvfhfee48AEIrH8YVC3OP1YrPZIJkEl0sbh3378P3rfz2+f7W1MDRE8P33CfT305bJ0B+PU2w0Eq+qoq+vj8HBQWKxmOYMNhrJ6vITTilJxGIMC0E/sE5K1hkMnETbPlotBN1WK5w9y1A8Tl8mg0NfXRiNRsqNRnzZLAmrFbfdzr4LFygDyoxGErkcdjR/Q9RqpTWTIWowYM7lqBeCMrOZNj1bOZFOs85spqG4mEGjkSEp2VhRwQOrV/PB8eO8NzyMTKfxezyks1m8NhtOITibSmG1WjEajTidTjweD7fccsuYJPipU6dIp9NYrVbS6TRF1dWsXruW7ZkMu5zOi1FBEyayS65Bn494fz8+rxe/x6NpLB06xMFYDDE0xB133MEDDzww+xVu/rU1SV9mxRLdyQOLq1isowzENUi+Hky+cuVcFCIv2+mdf9dvNsMbb2jtd90FkQj+tjaazGae0VVAvQYDG2w2yqxWchPLQ770Ej6/H38iwTtdXXhtNirKyoh3d2urjZoaduVy2nd1dhJ0uWjp6QG7HVd/P/GzZ4leuMD2ujotymX0n/Hhhwn+1V/R4nSSjUQ4FYlgNBoJ3nADpy5coKOjg+HhYbLZLNlsdiwr2WAwkE2nkVJiQyvwcyaXg1yOMFp00KuJBNc7nYRtNrLJJDFghZQkzGYyJhMj6TQrLRZCFgurslk+NBjoMpkwZ7MMGo2kczlGjEaC+jaX2WjEYTJhMpsxlpRgDYUoAW6tr+e+WAySSXLr1xMym9m1bh1EIjTu3Enw9tsJfOtbtI2McCgWI6avdqImE8ZkkvLycoqLi0kkEmMrgGw2S2dnJ319fWMGo6ysjLJ162j83OemFJO75BrcuJHob37D9poayOXw53I87vfz+Fz0hiasKGeb8VyQJbqTXypEfor9lU5DQ4M8ePDgUnfjimBeE8jynN6uCVLV037m009fXLK//rqmvZNMwuCg1hYMQlkZzQYDyXgcd1GR9s+eyRD7/OdJpVL09PTQ19dH+s03sWQy9GYy3Or3s6q4WNs6crmIPfggqbY2Sl9/nbDJhK+7m0YAKQl4vYTPn9fCSR0OcrW1+DIZGp98Em68kUAgwIs//Sm28+fJRKNYi4txbNzIoZ4eurq6OHLkCFndITyalSyEwGQyUWIwYLFaIZGgzGLhbCqFCy06KYaWuLbObidstWKx2ehPJjFls9ilJCUEwmDg43V1VFssvD88jKuigkh7OwNSMgwYhobojkRYW1FBIh4nOjyMSQhkURF1ZWXIwUGig4Osrari/pUroa+PWEkJDo+HXVVVEIkQ/MxnaGlvxzswgKu1lbOnT7M/mcRYV8e5wUFMJhN+v5+amhrq6+uxWCw4HA4aGxt54YUXeOONN+jt7aW8vJy77rprxnf6l1yDTif+t96av7v9/GtrlNHX+VIWCoQQ70opGya2qxXENcpspKinY05O73yn38AAGAzQ2wu5HMGKCgKZDOEzZxCNjfSWl7OyuBhXOk3c4SAajRKPxzl58iSluRwluRyp06c5nc1SnM2yymzWDMS99zI0NMRv33iDVf39pLu6sGSzHDUY+Nxdd7ErEiHodtMyMIC3thaXz0c8EuHH3/42A3ohmQ97e3H7fIRyObY1NODweom1tREKhbBYLAwNDWkrBt1QmEwmjEYjNosFl9GINJupNBjGdI6GhWAAqADcViunEgk8ZjNriovpSSRYY7eTqK6m59QpehMJhi0WHNddh3vNGirXrIHjx0leuMAHZjOramrYWFREW0cHg+k0OBxkjUaSqRQ1Vit9lZWY77iD3D33ED96lOibb7IdtInysccIdHRof7/aWti4kVVAaSw2ZgQKGf9RKfLHH3+cxx9//LKum4LX4M6dl/VZBVkqh/JVRCFZbYViVoTDYVz6Hv4oLpdrXEhiMBikubmZPXv20NzcTDAY1N6orR1T8MTjgZ4eEIKgxUJLfz9Jp5MKkwlHZycSSEWjhPr6cNx5J01NTZw5c4biTAbH++8jTCYca9ZQZjJx/MwZLZFp1y5YtYq3nn+e2IcfYjSZKFm3DuOqVZx0ONgbiUBXFy+MjNBeWspbsRgHOjtJWyycPn+ed955B6PRiM/nI9vfT+rMGY7/6lfwxhskwmEymcyY4J3dbsdut2OxWDAaNWEKV2kpVRYL1Q4H4USCAbS7Mitgl5IRg4HYyAhFQuCyWLCYTNQ5nSSyWU4ePky5xcKO9esZHhpi6IMPCB0/TrKoCHnXXeR27iRdU0PNLbcwtHUrVY88gnP9egaFIDc0hMFsJrJyJd6aGi5cuMALL7xA0uejac8e/L/85Zjg3VR/v9EsZIfDQSgUwuFwLMtw6ILkX1ujLJKG0dWCWkEo5ozP5yN+9Cjuw4e1xCGfj/jGjfjWrQMmz7vYunUrQY+H8Asv4CstpbGmRlPUNJsJOBx4czncZjNs3Ii7p4dV2SyOqip25RVhkVIiTp7U4uVtNgBcNTWc7OqiuaeHiu5uqoC2gwdZW1qKo6gIAEdRETkpeS8eJ/jgg7zyu99R5XDgNZsZymQ4cOYMJ9NpTCYTDocDdyZDx7FjDOdyHM9mqQyFSPf2jmkZ2e12crpAnslkoqamhtWrVzM0NES8v5+be3s5b7USHB7GDjhNJjxGIz25HDKb5W63m1BREX2Dg/jNZiJGIw1VVXzsxhspczqpLCkhajBg6O3FunkzkUgEs9nMgw8+SCaToa2tjdLSUtZs2cKQ2Uw2m8Xs92O22bjz1lupq6sbu/sfR2srvldeId7djbumBm67DVatGhe0MJ+rzUVlKR3KVwnKQCjmTKPTSctvfgPFxbhKS4n392sOR72oTaEtqAutrfzDD3/IdpeLCq+XeCpFS38/TbW1+IFwNEqF261VEDOboa4O16c/fTEU9+mn4dw5GsJh/tjZiaipwSYl4USC09Eom6qqKM9m6e3t5cKFC/hA81+MEo8jwmHk4CCBsjIqRkYQw8MYzGYc2SxkMvRbLNTZ7cRiMboOH8ZttzOYSjGUTtMajWIwGFhls9FlNJLJZMaqgpnNZrZs2UJxcTENDQ1IKZE/+hEn7XbuBqLhMFajEYvJhEgk6DEYeGD1arYYjcjrrkPedBPv/+IXNFx/PWVOJwD1JSXsTyQYjka5d0KNa9Aywg8ePIjZbOYLX/gCDzzwwCWlSi/Z+tOduI1OJy0uF/T343r2WeI7dxL1eBatrOWCcY05lBcCZSAUc8b/1ls06UXkQ4kEPiHYnk7j/w//Ad56i3AuR8Utt1w84fRpup9/nqyUuK+/HhIJ3MPD8IlPELDb8b//Pr4LF4hbLLgzmTE/Qjwex5dIjItMuR8IpdOEIxEiRUV0DQ6ywuPh/upqynw+eOghYocP8+bICOeOHiVtsZCxWDAlk1iA+ysqCGcybHS5CKTT0N+PvaSE3PXXY2trw2azcfr0aXLJJJFsFqvRSGNNDSu9Xg52drLGamX1rbfS2trKwMAAQggqKirYtGkTu3fvvnjn3dnJ+//8z9icTnwOB92hEIlUCrfdTu3tt/O1558fN6bNJ06QzLvbL3M4WO9y0Wm3FyxJWsgX8Pvf/37qfBc9LNhfXEyTx0Ogq4tQXx++Q4fY/t3vXpmrhoksQWjo1YQyEIq5c+6ctg1hMEAoBG+9BVYrpNMQieD74APiNhtul0srurJ/P6F4nPKaGi3nQd//drW2EvrIR+CrX6VRr7RGVRWurVuJ/+Y3RNva2D40pMlB33EHGAz4a2vZfeutBA4dIuz3a+U4vV7Kslltu+T0aVwvvYSnuJhgIkE6ncYQizFssSCNRjZv3EjQbCZpMrHNaqV9wwYiAwOYzWYe2bSJdDrNa6+9RkRKTFJS7HBQX1JCkdVKkcmE3ePBXlqK0+kc8z8UFxcjDx+GRx4h2NNDwOkkvG6dlkuRTFLr87HWbicVj3Ohvp47PvGJS4a08bHHaHnqKW1cvF7i0SjGoSG+8swz+GfoyJ0q3yUYDGqaR3Y7PpeLxupqLew1l9Mix64G46CYM8pJrZg7+c7ADz/UfAFCaAVfiotpXLOG6N69xH7xC3KDg8SyWUxSUt3bqwmdATidxLu6tH3vTZvwf+97NP3qVzjuvJPQ73+P48QJmkpLNaG27m549VXNoQ34N29m15YtPHHnnez0eLB5PGPOad5+m7jViiwp4d5Nm7ilpITVBgO3mEzcu2kTQbOZxupqokYjlmiUbdu2sXbtWpLJJFJKKisruf7667FXVrLabmdLcTFuq5VUPM4NdjvJqiqMRiN33HEHd911F6tWrWJlJsPp55/nWydO8GMpSQ4OUvHHP7Ju/XpSBgPRvj76pSR7881ct3UrDzzwwCVD6t+5k6ZnnsHh9RI6fx6H10vTLIwDaLkGUb2+cS6XIxaLEY1G8fv9tLS0kPR6qRCC5MgILSdOEBwYUE5cxTjUCkIxdzZsuCh/fOGCJkthNMJNNwG6Hv+BAwRWriQE+Mxmvigl78RixAIBXGvXEu/pITo8zPZ9+8aS1Py6XAYOh/Zjt8PAAMF4nEBfH+FXX8V3001a/PyWLfD00zTqDnG8Xly5HPHOTqK5HCXd3dRJySq3W/NppNPkVqwgFI9f1PxPJPjwww85deoUGzZsGHPs+v1+Bm68Ee/ICEU9PST7+0nYbNy4axf2667jvffeQwiBwWBACIH1yBHcdjv7R0ZIDg9T7fFgMBpZdfIkO7/yFTo7O1mzZs20+Sf+nTunNAjT5bIUrIOwfftFn9Ddd0NzM24hwGol0NaGv7RUOXEVYygDoZgbo/LH69dDZ6cWxdTTA/fcA5WV2jEDA/jNZvy33KLlOLS1gRBUOZ0EBgcJvfsuPreb62+/nUBbG79/4gl8jz6K/1/8C4L79hHu6sJgsyGB/nSajnicDUJQl04Tj0ZpOX2apk9/Gj8FJkW7ne0nTxIwGokbjbjTac2nYTQSj0TweTxaxnYmg//JJ2nu6GDFihXjHLsrV67EbDZz8uRJut1ufD4fN1ZXYzQaeeCBBygrKyOZTHL06FGsViuOZJKk3Y41k6HUaKQ9laKsqAj6+6mrq8Nms/HEE0/MadhnqshbKAJpzDfhdmsrrbffxtXbS8hun1uWseKqQxkIxeTMRMcmX/74+uth3TpNLuPcOe25HloY3LCBwLvvEm5vxycljVVV+Pv7Nb+F203Q56MlnR6Txzj74ov8/IUXuOPMGZz9/ezL5RAOB06LBZPdzrF0mqJMhrKSEti+fVydgHGT4vvva32xWmlJJCCXYwg47HAQ6uxkx+AgwZoa/PrEGN6/v6Bj1+v18o1vfGPSO/aWlhZCoRAVFRUkHQ4SqRRr7HYkMJDJaNnhJSXTal7NNMN9LsmJ43wTer2FeCyGz+FQxkExDuWDUBRmVMcmEhmvY9PaOv64c+cIAs0ffsiegwdpjkQI3nyzJrYXDGrCeZ/5DC21tSSjUSqSSZIGAy2xGEG3G/x+grW1/G0oxHvd3Rzt7aVfCHpOnaL01Cl6bDY6LBbKcjlKk0k6BgcpNhhwer20+3yaCmhrK+H337/kVwgGgzSfOMEen4/AyAhbgaTBwCtFRWCx8NE//3Ps/+bf0HLddQRLSoCLk2c+o9FT/h/8gF2//S1PdHWxa82asYl4dNVSVlZGT08P1q1b2SYEtxgMRDIZzOk0uWSS2Ec+QjQanVSRdHRVkEwmNUOjV70bSyrMYybJiZMxmW9iyZVSFcsOtYJQFCZ/ZQAXH5999uLjuXMEjx2jJZvFu2IFFS4X8XSalt5emu65B//3vgdAoLkZ7/r1uCsrYc8e3AMD4HQSqKuDaJSWYJCwwUCl08lwNsuBM2dIRqP4a2sZEAKqq/FeuIAYGECk0wxVV2OXkkgmA2Vl2lbRG29oxku/Ax63BZNOEy8r452hIaxGIx9Pp7UCROXlY79uIBAAoK+vj9dee43y8nI2btyILRQi+vvfs/38eYLFxQTKywmfPYvvtddofPLJMR+B3+/nK1/5ykVZivp64i0tXBcKUenzEbrnHnz33MP2KXwOs1kVzEWRdzLfxFUR1qqYV5SBUBRmMh2bDz6AU6fG8hAC7e14T53C7XBAVRXukRFIpwnoCW+QV3/C7YYHH4Rf/AJXPE7o1CkCLhfedJrKsjKGMxkcuRxkMoSNRqJS4rXZwGZjyO0GKVkTjZJwOkml07g9HmLpNFGjke1r1oyrzzuZI/aPJ0/yQGkpfevW0f722wwMDIxNsl1dXXi9Xnbs2MHhw4f5w69/zY5IhK2xGHuB186fpzwYZOOGDSRtNlr+63+l6cYbL1lJBAIBQmvW4Pv2t/ncqEEY3a777W8n3a47ceIE0WiUwcFBPB4P9fX1lJSUjKvTMboF1dbWRkdHxzhn+mwUea/Y7GjFoqIMxLXOZH6GyQqjRKNQVzfWHvZ4qLjhBi16yWwGnw/Xjh1jRXeCwSAdHR3s37+fSoOB+mPHKKutJR4K4YvHCSeTVHz849T393PgxAkoLsZ6++2Y9u/nQizGDT4fTouFfWfPItJp7qyvJ9HbyxEp8VqtOMxmttfV4S8qGifCNs4ojTpiT51C9PVxFjj285/jNJnwCkHEbKbdZKLqX/0r3G43brebHTt2EDt3jtTwMO90dtKey1Fhs2HIZgm0tbHtllvwDgxccndfcOKdgex0MBjk1KlTmgJsSQmpVIoDBw5w4403smLFirFjRlcoN9xwA3a7nSNHjpBMJllrtbL93Dn83/jG/CihKhQoA3FtM9XENYmOTdBiIdDdTbijA5/TqdVdLi3FbbHAn/0ZwJjDc3RCq6mpIRqNEnz7bf7Y10fOaMQgBJ+44QaKczniAwOUPf442/r6aG9vp6enh5Vbt/JITw9Bg4FwNsudpaXIRILsTTex4sQJHnY68efH60ci4+L3L3HEAvFz57h53ToCXV0MdXbSJyUDegiqLZul64MPWLVqFX16P6JHj9IxMsLtBgPHYzEtjBUYTqc509rKTStW4G1rm36cp9quy1vxbNiwgWPHjpFKpbDZbKRSKY4cOcLDN9wATz9NYN++i6sit5tVq1ZRWlqKo7eXXe+/P791DxQKlIG4tpli4go+/jiBm24i/Mor+JJJGjdvpvu++/iH736XbDCIr6SEoUyG2PAwYmiIlVVVWt5B3lZH/p76yMgILb/5DecTCUwjI1QYDOwdGGBtVRX+aJRVsRglJSWsX7+empoaLVyzv5/GQqubfAf6JCJslxSkef11ohYLTZs3c6q9nXcBaTDgGR6mpLaWM319nD5wgLV33smBAwdwOp1Yi4uJnznDy1Jiz2TIGQz0ZDJIoCyVYqCqigsdHQSDwbFVQ8EoJH27LjgwQKCri3Aigc/hoLG7e9w2XF1dHUVFRZpxikbxeDx4k0n8P/kJFBcTttupSKehuXksEdDlchH62c+03JEpDJBCcTkoA3EtM4mfIXjsmLaVUV5OxRe/SDwe58dnznD0d7/Du2YN5R9+SCqR4FgqxY1OJ/ZcTst4nuDwzNcCunDhAlaTCXc6jTCZqHE6iafTnDh7ltK1a2ltbaWzs5OamhoeeeQRbcL1+wtPcDMQYbvEERuNsn3TJvweD7nhYa5zuSi1WLRoK5eLoZERuvv6OHToEA59eyy1YgXus2cZMZmwlJbS1deHOZtFut3EfT5ypaVs0AsK+f3+yXMTPB4IBmnp6dHCeF0u4pEILUYjTbpxGV3xlJWVUVZWBkAsFsPx3HNaPklxMT6Xi/jIiOZPefvti6qryaRmKCf8HVXdA8VcmZOBEEKUAL8AVgJngH8ppYwUOG438JT+8hkp5Y/19luAfwTswO+BP5NSSiHEp4CngXXAVimlKhO3EEzwMwQHBgi0tfFiKIStuprNmzdjMBhwu92Ew2F6enpYddttiOJiHMePw4ULdNntrL7vPnb9+Z9f8vH5MuADH3zAhf5+TLkcdn2rxmUwEMvl2BcK8aVNm7j99tuJx+O88847VFVVTepEDQaDBDo6CFdX49u8eVyuwKR5BF1d2u8KFDudRONxklJit1hIjYxgl5JbVq9mYHgYIQRer5cNH/sYqaEheo4eZTiVwuvzkSgqIp7LUe7zsW3btnFO5EmjkGpr4Te/wWuzaVtxiYSWsHfvvWPGZdIysFKOTf6N1dW0nDgBViuu3l7ienjq9s2btVXURH+RksxQzJG5riC+DrwipfyOEOLr+uuv5R+gG5FvAg2ABN4VQjynG5K/B54A9qMZiPuBvcAR4GHgf86xf9c20yW65fkZgkBLayvedBrDmjUIIThw4ADbtm2jrKyMdDo9VjnNUVEBFRXYpaS7u5ttuqTGRPJlwItKShjq6MAkBCUGA2QypA0GUnY7nsFB3D/6Efh8uG+7DUpLJ034miqDGJg8uzjvd11bX4/j/ffpSaeJlJbiGRmhzmplxSOPwMqV4ySyazZuROq1mJPJJEVmM5WVlWN3+rFYbCy0dMwxnofL5SKUSMD27VS0tUFfnyZFcu+9uOrqxozLpKGn4fCYEfd7PDStXUugrY2Q3Y7P4dCO6e+fdd2D+Sw5q7h6mauBaALu1p//GHidCQYCuA94WUrZDyCEeBm4XwjxOuCWUr6tt/8T8BCwV0r5od42x+5dw8ykYHveVk1g3z68xcW4774bb08Pw8PDOJ1O2tvbKSsrw2KxUFNTQ+LcOQgGsSWTRMxmjHV1kyZY5cuAezMZSsxm0kNDGIaGGHK5GDQaYXCQdR4PlJVpEhjNzbiamgjpTu6Jk9hUuQLA5HkEu3aN/a6NXi9dN9zAerMZlxDEPR6iN9xA46c+BTDuTr6yspKOjg62b9+O0+lk3759pNNp1qxZM5ZgNhpaOmVugs9HfO3a8e/lGReYJAJqQrCAP5fT9JLy/45+/6zqHsxUpmOxUUZr+TFXA1EhpewGkFJ2CyHKCxxTA5zPex3U22r05xPbZ4UQ4gm0VQi1akl9kRlEzgBjevnhPXu0u1+DgfqiIg4cOIBDr/s8epdclsngbm2lO5ejWwhMqRRfTCa1O9hC/8j5MuA9Pew4cYLv9fYSyuUwZTKsisdJGY2svf76cbLfZ194gQ9XreL1118fS1gbzSoeHBxknc0Gzz8/Vr3OtW3bWFjtlPUP9N/VDzTpk1FIn4zyE9jy7+RXrFjBV7/6VYLBIOFwmDvvvBMpJdlsFsfoHbx+3qTbRLoBaWlpgbNncbW2Eu/qIupysf3f/bup/44zLHoTLCkhsHmztu3m89FYUsJkU+ucaogvEMvVaF3rTGsghBB/ACoLvPXkDL+j0DJATtE+K6SUe4A9AA0NDbM+/6pllgXb8+9+y8rK2LZtG4cOHUJKicPhYPfu3fDd7xIoL8cmBFudThqrq/HncpcandGtrffeg6NH4eab4fhxGmtq+M8OB4FIhLDNhg/wV1byjsdDbHgYl8XC2XSaP7W14aqpoaKiAoPBQCAQYNu2bXi9Xs4dPEi8rU3LhDaZ4N13ieuqrtx334yzi6dKFCv03kxkKKbLUG6qryfwrW8RMpnwVVay3eXSIpQqK6eONpqm6M1sJ9dJt8LyEvIWm+VotBQzMBBSyo9O9p4QIiSEqNJXD1VAb4HDglzchgLwo21FBfXn+e1dM+izYibkOaDHwiv7+vCVldGYF5Y5ysS7X4vFQn19/fhJZmBAU2Q15El45XLjjU7+1ta2bbBvH7z+unacx4Pfbse/YwdUVMBrr0E4TNXatVo1s3iczr4+7li7lhM2G06nc2ybsb29XXMKnztHVHf0uk6dIm40ErXZ2N7TA2++ScvatbB+fcE7+MVgSsPz1lstXlQTAAAXwklEQVSaLHm+MzkSmXM46mwn17nIdCwUy9FoKeYu1vccsFt/vhtoKXDMi8BOIUSxEKIY2Am8qG9NDQohbhXaLPDZSc5XXA4PP6wltp07R4tevrIimyW5eXNBAbjRu1+Hw0EoFMLhcFx6B5pfGGiU/GiZ1lb4t/8WDh6EQ4e0baPt27Vs5oEB7fXtt2vGQftSMJvx53LsWruWJ9asYY3ZTN399+PxeEilUgDYbDYGBgaIx+NcLyVNmzbhCIUICYHDZqOpshK/ENrvkErhcDg4fvw4ra2tDA4OEggECgreLTrnzi1IOOpshfuWo1jfpCKJS2i0FHP3QXwH+KUQ4jHgHPApACFEA/AlKeXjUsp+IcTfAAH9nL8edVgDX+ZimOte/QchxC7gbwEf8DshxAdSyvvm2NdrC33vOvCtb+GNx3HX1MBtt+FetQpisYJ3l9Pq8xTIrg4GgwRWriT8jW/ge+MNGjs78VdXQyqlxerfdhvcd59mPNxusFi01cTAgFZU6C//Eo4cGdtf9z36KHGfj3qPhwMHDgAgpcRsNo+FdPpzOfwWi+bYFkL7Lo9HW6EEg9DYSFdXF36/f2wlMdWWy6I5RyeTL5mj72y2K4LlKNY3nf9GsTQIKa+ebfuGhgZ58KBKmchnj+58NhgMFyUkolGklDz55JOznxTyQmeDHg8tdjve9etx/fa3xCMRoqdO0eR04vd6tYnbbofNm7VJ8eGHp60vkb+fPjQ0xOHDhwmFQuzYsYP777//YkjniRMgpWYghoa0lYnFAsXFNG/ePC5UFfSkM4eDXbt2Tfp9+RPTgjhH87ff8sNR5yiJsai/wwKiopiWDiHEu1LKhkvalYG48pjNP1JzczPJZJJ0Oj0mISGlJJfLXepjmCWjn+12u+G//TcoKyMWDuPo6GBXRQVYrVrcf0PDrCbBaX+/1lb4u7+DP/wBSkthyxatDrY+2e7Ri/709/fT3t4+ptjq9Xr52te+dvEznn2W5n37SI7qG+maTZMZk3lhJkWYLgM1uSrmwmQGQkltXGHMNmJldOne3t6O3W4HIJlMsm3bNiwWy5yiRMY5Fn0+iMdx+XyERkY0R3Zvr1ZzYZZ3yNNudW3aBN///vjJtqpqLPzT19HB2bNnOXbsGE6nE6/XSyQS4cKFC5pu0ugqZCp9o4Vyjk4TkXS5KPluxUKgDMRScZl3krONWBndb37mmWcwGAyahMSGDZSVlZHL5Qi9+67mUL6MO9pxe9+33QbNzcTTaXyVldqEPc32yZzveieZbBsbG9m7dy8mkwm73U4qlSKXy7FhwwZtnA4dGssRmVTfSDlHFQpVcnRJyFcjNZth715tYv7yly8t6TmByyk16ff7ue+++7jjjju47bbbxsTg4kePapXYpisrOgnjomHq6ojdey9Ro5FG0CbgaYzDTMtrzha/38/q1atxu91EIhGsVivbtm2jrq5OG6e8aKLG6mqiQ0PETCZyvb3LIqJHoVguqBXEUjCa5Tw8DPv3a/vnJSVaYtk0Ov6XG8NeMErkzTe1SmyTZFtPd4d/STTMunVs/+xnZ7QKuJzEqNmsONauXVvQUe3z+cZFE02qb6S2axQKZSCWhNEs5337NONgt2sRObGYNklPkTh1ueGABUMbXa5LJ0I9Ln+mvo4Z731P2FILd3dTMTBwUbzuttvGiddN5HJ9LwXHac2a6fWNFAqFMhBLwugd7MCAlhsAWqimHss/VeLUjGLYJ/FvXDKZHzo0aVz+nKQPJn7/hg0Ef