
CPPTRAJ Development Notes

Daniel R. Roe (daniel.r.roe@gmail.com)
Jason M. Swails (Code Docs)

2010-07-21
Last Updated: 2019-12-13

1

Abstract

CPPTRAJ is code used for processing MD trajectory data as well as
other types of data, derived from trajectories or otherwise. CPPTRAJ is
a complete rewrite of the PTRAJ code in primarily C++, with the intent
being to make the code more readable, leak-free, and thread-safe. The
biggest functional change from PTRAJ is the ability to load and process
trajectories with different topology files in the same run.

This guide assumes that the reader has at least a basic familiarity
with C and C++ object-oriented programming. If you aren’t sure what a
constructor is or how pointers work you may have a difficult time coding
in Cpptraj. There are several good introduction to C/C++ tutorials on
the web that may be helpful.

2

Contents

I Introduction 5

1 Coding Conventions 5
1.1 Versioning . 7

2 Building Cpptraj and Documentation 7

II General Layout and Concepts 8

3 CpptrajState 8

4 Actions 8
4.1 Action . 9
4.2 ActionInit (ActionState.h) 9
4.3 ActionSetup (ActionState.h) 9
4.4 ActionFrame (ActionState.h) 9

III Key Classes And Functions 9

5 Math-related Classes 10
5.1 Vec3 . 10
5.2 Matrix_3x3 . 10
5.3 ComplexArray . 10
5.4 PubFFT . 10
5.5 Corr.h: CorrF_Direct, CorrF_FFT 10

6 Some Key Classes and Functions 10
6.1 ArgList . 10

6.1.1 ArgList Example . 12
6.2 Topology . 12

6.2.1 Examples . 13
6.3 AtomMask/CharMask . 13
6.4 Frame . 15

6.4.1 Using Frame for RMSD calculations 16
6.5 Box . 16

7 Console and File Input/Output 17
7.1 Output to STDOUT/STDERR: CpptrajStdio.h 17
7.2 CpptrajFile . 18
7.3 BufferedLine . 18
7.4 BufferedFrame . 18
7.5 FileName, FileName.h . 19

3

8 Trajectory Input/Output 19
8.1 Trajin_Single . 19
8.2 Trajin_Multi . 19
8.3 EnsembleIn_Single . 19
8.4 EnsembleIn_Multi . 20
8.5 Trajout_Single . 20
8.6 EnsembleOut_Single . 20
8.7 EnsembleOut_Multi . 20

9 Topology Input/Output 20

10 The DataSet and DataFile Framework 21
10.1 The MetaData class . 21
10.2 The TextFormat class . 22
10.3 Brief DataSet/DataFile Example 22
10.4 DataSet_1D / SCALAR_1D 23
10.5 DataSet_2D / MATRIX_2D 23
10.6 DataSet_3D / GRID_3D 23
10.7 DataSet_Coords / COORDINATES 24

IV Adding New Functionality 24

11 Adding Actions - Example 24
11.1 Create the Class Header . 25
11.2 Create the Class Implementation 26

11.2.1 Init() - Parse user arguments, set up DataSets/DataFiles
etc . 27

11.2.2 Setup() - Set up Topology-related parts of the Action 29
11.2.3 DoAction() - Process input Frame 30
11.2.4 Print() - Any post-processing 32

11.3 Add the Action to the Command class 32

4

Part I

Introduction
1 Coding Conventions
It is important to maintain a consistent coding style within cpptraj so that it
remains easy to modify and understand. By following code conventions, it will
be easier to read code written by anybody and determine what is happening.

• Code blocks are indented using 2 spaces. DO NOT USE TABS since
these are in general not portable between different editors.

• Try to keep the maximum length of lines between 80 and 100 characters
long.

• Whenever possible, put separate code on separate lines. Exceptions can
be made for very simple statements such as logic evaluations and simple
initializations. For example,

double x1 = 0.0; x2 = 0.0; x3 = 0.0;

is OK, but

double x1 = var1 * var2; double x2 = var3 / var4;

is not. There are two reasons: 1) When separate statements share a line it
makes using debuggers more difficult, and 2) when separate statements share a
line it is harder to read.

• C++ files have ’.cpp’ suffix, C files have ’.c’ suffix, header files have ’.h’
suffix.

• All header files should have a ’#define’ guard to prevent multiple inclusion.
The define guard has format:

#ifndef INC_<basefilename>_H
#define INC_<basefilename>_H
...
#endif

• ’using namespace’ should be used sparingly and NEVER in a header file.

• The order of #include directives should be (in general): C includes, C++
includes, class definition, any other Cpptraj includes.

• Use of STL classes/methods is acceptable; use C99 conventions to max-
imize portability. The only external libraries that should be used are
NetCDF and ARPACK/LAPACK/BLAS (both included with Amber-
Tools), i.e. no Boost etc.

5

• Do not use iostream for basic IO. All console output should be performed
with the functions in CpptrajStdio.h (chiefly mprintf() and mprinterr()
for STDOUT and STDERR respectively). All file IO should be performed
with CpptrajFile or the derived classes BufferedLine and BufferedFrame.
This choice has been made mainly for performance reasons (C file rou-
tines are in general much faster than iostream), but also so that all IO is
centralized (e.g. CpptrajFile will automatically detect if an input file is
compressed). This is also so output can be easily controlled; for example,
using mprintf will make sure that during MPI only the master writes.

• Warnings should be written to STDOUT with mprintf with prefix ’Warn-
ing:’; errors should be written to STDERR with mprinterr with prefix
’Error:’.

• Classes:

– Class types are named using CapWords (no spaces or underscores,
start of each word is a capital letter).

– Files containing a class should be named after the class (e.g. ’class
TrajectoryFile {};’ in TrajectoryFile.cpp).

– Classes which inherit should be named after their base class (e.g.
’class Action_Distance : public Action { };’).

– Public class methods should be listed first; protected methods/variables
second; private methods/variables last. All class member variables
should be private if possible.

– Public class methods are named using CapWords.

– Private class methods are named using mixedCase.

– Class variables that are private or protected are named using
mixedCase_ (with a trailing underscore).

• Abbreviations: 1st letter in each word is capitalized. For instance, Data
File List may be abbreviated DatFilList or DFL.

• Variables that have function scope (or lower) and all public variables for
classes are named using mixedCase (same as CapWords except the first
letter is lower-case).

• No one-letter variable names except in loop scopes (e.g. for (int i = 0; i
< N; ++i) { }), and even then they should be short loops (no more than
10 lines or so).

• All identifiers in an enumerated type are named using all CAPS, and the
first identifier should be explicitly initialized (e.g. enum DirectionType {
DX = 0, DY, DZ };).

6

• There is a doxygen rule file to automatically generate code documentation
using doxygen, so please construct comments in such a doxygen-compatible
manner (e.g. JavaDoc etc). See http://www.stack.nl/~dimitri/doxygen/manual.html
for instructions.

1.1 Versioning
The internal versioning for CPPTRAJ is supposed to go like this:

V<major>.<minor>.<revision>

<major> Incremented whenever there is a major API change, e.g. changing
the Action base class, etc.

<minor> Incremented whenever there are changes to behavior, e.g. syntax,
functionality, or output.

<revision> All other changes (so at least each pull request).

