{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.7"
},
"colab": {
"name": "prog05-aplicacoes-matrizesV2.ipynb",
"provenance": [],
"include_colab_link": true
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "JI2a1OI6VStd"
},
"source": [
"# Aplicações de Matrizes em Situações do Dia a Dia\n",
"#### Vamos apresentar dois problemas rotineiros: um sobre um planejamento de atividades físicas e outro sobre planejamento financeiro de uma empresa. Ambos podem ser solucionados utilizando conhecimentos sobre matrizes em Álgebra Linear."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fDH_32K2VStn"
},
"source": [
"##### Leon, Steven J., 1943 - Álgebra Linear com Aplicações/ Steven J. Leon; tradução Valéria de Magalhães Iório - [reimpr]. Rio de Janeiro: LTC, 2008."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "zySTTAuzVStp"
},
"source": [
"### Aplicação 1: Queimando calorias"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Md6n3SsrVStp"
},
"source": [
"Alysson pesa 81 quilos (os dados são meramente ilustrativos...). Ele quer perder peso por meio de um progama de dieta e exercícios. Após consultar a **tabela 1**, ele monta o programa de exercícios na **tabela 2**. quantas calorias ele vai queimar por dia se seguir esse progama?"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "t_W_m0s8VStq"
},
"source": [
"#### Tabela 1. Calorias Queimadas por Hora"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "FZLAeIjmVStr"
},
"source": [
"- **Atividades Esportivas**"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "rYGhvtFzVStr"
},
"source": [
"|**Peso**|**Andar a 3km/h**|**Correr a 9km/h**|**Andar de bicicleta a 9km/h**|**Jogar Tênis(Moderado)**|\n",
"|:------:|:---------------:|:----------------:|:----------------------------:|:-----------------------:|\n",
"|69 |213 |651 |304 |420 |\n",
"|73 |225 |688 |321 |441 |\n",
"|77 |237 |726 |338 |468 |\n",
"|81 |249 |764 |356 |492 |"
]
},
{
"cell_type": "code",
"metadata": {
"id": "WPflMkG-VSts"
},
"source": [
"# importando a biblioteca numpy do Python\n",
"import numpy as np\n",
"# importando a biblioteca de funções do Python matplotlib\n",
"import matplotlib \n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline "
],
"execution_count": 1,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "cj-60WzoVStu"
},
"source": [
"# definindo a matriz A a partir da tabela 1\n",
"A = np.array([[213, 651, 304, 420],\n",
" [225, 688, 321, 441],\n",
" [237, 726, 338, 468],\n",
" [249, 764, 356, 492]])"
],
"execution_count": 2,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "8TE8XHNAVStv",
"outputId": "4a0a4316-1cab-4361-d4c1-d94dd86b72a2",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"source": [
"# imprimindo a matriz A\n",
"print(\"A matriz A é\\n\\n\", A)"
],
"execution_count": 3,
"outputs": [
{
"output_type": "stream",
"text": [
"A matriz A é\n",
"\n",
" [[213 651 304 420]\n",
" [225 688 321 441]\n",
" [237 726 338 468]\n",
" [249 764 356 492]]\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5enL2ysNVStw"
},
"source": [
"#### Tabela 2. Horas por Dia para Cada Atividade"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Y-4JqBEuVStx"
},
"source": [
"- **Programa de Exercícios**"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "71auFXTaVStx"
},
"source": [
"|**Dias da Semana**|**Andar**|**Correr**|**Andar de Bicicleta**|**Jogar Tênis**|\n",
"|:----------------:|:-------:|:--------:|:--------------------:|:-------------:|\n",
"|Segunda-feira |1.0 |0.0 |1.0 |0.0 | \n",
"|Terça-feira |0.0 |0.0 |0.0 |2.0 |\n",
"|Quarta-feira |0.4 |0.5 |0.0 |0.0 |\n",
"|Quinta-feira |0.0 |0.0 |0.5 |2.0 |\n",
"|Sexta-feira |0.4 |0.5 |0.0 |0.0 |"
]
},
{
"cell_type": "code",
"metadata": {
"id": "T8cRM03cVSty"
},
"source": [
"# definindo a matriz B a partir da tabela 2\n",
"B = np.array([[1.0, 0.0, 1.0, 0.0],\n",
" [0.0, 0.0, 0.0, 2.0],\n",
" [0.4, 0.5, 0.0, 0.0],\n",
" [0.0, 0.0, 0.5, 2.0],\n",
" [0.4, 0.5, 0.0, 0.0]])"
],
"execution_count": 4,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "m54Db_QiVStz",
"outputId": "0e05c5f7-7240-411c-8e7a-c2da62d4a817",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"source": [
"# imprimindo a matriz B\n",
"print(\"A matriz B é\\n\\n\", B)"
],
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"text": [
"A matriz B é\n",
"\n",
" [[1. 0. 1. 0. ]\n",
" [0. 0. 0. 2. ]\n",
" [0.4 0.5 0. 0. ]\n",
" [0. 0. 0.5 2. ]\n",
" [0.4 0.5 0. 0. ]]\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "2Bj5jjNmVStz"
},
"source": [
"###### Solução:"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "du2tlqL6VSt0"
},
"source": [
"A informação pertinente para Alysson está localizada na quarta linha da **matriz A**, pois são os dados referentes a quem pesa 81 quilos."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "lgbt8USKVSt0"
},
"source": [
"Vamos criar uma nova matriz **x** do tipo **vetor-coluna** baseado nos dados contidos na 4º linha da **matriz A**."
]
},
{
"cell_type": "code",
"metadata": {
"id": "a3zPuBgxVSt1"
},
"source": [
"# x recebe a quarta linha de A\n",
"x = A[3]"
],
"execution_count": 6,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "xloFVrQgVSt1"
},
"source": [
"# x é transposta para se tornar um vetor-coluna\n",
"x = np.transpose(x)"
],