/YzAkNDhAFfezuGY8c08bra2jGRvvi99+Jbt67gR860P/mrDIvFQiqVIpFIjB+nWYrbKRTXKspALAWjCWcWi5YrMBrLf/PNM0qcmvKufSYqrhP70dcHwaAmfmc2w1/+5eVLH+R9f7CoiEAgwInvf59TLhcbrruOOq+XeEcHPWYzoquLlZWVuPTiQdE332T7Zz9b8GNn0p9Cq4xJ8wEWKJpIobiaUE7qpWBUofOmm6BfTyq/9VbNYEQi2sR9ueSruBoMF58/+2zhfnzyk1oms66Myvr18Nxz+BKJmUsftLbC00/DF76gSW1kMgQNBlra20larUTTaUyJBMfCYfpTKdzpNKs8HsozGRxmM6F4HIfHQ1OhLS+dmUgx5K8yRgsdeb3eMSlwhUIxO9QKYqmYJpb/spmliitHjsDdd18iINd47hwtFgswja9j4opl/37o7ydw4QJepxO31cqgzUbJ8DApi4X2/n7KHA5c8TgJh4Ndo1tKE7e6JjAT34sSfFMo5hdlIJaa+d7qmK3ezyQGxR8MzkyvZ2LdifJyiEYJnz5Nxc03ax/n9ZIKh7FlMkRHRqC0lHhvL77a2ou6TNNUQJuJ72U5qpQqFFcyykBcbRQQ1Jty8p3CoMwoQmmigVm3Dv70J3zJJPHhYdyZjCa85/eT6u/HMzxMrLaW6Cc/yfaiIs33MUMn8XT9UYJvCsX8ogzE1cYMK5CNMUODMmkOwkQDU1EBGzfS2NFBS08PVFVR8uij3GgwcOTIEbxr1uC4/vpxFdzmizmrlC6QTpJCcaWixPoU006MU6qF5ukaTVQoDZaUXDkCcrNQWlXCeIqrDaXmqrhsxqm26oxTPF3EO+8Fm5yffvrSrbbR108/Pe77rwZpbYUiH6XmqtC4jMl82uigGTra5zq5L2hh+xlGf6nayYprCZUHsUwIBoM0NzezZ88empubF6ZEZr5I4CzE+eajHOR8iPMtaJ7DdOVUdS5HLFGhuFJRBmIZsJDKpuOYTRJdHvNRw3g+JvcFnZz1Gt5EIlro7ejzCUmLqnay4lpCGYhlwKJlAOfJXI8xjfYTXIwOcjgchEIhHA7HrLd15mNyX9DJeTT6q7hYC72dRK58PoylQnGloHwQy4BFywCebRJdHnOtWDYfSWwLnucwA1/KnENpFYorCGUglgGLlgE82yS6eWQ+JvflMjmr8p6KawUV5roMWNTQySVMBlP5AwrF8kTlQSxz1OSpUCiWCpUHscxR2xYKhWK5oaKYFAqFQlEQtYJQzA0lcKdQXLXMaQUhhCgRQrwshGjXHwtWfBFC7NaPaRdC7M5rv0UIcVgIcVII8d+FEEJv/y9CiONCiFYhRLMQwjuXfioWiMvMzFYoFFcGc91i+jrwipSyHnhFfz0OIUQJ8E1gG7AV+GaeIfl74AmgXv+5X29/GdggpdwEtAF/Mcd+KhaCy8zMVigUVwZz3WJqAu7Wn/8YeB342oRj7gNellL2AwghXgbuF0K8DrillG/r7f8EPATslVK+lHf+fuCROfZzUblmIpKmELi7ZsZAobiKmesKokJK2Q2gP5YXOKYGOJ/3Oqi31ejPJ7ZP5AvA3sk6IIR4QghxUAhxcDkIpi2artJyYBKBu6DHc+2MgUJxFTPtCkII8QegssBbT87wO0SBNjlFe/53PwlkgP892YdLKfcAe0DLg5hhnxaMa0oOepLM7MBNNy2vMVCOdIXispjWQEgpPzrZe0KIkBCiSkrZLYSoAnoLHBbk4jYUgB9tKyqoP89v78r77N3Ag8AOuYyy+abbOlk0XaXlwCTlTcP791NRQJhvScYgv1JcviO9gBCfQqEYz1x9EM8Bu4Hv6I8tBY55EfiPeY7pncBfSCn7hRCDQohbgQPAZ4G/BRBC3I/my9gupUzOsY/zxkwK1iyartJyoYDAna+jY/mMQb4jHS4+PvusMhAKxTTM1QfxHeBeIUQ7cK/+GiFEgxDiBwC6c/pvgID+89ejDmvgy8APgJNABxd9Df8DKAJeFkJ8IIT4/hz7OS/MRJZbyUHPfQyCL71E86OPsuf222l+9FGCL700/UmTcZkS5wqFYo4rCCnlBWBHgfaDwON5r/8X8L8mOW5Dgfbr5tKvhWIm20fLRXF0KZnLGARfeomWp57CW1xMxYoVxKNRWp56iibAv3Pn7DszB4lzheJaR2VSz4KZbh8pXaXLH4PAD3+It7gYd0kJwNhj4Ic/vDwDsYQS5wrFlY7SYpoFavto4QmfP4/LOz5x3uX1Ej5/fpIzpmGGleIUCsWlqBXELFDbR1MwT6GkPn1baXTlABCPRvGtWHH5fZtBpTiFQnEpykDMErV9VIBZhpIGg0ECv/oV4VdewZdM0rh5M/7Pfx42baLxscdoeeopQFs5xKNRopEI2//9v1/s30qhuOZRW0yKuTMLTaZgMEjL3/0dyV//mgog6fHQ8sEHBP/qr6C1Ff/OnTQ98wwOr5fQ+fM4vF6annnm8vwPCoViTqgVhGLuTKHJNJG9e/fS/uqrjCQSeISgvqQEb3ExgaEh/Hpugn/nTmUQFIplgDIQirkzw1DSYDDIa6+9RsXgIMXFxaSyWQ50dtJYXU0C5paboOQ0FIp5R20xKebOww9rBiISgVzu4vOHHx53WCAQoLy8HIPbjUincZjNOC0WDofD+ODycxNUXQqFYkFQBkIxd2YYShoOh9m4cSMJv5/k4CC5VAqZyxHq76fRZrvEoMwYVZdCoVgQ1BaTYn6YQSipz+cjmUyy7WMfo93jIXroEObBQXasXYv/m9+8/C2hWfhAFArFzFEGQrFoNDY2jokdbvvEJ4jfcw/RaJT7m5ouneBng5LTUCgWBLXFtJxpbYWnn4YvfEF7vML31EcTDR0OB6FQCIfDMU4J97KZoQ9EoVDMDrGMSi3MmYaGBnnw4MGl7sb8kJ98lq8hpGQiCqOimBSKy0YI8a6UsmFiu9piWq6oOgazQ8lpKBTzjtpiWq6oOgYKhWKJUQZiuVJbq20r5aMcrwqFYhFRBmK5ohyvCoViiVE+iOXKaPJZvuP1sceWZJ89GAwSCAQIh8P4fD4aGxuVoq1CcQ2gDMRyZhk4XoPB4FjuQkVFBfF4nJaWlvkJT1UoFMsatcWkmJJAIIDX68XtdmMwGHC73Xi9XgKBwFJ3TaFQLDDKQCimJBwO43K5xrW5XC7C4fAS9UihUCwWykAopsTn8xGPx8e1xeNxfD7fEvVIoVAsFspAKKaksbGRaDRKLBYjl8sRi8WIRqM0NjYuddcUCsUCowyEYkoWTD9JoVAse1QU05XCEmoN+f1+ZRAUimsQtYK4ElAV0xQKxRIwJwMhhCgRQrwshGjXH4snOW63fky7EGJ3XvstQojDQoiTQoj/LoQQevvfCCFahRAfCCFeEkJUz6WfVzyqYppCoVgC5rqC+DrwipSyHnhFfz0OIUQJ8E1gG7AV+GaeIfl74AmgXv+5X2//L1LKTVLKLcDzwDfm2M8rGyXcp1AoloC5Gogm4Mf68x8DDxU45j7gZSllv5QyArwM3C+EqALcUsq3pVaU4p9Gz5dSxvLOdwJXT9GKy0EJ9ykUiiVgrgaiQkrZDaA/lhc4pgY4n/c6qLfV6M8ntgMghPiWEOI88H8xxQpCCPGEEOKgEOLgVZu8pYT7FArFEjCtgRBC/EEIcaTAT9MMv0MUaJNTtGtPpHxSSrkC+N/A/zPZh0sp90gpG6SUDVdt8taocF9xMQSD2qOqLKdQKBaYacNcpZQfnew9IURICFElpezWt4x6CxwWBO7Oe+0HXtfb/RPauwqc/1Pgd2h+jGuXZSDcp1Aori3musX0HDAalbQbaClwzIvATiFEse6c3gm8qG9JDQohbtWjlz47er4Qoj7v/E8Cx+fYT4VCoVDMkrkmyn0H+KUQ4jHgHPApACFEA/AlKeXjUsp+IcTfAKPyn38tpezXn38Z+EfADuzVfwC+I4RYC+SAs8CX5thPhUKhUMwSoQUQXR00NDTIgwcPLnU3FAqF4opCCPGulLJhYrvKpFYoFApFQZSBUCgUCkVBlIFQKBQKRUGUgVAoFApFQZSBUCgUCkVBlIFQKBQKRUGUgVAoFApFQZSBUCgUCkVBVMnRa4xgMEggECAcDuPz+WhsbFTlRBUKRUHUCuIaIhgM0tLSQjKZpKKigmQySUtLC8FgcPqTFQrFNYcyENcQgUAAr9eL2+3GYDDgdrvxer0EAoHpT1YoFNccykBcQ4TDYVwu17g2l8vFVVtoSaFQzAllIK4hfD4f8Xh8XFs8HueqLbSkUCjmhDIQ1xCNjY1Eo1FisRi5XI5YLEY0GqWxsXGpu6ZQKJYhykBcQ/j9fpqamnA4HIRCIRwOB01NTSqKSaFQFESFuV5j+P1+ZRAUCsWMUCsIhUKhUBREGQiFQqFQFEQZCIVCoVAURBkIhUKhUBREGQiFQqFQFERIKZe6D/OGECIMnF3qfkxDGdC31J2YBVdaf0H1eTG40voLqs9TUSelvCRj9qoyEFcCQoiDUsqGpe7HTLnS+guqz4vBldZfUH2+HNQWk0KhUCgKogyEQqFQKAqiDMTis2epOzBLrrT+gurzYnCl9RdUn2eN8kEoFAqFoiBqBaFQKBSKgigDoVAoFIqCKAMxzwghPiWEOCqEyAkhJg1PE0LcL4Q4IYQ4KYT4el77KiHEASFEuxDiF0IIyyL0uUQI8bL+nS8LIYoLHHOPEOKDvJ8hIcRD+nv/KIQ4nffeluXQZ/24bF6/nstrX67jvEUI8bZ+DbUKIR7Ne29RxnmyazPvfas+Zif1MVyZ995f6O0nhBD3LUT/LrPP/68Q4pg+pq8IIery3it4jSxxfz8nhAjn9evxvPd269dQuxBi94J2VEqpfubxB1gHrAVeBxomOcYIdACrAQtwCLhRf++XwKf1598HvrwIff7PwNf1518H/tM0x5cA/YBDf/2PwCOLPM4z6jMQn6R9WY4zcD1Qrz+vBroB72KN81TXZt4x/zfwff35p4Ff6M9v1I+3Aqv0zzEuwrjOpM/35F2vXx7t81TXyBL393PA/yhwbglwSn8s1p8XL1Rf1QpinpFSfiilPDHNYVuBk1LKU1LKNPBzoEkIIYCPAL/Wj/sx8NDC9XaMJv27ZvqdjwB7pZTJBe3V1My2z2Ms53GWUrZJKdv1511AL7CYNWELXpsTjsn/PX4N7NDHtAn4uZRyWEp5Gjipf96S91lK+Vre9bofWMqiKDMZ48m4D3hZStkvpYwALwP3L1A/lYFYImqA83mvg3pbKRCVUmYmtC80FVLKbgD9sXya4z8N/GxC27f05fv3hBDWhejkBGbaZ5sQ4qAQYv/olhhXyDgLIbai3WF25DUv9DhPdm0WPEYfwwG0MZ3JuQvBbL/3MWBv3utC18hCMtP+/h/63/rXQogVszx3XlAV5S4DIcQfgMoCbz0ppWyZyUcUaJNTtM+Zqfo8y8+pAjYCL+Y1/wXQgzaZ7QG+Bvz15fV03HfNR59rpZRdQojVwKtCiMNArMBxy3Gc/z9gt5QypzcvyDhP/OoCbRPHZtGv32mY8fcKIT4DNADb85ovuUaklB2Fzp8nZtLf3wI/k1IOCyG+hLZi+8gMz503lIG4DKSUH53jRwSBFXmv/UAXmiiXVwhh0u/MRtvnzFR9FkKEhBBVUspufWLqneKj/iXQLKUcyfvsbv3psBDiR8BXl0uf9W0apJSnhBCvAzcB/8wyHmchhBv4HfCUlHJ/3mcvyDhPYLJrs9AxQSGECfCg+aRmcu5CMKPvFUJ8FM1Qb5dSDo+2T3KNLKSBmLa/UsoLeS//AfhPeefePeHc1+e9hzpqi2lpCAD1eiSNBW3L5jmpeaFeQ9vjB9gNzGRFMlee079rJt/5fzJhe0mf7Eb39h8CjixAHycybZ+FEMWj2zBCiDLgDuDYch5n/XpoBv5JSvmrCe8txjgXvDYnHJP/ezwCvKqP6XPAp/Uop1VAPfDOAvRx1n0WQtwE/E/gk1LK3rz2gtfIMuhvVd7LTwIf6s9fBHbq/S4GdjJ+NT+/LKb3/lr4AXahWflhIAS8qLdXA7/PO+5jQBvancqTee2r0f6pTgK/AqyL0OdS4BWgXX8s0dsbgB/kHbcS6AQME85/FTiMNmH9BHAthz4Dt+v9OqQ/Prbcxxn4DDACfJD3s2Uxx7nQtYm2lfVJ/blNH7OT+hiuzjv3Sf28E8ADCz2ms+jzH/T/x9ExfW66a2SJ+/tt4Kjer9eAG/LO/YI+9ieBzy9kP5XUhkKhUCgKoraYFAqFQlEQZSAUCoVCURBlIBQKhUJREGUgFAqFQlEQZSAUCoVCURBlIBQKhUJREGUgFAqFQlGQ/x/Za5x9LkPPMgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "mask = pair_df.recip_connected\n", "plt.plot(pair_df[mask].stp_induction_50hz, pair_df[mask].psp_amplitude, color=(1, 0, 0, 0.5), marker = \"o\", ls=\"\")\n", "plt.plot(pair_df[~mask].stp_induction_50hz, pair_df[~mask].psp_amplitude, color=(0, 0, 0, 0.3), marker = \"o\", ls=\"\")\n" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAD4CAYAAAD2FnFTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO2dfZBkV3XYf6d7Z0R6ZEBqrR0had+IQna8chJsxjLEsR2zGK1ISouDiEUNzgJKTaUlqlyF7WRVY8cVXFOJ4A9cNmCYCMfCb2JJKEV5wTGyhOCPVIGkVcKHJFg0knZXGxEQlsCmtiKQ9uSPd7v3zev7vrrf637dc35Vr7r79vs47/brc+4959x7RVUxDMMwjCStaQtgGIZhNBMzEIZhGIYXMxCGYRiGFzMQhmEYhhczEIZhGIaXPdMWoEouuugiXV5enrYYhmEYM8VDDz30HVXdmyyfKwOxvLzMsWPHpi2GYRjGTCEiJ33llbiYROSgiBwXkW0ROeL5/jwRucN9f7+ILMe+u9mVHxeRq2PlJ0TkqyLyJRExrW8YhjFhxu5BiEgb+BDwK8Bp4EEROaqqj8Z2uwF4TlVfJSLXA7cAvyYi+4HrgSuBVwD3isiPq+qL7rhfVtXvjCujYRiGUZ4qehBXAduq+oSq/gC4HTiU2OcQcJt7fxdwQETEld+uqs+r6pPAtjufYRiGMWWqMBCXAE/FPp92Zd59VPUF4HtAN+dYBf5aRB4SkbW0i4vImogcE5FjzzzzzFg3YhiGYZyjCgMhnrLkBE9p+2Qd+/Oq+jPANcBNIvKLvour6qaqrqjqyt69Q0F4wzAMY0SqMBCngctiny8Fnk7bR0T2AC8Dns06VlX7r98GPom5ngzDMIbZ2oLlZWi1otetrcpOXYWBeBC4QkQuF5FFoqDz0cQ+R4HD7v11wH0aTSN7FLjeZTldDlwBPCAiSyLyIwAisgS8EXi4AlkNwzDmh60tWFuDkydBNXpdW6vMSIxtIFxM4d3A3cDXgDtV9RERea+IXOt2+xjQFZFt4D3AEXfsI8CdwKPAZ4CbXAbTjwH/U0S+DDwA/KWqfmZcWQ3DMOaK9XU4c2Zn2ZkzUXkFyDytB7GysqI2UM4wjF1DqxX1HJKIwNmzhU8jIg+p6srQ6ccSzjAMoyg1+sp3Lfv2lSsviRkIwzDqp2Zf+a5lYwM6nZ1lnU5UXgFmIAzDqJ+afeW7ltVV2NyEIIjcSkEQfV5dreT0FoMwDKN+KvKVG/VgMQjDMKZHzb5yox7MQBiGUT81+8qNejADYRhG/dTsKzfqYa4WDDIMo8GsrppBmDGsB2EYhmF4MQNhGIZheDEDYRiGYXgxA2EYhmF4MQNhGIZheDEDYRiGYXgxA2EYhmF4MQNhGIZheKnEQIjIQRE5LiLbInLE8/15InKH+/5+EVmOfXezKz8uIlcnjmuLyP8WkU9XIadhGIZRnLENhIi0gQ8B1wD7gbeJyP7EbjcAz6nqq4APALe4Y/cTrWF9JXAQ+LA7X5/fIFrG1DAMw5gwVfQgrgK2VfUJVf0BcDtwKLHPIeA29/4u4ICIiCu/XVWfV9UngW13PkTkUuCfA7dWIKNhGIZRkioMxCXAU7HPp12Zdx9VfQH4HtDNOfYPgH8H2GTxhmEYU6AKAyGesuTKIGn7eMtF5F8A31bVh3IvLrImIsdE5NgzzzyTL61hGIZRiCoMxGngstjnS4Gn0/YRkT3Ay4BnM479eeBaETlB5LJ6vYiEvour6qaqrqjqyt69e8e/G8MwDAOoxkA8CFwhIpeLyCJR0PloYp+jwGH3/jrgPo3WOj0KXO+ynC4HrgAeUNWbVfVSVV1257tPVd9egayGYRhGQcZeD0JVXxCRdwN3A23gT1T1ERF5L3BMVY8CHwP+TES2iXoO17tjHxGRO4FHgReAm1T1xXFlMgzDMMZH1LeQ+IyysrKix44dm7YYhmEYM4WIPKSqK8lyG0ltGEYtbG1tsby8TKvVYnl5ma2trWmLZJTElhw1DKNytra2WFtb48yZMwCcPHmStbU1AFZt2dGZwXoQhmFUzvr6+sA49Dlz5gzr6+tTksgYBTMQhmFUzqlTp0qVG83EDIRhGJWzb9++UuVGMzEDYRhG5WxsbNDpdHaUdTodNjY2piSRMQpmIAzDqJzV1VU2NzcJggARIQgCNjc3LUA9Y9g4CMMwjF2OjYMwDMMwSmEGwjCMiWGD52YLGyhnGMZEsMFzs4f1IAzDmAg2eG72MANhGMZEsMFzs4cZCMMwKiUtzmCD50ZnWrEbi0EYhlEZWXGGjY2NHd+BDZ4rwjRjNzYOwjCMylheXubkyZND5UEQcOLECba2tlhfX+fUqVPs27ePjY0NC1DnkFenVZA2DsIMhGEYldFqtfDpFBHh7NmzU5Bo9plEndY6UE5EDorIcRHZFpEjnu/PE5E73Pf3i8hy7LubXflxEbnalb1ERB4QkS+LyCMi8h+rkNMwjHqxOEP1TLNOxzYQItIGPgRcA+wH3iYi+xO73QA8p6qvAj4A3OKO3U+0PvWVwEHgw+58zwOvV9V/DLwaOCgirx1XVsMw6sUm6aueadZpFT2Iq4BtVX1CVX8A3A4cSuxzCLjNvb8LOCAi4spvV9XnVfVJYBu4SiO+7/ZfcNv8+MIMY06xSfqqZ5p1WkUW0yXAU7HPp4GfS9tHVV8Qke8BXVf+xcSxl8CgZ/IQ8CrgQ6p6v+/iIrIGrIF1Yw2jCayurppBqJhp1WkVPQjxlCVb+2n7pB6rqi+q6quBS4GrROSnfBdX1U1VXVHVlb1795YQ2zAMw8iiCgNxGrgs9vlS4Om0fURkD/Ay4Nkix6rqd4HPE8UoDGO22NqC5WVotaJXm5zOmCGqMBAPAleIyOUiskgUdD6a2OcocNi9vw64T6O8raPA9S7L6XLgCuABEdkrIi8HEJG/B7wB+HoFshrG5NjagrU1OHkSVKPXtTUzEsbMMLaBUNUXgHcDdwNfA+5U1UdE5L0icq3b7WNAV0S2gfcAR9yxjwB3Ao8CnwFuUtUXgYuBz4nIV4gM0D2q+ulxZTWMibK+DonJ6ThzJio3bOrvGcAGyhlGXbRaUc8hiQjs8kFjyekjIErdtIyn6WAryhnGpEnLqrNsO5v6e0YwA2EYdbGxAYkBTnQ6Ufkux6b+ng3MQBhGXayuwuYmBEHkVgqC6LO5UGxKjhnBDIRh1MnqKpw4EcUcTpww4+DImj7CgtfNwQyEYYyLjXUoTdr0EQBra2ucPHkSVR2sfWBGYjpYFpNhjEN/rEM84NrpmCtpRCax9oExjK0HYRh1sLwcDYBLEgSRS8koha0nMR0szdUw6iAt68aycUbCgtfNwgyEYYzDjI11aHoA2NaTaBZmIAxjHGZorEN/9HKTA8C2nkSzsBiEYYzL1lY0v9KpU1HPYWOjkQFqCwAbaVgMwjDqYkbGOsz06GVLJZ4KZiAMY1JMWclVGgCe5L3YtOlTwwyEUStND4pOjAYoucoCwJO+F5s2fXqo6txsr3nNa9RoDmEYaqfTUaJlZBXQTqejYRhOW7TJEwSqkTrduQXBRMUIw1CDIFAR0SAIRvstRrmXMIy+F4ley1xXxH89kfKyG16AY+rRqRakNmrDgqIx5mltiLL3Mu5ocxuMWDu1BqlF5KCIHBeRbRE54vn+PBG5w31/v4gsx7672ZUfF5GrXdllIvI5EfmaiDwiIr9RhZzGZJnpoGjVzNh4iUzK3su4LqIZSiWeN8Y2ECLSBj4EXAPsB94mIvsTu90APKeqrwI+ANzijt1PtIb1lcBB4MPufC8Av6mqPwm8FrjJc06j4dio2BjzpOTK3su4o81XV+HwYWi3o8/tdvS5odli80QVPYirgG1VfUJVfwDcDhxK7HMIuM29vws4ICLiym9X1edV9UlgG7hKVb+pqv8LQFX/jmit60sqkNWYIDYqNkZT14YYJRup7L2M23va2oLbboMXX4w+v/hi9NnJaokQNeILTJTZgOuAW2Offx34YGKfh4FLY58fBy4CPgi8PVb+MeC6xLHLwCngpSnXXwOOAcf27dtXefDGGI9KgqJTZNblzyQMVTudnYHfTqdcAHkS18kIiu+GRIhJPIOkBKmrMBBv9RiIP0rs84jHQHSJXFNJA/GW2OfzgYeAf1lElrnPYhonE2Qerj9h5l75TDKzqqYspiAIdvw+/S2YcHZYXUzqGazTQLwOuDv2+Wbg5sQ+dwOvc+/3AN8BJLlvYr8F9/k9RWWZawMxqdZeU68/BcZSPmMa04n0XCaVPjpuwyLDkImI9zeS2D3Mci9wUgawTgOxB3gCuBxYBL4MXJnY5ybgI+799cCd7v2Vbv/z3PFPAG1nPD4O/EEZWebaQEw7j37a158CmconS+mNaUwn1nNxv2kIGoCKew273equUUXDIgw1XFjYKePCgqpT/FkKdNZ7gUUMYBXUZiCic/Mm4BvOdbTuyt4LXOvevwT4BFEQ+gHglbFj191xx4FrXNk/dRXxFeBLbntTnhxzbSCmPVho2tefAqnKp9vNVnpjGtOJuU2c4u0krtNZXBxbgQ5a7X2FPkbDIgxD7SwuemXMMwCz7oKa+R5Ek7a5NhDTbsFP+/pTIFX5dLvZdTGmMZ1Uq1FVNeh2K1dA3npLGokS91Kkl5DmQppkXdbBzMcgmrTNtYGYdgyg6uvPSMDbq3zyDMCs9CC0HgWaKn+iLorGBsaRsWhdNjlOMdNZTE3a5tpAqE5fqVZ1/Wkbu3HJMwCx+9vh3+92C/25J+k3r8MYpSr02G8d9nqF73EcGYvU5azHKarADITRCMIw1KDd9vumZ8VdVcTAhaGG3e6Qf19EtNfrFbjEZFq0dSjHzB6Ea1iUUfojyRhrzITdrgbdbmpdjmskm9z7KIoZCGPq5PqmZ8QvrKqFelNpikdEGqVEwpjCbrfbA+U4qoxFFHpZt1EpJVyyh1rahZUwPkMB9BnsfZiBMKZOrm96VnoQBUlTPHXFE8ah6p5EnkKvNc5SMgZUSpaE8Qlm5PfNwwyEMXUyfdNTiEHU7RpIUzxFA6yTJE3WbpVjImLU6vcvmUVWSpaE8ZExf9+muKfMQBiFqOSBTXG/pLbU2u1M47BDpm43SjMdM1BeVCmMUh9xl01qD6LdblQGV1Zvp7IxEYk6rE05jpBFVliWhPEZpwfRpOC4GQgjl0oe2Az/7yjnz41bjNjzKOJWqEre5DY0JmDS6coljPe47pKpKME6s+QSxid0v+co91erm60kZiBSaEoXrwlU8sDmtN7K1ndu3CKnZZhGkcDkKPWR13MAtJs0EAXvYexnNcd41+EOm5oSrCsl3FOH4cJCZpZUGk0axGcGwkOTunhlqcOwVfLA+oxDf6tSpvh5R/hD5SmuTIXZV+ieOs9y1WT2Ivr3kXLeSp7VHOPdrWFUdVZ9zGyjrCLjYz2IhhuIif1AFbdm6jJsldRHu+1XQu12tTKVbH0nyarDPDfR4Noet0WRHoT3HuJbifOW+m1ygreTHBMx1UZZXb2L0mI0p4FqBsLDRLp4NfhD6zJslTywaUoPqpOJ8WMQ/XP7emFZSm2o5Z+o8yIxiPiWWleJ81byrBYI3qb2TBNKNez1CvVgi9bHxFrNdcYnRhKnGS5uMxAeJtKDGCGjIo86DdvYD2wN91tpFlOB1mNmRk9K6zspb3/AWdYmvvOlnDf1Wc3JANshV6+ngcjwKPZuN/scCaVaNjAb9nqD0fOpdTEpv3veRIsTIP48d7td7Y4Qv6gaMxAeJtLFq2Ga7Cb5LodoWAttFNmy3FqF1k4I/dNseM/Zavmfj8R5M3tSBep3rJ5YwugHaffS9IFlYeiv6zH/j+VEyO5RmYupQQZCdQJdvJpa1E3xXXppiI93iIK/hbd+Fxe112r5107o9c7db7erurio/ZZ235hk9SLisuwwQInnMW8eq+Sz3Iu5gdJ6NEGRZzLRyCk1OGzEtNBa/pcxWWpbJCnn2S8Sk7EgdYMMRO3U1KIu+wdqiq+zUsoaohK9OV99pa2dEO9dDCmefsu5gIIupDxT7iF0++Ypn0wDlVYPCaMUlFFsHnkHdZTyLNbWAHKyeOu5gkWSivzXi2a5Tfq/WquBAA4SrQi3DRzxfH8ecIf7/n5gOfbdza78OHB1rPxPgG8DDxeVo5EGQnXqLepG9jjGrZNRDO+Yvbm8P/cC6GJS8cQMR97iQ4UUb8o9pBmgXEWUUQ9pbqlejiHbYVxbLX+cZYSxJGO3rF3dlTJwI5w/616L9CCSz9kk/qu1GQiiNaQfB17JuTWp9yf2uZGda1Lf4d7vZ+ea1I8DbffdLwI/MxcGYkrkTfmQ/EPU1stIGoNeb/xe1SjKfszeXJE/d6oS7mf+9Fvj7XbkmgrDgUuqkOvGdw+Li5lurLQtLwZROBbj1rkIw9A7lmIo82txMbPOs+6l6JoaXlzdjTt/Urrg+T3UvBhEWiOkbrdTnQbidcDdsc83Azcn9rkbeJ17vwf4DiDJfeP7uc/LZiBGo0h6oeQ8uJW0XHwKLdbVHygZ0HBpKf9cfUPj+yMm/oy55yjZcymbwjqoZ8g2iq4XEaQpxaRyiN9Dt6u6sJB6bKaizckGKzRIEQbxj6y66Y8eH/zeGQ2QbquVKftCu+3vrRRp1DiXWR1KOOx2ve5FX8+sL3Myi6nIf7UO6jQQ1wG3xj7/OvDBxD4PA5fGPj8OXAR8EHh7rPxjwHWxz7kGAlgDjgHH9u3bV2MV1kCNrqeywbDKu/X9e0tR5F4/MESt6rTzJRWsb6u5pVVkIr4h5bi0lN3jyfKN5xlpd17fseMqm6wexI57yFFu/W3I/ZYSnF4oUqeuJzFKo6aOxlAYhsPrQhBNw1Hmf12bey2HOg3EWz0G4o8S+zziMRBd4EMeA/GW2OdcAxHfZqoHUXM6aJ6/vOgCLv2Hs5TbqYAyD9KulTbiOsPY1FF/+bcY6sLCwk7Fm6YYFxezxzukZdfEWsqpxHpTyR7Z0tJSprLJa33npsb2N3eOMkYzTfGVMb6pyrTATLlVu1NTZSmZHTWteGGdBsJcTAUYeiBrHrCTF3tIPnBp+6cFzDL/YAWUeaofGPz1hie1M6lk+3J1uzvSF4uO+k39rcJwqLcX9nq6mGgxZiqztClI+kqsQGPBK1dGz8SrbEQ07PUKK6Id7pClJe2ScKE4OUeNzySfxzKGpogLbNSJ9MpS5eDVaWQc1mkg9gBPEAWZ+0HqKxP73MTOIPWd7v2V7AxSP4ELUuscGYjCLbG+sqvrmgkFkPSFDrWIUx76brebfe6sGIFTKkFaMC7WgyhUbzGD6uvmezOLskb9+q65uBi5CmLXTZM/VZn1lWmaEchxN4a9nnZ8xjoR2widbH0/f+/AgeHR051Oaspumisjy9ioqvZ6vZENRPw3KWpout1urgusiMsuTRmXVdLTcg1VRW0GIjo3bwK+QeQ6Wndl7wWude9fAnyCKJ31AeCVsWPX3XHHgWti5X8OfBP4IXAauCFPjqYaiMK+3ITCGxffQx7/EyYNwOLiYqGAWdo2+DOkuUxAe0tLA+WU7EUkYxBpMnR9CjZjf9/Wbre9f/6iv9UoWUMjTxMShukGtT9NRhBECjFpRES8DZEs+X1KMnWgnfvN8+p+od0eMtRp9ZMXS1l0MvqM1qJ7PgS0nfOcpjWier3eUGNpYWEh00g0MpW8BNhAuelROBukZh96kSyceIunrJEYdKedy6RI4LSvqAZpnwXqDdzI13hdheFISnvHHznjHMnfKhj3WsV+sIGxzZTLnS/r90quQZEl/+LiovZ6vUIZW/3fPC+GFXa7mYPs4nU81Khw8g/uRcRrxLqtVqEAd1/mom7VwXVz4gmzPBjVDMQUyQpg7UiNGyfHeww5vEpe01tFhdYNyEgnTD0u4WbJHLkc/7OG4UipnkPn63TSg+cx5dpXYsnWeuFrFeklJuISmXK58xUZyNc3EuHS0lAreZx7yXKxhGG4Q+F3086VqGMFVdcD8ma8JRoJWc+LT+ZRAuvzCmYgpkdWV3aS3dIif4hk1kWam6qI3EX/gCLiDdSGGQpsRzDbBfx9imSBdFfD0PlSzuGLQajz/8frppf4nHm/ecTSV4OYjEmZe4l9cn/f/n0uLWkrZ7xB3hZ3u6T1TpeWlnTPnj2FzteL129sC1LkDNzv0DcSRZ63/j5BEKQ2dMoaiFnuOfQxAzFlvHP7TDiwldeDKJO3XeRPUdRFFQRBajZOZmuzT2x/3yRs3fPPL6w4vefwZDEVqaOxft+UlvOQkmY4CF9kG9Udl9y6sV5v2kjqolv8N4hvuW6/nF5MP36SNCALCwtDmWidTkfPT3lefC6mWY899DED0UAmvSat72EexABIH/lZ5fWGjFL/z5Q1CV3yGKJgd1wZedd5JjIihcaE1JB2XDaTbEcQu90ey2U2yU1EtOfiR6MkN8Q332+QVg9Bfx/JXxEvNeHBZUMle8hJw7GYMpnfpBt5dWEGYkpktbSn8XDF/yzt2B9th3Kt0EAl7z/phhnUR1o+f7cb5bITC1q2WrrgiW8sJu/DtfiylNZAhpyxCEV6TMl9Dhw4MOTG6Xa7gzroK9ek8evfQ1Wt/EltvV5v5AFzkL6AUmoMor9PItXZ9zuVbYwVdRtNupFXF2YgpkBeC3Ja3dPc8QXTaP1kKegSwet2/z5iE8IVrucUN1LRnsAo8zR5jZa7/6ABSr+Ugnfjaca695QBhWG3u3MAZPz7vBXxtL7GmPUgZmhrmoEo8vBMOsAVhunLYQZxpTxBdoyWbrejP3+Gnz/XZRQbwDV0jRHqOfV3jE3pUDSDpuimTglOWsmnTc9RdDv//PPH6vkUGlDocwfmPLd1NcYsBjFDW9MMRNO6n4XGQdScaltEprw/WBE/d5UtuCLjWKp0B8VdLd0xXDazuAX9hkFWQkCaOzLtN48NJBxMt15hY8yymGZka5qBaFr3s2gAcZItoFHqKAzDwsqmivvIjGFQLs20lLIU0d6BA5W5rpq+FX7uMiYo9LoNa5wUc14wAzEFmtb9LBNAnJQRG6mXVdBAVFXfeT2vDuiBGpVmr9cb27ff9K1bpucaGyOSOz162d7GLsUMxJRoUvezTAripNxgpXsQrkUYlFA+VRi7vInkigzGG0d5lu1FND0DKj5grfR/IucZ2PF7p00cOWNZRnVjBsLwj4NImwRuQi2s0r2sjNbjJIxd0xVvf2s1QIa0rV1knYs8wox5s+K/t/UgCmEGwlBV/7iEabvBSvWyMvzPheaIGpO0+aXSehBNVtRlNt+o41G2Kp+tQr1Pi0EUwgyEkUqT3GC5ZLQIJxHzCXs9/8huTzA5bb6tMlvW2IKuW+ehjMEqc8341O/9EcZjTaURO08Vz9u441uMc5iBMOaDCkY8jy1Cr3cuXTI2TXnatePxiyLzASW3LEXoG73cEdEewy44AT1w4EDu1Nz5P0G5FeTqHBw6U42bBmMGwpgfZrhFmDY7bt6CPFmKcOg7t8rcDhdcgdXf0uYbyrufoUV7EgtPTXt6GSMfMxCG0WAqd4/lGNGku6hUmqlH9qKt+KYNHjUiajUQwEGiJUO3gSOe788D7nDf3w8sx7672ZUfB64uek7fZgbCmGV2g7vEehDNJM1AtBgTEWkDHwKuAfYDbxOR/YndbgCeU9VXAR8AbnHH7geuB650BuHDItIueE7DmCtWV1c5ceIEZ8+e5cSJE6yurk5bpMrZ2Nig0+nsKOt0OmxsbExJIiOLsQ0EcBWwrapPqOoPgNuBQ4l9DgG3ufd3AQdERFz57ar6vKo+SdRbuKrgOQ3DmDFWV1fZ3NwkCAJEhCAI2NzcnEtjOA/sqeAclwBPxT6fBn4ubR9VfUFEvgd0XfkXE8de4t7nnRMAEVkD1gD27ds32h0YhjExVldXzSDMCFX0IMRTpgX3KVs+XKi6qaorqrqyd+/eTEENwzCM4lRhIE4Dl8U+Xwo8nbaPiOwBXgY8m3FskXMahmEYNVKFgXgQuEJELheRRaKg89HEPkeBw+79dcB9LnJ+FLheRM4TkcuBK4AHCp7TMIyCbN14Ixe1WogIIsJFP/IjbG1tTVsso+GMbSBU9QXg3cDdwNeAO1X1ERF5r4hc63b7GNAVkW3gPcARd+wjwJ3Ao8BngJtU9cW0c44rq2HUxdbWFsvLy7RaLZaXlxulfLduvJF3/vEf8zd6zkv7N9//Pu96xzu48cYbC8nd5PszasSX+zqrm42DMGrHMwCtzCC3HWMdul0Nu93aR4SnTTCIZ+oPn9xNW9fEqB5sJLURZ5YGZTVGVjcPVAjajSnLVsro4O7SUv7MuZxbXrTIusqj1EPZKcqTg9ZyB7fN8NQnRoQZCGPALLUIwzDUTmIyu84IcwZVglvXeLGkwk1rrQ8Ubd9AgIbd7sAIxGdU7Xa7Q5P6pf5mCYUdtFqlZY0boNR1F0A1DLXXag1mj22D9lqtYkbCDEtjMANhDGjcdAcZiiJIW+Oh263kWmGvV6xVHoaq1LP2tPSNA8UXQUr7zcJeb+cazW5bqEHuQER7KTPRHlhcTK/XMFTtdgdGcbD5elBmRCaCGQhjQKMmTPNN391fFCgIMt0jpWce7fU0cGsoBOCdEjt1PQEnY9VKNt6DGNX4nBMz9E7xDdUvXNR3jRVdd2JQr77fO77ZYj9TwQyEMaBRPYi0BYAKKM0yi8OEYaidhGFMMz5D9RBb5nTcJUeTx8djEGMZmW5Xu+efX6kRSNv6RiHrt0mVs90+F3PxbbZcqJ+ae1JmIIwBtcQgRn2A0xaVd4qzm6dwCrY4yyxwM9STcjKOohCTxuFATMG2iXox/XudlfWux912BOazlH/as7HbpgafQE/KDISxg0ozg8Z5gFNaiUX98SIS3Uu3O+R37yv0sstvpvUg6lSWQU3nb+rWZmecxPvMWA8iYgL1YAbCqI8CD/CQEu92o5hAQrH3jy2qMLvdri4k8vxbFM80GnL5OIOTlLtOZZnXS5r3rQMaLi35A9QWg5hIT8oMhFEfvoe3v7lMoWSq6iLDmTVx10MRd0sHdGkMxbRI5OIJ3PW6bssat2BbPVtqVpplMVkPoqrNDMQUCMPMOIISpbyz4lgAABdhSURBVEOWUhRBkNqDaCdex9kWOGeQegwbpbRsL9uq3/pjKgwPU4xBVDFZn7Hb2NqC5WVoteDwYVBlC1gmmtxrGYjP1HNKtfCpTz37LJw4wUYYDq08JsCLsddx+SGwTiTrR4g0VRwtIXcTaAOL0xZiRPYBrK/Xeo1GzicV/y8tL0efk6yuwuYmBAGIRK+bm1F53fisxqxu1oOoGF/33tOa8QWU4+6ioERLMh4gDnu9wSjgujJ8+vGPOs49jW0cl1vdW2fPnshtlyzHPSs1Zid5M/cWFycyF1aGUI2JsWAuJqMUaQ+vZwRsmoINSE9V9cUgIAo6JwdU1anAA3ZPeuk0t6D/u6pG04ngyWJqt2tT1qljf0g835NUzg3K0sIMhJHHjtTXlAFN/ZTM+J87S8H6UlW7nEtF9RmPzuKihrG4RhEF3m61RooZ9IPU01ag87x1kz2DvNHUVK+sU2cPSF53ksq5QeM8zEDsRopkgLh9QkgdaRxwTqH73APnpyiGtEByEPszBBnHFnVRxSfvS2spZsniu6/+oLZ5zmLqZ2rVeY1BIkDysev1NGi3vSnOg61CZV2oB4FfOQ+NGer1qsmssh6EGYipUcS/WcKN06Fcvn5y5tHkViSddTF2zaEMo5iSS45b8E2pnXaN+ER5AYl0VxjMpjptZX4+1U6416fMCPMy2w7Fn5xQMOU3GjISFbakC19zFFlH7e3MewwCuBC4B3jMvV6Qst9ht89jwOFY+WuArwLbwB8C4srfCjwCnAVWispjBiJGkdZJbJ+q/fBdkUyjI5R37wyMQsyf7cPnKsu6TtBqadhuDwxF0qDs2bOnFiVadAv6CxPFfPddRp92vN1uD+qqiPGLB3PDbjca3ChSaPpyFVHt9RKPpt8o7TiO6lvSQ4s1LSzkKufaZW3IOA9qMhDvA46490eAWzz7XAg84V4vcO8vcN89ALyOKHPxr4BrXPlPAj8BfB4zEKNRxL8Z26eMoi6qzItMl3GgwD5DyrIMrpXWK6gEi9bD0tKSdscYYV1UwQ/NkRX7LeOGr+xsrX2yXHKCm1wvRWl5W9d79gy3yhOKt1A8oNMpPhX7qBRQzoVjFzM+PxQ1GYjjwMXu/cXAcc8+bwM+Gvv8UVd2MfD1tP1cmRmIUSnZgyiizLutVmFlHsTOm7VfvydRZuDbDv91ux35hLMIw0KKv6+MCt2fU1gLCwulFPMeYu6r2PsAf+C+m+wtebLIyq4jEcSyhcK8Ve6g3Cp3vnUeEs9daqs8T64xJpQcde6xafV2Jk1dBuK7ic/Pefb5LeB3Yp9/15WtAPfGyn8B+HTi2FwDAawBx4Bj+/btq60CZ46SMYi+oumPevatVdxLKK+slcbKzKvUV45FlFxLxJ9Hn2MkirjQxCn+Ikq2P0lgWqylaMymAwP3Vpqy36EYw1A14RrJq99M5d9vqWcFjDP84kOKN3lsf4u1sIvMJpzWOyvdgyx4vVLHeupw1keBj2wggHuBhz3boYIG4rc9BuI3gZ/1GIhPJY7NNRDxzXoQCWIZSv2F69vuddCK6vWi/HOIXp2iDcNwx590aWmpVJA0rhzyUmHjgeLuiAHhgKilG1dY8SU7i/RQuq1WYbdREASVBXj704uoi5nkKsa+a8TVW1bddmNLmKamLvfjCpTLKPIqT5FCx2e16MMwTH9WRnDlpPYCChqb2rKYGsTIBiJrw1xMoxP/k/cVdA0Pm+9PPPgzLy6mBuqyjiukrBPn7O3fn67EYvuWmbdph+IADRcWhiYFLLP5DKCIDIxqUvFWYRziSq+0YnQ9wCCnXgZ44lJ5o+AHm+f6qa385HWKtrDdfyLrfkbpQTRqBcWGQk0G4v3sDFK/z7PPhcCTRAHqC9z7C913DwKv5VyQ+k2JYz/PPBqIrIFCFXdX81q5gU+GMVrHQ8ql2x3cT9p4ifMpNqK50+mk9jACirlafNcQsqeoWFhY0KWlJa+CGdUoJJVelrsqrhh9rdnQtf5TlXX/efLEpdLqbOi58PQAsuq4SAs7LauoymVms/4DoxibeYWaDEQX+CxR+upnY4p/Bbg1tt+7iFJZt4F3xspXiNxVjwMf5Fya668Cp4HngW8BdxeRZ2YMRFoAOeXPOA55SmwoG4OotVhU+Q1cGKS4J2L3Mk4qbdtl04QZc/kUijOIDK1NXeTYtpsTapyt2+0OBbX7vvAsg9yPd2T50nu9Xvpypv3fwNMwybrvwX4l0j+LKt4s336QUX+jUMsKinMGNlCuQeRMj11lylydPYgdf7Kse3JzKwUjKtnknzns9bxz+aQpFq/ySqQ41r0oUD/OEM/Yarfb2nMxnzyDnPVbDnoXDE+DMvQ8eeJSXqNEzLiUSP+EYq38rOyg3ED9CFS6guIcYgaiSYzZgyjzsFcZg1hcXBwEfYeum3VPCwuqi4ul0zEz7883q2yBGEQvFoSP12He4kDjrj8RLixkKr4iLfJcX3rBqRuKxpeyegJp8rZarULKN298wQ5j10SF3pABblVhBqJJjBGDGKW7HFdAQ1lMYbgztz4WMyjV6sq6J3a6Dooo20L+Yc+ftIiyTavDXq/nDbx28C8oFFfQmUZpaUmV9LTXrBjEwsLCoN7T7muHmy+ZRVTSPeQ1PAWfw6LPY5YMQYn/wtRo0BQZVWEGommMmMVUecCtyoc9DFONQpn4QxX+4Syll+uqSRn8lWfQ+i3ouOIOw2jFvawBg/1Mo2RqcXKQXNGW/yDVdAT3UJlnKgxDb4ZX0WMbtz5DUQr21GYJMxBzQuUpeyXcEoV6E+58Zd1J/a2dMbVDUcIwTJ8nyLW0sxR14mSDHlaQclyucc5L3YzNjZRyQ4OeUn/MQv83z1Puvt+tdHwpg3Gex0bHBbJcSA2aprsqzEDMCWP3IJIPvu9BTzzsuW6t+Dm7XdWFhZHmdirqKhukRXpam1mt2n42UOpgtKSiTvSuRg6ehmF26qbPMKXIoBCNfcgJqvfvNc2VlixfWFhIjy9lUHmPtgnk9aqtBzGb224wEGOl7Pke/LTWUOxhz1QCvnMuLhZyKXWJBSJd+mmp+yaWqeOmjMhzwahq6voP/XsKE4pgaCpwlwZcSpGmKPRunmJJUUZ59RtkZKLFexKD+az6cpRsxc9lCmmeAbAYxGxuu8FAqI7RNU978HNGvma6EVLOmZVCOaTcC7TAigQ18645aNX20zwTxmFIwTlfvnfcxSiKNBGE7hBlN2UqlhQDHmTcZ8cZ21z3T0WKrtGuolEo4kKyLKbZ23aLgcgl7eHNGquQ8bBn9iBSzhkyvBpbX2EFPuOQ/AMmKDLtcubSp0mXWM5CSUG7rZox/fcoLpQwDHfOeRTLGEslxQCH3a63t9RfzjXLDRU3lKnPwm5mF9aLGYjdQlarcMQHP9ONkDG9c2rLcgQ5xulBeAPfrj4yA9YLC5mprRMh4/fc4SbyGF2fESk0uHGGg62VMIcupDzMQDScyrrpWcp3jAffK184PPW0guriYvY5R5Bj1BhEnj88z/Ckjf6eaBA2z52Roegzn6td2FIuzJy5kPIwA9FgKg305bUKq3zw0xRMkTlzRpBjaJxAqzUUXC1raPMMj89VljmifBqMquh3YUvZ8GMGosFUmio4yVbhhF0UdWXM9FNfva6ahKssa8K9qTGOot9lLWXDjxmIBlPp4LdJtgon7KKo1JAmKVhvtcowDjOi6Ocu42lOMAMxQcr+CSpXOpNSFhN2UdS+8EuBerPFZ0ZnLsdMzAlmICoiT/mPOpnezP5xJthybULrvQkyzCpWd83FDEQFFFHko/4JdkPXu/A9phidJhjSJsgwq1jvq7nUYiCIlhO9h2hFuXuAC1L2O+z2eQw4HCt/DfBVopXm/pBzK8q9H/g68BXgk8DLi8hTt4EoovztT+CnsGLNcVs1wZA2QYZZxHoQzaUuA/E+dq5JfYtnnwuBJ9zrBe79Be67B4DXcW5N6mtc+RuBPe79Lb7z+ra6DUQR5W9/Aj+F68Vy8+cW6301lzQD0WI8DgG3ufe3AW/27HM1cI+qPquqzxH1NA6KyMXAS1X1C07Aj/ePV9W/VtUX3PFfBC4dU85K2LdvX275xsYGnU5nx/edToeNjY1aZZs6W1uwvAytFiwvs3XjjSwvL9NqtVheXubkyZPew06ePMnW1ta5glOn/OdPKzcA2Nra2lHfO+q0IayurrK5uUkQBIgIQRCwubnJ6urqtEUz0vBZjaIb8N3E5+c8+/wW8Duxz7/rylaAe2PlvwB82nP8p4C3Z8iwBhwDju3bt6960xqjaAto17kgEm4h72ypGWsX7KhD60GUxlrmxrgwqosJuBd42LMdKmggfttjIH4T+FmPgfhU4th1ohiE5MmpE3AxqU5Y+c9IbntSqQcphiBzgZv+6Osw1NCtJzEYuJY34+kuZxS35q5rxBiZjGwgsjbgOHCxe38xcNyzz9uAj8Y+f9SVXQx8PWO/w8AXgE5ReZoyDqISZmkahMSI6jLLiw6MBwwmoBuaFntx0RRYBmUTI6zHYSSpy0C8n51B6vd59rkQeJIoQH2Be3+h++5B4LWcC1K/yZUfBB4F9paRZ64MxCy5Wgr2IIIgYxEbd28W5C9P2TrbVXU8K73wKVOXgegCnyVKX/1sTPGvALfG9nsXUSrrNvDOWPkKkbvqceCDnEtz3QaeAr7kto8UkWeuDMQsTcVcIAbRb6GGYehfgMfdWy1pwnOuJMr2CHZNKvYs9cKnTC0GomnbXBmItB5EvxfRtIc8oYTDXi/Vxx26hXiGJserowexS5REmZjCrulBzFIvfMqYgZg1fIptXpRchtKu3D9uSmKIXRODmKVe+JQxAzGL9FvlWT2JWSXD7VNpho0pCS+7Iotp3hoHNbpK0wxE3+c/F6ysrOixY8emLUb1tFrRo51EBM6enbw8s8TyMvgG6QUBnDgxaWmMSbK1BWtrcObMubJOBzY3YdYG59V8LyLykKquJMvHHUltTIKUEdyp5cY5NjaiP1KcTicqNxpF5aPBV1cjBRoEUWMqCGbTOACsr+80DhB9Xl+v97q+bsWsbnPnYuqzSwKttTHnWUzzwK6Ji4xKza5SzMU042xtRa2FU6einsPGxmy2hAzDQ9p8XUEQcMJcgbW7Ss3FNOusrkYPwtmz0asZh50kJgukgZPVGemcSpmMMa181zElV6kZCCOXxs8U2g/gnTwZdbxPnow+N01OI5UiMyXvaqYVT/H5nWZ1m9sYxBSZCd/wvKUz7kJm4jmbY6hpPQhjzllfX+dMInvizJkzrNedPVEGW0Ni5rG1IpqJGQgjk6p9w7W4qywNeC5YXV3lxIkTnD17lhMnTphxaABmIIxMqvQNb21tsba2xsmTJ1FVTp48ydra2vhGwsY6GEYtmIEwMqlyCdXa3FXzNCDKMBqEjYMwctna2mJ9fZ1Tp06xb98+NjY2Rur+t1otfM+biHDWpgwxjKmRNg7CDIQxMWwwlGE0ExsoZ0ydKt1VhmHUz1gGQkQuFJF7ROQx93pByn6H3T6PicjhWPlrROSrIrItIn8oIuLKf19EviIiXxKRvxaRV4wjp9EMLJXRMGaLcXsQR4DPquoVREuOHknuICIXAr8H/BxwFfB7MUPyx8AacIXbDrry96vqP1LVVwOfBv7DmHIajmmPirZURsOYHcY1EIeA29z724A3e/a5GrhHVZ9V1eeAe4CDInIx8FJV/YIbyffx/vGq+rex45eIRlYaY1JbmqlhGHPJuAbix1T1mwDu9Uc9+1wCPBX7fNqVXeLeJ8sBEJENEXkKWMV6EJUwE6OiDcNoDLkGQkTuFZGHPduhgtcQT5lmlEdvVNdV9TJgC3h3hnxrInJMRI4988wzBUXandiMmYZhlCHXQKjqG1T1pzzbXwDfcq4i3Ou3Pac4DVwW+3wp8LQrv9RTnuS/AW/JkG9TVVdUdWXv3r15t7OrsRkzDcMow7gupqNAPyvpMPAXnn3uBt4oIhe44PQbgbudS+rvROS1LnvpX/ePF5ErYsdfC3x9TDkNLM3UMIxyjGsg/jPwKyLyGPAr7jMisiIitwKo6rPA7wMPuu29rgygB9wKbAOPA3/VP69zY32FyKD8xphyGliaqWEY5bCR1IZhGLscG0ltGIZhlMIMhGEYhuHFDIRhGIbhxQyEYRiG4cUMhGEYhuFlrrKYROQZYHjBgWZxEfCdaQtRglmTF0zmSTBr8oLJnEWgqkMjjefKQMwCInLMl07WVGZNXjCZJ8GsyQsm8yiYi8kwDMPwYgbCMAzD8GIGYvJsTluAksyavGAyT4JZkxdM5tJYDMIwDMPwYj0IwzAMw4sZCMMwDMOLGYiKEZG3isgjInJWRFLT00TkoIgcF5FtETkSK79cRO4XkcdE5A4RWZyAzBeKyD3umve4dTuS+/yyiHwptv0/EXmz++5PReTJ2HevboLMbr8XY3IdjZU3tZ5fLSJfcM/QV0Tk12LfTaSe057N2PfnuTrbdnW4HPvuZld+XESurkO+EWV+j4g86ur0syISxL7zPiNTlvcdIvJMTK5/E/vusHuGHhORw8ljK0VVbatwA34S+Ang88BKyj5tovUvXgksAl8G9rvv7gSud+8/AvQmIPP7gCPu/RHglpz9LwSeBTru858C1024ngvJDHw/pbyR9Qz8OHCFe/8K4JvAyydVz1nPZmyfG4GPuPfXA3e49/vd/ucBl7vztCdQr0Vk/uXY89rry5z1jExZ3ncAH/QceyHwhHu9wL2/oC5ZrQdRMar6NVU9nrPbVcC2qj6hqj8AbgcOuZX1Xg/c5fa7DXhzfdIOOOSuVfSa1wF/papnapUqm7IyD2hyPavqN1T1Mff+aaJlfCe5lq732UzsE7+Pu4ADrk4PAber6vOq+iTRQmBXNUFmVf1c7Hn9IjuXO540Reo4jauBe1T1WVV9DrgHOFiTnGYgpsQlwFOxz6ddWRf4rqq+kCivmx/TaAlY3OuP5ux/PfDnibIN133/gIicV4eQCYrK/BIROSYiX+y7xJiRehaRq4hamI/Hiuuu57Rn07uPq8PvEdVpkWProOx1b+Dc6pXgf0bqpKi8b3G/9V0iclnJYythT10nnmdE5F7g73u+WldV37rcQ6fwlGlG+dhkyVzyPBcD/5BorfE+NwP/l0iZbQL/HnjvaJLuuFYVMu9T1adF5JXAfSLyVeBvPfs1sZ7/DDisqmddcS31nLy0pyxZNxN/fnMofF0ReTuwAvxSrHjoGVHVx33HV0QReT8F/LmqPi8i/5aox/b6gsdWhhmIEVDVN4x5itPAZbHPlwJPE03K9XIR2eNaZv3yscmSWUS+JSIXq+o3nWL6dsap/hXwSVX9Yezc33RvnxeR/wr8VlNkdm4aVPUJEfk88NPAf6fB9SwiLwX+EvgdVf1i7Ny11HOCtGfTt89pEdkDvIwoJlXk2DoodF0ReQORof4lVX2+X57yjNRpIHLlVdW/iX38L8AtsWP/WeLYz1cuocNcTNPhQeAKl0mzSOSyOapRFOpzRD5+gMNAkR7JuBx11ypyzbeRcC85Zdf37b8ZeLgGGZPkyiwiF/TdMCJyEfDzwKNNrmf3PHwS+LiqfiLx3STq2ftsJvaJ38d1wH2uTo8C17ssp8uBK4AHapCxtMwi8tPAR4FrVfXbsXLvM9IAeS+OfbwW+Jp7fzfwRif3BcAb2dmbr5ZJRu93wwb8KpGVfx74FnC3K38F8D9i+70J+AZRS2U9Vv5Koj/VNvAJ4LwJyNwFPgs85l4vdOUrwK2x/ZaB/wO0EsffB3yVSGGFwPlNkBn4J06uL7vXG5pez8DbgR8CX4ptr55kPfueTSJX1rXu/UtcnW27Onxl7Nh1d9xx4Jq667SEzPe6/2O/To/mPSNTlvc/AY84uT4H/IPYse9ydb8NvLNOOW2qDcMwDMOLuZgMwzAML2YgDMMwDC9mIAzDMAwvZiAMwzAML2YgDMMwDC9mIAzDMAwvZiAMwzAML/8f033S7fAFyT4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(pair_df[mask].stp_induction_50hz, pair_df[mask].pulse_amp_90th_percentile, color='r', marker = \"o\", ls=\"\")\n", "plt.plot(pair_df[~mask].stp_induction_50hz, pair_df[~mask].pulse_amp_90th_percentile, color='k', marker = \"o\", ls=\"\")\n" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([ 0., 0., 5., 4., 6., 20., 24., 19., 18., 25., 28., 23., 15.,\n", " 16., 11., 6., 5., 1., 3.]),\n", " array([-1.2 , -1.10526316, -1.01052632, -0.91578947, -0.82105263,\n", " -0.72631579, -0.63157895, -0.53684211, -0.44210526, -0.34736842,\n", " -0.25263158, -0.15789474, -0.06315789, 0.03157895, 0.12631579,\n", " 0.22105263, 0.31578947, 0.41052632, 0.50526316, 0.6 ]),\n", " )" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAARrElEQVR4nO3dfYwdV3nH8e+DQ5Ly1tjJ2jUJZhPJDUSqcOgqpU1VSkwgJCh21YQ6KmgBV1ZpqUAUNaZUKiqt6lQqFIkKMARYKM0LhshuUqDGcYQqQcomGEhigh1jwNjYCyQNFDUQePrHPdtc1nd9Z/e+7B77+5FWM3Nm5t4nk8kv5547MzcyE0lSfZ600AVIkubHAJekShngklQpA1ySKmWAS1KlThvmm51zzjk5Ojo6zLeUpOrdc88938vMkZntQw3w0dFRJicnh/mWklS9iPhmp3aHUCSpUga4JFXKAJekShngklQpA1ySKmWAS1KlDHBJqpQBLkmVMsAlqVJDvRNTOlWNbr6jp/0PbrmqT5XoZGIPXJIqZYBLUqUMcEmqlAEuSZUywCWpUga4JFXKAJekShngklQpA1ySKmWAS1KlDHBJqpQBLkmV6hrgEXFhROxp+3s0It4YEcsiYmdE7CvTpcMoWJLU0jXAM/PBzFyTmWuAXwd+DNwGbAZ2ZeZqYFdZliQNyVyHUNYCD2XmN4F1wERpnwDW97MwSdKJzTXANwA3lfkVmXkEoEyXd9ohIjZFxGRETE5NTc2/UknSL2gc4BFxOnA18PG5vEFmbs3MscwcGxkZmWt9kqRZzKUH/jLg3sw8WpaPRsRKgDI91u/iJEmzm0uAX8cTwycAO4DxMj8ObO9XUZKk7hoFeEQ8Bbgc+GRb8xbg8ojYV9Zt6X95kqTZNPpR48z8MXD2jLbv07oqRZK0ALwTU5IqZYBLUqUMcEmqlAEuSZUywCWpUga4JFXKAJekShngklQpA1ySKmWAS1KlDHBJqpQBLkmVMsAlqVIGuCRVygCXpEoZ4JJUqUY/6CDVbnTzHT3tf3DLVX2qROofe+CSVKmmv4l5VkRsi4ivRcTeiPjNiFgWETsjYl+ZLh10sZKkJzTtgb8L+HRmPgd4HrAX2AzsyszVwK6yLEkakq4BHhHPAH4HuBEgM3+SmY8A64CJstkEsH5QRUqSjtekB34BMAV8KCK+FBEfiIinAisy8whAmS7vtHNEbIqIyYiYnJqa6lvhknSqaxLgpwHPB96TmRcD/8Mchksyc2tmjmXm2MjIyDzLlCTN1CTADwGHMvPusryNVqAfjYiVAGV6bDAlSpI66Rrgmfld4NsRcWFpWgs8AOwAxkvbOLB9IBVKkjpqeiPPnwEfi4jTgQPAa2iF/60RsRH4FnDtYEqUJHXSKMAzcw8w1mHV2v6WI0lqyjsxJalSBrgkVcoAl6RKGeCSVCkDXJIq5fPApQr4PHN1Yg9ckiplgEtSpQxwSaqUAS5JlTLAJalSBrgkVcoAl6RKGeCSVCkDXJIqZYBLUqUMcEmqlAEuSZVq9DCriDgI/BD4GfB4Zo5FxDLgFmAUOAi8IjMfHkyZkqSZ5tIDf1FmrsnM6d/G3AzsyszVwK6yLEkakl6GUNYBE2V+AljfezmSpKaaBngC/xER90TEptK2IjOPAJTp8kEUKEnqrOkPOlyamYcjYjmwMyK+1vQNSuBvAli1atU8SpQkddKoB56Zh8v0GHAbcAlwNCJWApTpsVn23ZqZY5k5NjIy0p+qJUndAzwinhoRT5+eB14C3AfsAMbLZuPA9kEVKUk6XpMhlBXAbRExvf2/ZuanI+KLwK0RsRH4FnDt4MqUJM3UNcAz8wDwvA7t3wfWDqIoSVJ33okpSZUywCWpUga4JFXKAJekShngklQpA1ySKmWAS1KlDHBJqpQBLkmVMsAlqVIGuCRVqunzwKVT2ujmOxa6BOk49sAlqVIGuCRVygCXpEoZ4JJUKQNckiplgEtSpQxwSapU4wCPiCUR8aWIuL0snx8Rd0fEvoi4JSJOH1yZkqSZ5tIDfwOwt235BuCdmbkaeBjY2M/CJEkn1ijAI+I84CrgA2U5gMuAbWWTCWD9IAqUJHXWtAf+T8BfAD8vy2cDj2Tm42X5EHBupx0jYlNETEbE5NTUVE/FSpKe0DXAI+LlwLHMvKe9ucOm2Wn/zNyamWOZOTYyMjLPMiVJMzV5mNWlwNURcSVwJvAMWj3ysyLitNILPw84PLgyJUkzde2BZ+ZbMvO8zBwFNgB3ZuYfAruBa8pm48D2gVUpSTpOL9eBXw+8KSL20xoTv7E/JUmSmpjT88Az8y7grjJ/ALik/yVJ6rden2d+cMtVfapE/eSdmJJUKQNckiplgEtSpQxwSaqUAS5JlTLAJalSBrgkVcoAl6RKGeCSVCkDXJIqZYBLUqUMcEmqlAEuSZUywCWpUga4JFXKAJekShngklQpA1ySKtX1J9Ui4kzgc8AZZfttmfnXEXE+cDOwDLgXeFVm/mSQxerU1etPgkknoyY98MeAyzLzecAa4IqIeAFwA/DOzFwNPAxsHFyZkqSZugZ4tvyoLD65/CVwGbCttE8A6wdSoSSpo0Zj4BGxJCL2AMeAncBDwCOZ+XjZ5BBw7iz7boqIyYiYnJqa6kfNkiQaBnhm/iwz1wDnAZcAz+202Sz7bs3MscwcGxkZmX+lkqRfMKerUDLzEeAu4AXAWREx/SXoecDh/pYmSTqRrgEeESMRcVaZ/yXgxcBeYDdwTdlsHNg+qCIlScfrehkhsBKYiIgltAL/1sy8PSIeAG6OiL8FvgTcOMA6JUkzdA3wzPwKcHGH9gO0xsMlSQugSQ9cOuUdvOHlPe0/ev3tfapEeoK30ktSpQxwSaqUAS5JlTLAJalSfompRnwaoLT42AOXpEoZ4JJUKYdQdEro9TpuaTGyBy5JlbIHrka8E1FafOyBS1KlDHBJqpRDKNIQOASlQbAHLkmVMsAlqVIGuCRVygCXpEo1+VHjZ0XE7ojYGxH3R8QbSvuyiNgZEfvKdOngy5UkTWvSA38c+PPMfC7wAuBPI+IiYDOwKzNXA7vKsiRpSLoGeGYeycx7y/wPgb3AucA6YKJsNgGsH1SRkqTjzek68IgYpfUL9XcDKzLzCLRCPiKWz7LPJmATwKpVq3qpVb2IWOgKJPVZ4y8xI+JpwCeAN2bmo033y8ytmTmWmWMjIyPzqVGS1EGjAI+IJ9MK749l5idL89GIWFnWrwSODaZESVInXYdQIiKAG4G9mfmOtlU7gHFgS5luH0iFOil4K7nUf03GwC8FXgV8NSL2lLa/pBXct0bERuBbwLWDKVGS1EnXAM/M/wRm+wZsbX/LkSQ15dMIK9Hrr8If7E8ZC8afRJOO5630klQpA1ySKmWAS1KlDHBJqpRfYkqngJ6/BN6S/SlEfWUPXJIqZYBLUqUcQpEq4HXw6sQeuCRVygCXpEoZ4JJUKQNckirll5iSuur5YWpbrupTJWpnD1ySKmWAS1KlDHBJqpQBLkmV6hrgEfHBiDgWEfe1tS2LiJ0Rsa9Mlw62TEnSTE2uQvkw8G7gI21tm4FdmbklIjaX5ev7X56kxcCnGS5OXXvgmfk54AczmtcBE2V+Aljf57okSV3Mdwx8RWYeASjT5f0rSZLUxMC/xIyITRExGRGTU1NTg347STplzDfAj0bESoAyPTbbhpm5NTPHMnNsZGRknm8nSZppvrfS7wDGgS1lur1vFUk66Xgr/mA0uYzwJuDzwIURcSgiNtIK7ssjYh9weVmWJA1R1x54Zl43y6q1fa5FkjQH3okpSZUywCWpUga4JFXKAJekShngklQpf1KtEj0/TEhaQL2ev6Pc3tv7n6TXkdsDl6RKGeCSVCmHUJqK6G3/9HnI0nz5PPLO7IFLUqUMcEmqlEMow9LrEIykeTtZn4ZoD1ySKmWAS1KlTpkhlJ4/QvWnDEk1WqRXodkDl6RKGeCSVCkDXJIqZYBLUqV6+hIzIq4A3gUsAT6QmQP7ceNev4SUdOo6WZ/mOe8eeEQsAf4ZeBlwEXBdRFzUr8IkSSfWyxDKJcD+zDyQmT8BbgbW9acsSVI3vQyhnAt8u235EPAbMzeKiE3AprL4o4h4cJbXOwf4Xg/1DFTbVaCLus421tl/tdRqnf3Ve529P0rj2Z0aewnwThUdd7V6Zm4FtnZ9sYjJzBzroZ6hsM7+qqVOqKdW6+yvxVxnL0Moh4BntS2fBxzurRxJUlO9BPgXgdURcX5EnA5sAHb0pyxJUjfzHkLJzMcj4vXAZ2hdRvjBzLy/h1q6DrMsEtbZX7XUCfXUap39tWjrjPSnviSpSt6JKUmVMsAlqVJDC/CIuDYi7o+In0dEx0tyIuJZEbE7IvaWbd/Qtu5tEfGdiNhT/q5cyFrLdldExIMRsT8iNre1nx8Rd0fEvoi4pXzJO4g6l0XEzvI+OyNiaYdtXtR2zPZExP9GxPqy7sMR8Y22dWsWqs6y3c/aatnR1r6YjueaiPh8OT++EhF/0LZu4MdztnOubf0Z5RjtL8dstG3dW0r7gxHx0n7XNsc63xQRD5RjuCsint22ruN5sEB1vjoiptrq+aO2dePlXNkXEeODrHNWmTmUP+C5wIXAXcDYLNusBJ5f5p8OfB24qCy/DXjzIqp1CfAQcAFwOvDltlpvBTaU+fcCrxtQnf8AbC7zm4Ebumy/DPgB8JSy/GHgmiEcz0Z1Aj+apX3RHE/gV4HVZf6ZwBHgrGEczxOdc23b/Anw3jK/AbilzF9Utj8DOL+8zpIFrPNFbefh66brPNF5sEB1vhp4d4d9lwEHynRpmV86jLrb/4bWA8/MvZk5212Y09scycx7y/wPgb207vgcqia1MsujBCIigMuAbWW7CWD9gEpdV16/6ftcA3wqM388oHpmM9c6/99iO56Z+fXM3FfmDwPHgJEB1TNTk8dXtP8zbAPWlmO4Drg5Mx/LzG8A+8vrLUidmbm77Tz8Aq37SIatl8eBvBTYmZk/yMyHgZ3AFQOqc1aLdgy8fPS7GLi7rfn15SPXB2f7GD5EnR4lcC5wNvBIZj4+o30QVmTmEWj9zw9Y3mX7DcBNM9r+rhzTd0bEGYMokuZ1nhkRkxHxhelhHhbx8YyIS2j13B5qax7k8ZztnOu4TTlm/03rGDbZd5h1ttsIfKptudN5MAhN6/z98u90W0RM37w4zOM5q77+JmZEfBb4lQ6r3pqZ2+fwOk8DPgG8MTMfLc3vAd5O63b9twP/CLx2AWud7VECjR4x0NSJ6pzj66wEfo3WdfvT3gJ8l1YIbQWuB/5mAetclZmHI+IC4M6I+CrwaIftFsvx/Cgwnpk/L819O56zvW2HtpnHYijnZReN3ysiXgmMAS9saz7uPMjMhzrtP4Q6/w24KTMfi4g/pvXp5rKG+w5cXwM8M1/c62tExJNphffHMvOTba99tG2b9wO39/I+fah1tkcJfA84KyJOKz2gnh4xcKI6I+JoRKzMzCMlUI6d4KVeAdyWmT9te+0jZfaxiPgQ8OaFrLMMSZCZByLiLlqfwD7BIjueEfEM4A7grzLzC22v3bfjOYsmj6+Y3uZQRJwG/DKt7z2G+eiLRu8VES+m9T/OF2bmY9Pts5wHgwjwrnVm5vfbFt8P3NC27+/O2PeuvlfYxaIaQiljdTcCezPzHTPWrWxb/D3gvmHW1kHHRwlk6xuO3bTGmwHGgcafPuZoR3n9Ju9zHTOGT6aPaTnu6xncMe1aZ0QsnR5yiIhzgEuBBxbb8Sz/rm8DPpKZH5+xbtDHs8njK9r/Ga4B7izHcAewoVylcj6wGvivPtfXuM6IuBh4H3B1Zh5ra+94Hixgne25czWt7+Wg9Un2JaXepcBL+MVPt8MxrG9LaYXuIeAx4CjwmdL+TODfy/xv0/oY8hVgT/m7sqz7KPDVsm4HsHIhay3LV9K6UuYhWkMv0+0X0PqPYz/wceCMAdV5NrAL2Femy0r7GK1fSJrebhT4DvCkGfvfWY7pfcC/AE9bqDqB3yq1fLlMNy7G4wm8Evhp2/m5B1gzrOPZ6ZyjNUxzdZk/sxyj/eWYXdC271vLfg8CLxvUfz8N6/xs+W9r+hju6HYeLFCdfw/cX+rZDTynbd/XluO8H3jNIOuc7c9b6SWpUotqCEWS1JwBLkmVMsAlqVIGuCRVygCXpEoZ4JJUKQNckir1f1DdQh2X6PCAAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig,ax = plt.subplots()\n", "ax.hist(pair_df[~mask].stp_induction_50hz, bins=np.linspace(-1.2, 0.6, 20))\n", "ax.hist(pair_df[mask].stp_induction_50hz, bins=np.linspace(-1.2, 0.6, 20), color='r')\n" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Ks_2sampResult(statistic=0.1039306300934208, pvalue=0.0031318602046347425)" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from scipy.stats import ks_2samp\n", "ks_2samp(pair_df[~mask].stp_induction_50hz, pair_df[mask].stp_induction_50hz)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'plt' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0max\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubplots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpair_df\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m~\u001b[0m\u001b[0mmask\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpsp_amplitude\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbins\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlinspace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m3e-3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3e-3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m20\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpair_df\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mmask\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpsp_amplitude\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbins\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlinspace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m3e-3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3e-3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m20\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0.5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: name 'plt' is not defined" ] } ], "source": [ "fig,ax = plt.subplots()\n", "ax.hist(pair_df[~mask].psp_amplitude, bins=np.linspace(-3e-3, 3e-3, 20))\n", "ax.hist(pair_df[mask].psp_amplitude, bins=np.linspace(-3e-3, 3e-3, 20), color=(1, 0, 0, 0.5))\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.2" } }, "nbformat": 4, "nbformat_minor": 2 }