Whenever a number that precedes <revision> is incremented, all subsequent
numbers should be reset to 0.

2 Building Cpptraj and Documentation
Cpptraj is automatically built as part of AmberTools, or it can be built stan-
dalone using the configure script in the $AMBERHOME/AmberTools/src/cpptraj
or $CPPTRAJHOME directory. The standalone build is particularly useful for
development and testing. Type ’./configure –help’ for a list of configure op-
tions. In order to build Cpptraj standalone one needs to specify the location
of the NetCDF, zlib, bzlib2, and BLAS/LAPACK/ARPACK libraries if they
aren’t in your system path; configure will use the ones in $AMBERHOME if
’-amberlib’ is specified. The -noX options can be used to disable use of certain
libraries.

For example, to build cpptraj standalone:

./configure -amberlib gnu
make install OR cd src && make install

To build the documentation using doxygen, you must have doxygen installed,
and you must have configured AmberTools. Run the command:

make docs

to build the documentation. PDF files and HTML files are generated during this
process, showing class inheritance and descriptions from comments written in
doxy-format. Open the file $AMBERHOME/AmberTools/src/cpptraj/doc/html/index.html
to see the class heirarchy and descriptions.

7

Part II

General Layout and Concepts
Cpptraj currently lives in 3 key classes:

Cpptraj Defined in main.cpp, controls overall flow (e.g. it is responsible for
deciding whether to execute in batch mode or interactive mode).

CpptrajState Defined in Cpptraj, holds all of the data, Actions, Analyses,
etc.

Command “Static” class used by Cpptraj to process user input. The file
Command.cpp also contains all of the logic for executing commands.

3 CpptrajState
The main components of CpptrajState are:

DataSetList DSL_; Hold all DataSets. This is essentially how different com-
ponents can talk to each other, e.g. an Action creates a DataSet in the
DataSetList, which can then be used by a subsequent Analysis.

DataFileList DFL_; Hold all DataFiles. These are either for writing out
DataSets or general text output, primarily from Actions/Analyses.

TrajinList trajinList_; Hold all input trajectories to be processed during a
run. Whenever a user inputs a ’trajin’ or ’ensemble’ command, the tra-
jectory/ensemble in question is added to this list. When a ’run’ command
is executed, these are the trajectories that are read in a frame at a time
so that Actions in the ActionList can process them.

TrajoutList trajoutList_; Hold output trajectories to be written during a
run. This output occurs after all Actions have been processed.

ActionList actionList_; Hold all Actions to be executed during a run. By
default, whenver an Action command is issued the Action in question is
initialized and queued up in the ActionList, to be processed during the
next run.

AnalysisList analysisList_; Hold all Analyses to be executed after a run or
when a ’runanalysis’ command is given. Similar to ActionList, whenever
an Analysis command is issued the Analysis in question is initialized and
queued up in the AnalysisList.

4 Actions
Actions are how Cpptraj derives data from input trajectories. There are two
basic classes for Actions:

8

4.1 Action
The abstract base class that defines the Action interface. Consists of 4 functions:

Init(): Initialize Action, set up DataSets/DataFiles, etc.

Setup(): Set up Action for a given Topology.

DoAction(): Perform Action on given Frame.

Print(): Perform any post-processing or output that occurs outside the main
DataSet/DataFile framework.

4.2 ActionInit (ActionState.h)
Used to interface with Init(); contains pointers to the master DataSetList and
DataFileList in CpptrajState.

DataSetList& DSL(), DataSetList const& DSL() const Reference to the
master DataSetList. The appropriate version should be used automati-
cally.

DataSetList* DslPtr() For Actions that require access to the master DataSetList
after Init() (e.g. hbond, which cannot set up hbond time series until
hbonds are actually detected in DoAction()), they can store a pointer to
the master DataSetList like so:

(In header): DataSetList* masterDSL_;

(In Action::Init): masterDSL_ = init.DslPtr();

DataFileList& DFL(), DataFileList const& DFL() const Reference to mas-
ter DataFileList. The appropriate version should be used automatically.

4.3 ActionSetup (ActionState.h)
Used to interface with Setup(); contains pointers to current Topology and Coor-
dinateInfo, as well as expected number of frames associated with current Topol-
ogy.

4.4 ActionFrame (ActionState.h)
Used to interface with DoAction(); contains pointer to current Frame.

9

Part III

Key Classes And Functions
5 Math-related Classes

5.1 Vec3
An array of 3 doubles, used to hold XYZ coords. Used for vector math.

5.2 Matrix_3x3
A 3x3 array of doubles, useful for performing rotations etc. Used for basic
matrix math. Can be diagonalized via an internal routine (no need for external
math library).

5.3 ComplexArray
Used to hold an array of complex numbers. Implemented as a double array
instead of using the STL Complex class so that it easily interface with external
routines.

5.4 PubFFT
Interface to FFT routines (either pubfft, which are the FFT routines used by
Amber, or FFTW depending on how CPPTRAJ is configured). Currently only
1D forward and backwards FFTs are supported. Makes use of ComplexArray.

5.5 Corr.h: CorrF_Direct, CorrF_FFT
Classes used to calculate auto/cross correlation functions from arrays of complex
numbers (ComplexArray).

6 Some Key Classes and Functions
The following is a brief list of some of the more commonly-used classes and
functions in Cpptraj. Classes are more or less self-documented to a certain
extent; this section will be focused on how these classes are/should be used.

6.1 ArgList
The ArgList class is used throughout Cpptraj. It is the main way that user
input is translated to actions, analyses, trajectory IO, etc. Basically, the ArgList
class takes a string and separates it into tokens based on a given delimiter or
delimiters. For example, the string:

10

myString = “trajin mytraj.nc 1 100 10”;

can be separated via a space (’ ’) delimeter (the default) into 5 tokens like so:

ArgList myArgs(myString);

The resulting ArgList internally looks something like:

0: trajin
1: mytraj.nc
2: 1
3: 100
4: 10

A custom delimeter string containing 1 or more characters can also be used. For
example, the following string:

myString = “d01,d02,d03,d04”;

can be separated via a comma (’,’) delimiter into 4 tokens like so:

ArgList myArgs(myString, “,”);

The resulting ArgList internall lookws something like:

0: d01
1: d02
2: d03
3: d04

These tokens (or arguments) are stored internally as an STL vector of strings.
ArgList provides many functions to access user arguments. A second array of
boolean values records whether an argument has been accessed. This concept is
functionally similar to the argumentStack in Ptraj; however, it avoids the con-
stant memory allocation/deallocation when arguments are added/accessed, and
allows an argument list to be re-used if desired. The two main ways arguments
are usually accessed are through “GetNextX” and “GetKeyX” functions.

“GetNext” functions return the next argument of the desired type. For ex-
ample, using the ArgList created in the first example from “trajin mytraj.nc
1 100 10” and assuming all arguments are unmarked, GetStringNext() would
return “trajin”, while getNextInteger() would return “1”; in both cases the argu-
ment returned would be marked, so that a subsequent call to GetStringNext()
would return “mytraj.nc” and so on. Another very commonly used “GetNext”
function is the “GetMaskNext()” function, which returns the next atom mask
expression (so noted because it will begin with ’:’, ’@’, ’*’); an example of this
will be shown below.

