
CPPTRAJ

Daniel R. Roe

September 3, 2024

https://github.com/Amber-MD/cpptraj

Contents
1 Introduction 7

1.1 Manual Syntax Format . 9
1.2 Installation . 9
1.3 Examples . 9

2 Running Cpptraj 9
2.1 Command Line Syntax . 9
2.2 Commands . 11
2.3 Getting Help . 12
2.4 Batch mode . 12
2.5 Interactive mode . 12
2.6 Trajectory Processing “Run” . 13

2.6.1 Actions and multiple topologies 13
2.7 Parallelization . 13

2.7.1 MPI Trajectory Parallelization 13
2.7.2 OpenMP Parallelization 14
2.7.3 CUDA Parallelization . 15

3 General Concepts 15
3.1 Units . 15
3.2 Atom Mask Selection Syntax . 16
3.3 Ranges . 18
3.4 Parameter/Reference Tagging . 18

4 Variables and Control Structures 19
4.1 for . 20
4.2 set . 21
4.3 show . 22

1

https://github.com/Amber-MD/cpptraj

5 Data Sets and Data Files 23
5.1 Data Set Selection Syntax . 25
5.2 Data Set Math . 25

6 Data File Options 27
6.1 Standard Data File Options . 28
6.2 Grace Data File Options . 31
6.3 Gnuplot Data File Options . 31
6.4 Amber REM Log Options . 32
6.5 Amber MDOUT Options . 32
6.6 Evecs File Options . 33
6.7 Vector psuedo-traj Options . 33
6.8 OpenDX file options . 33
6.9 CCP4 file options . 34
6.10 Charmm REPD log options . 34
6.11 Amber Constant pH Out options 34

7 Coordinates (COORDS) Data Set Commands 34
7.1 catcrd . 36
7.2 combinecrd . 36
7.3 crdaction . 37
7.4 crdout . 37
7.5 crdtransform . 37
7.6 createcrd . 38
7.7 emin . 38
7.8 extendedcomp . 40
7.9 graft . 40
7.10 loadcrd . 41
7.11 loadtraj . 42
7.12 permutedihedrals . 42
7.13 prepareforleap . 44
7.14 reference . 48
7.15 rotatedihedral . 48
7.16 sequence . 49
7.17 splitcoords . 50
7.18 zmatrix . 50

8 General Commands 51
8.1 activeref . 52
8.2 calc . 53
8.3 clear . 53
8.4 create . 53
8.5 createset . 53
8.6 datafile . 54
8.7 datafilter . 54
8.8 dataset . 55

2

8.9 debug | prnlev . 59
8.10 ensextension . 59
8.11 exit | quit . 59
8.12 flatten . 59
8.13 go | run . 60
8.14 help . 60
8.15 list . 61
8.16 noexitonerror . 61
8.17 noprogress . 61
8.18 parallelanalysis . 61
8.19 parsedata . 62
8.20 precision . 63
8.21 random . 63
8.22 readdata . 64
8.23 readensembledata . 65
8.24 readinput . 65
8.25 removedata . 65
8.26 rst . 65
8.27 runanalysis . 66
8.28 select . 67
8.29 selectds . 67
8.30 sortensembledata . 67
8.31 usediskcache . 67
8.32 write | writedata . 67
8.33 System Commands . 68

9 Topology File Commands 68
9.1 angleinfo | angles | printangles . 69
9.2 atominfo | atoms | printatoms . 70
9.3 bondinfo | bonds | printbonds . 70
9.4 bondparminfo . 71
9.5 change . 71
9.6 charge . 73
9.7 comparetop . 73
9.8 dihedralinfo | dihedrals | printdihedrals 74
9.9 hmassrepartition . 74
9.10 improperinfo | impropers | printimpropers 75
9.11 mass . 75
9.12 molinfo . 76
9.13 parm . 76

9.13.1 PDB format: . 77
9.13.2 Charmm PSF: . 78
9.13.3 Gromacs Top . 78

9.14 parmbox . 78
9.15 parminfo . 79
9.16 parmstrip . 79

3

9.17 parmwrite . 79
9.17.1 Amber Topology . 80
9.17.2 Charmm PSF . 80

9.18 printub | ubinfo . 80
9.19 resinfo . 81
9.20 scaledihedralk . 81
9.21 solvent . 82
9.22 updateparameters . 82

10 Trajectory File Commands 82
10.1 ensemble . 84
10.2 ensemblesize . 85
10.3 reference . 86
10.4 trajin . 87

10.4.1 Options for Amber NetCDF, Amber NC Restart, Amber
Restart: . 89

10.4.2 Options for CHARMM DCD: 89
10.4.3 Options for PDB files: . 90

10.5 trajout . 90
10.5.1 Options for pdb format 92
10.5.2 Options for Amber ASCII format: 93
10.5.3 Options for Amber NetCDF format: 94
10.5.4 Options for Amber Restart/NetCDF Restart format: . . . 94
10.5.5 Options for CHARMM COORdinates: 94
10.5.6 Options for CHARMM DCD: 95
10.5.7 Options for GROMACS TRX/XTC format: 95
10.5.8 Options for mol2 format: 95
10.5.9 Options for SQM input format: 96
10.5.10Options for XYZ format: 96

11 Action Commands 96
11.1 addatom . 101
11.2 align . 101
11.3 angle . 102
11.4 areapermol . 103
11.5 atomiccorr . 103
11.6 atomicfluct | rmsf . 104
11.7 atommap . 106
11.8 autoimage . 107
11.9 average . 108
11.10avgbox . 109
11.11avgcoord . 109
11.12bounds . 110
11.13box . 110
11.14center . 111
11.15check | checkoverlap | checkstructure 112

4

11.16checkchirality . 113
11.17closest | closestwaters . 114
11.18cluster . 115
11.19clusterdihedral . 115
11.20contacts . 116
11.21createcrd . 117
11.22createreservoir . 117
11.23density . 118
11.24diffusion . 119
11.25dihedral . 122
11.26dihedralrms | dihrms . 122
11.27dihedralscan . 123
11.28dipole . 123
11.29distance . 124
11.30drms | drmsd (distance RMSD) 125
11.31dssp . 126
11.32energy . 127
11.33esander . 130
11.34filter . 131
11.35fixatomorder . 132
11.36fiximagedbonds . 133
11.37gist (Grid Inhomogeneous Solvation Theory) 133
11.38grid . 146
11.39hbond . 150
11.40image . 155
11.41jcoupling . 156
11.42keep . 157
11.43lessplit . 158
11.44lie . 159
11.45lipidorder . 159
11.46lipidscd . 160
11.47makestructure . 161
11.48mask . 164
11.49matrix . 165
11.50mindist/maxdist . 167
11.51minimage . 167
11.52molsurf . 168
11.53multidihedral . 169
11.54multipucker . 170
11.55multivector . 171
11.56nastruct . 172
11.57nativecontacts . 178
11.58outtraj . 182
11.59pairdist . 182
11.60pairwise . 183
11.61principal . 184

5

11.62projection . 185
11.63pucker . 186
11.64radgyr | rog . 187
11.65radial | rdf . 188
11.66randomizeions . 190
11.67remap . 190
11.68replicatecell . 191
11.69rms | rmsd . 192
11.70rms2d | 2drms . 195
11.71rmsavgcorr . 195
11.72rmsf | atomicfluct . 195
11.73rotate . 195
11.74rotdif . 196
11.75runavg | runningaverage . 197
11.76scale . 197
11.77secstruct . 197
11.78setvelocity . 200
11.79spam . 201
11.80stfcdiffusion . 203
11.81strip . 204
11.82surf . 205
11.83symmrmsd . 205
11.84temperature . 207
11.85time . 208
11.86tordiff . 208
11.87trans | translate . 209
11.88unstrip . 209
11.89unwrap . 210
11.90vector . 211
11.91velocityautocorr . 214
11.92volmap . 214
11.93volume . 216
11.94watershell . 217
11.95xtalsymm . 217

12 Analysis Commands 218
12.1 autocorr . 221
12.2 avg . 222
12.3 calcdiffusion . 223
12.4 calcstate . 224
12.5 cluster . 227
12.6 cphstats . 240
12.7 corr | correlationcoe . 241
12.8 crank | crankshaft . 242
12.9 crdfluct . 242
12.10crosscorr . 242

6

12.11curvefit . 243
12.12diagmatrix . 244
12.13divergence . 246
12.14evalplateau . 247
12.15fft . 248
12.16hausdorff . 248
12.17hist | histogram . 250
12.18integrate . 252
12.19ired . 252
12.20kde . 254
12.21lifetime . 255
12.22lowestcurve . 258
12.23meltcurve . 258
12.24modes . 258
12.25multicurve . 261
12.26multihist . 262
12.27phipsi . 263
12.28projectdata . 264
12.29regress . 264
12.30remlog . 265
12.31rms2d | 2drms . 266
12.32rmsavgcorr . 267
12.33rotdif . 269
12.34runningavg . 272
12.35slope . 273
12.36spline . 273
12.37statistics | stat . 274

12.37.1Torsion Analysis . 275
12.37.2Distance Analysis . 275
12.37.3Pucker Analysis . 275

12.38ti . 276
12.39tica . 277
12.40timecorr . 278
12.41vectormath . 279
12.42wavelet . 280

13 Analysis Examples 283
13.1 Cartesian covariance matrix calculation and projection (PCA) . . 283
13.2 Dihedral covariance matrix calculation and projection for back-

bone phi/psi (PCA) . 284

1 Introduction
Cpptraj [1] (the successor to ptraj) is the main program in Amber for processing
coordinate trajectories and data files. Cpptraj has a wide range of functionality,

7

and makes use of OpenMP/MPI to speed up many calculations, including pro-
cessing ensembles of trajectories and/or conducting multiple analyses in parallel
with MPI.[2]

Here are several notable features of cpptraj :

1. Trajectories with different topologies can be processed in the same run.

2. Several actions/analyses in cpptraj are OpenMP parallelized; see section
2.7.2 for more details.

3. Trajectory and ensemble reads can be MPI parallelized.

4. Almost any file read or written by cpptraj can be compressed (with the ex-
ception of the NetCDF trajectory format). So for example gzipped/bzipped
topology files can be read, and data files can be written out as gzip/bzip2
files. Compression is detected automatically when reading, and is deter-
mined by the filename extension (.gz and .bz2 respectively) on writing.

5. The format of output data files can be specified by extension. For example,
data files can be written in xmgrace format if the filename given has a
’.agr’ extension. A trajectory can be written in DCD format if the ’.dcd’
extension is used.

6. Multiple output trajectories can be specified, and can be written during
action processing (as opposed to only after) via the outtraj command.
In addition, output files can be directed to write only specific frames from
the input trajectories.

7. Multiple reference structures can be specified. Specific frames from tra-
jectories may be used as a reference structure.

8. The rmsd action allows specification of a separate mask for the reference
structure. In addition, per-residue RMSD can be calculated easily.

9. Actions that modify coordinates and topology such as the strip/closest
actions can often write an accompanying fully-functional stripped topology
file.

10. Users usually are able to fine-tune the output format of data files declared
in actions using the “out” keyword (for example, the precision of the
numbers can be changed). In addition, users can control which data sets
are written to which files (e.g. if two actions specify the same data file
with the ’out’ keyword, data from both actions will be written to that
data file).

11. Users can manipulate data sets using mathematical expressions (with some
limitations), see 5.2 on page 25 for details.

12. There is some support for creating internal loops over e.g. mask expres-
sions and setting internal variables (see for , set , and show commands).

8

See the README.md file in the cpptraj home directory for information on how
to build, authors, and so on.

1.1 Manual Syntax Format
The syntax presented in this manual uses the following conventions:

<> Denotes a variable.

[] Denotes something is optional.

{|} Denotes several choices separated by the ’|’ character; one of the choices
must be specified.

... Denotes the preceding option can be repeated.

Everything else is as printed.

1.2 Installation
See instructions in the CPPTRAJ GitHub repository README.md file under
’Installation & Testing’: https://github.com/Amber-MD/cpptraj

1.3 Examples
Some examples of running CPPTRAJ are available in the examples subdirec-
tory. There are also many tests in the test subdirectory which can serve as
simple examples.

2 Running Cpptraj
Cpptraj can be run in either “interactive mode” or in “batch mode”.

2.1 Command Line Syntax

cpptraj [-p <Top0>] [-i <Input0>] [-y <trajin>] [-x <trajout>]
[-ya <args>] [-xa <args>] [<file>]
[-c <reference>] [-d <datain>] [-w <dataout>] [-o <output>]
[-h | --help] [-V | --version] [--defines] [-debug <#>]
[--interactive] [--log <logfile>] [-tl]
[-ms <mask>] [-mr <mask>] [--mask <mask>] [--resmask <mask>]
[--rng {marsaglia|stdlib|mt|pcg32|xo128}] [--charge <mask>]

* denotes a flag may be specified multiple times.

-p <Top0>* Load <Top0> as a topology file.

-i <Input0>* Read input from <Input0>.

9

https://github.com/Amber-MD/cpptraj

-y <trajin>* Read from trajectory file <trajin>; same
as input ’trajin <trajin>’.

-x <trajout>* Write trajectory file <trajout>; same as
input ’trajout <trajout>’.

-ya <args>* Input trajectory file arguments.

-xa <args>* Output trajectory file arguments.

<file>* A topology, input trajectory, or file
containing cpptraj input.

-c <reference>* Read <reference> as reference
coordinates; same as input ’reference <reference>’.

-d <datain>* Read data in from file <datain> (’readdata
<datain>’).

-w <dataout> Write data from <datain> as file
<dataout> (’writedata <dataout>).

-o <output> Write CPPTRAJ STDOUT output to file
<output>.

-h | –help Print command line help and exit.

-V | –version Print version and exit.

–defines Print compiler defines and exit.

-debug <#> Set global debug level to <#>; same as
input ’debug <#>’.

–interactive Force interactive mode.

–log <logfile> Record commands to <logfile> (interactive
mode only). Default is ’cpptraj.log’.

-tl Print length of trajectories specified with ’-y’ to
STDOUT. The total number of frames is written out as
’Frames: <X>’

-ms <mask> Print selected atom numbers to STDOUT.
Selected atoms are written out as ’Selected= 1 2 3
...’

-mr <mask> : Print selected residue numbers to
STDOUT. Selected residues are written out as
’Selected= 1 2 3 ...’

–mask <mask> Print detailed atom selection to STDOUT.

–resmask <mask> Print detailed residue selection to
STDOUT.

--rng <type> Change default random number generator.

--charge <mask> Print total charge (in e-) of atoms
selected by <mask> to STDOUT.

10

Note that unlike ptraj, in cpptraj it is not required that a topology file be
specified on the command line as long as one is specified in the input file with
the ’parm’ keyword. Multiple topology/input files can be specified by use of
multiple ’-p’ and ’-i’ flags. All topology and coordinate flags will be processed
before any input flags.

2.2 Commands
Input to cpptraj is in the form of commands, which can be categorized in to 2
types: immediate and queued. Immediate commands are executed as soon as
they are encountered. Queued commands are initialized when they are encoun-
tered, but are not executed until a Run is executed via a run or go command.
Actions, Analyses, and Trajectory commands (except reference) are queued
commands; however, they can also be run immediately via commands such as
crdaction , runanalysis, loadcrd , etc. See 7 on page 34 for more details.

Commands fall into seven categories:

General (Immediate) These commands are executed immediately when en-
tered.

System (Immediate) These are unix system commands (e.g. ’ls’, ’pwd’, etc).

Coords (Immediate) These commands are used to manipulate COORDS data
sets; see 7 on page 34 for more details.

Trajectory (Queued) These commands prepare cpptraj for reading or writing
trajectories during a Run.

Topology (Immediate) These commands are used to read, write, and modify
topology information.

Action (Queued) These commands specify actions that will be performed on
coordinate frames read in from trajectories during a Run.

Analysis (Queued) These commands specify analyses that will be performed
on data that has been either generated from a Run or read in from an
external source.

Control (Immediate) These commands set up control blocks that can be used
to e.g. loop over a set of commands.

In addition to normal commands, cpptraj now has the ability to perform certain
basic math operations, even on data sets. See 5.2 on page 25 for more details.

Commands in cpptraj can be read in from an input file or from the interactive
command prompt. A ’#’ anywhere on a line denotes a comment; anything after
’#’ will be ignored no matter where it occurs. A ’\’ allows the continuation of
one line to another. For example, the input:

11

Sample input
trajin mdcrd # This is a trajectory
rms first out rmsd.dat \

:1-10

Translates to:

trajin mdcrd
rms first out rmsd.dat :1-10

2.3 Getting Help
If in interactive mode, the ’help’ command can be used to list recognized com-
mands and topics; topics (such as mask syntax) start with uppercase letters.
’help <command>’ can be used to get the associated keywords as well as an
abbreviated description of the command. Most commands have a correspond-
ing test which also serves as an example of how to use the command. See
$AMBERHOME/AmberTools/test/cpptraj/README for more details.

2.4 Batch mode
In “batch” mode, cpptraj is executed from the command line with one or more
input files containing commands to be processed or STDIN. The syntax of <in-
put file> is similar to that of ptraj. Keywords specifying different commands
are given one per line. Lines beginning with ’#’ are ignored as comments. Lines
can also be continued through use of the ’\’ character. This is the only allowed
mode for cpptraj.MPI.

2.5 Interactive mode
In “interactive mode” users can enter commands in a UNIX-like shell. Interactive
mode is useful for running short and simple analyses or for trying out new kinds
of analyses. If cpptraj is run with ’–interactive’, no arguments, or no specified
input file:

cpptraj
cpptraj --interactive
cpptraj <parm file>
cpptraj -p <parm file>

this brings up the interactive interface. This interface supports command his-
tory (via the up and down arrows) and tab completion for commands and file
names. If no log file name has been given (with ’–log <logfile>’), all commands
used in interactive mode will be logged to a file named ’cpptraj.log’, which can
subsequently be used as input if desired. When starting cpptraj, command
histories will be read from any existing logs.

12

2.6 Trajectory Processing “Run”
Like ptraj, a trajectory processing “Run” is one of the main ways to run cpp-
traj. First the Run is set up via commands read in from an input file or the
interactive prompt. Trajectories are then read in one frame at a time (or in
the case of ensemble processing all frames from a given step are read). Actions
are performed on the coordinates stored in the frame, after which any output
coordinates are written. At the end of the run, any data sets generated are
written, and any queued Analyses are performed.