"execution_count": 7,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "IOPn1Vb4VSt2"
},
"source": [
"Para resolver o problema, basta multiplicar a matriz $B_{5_{x}4}$ pela matriz $x_{4_{x}1}$."
]
},
{
"cell_type": "code",
"metadata": {
"id": "6_XTTyUrVSt3"
},
"source": [
"# realizando a multiplicação da matriz B com a matriz x\n",
"Calorias = np.dot(B,x)"
],
"execution_count": 8,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "3E80_ZhtVSt4",
"outputId": "815c6a4e-4420-4b33-bdee-78f48d13321b",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"source": [
"# imprimindo a matriz de calorias gastas por semana\n",
"print(\"A matriz com valores de calorias gastas é:\\n\\n\", Calorias)"
],
"execution_count": 9,
"outputs": [
{
"output_type": "stream",
"text": [
"A matriz com valores de calorias gastas é:\n",
"\n",
" [ 605. 984. 481.6 1162. 481.6]\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "UnU2YWylVSt5"
},
"source": [
"# esquematizando as etiquetas do gráfico no eixo x\n",
"DiasdaSemana = ['Segunda-feira', 'Terça-feira', 'Quarta-feira', 'Quinta-feira', 'Sexta-feira']"
],
"execution_count": 10,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "P7Ac1FdnVSt6"
},
"source": [
"Dessa forma, vemos que Alysson, seguindo sua rotina de atividades físicas, queimara as respectivas calorias durante a semana:"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZocqBm2HVSt6"
},
"source": [
"|**Dias da Semana**|**Calorias Gastas**|\n",
"|:----------------:|:-----------------:|\n",
"|Segunda-feira |605.0 calorias |\n",
"|Terça-feira |984.0 calorias |\n",
"|Quarta-feira |481.6 calorias |\n",
"|Quinta-feira |1162.0 calorias |\n",
"|Sexta-feira |481.6 calorias |"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ijJb6fWoVSt6"
},
"source": [
"Assim, podemos ter o seguinte gráfico:"
]
},
{
"cell_type": "code",
"metadata": {
"id": "vRy6Do5zVSt6",
"outputId": "cabde0bd-6b48-4b2b-a825-a4f4c1e5b296",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 367
}
},
"source": [
"# definindo as dimensões do gráfico\n",
"plt.figure(figsize=(8,5))\n",
"# definindo a legenda do eixo x\n",
"plt.xlabel('Dias da Semana')\n",
"# definindo as legendas do eixo y\n",
"plt.ylabel('Calorias Gastas')\n",
"# plotando o gráfico e definindo uma legenda\n",
"plt.plot(DiasdaSemana, Calorias, label = 'Calorias Gastas/Dia')\n",
"# chamando a legenda para ser exposta no gráfico\n",
"plt.legend()\n",
"# definindo um input diferente de 0 para entrada verdadeira na grade do gráfico\n",
"plt.grid(True)\n",
"# definindo o título do gráfico\n",
"plt.title('Gráfico de Calorias Gastas por Alysson')"
],
"execution_count": 11,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"Text(0.5, 1.0, 'Gráfico de Calorias Gastas por Alysson')"
]
},
"metadata": {
"tags": []
},
"execution_count": 11
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgIAAAFNCAYAAAByowfoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXhU5dn48e+dnSwkQEhYsrDLvgYSURQFRQVFBZElVvtrtdVWa6vWta+trW3VVq36Vqtt36qJIOK+oRUJaCVh3/ctC5AEAglZyfb8/pgTGkKWgWRyZjL357rOlZkz5zznnjkzmXvOec79iDEGpZRSSnknH7sDUEoppZR9NBFQSimlvJgmAkoppZQX00RAKaWU8mKaCCillFJeTBMBpZRSyotpIqA6BBH5TETubDDvBhHJFpESERkjIttEZLKL4/iXiPzOldtoYrt9RMSIiN95rv+IiPy9reNS505E0kTkh3bHobyHJgLKLYjIXBHJEJFSEcm3bt8lIuLEut8DjhtjXm7w0J+AnxpjQo0xG4wxw4wxaa6Ivy2Iwz0istV6HXJE5B0RGeHqbRtjfm+MafMvHxHpKSKvichhKyHbbyVLg1vZ7mQRyWmrONubta/3i8h2u2NRShMBZTsRuQ/4C/AM0AOIBn4MXAQENLGOb727ocCPGlksHtjWpsG61l+AnwH3AF2BQcAHwHRXbvR8jyI40W434DsgGJgEhAFjgRXAFa7Ypjtp4XW9BIgC+onI+HYKSanGGWN00sm2CQgHSoFZLSz3L+Bl4DNr+ak4viA3ACeBbODX1rKBQAlgrGX3WfMPAlOt277AI8A+oBhYB8Raj00E1gBF1t+JzcQ1BlhvtfE2sAj4Xb3HZwAbgUIcX4ojm2hnIFADTGhmW40+X+uxPtbz9bPu9wI+Ao4De4Hb6y37a2AJkGK19UNrXkq9Zd4Bcq3XYCUwrN5j1wDbred8CLi/iXh/B2wCfFrYt+e0LSAEKAdqrf1cYj3fCcAq67U+ArwEBFjtCPAckG895y3A8CbiSQP+AKy2lv0Q6Frv8etwJJiF1rJD6j12EHgQ2AycqtsfjWzjn0Aq8B7wUiPb/yGOJPg4MKLeY1FAGdAdiAQ+seI4DnxT91pbMRyyXrddwJR6n43ngcPW9DwQaD02GcgB7rNepyPA9+3+H6GT6yfbA9DJuyfgKqC6qX+Y9Zb7l/VFcRGOI1lBwOXACOv+SOuf1/X11jHAgHr3D/LfROAB68vgAutLYhTQDccv8RPALYAfMM+6362RmAKATODngD8wG6jCSgRwJAn5QCKOxONWK4bARtr6MZDZwmswucHzzat7vpydCKwE/mq9TqOBo8Dl1mO/tuK83mqrE2cnAv8Pxy/4ui+OjfUeOwJMsm53AcY2EW869ZKVZp7XOW+r7kurQTvjgCRrv/UBdgD3Wo9Nw5HsRVj7ewjQs4l40nB8iQ7HkXS8W/fa4DhKU4rjiIY/8EsciVZdwnEQR+IXC3Rqov1gHAnGNcAs4Fjd+vW2/0Pr9l+Bp+o99jPgY+v2H4BXrDj8cRx1ERzv6WygV733Rn/r9hPWfonCkUx8B/y23mtabS3jb8VXBnSx+/+ETq6dbA9AJ++egGQgt8G873D8yikHLrHm/Qt4o4W2ngeeq3e/uURgFzCzkTZuAVY3mLcKuK2RZS/B8atKGsRelwi8XPdPtt7ju4BLG2nrUSD9HF+708+XeomA9SVUA4TVW/YPwL+s278GVjZo69fUSwQaPBZhtR1u3c/CcSqmcwvx7QV+XO/+ddZ+LQa+bM22aCQRaKSte4H3rduXA7txJAotHaFIA/5Y7/5QoBJHMvcrYHG9x3xwJA2T673H/p8T7/mj1r4KwpHg3tBg+3WJQKL1Goh1fy0wx7r9BI6jFQMatD8ARwI6FfBv8Ng+4Jp696cBB+u9puXUS8qtdpLO5X2pk+dN2kdA2a0AiKx/PtUYM9EYE2E9Vv89ml1/RREZKyKfi8hBEckEbsNxuNQZsTj+KTbUC8ev/Poygd5NLHvIWP8x6y1bJx64T0QK6yZru70aaasA6NlcwCKSKCLLReSoiBThOIrQ2PPthaPzZHEzzyGbJoiIr4j8UUT2ichJHF9u1NvWLBy/FjNFZIWIXNhEU2c8J2PMR9Z+/TlW34823BYiMkhEPhGRXKut39e1Y4z5Gsepgv8F8kXkVRHp3FRbnPn6ZOL4hRxJg/eHMabWWtap19ZyK45kotoYU4HjiMOtjS1ojMnA8at8stXBcgCOUz7g6FOzF/jS6nj4kLXOXhxJ0K+t57pIROrecw3f35mc+X4sMMZU17tfhqMPjurANBFQdluF41zqTCeWbThU5ts4zpEOMMbEA6/jODTqjGygfyPzD+P4Aq8vDsevvoaOAL0bXNkQ12AbTxpjIupNwcaYhY20tQyIEZGEZmJ+C8eXQKwxJhzHYeHGnu9hoKuIhDXzHJobdnQ+jv0xFUcfjj7WfAEwxqwxxszEcXj5A2BxE+0sA64Xkeb+z5zvthqL/2VgJzDQGNMZRx+Q06+PMeYFY8w4HL/wB+E4PdSU2Hq343CcSjlGg/eHte9