“GetKey” functions return an argument next to a specified “key” string.
Take for example the argument list created from “rmsd R1 @CA ref [myref] out
rmsd.dat”:

11

0: rmsd
1: R1
2: @CA
2: ref
3: [myref]
4: out
5: rmsd.dat

If we want to access a specific argument, we use a “GetKey” function. For
example, if we want to know the filename specified by ’out’, we would use
GetStringKey(“out”); this would return “rmsd.dat”, and mark both “out” and
“rmsd.dat”. Similarly, GetStringKey(“ref”) would return “[myref]”. At this point
we could also use the GetMaskNext() function to get the atom mask expression
“@CA”.

6.1.1 ArgList Example

ArgList myArgs(“test_command cutoff 2.0 nval 3 name MyTest :2-30@CA extra”);
double Cut = myArgs.getKeyDouble(“cutoff”, 0.0); // Value 2.0
int Nval = myArgs.getKeyInteger(“nval”, 0); // Value 3
int Ntypes = myArgs.getKeyInteger(“ntypes”, 0); // Value 0
std::string Name = myArgs.GetStringKey(“name”); // Value “MyTest”
std::string Out = myArgs.GetStringKey(“out”); // Empty
std::string maskExp = myArgs.GetMaskNext(); // Value “:2-30@CA”
std::string mask2Exp = myArgs.GetMaskNext(); // Empty
// At this point only “extra” will be unmarked.

6.2 Topology
The Topology class describes how a system is laid out in terms of Atoms,
Residues, and Molecules (all of which are classes themselves). It may also hold
parameters which describe interactions between Atoms (e.g. bonds, angles, di-
hedrals, etc). The Topology class is chiefly used in Trajectory input/output and
setting up atom masks (see below).

The Topology class has several routines that return strings of atom and
residue names:

std::string TruncResAtomName(int atom) Format: “<res name><res num>@<atom
name>”

std::string AtomMaskName(int atom) Format: “:<res num>@<atom name>”

std::string TruncAtomNameNum(int atom) Format: “<atom name>_<atom
num>”

std::string TruncResNameNum(int residue) Format: “<res name>:<res
num>”

12

6.2.1 Examples

Iterate over all atoms in a certain residue. This can be accomplished like so:

// Iterate over all atoms in residue 4, print charge.
for (int atom_index = Top.Res(4).FirstAtom;

atom_index != Top.Res(4).LastAtom;
++atom_index)

mprintf(“Atom %i charge= %g\n”, atom_index+1, Top[atom_index].Charge());

Iterate over all atoms bonded to a certain atom and pick out the hydrogens:

// Iterate over all atoms bonded to atom 66
for (Atom::bond_iterator bond_atom = Top[66].bondbegin();

bond_atom != Top[66].bondend();
++bond_atom)

if (Top[*bond_atom].Element() == Atom::HYDROGEN)
mprintf(“Hydrogen %s bonded to atom %s\n”,

Top.AtomMaskName(*bond_atom).c_str(),
Top.AtomMaskName(66).c_str());

6.3 AtomMask/CharMask
The AtomMask and CharMask classes keep track of what atoms for a given
Topology are selected based on a given mask expression. The AtomMask class
holds information on selected atoms only, while CharMask has the state of all
atoms (selected/not selected). AtomMask is as an integer mask, where the
atom numbers currently selected are stored as an array of integers. Since one
is usually only interested in selected atoms, most times AtomMask is all that is
needed and so is the most used mask class in Cpptraj; for example, all routines
that take masks in the Frame class use the AtomMask class.

The CharMask class has an internal character array where the state of each
atom is stored. It has functions that can then be used to interrogate if a certain
atom or atoms are selected or not.

In typical use, there are 3 phases to using AtomMask or CharMask: 1)
initialization with a mask expression, 2) setup via a Topology class, and 3)
iteration over the mask/interrogation of the mask. Initialization with a mask
expression performs all necessary tokenization of the mask expression string
and prepares the mask to be set up, but does not actually select atoms. The
mask expression can be used during AtomMask construction or passed in via
SetMaskString():

AtomMask* Mask = new AtomMask(“@CA”);
AtomMask Mask(“@CA”);
AtomMask Mask; Mask.SetMaskString(“@CA”);

Setup occurs via a Topology class (since in order to set up a mask you need
to know atom names/numbers, residue name/number/types etc). This can be

13

done using SetupIntegerMask() or SetupCharMask() to set up an integer mask
(more common) or a char mask:

AtomMask iMask(“@CA”);
Top.SetupIntegerMask(iMask);
CharMask cMask(“:1-20”);
Top.SetupCharMask(Mask);

Once a mask has been setup the Nselected() function returns the number of se-
lected atoms, while the None() function returns true if no atoms were selected.
If necessary, one can convert between the mask types post-setup by using Atom-
Mask::ConvertToCharMask() / CharMask::ConvertToIntMask() routines:

AtomMask mask(CharMask.ConvertToIntMask(), CharMask.Natom())
CharMask mask(AtomMask.ConvertToCharMask(), AtomMask.Nselected())

The final stage is to make use of the atom mask. One can iterate over selected
atoms in an integer atom mask using the STL-like const_iterator variable and
begin() and end() functions - this is the recommended way to use atom masks:

for (AtomMask::const_iterator atomnum = Mask.begin();
atomnum != Mask.end();

++atomnum)
mprintf(“Selected atom %i\n”, *atomnum);

One can also access members of the integer array directly via the bracket (’[]’)
operator:

for (int maskidx = 0; maskidx < Mask.Nselected(); ++maskidx)
mprintf(“Selected atom %i\n”, Mask[atomidx]);

To see if atom(s) are selected in a CharMask, use the AtomInCharMask() and
AtomsInCharMask() functions. The former returns true if a specified atom is
selected, the latter returns true if any atoms within a given range are selected.
For example:

for (int atom = 0; atom < Top.Natom(); ++atom)
if (Mask.AtomInCharMask(atom))

mprintf(“Selected Atom %i\n”, atom);
for (int rnum = 0; rnum < Top.Nres(); ++res)

if (Mask.AtomsInCharMask(Top.Res(rnum).FirstAtom(),
Top.Res(rnum).LastAtom()))

mprintf(“Selected Residue %i\n”, rnum);

14

6.4 Frame
The Frame class is in many ways the workhorse of Cpptraj, as it holds all XYZ
coordinates for a given input frame, and optionally box coordinates, masses,
replica indices, temperature, time, and/or velocities. Note that although mass
is stored in Topology, it is also stored in Frame since many calculations require
it (center of mass, mass-weighted RMSD, etc). Coordinates and velocities are
stored with double precision. Many routines are available to do things like
calculate the center of mass of atoms, rotate, translate, scale, and so on. A
major use of the Frame class is to perform RMSD calculations.