2.6.1 Actions and multiple topologies

Since cpptraj supports multiple topology files, during a Run actions are set up
every time the topology changes in order to recalculate things like what atoms
are in a mask etc. Actions that are not valid for the current topology are skipped
for that topology. So for example given two topology files with 100 residues, if
the first topology file processed includes a ligand named MOL and the second
one does not, the action:

distance :80 :MOL out D_80-to-MOL.dat

will be valid for the first topology but not for the second, so it will be skipped
as long as the second topology is active.

2.7 Parallelization
Cpptraj has many levels of parallelization that can be enabled via the ’-mpi’,
’-openmp’, and/or ’-cuda’ configure flags for MPI, OpenMP, and CUDA paral-
lelization respectively. At the highest level, trajectory and ensemble reads are
parallelized with MPI. In addition, certain time consuming actions have been
parallelized with OpenMP and/or CUDA.

Note that any combination of the ’-openmp’, ’-cuda’, and ’-mpi’ flags may
be used to generate a hybrid MPI/OpenMP/CUDA binary; however this may
require additional runtime setup (e.g. setting OMP_NUM_THREADS for
OpenMP) to work properly and not oversubscribe cores.

2.7.1 MPI Trajectory Parallelization

Cpptraj has two levels of MPI parallelization for reading input trajectories.
The first is for ’trajin ’ trajectory input, where the trajectory read is divided as
evenly as possible among all input frames (across-trajectory parallelism). For
example, if given two trajectories of 1000 frames each and 4 MPI processes,
process 0 reads frames 1-500 of trajectory 1, process 1 reads frames 501-1000
of trajectory 1, process 2 reads frames 1-500 of trajectory 2, and process 3
reads frames 501-1000 of trajectory 2. Most Actions will work with across-
trajectory parallelization with the exception of the following: ’clusterdihe-
dral’ , ’contacts’ , ’createreservoir’ , ’lipidorder’ , ’pairwise’ , ’stfcdiffu-

13

sion’ , ’tordiff’ , ’unwrap’ , and ’xtalsymm’ . The ’diffusion’ Action will
only work with across-trajectory parallelism if no imaging is to be performed.

In addition to across-trajectory parallelism, the ’gist’ command will also
MPI-parallelize the entropy calculation that occurs after trajectory processing.

The second is for ’ensemble’ trajectory input, where the reading/processing/writing
of each member of the ensemble is divided up among MPI processes. The num-
ber of MPI processes must be a multiple of the ensemble size. If the number of
processes is greater than the ensemble size then the processing of each ensemble
member will be divided among MPI processes (i.e. across-trajectory parallelism
will be used). For example, given an ensemble of 4 trajectories and 8 processes,
processes 0 and 1 are assigned to the first ensemble trajectory, processes 2 and 3
are assigned to the second ensemble trajectory, and so on. When using ensemble
mode in parallel it is recommended that the ensemblesize command be used
prior to any ensemble command as this will make set up far more efficient.

Note that most Analyses are not MPI-parallelized, with the exception of the
calcdiffusion Analysis (12.3 on page 223).

In order to use the MPI version, Amber/cpptraj should be configured with
the ’-mpi’ flag. You can tell if cpptraj has been compiled with MPI as it will
print ’MPI’ in the title, and/or by calling ’cpptraj —defines’ and looking for
’-DMPI’.

2.7.2 OpenMP Parallelization

Some of the more time-consuming actions/analyses in cpptraj have been paral-
lelized with OpenMP to take advantage of machines with multiple cores. In or-
der to use OpenMP parallelization Amber/cpptraj should be configured with the
’-openmp’ flag. You can easily tell if cpptraj has been compiled with OpenMP
as it will print ’OpenMP’ in the title, and/or by calling ’cpptraj —defines’ and
looking for ’-D_OPENMP’. The following actions/analyses have been OpenMP
parallelized:

2drms/rms2d
atomiccorr
calcdiffusion
checkstructure
closest
cluster (pair-wise distance calculation and sieved frame restore only)
diffusion
dssp/secstruct
energy
gist (non-bonded calculation)
hbond
kde
lipidscd
mask (distance-based masks only)
matrix (coordinate covariance matrices only)

14

minimage
radial
replicatecell
rotdif
rmsavgcorr
spam
surf
tordiff
unwrap
velocityautocorr
volmap
watershell
wavelet

By default OpenMP cpptraj will use all available cores. The number of OpenMP
threads can be controlled by setting the OMP_NUM_THREADS environment
variable.

2.7.3 CUDA Parallelization

Some time-consuming actions in cpptraj have been parallelized with CUDA
to take advantage of machines with NVIDIA GPUs. In order to use CUDA
parallelization Amber/cpptraj should be configured with the ’-cuda’ flag. You
can easily tell if cpptraj has been compiled with CUDA as it will print ’CUDA’
and details on the current graphics device in the title, and/or by calling ’cpptraj
—defines’ and looking for ’-DCUDA’. The following actions have been CUDA
parallelized:

closest
watershell
gist
radial

3 General Concepts

3.1 Units
Cpptraj uses the AKMA system of units. The execption is time, which is
typically expressed in ps (except where noted).

Variable Unit
Length Angstrom
Energy kcal/mol
Mass AMU

Charge electron
Time ps (typically)
Force kcal/mol*Angstrom

15

3.2 Atom Mask Selection Syntax
The mask syntax is similar to ptraj. Note that the characters ’:’, ’@’, and ’*’
are reserved for masks and should not be used in output file or data set names.
All masks are case-sensitive. Either names or numbers can be used. Masks
can contain ranges (denoted with ’-’) and comma separated lists. The logical
operands ’&’ (and), ’|’ (or), and ’!’ (not) are also supported.

The syntax for elementary selections is the following:

@{atom numlist} e.g. ’@12,17’, ’@54-85’, ’@12,54-85,90’

@{atom namelist} e.g. ’@CA’, ’@CA,C,O,N,H’

@%{atom type name} e.g. ’@%CT’

@/{atom_element_name} e.g. ’@/N’

:{residue numlist} e.g. ’:1-10’, ’:1,3,5’, ’:1-3,5,7-9’

:{residue namelist} e.g. ’:LYS’, ’:ARG,ALA,GLY’

::{chain id} e.g. ’::B’, ’::A,D’. Requires chain ID information be present in
the topology.

:;{pdb residue number} e.g. ’:;2-4,8’. Requires a PDB loaded as topology,
or Amber topology with embedded PDB information (see ?? on page ??).

^{molecule numlist} e.g. ’^1-10’, ’:23,84,111’

<mask><distance operator><distance> Selection by distance, see be-
low.

Several wildcard characters are supported:

’*’ Zero or more characters.

’=’ Same as ’*’

’?’ One character.

The wildcards can also be used with numbers or other mask characters, e.g.
’:?0’ means “:10,20,30,40,50,60,70,80,90”, ’:*’ means all residues and ’@*’ means
all atoms. If the atom name (or type name) contains a wildcard character like
an asterisk, it can be explictly selected by escaping (i.e. preceding) the wildcard
character with a backslash ’\’. So for example:

atoms @C?*

would select atoms named C5, C4*, C422, etc., but:

atoms @C?*

16

would only select C4* out of the above 3 atoms.
Compound expressions of the following type are allowed:

:{residue numlist | namelist}@{atom namelist | numlist}

and are processed as:

:{residue numlist | namelist} & @{atom namelist | numlist}

e.g. ’:1-10@CA’ is equivalent to “:1-10 & @CA”.
More examples:

:ALA,TRP All alanine and tryptophan residues.

:5,10@CA CA carbon in residues 5 and 10.

:*&!@H= All non-hydrogen atoms (equivalent to "!@H=").

@CA,C,O,N,H All backbone atoms.

!@CA,C,O,N,H All non-backbone atoms (=sidechains for proteins only).

:1-500@O&!(:WAT|:LYS,ARG) All backbone oxygens in residues 1-500 but
not in water, lysine or arginine residues.

^1-2:ASP All residues named ’ASP’ in the first two molecules.

::A,D@CA All atoms named ’CA’ in chains A and D.

Distance-based Masks

<mask><distance operator><distance>

<mask> Atoms to consider.

<distance operator> Distance operator. {<|>}{@|:|;|^}

< Distances less than <distance> will be selected.
> Distances greater than or equal to <distance> will be selected.
@ Any atom.
: Any atom within a residue.
; Residue geometric center.
^ Any atom within a molecule.

<distance> The distance criteria in Angstroms.

There are two very important things to keep in mind when using distance based
masks:

1. Distance-based masks that update each frame are currently only supported
by the mask action.

17

2. Selection by distance for everything but the mask action requires defining
a reference frame with reference ; distances are then calculated using the
specified reference frame only. This reference frame can be changed using
the activeref command.

The syntax for selection by distance is a <mask> expression followed by a
<distance operator> followed by a <distance> (which is in Angstroms).
The <distance operator> consists of 2 characters: ’<’ (within) or ’>’ (with-
out) followed by either ’^’ (molecules), ’:’ (residues), ’;’ (residue centers), or
’@’ (atoms). For example, ’<:3.0’ means “residues within 3.0 Angstroms” etc.
For ’:’ residue- and ’^’ molecule-based distance selection, if any atom in that
residue/molecule meets the given distance criterion, the entire residue/molecule
is selected. For ’;’ residue center, the geometric center of the residue must meet
the given distance criterion in order to be selected.

In plain language, the entire distance mask can be read as “Select <distance
operator> <distance> of <mask>”. So for example, the mask expression:

:11-17<@2.4

Means “Select atoms within 2.4 Å distance of atoms selected by ’:11-17’ (residues
numbered 11 through 17)”.

To strip everything outside 3.0 Å (i.e. without 3.0 Å) from residue 4 using
specified reference coordinates:

reference mol.rst7
trajin mol.rst7
strip !(:4<:3.0)

3.3 Ranges
For several commands some arguments are ranges (e.g. ’trajout onlyframes
<range>’, ’nastruct resrange <range>’, ’rmsd perres range <range>’); THESE
ARE NOT ATOM MASKS. They are simple number ranges using ’-’ to spec-
ify a range and ’,’ to separate different ranges. For example 1-2,4-6,9 specifies
1 to 2, 4 to 6, and 9, i.e. ’1 2 4 5 6 9’.

3.4 Parameter/Reference Tagging
Parameter and reference files may be ’tagged’ (i.e. given a nickname); these tags
can then be used in place of the file name itself. A tag in cpptraj is recognized
by being bounded by brackets (’[’ and ’]’). This can be particularly useful when
reading in many parameter or reference files. For example, when reading in
multiple reference structures:

trajin Test1.crd
reference 1LE1.NoWater.Xray.rst7 [xray]
reference Test1.crd lastframe [last]

18

reference Test2.crd 225 [open]
rms Xray ref [xray] :2-12@CA out rmsd.dat
rms Last ref [last] :2-12@CA out rmsd.dat
rms Open ref [open] :2-12@CA out rmsd.dat

This defines three reference structures and gives them tags [xray], [last], and
[open]. These reference structures can then be referred to by their tags instead
of their filenames by any action that uses reference structures (in this case the
RMSD action).

Similarly, this can be useful when reading in multiple parameter files:

parm tz2.ff99sb.tip3p.truncoct.parm7 [tz2-water]
parm tz2.ff99sb.mbondi2.parm7 [tz2-nowater]
trajin tz2.run1.explicit.nc parm [tz2-water]
reference tz2.dry.rst7 parm [tz2-nowater] [tz2]
rms ref [tz2] !(:WAT) out rmsd.dat

This defines two parm files and gives them tags [tz2-water] and [tz2-nowater],
then reads in a trajectory associated with one, and a reference structure associ-
ated with the other. Note that in the ’reference’ command there are two tags;
the first goes along with the ’parm’ keyword and specifies what parameter file
the reference should use, the second is the tag given to the reference itself (as
in the previous example) and is referred to in the subsequent RMSD action.

4 Variables and Control Structures
As of version 18, CPPTRAJ has limited support for “script” variables and ’for’
loops. Script variables are referred to by a dollar sign (’$’) prefix and are
replaced when they are processed. These are stored in the master data set list
like other data and are assigned the type “string variable”. Note that to use
script variables in CPPTRAJ input that is inside another script (e.g.
a BASH script), they must be escaped with the ’\’ character, e.g.

#!/bin/bash
TOP=MyTop.parm7
cpptraj <<EOF
set topname=$TOP # TOP is a BASH script variable
parm \$topname # topname is a CPPTRAJ script variable
EOF

Note that regular CPPTRAJ 1D Data Sets that contain a single value can be
used as script variables (if the Data Set contains more than 1 value only the
first value will be used).

Command Description
for Create a ’for’ loop.
set Set or update a script variable.

show Show all current script variables and their values.

19

4.1 for
for { {atoms|residues|molecules|molfirstres|mollastres}

<var> inmask <mask> [parm <name> | parmindex <#> | <#>] |
<var> in <list> |
<var> indata <data set name> |
<var> oversets <list> |
<var> datasetblocks <set> blocksize <#> [blockoffset <#>]

[cumulative [firstblock <#>]] |
<var>=<start>;[<var><end OP><end>;]<var><increment OP>[<value>] ... }

END KEYWORD: ’done’
Available ’end OP’ : ’<’ ’>’ ’<=’ ’>=’
Available ’increment OP’ : ’++’, ’--’, ’+=’, ’-=’

atoms|residues|molecules|molfirstres|mollastres <var> inmask <mask>
Loop over atoms/residues/molecules/first residue in
molecules/last residue in molecules selected by the
given mask expression, set as script variable <var>.

parm <name> | parmindex <#> <#> Select
topology that <mask> should be based on (default
first topology).

<var> in <list> Loop over a comma-separated list of
strings. File name wildcards can be used.

<var> in <data set name> Loop over elements of
specified data set. Currently only 1D scalar sets
and string sets can be specified.

<var> oversets <list> Loop over sets selected by
comma-separated list of names. Data set wildcards
can be used.

<var> datasetblocks <set> Loop over blocks in
specified DataSet.

blocksize <#> Size of blocks to use.
[blockoffset <#>] Offset between blocks.
[cumulative] Instead of blocks of fixed size, use

blocks of increasing size incremented by
blocksize.
[firstblock <#>] When cumulative, the size of

the first block (default is first data set
element).

<var>=<start>;[<var><end OP><end>;]<var><increment OP>[<value>]
Loop over integer script variable <var> starting
from <start>, optionally ending at <end>, increment
by <value>.

Data Sets Created (datasetblocks loops):

20

<var>[block]:<start idx> (Data set blocks only) Data
set block of blocksize starting at <start idx>.

<var>[cumul]:<end idx> (Cumulative data set blocks
only) Data set block starting at firstblock and
ending at <end idx>.

Create a for loop using one or more mask expressions, integers, etc. Loops
can be nested inside each other. Integer loops may be used without an end
condition, but in that case at least one descriptor in the loop should have an
end condition or refer to a mask. Loops are ended by the done keyword.

Note that non-integer variables (e.g. ’inmask’ loops) are NOT incremented
after the final loop iteration, i.e. these loop variables always retain their final
value.

For example:

for atoms A0 inmask :1-3@CA i=1;i++
distance d$i :TCS $A0 out $i.dat

done

This loops over all atoms in the mask expression ’:1-3@CA’ (all atoms named
CA in residues 1 to 3) and creates a variable named ’i’ that starts from 1 and is
incremented by 1 each iteration. Inside the loop, the mask selection is referred to
by $A0 and the integer by $i. This is equivalent to doing 3 distance commands
like so:

distance d1 :TCS :1@CA out 1.dat
distance d2 :TCS :2@CA out 2.dat
distance d3 :TCS :3@CA out 3.dat

To loop over files named trajA*.nc and trajB*.nc:

for TRAJ in trajA*.nc,trajB*.nc
trajin $TRAJ 1 last 10

done

4.2 set
set { <variable> <OP> <value> |

<variable> <OP> {atoms|residues|molecules|atomnums|
resnums|oresnums|molnums|

charge|mass} inmask <mask>
[parm <name> | crdset <set> | parmindex <#> | <#>]

<variable> <OP> trajinframes }
Available <OP> : ’=’, ’+=’

<variable> <OP> <value> Set or append a script
variable.

21

<variable> <OP> {atoms|residues|molecules|atomnums|resnums

|oresnums|molnums} inmask <mask> Set/append a
script variable to/by the total number of
atoms/residues/molecules in, a range expression of
selected atom #s/residue #s/original residue
#s/molecule #s in, or the total charge/mass of atoms
selected by the given mask expression.

parm <name> | parmindex <#> | <#> Topology to
which mask should correspond (default first).

<variable> <OP> trajinframes Set/append a script
variable to/by the total number of frames in
trajectories currently loaded by trajin commands.

Set (<OP> = ’=’) or append (<OP> = ’+=’) a script variable. Script variables
are character strings, and are referred to in CPPTRAJ input by using a dollar
sign ’$’ prefix.

For example, the following input will load files my.parm7 and my.rst7:

set PREFIX = my
trajin $PREFIX.parm7
trajin $PREFIX.rst7

For example, the following input will print info for the last 10 atoms in a topology
to ’last10.dat’:

set Natom = atoms inmask *
last10 = $Natom - 10
show
atoms "@$last10 - $Natom" out last10.dat

The following input will put a range of residues selected by :LYS:

> set SELECTED1 = resnums inmask :1-183&:LYS
Using topology: FtuFabI.NAD.TCL.parm7
Variable ’SELECTED1’ set to ’7-8,18,26,44,49,71,79,128,135,151,163,183’

4.3 show
show [<var1> ...]

If no variable names specified, show all current script variables and their values.
Otherwise, show the values of the specified script variables.

22

5 Data Sets and Data Files
In cpptraj, Actions and Analyses can generate one or more data sets which are
available for further processing. For example, the distance command creates
a data set containing distances vs time. The data set can be named by the
user simply by specifying a non-keyword string as an additional argument. If
no name is given, a default one will be generated based on the action name and
data set number. For example:

distance d1-2 :1 :2 out d1-2.dat

will create a data set named “d1-2”. If a name is not specified, e.g.:

distance :1 :2 out d1-2.dat

the data set will be named “Dis_00000”.
Data files are created automatically by most commands, usually via the

“out” keyword. Data files can also be explicitly created with the write/writedata
and create commands. Data can also be read in from files via the readdata
command. Cpptraj currently recognizes the formats listed in 1, although it can-
not write in all formats. In addition, a data set must be valid for the data file
format. For example, 3D data (such as a grid) can be written to an OpenDX
format file but not a Grace format file.

The default file format is called ’Standard’, which simply has data in columns,
like ptraj, although multiple data sets can be directed to the same output file.
The format of a file can be changed either by specifying a recognized keyword
(either on the command line itself or later via a ’datafile’ command) or by giving
the file an extension corresponding to te format, so ’filename.agr’ will output
in Grace format, and ’filename.gnu’ will output in Gnuplot contour, and so on.
The xmgrace/gnuplot output is particularly nice for the secstruct sumout and
rmsd perresout files. Additional options for data files can be found in 6 on
page 27.