jcfK1FZEYHEcnkq2EJRfHKaVrRKSpJPZ1HEcRbgGWWMkDxphiY8x9xph+OI62/EJEpliPvWWMudiK1QBPWW01fH/HWfOUF9NEQNnKGFMI/Ab4q4jMFpEwEfERkdE4zs82JwIoN8ZUi8gEHOfznfV34LciMtC6lGuk1cv9M2CQiMwXET8RuRnHF8cnjbSxCsc51XtExF9EbsTRYa3Oa8CPrV/yIiIhIjK9wRd03euwB8f54IXWpXEBIhJkXVb5kLVYGI5f+hXW853f2BMzxmTjOEXxB6uNkcAPcHQOdEYYjuSsAMf57N/XPWDFtUBEwo0xVTjOddc20c6zOM7rvyki/a3XIAxHn4XWbisP6CYi4Q3aOgmUWL+e76zX1nhrP/jjOMdf0Uzc4PiiHioiwTgOwS8xxtTgSESmi8gUq637rPi/a6at+m7BcYriAut1GI0jKcmh6fdvCnADjmTgjXrPaYaIDLCSkSIcp4NqReQCEblcRAKt51nXsRJgIfCYiHS3Eo//wfn3heqgNBFQtjPGPA38AkfHqzxr+huOns/N/YO9E3hcRIpx/ENr6pdpY561lv8Sx5fHP3B07irA0dP/PhxfTr8EZhhjjjUSdyVwI45TEseBm3H0Aq97fC1wO45D0idwHMa9rZmY7uG/h68LcZy6uAH42Hr8LuAJJ5/vPBy/rg8D7wOPG2O+amb5+t7Accj4EI4e++kNHr8FOGgdfv8xsKCxRqzXLAnHl9G3OPoGbMTxhV33JX1e2zLG7MTxpbbfOu3SC8cVBfOt7byG44hRnc7WvBPW9gpwHFpvyps4+qXk4jiPf4+13V04vpBfxHGE4FrgWuu94Ixbgb8aY3LrTziO7jR1eiAbx5UpBseVAXUGAl/huGpildXuchydLv9oxZeL42jKw9Y6v8PRz2Azjs6y6615yovVdUBRSimFo7Ifjo6TblNpUUT+CRw2xjxmdyyq43FJIRGllFJtQ0T64DjyNMbeSFRHpacGlFLKTYnIb4GtwDPGmAN2x6M6Jj01oJRSSnkxPSKglFJKeTFNBJRSSikv1iE7C0ZGRpo+ffq0aZulpaWEhLR0WbtqT7pP3JPuF/ej+8Q9tfV+Wbdu3TFjTPdzXa9DJgJ9+vRh7dq1bdpmWloakydPbtM2VevoPnFPul/cj+4T99TW+8UqtX7O9NSAUkop5cU0EVBKKaW8mCYCSimllBfrkH0EGlNVVUVOTg4VFRXntX54eDg7duxo46hUa7R2nwQFBRETE4O/v38bRqWUUp7FaxKBnJwcwsLC6NOnD2eOGuuc4uJiwsLOGjRO2ag1+8QYQ0FBATk5OfTt27eNI1NKKc/hNacGKioq6Nat23klAarjERG6det23keIlFKqo/CaRADQJECdQd8PSinlZYmA3XJzc5k7dy79+/dn3LhxXHPNNezevbvZdUJDQ895OxMnTjzfEM/w7LPPMnjwYEaMGMGoUaP4xS9+QVVV1Tm388EHH7B9+/ZWxTJu3DhOnTpFnz59GDFiBCNGjGD8+PE89thjp3/VHz58mNmzZ7dqO0op5W00EWgnxhhuuOEGJk+ezL59+1i3bh1/+MMfyMvLa7NtVFdXA/Ddd9+1uq1XXnmFL7/8kvT0dLZs2cKaNWuIioqivLz8nNtqbSJw4MABevfuTWBgIADLly9ny5YtLF++nP379/OjH/0IgF69erFkyZLz3o5SSnkjTQTayfLly/H39+fHP/7x6XmjRo1i0qRJlJSUMGXKFMaOHcuIESP48MMPz1rfGMMDDzzA8OHDGTFiBG+//TbgqEw1adIkrrvuOoYOHQr89yhCU+2WlpYyffp0Ro0axfDhw0+3Vd+TTz7Jyy+/TEREBAABAQE89NBDdO7cGYA777yThIQEhg0bxuOPP356vYceeoihQ4cycuRI7r//fr777js++ugjHnjgAUaPHs2+fft47bXXGD9+PKNGjWLWrFmUlZUB8M477zB8+HBGjRrFJZdccrrNpUuXctVVV50VY2hoKK+88goffPABx48f5+DBgwwfPhyAgwcPMmnSJMaOHcvYsWPbJDlSyhPlnCgj82SN3WEod2aM6XDTuHHjTEPbt28/a965OHnyZKvW/8tf/mLuvffeRh+rqqoyRUVFxhhjjh49avr3729qa2uNMcaEhIQYY4xZsmSJmTp1qqmurja5ubkmNjbWHD582CxfvtwEBweb/fv3n26vbp2m2l2yZIn54Q9/eHr5wsLCM+IpKioyERERzT6fgoICY4wx1dXV5tJLLzWbNm0yx44dM4MGDTod+4kTJ4wxxtx6663mnXfeOb3usWPHTt9+9NFHzQsvvGCMMWb48OEmJyfnjHWNMea6664z+/btM8YYEx8fb44ePWqM+e8+GTVqlElPTzcHDhwww4YNM8YYU1paasrLy40xxuzevds09p4wpvXvC3W25cuX2x2CqmfWX/9jhjz6iSk7VW13KKqBtv6sAGvNeXxnes3lg/X95uNtbD988pzWqampwdfXt8nHh/bqzOPXDjuveIwxPPLII6xcuRIfHx8OHTpEXl4ePXr0OL3Mt99+y7x58/D19SU6OppLL72UNWvW0LlzZyZMmNDoJXBNtTtixAjuu+8+HnzwQWbMmMGkSZOaje+LL77gwQcfpLCwkLfeeouJEyeyePFiXn31Vaqrqzly5Ajbt29n6NChBAUF8YMf/IAZM2YwY8aMRtvbunUrjz32GIWFhZSUlDBt2jQALrroIm677TbmzJnDjTfeCEBlZSU5OTn069ev2devoaqqKn7605+yceNGfH19W+yLoVRHtOPISdZmngDg402HmTM+1uaIlDvSUwPtZNiwYaxbt67Rx1JTUzl69Cjr1q1j48aNREdHn9NlbU2NXtVUu4MGDWL9+vWMGDGCxx57jCeeeOKM9Tp37kxoaCgHDhwAYNq0aWzcuJHhw4dTWVnJgQMH+NOf/sSyZcvYvHkz06dPp6KiAj8/P1avXs3s2bP55JNPGj2cD3Dbbbfx0ksvsWXLFh5//PHTz/WVV17hd7/7HdnZ2YwbN46CggK++eYbLr744iafe3FxMQcPHmTQoEFnzH/uueeIjo5m06ZNrF27lsrKSqdfT6U6ipT0TAL9fIgOFlIyzms8GuUFvPKIwPn8cm9tQaHLL7+cRx55hFdffZU77rgDgM2bN1NUVERRURFRUVH4+/uzfPlyMjPP/sBOmjSJv/3tb9x6660cP36clStX8swzz7Bz584mt9lUu4cPH6Zr164kJycTERHB3//+97PWffjhh7nzzjtZtGgRERERGGNOf2GfPHmSkJAQwsPDycvL4/PPP2fy5MmUlJRQVlbGNddcw0UXXXT6V3xYWBjFxcVnvJY9e/akqqqK1NRUevfuDcC+fftITEwkMTGRzz//nOzsbJYuXcrVV1/d6PMrKSnhl7/8Jddffz1dunShqKjojOceExODj48Pr7/+OjU1eo5UeZfiiio+2HCIGSN70ak8n5QdRWzKLmRUbITdoSk345WJgB1EhPfff597772Xp556iqCgIPr06cPzzz/PggULuPbaaxkxYgQJCQkMHjz4rPVvuOEGVq1axahRoxARnn76aXr06NFsItBUu1u2bOGBBx7Ax8cHf39/Xn755bPWvfPOOyktLSUxMZHAwEBCQ0O56KKLGDNmDOHh4YwZM4bBgwcTGxvLRRddBDi+4GfOnElFRQXGGJ599lkA5s6dy+23384LL7zAkiVL+O1vf0tiYiLdu3cnMTHxdJLwwAMPsGfPHowxTJkyhVGjRnH77befdcTisssuwxhDdXU1s2bN4le/+tVZ8d91113MmjWLN954g6uuukrHYlde54MNhyitrCE5KY7c3cd5b18NKemZmgios0hj51c9XUJCglm7du0Z83bs2MGQIUPOu00tMdz+cnJyuP322/n8888bfbwt9klr3xfqbG09xro6d8YYrnr+G/x8hU/uvpgVK1bwxfFuvL8hh4yHpxIerONruIO2/qyIyDpjTMK5rqd9BJTbiomJaTIJUEo1bW3mCXblFXNLUvzpCprJSXFUVNWyZH2OzdEpd6OJgFJKdTAp6ZmEBflx3ehep+cN6xXO2LgIUjMyG73SRnkvTQSUUqoDKSg5xedbcpk1NobggDO7gSUnxbP/aCmr9hXYFJ1yR16VCGgWrOrT94PqiBavzaGyppYFiXFnPXbNiJ50CfbXSwnVGbwmEQgKCqKgoED/+SvAkQQUFBQQFBRkdyhKtZnaWsNbqzNJ7NuVgdFnd6QN8vflpoRYvtyWR/5JHYJbOXjN5YMxMTHk5ORw9OjR81q/oqJCvzTcTGv3SVBQEDExMW0YkVL2WrHnKNnHy/nltLMvQa4zf0Icr67cz6I12dwzZWA7RqfcldckAv7+/o2W4XVWWloaY8aMacOIVGvpPlHqTKnpmUSGBjJtWI8ml+kTGcKkgZEsXJ3FXZP74+frNQeGVRP0HaCUUh1Azokylu3M5+bxMQT4Nf+vPTkpniNFFSzbmd9O0Sl3pomAUkp1AAtXZwEwb8LZnQQbmjI4ip7hQaSka6dBpYmAUkp5vMrqWt5ek82UwVHEdAlucXk/Xx/mTYjjmz3HOHistB0iVO5MEwGllPJwX2zL5VhJJQuS4p1eZ+74WPx8hLesIwnKe2kioJRSHi4lPZPYrp24dGB3p9eJ6hzElcOieWdtNhVVOjqnN9NEQCmlPNievGIyDhxn/oR4fHzknNZNToznRFkVn2054qLolCdwWSIgIv8UkXwR2Vpv3k0isk1EakUkocHyD4vIXhHZJSLT6s2/ypq3V0QeclW8SinliVIzsgjw9WFOwrnXxLiwfzf6dQ/RToNezpVHBP4FXNVg3lbgRmBl/ZkiMhSYCwyz1vmriPiKiC/wv8DVwFBgnrWsUkp5vbLKat5dl8PVI3rQLTTwnNcXERYkxrM+q5Bth4tcEKHyBC5LBIwxK4HjDebtMMbsamTxmcAiY8wpY8wBYC8wwZr2GmP2G2MqgUXWskop5fU+2niY4lPVJJ9DJ8GGZo+NIcjfh5R07TTordylj0BvILve/RxrXlPzlVLKqxljeDM9kwuiw0iI73Le7YQH+3PtyF58uPEQxRVVbRih8hQdpsSwiNwB3AEQHR1NWlpam7ZfUlLS5m2q1tF94p50v7SPfYU1bDtcwS1DA1ixYkWzy7a0T4YE1PBOZQ1PvZ3G1Hj/No5UNcVdPivukggcAmLr3Y+x5tHM/DMYY14FXgVISEgwkydPbtMA09LSaOs2