Frames are typically set up in two phases. The first phase is memory alloca-
tion, which occurs via constructors or the SetupFrameX routines. This should
be done as little as possible since memory allocation is relatively expensive.
The second phase is actually setting the coordinates, which occurs via the SetX
routines. For example, the following code will set up a Frame (newFrame) with
the coordinates from another Frame (oldFrame) based on a previously set up
AtomMask (mask) and Topology (top) corresponding to oldFrame:

Frame newFrame;
// Allocate memory, copy in masses based on mask.
newFrame.SetupFrameFromMask(mask, top.Atoms());
// Set only coordinates from oldFrame based on mask.
newFrame.SetCoordinates(oldFrame, mask);

Alternatively, this can be done in one step with a constructor:

Frame newFrame(oldFrame, mask);

The advantage of separating out Setup and Set is that memory reallocation is
kept to a minimum. For example, if we wanted to use newFrame to hold a
different set of coordinates (of the same size as newFrame or smaller) we might
do something like:

newFrame.SetCoordinates(differentFrame);

If the new coordinates might be bigger than the current size of newFrame, we
could explicitly call a SetupFrameX routine; this will only reallocate if the new
size is greater than the current maximum size. A Frame remembers the largest
size it was ever allocated for, so reallocation is kept to a minimum.

There are two basic ways to access coordinates within Frame:

const double* XYZ(atom) return pointer to beginning of XYZ coordinates
for given atom (max Natom()).

const double* CRD(coord) return pointer to given coordinate (max size()).

Note that you can get pointers to the raw coordinates, but it is not recommened
to use these in general.

15

6.4.1 Using Frame for RMSD calculations

Unlike some of the other functions of Frame, the RMSD functions do not take a
mask - it is assumed all atoms in the Frame are involved in the RMSD calcula-
tion. This is done for performance reasons. If a subset of atoms is desired for an
RMSD calculation the reference and target Frames should be modified before-
hand. Since the reference structure usually does not change it is often beneficial
to pre-center the reference at the origin. For example, given a reference Frame
(Ref), a Farget frame (Tgt), and an AtomMask (mask):

bool useMass = false;
top.SetupIntegerMask(mask);
Frame selectedRef, selectedTgt;
// Set up and pre-center reference.
selectedRef.SetupFrameFromMask(mask, top.Atoms());
selectedRef.SetCoordinates(Ref, mask);
// refTrans will contain translation from origin to reference.
Vec3 refTrans = selectedRef.CenterOnOrigin(useMass);
// Set up target.
selectedTgt.SetupFrameFromMask(mask, top.Atoms());
selectedTgt.SetCoordinates(Tgt, mask);
// Calculate RMSD. tgtTrans is translation from target to origin.
Vec3 tgtTrans;
Matrix_3x3 rot_matrix;
double rmsd = selectedTgt.RMSD_CenteredRef(selectedRef,

rot_matrix,
tgtTrans,
useMass);

// Best-fit rotate/translate current Target to Reference.
Tgt.Trans_Rot_Trans(tgtTrans, rot_matrix, refTrans);

Now for subsequent RMS calculations to the same Reference, only the selected
Target frame needs to have its coordinates set:

selectedTgt.SetCoordinates(Tgt2, mask);
rmsd = selectedTgt.RMSD_CenteredRef(selectedRef, ...

6.5 Box
The Box class holds all unit cell information. It has the unit cell vectors (stored
in a Matrix_3x3 class in row-major order), as well as the fractional cell matrix
(for converting from Cartesian to fractional coordinates), the box lengths and
angles, and the unit cell volume. There are in general two ways to set up Box
with unit cell information: the SetupX routines (e.g. SetupFromXyzAbg()) and
AssignX routines (e.g. AssignFromXyzAbg()). The SetupX routines perform
some extra checks and will return 1 if something is wrong with the box. The

16

AssignX routines do not perform these checks and so should be used where
performance is needed (or the state of the box doesn’t matter).

Both the SetupX and AssignX will set the unit and fractional cell matrices,
the box lengths and angles, and the cell volume each time they are called. The
ImageOption class can then be used to determine what kind of imaging can
be performed on the unit cell using the distance calculation routines (DIST2(),
DIST()) found in DistRoutines.h. For example, this is how distances are calcu-
lated using ImageOption imageOpt_ in the distance action.

1. In Init(), determine if imaging should be used if possible:

imageOpt_.InitImaging(!(actionArgs.hasKey("noimage")));

2. In Setup(), determine if imaging will be possible based on if box info is
present:

imageOpt_.SetupImaging(setup.CoordInfo().TrajBox().HasBox());

3. In DoAction(), determine what imaging to use and then calculate distance
using DIST() from DistRoutines.h:

if (imageOpt_.ImagingEnabled())
imageOpt_.SetImageType(frm.Frm().BoxCrd().Is_X_Aligned_Ortho());

double Dist = DIST(imageOpt_.ImagingType(), a1, a2_, frm.Frm().BoxCrd());

7 Console and File Input/Output

7.1 Output to STDOUT/STDERR: CpptrajStdio.h
The file CpptrajStdio.cpp contains functions used to write output to standard
output (STDOUT) and standard error (STDERR). This is accomplished with
the C printf-like functions mprintf() and mprinterr() respectively:

mprintf(const char* format, ...); // STDOUT
mprinterr(const char* format, ...); // STDERR

The ’m’ prefix stands for “master”, and ensures that when CPPTRAJ is running
via MPI that only the master thread is able to write with these functions (note
the same does NOT apply for OpenMP). The syntax is the same as basic printf
- a format string followed by any variables. There are numerous resources that
describe printf syntax in detail. Some useful syntax is listed here:

%i Integer

%f Floating point number

%g Use scientific or floating point representation, whichever is shorter.

17

%s Character string

%c Single character

\n Newline

\t Tab

For example:

#include “CpptrajStdio.h”
int myInteger = 3;
double myDouble = 5.43;
string myString = “easy”;
mprintf(“Using printf is %s; %i is an integer and %f is a double.\n”,

myString.c_str(), myInteger, myDouble);

Note that the string function c_str() must be used to print C++ strings. Out-
put:

Using printf is easy; 3 is an integer and 5.430000 is a double.

7.2 CpptrajFile
The CpptrajFile class provides basic file input and output operations. It can
handle reading and writing both Gzip and Bzip2 compressed files, and through
the FileName class performs tilde-expansion on file names (via globbing) as
well as separates the file name into its base name, extension, and compressed
extension. The file can be opened immediately, or set up first and then opened
later. Once it has been set up it can be opened or closed multiple times. The
CpptrajFile class destructor will automatically close the file if it is open at time
of destruction.

7.3 BufferedLine
The BufferedLine class is a child of CpptrajFile used for text files that will be
read in line by line (note that writing is not possible with this class). The class
has an internal buffer, which chunks of the input file are read into. The Line()
routine can be used to read that chunk line by line; this avoids potentially
expensive file IO. When the chunk is empty a new chunk is read in. The line
can be further split into Tokens (similar to ArgList) and read one token at a
time; this can be useful for e.g. determining the number of columns in a file.

7.4 BufferedFrame
The BufferedFrame class is a child of CpptrajFile used for highly-formatted text
files that will be read/written multiple lines at a time (such as the Amber ASCII

18

trajectory format). This class is set up for a certain total number of elements
of a certain character width with a certain number of elements per line, which
can then be read to or written from a character buffer in one entire chunk.

7.5 FileName, FileName.h
The FileName class is used by all file-related classes. It is more powerful than
a string and will automatically do tilde expansion and split the name into
path, base name, extension, etc. FileName.h also contains the File names-
pace which includes File::Exists() for testing whether a file can be opened and
File::NameArray and File::ExpandToFilenames() for getting an array of files
using wildcard matching.