Any action using the “out” keyword will allow data sets from separate com-
mands to be written into the same file. For example, the commands:

dihedral phi :1@C :2@N :2@CA :2@C out phipsi.dat
dihedral psi :2@N :2@CA :2@C :3@N out phipsi.dat

will assign the “phi” and “psi” data sets generated from each action to the stan-
dard data output file “phipsi.dat”:

#Frame phi psi

Note that when reading the Amber Prep and Amber OFF Library formats, a
COORDS data set will be created for each unit present in these files.

23

Format Filename
Extensions

Keyword Valid
Dimensions

Notes

Standard .dat dat 1D, 2D, 3D
Grace .agr, .xmgr grace 1D

Gnuplot .gnu gnu 1D, 2D
Xplor .xplor, .grid xplor 3D

OpenDX .dx opendx 3D
Amber REM

log
.log remlog - Read Only

Amber
MDOUT

.mdout mdout - Energy
information,
Read Only

Amber Energy
File

.ene amberene 1D Read Only

Amber Evecs .evecs evecs Modes data set
only

Amber
Constant pH

output

.cpout cpout pH data only

Density Peaks .peaks peaks 3D density
peaks

(spam/volmap)
Vector

pseudo-traj
.vectraj vectraj Vector data set

only.
Write Only

Gromacs XVG .xvg xvg - Read Only
CCP4 .ccp4 ccp4 3D

Charmm
REPD log

.exch charmmrepd - Read Only

Charmm
Output

.charmmout charmmout - Energy
information,
Read Only

Pairwise Cache
(binary)

.cmatrix cmatrix pairwise
distances

Used for cluster
analysis.

Pairwise Cache
(NetCDF)

.nccmatrix nccmatrix pairwise
distances

Used for cluster
analysis.

NetCDF Data .nc netcdf All data Only state info
saved for pH

data.
Amber Prep

File
.prepin prepin COORDS Read Only

Amber OFF
Library File

.off, .lib off,lib COORDS Read Only

Table 1: DataFile formats recognized by cpptraj. ’Valid Dimensions’ shows what
dimensions the format is valid for (e.g. you cannot write a 1D data set with
OpenDX format).

24

5.1 Data Set Selection Syntax
Many analysis commands can be used to analyze multiple data sets. The general
format for selecting data sets is:

<name>[<aspect>]:<index>

The ’*’ character can be used as a wild-card for entire names (no partial
matches).

• <name>: The data set name, usually specified in the action (e.g. in
’distance d0 @1 @2’ the data set name is “d0”).

• <aspect>: Optional; this is set for certain data sets internally in or-
der to easily select subsets of data. The brackets are required. For
example, when using ’hbond series’, both solute-solute and solute-solvent
hydrogen bond time series may be generated. To select all solute-solute
hydrogen bonds one would use the aspect “[solutehb]”; to select solute-
solvent hydrogen bonds the aspect “[solventhb]” would be used. Aspects
are hard-coded and are listed in the commands that use them.

• <index>: Optional; for actions that generate many data sets (such as
’rmsd perres’) an index is used. Depending on the action, the index may
correspond to atom #s, residue #s, etc. A number range (comma and/or
dash separated) may be used.

For example: to select all data sets with aspect “[shear]” named NA_00000:

NA_00000[shear]

To select all data sets with aspect “[stagger]” with any name, indices 1 and 3:

*[stagger]:1,3

In ensemble mode, data set selection has additional syntax:

<name>[<aspect>]:<index>%<member>

Where <member> is the ensemble member number starting from 0.

5.2 Data Set Math
As of version 15, cpptraj can perform basic math operations, even on data sets
(with some limitations). Currently recognized operations are:

Operation Symbol
Minus -
Plus +

Divide /
Multiply *
Power ^
Negate -
Assign =

25

Several functions are also supported:

Function Form
Square Root sqrt()
Exponential exp()

Natural Logarithm ln()
Absolute Value abs()

Sine sin()
Cosine cos()
Tangent tan()

Summation sum()
Average avg()

Standard Deviation stdev()
Minimum min()
Maximum max()

Numbers can be expressed in scientific notation using “E” notation, e.g. 1E-5
= 0.00001. The parser also recognizes PI as the number pi. Expressions can also
be enclosed in parentheses. So for example, the following expression is valid:

> 1 - ln(sin(PI/4) * 2)^2
Result: 0.879887

Results of numerical calculations like the above can be assigned to a variable
(essentially a data set of size 1) for use in subsequent calculations, e.g.

> R = 1 - ln(sin(PI/4) * 2)^2
Result stored in ’R’
> R + 1 Result: 1.879887

Data sets can be specified in expressions as well. Currently data sets in an
expression must be of the same type and only 1D, 2D, and 3D data sets are
supported. Functions are applied to each member of the data set. So for exam-
ple, given two 1D data sets of the same size named D0 and D1, the following
expression:

> D2 = sqrt(D0) + D1

would take the square root of each member of D0, add it to the corresponding
member of D1, and assign the result to D2. The following table lists which
operations are valid for data set types. If a type is not listed it is not supported:

26

Data Set Type Supported Ops Supported Funcs Notes
1D (integer,
double, float)

All All

1D (vector) +, -, *, /, = None ’*’ is dot product
2D (matrices) +, -, /, *, = sum, avg, stdev,

min, max
3D (grids) +, -, /, *, = sum, avg, stdev,

min, max

6 Data File Options
Data file output can be handled multiple ways in cpptraj. Output data files can
be created by Actions/Analyses/Commands, or can be explicitly created with
writedata (8.32 on page 67) or create (8.4 on page 53) commands. Reading
data from files is only done via the readdata command (8.22 on page 64).

In general, data files which have been declared with an ’out’ keyword will
recognize data file write keywords on the same command line. For example,
the ’time’ argument can be passed directly to the output from a distance
command:

distance d0 :1 :2 out d0.agr time 0.001

The data file format can be changed from standard implicitly by using specific
filename extensions or keywords. If the extension is not recognized or no keyword
is give the default format is ’Standard’. Keywords and extensions for data file
formats recognized by cpptraj are shown in 1. Note that the use of certain
options may be restricted for certain data file formats. These options can also
be passed to data files via the datafile command (8.6 on page 54).

[<format keyword>]
[{xlabel|ylabel|zlabel} <label>] [{xmin|ymin|zmin} <min>] [sort]
[{xstep|ystep|zstep} <step>] [time <dt>] [prec <width>[.<precision>]]
[xprec <width>[.<precision>]] [xfmt {double|scientific|general}]
[noensextension]

{xlabel | ylabel | zlabel} <label> Set the x-axis label
for the specified datafile to <label>. For regular
data files this is the header for the first column
of data. If the data is at least 2-dimensional
’datafile ylabel <label>’ will likewise set the
y-axis label.

{xmin | ymin | zmin} <min> Set the starting X
coordinate value to <min>. If the data is at least
2-dimensional ’datafile ymin <min>’ will likewise
set the starting Y coordinate value.

sort Sort data sets prior to write. Ordering is by
name, aspect, then index (all descending).

27

{xstep | ystep | zstep} <step> Multiply each frame
number by <step> (x coordinates). If the data is at
least 2-dimensional ’datafile ystep <step>’ will
likewise multiply y coordinates by <step>.

time <dt> Equivalent to the ptraj argument ’time’ that
could be specified with many actions. Multiplies
frame numbers (x-axis) by <dt>.

prec <width>[.<precision>] Change the output format
width (and optionally precision) of all sets
subsequently added to the data file (i.e. does not
change the precision of any data sets currently in
the file). For example,

prec 12.4
prec 10

xprec <width>[.<precision>] Change output ordinate
width and precision.

xfmt {double|scientific|general} Change output ordinate
format.

[noensextension] Omit ensemble extension in ensemble
processing mode. NOTE: THIS OPTION HAS NOT BEEN
FULLY TESTED IN PARALLEL.

6.1 Standard Data File Options
Write

[invert] [noxcol] [groupby <type>] [noheader] [square2d|nosquare2d]
[nosparse|sparse [cut <cutoff>]]

invert Normally, data is written out with X-values
pertaining to frames (i.e. data over all
trajectories is printed in columns). This command
flips that behavior so that X-values pertain to data
sets (i.e. data over all trajectories is printed in
rows).

groupby <type> (1D) group data sets by <type>:

name Group by name.
aspect Group by aspect.
idx Group by index.
ens Group by ensemble number.
dim Group by dimension.

xcol Write indices for the specified datafile. This is
usually the default behavior.

28

noxcol Prevent printing of indices (i.e. the #Frame
column in most datafiles) for the specified
datafile. Useful e.g. if one would like a 2D plot
such as phi vs psi. For example, given the input:

dihedral phi :1@C :2@N :2@CA :2@C out phipsi.dat
dihedral psi :2@N :2@CA :2@C :3@N out phipsi.dat
datafile phipsi.dat noxcol

Cpptraj will write a 2 column datafile containing
only phi and psi, no frame numbers will be written.

header Write header line at beginning of data file.
This is usually the default behavior.

noheader Prevent printing of header line (e.g.
’#Frame D1’) at the beginning of data file.

square2d Write 2D data as a square matrix, e.g.:

<1,1> <2,1> <3,1>
<1,2> <2,2> <3,2>

nosquare2d Write 2D data in 3 columns as:

<X> <Y> <Value>

sparse Only write 3D grid voxels with value > cutoff
(default 0).

cut <cut> Cutoff for ’sparse’; default 0.

nosparse Write all 3D voxels (default).

Read

[prec {flt|dbl}]
{[read1d [index <col>] [onlycols <range>] [floatcols <range>]

[intcols <range>] [stringcols <range>]] |
[read2d [{square2d|nosquare2d}]] |
[vector] |
[mat3x3] |
[read3d [dims <nx>,<ny>,<nz>] [origin <ox>,<oy>,<oz>]

[delta <dx>,<dy>,dz>] [prec {dbl|flt}] [bin {center|corner}]
}

prec {flt|dbl} Read 2d/3d data as single (flt) or double
(dbl, default) precision.

read1d Read data as 1D data sets (default).

index <col> Use column <col> (starting from 1) as
index column (1D data only).

onlycols <range> Only read columns in range.

29

floatcols <range> Force specified columns to be
read as single-precision floats.

intcols <range> Force specified columns to be read
as integers.

stringcols <range> Force specified columns to be
read as strings.

read2d Read data as 2D matrix.
square2d Read data as square matrix (default).
nosquare2d Read data as XYZ matrix (i.e. each line

contains ’<column> <row> <data>’).
vector Read data as vector. If indices are present they

will be skipped. Assume first 3 columns after the
index volumn are vector X, Y, and Z, and (if
present) the next 3 columns contain vector origin X,
Y, and Z.

mat3x3 Read data as 3x3 matrix. If indices are present
they will be skipped. Assume matrices are in row
major order on each line, i.e. M(1,1) M(1,2) ...
M(3,2) M(3,3).

read3d Read data as 3D grid. If no dimension data in
file must also speify ’dims’.
dims <dx>,<dy>,<dz> Grid dimensions.
origin <ox>,<oy>,<oz> Grid origins (default

0,0,0).
delta <dx>,<dy>,dz> Grid spacings (default

1,1,1).
prec {dbl|flt} Grid precision, double or float

(default float).
bin {center|corner} Coords specify bin centers or

corners (default corners).

By default, standard data files are assumed to contain 1D data in columns. Data
set legends will be read in if the file has a header line (denoted by ’#’). Columns
labeled ’#Frame’ are automatically considered the ’index’ column and skipped.
Data sets are stored as <name>:<idx> where <name> is the given data set
name (the file name if not specified) and <idx> corresponds to the column
the data was read from starting from 1. Cpptraj assumes the data increases
monotonically and will automatically attempt to determine the dimensions of
the data set(s); a warning will be printed if this is not successful.

If a file contains the header:

#F1 F2 <name>

CPPTRAJ will assume the file contains pairwise distances for clustering, where
the F1 and F2 columns contain the frame numbers, and the <name> column
contains the distance.

30

6.2 Grace Data File Options
For more information on Grace see http://plasma-gate.weizmann.ac.il/Grace/.

Write

[{invert|noinvert}] [{xydy|noxydy}] [<label set>]

invert Normally, data is written out with X-values
pertaining to frames (i.e. data over all
trajectories is printed in columns). This command
flips that behavior so that X-values pertain to data
sets.

noinvert Do not flip X-Y axes (default).

xydy Combine consecutive pairs of sets into XYDY sets.

noxydy Do not combine consecutuve pairs of sets into
XYDY sets (default).

<label set> If a string dataset is specified, assume it
has data point labels.

If a single string data set is specified when writing Grace format, it is assumed
they are data point labels.

Read

Cpptraj will read set legends from grace files, and data sets are stored as
<name>:<idx> where <name> is the given data set name (the file name if
not specified) and <idx> corresponds to the set number the data was read from
starting from 0.

6.3 Gnuplot Data File Options
For more information on these options it helps to look at the PM3D options in
the Gnuplot manual (see http://www.gnuplot.info/).

Write

[{nolabels|labels}] [{usemap|pm3d|nopm3d}] [title <title>]
[jpeg] [noheader] [{xlabels|ylabels|zlabels} <labellist>]

nolabels Do not print axis labels.

labels Print axis labels.

usemap pm3d output with 1 extra empty row/col (may
improve look).

pm3d Normal pm3d map output.

31

http://plasma-gate.weizmann.ac.il/Grace/
http://www.gnuplot.info/

nopm3d Turn off pm3d

jpeg Plot will write to a JPEG file when used with
gnuplot.

title <title> Set plot title (default is file name).

binary Plot will be written in binary format.

header Format the plot so it can be directly processed
by gnuplot. This is usually the default behavior.

noheader Do not format plot; data output only.

palette <arg> Change gnuplot pm3d palette to <arg>:

’rgb’ Red, yellow, green, cyan, blue, magenta, red.
’kbvyw’ Black, blue, violet, yellow, white.
’bgyr’ Blue, green, yellow, red.
’gray’ Grayscale.

xlabels|ylabels|zlabels <labellist> Set x, y, or z axis
labels with comma-separated list, e.g. ’xlabels
X1,X2,X3’.

6.4 Amber REM Log Options
Note that multiple REM logs can be specified in a single readdata command.
See 12.30 on page 265 for more on replica log analysis.

Read

[nosearch] [dimfile <file>] [crdidx <crd indices>]

[nosearch] If specified do not automatically search for
MREMD dimension logs.

[dimfile <file>] remd.dim file for processing MREMD logs.

[crdidx <crd indices>] Use comma-separated list of
indices as the initial coordinate indices (H-REMD
only). For example (4 replicas):

crdidx 4,2,3,1

6.5 Amber MDOUT Options
Note that multiple MDOUT files can be specified in a single readdata com-
mand.

32

6.6 Evecs File Options
Read

[ibeg <firstmode>] [iend <lastmode>]

ibeg <firstmode> Number of the first mode (or principal
component) to read from evecs file. Default 1.

iend <lastmode> Number of the last mode (or principal
component) to read from evecs file. Default is to
read all for newer evecs files (generated by cpptraj
version > 12), 50 for older evecs files.

6.7 Vector psuedo-traj Options
This can be used to write out a representation of a vector data set which can
then be visualized. See 11.90 on page 211 for more on generating vector data
sets.

Write

[trajfmt <format>] [parmout <file>] [noorigin]

trajfmt <format> Output pseudo-trajectory format. See
10 on page 83 for trajectory format keywords.

parmout <file> File to write pseudo-trajectory topology
to.

[noorigin] Do not write vector origin coordinates.

6.8 OpenDX file options
Read

[type {float|double}]

type {float|double} Precision to read in 3D grid
(default float).

Write

[bincenter] [gridwrap] [gridext]

bincenter Center grid points on bin centers instead of
corners.

gridwrap Like ’bincenter’, but also wrap grid density.
Useful when grid encompasses unit cell.

gridext Like ’bincenter’, but also print extra layer of
empty bins.

33

6.9 CCP4 file options
Write

[title <title>]

[title <title>] Set CCP4 output title.

6.10 Charmm REPD log options
Read

[nrep <#>] [crdidx <crd indices>]

nrep <#> Total number of replicas.

crdidx <crd indices> Comma-separated list of indices to
use as initial coordinate indices.

6.11 Amber Constant pH Out options
Read

cpin <file>

cpin <file> Constant pH input (CPIN) file name.

Note that when reading in constant pH data the data set aspect will be set to
the residue name and the index will be set to the residue number. When reading
in constant pH REMD data the data is unsorted, and sortensembledata should
be used to create sorted constant pH data sets (see 8.30 on page 67).

7 Coordinates (COORDS) Data Set Commands
Coordinate I/O tends to be the most time-consuming part of trajectory anal-
ysis. In addition, many types of analyses (for example two-dimensional RMSD
and cluster analysis) require using coordinate frames multiple times. To sim-
plify this, trajectory coordinates may be saved as a separate data set via the
loadcrd command or createcrd action. Any action can then be performed on
the COORDS data set with the crdaction command. The crdout command
can be used to write coordinates to an output trajectory (similar to trajout).

Although COORDS data sets store everything internally with single-precision,
they can still use a large amount of memory. Because of this there is a specialized
type of COORDS data set called a TRAJ data set (trajectory), which functions
exactly like a COORDS data set except all data is stored on disk. TRAJ data
sets can be created with the loadtraj command. TRAJ data sets cannot be
modified.

There are several analyses that can be performed using COORDS data sets,
either as part of the normal analysis list or via the runanalysis command.
Note that while these analyses can be run on specified COORDS data sets, if

34

one is not specified a default COORDS data set will be created, made up of
frames from trajin commands.