VevoPnFPul/ax8eLNxEScIRfzplMWFDzX94t7ZPJwAfZ37L6eA2//d4liJzb1Qfq/LjLZ8VdTg18BMwVkUAR6QsMBFYDa4CBItJXRAJwdCj8yMY4lVLKdoVllXyy+TDXj+ndYhLgrOTEeHbnlbDm4Ik2aU95DldePrgQWAVcICI5IvIDEblBRHKAC4FPReQLAGPMNmAxsB1YCvzEGFNjjKkGfgp8AewAFlvLKqWU11qyLodT1bWt6iTY0LWjetE5yE8vJfRCLjs1YIyZ18RD7zex/JPAk43M/wz4rA1DU0opj1Vba0jNyGJcfBeG9OzcZu12CvBl1rgYUtIzOVYylMjzuBxReSZ3OTWglFLKCd/tK+DAsVKSk1oeZfBcLUiMp6rGsHhtdssLqw5DEwGllPIgKemZdAn25+rhPdu87QFRoVzYrxtvZWRRU2vavH3lnjQRUEopD5FbVMG/d+QxJyGWIH9fl2wjOSmenBPlrNid75L2lfvRREAppTzEwtWOX+rzE9v+tECdK4dF0z0sUCsNehFNBJRSygNU1dSyaE0Wlw7qTny3EJdtx9/Xh7njY1m+K5/s42Uu245yH5oIKKWUB1i2I4+8k6fa9JLBpsybEIfgOAKhOj5NBJRSygOkpGfRKzyIywdHuXxbvSI6MWVINIvXZlNZXevy7Sl7aSKglFJu7sCxUr7de4x5E+Lw9Wmf8r/JSfEcK6lk6bbcdtmeso8mAkop5eZS0zPx8xFunhDb8sJtZNKASOK7BWulQS+giYBSSrmxiqoa3lmXw7RhPYgKC2q37fr4CPMnxLH6wHF25xW323ZV+9NEQCml3Ngnm49QVF7FAhdUEmzJTQmxBPj5kKpHBTo0TQSUUsqNvZmeSf/uIVzYr1u7b7trSADTR/Tk3fWHKD1V3e7bV+1DEwGllHJTWw8VsSm7kAWJ8Yi0TyfBhpKT4ig5Vc2HGw/bsn3lepoIKKWUm0pJzyTI34dZ42Jsi2FsXBcG9wgjJT0TY3T8gY5IEwGllHJDJyuq+HDjYWaO6k14J3/b4hARkpPi2X7kJBuyC22LQ7mOJgJKKeWG3luXQ3lVTbtUEmzJ9WN6Exrop5cSdlCaCCillJsxxpCSkcWomHBGxITbHQ6hgX7cMKY3n2w+wonSSrvDUW1MEwGllHIzGQeOsze/hAVucDSgTnJSPJXVtSxZl2N3KKqNaSKglFJuJiU9k85Bflw7spfdoZx2QY8wxvfpQmpGJrW12mmwI9FEQCml3Eh+cQVfbMtl9rhYOgX42h3OGZKT4jlYUMa3e4/ZHYpqQ5oIKKWUG1m8JpuqGmNLJcGWXDW8B91CArTTYAejiYBSSrmJmlrDwtXZTOzfjf7dQ+0O5yyBfr7clBDLVzvyOFJUbnc4qo1oIqCUUm5i+c58DhWWc4sbdRJsaEFiHAZYuDrb7lBUG9FEQCml3ERKRiZRYYFMHRptdyhNiu0azKWDurNodRZVNbV2h6PagCYCSinlBrKPl7Fi91HmTojD39e9/zXfkhRPfvEpvtqeZ3coqg2497tNKaW8RGpGFj4izJsQa3coLZp8QRS9IzqRkqGdBjsCTQSUUspmp6prWLw2mymDo+gZ3snucFrk6yPMT4zjP3sL2H+0xO5wVCu5LBEQkX+KSL6IbK03r6uI/FtE9lh/u1jzRUReEJG9IrJZRMbWW+dWa/k9InKrq+JVSim7LN2ay/HSSrcYV8BZcxJi8fcVUjOy7A5FtZIrjwj8C7iqwbyHgGXGmIHAMus+wNXAQGu6A3gZHIkD8DiQCEwAHq9LHpRSqqNISc8kvlswFw+ItDsUp3UPC2TasB68szab8soau8NRreCyRMAYsxI43mD2TOB16/brwPX15r9hHNKBCBHpCUwD/m2MOW6MOQH8m7OTC6WU8lg7c0+y5uAJFiTG4eMjdodzTpKT4jlZUc3Hmw/bHYpqhfbuIxBtjDli3c4F6q6R6Q3Uvyg1x5rX1HyllOoQUtIzCfDz4aZx7t9JsKHEvl0ZGBVKqlYa9Gh+dm3YGGNEpM1GrhCRO3CcViA6Opq0tLS2ahqAkpKSNm9TtY7uE/ek+8V55dWGJWvKGB/tx6Y137lsO67cJxO6VZG6o5J/fbiMPuHuNTaCu3OXz0p7JwJ5ItLTGHPEOvSfb80/BNRPh2OseYeAyQ3mpzXWsDHmVeBVgISEBDN58uTGFjtvaWlptHWbqnV0n7gn3S/OS0nPpKJmK/ddP4Gxca7r/uTKfTK2oor3nlzGjqru3DZ5pEu20VG5y2elvU8NfATU9fy/Ffiw3vzvWVcPJAFF1imEL4ArRaSL1UnwSmueUkp5NGMMKemZDO3ZmTGxEXaHc946B/lz/ZhefLjpEEXlVXaHo86DKy8fXAisAi4QkRwR+QHwR+AKEdkDTLXuA3wG7Af2Aq8BdwEYY44DvwXWWNMT1jyllPJo67NOsDO3mOSkeEQ8q5NgQwsS46moquW99Tl2h6LOg8tODRhj5jXx0JRGljXAT5po55/AP9swNKWUsl1KehahgX7MHN3L7lBabXjvcEbHRpCakcVtE/t4fGLjbbSyoPJIX23PY9HOUzhySKU8y/HSSj7dfIQbx/YmJNC2PtttKjkpnr35JaTv14O2nkYTAeVx9uYXc/fCDSw9WM1nW3LtDkepc/bO2mwqa2o9qpJgS2aM7El4J39S9FJCj6OJgPIoFVU1/PStDXQK8KVXiPDU0p2cqtaqZspz1NYaUjOymNCnK4Oiw+wOp80E+fty07gYvtiWS/7JCrvDUedAEwHlUX736XZ25hbz5zmjmD8kgKzjZby5Sn+BKM+xcs9Rso6XsSApzu5Q2tyCpHiqaw1vr8lueWHlNjQRUB7j8y1HSEnP4o5L+nHZBVEMj/TjkkHdeWHZHgrLKu0OTymnpKRnERkawFXDe9gdSpvrGxnCxQMiWbg6i5pa7b/jKTQRUB4h+3gZv3x3M6NiI7j/ygtOz3/0miGUnKrmhWV7bYxOKeccKizn6515zEmIJdCvY1bhS06K43BRBV/vzG95YeUWNBFQbq+qppa7F24A4KV5Ywjw++/b9oIeYcxJiOXN9IMcPFZqV4hKOWXR6iwMMG9CxzstUGfqkGiiOwdqp0EPoomAcnt/+nIXG7ML+eONI4ntGnzW47+4YhD+vj48/cVOG6JTyjlVNbUsWpPNZRdENfo+7ij8fH2YNyHO0ReioMzucJQTNEQs6XgAACAASURBVBFQbi1tVz5/W7Gf+YlxTB/Zs9FlojoH8aNL+vPZllzWHtRrmJV7+nJbHkeLT5HcATsJNjR3fBw+IqSu1qMCnkATAeW28k5WcN/iTQzuEcb/zBja7LK3X9KXqLBAfvfpDi0ypNxSSnomvSM6cemgKLtDcbke4UFcMSSaxWuyqajSy3vdnSYCyi3V1Bp+/vZGyipreGn+GIL8m+9YFRzgx/1XXsDG7EI+3XKknaJUyjl784tZtb+A+Ylx+Pp4R/nd5KR4TpRV8flW/Ty6O00ElFv66/K9fLevgN9cN4wBUc4VXZk1LobBPcK0yJByOynpWfj7CjePj2154Q5iYv9u9I0MISU9y+5QVAs0EVBuZ/WB4zz31W5mju7FTQkxTq/n6yM8On0I2cfLeeM7PTep3ENZZTXvrs/hquE9iQwNtDucduPjIyxIjGNd5gl2HDlpdziqGZoIKLdyorSSny3aQFzXYJ68YcQ5j2I2aWB3Lh3UnRe/3sOJUi0ypOz38abDFFdUc0sHGlfAWbPHxRDo56OXEro5TQSU2zDG8MCSzRwrOcWL88YSep6jsj1SV2To6z1tHKFS5y4lPYtB0aGM79PF7lDaXURwADNG9uKDDYcoOVVtdziqCZoIKLfxf/85yFc78nj46iGMiAk/73Yu6BHGzeNjeXNVJge0yJCy0absQrYcKiI5Kf6cj251FMlJcZRW1vD+hkN2h6KaoImAcgtbcor4w+c7mDokmu9f1KfV7f38ikEE+Pnw9FItMqTsk5KeSXCALzeM6W13KLYZHRvB8N6dSU3P1Et73ZQmAsp2xRVV/HTheiJDA3lm9sg2+eUUFRbEjy/tz+dbc1mjRYaUDYrKqvh482Fmju5NWJC/3eHYRkRIToxnZ24x6zJP2B2OaoQmAspWxhge+2Ar2cfL+MvcMXQJCWiztn84qS/RnbXIkLLHkvU5VFTVekUlwZZcN7oXYUF+vKmdBt2SJgLKVu+szeHDjYf5+dRBTOjbtU3brisytCm7kE82a1ET1X6MMaSmZzImLoJhvc6/v0tHERzgx6yxMXy+JZeCklN2h6Ma0ERA2WZvfjH/89FWJvbvxl2XDXDJNm4cG8OQnp15aulOLXWq2s13+wrYf6yU5ETvu2SwKQsS46isqWXx2hy7Q1ENaCKgbFFRVcNPUjcQEuDH8zePdlnZVV8f4dFrhpBzopw3Vh10yTaUaiglPZOIYP8mB8ryRgOjw0js25W3VmdSW6un6tzJOSUCItJFREa6KhjlPZ74ZDu78or585xRRHUOcum2Lh4YyWUXdOfFr/dyXIsMKRfLO1nBl9vzmJMQ2+IYGd4mOSme7OPlrNhz1O5QVD0tJgIikiYinUWkK7AeeE1EnnV9aKqj+nTzEd7KyOJHl/Zj8gXtMxLbw9cMofRUNS8s0yJDyrUWrc6mptYwf4J2Emxo2rAeRIYGkqqdBt2KM0cEwo0xJ4EbgTeMMYnAVNeGpTqq7ONlPPTuZkbHRnD/lRe023YHRYdx8/g4UtK1yJByneqaWhauzmLSwEj6RIbYHY7bCfDz4ebxMXy9M59DheV2h6MsziQCfiLSE5gDfOLieFQHVlldy08XbgCBF+eNwd+3fbuo/PyKgQT6+fDHz3e063aV91i2M5/ckxUke+G4As6aZx0pWZihoxK6C2f+Ez8BfAHsNcasEZF+gB5fVefsT1/uYlN2IU/PGkls1+B2335dkaEvtuWx+oAWGVJtLyU9k57hQUwZ3D6nvDxRTJdgLh8cxaI12VRW19odjsKJRMAY844xZqQx5i7r/n5jzCzXh6Y6kuW78nl15X6Sk+K4eoR9Pal/OKkfPToH8eSn27XnsmpTB4+V8s2eY8wdH4dfOx/t8jQLkuI5VnKKL7bl2h2KwrnOgkEi8hMR+auI/LNuas1GReRnIrJVRLaJyL3WvK4i8m8R2WP97WLNFxF5QUT2ishmERnbmm2r9pd3soL7Fm9icI8wHps+1NZYOgX4cv+0C9iUU8THmw/bGovqWFIzMvH1EeZOiLU7FLd36cDuxHbtpMMTuwln0tY3gR7ANGAFEAMUn+8GRWQ4cDswARgFzBCRAcBDwDJjzEBgmXUf4GpgoDXdAbx8vttW7a+m1nDvoo2UV9bw0vyxbnE51Y1jejO0Z2eeXrpLiwypNlFRVcM763K4cmg00S6+HLYj8PER5k+IJ+PAcfbknffXiWojziQCA4wxvwJKjTGvA9OBxFZscwiQYYwpM8ZU40gubgRmAq9by7wOXG/dnonjagVjjEkHIqzOi8oD/O/yvazaX8ATM4cxICrU7nAAxz+hx6YP4VBhOa9/d9DucFQH8OnmIxSWVXGLdhJ02pyEGAJ8fUjVToO2cyYRqLL+Flq/5sOB1vSE2QpMEpFuIhIMXAPEAtHGmLqC8LlAtHW7N5Bdb/0ca55ycxn7C3j+q91cP7oXs8fF2B3OGSYOiOTywVG8tFyLDKnWS8nIpF/3EC7s383uUDxGt9BArh7Rg3fX5VBWWW13OF7Nz4llXrXO1z8GfASEAr863w0aY3aIyFPAl0ApsBGoabCMEZFz6sklInfgOHVAdHQ0aWlp5xtio0pKStq8zY6suNLwP/8pp3snYVpkIStWrGjzbbR2n0yJrCVtVzW/fH05yUMD2y4wL+dtn5XMkzVsyKpg3uAAl7zP24K77pNhgTV8eKqaZ95ezqWx3jdUs7vsF2cSgWXGmBPASqAfgIj0bc1GjTH/AP5htfV7HL/y80SkpzHmiHXoP99a/BCOIwZ1Yqx5Ddt8FXgVICEhwUyePLk1IZ4lLS2Ntm6zozLG8MPX11JaXcGbd0xkeG/XjL7WFvtke9UW3l6TzSM3JdCvu3ucuvB03vZZefi9LQT55/DQnMmEB7vnl5m77pNLjeHdg9+wplD4n+SLEXHNmCPuyl32izOnBt5tZN6S1mxURKKsv3E4+ge8heNow63WIrcCH1q3PwK+Z109kAQU1TuFoNzQP/9zkGU783n4msEuSwLayr1TB1lFhnbaHYryQMUVVXy48RDXjuzltkmAOxMRki+MZ+uhk2zKKbI7HK/VZCIgIoNFZBYQLiI31ptuA1rbLfZdEdkOfAz8xBhTCPwRuEJE9uAoYfxHa9nPgP3AXuA14K5Wblu50OacQv74+Q6uGBrNbRP72B1Oi7qHBXLn5P58uT2PjP0FdoejPMz7Gw5RVlmjlQRb4YYxvQkJ8OXNVXopoV2aOzVwATADiACurTe/GMflf+fNGDOpkXkFwJRG5hvgJ63ZnmofxRVV3L1wA91DA3lm9kiPOcz3g4v7kZqRxe8/28H7d12Ej4uGRFYdizGGlPRMRvQOZ1RshN3heKzQQD+uH9ObJety+NWMIUQEB9gdktdp8oiAMeZDY8z3gRnGmO/Xm+4xxnzXjjEqD2CM4ZH3t5JzopwX5o3xqA9zpwBf7r9Siwypc7P6wHF255WQnKSjDLZWclI8p6prWbIux+5QvJIzfQRusIYh9heRZSJyVESSXR6Z8iiL12bz8abD/HzqQBL6dLU7nHN2w5jeDOulRYaU81IysggL8uPaUb3sDsXjDenZmXHxXUjNyNLS3zZwJhG40hqGeAZwEBgAPODKoJRn2Z1XzOMfbeOiAd24c/IAu8M5Lz4+wqPXOIoM/d9/DtodjnJzR4tPsXTrEWaPiyE4wJmLr1RLkpPiOHCslO/2aV+d9uZMIlDXFXY68I4xRrt2qtMqqmr46VvrCQ3047mbR+PrwefXJw6IZMrgKP66fC8FJafsDke5scVrs6mqMSxI1E6CbeXq4T3pEuyv4w/YwJlE4GMR2QmMA5aJSHegwrVhKU/xm4+3szuvhD/PGU1UmOfXWH/4msGUVdXwwjIdaVs1rqbW8FZGFhf26+Y2ZbM7giB/X+YkxPLvHXnkFulXTHtyZhjih4CJQIIxpgpHNcCZrg5Mub9PNh9m4eosfnxpfy4d1N3ucNrEgKgw5k2IJTUji31HS+wOR7mhFbvzOVRYrpcMusD8xDhqag2L1uj4A+3J2UGzewGzROR7wGzgSteFpDxBVkEZD7+7hbFxEdx35SC7w2lT904dRJC/rxYZUo1KSc+ie1ggVw6LbnlhdU7iu4Vw6aDuLFydRVVNrd3heI0WEwEReRx40ZouA54GrnNxXMqNVVbXcvfC9YjAX+aOwd/X2XzSM0SGOooM/Xt7HulaZEjVk328jOW78pk7PrbDve/dRXJSPHknT7FsR57doXgNZ97Js3EU+sm16gqMwjECofJSz3yxk005RTw9eySxXYPtDsclfnBxX3qGB/Hkpzv0ciZ12sLVWQgwb4LWDnCVywdH0Ss8iJR0PT3QXpxJBMqNMbVAtYh0xjEYUGwL66gO6uudebz2zQFuSYrnquE97Q7HZYL8fXlg2gVsOVTER5u0yJCCU9U1vL0mm8sHR9MropPd4XRYvj7CvAlxfLv3GAeOldodjldwJhFYKyIROOr8rwPWA6tcGpVyS7lFFdz/zmYG9wjj0elD7A7H5a4f3ZvhvTvzzBdaZEjB0q25FJRWaiXBdnDzhFj8fIRUvZSwXThz1cBdxphCY8wrwBXArdYpAuVFamoN9769gfLKGl6aP5Ygf1+7Q3I5Hx/hEavI0D//c8DucJTNUtOziOsazCUDO8YVMu4sKiyIacN68M66HE3C20Fzow/6ikhovftJQBwQISJh7RGcch8vfr2H9P3H+e31w73q2umJ/SOZOiSKvy7fp0WGvNiu3GJWHzzOgsQ4HZSqnSxIiqOovIpPNuuo867W3BGBpzhzyN+FOEoL/wp4zJVBKfeSvr+AF5bt4cYxvZk9LsbucNrdQ1cPobyqhr9okSGvlZqRSYCfDzclaPeo9nJhv2707x6ilQbbQXOJwBTg2Xr3C40x1+KoIXCRS6NSbuN4aSU/W7SB+G4hPHH9cLvDscWAqFDmT4gjNSOLvflaZMjblJ6q5r31h5g+oiddQzxnVE1PJyIsSIxnY3YhWw9pZXtXai4R8DHGVNe7/yCAMcYA3nNs2IsZY7j/nU2cKK3ipfljCA303sFVfjZ1IJ20yJBX+nDjYUpOVWsnQRvMGhdDkL8PqRl6VMCVmksEAur3BTDGfAkgIuGA5xeVVy36x7cH+HpnPo9OH8KwXt5dOiIyNJC7LuvPVzvyWKWjo3kNYwwp6ZkM7hHG2LgudofjdcI7+TNzVG8+2HCYkxVVdofTYTWXCLwGvC0ip9NgEYnH0Vfg764OTNlrU3YhTy3dyZVDo/nehVpTHeD/XdSX3hGdePKz7VpkyEuszypk+5GTJCfFI6KdBO2QnBRPeVUN763LsTuUDqvJRMAY8yzwEfCtiBSISAGwEvjYGPOn9gpQtb+TFVXcvXADUWFBPD17pP4DtNQVGdp66CQfbjpkdziqHaSmZxIS4Mv1Y3rbHYrXGhETzqiYcFIysnCcmVZtrdk6AsaYV4wxcUAfoI8xJt4Y83K7RKZsYYzhkfe2cKiwnBfmjSYiWDtH1XfdqF6M6B3OM0u1yFBHd6K0kk+2HOGGsb29un+MO1iQFM/e/BIyDhy3O5QOyalRM4wxxcaYYlcHo+z39ppsPtl8hF9cMYhx8V3tDsft+PgIj04fwuGiCv7xrRYZ6sjeWZdNZXWtDjfsBq4d2YvOQX56KaGL6PBZ6rTdecX8+uNtXDwgkjsv7W93OG4rqV83rhgazctp+zimRYY6pNpaQ2pGFuP7dGFwj852h+P1OgX4MntcLF9sy+VosX7m2pomAgqA8soafpK6ntBAP569eZRWT2vBQ1cPpryqhue/2m13KMoFvt17jMyCMj0a4EYWJMVRVWNYvDbb7lA6nBYTARG5qe4yQhF5TETeE5Gxrg9NtacnPtnGnvwSnrt5NFFhenVoS/p3D2VBYhwLV2ezN1/PmnU0KemZdAsJ4KrhPewORVn6dw9lYv9uvJWRRY1etdOmnDki8CtjTLGIXAxMBf4BaIfBDuTjTYdZuDqbOyf3Z5IOqOK0n00ZSLAWGepwjhSV89WOPG5KiCXQr+MPruVJkpPiOVRYzvKd+XaH0qE4kwjUdY2eDrxqjPkU0K7kHURmQSkPv7eFsXER/OKKQXaH41G6hQZy12UD+GpHPt/tO2Z3OKqNLFydjQEWJGolQXdzxdBoosICSdFKg23KmUTgkIj8DbgZ+ExEAp1cT7m5yupa7l64AR+BF+aNwd9Xd+u5+v5FfRxFhj7doUWGOoCqmloWrc7i0kHdie0abHc4qgF/Xx/mTohjxe6jZB8vszucDsOZ//xzgC+AacaYQqArjlEIz5uI/FxEtonIVhFZKCJBItJXRDJEZK+IvC0iAdaygdb9vdbjfVqzbfVfTy/dyeacIp6ePYqYLvpP73wE+fvyy6suYNvhk3ywUYsMebp/b88jv/gUyYnaSdBdzZsQi48IqRlZdofSYbSYCBhjyowx7wFFVrlhf+C8T4qKSG/gHiDBGDMc8AXm4hj2+DljzADgBPADa5UfACes+c9Zy6lW+npnHn//9gDfuzBeO0S10rUjezEyJpxnvthFeaUWGfJkKemZ9I7oxGWDo+wORTWhZ3gnpgyOYvHabE5V6+etLThz1cB1IrIHOACssP5+3srt+gGdRMQPCAaOAJcDS6zHXweut27PtO5jPT5FtOZtqxwpKue+xZsY2rMzj1wzxO5wPJ6Pj/DoNUM4UlTBP/+jRYY81b6jJXy3r4D5iXH46uWzbi05KZ7jpZUs3ZprdygdgjOnBn4LJAG7jTF9cVw5kH6+GzTGHAL+BGThSACKgHVAYb1hj3OAuuLevYFsa91qa/lu57t9b1dTa/jZoo2cqq7lxfljCPLXXtFtIbFfN64cGs1fl+/VgiceKjU9C39fYU5CrN2hqBZcPCCS+G7BWmmwjThTQLvKGFMgIj4i4mOMWS4iz5/vBkWkC45f+X2BQuAd4Krzba9eu3cAdwBER0eTlpbW2ibPUFJS0uZt2uH9PZWsPlDF7SMCyN62Fk8uzeFu++TybrUs21HDL99I49ZhgXaHYxt32y/OOFVjWJRRxpjuvmxbt8rucNqcJ+6TliRFVvP2rjLe/PhrYsM8s6Ozu+wXZxKBQhEJxTHyYKqI5AOlrdjmVOCAMeYogIi8B1wERIiIn/WrPwao63l1CIgFcqxTCeHAWQPCG2NeBV4FSEhIMJMnT25FiGdLS0ujrdtsb6v2FfDxF+ncOLY3j84ZbXc4reaO+2RnzTbeTM/kkdnjGBgdZnc4tnDH/dKSxWuzKavezC+uG09Sv453wNET90lLRo2v5P0/LGN3TRS3TB5udzjnxV32izNp1EygHPg5sBTYB1zbim1mAUkiEmyd658CbAeWA7OtZW4FPrRuf2Tdx3r8a6NjUZ6zgpJT3Pv2Bvp0C+G3Mz3zQ+MJ7tEiQx4pNT2TgVGhJPbVgbY8RZeQAGaM6Ml763MoOVXd8gqqSc5cNVBqjKkxxlQbY143xrxgjDnrF7mzjDEZODr9rQe2WDG8CjwI/EJE9uLoA/APa5V/AN2s+b8AHjrfbXur2lrD/e9s4kRZFS/OH0OIDqnqMl1DAvjJ5QNYtjOf7/ZqkSFPsDmnkE05RSxIjEP7IXuW5AvjKa2s4YMNeuluazSZCIjIt9bfYhE5WW8qFpGTrdmoMeZxY8xgY8xwY8wtxphTxpj9xpgJxpgBxpibjDGnrGUrrPsDrMf3t2bb3ugf3x5g+a6jPDZ9CMN6hdsdTod320RHkaHfaZEhj5CSnkknf19uHBdjdyjqHI2JjWBoz86kpGeiB4rPX5OJgDHmYutvmDGmc70pzBij43J6iI3ZhTy1dCfThkVzi46k1i7qigxtP3KS9/WXilsrKqvio02HmTm6F52D/O0OR50jESE5KZ6ducWszzphdzgeq9lTAyLiKyJ6stNDnayo4u6F64nuHMTTs0bpYc92dO3IXozSIkNu7931OVRU1epwwx5s5uhehAb6kZKulQbPV7OJgDGmBthlVRRUHsQYw8PvbeFwYQUvzBtNeLD+2mlPPj7Co9OHknuygn98q2ez3JExhtSMTEbHRjC8t54y81QhgX7cOLY3n24+wvHSSrvD8UjOXDXQBdgmIstE5KO6ydWBqdZZuDqbTzcf4b4rBzEuXntC22FC365MGxbNy2n7yC+usDsc1cCq/QXsO1qqRwM6gOSkeCpranlnrSdXRrGPM4nAr4AZwBPAn+tNyk3tyi3mNx9vY9LASH58SX+7w/FqD141mFPVtTz/1R67Q1ENpKZnEd7Jnxkje9odimqlQdFhTOjTlbdWZ2kH3fPgzOWDK3AMMhRmTTusecoNlVfW8NO31hMW5M+zc0bjozXTbdWveyjJSfEsWp3Fnrxiu8NRlvyTFXyxLZebxsVome0OYkFSHJkFZXyjl+2eM2cGHZoDrAZuwjEkcYaIzG5+LWWXX3+0jb1HS3j+5tF0D/PeMrfu5J4pAwkJ9OP3n+2wOxRleXtNNtW1hgV6WqDDuGp4D7qFBPDmKh1/4Fw5c2rgUWC8MeZWY8z3gAk4ThcoN/PhxkO8vTabuyb35+KBkXaHoyxdQwL46WUDWL7rKN/u0V8rdquuqWXh6iwuHhBJ38gQu8NRbSTQz5ebx8fy9c48DhWW2x2OR3EmEfAxxuTXu1/g5HqqHR08Vsqj729lXHwXfj51kN3hqAZundiHmC6dePKzHdToOUxbfb0zn8NFFSQn6cVQHc28CXEYYNFqvZTwXDjzhb5URL4QkdtE5DbgU+Az14alzsWp6hruXrgBXx/hhXlj8PPVPM3dOIoMDWbHkZO8tz7H7nC8WkpGFtGdA5k6JNruUFQbi+0azGUXRLFoTTZVNbV2h+MxnOks+ACOsQBGWtOrxpgHXR2Yct5Tn+9iy6Einp49kt4RnewORzXh2pE9GR0bwZ++1CJDdsksKGXl7qPMmxCnCXMHlZwUx9HiU3y5Lc/uUDyGU58EY8y7xphfWNP7rg5KOe+r7Xn88z8HuG1iH6YN62F3OKoZIsKj04eQd/IUf/9GiwzZ4a2MLHx9hLnj9bRAR3XpoCh6R3QiJV07DTqruUGHGg421GaDDqm2caSonPuXbGJoz848dPVgu8NRThjfpytXDevByyu0yFB7q6iqYfHabK4YEk2P8CC7w1Eu4usjzE+MY9X+Avbml9gdjkdobtChhoMN6aBDbqS6ppafLdxIZXUtL80fo9dCe5CHrh5MZXUtz/1biwy1p8+3HuFEWZVWEvQCN4+Pxd9XSM3QowLOcPokmYhEiUhc3eTKoFTLXvh6L6sPHufJG4bTr3uo3eGoc9AnMoRbLozn7TVZ7NYiQ+0mJT2LvpEhTOzfze5QlItFhgZy1fCeLFmXQ1lltd3huD1nCgpdJyJ7gAPACuAg8LmL41LN+G7fMV78eg+zxsZwwxgdQ90T3XP5QEK1yFC72XHkJOsyT7AgMU6rbXqJ5MQ4iiuq+XjTYbtDcXvOHBH4LZAE7DbG9AWmAOkujUo16VjJKe5dtJG+kSE8MXOY3eGo89QlJIC7Lx9I2q6jfLPnqN3hdHgp6ZkE+vkwe5wmzt5iQt+uDIoO1eGJneBMIlBljCkAfETExxizHEhwcVyqEbW1hvsWb6KwvIr/nT+WkEA/u0NSrfC9ifGOIkOfapEhVyquqOL9DYeYMbIXEcEBdoej2omIkJwUz5ZDRWzKLrQ7HLfmTCJQKCKhwEogVUT+ApS6NizVmL9/u58Vu4/yqxlDGdJT+2t6ukA/Xx68ajA7c4t5V4sMucwHGw5RVlmjlQS90A1jehMc4KuXErbAmURgJlAG/BxYCuwDrnVlUOpsG7JO8PTSXVw9vAfJifoPraOYYRUZ+vOXu7RTkwsYY0hJz2J4786Mjo2wOxzVzsKC/Jk5ujcfbz5MUVmV3eG4rebqCAwQkYuMMaXGmFpjTLUx5nVgPaCfqHZUVF7F3Qs3EN05iD/OGomIdnbqKESEX81wFBl6beUBu8PpcNZmnmBXXjHJifH6ufFSyUlxVFTVskSPujWpuSMCzwONFQ4qsh5T7cAYwyPvbeFIUQUvzh9DeCd/u0NSbWxcfFeuGdGDv63cR/5JLTLUllLSMwkL8uO60b3sDkXZZFivcMbERZCakYkx2henMc0lAtHGmC0NZ1rz+rgsInWGt1Zn8emWI9x/5QWMjetidzjKRX45bTBVNbU899Vuu0PpMApKTvH5llxmjY0hOEA71nqz5MR49h8tZdW+ArtDcUvNJQLNHf7XkW3awc7ckzzx8XYuGdSdH13Sz+5wlAv1iQzhlqQ+vL0mm125WmSoLSxem0NlTS0LtE+N15s+sicRwf68qZ0GG9VcIrBWRG5vOFNEfgisc11ICqCsspqfvrWBzp38eXbOKC2C4gXumTJAiwy1kZpaw1urM0ns25WB0WF2h6NsFuTvy03jYvhyex55evrtLM0lAvcC3xeRNBH5szWtAH4A/Kx9wvNev/5oG/uOlvD8zaOJDA20OxzVDiKCA7hnykBW7D7Kyt1aZKg1Vu4+Svbxch1XQJ22IDGemlrDotXZdofidpobdCjPGDMR+A2OssIHgd8YYy40xuS2T3je6cONh1i8NoefTB7ARQMi7Q5HtaNbLownrmswv/9Miwy1Rkp6JpGhgTo0tzqtT2QIkwZGsnB1FtU1tXaH41ZarCNgjFlujHnRmr5u7QZF5AIR2VhvOiki94pIVxH5t4jssf52sZYXEXlBRPaKyGYRGdvaGNzZgWOlPPLeFsb36cK9UwfaHY5qZ2cUGVqnlzudj5wTZXy9K5+bx8cQ4Of0uGrKCyQnxZN7soJlO/PtDsWttPunxBizyxgz2hgzGhiHo1jR+8BDwDJjzEBgmXUf4GpgoDXdAbzc3jG3l1PVNdy9cD1+vj78Ze4Y/Hz1n5g3umZED8bEA2OlngAAIABJREFURfAnLTJ0XhauzkKAeRO0k6A605TBUfQMD9JKgw3Y/U0zBdhnjMnEUcHwdWv+68D11u2ZwBvGIR2IEJGe7R+q6/3x851sPXSSP900il4RemGGtxIRHps+hPziU7y6cr/d4XiUyupa3l6TzeWDo4jpEmx3OMrN+Pn6MHd8HN/sOcbBY1opv47dicBcYKF1O9oYc8S6nQtEW7d7A/V7d+RY8zqUf2/P4//+c5DbJvbhiqHRLa+gOrRx8V2ZPqInf1uxX4sMnYMvtuVyrKSSBdpJUDVh7oRYfH2Et1brqIR1bKuyISIBwHXAww0fM8YYETmnnlIicgeOUwdER0eTlpbWFmGeVlJS0uZt1ikor+V/visnvrMPF4Xmk5amPcad4cp94g4u7VLL0uoa7n9jBf9vuOdcOWLnfnkpo5zunQRzeBtpR7bbEoM76uiflXM1prsPqav2kxCYS4CvfZdmu8t+sbPc1tXAemNMnnU/T0R6GmOOWIf+63pzHAJi660XY807gzHmVeBVgISEBDN58uQ2DTYtLY22bhOguqaWea+lg1Tyrzsm0TcypM230VG5ap+4k1212/m//xzgkdkXMriHZ4w4add+2ZNXzK6lK3nwqsFcPrl/u2/fnXnDZ+Vc+MccY8HfMyiOGMiscTG2xeEu+8XOUwPz+O9pAYCPgFut27cCH9ab/z3r6oEkoKjeKQSP95dle1hz8ARP3jBCkwB1lrsvH0BYkD+//2yn3aG4vdSMLAJ8fZiTYN8/duUZJvbvRr/IEFIytNMg2JQIiEgIcAXwXr3ZfwSuEJE9wFTrPsBnwH5gL/AacFc7hupS/9l7jJeW7+WmcTFcP6bDdXtQbSAiOIC7Lx/Ayt1HWaFFhppUeqqad9flcPWIHnTTAlyqBSLC/MQ4NmQVsu3/t3fn8VGVZ8PHf1d2QiBAgLAlQZBNdogQ1FYU3GoV9wVSrW9bnz7VurS2tcvbx7aW+rzV1rZWLb5PqzWIu3W34BL3sC+yg2BCwr4FwpL1ev44d2QIIZkkkzmTzPX9fPhw5uQs18w9Z84159xz3VtL/Q7Hd74kAm5o4zRVLQ2Yt0dVp6jqIFWdqqp73XxV1VtUdaCqjlTVRX7EHGq7y8q545llDOjekV9NG+53OCaC3TCpP1lpyfzOigyd1CvLt3KwvMoqCZqgXT0+g6T4GPIKrNOg378aiEo1NcoPnl1O6ZFKHpo+zkZGMw1KiIv5ssjQ84utPGpdqkpeQSFD0juRnWUjdJrgpCbHc8moPry8rISDRyv9DsdXlgj4YNaHm/hg/S5++fXTGNa7bXQAM/66aEQvxmd15f656zlUbkWGAi3bsp9VWw+QOykLERucywQvNyeLwxXVvLT0hP7nUcUSgTBbUrSP+/+9jq+N7GXDo5qgiQg/v3gYu6zI0AnyCoromBDL5dbPxjTR6IwujOybSl5BIarRe9vNEoEwKj1SyW1zltIrNYnfXTHKvr2YJhmX2ZWLR/Vm1gebbChVZ//hCl5bsZXLxvYlJdFusZmmy83JZP2OMhZ+sc/vUHxjiUCYqCp3v7CC7aVH+cv1Y0ntEO93SKYN+skFQ6muUR6Yu87vUCLC84uLKa+qsU6CptkuGd2HTklxPBnF4w9YIhAms+cX8ebK7fzogiGMzbQOTaZ5MtOSufGMLJ5bXMyabQf8DsdXNTXK7PlFjM/qan1tTLMlJ8Rx5bh+vLVyG7sOlvsdji8sEQiDNdsO8OvXVvPVwT34zlcG+B2OaeNuPWcQnZPimfnGGr9D8dUnn+9h8+5D5OZYXxvTMrk5mVRWK88uis5f5Vgi0MoOV1Rx61NL6NIhnj9cM5qYGOsXYFomNTme26YM4sMNu8lfF73jqj9Z8AVdk+O5aES7HIzUhNGpPTuRM6AbT80vispaHZYItLJfvryKTbsP8eC1Y+huFc9MiHwjJ4ustGRmvrGGquoav8MJu+2lR3l7zU6uyc4gKT7W73BMO/CNnP6U7D/C++ujL7m2RKAVvbS0mOcXF3PrOadyxqnd/Q7HtCMJcTHcfeFQ1u8o4/nFxX6HE3ZzFnjf3KbbT3BNiJw/PJ0enRKjstKgJQKtZPPuQ/zipZVM6N+N26cM8jsc0w5dOKIX2VldeWBedBUZqqyu4emFRZw9uAdZaTZQlwmN+NgYrjs9g/fW7WTL3sN+hxNWlgi0gvKqam59agnxcTH86foxxMXay2xCL7DI0N+iqMjQO2t2sONAuf1k0ITc9RMyEbwrTtHEzlCt4HdvrGXV1gPcf9Voeqd28Dsc046NzezK10f1ZtYHn7O9NDqKDOUVFNEnNYlzh/b0OxTTzvTp0oFzh6bz7KItlFdV+x1O2FgiEGJzV23n8U++4KYz+zP1tHS/wzFR4CcXDqWmhqgoMrR59yE+2rib6ydkEmu/wDGtIDcnk91lFby1crvfoYSNJQIhVLL/CD96fgUj+nbm7ouG+h2OiRIZ3ZL55pn9eX5JMau3tu8iQ7MLComLEa6dkOF3KKad+uqgHmR2S2Z2FHUatEQgRKqqa7h9zlKqqmt46PpxJMbZT5pM+Nwy+VRSO3hFhtrr4ClHK6t5bnExFwzvRc9OSX6HY9qpmBhh+sRMFnyxl3XbD/odTlhYIhAiD769gUWF+5h5xUj6d7eezCa8UpPjuX3KID7auJv89bv8DqdVvLp8K6VHKplhlQRNK7t6fD8SYmOYPT86xh+wRCAEPtqwm7/mb+Sa7H5MG2NDoRp/zJiYRf+0ZGa+3j6LDOXNL2Jgj45MGpDmdyimnUtLSeTiUb15cUlJVPw01xKBFtp1sJw7nlnGwB4p3HPpcL/DMVEsIS6Guy8ayoadZTy7qH0VGVpZUsryLfuZMTHLhu82YZGbk0lZeRUvL9vqdyitzhKBFqipUX7w7DIOHq3koeljSU6w8dCNvy4Y3ovT+3flD/PWU9aOvsnkFRSSFB/DleP7+R2KiRLjMrsytFcn8goK222/m1qWCLTA3z7YxIcbdvPLS05jaC8bBtX4T0T42deGsbusnFnvf+53OCFx4GglLy/byrTRfUntEO93OCZKiAi5OVms3naApVv2+x1Oq7JEoJkWF+7j/rnruHhkb6ZPsM5LJnKMzezKJaP7MOvDTWwrPeJ3OC324uJijlRWWyVBE3aXje1Lx4RY8grad6dBSwSaofRwJbfNWUrv1CR+d+VIu2dpIs6PLxjiigyt9zuUFlFV8uYXMbpfKiP7pfodjokyKYlxXD6uL6+t2Ma+QxV+h9NqLBFoIlXlJy+sYMeBozw0fRydk+xSpYk8Gd2SuenM/rywpJhVW0v9DqfZ5m/ey8adZcywqwHGJ7k5WVRU1fDc4i1+h9JqLBFooryCQt5atZ0fXziEMRld/A7HmJP63jmn0qWNFxnKKyikc1Icl4zq43coJkoN7dWZ7KyuzJ5fRE1N2zyOGmOJQBOs3nqA37y+hslDevDtswb4HY4xDUrt4BUZ+njjHvLXtb0iQzsPHuWtldu5anwGHRKsUqfxT25OFoV7DvPRxt1+h9IqLBEI0tEq5dY5S+jSIZ4Hrh5NjA14YtqA6ROzOKV7R2a+0faKDD27cAtVNWqVBI3vLhrZi24dE9ptp0FLBIL05OoKNu8+xIPXjSEtJdHvcIwJSmCRoWcWtZ17nNU1ypwFWzjz1DQG9kjxOxwT5RLjYrkmO4O31+xoF7/EqcuXREBEuojI8yKyVkTWiMgkEekmIvNEZIP7v6tbVkTkzyKyUURWiMi4cMf74pJiPt5axffPHcQZA7uHe/fGtMj5p6UzoX83/tiGigy9t3YnJfuPkDvROgmayDBjYiYKzFnQdhLqYPl1ReBPwFuqOhQYDawB7gbeUdVBwDvuMcBFwCD372bgkXAGuuPAUX7xr5UM6RrDbeeeGs5dGxMSIsLPLx7G7rIK/tZGigzlzS+kZ6dEpp6W7ncoxgDeL3HOHtyDpxcUUdnGbrM1JuyJgIikAl8F/gdAVStUdT8wDXjCLfYEcJmbngb8Uz0FQBcR6R2ueHt2SuRXlw7nP0YnEhdrd1JM2zQ6owvTxvThsTZQZGjL3sO8v34X103IJN6OORNBcidmsfNgOfNW7/A7lJDyozj+KcAu4B8iMhpYDNwOpKvqNrfMdqD2q0BfIPBaTLGbty1gHiJyM94VA9LT08nPzw9ZwD2AsqrDId2mabmysjJrkyY4q3MNr1fXcNcTH/CdUa3Xz6Wl7fLsugoE6F9dTH5++x/wJRzsWAmNGFXSkoS/vLmM5D3rWry9SGkXPxKBOGAc8H1VnS8if+LYbQAAVFVFpEk/2FTVWcAsgOzsbJ08eXKIwvXk5+cT6m2alrE2abqNsoZZH2zip1fmMKJv61Tqa0m7lFdV84MP32XqsHSuuDA7tIFFMTtWQucm3cD9c9eTMTy7xR1ZI6Vd/LjuVgwUq+p89/h5vMRgR+0lf/f/Tvf3EiAjYP1+bp4xpoluifAiQ29+tp29hypsXAETsa45PYO4GGF2QZHfoYRM2BMBVd0ObBGRIW7WFGA18Apwo5t3I/Cym34FuMH9eiAHKA24hWCMaYLOSfHcMXUwn3y+h/fW7Wx8hTDLKygkKy2Zs061X+eYyNSzUxIXjOjF84u3cKSi2u9wQsKvnjjfB2aLyApgDDATuA84T0Q2AFPdY4A3gE3ARuAx4HvhD9eY9mP6xEwGdO/IzDfWRlSRobXbD7CocB8zJmZawS4T0b6Rk8WBo1W8uqJ99GHxJRFQ1WWqmq2qo1T1MlXdp6p7VHWKqg5S1amqutctq6p6i6oOVNWRqrrIj5iNaS/iY70iQxt3lvH0wsj5TXReQSEJcTFcPT6j8YWN8dHEU7oxqGcKs9tJpUH7bY4xUei809KZcEo3Hnx7PQePVvodDmXlVby0pISvj+pN144JfodjTINEhBkTM1leXMpnxW13dM9alggYE4VEhF+4IkOPRkCRoX8tLeFQRbV1EjRtxhXj+9EhPrZdjD9giYAxUWpUvy5cNqYP///DzWzd71+RIVUlr6CQ03p3ZqwN7W3aiM5J8Uwb04eXl5dQetj/q2otYYmAMVHsrguGoMD9c1teHKW5lhTtY+32g+TmZCFinQRN25Gbk8XRyhpeWFLsdygtYomAMVGsX9dkvnXWKby4pISVJf7c68wrKCIlMY5pY/r4sn9jmmtE31RGZ3Rh9vzCiKzLESxLBIyJcv85eSDdOiZw7+urw/5htqesnNdXbOOKcX3pmOhHoVNjWiZ3Yiaf7zrEp5v2+B1Ks1kiYEyU84oMDaJg017eXRveIkPPLS6morrGOgmaNuuS0X1I7RDfpisNWiJgjOH6CZkM6NGRmW+sCdsQqzU1ylPzi5jQvxuD0zuFZZ/GhFpSfCxXje/Hv1dtZ+eBo36H0yyWCBhjiI+N4acXDePzXYfCVmTogw27KNp7mNxJdjXAtG0zJmZSVaM8E0EFuprCEgFjDABTh/Vk4indeHBeeIoM5RUU0T0lgQuH92r1fRnTmgb0SOGsU7szZ0ER1TVtr9OgJQLGGKC2yNBp7DlUwSP5rVtkqGT/Ed5du4NrsjNIiLOPIdP25eZksrX0aNj72YSCHYHGmC+N7JfK5WP78j8fbaakFYsMPb2gCMXrm2BMezB1WDrpnRN5sg1WGrREwBhznLsu8EYIf+DfrVNkqLK6hqcXbuGcIT3J6JbcKvswJtziYmO47vRMPli/i8I9h/wOp0ksETDGHKdvlw5ekaGlJa0yoMrcVTvYdbCc3By7GmDal+snZBIbIzw1v239lNASAWPMCf5z8kDSOibw2zdCX2ToyYIv6NulA2cP7hnS7Rrjt16pSUwd1pNnF23haGW13+EEzRIBY8wJOiXFc8d5gynYtJd31oSu89PGnQcp2LSX6RO9b07GtDe5OVnsO1zJmyu3+R1K0CwRMMbU67rTMxjYoyMz3wxdkaG8giLiY4VrT88IyfaMiTRnDuxO/7Rk8tpQpUFLBIwx9aotMrRp1yGeXtDyD7XDFVW8sKSYi0b0pntKYggiNCbyxMQIuTlZLC7cx5ptB/wOJyiWCBhjTmrKsJ5MGpDGH9/ewIEWFhl6dflWDh6tsnEFTLt31fh+JMbFkNdGfkpoiYAx5qREhJ9fPIy9ISgylFdQxOD0FE7v3zVE0RkTmbokJ/D1UX14aWlJWKp0tpQlAsaYBo3om8oVLSwytHzLfj4rKSU3JwsR6yRo2r/cnEwOV1Tzr6UlfofSKEsEjDGNuuuCIQjw+7fWNmv9vIJCkhNiuXxs39AGZkyEGpPRheF9OpNXUBTyn+CGmiUCxphG9enSgW9/5RT+tWwrK4r3N2nd0sOVvLJ8K9PG9KVTUnwrRWhMZBHxOg2u23GQRYX7/A6nQZYIGGOC8t2zB9I9JYHfvr6mSd9wnlu8hfKqGqskaKLOtDF96JQYF/GdBi0RMMYEpVNSPHdMHcz8zXuZt3pHUOuoKk/NL2JsZheG90lt5QiNiSzJCXFcMa4vb362nT1l5X6Hc1KWCBhjglZbZOi+N9cGVWTok8/3sGn3IXIn2k8GTXSakZNFRXUNzy4q9juUk7JEwBgTtLjYGH72tWFs2n2IOUEUGcorKKRLcjwXj+odhuiMiTyD0zsx8ZRuPLWgkJqayOw06EsiICJfiMhnIrJMRBa5ed1EZJ6IbHD/d3XzRUT+LCIbRWSFiIzzI2ZjjOfcoT05Y2AaDzZSZGjHgaPMXb2Da7IzSIqPDWOExkSW3Jwstuw9wvsbdvkdSr38vCJwjqqOUdVs9/hu4B1VHQS84x4DXAQMcv9uBh4Je6TGmC+JCD/72jD2Ha7g4fdOXmTo6QVbqK5Rpk+wToImul0wvBfdUxLJ+zQyOw1G0q2BacATbvoJ4LKA+f9UTwHQRUTsOqMxPvKKDPXj7x9vpnjf4RP+XlVdw5wFRXxlUHf6d+/oQ4TGRI6EuBiuPb0f767bWe/x4