8 Trajectory Input/Output
Trajectory input and output (IO) is handled via high-level and low-level classes.
At the highest level trajectory input is provided by Trajin-derived classes (Tra-
jin_Single and Trajin_Multi) for reading one frame at a time (i.e. during
’trajin’ runs) and EnsembleIn-derived classes (EnsembleIn_Single, which is ex-
perimental currently, and EnsembleIn_Multi) for reading multiple frames at a
time (i.e. during ’ensemble’ runs). Trajectory output is currently handled by
Trajout_Single for writing one frame at a time to a single file, and EnsembleOut-
dervived classes for writing multiple frames out at a time. At the lower level
IO is handled by format-specific classes which inherit from TrajectoryIO (Tra-
jectoryIO.h), which are called Traj_X by convention (e.g. Traj_AmberNetcdf
for Amber NetCDF trajectories). TrajectoryIO classes are contained and set up
within the higher level classes. Note that there is currently no Trajout_Multi
(write a single frame to multiple files) since this functionality is already handled
by TrajoutList.

8.1 Trajin_Single
This is for reading in a single frame at a time from a single file.

8.2 Trajin_Multi
This is for reading in a single frame at a time from multiple files (e.g. getting a
frame at a specifed temperature from a T-REMD ensemble).

8.3 EnsembleIn_Single
For reading in multiple frames at a time from a single file. Currently experi-
mental.

19

8.4 EnsembleIn_Multi
For reading in multiple frames at a time from multiple files, optionally sort the
frames.

8.5 Trajout_Single
For writing out a single frame at a time to a single file.

8.6 EnsembleOut_Single
For writing out multiple frames at a time to a single file. Currently experimental.

8.7 EnsembleOut_Multi
For writing out multiple frames at a time to multiple files. Used for ’ensemble’
run trajectory output and LES trajectory splitting.

9 Topology Input/Output
The ParmIO class is a base class for all topology file formats. This provides
an easy mechanism for extracting the system topology from any number of file
formats. The ParmFile class is a wrapper around the ParmIO classes that
hides the implementation details for each data file type from you. You should
interact with ParmIO objects through ParmFile handlers. ParmFile provides
the ability to both read and write topology file objects of any class.

One thing that sets ParmIO and ParmFile apart from TrajectoryIO/TrajectoryFile
and DataIO/DataFile is its connection with the Topology class. Topology objects
contain as much of the information in the Amber topology file as can be parsed
from the information present in the ParmIO object (and figured out based on
atomic arrangements). A Topology instance is the first argument passed to the
ParmFile::Read function, followed by the name of the topology file. Unlike the
DataFile and TrajectoryFile classes, ParmFile does not have a reference to the
ParmIO object to forward read/write information to. It exists simply to fill the
Topology class with the relevant data structures and inform it how to do the rest.
The Topology class is format-independent, providing a layer of abstraction to
make other parts of the code that require topology information less error-prone
while coding.

Every ParmIO subclass implements a ReadParm method that takes a Topol-
ogy instance as the first argument and fills as much of the information there
as possible. Afterwards, the CommonSetup method of the Topology class is
called to finish setup and determine bond information (from atom distances if
not present directly in the file format) and molecule information (based on the
bonded structure). The currently available types of topologies are summarized
in 1.

20

Table 1: Topology file formats currently implemented in Cpptraj. The first
column has the ParmIO class name as well as the ParmFormatType enumeration
type that corresponds to that class inside ParmFile in parentheses.
ParmIO Subclass (ParmFormatType) Description

Parm_Amber (AMBERPARM) Amber style topology file (OLD and NEW styles)
Parm_CharmmPsf (CHARMMPSF) CHARMM PSF topology file format (used by NAMD, too)

Parm_Mol2 (MOL2FILE) TRIPOS Mol2 file
Parm_PDB PDB File

10 The DataSet and DataFile Framework
One of the goals in writing cpptraj was to try and generalize data collection
and output, so that any action could output any generated data in any format
known to cpptraj without having to write any extra code. For example, data
generated by a distance calculation can be output in columns, as a Grace file,
as a Gnuplot file, or as all three. To that end Actions and Analyses have access
to the main DataSetList in CpptrajState (usually named DSL inside Actions)
and the main DataFileList (usually named DFL inside actions). A DataSet
can be generated by an Action, but because it is held outside the Action in
the master DataSetList it can persist after the Action that generated it has
been destroyed and be used in subsequent Analyses etc. DataSets have a base
type which determines what kind of data it can hold, and can also belong to a
group; DataSets in the same group behave in a similar fashion. For example,
all DataSets in the COORDINATES group hold coordinates, etc.

10.1 The MetaData class
DataSets are associated with meta data which is used to both describe and
categorize the data. DataSet selection uses meta data; meta data is also used
to sort DataSets. This information is contained within the MetaData class. A
DataSet can have a name, aspect, index, type etc. This allows for DataSets
to e.g. be marked as an alpha torsion (M_TORSION, ALPHA). There are
currently 9 MetaData variables:

name_ The DataSet name; this is the most general level of classification. Used
in searches.

fileName_ If the data was read in from a file, the name of that file. Used in
searches; both the full path and base name can be used to match (e.g. for
reference frame data sets).

aspect_ A “sub-name”, used to differentiate between different aspects of sim-
ilar data. For example, DataSets generated by the ’nastruct’ Action have
different aspects for nucleic acid “stretch”, “shear”, “stagger”, etc. Used in
searches.

21

legend_ This is the name that will be used when writing data out to a file.
Not used in searches. A default one is created if one is not provided.

idx_ (Index) A number which can be used to further differentiate data. It
could correspond to residue, atom, etc. Used in searches.

ensembleNum_ (Ensemble number) For use during ensemble processing; this
is set by the DataSetList to differentiate data from different ensembles.

scalarmode_ Internal categorization of the type of data, e.g. a distance,
angle, torsion, etc. Certain functions will use this data - for example data
sets marked as angle, torsion, or pucker will take periodicity into account
when averaging (DataSet_1D::Avg()).

scalartype_ Internal sub-type; so in the case of a torison what type of torsion
it is (phi, psi etc) or in the case of a matrix what kind of matrix, etc.

timeSeries_ Whether the DataSet is a time series; used by DataSetList to
determine whether to call the Allocate() function.

MetaData can be set using the DataSet::SetMeta() routine, but it is recom-
mended that this be done sparingly once a DataSet is part of the master
DataSetList since this could create conflicts.

10.2 The TextFormat class
This class is used when writing the data set out to text files. It creates a
printf-like format string of a given type with specified width and precision.

10.3 Brief DataSet/DataFile Example
A simple usage example is given here. Say for example we want to track a
distance in an Action. The first step is to create the DataSet in the Init()
routine.

dist_ = DSL->AddSet(DataSet::DOUBLE, MetaData(actionArgs.GetStringNext(),
MetaData::M_DISTANCE), "Dis");

if (dist_==0) return 1;

In the first line a DataSet class of type DOUBLE is added to the master
DataSetList. The various types are enumerated in DataSet::DataType (DataSet.h).
The DataSet will be named whatever the next string is in the actionArgs Ar-
gList. If there is no name, a default one will be created based on the given default
"Dis" and the DataSet’s overall position in the DataSetList (so in this case the
default could be something like Dis_00000). The DataSet is also given the
scalarMode M_DISTANCE, which is information that other Actions/Analyses
can use (like Analysis_Statistics). What is returned is a pointer to the DataSet;

22

DataSet is actually a base class that specific DataSet types inherit (in this case
DataSet_double). In this way the interface is generalized.