As an example of where this might be useful is in the calculation of atomic
positional fluctuations. Previously this required two steps: one to generate an
average structure, then a second to rms-fit to that average structure prior to
calculating the fluctuations. This can now be done in one pass with the following
input:

parm topology.parm7
loadcrd mdcrd.nc
Generate average structure PDB, @CA only
crdaction mdcrd.nc average avg.pdb @CA
Load average structure PDB as reference
parm avg.pdb
reference avg.pdb parm avg.pdb
RMS-fit to average structure PDB
crdaction mdcrd.nc rms reference @CA
Calculate atomic fluctuations for @CA only
crdaction mdcrd.nc atomicfluct out fluct.dat bfactor @CA

The following COORDS data set commands are available:

35

Command Description
catcrd Concatenate two or more COORDS sets.

combinecrd Combine two or more COORDS sets.
crdaction Run a single Action on a COORDS set.
crdout Write a COORDS set to a file.

crdtransform Transform a COORDS set in one of several ways.
createcrd (Action) Create a COORDS set during a Run.

emin Run simple energy minimization on a frame of a COORDS
set.

extendedcomp Calculate extended comparison similarity values for each
frame in COORDS set.

graft Graft part of one COORDS set onto another COORDS set.
loadcrd Create or append to a COORDS set from a file.
loadtraj Create special COORDS set where frames remain on disk.

permutedihedrals Rotate specified dihedral(s) in given COORDS set by
specific interval or to random values.

prepareforleap Prepare a structure (usually loaded from a PDB) for
processing with LEaP from Amber.

reference Load a single trajectory frame as a reference.
rotatedihedral Rotate specified dihedral to specified value or by given

increment.
sequence Create a new molecule from a sequence of COORDS sets.

splitcoords Split molecules in a COORDS set into a trajectory.
zmatrix Apply Z-matrix to a COORDS set or calculate Z-matrix

for a molecule/frame in a COORDS set.

7.1 catcrd
catcrd <crd1> <crd2> ... name <name>

<crdX> COORDS data sets to concatentate, specify 2 or
more.

name <name> New COORDS set name

Concatentate two or more COORDS data sets into a single COORDS data set.
The topologies must have the same number of atoms for this to work. If the
topologies differ in other ways, the topology of the first COORDS set takes
priority.

7.2 combinecrd

combinecrd <crd1> <crd2> ... [parmname <topname>] [crdname <crdname>]

<crdX> COORDS data sets to combine, specify 2 or more.

[parmname <topname>] Name of combined Topology.

36

[crdname <crdname>] Name of combined COORDS data set.

Combined two or more COORDS data sets into a single COORDS data set.
Note that the resulting topology will most likely not be usable for MD simu-
lations. Box information will be retained - the largest box dimensions will be
used.

For example, to load two MOL2 files as COORDS data sets, combine them,
and write them out as a single MOL2:

loadcrd Tyr.mol2 CRD1
loadcrd Pry.mol2 CRD2
combinedcrd CRD1 CRD2 parmname Parm-1-2 crdname CRD-1-2
crdout CRD-1-2 Tyr.Pry.mol2

7.3 crdaction

crdaction <crd set> <actioncmd> [<action args>] [crdframes <start>,<stop>,<offset>]

Perform action <actioncmd> on COORDS data set <crd set>. A subset of
frames in the COORDS data set can be specified with ’crdframes’.

For example, to calculate RMSD for a previously created COORDS data set
named crd1 using frames 1 to the last, skipping every 10:

crdaction crd1 rmsd first @CA out rmsd-ca.agr crdframes 1,last,10

7.4 crdout

crdout <crd set> <filename> [<trajout args>] [crdframes <start>,<stop>,<offset>]

Write COORDS data set <crd set> to trajectory named <filename>. A subset
of frames in the COORDS data set can be specified with ’crdframes’.

For example, to write frames 1 to 10 from a previously created COORDS
data set named “crd1” to separate PDB files:

crdout crd1 crd1.pdb multi crdframes 1,10

7.5 crdtransform
crdtransform <input crd set> [name <output crd set>]

{ rmsrefine [mask <mask>] [mass] [rmstol <tolerance>] |
normcoords |
trim [metric <metric>] [{ntrimmed <#>|cutoff <val>}]

[criterion {comp|medoid}]]
}

37

<input crd set> COORDS set to transform.

[name <output crd set>] COORDS set to create; if not
specified <input crd set> will be modified.

rmsrefine Do iterative RMS refinement.

[mask <mask>] Mask of atoms to fit during
refinement.

[mass] Mass-weight the refinement.
[rmstol <tolerance>] Tolerance (in Ang.) below

which RMS-refinement will stop.

normcoords Normalize coordinates between 0.0 and 1.0
using the minimum and maximum coordinate values.

trim Remove trajectory frames using extended similarity
metrics.

[metric <metric>] Metric to use; default MSD.
[{ntrimmed <#>|cutoff <val>} # of frames or

fraction of trajectory to trim.
[criterion {comp|medoid}] Trim frames by comparitive

similarity (i.e. trim most dissimilar frames)
or comparison to medoid (i.e. trim most
dissimilar to medoid frame).

Transform a COORDS set in one of several ways. Does not yet work with TRAJ
data sets. The iterative RMS refinement is similar to the procedure outlined by
Klem et al. (J. Chem. Theory Comput. 2022, 18, 3218−3230). The extended
similarity metrics are those defined by Racz et al. (J. Comp.-Aid. Mol. Design,
2022, 36, 157-173).

7.6 createcrd
This command is actually an Action that can be used to create COORDS data
sets during trajectory processing, see 11.21 on page 117.

7.7 emin

emin crdset <name> [trajoutname <name>] [rmstol <tol>] [nsteps <#>]
[<mask>] [frame <#>] [dx0 <step0>] [out <file>] [name <setname>]
[{nonbond|openmm}] [<potential options>]

crdset <name> COORDS set to use.

[trajoutname <name>] Optional output trajectory for
minimization steps.

[rmstol <tol>] Minimum RMS tolerance (default 1E-4).

[nsteps <#>] Number of minimization steps (default 1).

38

[<mask>] Atoms to minimize (default all).

[frame <#>] Frame from COORDS set to minimize (default
1).

[dx0 <step0>] Size of initial minimization step
(default 0.01).

[out <file>] File to write energies to.

[name <setname>] If specified, create an energy per
step data set.

[nonbond] If specified, use simple nonbonded potential
term in additon to bonded terms.

[openmm] If specified and if CPPTRAJ was compiled with
OpenMM support, use OpenMM to calculate the forces.

<potential options>

cut <cutoff> Set nonbonded interaction cutoff in Ang.
(electrostatics and vdW). Default 8.0.

cutee <cutoff> Set electrostatics interaction cutoff in
Ang.

cutnb <cutoff> Set vdW interaction cutoff in Ang.

scaleee <factor> Scaling factor to multiply 1-4
electrostatics interactions by.

scalenb <factor> Scaling factor to multiply 1-4 vdW
interactions by.

shake <type> Use SHAKE constraints of <type>:

’hydrogen’ Constrain bonds to hydrogen.
’all’ Constrain all bonds.

nexclude <#> Number of bonded atoms within which
nonbonded interactions are excluded. Default 4.

qfac <factor> Factor to use in electrostatic
calculation.

DataSets Created

<setname>[Energy] Total energy at each minimization
step.

THIS COMMAND IS STILL IN DEVELOPMENT AS OF VERSION 5.0.2.
Perform steepest descent minimization on a frame in a COORDS set using a

very basic force field (bonds, angles, dihedrals). A simple nonbonded term can
be added as well if desired.

39

7.8 extendedcomp
extendedcomp <input crd set> [name <output data set>]

[metric <metric>] [out <file>]
<metric> = msd bub fai gle ja jt rt rr sm ss1 ss2

<input crd set> Input COORDS set.

[name <output data set>] Output data set name
containing values.

[metric <metric>] Metric to use.

[out ,file>] File to write values to.

DataSets generated:

<output set name> Set containing similarity values for
each COORDS frame.

Calculate extended comparison similarity values for each frame in a COORDS
set. The extended similarity metrics are those defined by Racz et al. (J. Comp.-
Aid. Mol. Design, 2022, 36, 157-173). The metrics are as follows:

Keyword Metric
msd Mean-squared deviation.
bub Bhattacharyya’s U coefficient
fai Faiman’s coefficient
gle Gleason’s coefficient
ja Jaccard’s coefficient
jt Jaccard-Tanimoto coefficient
rt Rogers-Tanimoto coefficient
rr Russell-Rao coefficient
sm Simpson’s coefficient
ss1 Sokal-Sneath 1 coefficient
ss2 Sokal-Sneath 2 coefficient

7.9 graft

graft src <source COORDS> [srcframe <#>] [srcmask <srcmask> [srccharge <srccharge>]]
tgt <target COORDS> [tgtframe <#>] [tgtmask <tgtmask> [tgtcharge <tgtcharge>]]

{ic | [srcfitmask <srcmask>] [tgtfitmask <tgtmask>]}
name <output COORDS> [bond <tgt>,<src> ...]

src <source COORDS> Source coordinates.

[srcframe <#>] Frame # from source coordinates to use
(default 1).

[srcmask <mask>] Atoms to keep from source (default
all).

40

[srccharge <charge>] If trimming atoms from source,
ensure sum of charges on remaining atoms equals
<charge> via scaling.

tgt <target COORDS> Target coordinates that will be
grafted onto.

[tgtframe <#> Frame # from target coordinates to use
(default 1).

[tgtmask <mask>] Atoms to keep from target (default
all).

[tgtcharge <charge>] If trimming atoms from target,
ensure sum of charges on remaining atoms equals
<charge> via scaling.

[ic] Connect source and target using internal
coordinates.

[srcfitmask <mask>] Atoms from source to use if
RMS-fitting source onto target.

[tgtfitmask <mask>] Atoms from target to use if
RMS-fitting source onto target.

name <output COORDS> Name of output COORDS set
containing source grafted onto target.

[bond <tgt>,<src>] Create a bond between target atom
selected by <tgt> and source atoms selected by <src>
in the final structure. Must be specified only once
if connecting via internal coordinates, otherwise
may be specified multiple times.

Graft one COORDS set onto another. If srcfitmask and/or tgtfitmask is
specified, the source coordinates will be RMS best-fit onto target using the
specified atoms. Only the atoms specified by srcmask and tgtmask will be
kept. The bond keyword can be used to create bonds between target and source
in the final structure. If using internal coordinates to connect the units, exactly
one bond must be specified.

7.10 loadcrd

loadcrd <filename> [parm <parm> | parmindex<#>] [<trajin args>] [name <name>]
[prec {single|double}

<filename> Trajectory file to load.

[parm <parmfile/tag>] Topology filename/tag to
associate with trajectory (default first topology).

[parmindex <#>] Index of Topology to associate with
trajectory (default 0, first topology).

41

[<trajin args>] Additional ’trajin’ args; see 10.4 on
page 87.

[name <name>] Name of the COORDS set.

[prec {single|double}] Load as either a single-precision
COORDS set (the default) or a double-precision
FRAMES set (which will use much more memory).

Immediately load trajectory <filename> as a COORDS data set named <name>
(default base name of <filename>). If <name> is already present the coordi-
nates will be appended to the existing data set.

For example, to load frames from trajectories named ’traj1.nc’ and ’traj2.nc’
into a COORDS data set named Crd1:

loadcrd traj1.nc name Crd1
loadcrd traj2.nc name Crd2

7.11 loadtraj
loadtraj name <setname> [<filename>]

name <setname> Name of the TRAJ set.

[<filename>] If specified, trajectory to add to the
TRAJ set.

This command functions in two ways. If <filename> is not provided, all cur-
rently loaded input trajectories (from trajin commands) are added to TRAJ
data set named <setname>. Note that if the input trajectory list is
cleared (via ’clear trajin’) this will invalidate the TRAJ data set. In
addition, currently all trajectories must have the same number of atoms. Oth-
erwise add trajectory <filename> to TRAJ data set <setname>.

TRAJ data sets cannot be modified.

7.12 permutedihedrals

permutedihedrals crdset <COORDS set> resrange <range> [{interval | random}]
[outtraj <filename> [<outfmt>]] [crdout <output COORDS>]

[<dihedral types>]
Options for ’random’:

[rseed <rseed>] [out <# problems file> [<set name>]]
[check [cutoff <cutoff>] [rescutoff <rescutoff>] [maxfactor <max_factor>]
[backtrack <backtrack> [checkallresidues] [increment <increment>]]]
Options for ’interval’:

<interval deg>
<dihedral types> = alpha beta gamma delta epsilon zeta nu1 nu2 h1p c2p chin

phi psi chip omega

42

crdset <COORDS set> COORDS data set to operate on.
resrange <range> Residue range to search for

dihedrals.
interval Rotate found dihedrals by <interval>. This is

done in an ordered fashion so that every combination
of dihedral rotations is sampled at least once.

random Rotate each found dihedral randomly.
[outtraj <filename>] Trajectory file to write

coordinates to.
[<outfmt>] Trajectory file format.

[crdout <output COORDS>] COORDS data set to write
coordinates to.

<dihedral type> One or more dihedral types to search
for.

Options for ’interval:

<interval deg> Amount to rotate dihedral by each step.

Options for ’random’:

[rseed <rseed>] Random number seed.
[out <# problems file>] File to write number of

problems (clashes) each frame to.
[<set name>] Number of problems data set name.
[check] Check randomly rotated structure for clashes.

[cutoff <cutoff>] Atom cutoff for checking for
clashes (default 0.8 Å).

[rescutoff <cutoff>] Residue cutoff for checking for
clashes (defualt 10.0 Å).

[maxfactor <max_factor>] The maximum number of
total attempted rotations will be <max_factor> *
<total # of dihedrals> (default 2).

[backtrack <backtrack>] (No longer recommended as
of version 5.1.0). If a clash is encountered at
dihedral N and cannot be resolved, go to
dihedral N-<backtrack> to try and resolve the
clash (default is no backtracking).
[checkallresidues] If specified all residues

checked for clashes, otherwise only residues
up to the currently rotated dihedral check.

[increment <increment>] If a clash is
encountered, first attempt to rotate dihedral
by increment to resolve it; if it cannot be
resolved by a full rotation the calculation
will backtrack (default 1).

43

Create a trajectory by rotating specified dihedrals in a structure by regular in-
tervals (interval), or create 1 structure by randomly rotating specified dihedrals
(random). When randomly rotating dihedrals steric clashes will be checked if
check is specified; in such cases the algorithm will attempt to resolve the clash
as best it can. If clashes are not being resolved you can increase the number of
rotation attempts cpptraj will make by increasing maxfactor.

For example, to rotate all backbone dihedrals in a protein with coordinates
in a file named tz2.rst7 in -120 degree intervals and write the resulting trajectory
in Amber format to rotations.mdcrd:

reference tz2.rst7 [TZ2]
permutedihedrals crdset [TZ2] interval -120 outtraj rotations.mdcrd phi psi

To randomly rotate backbone dihedrals for the same structure and write to file
random.mol2 in MOL2 format:

reference tz2.rst7 [TZ2]
permutedihedrals crdset [TZ2] random rseed 1 check maxfactor 10 phi psi \

outtraj random.mol2 multi

7.13 prepareforleap

prepareforleap crdset <coords set> [frame <#>] name <out coords set>
[pdbout <pdbfile> [terbymol]]
[leapunitname <unit>] [out <leap input file> [runleap <ff file>]]
[skiperrors]
[nowat [watermask <watermask>] [noh]

[keepaltloc {<alt loc ID>|highestocc}]
[stripmask <stripmask>] [solventresname <solventresname>]
[molmask <molmask> ...] [determinemolmask <mask>]
[{nohisdetect |

[nd1 <nd1>] [ne2 <ne2] [hisname <his>] [hiename <hie>]
[hidname <hid>] [hipname <hip]}]

[{nodisulfides |
existingdisulfides |
[cysmask <cysmask>] [disulfidecut <cut>] [newcysname <name>]}]

[{nosugars |
sugarmask <sugarmask> [noc1search] [nosplitres]

[rescut <residue cutoff>] [bondoffset <offset>]
[resmapfile <file>]

[hasglycam] [determinesugarsby {geometry|name}]
}]

crdset <coords set> COORDS data set containing
coordinates and topology to prepare.

[frame <#>] Frame to use from COORDS set (default
first).

44

name <out coords set> Output COORDS set containing
prepared topology/coordinates.

[pdbout <pdbfile>] Output PDB name.

[terbymol] If specified, base TER cards on molecules
instead of PDB chains.

[leapunitname <unit>] LEaP unit name to use when
writing to <leap input file> (i.e. the LEaP input
file will contain ’<unit> = loadpdb <pdbfile>’).

[out <leap input file>] File containing LEaP input needed
to read in the prepared system (loadpdb, bond
commands for disulfides, etc).

[runleap <ff file>] If specified, CPPTRAJ will attempt to
run LEaP directly to generate a topology and
coordinates; <ff file> should contain the
appropriate ’source’ commands for loading the
desired force field parameters. Will attempt to
produce topology <unit>.parm7 and coordinates
<unit>.rst7.

[skiperrors] If specified, the command will try to ignore
any errors encountered. Can be useful for
debugging.

[nowat] If specified, remove waters from the system.

[watermask <watermask>] Mask selecting waters to
remove (default ’:<solventresname>’).

[noh] If specified, strip all hydrogen atoms from the
system (recommended).

[keepaltloc {<alt loc ID>|highestocc}] LEaP cannot handle
alternate atom locations, so the command will choose
location ’A’ by default. This can be changed to
either <alt loc id> or the location with the highest
occupancy if ’highestocc’ is specified.

[stripmask <stripmask>] Mask of atoms to remove from
the system.

[solventresname <solventresname>] Solvent residue name
(default ’HOH’).

[molmask <mask>] If specified, atoms in <mask> will
be considered all part of one molecule. May be
specified multiple times.

[determinemolmask <mask>] If specified, determine if
atoms selected in <mask> are in the same molecule
via bonds.

45

Histidine Detection:

[nohisdetect] Disable renaming of histidine residues
based on existing hydrogens.

[nd1 <nd1>] Delta nitrogen atom name (default ’ND1’).
[ne2 <ne2<] Epsilon nitrogen atom name (default ’NE2’).
[hisname <his>] Histidine residue name (default ’HIS’).
[hiename <hie>] Epsilon-protonated histidine name

(default ’HIE’).
[hidname <hid>] Delta-protonated histidine name

(default ’HID’).
[hipname <hip>] Doubly-protonated histidine name

(default ’HIP’).

Disulfide Handling:

[nodisulfides] Disable handling of disulfides.
[existingdisulfides] Only handle disulfides already

present; do not search for additional disulfides.
[cysmask <cysmask>] Mask for selecting cysteine

residues (default ’CYS’).
[disulfidecut <cut>] Sulfur to sulfur atom distance

cutoff for forming a disulfide (default 2.5 Ang).
[newcysname <name>] Name to change cysteine residues

that participate in a disulfide bond to (default
’CYX’).

Sugar Handling:

[nosugars] Disable handling of sugars.
[sugarmask <sugarmask>] Mask selecting sugars to be

handled. If not specified the default is all
residues defined in resmapfile.

[noc1search] If specified, disable search for missing
linkages to sugar C1 atom bonds.

[nosplitres] If specified, do not attempt to split off
functional groups from sugars into separate
residues.

[rescut <residue cutoff>] Initial distance cutoff
(default 8 Ang.) for residue center to residue
center distance when looking for missing sugar
linkages.