je/EgEF5orIYhG52c1LV9XacRu3A+luui+wJWDdYjfPGOOjuy4Y7BUZ+ve6E/72ztqdbD9w1MYVMMa53l0ZC6ZvTbjF+bTfs1S1RER6AvNE5LhyZaqqItKkXhUuobgZID09nfz8/JAFC1BWVhbybZqWsTbx3/mZsby8bCujO+xlQKrXD6CsrIxHFy6jW5IQt2MN+buaV43QhI4dK5FhVPdYnvz4c8bGbyMuRiKmXXxJBFS1xP2/U0ReAiYAO0Skt6puc5f+d7rFS4DAwcv7uXl1tzkLmAWQnZ2tkydPDmnM+fn5hHqbpmWsTfyXPamKT3//Hm9tT+aZS3MQEZ5+/V1W7jnCnVMHM+XcQX6HaLBjJVJor53c9PhCjqQN4ZLRfSKmXcJ+a0BEOopIp9pp4HxgJfAKcKNb7EbgZTf9CnCD+/VADlAacAvBGOOjlMQ47jxvMAs272WuKzKUv6WS2BjhugkZjaxtTHT56uAe9OvaIeIqDfrRRyAd+EhElgMLgNdV9S3gPuA8EdkATHWPAd4ANgEbgceA74U/ZGPMyVybncGgninc9+Zaysqr+LCkivNPSye9c5LfoRkTUWJjhOkTM5m/eS8bdhz0O5wvhf3WgKpuAkbXM38PMKWe+QrcEobQjDHNUFtk6KbHF/J/Hl/IoUr4hnUSNKZe12Rn8OC8DcyeX8Tkzn5H44mknw8aY9qoyUN6cOapaSzYvJdeHYVJA9P8DsmYiNQ9JZGLRvbihcXFlFdFRqVBSwSMMS1WW2QoLkaYmhmPiPgdkjERKzcni4PlVSzaUeV3KIAlAsaYEBneJ5VP7j6XKZl+/SrZmLYhO6src76Tw6Q+kXGsWCJgjAmZnp2T7GqAMY0Q8W6fxUTIsWKJgDHGGBPFLBEwxhhjopglAsYYY0wUs0TAGGOMiWKWCBhjjDFRzBIBY4wxJopZImCMMcZEMUsEjDHGmChmiYAxxhgTxSwRMMYYY6KYeKP8ti8isgsoDPFmuwO7Q7xN0zLWJpHJ2iXyWJtEplC3S5aq9mjqSu0yEWgNIrJIVbP9jsMcY20SmaxdIo+1SWSKlHaxWwPGGGNMFLNEwBhjjIlilggEb5bfAZgTWJtEJmuXyGNtEpkiol2sj4AxxhgTxeyKgDHGGBPFIj4REJGfi8gqEVkhIstEZKJPcZQ1cflEEXnbxXxtA8v9WkSmtjzCyCEiae55LxOR7SJSEvA4oRX3O9TtY6mIDGxguTdEpEtrxRFJRKSfiLwsIhtEZJOIPCQiiSHa9jdFpE8z1rtNRNaIyOwGlskWkT+3LMLI1Zx2CeZ9a20SGqE474jIz5q57zluv3c2sMx3ReSG5my/3u1F8q0BEZkE/AGYrKrlItIdSFDVrT7EUqaqKU1YPge4V1WbdZIXkVhVrW7OupFERO4BylT1/iCWjVPVqhbs624gTlXvbca6gnc81DR3/5HGPaf5wCOq+g8RicW7J1mmqre3cNuxwDvAXaq6qInrrgWmqmpxM/bbovdIJGjldsnH2qRFQnXeaeo5w63TC/hIVU9tynoB6zevLVQ1Yv8BVwCv1jN/PPA+sBj4N9DbzT8dWAEsA34PrHTzvwk8FLD+a3iNDFAG/BZYDhQA6W7+KcCnwGfAvXgHKUAK3gfgEve3afXE1xPYCJS6WAY2EPPjwFVu+gvgv922rwO+Ayx0sb0AJPvdJs1ow3uAuxp4/vnAg8Ai4IeuDT9xz3k+kAhMcG2x1P1tSD37+RqwHSgB3nPzcoEFrg3+BsQGvM7dgf7AOuCfwCogC3jExbIK+JXfr18LX/spwAd15nUG9gG3NnBM1Psa1Hl/5rpjZ517fTsAv3Tv15V4JzapJ6ZHgQp37NwJdAT+7tppae3xBEwGXgt4Dz0JfAzMce32oYtjCXCG3691mNol8H27BnjMtdFc9/pfZW0SkvYJ+rwDpLrXe4hbZg7e5/Z9QLVrh9nub/9y664Cbj7JvlcAR9x6X8E7d7zl1vsQGBrw+t/lpvM5/jP0ErzPzqXA27hzWoPP2e8XvZEGSXEvyHrgYeBsIB7vZNDDLXMt8Hc3vRKY5KbvI7hEQIFL3PT/A37hpl8BbnDTt3AsEYgDOrvp7ngn/PoOrsCDpqGYH+f4RODHAdtIC5i+F/i+323SjDa8B/hRA88/H3jYTScAnwPj3ONUvNtXnfG+6QNMBV5oYF+1B8cw4FUg3j1+OKA9v+DYB2oNkBOwjW7u/1gX2yi/X8MWvPa3AX+sZ/5S4I4Gjol6X4N63p/5QHbd185NP1l7XNWz/y+A7m56JpDrprvgHesdOfGksxjo4B4nA0luehCwyO/XOkztEvi+rQLGuPnPBryG1iYtb5+mnnfOw/uich3wVsB2yupst/a46oB3rkqrZ9/9cect9/gdYJCbngi8G/D6ByYCDwes05VjV/u/DTzQ2HOOI4KpapmIjMfLjM4BnsE7IY4A5nlX2IgFtrl7Z51U9VO3+lPA14PYTQXewQbeG/s8N30mcKWbfhLvmxCAADNF5Kt4J5G+QDret9GTGVJfzCdZ9pmA6REici/ewZiCl4W2RYk0/Pxrn/MQYJuqLgFQ1VIAEUkFnhCRQXiJW3wQ+5yCl8EvdPvsAOysZ7lCVS0IeHyNiNyMl/D1Bk7Dy9KjSUOvwTMnXQvOEZEf450UuuF983m1kX2dD1wqIne5x0lAZj3LvaKqR9x0PPCQiIzB+9Y1uJF9tEebVXWZm16MdwKpj7VJEzXlvOOWnyciVwN/BUY3sOnbRORyN52BlzDtOdnCIpICnAE85/YJ3mdpfQKPy37AMyLSG+/L1eYGYgKI7EQAQL375PlAvoh8hvftfJWqTgpcrpFONFUc3zEyKWC6Ul3qhPcGDnxN6utAMQPoAYxX1UoR+QJIEpFb8C4JgXeZ+rjw6ov5JA4FTD8OXKaqy0Xkm3gZeVvU2PM/dJL5tX6Dd7n/chHpj/d+QET+AYwFtqpqfa/5E6r600a2/eW+ReQUvNsYp6vqPhF5nOPfK23NarzLxV8Skc5AL7wPoMAP6yT398Zeg3rbSkSS8L49ZavqFtc3JElEMjh24nlUVR+tuypwpaquq7O99DrLBe73TmAH3oduDHC0vpgiWJPbpR7lAdPVeInucaxNmi/Y8w6AiMTgXYE8jPdt/IR+FiIyGe9q5iRVPez6ciS5xOC/3GLf5vhxB2KA/ao6JoiQA9viL8AfVPUVt997Gls5on81ICJD3LfAWmPw7o31cB06EJF4ERmuqvuBgwG9O68LWO8LYIyIxLiDYEIQu/84YBszAuanAjtdEnAO3n1lVPWvqjrG/avbqWRdfTEHEUMnvKsd8XViaGvKCe75rwN6i8g4t1yqO8hS8e79g3ebBwBVvcm93nWTAPAuqV0lIj3dtrqJSFYjcXbGO6BK3YfeRUE/w8j0DpBc27vYdUp7AHgI71tCfcdEU16Dg3jvUTh2wtrtvslcBaCqWwKOi7onHPCucn3fdaBDRMYG8bxS8a4c1QDfwPt21pY0p12CZW3SQk0577i/3+n+Ph34h/u8BqgMmE4F9rkkYCiQA6CqLwW0xXEdPFX1ALDZXW1APA1dcagV+Hl5YzDPOaITAbzL4U+IyGoRWYF3ifKXeG/o/xaR5Xj3cs5wy38LeExEluHd0yp18z/GO8BWA3/G68zSmNuBW1w22Ddg/mwg282/AVjb2IZUtaKBmBvyf/E6fXwczH4iWA1BPH/3Ol0HPCIiW/E6ycTj9d34nYgsJcirWKq6GvgFMNe9d+bhXeZuaJ3lePdp1+LdWvo4qGcXodyVrsvxEqINeN82a1T1t5zkmGjia/A48Kg73srxOq+txDuRLAwyzN/gtfEKEVnlHjfmYeBG914aSuNXlCJKc9qlCR7H2qSlgj7viMgQvG/yP1TVD4EP8D53wOucuUK8n2S+BcSJyBq8/msFBGcG8C23z1XAtCDWuQfvdsLWUOjDAAADs0lEQVRighzZMKJ/PthUIpKiqmVu+m68nukt+jmO8YeI/AR4UVU3+B1LeyEiZ+D1ar68th+G8Z+1i/Fbe0sErgV+ivetsRD4pqru8jcq01Qi8gBwGV4P59V+x2OMMe1Zu0oEjDHGGNM0kd5HwBhjjDGtyBIBY4wxJopZImCMMcZEMUsEjGljRKRavBHRVonIchH5oau30CojxIk3ot1DTVg+WURmi8hnIrJSRD5yv2M3xkSgiK8saIw5wZHaamOuYNJTeIWA/ssVJWnSyHOt4HZgh6qOBK9AC1Dpb0jGmJOxKwLGtGGquhO4GbjVVR6bLCKvAYjIBBH5VESWisgn7oSMiAwXkQXuqsKKOlXUcMvcJCLrRWQB3rgbtfMvEZH5bptvy4llZ8Er3FRb2QxVXaeq5W793IB9/81V1UNEykTk9+4qx9su9nwR2SQil7pl+ovIhyKyxP07w82f7JZ9XkTWuqsRtVXxfikiC92ViVm1840xx1giYEwbp6qb8Eq69qzzp7XAV1R1LF5ltJlu/neBP7mrCtnUqY0u3mAlv8JLAM7Cq6xW6yO80RrHAk8DP64npL8DP3FJyL21iYaIDMMbte1Mt+9qjpXO7og3stpwvDK59+INAHY58Gu3zE7gPFUd57YTeAtkLN7IfacBAziWvDykqqer6gi8evzBDERmTFSxWwPGtF8nG7XxU+DnItKP+qs3TgTya4txicgzHBsIp9GRzVR1mYgMwBvFbireCJCTaHhEyAq8MqwAnwHlbjyPzzg2sl5DI9wtUNViF+8yt85HNG/0PWOiil0RMKaNcyfdak4cZrl21MYRwCW4QWhU9SngUuAI8IaInNuE3f0F71v2SOA/OMnoeKpapqovqur3gDy8ETlrR4SsHWRliKre41YJHAW0Bje6nhvEpvYLS+AId9l4iUituqPxxcmx0feucvE+drJ4jYlmlggY04aJSA/gUbyTc90yofWO2ugSh02q+mfgZWBUnfXmA2eLSJp4o6ddfZJt1juymYicKSJd3XQC3uX6Qpo3ImTd59OUEe7qHX3PGHM8SwSMaXs61P58EHgbmIt3T7+uk43aeA2w0l1CHwH8M3AlVd2GN4LZp3ij4a0J+PM9ND6y2UDgfXdZfynerxheaM6IkHU0aYQ7NzR5c0bfMyaq2FgDxhhjTBSzKwLGGGNMFLNEwBhjjIlilggYY4wxUcwSAWOMMSaKWSJgjDHGRDFLBIwxxpgoZomAMcYYE8UsETDGGGOi2P8CDISQGcBU7SkAAAAASUVORK5CYII=\n",
"text/plain": [
"