The next step is to add the DataSet to the DataFileList.

DataFile* outfile = DFL->AddFile(distanceFile, actionArgs);
if (outfile != 0) outfile->AddDataSet(dist_);

In the first line a pointer to a new or exsiting (if already created somewhere
else) DataFile is returned only if the string distanceFile is not empty; this allows
specification of output files to be optional. The actionsArgs ArgList is passed
in so that the DataFile outfile can process any DataFile-related arguments. In
the second line the DataSet is added to the DataFile. In this way output from
multiple actions can be combined rather than overwritten. The machinery of
the DataFileList takes care of output (formatting etc) from there.

The final phase is actually adding data to the DataSet. So for example in
the action() routine you could have:

double distance = sqrt(DIST2_NoImage(V1, V2));
dist_->Add(frameNum, &distance);

In the first line the value ’distance’ is being calculated. In the next line the value
from ’distance’ is being added to DataSet dist_ with frame number ’frameNum’
(automatically set within Action). Notice that the address of ’distance’ is passed
rather than the value; this is a necessity from the generalization of the DataSet
interface. DataSet has no idea a prior what the data type might be, so in the
Add routine the value is cast to what the underlying DataSet implementation
expects. This allows the Add routine to be used for double, float, int, string,
etc. This DataSet could also be cast back to it’s actual type to access other
routines, e.g.:

DataSet_double& ds_dist = static_cast<DataSet_double&>(*dist_);

10.4 DataSet_1D / SCALAR_1D
Base class for 1D scalar data sets (like DataSet_double, DataSet_Mesh, etc).
Basically hold a series of numbers.

10.5 DataSet_2D / MATRIX_2D
Base class for 2D matrices.

10.6 DataSet_3D / GRID_3D
Base class for 3D grids.

23

10.7 DataSet_Coords / COORDINATES
Base class for DataSets which hold coordinates.

Part IV

Adding New Functionality
Most development for Cpptraj will likely be in adding new functionality; actions,
analyses, and trajectory/topology/data file formats. This part of the manual
will provide guidance and some helpful hints to this end. In general, adding
new functionality is done by writing an implementation of the desired class type
(e.g. for actions, inherit from the Action class) and then adding that class to the
container for that specific functionality (e,g, in the case of actions, ActionList).

Note that there is a script provided that can generate default templates for
various class types, located at $CPPTRAJHOME/devtools/Template.sh:

Usage: ./devtools/Template.sh <name> [<type>]
<type>: Action Analysis Exec Traj DataIO DataSet

11 Adding Actions - Example
All actions inherit from the Action abstract base class. The Action class it-
self inherits from the DispatchObject class so that it can be associated with an
allocator (to create the action) and a help function. There are four functions
that every action must implement: Init(), Setup(), DoAction(), and Print().
Init() is called when the action is first created, and processes input arguments,
sets up DataSets/DataFiles, deals with reference frames, and sets the debug
level. Setup() is called to set the action up for a specific topology, and so han-
dles anything Topology-related (such as parsing atom masks). The DoAction()
function is called to actually perform the action on input coordinate frames.
The Init(), Setup(), and DoAction() functions return a special type of integer,
Action::RetType, which described the result of the action:

Action::OK Action is successful.

Action::ERR Action is not successful.

Action::USE_ORIGINAL_FRAME Action requests that the original un-
modified topology/frame be used (see e.g. Action_Unstrip in Action_Strip.h).

Action::SUPPRESS_COORD_OUTPUT Action requests that further pro-
cessing of the current coordinate frame be skipped (see e.g. Action_RunningAvg).

Action::SKIP Non-fatal problem occurred during setup; skip Action until
next Setup call.

24

Action::MODIFY_TOPOLOGY Setup routine has modified the Topol-
ogy/CoordinateInfo.

Action::MODIFY_COORDS DoAction routine has modified the Frame.

The final function is Print(), which is called after all trajectory processing is
complete and performs any additional calculation or output necessary. This
function can be blank if such functionality is not needed, but it still must be
implemented.

In addition to Action, there are currently two additional action-related classes
that actions may want to inherit from. The ImagedAction class is for classes
that may need to calculate imaged distances, and the ActionFrameCounter class
is for actions that may want to process subsets of input frames (see e.g. the
Action_Matrix action).

As an example, we will go through the creation of a simplified version of
the Action_Distance class for calculating distances; this will cover using the
DataSet, DataFile, AtomMask, and ImagedAction classes as well.

11.1 Create the Class Header
As mentioned in the style guide, header files should be named after the class,
so the Action_Distance class will go in a file named “Action_Distance.h”. The
first thing to do is create a “header guard” - this will prevent issues with multiple
inclusion. The header guard should be named after the class and header file, so
for Action_Distance.h:

#ifndef INC_ACTION_DISTANCE_H
#define INC_ACTION_DISTANCE_H

Next comes the class description. Since distance calculations may involve imag-
ing we also include the ImagedAction class as a variable to simplify image han-
dling:

class Action_Distance: public Action {

Following the style guide, we first implement any public methods. For actions
this is at least the constructor, the allocator (named Alloc() by convention),
and the Help() function. The allocator and help functions need to be static so
that they can be called without instantiating the class.

public:
Action_Distance(); ///< Constructor
/// Allocator
static DispatchObject* Alloc() { return (DispatchObject*)new Action_Distance(); }
static void Help(); ///< Help function

The implemented functions Init(), Setup(), DoAction(), and Print() can be ei-
ther public or private, although the preference is private.

25

The private section is where all functions and variables specific to the class
will go. First, we add entries for the functions inherited from the Action base
class which must be implemented. Since we will not need to do any post-
processing for this action, the Print() function is empty:

Action::RetType Init(ArgList&, ActionInit&, int);
Action::RetType Setup(ActionSetup&);
Action::RetType DoAction(int, ActionFrame&);
void Print() {}

Next we define the class variables. For Action_Distance we will want a DataSet
to hold the calculated distances, two AtomMasks to describe the points between
which the distance should be calculated, and a variable to indicate whether the
distance should be mass-weighted.

private:
DataSet* dist_; ///< Will hold DataSet of calculated distances.
bool useMass_; ///< If true, mass-weight distances.
AtomMask Mask1_; ///< First atom selection.
AtomMask Mask2_; ///< Second atom selection
ImagedAction image_; ///< Holds imaging info

All variables related to imaging are already include via the ImagedAction class.
Last, end the class definition and finish the header guard:

};
#endif

11.2 Create the Class Implementation
Following the naming scheme, the class implementation will go into Action_Distance.cpp.
The first part of this file will have the necessary #include directives. We need
<cmath> for the square root function, Action_Distance.h for the class defini-
tion, and CpptrajStdio.h for wiriting to the console.