[bondoffset <offset>] Offset (default 0.2 Ang.) to add
to “ideal” bond distances when looking for missing
sugar linkages. Can be increased to accommodate
distorted structures.

46

[resmapfile <file>] File containing sugar residue/atom
name mapping. Default is
’$CPPTRAJHOME/dat/Carbohydrate_PDB_Glycam_Names.txt’.

[hasglycam] If specified, assume sugars already have
GLYCAM residue names; just check sugar anomer
type/configuration/linkage.

[determinesugarsby {geometry|name}] Determine whether
sugar anomer type/configuration should be chosen
based on sugar geometry (default) or the residue
name. CPPTRAJ will report when a mismatch is
detected between the sugar anomer type/configuration
based on geometry and anomer type/configuration
based on the residue name.

This command will prepare a structure (usually from a PDB) for processing with
the Amber program LEaP to generate topology and coordinates files for MD
simulations.[3] It will handle things like choosing alternate atom locations, re-
moving waters/hydrogen atoms from the structure, renaming residues and gen-
erating ’bond’ commands for disulfide bonds, change histidine names based on
any existing protonation, and renaming residues/atoms and generating ’bond’
commands for carbohydrates. The command can also call LEaP directly to
generate the parameters once the structure is prepared.

If hydrogen atoms are present in the structure, the command will attempt a
simple and straightforward determination of the protonation state of any histi-
dine residues based on where hydrogens are bonded, and assign the appropriate
residue name. The command will also identify any existing disulfide bonds as
well as potential disulfide bonds and generate the corresponding LEaP ‘bond’
commands which can be applied after the structure is loaded in LEaP. Potential
disulfide bonding atoms can be identified via a user-specifiable mask expression.

By default, sugars will have their residue names changed to those compatible
with the GLYCAM force field based on their anomer type (alpha/beta), config-
uration (D/L), and linkages (glycosidic and covalent sugar to non-sugar). Any
recognized functional groups that are part of sugar residues (hydroxyl, acetyl,
sulfate, etc) will be split into separate residues as required by GLYCAM. If
this happens and ’runleap’ has not been specified, CPPTRAJ will warn about
any residues/atoms that require charge to be adjusted. If ’runleap’ has not
been specified the command will warn about any atoms that need to have their
charges adjusted after LEaP is run.

The command will try to report any potential problems that LEaP might
encounter. These include residue names that may be unrecognized (and there-
fore may not have parameters), mismatches between detected sugar anomer
type/configuration and anomer type/configuration based on the sugar residue
name, unrecognized sugar linkages, and so on.

For example, the following input prepares PDB 4zzw for processing with
PDB, putting the proper leap commands in leap.4zzw.in, writing the prepared

47

PDB to 4zzw.cpptraj.pdb, removing waters and hydrogen atoms, and keeping
alternate atom locations with the highest occupancy:

parm 4zzw.pdb
loadcrd 4zzw.pdb name MyCrd
prepareforleap crdset MyCrd name Final out leap.4zzw.in leapunitname m \

pdbout 4zzw.cpptraj.pdb nowat noh keepaltloc highestocc

Sugar Residue/Atom Name Mapping File

This file controls how CPPTRAJ will name sugars based on sugar form/chirality
linkage. It consists of three sections separated by a blank line. The first section
defines sugar PDB residue names and how they are mapped to GLYCAM residue
characters:

Format: <ResName> <GlycamCode> <Anomer> <Config> <RingType> "<Name>"
Anomer: A=alpha, B=beta
Config: D/L
RingType: P=pyranose, F=furanose
Example: 64K A A D P "alpha-D-arabinopyranose"

The second section contains PDB to GLYCAM atom name maps for residues:

Format: <GLYCAM residue codes> <PDB atom name>,<GLYCAM atom name>[,<anomer>] ...
If <anomer> (A=alpha, B=beta) is specified, the atom name map is only valid for that specific form.
Example: V,W,Y C7,C2N O7,O2N C8,CME

The third section contains PDB to GLYCAM linkage residue (i.e. non-sugar
residues bonded to sugars) name maps:

Format: <PDB residue name> <GLYCAM residue name>
Example: SER OLS

7.14 reference
Reference coordinates can now be used and manipulated like COORDS data
sets. See 10.3 on page 86 for command syntax.

7.15 rotatedihedral

rotatedihedral crdset <COORDS set> [frame <#>] [name <output set name>]
{value <value> | increment <increment>}
{ <mask1> <mask2> <mask3> <mask4> |

res <#> type <dih type> }
<dih type> = alpha beta gamma delta epsilon zeta nu1 nu2 h1p c2p chin

phi psi chip omega

48

crdset <COORDS set> Coordinates data set to work on.
If a TRAJ data set is specified, name must also be
specified.

[frame <#>] Frame of the COORDS set to work on.

[name <output set name>] Output COORDS set. If not
specified the input COORDS set will be modified.

value <value> Set specified dihedral to given value in
degrees.

increment <increment> Increment specified dihedral by
increment in degrees.

<mask1> <mask2> <mask3> <mask4> Define dihedral
by atom masks. Each mask should only select one
atom.

res <#> Rotate dihedral specified by type in residue
number <#>.

type <dih type> Dihedral type to rotate in specified
residue.

Rotate the specified dihedral in given COORDS set to a target value or by given
increment. For example, to set the protein chi dihedral in residue 8 to 35 degrees
and write out to a mol2 file:

parm ../tz2.parm7
loadcrd ../tz2.nc 1 1 name TZ2
rotatedihedral crdset TZ2 value 35 res 8 type chip
crdout TZ2 tz2.rotate.1.mol2

7.16 sequence
sequence name <output set name> <unit0> <unit1> ...

[{libset <libsetname>} ...]

name <output set name> Name of final molecule.

<unit0> <unit1> Name of COORDS set (with connection
info).

[{libset <libsetname>} ...} One or more set name prefixes
of data sets (libraries) containing units.

Data sets created:

<output set name> COORDS set containing final
molecule.

Connect units in different COORDS sets together to form a single molecule.
Internal coordinates are used to try to determine the correct geometry around
connection sites. The COORDS sets must have connection information set,

49

either from reading in an Amber OFF library file or set manually via dataset
connect (see 8.8 on page 55).

For example, the following reads in two Mol2 files as COORDS sets, sets up
connection atoms, then creates a molecule via sequence:

parm MOC.mol2
loadcrd MOC.mol2 parm MOC.mol2 name MOC
dataset connect MOC tailmask @O5
parm CNALA.mol2
loadcrd CNALA.mol2 parm CNALA.mol2 name CNALA
dataset connect CNALA headmask @N
sequence MOC CNALA name Mol
crdout Mol Mol.mol2

7.17 splitcoords
splitcoords <crd set> name <output set name>

<crd set> COORDS set to split.

name <output set name> Name of new set to create.

Split trajectory specified by <crd set> by molecule into a new COORDS set.
All molecules in <crd set> must be the same size. For example, if there are
10 molecules and 10 frames in COORDS set “Set0”, the following would create
a new COORDS set with 100 frames (original molecules 1-10 frame 1, original
molecules 1-10 frame 2, etc):

splitcoords Set0 name Set0Split

7.18 zmatrix
zmatrix <COORDS set name> [name <output set name>]

{ zset <input zmatrix set> [parm <top>|parmindex <#>] |
[molnum <mol#>] [frame <frame#>] [out <zmatrix file>] }

<COORDS set name> COORDS set to calculate Z-matrix
from or use as topology for applied Z-matrix.

[name <output set name>] Name of output COORDS set (if
’zset’) or output Z-matrix set.

zset <input zmatrix set> Name of Z-matrix set to use to
generate coordinates.

parm <top> Use specified topology name as
topology for generated coordinates.

parmindex <#> Use topology index as topology for
generated coordinates.

[molnum <mol#>] Calculate Z-matrix from specified
molecule (default first molecule).

50

[frame <frame#>] Calculate Z-matrix from specified
molecule in specified frame (default first frame).

[out <zmatrix file>] File to write calculated Z-matrix
to.

Data sets created:

<output set name> If ’zset’, COORDS set containing
final coordinates. Otherwise contains Z-matrix
data.

Command for working with Z-matrices. If ’zset’ is specified, generate coordi-
nates from the specified Z-matrix data set and topology. Otherwise, calculate a
Z-matrix for a single molecule from the specified frame of given COORDS data
set.

8 General Commands
The following general commands are available:

51

Command Description
activeref Select the reference for distance-based masks.

calc Evaluate the given mathematical expression.
clear Clear various objects from the cpptraj state.
create Create (but do not yet write) a data file.

createset Create a dataset from a simple mathematical expression.
datafile Used to manipulate data files.

datafilter Filter data sets based on given criteria.
dataset Use to manipulate data sets.

debug | prnlev Set debug level. Higher levels give more info.
ensextension Enable/disable ensemble number extension for files in ensemble mode.
exit | quit Quit cpptraj.

flatten Distribute elements of 2d matrix across 1d array.
go | run Start a trajectory processing Run.

help Provide help for commands.
list List various objects in the cpptraj state.

noexitonerror Attempt to continue even if errors are encountered.
noprogress Do not print a progress bar during a Run.

parallelanalysis (MPI only) Divide current Analyses among MPI processes.
parsedata Parse timing data from CPPTRAJ output.
precision Change the output precision of data sets.
printdata Print data set to screen.
random Change default random number generator, create random sets.
readdata Read data sets from files.

readensembledata Read data files in ensemble mode.
readinput Read cpptraj input from a file.

removedata Remove specified data set(s).
rst Generate Amber-style distance/angle/torsion restraints.

runanalysis Run an analysis immediately or run all queued analyses.
select Print the results of an atom mask expression.

selectds Print the results of a data set selection expression.
silenceactions Prevent Actions from writing information to STDOUT.

sortensembledata Sort data sets using replica information (currently constant pH only).
usediskcache Turn caching of data sets to disk on or off.

write | writedata Immediately write data to a file or write to all current data files.

8.1 activeref
activeref <#>

Set which reference structure should be used when setting up distance-based
masks for everything but the ’mask’ action. Numbering starts from 0, so ’ac-
tiveref 0’ selects the first reference structure read in, ’activeref 1’ selects the
second, and so on.

52

8.2 calc
calc <expression>
[prec <width>.<precision>] [format {double|general|scientific}]

<expression> Mathematical expression to evaluate. See
5.2 on page 25 for details.

prec <width>.<precision> Set the width and precision
of the result.

format {double|general|scientific} Set the format of the
result.

Evaluate the given mathematical expression. This version gives more control
over the format of the output.

8.3 clear
clear [{all | <type>}]

(<type> = actions,trajin,trajout,ref,parm,analysis,datafile,dataset)

Clear list of indicated type, or all lists if ’all’ specified. Note that when clearing
actions or analyses, associated data sets and data files are not cleared and vice
versa.

8.4 create

create <filename> <datasetname0> [<datasetname1> ...] [<DataFile Options>]

Add specified data sets to the data file named <filename>; if the file does not
exist, it will be added to the DataFileList. Data files created in this way are only
written at the end of coordinate processing, analyses, or via the ’writedata’
command. See 6 on page 27 for more data file format options.

8.5 createset

createset <expression> [xmin <min>] xstep <step> nx <nxvals>

expression Simple mathematical expression, must contain
equals sign, can contain X (e.g. Y=2*X). If not
enclosed in quotes must not contain whitespace.

xmin <min> Minimum X value.

xstep <step> X step.

nx <nxvals> Number of X values.

Generate a data set from a simple mathematical expression.

53

8.6 datafile
datafile <filename> <datafile arg>

Pass <datafile arg> to data file <filename>. See 6 on page 27 for more details.

8.7 datafilter

datafilter {<dataset arg> min <min> max <max> ...} [out <file>] [name <setname>]
{[multi] | [filterset <set> [newset <newname>]] [countout <countfile>]}

<dataset arg> min <min> max <max> Data set name
and min/max cutoffs to use; can specify more than
one.

[out <file>] Write out to file named <file>.

[name <setname>] Name of filter data set containing 1
when cutoffs satisfied, 0 otherwise.

[multi] Filter each set separately instead of all
together (creates filter set for each input set).
Cannot be used with ’filterset’.

[filterset <set>] If specified, <set> will be filtered to
only contain data that satisfies cutoffs. Cannot be
used with ’multi’.

[newset <newname>] If specified a new set will be
created from ’filterset’ instead of replacing
’filterset’.

[countout <count>] If specified, write number of
elements passed and filtered to <countfile>. Cannot
be used with ’multi’.

Sets Created (not ’multi’)

<setname> For each input element contains 1 for
elements that “passed”, 0 otherwise.

<setname>[npassed] Number of elements that passed.

<setname>[nfiltered] Number of elements filtered out.

Sets Created (’multi’)

<setname>:<idx> For each input set (number with
<idx>, starting from 0) contains 1 for elements that
“passed”, 0 otherwise.

Create a data set (optionally named <setname>) containing 1 for data within
given <min> and <max> criteria for each specified data set. There must be
at least one <min> and <max> argument, and can be as many as there are
specified data sets. If ’multi’ is specified then only filter data sets will be created

54

for each data set instead. If ’filterset’ is specified, the specified <set> will be
modified to only contain ’1’ frames; cannot be used with ’multi’. If ’newset’
is also specified, a new set will be created containing the ’1’ frames instead.
The ’filterset’ functionality only works for 1D scalar sets. If ’countout’ is
specified, the final number of elements passed and filtered out will be written
to <countfile>.

For example, to read in data from two separate files (d1.dat and a1.dat) and
generate a filter data set named FILTER having 1 when d1 is between 0.0 and
3.0 and a1 is between 135.0 and 180.0:

readdata a1.dat name a1
readdata d1.dat name d1
datafilter d1 min 0.0 max 3.0 a1 min 135.0 max 180.0 out filter.dat name FILTER

Note that a similar command that can be used with data generated by Actions
during trajectory processing is filter (see page 131).

8.8 dataset
dataset { legend <legend> <set> |

makexy <Xset> <Yset> [name <name>] |
vectorcoord {X|Y|Z} <set> [name <name>] |

cat <set0> <set1> ... [name <name>] [nooffset] |
make2d <1D set> cols <ncols> rows <nrows> [name <name>] |
{drop|keep}points {range <range arg> | [start <#>] [stop <#>] [offset <#>]}

[name <output set>] <set arg1> ... |
remove <criterion> <select> <value> [and <value2>] [<set selection>] |
connect {[head <head atom>] [tail <tail atom>]|[headmask <headmask>] [tailmask <tailmask>]}
dim {xdim|ydim|zdim|ndim <#>} [label <label>] [min <min>] [step <step>] |
outformat {double|scientific|general} <set arg1> [<set arg 2> ...] |
invert <set arg0> ... name <new name> [legendset <set>] |
shift [above <value> by <offset>] [below <value> by <offset>] <set arg0> ...

[mode <mode>] [type <type>] <set arg1> [<set arg 2> ...]
}

<mode>: ’distance’ ’angle’ ’torsion’ ’pucker’ ’rms’ ’matrix’ ’vector’
<type>: ’alpha’ ’beta’ ’gamma’ ’delta’ ’epsilon’ ’zeta’ ’nu0’ ’nu1’ ’nu2’ ’nu3’

’nu4’ ’h1p’ ’c2p’ ’chin’ ’phi’ ’psi’ ’chip’ ’omega’ ’chi2’ ’chi3’ ’chi4’
’chi5’ ’pucker’ ’noe’ ’distance’ ’covariance’ ’mass-weighted covariance’
’correlation’ ’distance covariance’ ’IDEA’ ’IRED’ ’dihedral covariance’

Options for ’type noe’:
[bound <lower> bound <upper>] [rexp <expected>] [noe_strong] [noe_medium]

[noe_weak]

[name <name>] New data set name for
makexy/vectorcoord/cat/make2d/droppoints/keeppoints.

legend <legend> <set> Set the legend for data set
<set> to <legend>.

55

makexy <Xset> <Yset> Create a new data set
(optionally named <name>) with X values from <Xset>
and Y values from <Yset>.

vectorcoord {X|Y|Z} <set> Extract X/Y/Z coordinates
from vector data set into a new 1D data set.

cat <set0> <set1> ... Concatenate two or more data sets
into a new data set (optionally named <name>). Only
works for scalar 1D and string sets.

make2d <1D set> cols <ncols> rows <nrows> Convert
1D data set into row-major 2D data set with
specified number of rows and columns.

{drop|keep}points <set arg1> ... Drop or keep specified
points from data set(s), optionally creating a new
data set.

range <range arg> Range of points to drop/keep.
[start <#>] [stop <#>] [offset <#>]

Start/stop/offset values of points to drop/keep.

remove <criterion> <select> <value> [and <value2>] [<set selection>]
Remove data sets from <set selection> according to
specified criterion and selection.

<criterion>: ’ifaverage’ ’ifsize’ ’ifmode’ ’iftype’
<select> : ’equal’ ’==’ ’notequal’ ’!=’ ’lessthan’ ’<’

’greaterthan’ ’>’ ’between’ ’outside’

connect <set args> Add/change connect atom information
(used by the sequence command, 7.16 on page 49) to
COORDS set(s). Head atoms connect to previous
residue, tail atoms connect to next residue. Can
use either absolute atom numbers or atom mask
expressions.

[head <head atom>] [tail <tail atom>] Specify the
head/tail atoms by atom number.

[headmask <headmask>] [tailmask <tailmask>]
Specify the head/tail atoms by atom mask.

dim {xdim|ydim|zdim|ndim <#>} Change specified
dimension in set(s).

label <label> Change dimension label to <label>
min <min> Change dimension minimum to <min>.
step <step> Change dimension step to <step>.

invert <set arg0> ... name <new name> [legendset <set>]

56

<set arg0> ... Specify sets to invert.
name <new name> Inverted output set name.
[legendset <set>] String data set containing legends

shift

[above <value> by <offset>] Values in set(s) above
<value> will be shifted by <offset>.

[below <value> by <offset>] Values in set(s) below
<value> will be shifted by <offset>.

<set arg0> ... Set(s) to shift.

[mode <mode>] Set data set(s) mode to <mode>.

[type <type>] Set data set(s) type to ’type’, useful
for e.g. analysis with statistics . Note this can
also be done with ’type <type>’ for certain commands
(distance , dihedral , pucker etc). Note that not
every <type> is compatible with a given <mode>.

Options for ’type noe’ only:

[bound <lower> bound <upper>] Lower and upper bounds
for NOE (in Angstroms); must specify both.

[rexp <expected>] Expected value for NOE (in
Angstroms); if not given ’(<lower> + <upper>)’ / 2.0
is used.

