{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Regras de Associação\n", "#### Aplicando o algoritmo de regras de associação em uma base de dados do mercado complexa." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# importando a biblioteca pandas do python\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# importando os dados no objeto 'dataframe'\n", "dataframe = pd.read_csv('mercado2.csv', encoding = 'utf-8', sep = ',', header = None)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | 0 | \n", "1 | \n", "2 | \n", "3 | \n", "4 | \n", "5 | \n", "6 | \n", "7 | \n", "8 | \n", "9 | \n", "10 | \n", "11 | \n", "12 | \n", "13 | \n", "14 | \n", "15 | \n", "16 | \n", "17 | \n", "18 | \n", "19 | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "shrimp | \n", "almonds | \n", "avocado | \n", "vegetables mix | \n", "green grapes | \n", "whole weat flour | \n", "yams | \n", "cottage cheese | \n", "energy drink | \n", "tomato juice | \n", "low fat yogurt | \n", "green tea | \n", "honey | \n", "salad | \n", "mineral water | \n", "salmon | \n", "antioxydant juice | \n", "frozen smoothie | \n", "spinach | \n", "olive oil | \n", "
1 | \n", "burgers | \n", "meatballs | \n", "eggs | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
2 | \n", "chutney | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
3 | \n", "turkey | \n", "avocado | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
4 | \n", "mineral water | \n", "milk | \n", "energy bar | \n", "whole wheat rice | \n", "green tea | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
7496 | \n", "butter | \n", "light mayo | \n", "fresh bread | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
7497 | \n", "burgers | \n", "frozen vegetables | \n", "eggs | \n", "french fries | \n", "magazines | \n", "green tea | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
7498 | \n", "chicken | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
7499 | \n", "escalope | \n", "green tea | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
7500 | \n", "eggs | \n", "frozen smoothie | \n", "yogurt cake | \n", "low fat yogurt | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
7501 rows × 20 columns
\n", "