#include <cmath>
#include "Action_Distance.h"
#include "CpptrajStdio.h"

First we will need to create the class constructor. It is encouraged that users
make use of initalizer lists (which tend to be more efficient) for this purpose. In
this case we have two non-class variables: dist_, which is a pointer to a DataSet,
and useMass_, which is boolean:

Action_Distance::Action_Distance() : dist_(0), useMass_(true) {}

26

Next, ensure that the Help() function has an implementation. Note that in
cpptraj “mprintf” is used over “printf” for making any future IO modifications
easier:

void Action_Distance::Help() {
mprintf("distance [<name>] <mask1> <mask2> [out <filename>] [geom] [noimage]\n");

}

11.2.1 Init() - Parse user arguments, set up DataSets/DataFiles etc

Init() is called when the action is created and is responsible for parsing the
Argument list (ArgList) and inital setup. Init() has the same input arguments
for every action:

Action::RetType
Action_Distance::Init(ArgList& actionArgs, ActionInit& init, int debugIn)

{

The input arguments are as follows: actionArgs (ArgList class) contains argu-
ments from user input, init (ActionInit class) contains the master DataSetList
and master DataFileList, and debugIn is the current debug level for all actions.
It is up to the action implementation whether it wants to record the debug level
or not.

Typical order of argument processing is keywords, masks, DataSet name.
First we will process the keywords ’noimage’, ’geom’, and ’out <filename>’.

In order to determine whether the action will try to use imaging we call the
InitImaging() function (inherited from the ImagedAction class). If the ArgList
actionArgs contains the string “noimage”, false will be sent to InitImaging to
disable imaging:

image_.InitImaging(!(actionArgs.hasKey("noimage")));

Next we set useMass_. If actionArgs contains the string “geom”, useMass_ will
be set to false:

useMass_ = !(actionArgs.hasKey("geom"));

Next, we will try to create an output DataFile:

DataFile* outfile = init.DFL().AddDataFile(actionArgs.GetStringKey("out"),
actionArgs);

The behavior of AddDataFile() depends on the result from actionArgs.GetStringKey();
if “out” is present in actionArgs, the next string (presumably <filename>) is
returned and passed to AddDataFile(), and a DataFile will be returned corre-
sponding to <filename>. If “out” is not present nothing will be returned, no file
will be set up, and outfile will be null (0).

Next, we will get two atom mask expressions. We will require that the user
must specify two masks, so if either of the strings is empty return an error:

27

std::string mask1 = actionArgs.GetMaskNext();
std::string mask2 = actionArgs.GetMaskNext();
if (mask1.empty() || mask2.empty()) {

mprinterr("Error: distance: Requires 2 masks\n");
return Action::ERR;

}

Now we can use the mask expression strings to initialize the two AtomMask
classes (note that this tokenizes the mask expressions but does not yet set them
up since we need topology information to do that):

Mask1_.SetMaskString(mask1);
Mask2_.SetMaskString(mask2);

Next we will use the master DataSetList (init.DSL()) to create a DataSet to
store the calculated distances. We will use a version of DataSetList::AddSet()
that allows us to specify the DataSet type, MetaData, and a default name if no
name is specified (“Dis”). If any errors occur in creating the DataSet, NULL (0)
will be returned. Note that the string returned by actionArgs.GetStringNext()
is implicitly converted to a MetaData class.

dist_ = init.DSL().AddSet(DataSet::DOUBLE, actionArgs.GetStringNext(), "Dis");
if (dist_==0) return Action::ERR;

If a DataFile was previously set up, we now add the DataSet to this DataFile:

if (outfile != 0) outfile->AddDataSet(dist_);

Last, we print out some information regarding how the Action has been initial-
ized and return Action::OK to indicate successful intialization:

mprintf(" DISTANCE: %s to %s",Mask1_.MaskString(), Mask2_.MaskString());
if (!image_.UseImage())

mprintf(", non-imaged");
if (useMass_)

mprintf(", center of mass");
else
mprintf(", geometric center"); mprintf(".\n");

return Action::OK;
}

IMPORTANT: Note that this is the only time in which the master DataSetList
is passed to the Action. If the Action will need to set up DataSets later (be-
cause e.g. they may depend on what’s in the Topology, like in the case of the
multidihedral command), it should save a pointer to the master DataSetList
using the init.DslPtr() function, e.g.

masterDSL_ = init.DslPtr();

28

11.2.2 Setup() - Set up Topology-related parts of the Action

Setup() is called whenever the action needs to be set up for a given Topology
file. Any component of the action that depends on Topology (in this case the
AtomMasks and the Imaging) is handled here. The arguments to Setup() are:

Action::RetType Action_Distance::Setup(ActionSetup& setup) {

Note that the setup variable (ActionSetup class) contains a pointer to the cur-
rent Topology and current trajectory CoordinateInfo, as well as the number of
expected frames associated with this Topology during the current run. Actions
that want to modify the current Topology or CoordinateInfo for subsequent
Actions can do so using the setup variable (see e.g. Action_Strip).

First, we setup the AtomMasks. Each AtomMask is passed to the current
topology using the SetupIntegerMask() function, which will create an integer
array containing only the selected atoms based on the mask expression. If we
needed to know both selected and unselected atoms we could use the SetupChar-
Mask() function instead.

if (setup.Top().SetupIntegerMask(Mask1_)) return Action::ERR;
if (setup.Top().SetupIntegerMask(Mask2_)) return Action::ERR;

After this, we print some information about what atoms are selected (note we
could also use the MaskInfo() function of AtomMask for this). For calculating
distance, we need to make sure atoms were actually selected (using the None()
function of AtomMask). If no atoms were selected this may be because the
mask is only valid for certain Topologies during the run, so in that case make
it a non-fatal error (i.e. a Warning) and return Action::SKIP:

mprintf("\t%s (%i atoms) to %s (%i atoms)",Mask1_.MaskString(), Mask1_.Nselected(),
Mask2_.MaskString(),Mask2_.Nselected());

if (Mask1_.None() || Mask2_.None()) {
mprintf("\nWarning: distance: One or both masks have no atoms.\n");
return Action::SKIP;

}

Next we determine if imaging can actually be performed based on the box infor-
mation present in the current trajectory’s CoordinateInfo; if there is no box in-
formation imaging cannot be performed. We do this with the image_.SetupImaging()
function (ImagedAction class). The image_.ImagingEnabled() function will let
us know if imaging for this Topology is possible or not:

image_.SetupImaging(setup.CoordInfo().TrajBox().Type());
if (image_.ImagingEnabled())

29

mprintf(", imaged");
else

mprintf(", imaging off");
mprintf(".\n");

Now all Topology-dependent aspects of the action are set up. Return Ac-
tion::OK.

return Action::OK;
}

IMPORTANT: Note that this is the only time in which a Topology is passed
to the Action. If the Action requires Topology information later (such as in
DoAction() or Print()) it should save a pointer to the Topology using the
setup.TopAddress() function, e.g.

currentParm_ = setup.TopAddress();

Modification of Topology Info If there will be a modification of Topol-
ogy/Frame information (e.g. removing atoms, adding velocity information to
the Frame, etc) the Action must return Action::MODIFY_TOPOLOGY. If
the CoordinateInfo will be modified, the Action should have a copy of the
CoordinateInfo in the Action class itself; it must not reside only in Ac-
tion::Setup(), otherwise it will be lost when setup exits.