[noe_strong] Set lower and upper bounds to 1.8 and 2.9
Å respectively.

[noe_medium] Set lower and upper bounds to 2.9 and 3.5
Å respectively.

[noe_weak] Set lower and upper bounds to 3.5 and 5.0 Å
respectively.

Either set the legend for a single data set, create a new set with X values from
one set and Y values from another, concatenate 2 or more sets, make a 2D
set from 1D set, remove sets according to a certain criterion, or change the
mode/type for one or more data sets.

Setting the mode/type can be useful for cases where the data set is being
read in from a file; for example when reading in a dihedral data set the type
can be set to ’dihedral’ so that various Analysis routines like statistics know
to treat it as periodic. A brief description of possible modes and types follows:

57

Mode Type Description
distance noe NOE distance.
angle Angle.

torsion alpha Nucleic acid alpha.
beta Nucleic acid beta.

gamma Nucleic acid gamma.
delta Nucleic acid delta.

epsilon Nucleic acid epsilon.
zeta Nucleic acid zeta.
nu1 Nucleic pucker (O4’).
nu2 Nucleic pucker (C4’).
h1p Nucleic acid H1’.
c2p Nucleic acid C2’.
chin Nucleic acid chi.
phi Protein Phi.
psi Protein psi.
chip Protein chi.

omega Protein omega.
pucker pucker Sugar pucker.
rms RMSD.

matrix distance Distance matrix.
covariance Cartesian covariance matrix.

’mass-weighted covariance’ Mass weighted Cartesian covariance matrix.
correlation Dynamic cross correlation matrix.

’distance covariance’ Distance covariance matrix.
IDEA IDEA matrix.
IRED IRED matrix.

’dihedral covariance’ Dihedral covariance matrix.
vector IRED IRED vector.

The invert mode takes a group of M 1D data sets of size N and create N
new "inverted" data sets of size M. This is similar to the invert keyword already
available for standard and Grace data writes, but operates directly on data sets.
For example, given the following two data sets:

D0 D1
1 4
2 5
3 6

The new data sets will be laid out like so:

N0 N1 N2
1 2 3
4 5 6

58

The dataset invert command can be useful if you want to easily view output
from multiple analysis commands in a single graph. For example, to view state
counts from two different simulations side by side:

calcstate name Sim1 state bound1,dist1,0.0,2.0
calcstate name Sim2 state bound1,dist1,0.0,2.0
runanalysis dataset invert Sim*[Count] name Inverted legendset Sim1[Name]
dataset dim xdim label Simulation min 1 step 1 Inverted*
writedata statecount.agr Inverted*

The dataset shift command can be used for wrapping circular values, such as
torsions. For example, to ensure a pucker has a range from 0 to 360 instead of
-180 to 180:

pucker Furanoid @C2 @C3 @C4 @C5 @O2 cremer out CremerF.dat amplitude
run
dataset shift Furanoid below 0 by 360

8.9 debug | prnlev
debug [<type>] <#>

(<type> = actions,trajin,trajout,ref,parm,analysis,datafile,dataset)

Set the level of debug information to print. In general the higher the <#> the
more information that is printed. If <type> is specified only set the debug level
for a specific area of cpptraj.

8.10 ensextension
ensextension {on|off}

Turn printing of ensemble member number filename extensions on or off. By
default ensemble extensions are printed in parallel and not in serial.

NOTE: THE ’ensextension off’ OPTION HAS NOT BEEN FULLY
TESTED IN PARALLEL AND IS NOT CURRENTLY RECOM-
MENDED.

8.11 exit | quit
Exit normally.

8.12 flatten

flatten name <output set name> [mode {sum|avg}] <input set args>

59

name <output set name> Name of “flattened” 1D output
set(s).

mode {sum|avg} If sum, matrix elements will be summed.
If avg, matrix elements will be averaged.

<input set args> Specify matrices to “flatten”.

DataSets Created

<output set name> Flattened 1D set if only one input
matrix.

<output set name>:<idx> Flattened 1D sets when more
than one input matrix; index starts from 1.

Flatten 1 or more matrices into 1D array(s) by summing or averaging elements.
For example, given a matrix with values like this:

X Y Value
1 3 5.0
1 4 4.0
2 3 2.0

The “flattened” 1D array with mode SUM would be determined as follows:

Element 1 = (5.0/2) + (4.0/2) = 4.5
Element 2 = (2.0/2) = 1.0
Element 3 = (5.0/2) + (2.0/2) = 3.5
Element 4 = (4.0/2) = 2.0

And the final 1D array would look like so:

Index Value
1 4.5
2 1.0
3 3.5
4 2.0

8.13 go | run
Begin trajectory processing, followed by analysis and datafile write.

8.14 help
help [{ All |

<cmd> |
<command category> |
Form[ats] [{read|write}] |
Form[ats] [{trajin|trajout|readdata|writedata|parm|parmwrite} [<fmt key>]] |
Mask }]

60

Command Categories: Gen[eral] Sys[tem] Coor[ds] Traj[ectory] Top[ology]
Act[ion] Ana[lysis] Con[trol]

All : Print all known commands.
<cmd> : Print help for command <cmd>.
<command category> : Print all commands in specified category.
Form[ats] : Help for file formats.
Mask : Help for mask syntax.

If ’All’ is specifed, list all commands known to cpptraj. If given with a command,
print help for that command. Otherwise, list all commands of a certain category
(General, System, Coords, Trajectory, Topology, Action, Analysis, or Control),
help for various file formats, or help with atom mask syntax.

8.15 list
list <type>

(<type> = actions,trajin,trajout,ref,parm,analysis,datafile,dataset)

List the currently loaded objects of <type>. If no type is given then list all
loaded objects.

8.16 noexitonerror
noexitonerror

Normally cpptraj will exit if actions fail to initialize properly. If noexitonerror
is specified, cpptraj will attempt to continue past such errors. This is the default
if in interactive mode.

8.17 noprogress
noprogress

Do not display read progress during trajectory processing.

8.18 parallelanalysis
parallelanalysis [sync]

MPI only. Divide all currently set up analyses as evenly as possible among
available MPI processes and execute. Each analysis will get a single MPI pro-
cess. If sync is specified all data will be synced back to the master process (for
e.g. subsequent analysis). For an example of how to use the parallelanalysis
command, see 12.16 on page 248.

61

8.19 parsedata

parsetiming <filename args> ... [out <file>] [name <setname>]
[sortby {time|cores|filename}] [includebad] [showdetails]
[type {trajproc|trajread|actframe}] [reverse]
[groupout <file> [grouptype {prefix|name|kind}]]

<filename args> Files containing CPPTRAJ output to get
timing data from.

[out <file>] Write total sorted timing sets to <file>.

[name <setname>] Set name for timing data sets.

[sortby {time|cores|filename}] Sort timing data sets by
either time, number of cores (MPI processes * OpenMP
threads), or file name.

[includebad] If specified, include run output for which
timing data cannot be extracted (e.g. an
incomplete/failed run).

[showdetails] If specified, details about each run will
be printed to STDOUT.

[type {trajproc|trajread|actframe} If specified, report
time other than the total time (which is the
default):

trajproc Total trajectory processing time
(trajectory I/O plus action frame time).

trajread Trajectory read time (requires compiling
with ’-timer’ configure option/-DTIMER compiler
define).

actframe Action frame time (requires compiling with
’-timer’ configure option/-DTIMER compiler
define).

[reverse] Instead of longest time to shortest time, sort
shortest time to longest time.

[groupout <file>] Group run output by a property and
write to a file. Additional details will be written
like speedup and efficiency (relative to the slowest
run).

[grouptype {prefix|name|kind}] Property to group
runs by in group output file.
prefix Group by directory prefix.
name Group by run type name (see

<setname>[name] below).
kind Group by run type name; OpenMP runs are

separated by number of OpenMP threads.

62

DataSets Created:

<setname> Set containing sorted run times.

<setname>[name] Set containing shortedhand run names.
Consists of a prefix (S for serial, O for OpenMP, M
for MPI, H for hybrid MPI/OpenMP) followed by
numbers indicating number of MPI processes ’x’
OpenMP threads; e.g., H16x4 means a hybrid run
consisting of 16 MPI processes and 4 OpenMP threads
per process. If CUDA is active, the name will be
wrapped in ’G()’, e.g. G(H16x4).

<setname>[dir] Set containing output directory
prefixes. If no directory prefix, just contains
output file name.

The parsedata command can be used to extract timing data from CPPTRAJ
output.

8.20 precision

precision {<filename> | <dataset arg>} [<width>] [<precision>]

Set the precision for all data sets in data file <filename> or data set(s) specified
by <dataset arg> to width.precision, where width is the column width and pre-
cision is the number of digits after the decimal point. Note that the <precision>
argument only applies to floating-point data sets.

For example, if one wanted to set the precision of the output of an Rmsd
calculation to 8.3, the input could be:

trajin ../run0.nc
rms first :10-260 out prec.dat
precision prec.dat 8 3

and the output would look like:

#Frame RMSD_00000
1 0.000
2 0.630

8.21 random
random [setdefault {marsaglia|stdlib|mt|pcg32|xo128}]

[createset <name> count <#> [seed <#>]
settype {int|float01|gauss [mean <mean>] [sd <SD>]}]

setdefault If specified, change the default random
number generator (RNG).

63

marsaglia Use the Marsaglia RNG that is used in the
Amber MD programs sander/pmemd.

stdlib Use the C standard library RNG.
mt Use the C++11 implementation of the Mersenne

twister (mt19937); only available with C++11
support.

pcg32 Use the 32 bit version of the Permuted
Congruential Generator.[4]

xo128 Use the Xoshiro128++ RNG.[5]

createset If specified, create a 1D data set filled with
random numbers of the specified type.

<name> Name of created set.
count <#> The number of elements to put into the

set.
settype {int|float01|gauss} Type of numbers to use;

integer, floating point between 0 and 1,
Gaussian distribution.
mean <mean> Mean of distribution for ’gauss’.
sd <SD> Standard deviation of distribution for

’gauss’.
seed <#> Optional seed for the RNG.

This command can be used to set the default random number generator used
in CPPTRAJ, and/or create a 1D data set filled with random values.

8.22 readdata

readdata <filename> [name <dsname>] [as <fmt>] [separate] [<format options>]

name <dsname> Name for read-in data set(s). Default
is <filename>.

as <fmt> Force <filename> to be read as a specific
format using given format keyword.

separate Read each file specified into separate data
sets indexed from 0.

Read data from file <filename> and store as data sets. For more information
on formats currently recognized by cpptraj see 1 on page 24. For format-specific
options see 6. For example, given the file calc.dat:

#Frame R0 D1
1 1.7 2.22

The command ’readdata calc.dat’ would read data into two data sets, calc.dat:2
(legend set to “R0”) and calc.dat:3 (legend set to “D1”).

64

8.23 readensembledata

readensembledata <filename> [filenames <additional files>] [<readdata args>]

<filename> Lowest replica file name.

filenames <additional files> Specified additional members
of the ensemble. If not specified ensemble members
will be search for using numerical extensions.

<readdata args> Additional data file arguments.

Read data sets as an ensemble, i.e. each file is a different member of an ensemble.
This command is MPI-aware.

If one filename is given, it is assumed it is the "lowest" member of an en-
semble with a numerical extension, e.g. ’file.001’ and the remaining files are
searched for automatically. Otherwise all other members of the ensemble can
be specified with ’filenames’ and a comma-separated list e.g. ’file.001 filenames
file.002,file.003,file.004. For additional ’readdata’ arguments that can be passed
in see 6 on page 27.

For example, to read in data files named cpout.001 to cpout.006 automati-
cally:

readensembledata cpout.001 cpin cpin name PH

Or specified:

readensembledata cpout.001 \
filenames cpout.002,cpout.003,cpout.004,cpout.005,cpout.006 \
cpin cpin name PH

8.24 readinput
readinput <filename>

Read cpptraj commands from file <filename>.

8.25 removedata
removedata <arg>

Remove data set corresponding to <arg>.

8.26 rst
rst <mask1> <mask2> [<mask3>] [<mask4>]

r1 <r1> r2 <r2> r3 <r3> r4 <r4> rk2 <rk2> rk3 <rk3>
{[parm <parmfile / tag> | parmindex <#>]}
[{ref <refname> | refindex <#> | reference} [offset <off>] [width <width>]]
[out <outfile>]

65

<mask1> (Required) First atom mask.
<mask2> (Required) Second atom mask. If only two

masks assume distance restraint.
[<mask3>] (Optional) Third atom mask. If 3 atom masks

assume angle restraint.
[<mask4>] (Optional) Fourth atom mask. If 4 atom

masks assume dihedral restraint.
rX <rX> Value of RX (X=1-4, default 0.0)
rk2 <rk2> Value of RK2 (force constant to be applied

when R is R1 <= R < R2)
rk3 <rk3> Value of RK3 (force constant to be applied

when R is R3 <= R < R4)
[parm <parmfile / tag> | parmindex <#>] Topology to

be used for atom masks.
{ref <refname> | refindex <#> | reference} Use

distance/angle/dihedral in reference structure to
determine values for r1, r2, r3, and r4. The value
of r2 is set to <r2> + <off>, r3 = r2, r1 = r2 -
<width>, r4 = r3 + <width>.

[offset <off>] (Reference only) Value to offset
distance/angle/torsion in reference by (default
0.0).

[width <width>] (Reference only) Width between r1 and
r2, r3 and r4 (default 0.5).

[out <outfile>] Write restraints to outfile. If not
specified, write to STDOUT.

Generate Amber-style distance restraints for use with nmropt=1. This is partic-
ularly useful for generating distance restraints based off of reference coordinates.
For example to generate a distance restraint between two C5’ atoms using the
current distance between them in a reference structure, offsetting the distance
by 1.0 Ang.:

parm 30bp-longbox-tip3p-na.parm7
reference 30bp-longbox.rst7
rst :1@C5’ :31@C5’ reference offset 1.0 rk2 10.0 rk3 10.0 out output

8.27 runanalysis
runanalysis [<analysiscmd> [<analysis args>]]

Run given analysis command immediately and write any data generated. If no
command is given run any analysis currently set up. NOTE: When ’runanalysis’
is specified alone, data is not automatically written; to write data generated with
’runanalysis’ use the ’writedata’ command (this allows multiple analysis runs
between output if desired).

66

8.28 select
select <mask>

Prints the number of selected atoms corresponding to the given mask, as well
as the atom numbers with format:

Selected= <#atom1> <#atom2> ...

This does not affect the state in any way, but is intended for use in scripts etc.
for testing the results of a mask expression.

8.29 selectds
selectds <dataset arg>

Show the results of a data set selection. Data set selection has the format:

<name>[<aspect>]:<index>

Either the [<aspect>] or the <index> arguments may be omitted. A ’*’ can be
used in place of <name> or [<aspect>] as a wildcard. The <index> argument
can be a single number or a range separated by ’-’ and ’,’.

This command does not affect the state in any way, but is particularly useful
in interactive mode for determining the results of a dataset argument.

8.30 sortensembledata
sortensembledata <dset arg0> [<dset arg1> ...]

<dset arg0> [<dset arg1> ...] Data set(s) to sort.

Sort unsorted data sets. Currently only works for constant pH REMD data.

8.31 usediskcache
usediskcache {on|off}

If on, CPPTRAJ will attempt to cache data sets to disk if possible. This
currently only works for integer data sets (e.g. hbond series data sets, etc).

8.32 write | writedata

write [<filename> <datasetname0> [<datasetname1> ...]] [<DataFile Options>]

With no arguments, write all files currently in the data file list. Otherwise, write
specified data set(s) to <filename>. This is like the ’create’ command except a
data file is not added to the data file list; it is written immediately. See 6 on
page 27 for more data file format options.

67

8.33 System Commands
These commands call the equivalent external system commands.

gnuplot <args> Call gnuplot (if it is installed on your system) with the
given arguments.

head <args> Call head, which lists the first few lines of a file.

less <args> Call less, which can be used to view the contents of a file.

ls <args> List the contents of a directory.

pwd <args> Print the current working directory.

xmgrace <args> Call xmgrace (if it is installed on your system) with the
given arguments.

9 Topology File Commands
These commands control the reading and writing of topology files. Cpptraj
supports the following topology file formats:

Format Keyword Extension Notes
Amber Topology amber .parm7 Only fully-supported format for write.

PDB pdb .pdb Read Only
Mol2 mol2 .mol2 Read Only
CIF cif .cif Read Only

Charmm PSF psf .psf Limited Write
Gromacs Topology gromacs .top Read only

SDF sdf .sdf Read Only
Tinker ARC arc .arc Read Only

For most commands that require a topology one can be specified via two
keywords:

parm [<name>] Select topology corresponding to given file name, tag, or
name.

parmindex [<#>] Select topology by order in which it was loaded, starting
from 0.

The following topology related commands are available:

68

Command Description
angleinfo, angles, printangles Print angle info for selected atoms.
atominfo, atoms, printatoms Print details for selected atoms.
bondinfo, bonds, printbonds Print bond info for selected atoms.

bondparminfo Print the bond parameter table.
change Change specified parts of a topology.
charge Print total charge for selected atoms.

comparetop Compare two topologies and report differences.
dihedralinfo, dihedrals, printdihedrals Print dihedral info for selected atoms.

hmassrepartition Perform hydrogen mass repartitioning.
improperinfo, impropers, printimpropers Print improper info for selected atoms.

mass Print total mass for selected atoms.
molinfo Print molecule info for selected atoms.
parm Load a topology file.

parmbox Modify box info for a loaded topology.
parminfo Print details for selected topology.
parmstrip Remove selected atoms from topology.
parmwrite Write selected topology to file.

printub, ubinfo Print Urey-Bradley info for selected atoms.
resinfo Print residue info for selected atoms.

scaledihedralk Scale selected dihedral force constants.
solvent Change which molecules are considered solvent.

updateparameters Update/add parameters in/to a topology.

9.1 angleinfo | angles | printangles

angleinfo [parm <name> | parmindex <#> | <#>] [<mask1>] [<mask2> <mask3>]
[out <file>]

[parm <name> | parmindex <#> | <#>] Name/tag or
index of topology. Default is first loaded
topology.

[<mask1>] Mask to print angle info for.

[<mask2> <mask3>] If specified, angles must match
all masks.

[out <file>] File to print to (default STDOUT).

Print angle information of atoms in <mask> for selected topology (first loaded
topology by default) with format:

Angle Kthet degrees atom names (numbers)

Where Angle is the internal angle index, Kthet is the angle force constant,
degrees is the angle equilibrium value, atom names shows the atoms involved

69

in the angle with format :<residue num>@<atom name>, and (numbers) shows
the atom indices involved in a comma-separated list. Atom types will be shown
in the last column.

If 3 masks are given instead of 1, print info for angles with first atom in
<mask1>, second atom in <mask2>, and third atom in <mask3>.

9.2 atominfo | atoms | printatoms

atominfo [parm <name> | parmindex <#> | <#>] <mask> [out <file>]

[parm <name> | parmindex <#> | <#>] Name/tag or
index of topology. Default is first loaded
topology.

<mask> Mask selecting atoms to print info for.

[out <file>] File to print to (default STDOUT).

Print information on atoms in <mask> for selected topology (first loaded topol-
ogy by default) with format:

#Atom Name #Res Name #Mol Type Charge Mass GBradius El [rVDW] [eVDW]

where #Atom is the internal atom index, the first Name column is the atom name,
#Res is the atom’s residue number, the second Name column is residue name,
#Mol is the atom’s molecule number, Type is the atom’s type (certain topologies
only), Charge is the atom charge (in units of electron charge), Mass is the
atom’s mass (in amu), GBradius is the generalized Born radius of the atom
(Amber topologies only), and El is the 2 character element string. The final
two columns are only shown if the topology contains non-bonded parameters:
rVDW is the atom’s Lennard-Jones radius and eVDW is the atom’s Lennard-Jones
epsilon.

9.3 bondinfo | bonds | printbonds
bondinfo [parm <name> | parmindex <#> | <#>]

[<mask1>] [<mask2>] [out <file>] [nointrares]

[parm <name> | parmindex <#> | <#>] Name/tag or
index of topology. Default is first loaded
topology.

[<mask1>] Mask to print bond info for.

[<mask2>] If specified, bonds must match both masks.

[out <file>] File to print to (default STDOUT).

[nointrares] Do not print intra-residue bonds.

70

Print bond information for atoms in <mask> for selected topology (first loaded
topology by default) with format:

Bond Kb Req atom names (numbers)

where Bond is the internal bond index, Kb is the bond force constant, Req is the
bond equilibrium value (in Angstroms), atom names shows both atom names
with format :<residue num>@<atom name>, and (numbers) shows both atom
numbers in a comma-separated list. Atom types will be shown in the last
column.

If 2 masks are given instead of 1, print info for bonds with first atom in
<mask1> and second atom in <mask2>.

9.4 bondparminfo

bondparminfo [parm <name> | crdset <set> | parmindex <#> | <#>] [out <file>]

[parm <name> | parmindex <#> | <#>] Name/tag or
index of topology. Default is first loaded
topology.

[out <file>] File to print to (default STDOUT).

Print the bond parameter table with format:

#Idx Rk Req

Where Idx is the internal bond parameter index, Rk is the bond force constant
(in kcal/mol*Ang^2), and Req is the bond equilibrium value (in Ang.).

9.5 change
change [parm <name> | parmindex <#> | <#> |

crdset <COORDS set>]
{ resname from <mask> to <value> |

chainid of <mask> to <value> |
oresnums of <mask> min <range min> max <range max> |

icodes of <mask> min <char min> max <char max> resnum <#> |
atomname from <mask> to <value> |

addbond <mask1> <mask2> [req <length> <rk> <force constant>]
removebonds <mask1> [<mask2>] [out <file>] |
bondparm <mask1> [<mask2>] {setrk|scalerk|setreq|scalereq} <value> |
{mass|charge} [of <mask>] {to <value> |by <offset> |

byfac <factor> |fromset <data set>} |
mergeres firstres <start res#> lastres <stop res#>

}

parm <name> | parmindex <#> | <#> | crdset <COORDS set>
Topology to change.

71

resname from <mask> to <value> Change residue names
for residues in <mask> to the given <value>.

chainid of <mask> to <value> Change the chain ID of
residues in <mask> to given <value>.

oresnums of <mask> min <range min> max <range max>
Change original residue numbers (to e.g. original
PDB numbers) of residues in <mask> to a range
starting from <min> and ending with <max>.

icode of <mask> min <char min> max <char max> <resnum> <#>
Change residue insertion codes of residues in <mask>
to a range of characters starting from <min> and
ending with <max>; set the original residue number
to <resnum>.

atomname from <mask> to <value> Change atom names
for atoms in <mask> to the given <value>.

addbond <mask1> <mask2> Add bond between atom
specified by <mask1> and atom specified by <mask2>.

[req <length>] The equilibrium bond length in
Angstroms.

[rk <force constant>] The bond force constant in
kcal/mol*Angstrom.

removebonds <mask1> [<mask2>] Remove bonds from
atoms in <mask1>. If <mask2> also given, remove
bonds between atoms in <mask1> and atoms in <mask2>.

[out <file>] If specified, write removed bonds to
<file> with format ’<residue name> <residue num>
<atom name> <atom num>’.

bondparm <mask1> [<mask2>] {setrk|scalerk|setreq|scalereq} <value>
Modify bond parameters in bonds selected by <mask1>
(and <mask2> if specified) by specified <value>.

setrk Set bond force constants to <value>.
scalerk Scale bond force constants by <value>.
setreq Set bond equilibrium lengths to <value>.
scalereq Scale bond equilibirum lengths by <value>.

mass|charge Change mass or charge in specified
topology.

of <mask> Atoms to change mass/charge of.
to <value> Value to change mass/charge to.
by <offset> Value to offset masses/charges by.
byfac <factor> Value to multiply masses/charges by.

72

fromset <data set> Use values in <data set> for
mass/charge; must have the same number of values
as atoms selected by <mask>.

mergeres Merge consecutive residues.

firsres <start res#> Index (starting from 1) of
first residue to merge.

lastres <stop res#> Index (starting from 1) of last
residue to merge. Should be greater than
firstres.

Change specified parts of the specified topology. For example, to change atoms
named ’HN’ to ’H’ in topology 0:

change parmindex 0 atomname from @HN to H

9.6 charge

charge [parm <name> | parmindex <#> | <#>] <mask> [out <file>] [name <set>]

parm <name> | parmindex <#> Topology to calculate
charge from.

<mask> Atom(s) to calculate total charge for (default
all).

[out <file>] File to write total charge to.

[name <set>] If specified, a data set named <set> will
be cretaed containing total charge.

Print the total charge of atoms in <mask> (in units of electron charge) for
selected topology (first loaded topology by default).

9.7 comparetop

comparetop {parm <name> | parmindex <#>} {parm <name> | parmindex <#>} [out <file>]
[atype] [lj] [bnd] [ang] [dih] [atoms]

parm <name> | parmindex <#> Topologies to compare.

out <file> Print results to file instead of screen.

[atype] Only report atom type differences.

[lj] Only report differences in Lennard-Jones parameters.

[bnd] Only report differences in bond parameters.

[ang] Only report differences in angle parameters.

[dih] Only report differences in dihedral parmeters.

73

[atoms] Only report differences in atom properties.

Compare and report differences in atoms/parameters between two topologies.
Differences are reported in standard ’diff’ format, with ’<’ prefix indicating the
parameter is from the first topology and ’>’ prefix indicating the parameter is
from the second topology.

9.8 dihedralinfo | dihedrals | printdihedrals

dihedralinfo [parm <name> | parmindex <#> | <#>] [<mask1>] [<mask2> <mask3> <mask4>]
[out <file>]

[parm <name> | parmindex <#> | <#>] Name/tag or
index of topology. Default is first loaded
topology.

[<mask1>] Mask to print dihedral info for.

[<mask2> <mask3> <mask4>] If specified, dihedrals
must match all masks.

[out <file>] File to print to (default STDOUT).

Print dihedral information of atoms in <mask> for selected topology (first
loaded topology by default) with format:

#Dihedral pk phase pn atoms

where #Dihedral is the internal dihedral index, pk is the dihedral force constant,
phase is the dihedral phase, pn is the dihedral periodicity, and atoms shows the
names of the atoms involved in the angle with format :<residue num>@<atom
name>, followed by the atom indices involved in a comma-separated list. In
addition if the dihedral is an end dihedral, improper dihedral, or both it will be
prefaced with an E, I, or B respectively. Atom types will be shown in the last
column.

If 4 masks are given instead of 1, print info for dihedrals with first atom in
<mask1>, second atom in <mask2>, third atom in <mask3>, and fourth atom
in <mask4>.

9.9 hmassrepartition

hmassrepartition [parm <name> | crdset <set> | parmindex <#> | <#>]
[<mask>] [hmass <hydrogen new mass>] [dowater]

parm <name> Modify topology selected by name.

crdset <set> Modify topology of COORDS set.

parmindex <#> | <#> Modify topology selected by
index <#> (starting from 0).

74

<mask> Atoms to modify (all solute atoms by default).

hmass <hydrogen new mass> Mass to change hydrogens
to (3.024 u by default).

dowater If specified, modify water hydrogen mass as
well.

Perform hydrogen mass repartitioning on the specified topology. Hydrogen mass
repartitioning means that for a given heavy atom, the mass of all bonded hy-
drogens are increased (to 3.024 u by default) and the mass of that heavy atom
is decreased so as to maintain the same overall mass. The main use case is
to allow longer time steps for molecular dynamics integration due to reduced
frequency of vibration of bonds to hydrogen atoms.

9.10 improperinfo | impropers | printimpropers

improperinfo [parm <name> | parmindex <#> | <#>] [<mask1>] [<mask2> <mask3> <mask4>]
[out <file>]

[parm <name> | parmindex <#> | <#>] Name/tag or
index of topology. Default is first loaded
topology.

[<mask1>] Mask to print improper info for.

[<mask2> <mask3> <mask4>] If specified, impropers
must match all masks.

[out <file>] File to print to (default STDOUT).

For specified topology (first by default) either print CHARMM improper info for
all atoms in <mask1>, or print info for dihedrals with first atom in <mask1>,
second atom in <mask2>, third atom in <mask3>, and fourth atom in <mask4>.

9.11 mass

[<parmindex>] [parm <name> | parmindex <#> | <#>] <mask> [out <file>] [name <set>]

parm <name> | parmindex <#> Topology to calculate
mass from.

<mask> Atom(s) to calculate total mass for (default
all).

[out <file>] File to write total mass to.

[name <set>] If specified, a data set named <set> will
be cretaed containing total mass.

Print the total mass of atoms in <mask> (in amu) for selected topology (first
loaded topology by default).

75

9.12 molinfo

molinfo [parm <name> | parmindex <#> | <#>] <mask> [out <file>]

[parm <name> | parmindex <#> | <#>] Name/tag or
index of topology. Default is first loaded
topology.

<mask> Mask selecting molecules to print info for.

[out <file>] File to print to (default STDOUT).

Print molecule information for atoms in <mask> for selected topology (first
loaded topology by default) with format:

#Mol Natom #Res Name C [SOLVENT]

where #Mol is the molecule number, Natom is the number of atoms in the
molecule, #Res and Name are the residue number and residue name of the first
residue in the molecule respectively, and C is the chain ID of the first residue.
If the molecule is composed on non-consecutive fragments, #Res, Name, and C
will be printed for each fragment. SOLVENT will be printed if the molecule is
currently considered a solvent molecule.

9.13 parm
parm <filename> [{[TAG] | name <setname>}]

[{ nobondsearch |
[bondsearch <offset>] [searchtype {grid|pairlist}]

}] [nomolsearch] [renumresidues]

<filename> Parameter file to read in; format is
auto-detected.

’[TAG]’ Optional tag (bounded in brackets) which can be
referred to in place of the topology file name in
order to simplify references to it (see 3.4 on
page 18 for examples of how to use tags).

[name <setname>] Optional name that can be used to
refer to the topology in place of the file name.

[bondsearch <offset>] Optional; when searching for
bonds via geometry search (default for Topologies
without bond information) add <offset> to distances
(default 0.2 Å). Increase this if your system
includes unusually long bonds.

[searchtype {grid|pairlist}] Change search algorithm from
the default search between residues algorithm:

76

grid Uses a grid when searching for bonds between
residues. This can find bonds between residues
that are not sequential (e.g. disulfide bonds).

pairlist Uses a pair list to search for bonds between
atoms. This can potentially find bonds across
periodic boundaries, but is the more
experimental of the two.

Advanced Options - Not recommended for general use

[nobondsearch] If specified do not search for bonds via
geometry if Topology does not include bond
information. May cause some Actions to fail.

[nomolsearch] If specified do not search for molecule
information. May cause some Actions to fail.

[renumresidues] If specified, ensure that any residue
cannot be part of more than 1 molecule (can occur
with e.g. alternate sites). Residues will be
renumbered according to molecule information in that
case.

Read in parameter file. The file format will be auto-detected. Current formats
recognized by cpptraj are listed on page 68. If the file does not contain bond
information, cpptraj will attempt to assign bonds based on a simple distance
search of atoms within and between residues. The distance cutoff for determin-
ing bonds between atoms depends on the elements of the two atoms in question,
augmented by <offset>. Molecule information is then determined from bond
information.

9.13.1 PDB format:

[pqr] [readbox] [conect] [noconect] [link] [nolink] [keepaltloc <char>]

[pqr] Read charge and radius information from the
occupancy and B-factor columns.

[readbox] Read unit cell information from CRYST1 record
if present.

[conect] Read CONECT records if present (default).

[noconect] Do not read in CONECT records from PDB file.

[link] Read LINK records if present.

[nolink] Do not read LINK records if present (default).

[keepaltloc <char>] If specified, only keep alternate
atom location IDs matching the specified character
<char>.

77

IMPORTANT NOTES FOR PDB FILES Sometimes PDB files can con-
tain alternate coordinates for the same atom in a residue, e.g.:

ATOM 806 CA ACYS A 105 6.460 -34.012 -21.801 0.49 32.23
ATOM 807 CB ACYS A 105 6.054 -33.502 -20.415 0.49 35.28
ATOM 808 CA BCYS A 105 6.468 -34.015 -21.815 0.51 32.42
ATOM 809 CB BCYS A 105 6.025 -33.499 -20.452 0.51 35.38

If this is the case cpptraj will print a warning about alternate location IDs being
present but will take no other action. Both residues are considered ’CYS’ and
the mask ’:CYS@CA’ would select both atom 806 and 808. If desired, a specific
location ID can be kept via the keepaltloc keyword. If keepaltloc is specified,
it should also be specified for any trajin commands (see 10.4.3 on page 90).
Residue insertion codes are read in but also not used by the mask parser.

9.13.2 Charmm PSF:

[param <file>]

[param <file>] Read CHARMM parameters from given file.
Can do multiple times.

9.13.3 Gromacs Top

By default cpptraj will look for Gromacs topology data (that is not in the same
directory) in the directory defined by the GMXDATA environment variable;
specifically, it expects things to be in the "$GMXDATA/top" directory.

9.14 parmbox

parmbox [parm <name> | parmindex <#> | <#>] [nobox] [truncoct]
[x <xval>] [y <yval>] [z <zval>] [alpha <a>] [beta] [gamma <g>]

[parm <name> | parmindex <#> | <#>] Name/tag or
index of topology to modify. Default is first
loaded topology.

[nobox] Remove box information.

[truncoct] Set truncated octahedon angles with lengths
equal to <xval>.

[x <xval>] Box X length.

[y <yval>] Box Y length.

[z <zval>] Box Z length.

[alpha <a>] Box alpha angle.

[beta] Box beta angle.

78

[gamma <g>] Box gamma angle.

Modify the box information for specified topology. Overwrites any box infor-
mation if present with specified values; any that are not specified will remain
unchanged. Note that unlike the box action this command affect box informa-
tion immediately. This can be useful for e.g. removing box information from a
parm when stripping solvent:

parm mol.water.parm7
parmstrip :WAT
parmbox nobox
parmwrite out strip.mol.nobox.parm7

9.15 parminfo
parminfo [parm <name> | parmindex <#> | <#>] [<mask>]

Print a summary of information contained in the specified topology (first loaded
topology by default) .

9.16 parmstrip
parmstrip <mask> [parm <name> | parmindex <#> | <#>]

Strip atoms in <mask> from specified topology (by default the first topology
loaded). Note that unlike the strip Action, this permanently modifies the
topology for as long as cpptraj is running, so this should not be used if the
topology is being used to read or write a trajectory via trajin/trajout . This
command can be used to quickly created stripped Amber topology files. For
example, to strip all residues name WAT from a topology and write a new
topology:

parm mol.water.parm7
parmstrip :WAT
parmwrite out strip.mol.parm7

9.17 parmwrite

parmwrite out <filename> [{parm <name> | parmindex <#> | <#> | crdset <setname>}]
[<fmt>] [nochamber]

<filename> File to write to.

[parm <name> | parmindex <#> | <#>] Topology to
write out.

[crdset <setname>] Write topology from specified COORDS
data set.

79

[<fmt>] Format keyword. If not specified the file name
extension will be used. Default is Amber Topology.

[nochamber] (Amber topology only) Remove any CHAMBER
information from the topology.

Write out specified topology (first topology loaded by default) to <filename>
with format <fmt> (Amber topology if not specified). Note that the Amber
topology format is the only fully supported format for topology writes.

9.17.1 Amber Topology

[nochamber] [writeempty] [nopdbinfo]

[nochamber] Do not write CHAMBER information to
topology (useful for e.g. using topology for
visualization with older versions of VMD).

[writeempty] Write Amber tree, join, and rotate info
even if not present.

[nopdbinfo] Do not write "PDB" info (e.g. chain IDs,
original res #s, etc).

9.17.2 Charmm PSF

[oldpsf] [ext]

[oldpsf] Write atom type indices instead of type names
(not recommended).

[ext] Use extended format.

9.18 printub | ubinfo

printub [parm <name> | parmindex <#> | <#>] [<mask1>] [<mask2>] [out <file>]

[parm <name> | parmindex <#> | <#>] Name/tag or
index of topology. Default is first loaded
topology.

[<mask1>] Atoms to print UB info for.

[<mask2>] If specified, UB info must match both masks.

[out <file>] File to print to (default STDOUT).

For specified topology (first by default) either print CHARMM Urey-Bradley
info for all atoms in <mask1>, or print info for bonds with first atom in
<mask1> and second atom in <mask2>.

80

9.19 resinfo

resinfo [parm <name> | parmindex <#> | <#>] <mask> [short [maxwidth <#res>]]
[out <file>]

[parm <name> | parmindex <#> | <#>] Name/tag or
index of topology. Default is first loaded
topology.

<mask> Mask selecting residues to print info for.

[short] Use a short 1 character residue name format

[maxwidth <#res>] Max # of residues to print in
one line (default 50).

[out <file>] File to print to (default STDOUT).

Print residue information for atoms in <mask> for selected topology (first
loaded topology by default) with format:

#Res Name First Last Natom #Orig #Mol C

where #Res is the residue number, Name is the residue name, First and Last
are the first and last atom numbers of the residue, Natom is the total number of
atoms in the residue, #Orig is the original residue number (in PDB files), #Mol
is the molecule number, and C is the chain ID.