For example, say we are adding time information to a frame that currently
does not have it. The code might look something like:

cInfo_ = setup.CoordInfo();
if (!cInfo_.HasTime())

cInfo_.SetTime(true);
setup.SetCoordInfo(&cInfo_);

Here, cInfo_ is a CoordinateInfo variable in the Action class.

11.2.3 DoAction() - Process input Frame

Coordinates are read in a frame at a time and stored in a Frame class, which is
then passed to each action in the ActionList. The DoAction() function is called
to process a coordinate Frame. The arguments are:

Action::RetType Action_Distance::DoAction(int frameNum, ActionFrame& frm) {

The first argument frameNum is the current frame number (starting at 0).
Note that the frm variable (ActionFrame class) contains a pointer to the current
Frame. Actions that want to alter the current Frame beyond just manipulating
coordinates for subsequent Actions (e.g. changing the Frame size or adding
velocity info etc) can do so via the frm variable (see e.g. Action_Closest).

30

There are several variables needed for calculating the distance. First, we
have two Vec3 classes (Vec3.h, which is already included from other headers) to
store the XYZ coordinates of the points:

Vec3 a1, a2;

If we are performing non-orthorhombic imaging we need to store the matrices
which perform conversion from Cartesian to fractional coordinates and vice
versa (using Matrix_3x3 classes, Matrix_3x3.h). Note that these are called
’ucell’ and ’recip’ respectively throughout CPPTRAJ, as these were the names
used for the analogous structures in PTRAJ.

Matrix_3x3 ucell, recip;

Finally, we need a double to store the actual result of the distance calculation:

double Dist;

In the first part of the actual calculation, we calculate the centers of the co-
ordinates in Mask1_ and Mask2_, either mass-weighted or not depending on
useMass_, using the appropriate functions from the Frame class (Frame.h):

if (useMass_) {
a1 = frm.Frm().VCenterOfMass(Mask1_);
a2 = frm.Frm().VCenterOfMass(Mask2_);

} else {
a1 = frm.Frm().VGeometricCenter(Mask1_);
a2 = frm.Frm().VGeometricCenter(Mask2_);

}

Note that here we are using the Frm() function, which returns a constant (i.e.
non-modifiable) reference to the current Frame; if we wanted to actually ma-
nipulate the coordinates we would have to call ModifyFrm().

Next, we get the distance between the coordinates stored in a1 and a2. For
non-orthorhombic imaging we first need to convert the current box coordinates
(stored in the Frame class in double precision as 3 lengths and 3 angles) into the
coordinate conversion matrices using the ToRecip() function of the Box class
(Box.h). Then, depending on the type of imaging that needs to be performed
we call the appropriate distance calculation routine (DIST2_XXX, found in
DistRoutines.h):

switch (image_.ImageType()) {
case NONORTHO:

frm.Frm().BoxCrd().ToRecip(ucell, recip);
Dist = DIST2_ImageNonOrtho(a1, a2, ucell, recip);
break;

case ORTHO:
Dist = DIST2_ImageOrtho(a1, a2, frm.Frm().BoxCrd());

31

break;
case NOIMAGE:

Dist = DIST2_NoImage(a1, a2); break;
}
Dist = sqrt(Dist);

Last, we add the result to the DataSet and return Action::OK. Since DataSet
is just an interface we pass in the address of Dist (&Dist) to let the underlying
DataSet framework take care of the fact that it is a double.

dist_->Add(frameNum, &Dist);
return Action::OK;

}

11.2.4 Print() - Any post-processing

The Print() function is called once all input frames have been read in, and is used
if there is anything that should be printed outside the normal DataFile/DataSet
framework (e.g. hydrogen bond averages in the hbond action) or if there are
any additional calculations that need to be performed (e.g. finishing up matrix
calculations in the matrix action). In this example we’re only calculating a
simple distance; the output is handled by the DataFile/DataSet framework, so
we implement a blank Print() function in the header:

void Print() {}

11.3 Add the Action to the Command class
Now that the class implementation is complete, we need to let cpptraj know
how to call it. This is currently done using a “static” Class, Command (Com-
mand.cpp), which is initialized by the Cpptraj class via Command::Init() when
the program starts. Command::Init() makes use of the Command::AddCmd()
function to add the Command, set its destination, and any associated keywords.
The Command::AddCmd() function looks like:

void Command::AddCmd(DispatchObject* oIn, Cmd::DestType dIn, int nKeys, ...)

where oIn is a pointer to the DispatchObject (Exec-, Action-, Analysis-, or
Deprecated-derived class), dIn determines how the Command will be processed,
nKeys is the number of keywords associated with the command, and the re-
maining arguments are the command keywords. For example:

Command::AddCmd(new Action_Rmsd(), Cmd::ACT, 2, "rms", "rmsd");

32

Adds a new instance of the Action-derived class Action_Rmsd, sets its desti-
nation as Action (Cmd::ACT), and sets 2 associated command keys, “rms” and
“rmsd”.

To make navigation of Commands.cpp easier, you can search for ACTION
(or ANALYSIS if adding an Analysis) to go where things need to be added.
First add the class to Commands.cpp with the appropriate ’#include’. Includes
should be in alphabetical order within their given section.

#include "Action_Dihedral.h"
#include "Action_Distance.h"
#include "Action_Hbond.h"

Then add the command to Command::Init() using Command::AddCmd(), e.g.:

Command::AddCmd(new Action_Dipole(), Cmd::ACT, 1, "dipole");
Command::AddCmd(new Action_Distance(), Cmd::ACT, 1, "distance");
Command::AddCmd(new Action_DistRmsd(), Cmd::ACT, 2, "drms", "drmsd");

33

	I Introduction
	Coding Conventions
	Versioning

	Building Cpptraj and Documentation

	II General Layout and Concepts
	CpptrajState
	Actions
	Action
	ActionInit (ActionState.h)
	ActionSetup (ActionState.h)
	ActionFrame (ActionState.h)

	III Key Classes And Functions
	Math-related Classes
	Vec3
	Matrix_3x3
	ComplexArray
	PubFFT
	Corr.h: CorrF_Direct, CorrF_FFT

	Some Key Classes and Functions
	ArgList
	ArgList Example

	Topology
	Examples

	AtomMask/CharMask
	Frame
	Using Frame for RMSD calculations

	Box

	Console and File Input/Output
	Output to STDOUT/STDERR: CpptrajStdio.h
	CpptrajFile
	BufferedLine
	BufferedFrame
	FileName, FileName.h

	Trajectory Input/Output
	Trajin_Single
	Trajin_Multi
	EnsembleIn_Single
	EnsembleIn_Multi
	Trajout_Single
	EnsembleOut_Single
	EnsembleOut_Multi

	Topology Input/Output
	The DataSet and DataFile Framework
	The MetaData class
	The TextFormat class
	Brief DataSet/DataFile Example
	DataSet_1D / SCALAR_1D
	DataSet_2D / MATRIX_2D
	DataSet_3D / GRID_3D
	DataSet_Coords / COORDINATES

	IV Adding New Functionality
	Adding Actions - Example
	Create the Class Header
	Create the Class Implementation
	Init() - Parse user arguments, set up DataSets/DataFiles etc
	Setup() - Set up Topology-related parts of the Action
	DoAction() - Process input Frame
	Print() - Any post-processing

	Add the Action to the Command class