If short is specified then residues will be printed out in a condensed format.
Each residue name will be shortened to 1 character, and residues are printed
out in groups of 10, 5 groups to a line, with each line beginning with a residue
number, e.g.

> resinfo short 4
1 MGFLAGKKIL ITGLLSNKSI AYGIAKAMHR EGAELAFTYV GQFKDRVEKL
51 CAEFNPAAVL PCDVISDQEI KDLFVELGKV WDGLDAIVHS IAFAPRDQLE

If the 1 character name for a residue is unknown it will be shown as the first
letter of the residue name in lower-case.

9.20 scaledihedralk

scaledihedralk [parm <name> | parmindex <#>] <scale factor> [<mask> [useall]]

Scale dihedral force constants for dihderals selected by <mask> for specified
topology. If useall is specified all atoms in <mask> must be present to select
a dihedral, otherwise any atom in <mask> will selected a dihedral.

81

9.21 solvent

solvent [parm <name> | parmindex <#> | <#>] { <mask> | none }

Set solvent for selected topology (first loaded topology by default) based on
<mask>, or set nothing as solvent if none is specified.

9.22 updateparameters
parm <name> | parmindex <#> setname <parm set>

parm <name> | parmindex <#> Topology to update.

setname <parm set> Topology or parameter data set
containing parameters to use.

NOTE: This command is provided for convenience only. For editing topology
files, ParmEd is a much better alternative.

Update parameters in specified topology with those from <parm set>. <parm
set> can either be a parameter set or a topology. If a parameter from <parm
set> does not exist in the topology it will be added.

For example, to modify parameters in a topology file named lys.parm7 with
those from parameter file kcx.str:

Read Topology to modify
parm lys.parm7
Read CHARMM parameters
readdata kcx.str as charmmrtfprm name MyParm
Update parameters in Topology with those from kcx.str
updateparameters parmindex 0 setname MyParm
Write out the updated Topology
parmwrite out lys.kcx.parm7

10 Trajectory File Commands
These commands control the reading and writing of trajectory files. There are
three trajectory types in cpptraj : input, output, and reference. In cpptraj,
trajectories are always associated with a topology file. If a topology file is not
specified, a trajectory file will be associated with the first topology file loaded
by default (this is true for both input and output trajectories.

Cpptraj currently understands the following trajectory file formats:

82

Format Keyword(s) Extension Notes
Amber Trajectory crd .crd Default format if

key-
words/extensions
not recognized.

Amber NetCDF cdf, netcdf .nc No compression.
Amber Restart restart .rst7, .rst
Amber NetCDF

Restart
ncrestart, restartnc .ncrst

Charmm “DCD”
Trajectory

dcd, charmm .dcd

Charmm
COORdinates

cor .cor

Charmm Restart charmmres .res Read Only
PDB pdb .pdb
Mol2 mol2 .mol2

Scripps Binpos binpos .binpos
Gromacs TRR trr .trr
Gromacs GRO gro .gro Read Only
Gromacs XTC xtc .xtc
Gromacs TNG tng .tng Read Only

CIF cif .cif Read Only
Tinker ARC arc .arc Read Only
SQM Input sqm .sqm Write Only

SDF sdf .sdf Read Only
XYZ xyz .xyz

Desmond DTR
(Anton)

dtr .dtr Read Only

LMOD Conflib conflib .conflib Read Only,
Detection by

extension
MDTraj H5 h5 .h5 Read Only

MDAnalysis H5MD h5md .h5md Read Only

The following trajectory-related commands are available:

Command Description
ensemble Set up a trajectory ensemble for reading during a run.

ensemblesize (MPI only) specify number of members expected in subsequent ensemble commands.
reference Read in a reference structure.

trajin Set up a trajectory for reading during a Run.
trajout Set up an output trajectory or ensemble for writing during a Run.

83

10.1 ensemble

ensemble <file0> {[<start>] [<stop> | last] [offset]} | lastframe
[parm <parmfile / tag> | parmindex <#>]
[trajnames <file1>,<file2>,...,<fileN>
[{nosort |

bycrdidx |
remlog <remlogfile> [nstlim <nstlim> ntwx <ntwx>]}]

<file0> Lowest replica filename.

[<start>] Frame to begin reading ensemble at (default
1).

[<stop> | last] Frame to stop reading ensemble at; if not
specified or ’last’ specified, end of trajectories.

[<offset>] Offset for reading in trajectory frames
(default 1).

[lastframe] Select only the final frame of the
trajectories.

[parm <parmfile>] Topology filename/tag to associate
with trajectories (default first topology).

[parmindex <#>] Index of Topology to associate with
trajectories (default 0, first topology).

[trajnames <file1>,...,<fileN>] Do not automatically
search for additional replica trajectories; use
comma-separated list of trajectory names.

[nosort] Do not attempt to sort trajectories. Useful for
H-REMD trajectories which are already sorted by
replica/Hamiltonian, or collections of MD
trajectories.

[bycrdidx] For H-REMD trajectories, sort by coordinate
indices stored in trajectory files. This is
preferred over sorting via ’remlog’.

[remlog <remlogfile>] For H-REMD trajectories only, use
specified REMD log file to sort trajectories by
coordinate index (instead of by
replica/Hamiltonian).

[nstlim <nstlim> ntwx <ntwx>] If trajectory and
REMD log were not written at the same rate,
these are the values for nstlim (steps between
each exchange) and ntwx (steps between
trajectory write) used in the REMD simulation.

84

Read in and process trajectories as an ensemble. Similar to ’trajin remdtraj’,
except instead of processing one frame at a target temperature, process all
frames. This means that action and trajout commands apply to the entire
ensemble; note however that not all actions currently function in ’ensemble’
mode. For example, to read in a replica ensemble, convert it to temperature
trajectories, and calculate a distance at each temperature:

parm ala2.99sb.mbondi2.parm7
ensemble rem.crd.000 trajnames rem.crd.001,rem.crd.002,rem.crd.003
trajout temp.crd
distance d1 out d1.ensemble.dat @1 @21

This will output 4 temperature trajectories named ’temp.crd.X’, where X ranges
from 0 to 3 with 0 corresponding to the lowest temperature, and ’d1.ensemble.dat’
containing 4 columns, each corresponding to a temperature. If run with MPI,
data will be written to separate files named ’d1.ensemble.dat.X’, similar to the
output trajectories.

Note that in parallel (i.e. MPI) users should specify the ensemblesize
command prior to ensemble in order to improve set up efficiency.

H-REMD trajectories which are typically already sorted by replica/Hamiltonian
can be sorted by coordinate index instead with ’bycrdidx’ (if the trajectory
contains coordinate indices) or by REMD log data specified with the ’remlog’
keyword. For example, to sort by coordinate index using a REMD log and write
sorted trajectories:

parm ../tz2.nhe.parm7
ensemblesize 4
ensemble rem.crd.001 remlog rem.log nstlim 1000 ntwx 1000
trajout sorted.remlog.nc

To sort by coordinate index when trajectories contain coordinate indices:

parm ../tz2.nhe.parm7
ensemblesize 4
ensemble rem.crd.001 bycrdidx
trajout sorted.crdidx.nc

10.2 ensemblesize
ensemblesize <#>

This command is MPI only. It is used to set the expected number of members
in any subsequent ensemble command, which dramatically improves set up
efficiency.

85

10.3 reference

reference <name> [<frame#>] [<mask>] ([tag]) [lastframe] [crdset]
[parm <parmfile / tag> | parmindex <#>]

<name> File name (or COORDS set name if ’crdset’
specified) to read in as reference; any trajectory
recognized by ’trajin’ can be used.

[<frame#>] Frame number to use (default 1).

[<mask>] Only load atoms corresponding to <mask> from
reference.

([tag]) Tag to give this reference file, e.g. “[MyRef]”;
BRACKETS MUST BE INCLUDED.

[lastframe] Use last frame of reference.

[crdset] Use for COORDS data set named <name> instead of
file.

[parm <parmfile/tag>] Topology filename/tag to
associate with reference (default first topology).

[parmindex <#>] Index of Topology to associate with
reference (default 0, first topology).

Use specified trajectory as reference coordinates. For trajectories with multiple
frames, the first frame is used if a specific frame is not specified. An optional
tag can be given (bounded in brackets) which can then be used in place of the
name (see 3.4 on page 18 for examples of how to use tags). If desired, an atom
mask can be used to read in only specified atoms from a reference.

Reference coordinates are now considered COORDS data sets and can be
used anywhere a COORDS data set could, which allows reference structures to
be manipulated once they are loaded. For example, a reference structure could
be centered on the origin like so:

reference tz2.rst7 [MyRef]
crdaction [MyRef] center origin

Note that the ’average’ keyword has been deprecated for reference. If desired,
an averaged reference COORDS data set can be created from a trajectory using
the ’average’ command like so:

parm myparm.parm7
trajin mytraj.nc
rms first :1-12
average crdset RefAvg
run
rms ToAvg reference :1-12 out ToAvg.dat

86

10.4 trajin

trajin <filename> {[<start> [<stop> | last] [<offset>]]} | lastframe
[parm <parmfile / tag> | parmindex <#>]
[mdvel <velocities>] [mdfrc <forces>]
[as <format keyword>] [<Format Options>]
[remdtraj {remdtrajtemp <Temperature> | remdtrajidx <idx1,idx2,...>

| remdtrajvalues <value1,value2,...>}
[trajnames <file1>,<file2>,...,<fileN>]]

<filename> Trajectory file to read in.

[<start>] Frame to begin reading at (default 1). If a
negative value is given it means “<start> frames
before <stop>”.

[<stop> | last] Frame to stop reading at; if not
specified or ’last’ specified, end of trajectory.

[<offset>] Offset for reading in trajectory frames
(default 1).

[lastframe] Select only the final frame of the
trajectory.

[parm <parmfile/tag>] Topology filename/tag to
associate with trajectory (default first topology).

[parmindex <#>] Index of Topology to associate with
trajectory (default 0, first topology).

[mdvel <velocities>] Use velocities from specified file.

[mdfrc <forces>] Use forces from specified file.

[as <format keyword>] Force file to be read as
specified format; overrides file autodetection.

[<Format Options>] See below.

[remdtraj] Read <filename> as the first replica in a
group of replica trajectories.

remdtrajtemp <Temperature> | remdtrajidx <idx1,idx2,...>
Use frames at <Temperature> (for temperature
replica trajectories) or index <idx1,idx2,...>
(for Hamiltonian replica trajectories); For
Multidimensional REMD simulations, multiple
values are comma-separated.

remdtrajvalues <value1,value2,...> Use frames at
<value1,value2,...> (for Multidimensional REMD
trajectories). Each value may correspond to
either temperature, pH, Redox Potential or
Hamiltonian index. The values need to be

87

entered in the same order as the dimensions in
the Multidimensional REMD simulation. For
example, for T,pH-REMD value1 would correspond
to a temperature and value2 to a pH. In the
command, the values are comma-separated.

[trajnames <file1>,...,<fileN>] Do not automatically
search for additional replica trajectories; use
comma-separated list of trajectory names.

Read in trajectory specified by filename. See page 83 for currently recognized
trajectory file formats. If just the <start> argument is given, all frames from
<start> to the last frame of the trajectory will be read. To read in a trajectory
with offsets where the last frame # is not known, specify the last keyword
instead of a <stop> argument, e.g.

trajin Test1.crd 10 last 2

This will process Test1.crd from frame 10 to the last frame, skipping by 2 frames.
To explicitly select only the last frame, specify the lastframe keyword:

trajin Test1.crd lastframe

Here is an example of loading in multiple trajectories which have difference
topology files:

parm top0.parm7
parm top1.parm7
parm top2.parm7 [top2]
parm top3.parm7
trajin Test0.crd
trajin Test1.crd parm top1.parm7
trajin Test2.crd parm [top2]
trajin Test3.crd parmindex 3

Test0.crd is associated with top0.parm7; since no parm was specified it defaulted
to the first parm read in. Test1.crd was associated with top1.parm7 by filename,
Test2.crd was associated with top2.parm7 by its tag, and finally Test3.crd was
associated with top3.parm7 by its index (based on the order it was read in).

Replica Trajectory Processing

If the remdtraj keyword is specified the trajectory is treated as belonging to
the lowest # replica of a group of REMD trajectories. The remaining repli-
cas can be either automatically detected by following a naming convention of
<REMDFILENAME>.X, where X is the replica number, or explicitly specified
in a comma-separated list following the trajnames keyword. All trajectories
will be processed at the same time, but only frames with a temperature match-
ing the one specified by remdtrajtemp or remdtrajidx will be processed.

88

For example, to process replica trajectories rem.001, rem.002, rem.003, and
rem.004, grabbing only the frames at temperature 300.0 (assuming that this is
a temperature in the ensemble):

trajin rem.001 remdtraj remdtrajtemp 300

or

trajin rem.001 remdtraj remdtrajtemp 300 trajnames rem.002,rem.003,rem.004

Note that the remdout keyword is deprecated. For this functionality see the
ensemble keyword.

10.4.1 Options for Amber NetCDF, Amber NC Restart, Amber Restart:

[usevelascoords] [usefrcascoords]

usevelascoords Read in velocities in place of
coordinates if present.

usefrcascoords Read in forces in place of coordinates if
present.

10.4.2 Options for CHARMM DCD:

[{shape | namdcell | charmmcell}]

shape Force reading of box info as CHARMM shape matrix
(XX XY YY XZ YZ ZZ).

namdcell Force reading of box info as NAMD unit cell (X
cos(g) Y cos(b) cos(a) Z).

charmmcell Force reading of box info as old CHARMM unit
cell (X Y Z a b g).

Note that CHARMM trajectories can have unit cell data stored in one of
two ways. Older versions (<22) of charmm store the 3x lengths (X Y Z, in
Angstroms) and 3x angles (alpha beta gamma, in degrees). Newer versions
(>=22) store elements of the symmetric shape matrix (XX, XY, YY, XZ, YZ,
ZZ). CPPTRAJ will attempt to automatically detect which type of parame-
ters are present, but this can be overridden with the shape and charmmcell
keywords. The namdcell keyword is provided for compatibility with DCD tra-
jectories produced by VMD/NAMD, but note these trajectories only store a
version of the shape matrix that is correct if the unit cell is also X-aligned.

89

10.4.3 Options for PDB files:

[keepaltloc <char>]

[keepaltloc <char>] If specified, only keep alternate
atom location IDs matching the specified character
<char>.

Note that if keepaltloc is specified, the associated topology should not have al-
ternate location IDs, i.e. if the topology is from a PDB the keepaltloc keyword
may need to be used with the parm command (see 9.13.1 on page 77).

10.5 trajout

trajout <filename> [<format>] [append] [nobox] [novelocity]
[notemperature] [notime] [noforce] [noreplicadim]
[parm <parmfile> | parmindex <#>] [onlyframes <range>] [title <title>]
[onlymembers <memberlist>]
[start <start>] [stop <stop>] [offset <offset>]
[<Format Options>]

<filename> Trajectory file to write to.

[<format>] Keyword specifying output format (see Table
on page 83). If not specified format will be
determined from extension, otherwise default to
Amber trajectory.

[append] If <filename> exists, frames will be appended
to <filename>.

[nobox] Do not write box coordinates to trajectory.

[novelocity] Do not write velocities to trajectory.

[notemperature] Do not write temperature to trajectory.

[notime] Do not write time to trajectory.

[noreplicadim] Do not write replica dimensions to
trajectory.

[parm <parmfile>] Topology filename/tag to associate
with trajectory (default first topology).

[parmindex <#>] Index of Topology to associate with
trajectory (default 0, first topology).

[onlyframes <range>] Write only the specified input
frames to <filename>.

[title <title>] Output trajectory title.

[onlymembers <memberlist>] Ensemble processing only;
only write from specified members (starting from 0).

90

[start <start>] Begin output at frame <start> (1 by
default).

[stop <stop>] End output at frame <stop> (last frame by
default).

[offset <offset>] Skip <offset> frames between each
output (1 by default).

During a run, write frames to trajectory specified by filename in specified file
format (Amber trajectory if none specified) after all Action processing has oc-
curred. To write out trajectories within the Action queue see the outtraj Action
(11.58 on page 182). See page 83 for currently recognized output trajectory
formats and their associated keyword(s). Note that now the file type can be
determined from the output extension if not specified by a keyword. Multiple
output trajectories of any format can be specified.

Frames will be written to the output trajectory when the param-
eter file being processed matches the parameter file the output tra-
jectory was set up with. So given the input:

parm top0.parm7
parm top1.parm7 [top1]
trajin input0.crd
trajin input1.crd parm [top1]
trajout output.crd parm [top1]

only frames read in from input1.crd (which is associated with top1.parm7)
will be written to output.crd. The trajectory input0.crd is associated with
top0.parm7; since no output trajectory is associated with top0.parm7 no frames
will be written when processing top0.parm7/input0.crd.

If onlyframes is specified, only input frames matching the specified range
will be written out. For example, given the input:

trajin input.crd 1 10
trajout output.crd onlyframes 2,5-7

only frames 2, 5, 6, and 7 from input.crd will be written to output.crd.

Cell not X-aligned Warning

Certain Actions (e.g. align , rms, principal , etc.) can rotate the unit cell
vectors (i.e. the box) if they are present. Some trajectory formats do not
support writing out box coordinates if the unit cell is not “X-aligned”; in other
words, if the unit cell “A” vector is not aligned with the coordinate X-axis and
the “B” vector is not in the X-Y plane. If this is the case, the following warnings
may appear:

Warning: Unit cell is not X-aligned. Box cannot be properly stored as <format>.
Warning: Set <#>; unit cell is not X-aligned. Box cannot be properly stored as <format>.

91

This means that the frame will be written with the X-aligned unit cell instead of
the actual unit cell. Imaging will not be possible with a trajectory written this
way. Currently the only trajectory formats that support writing non-X-aligned
cells are the Gromacs TRR and XTC formats.

If unit cell information is no longer needed, it can be removed (via e.g. the
box action, the strip action with the ’nobox’ keyword, etc.) to prevent these
warnings from triggering.

10.5.1 Options for pdb format

[dumpq | parse | vdw] [pdbres] [pdbatom]
[pdbv3] [teradvance] [terbyres | pdbter | noter]
[model | multi] [chainid <ID>] [sg <group>]
[include_ep] [conect] [conectmode <m>] [keepext] [usecol21]
[bfacdefault <#>] [occdefault <#>]
[bfacdata <set>] [occdata <set>] [bfacbyres] [occbyres]
[bfacscale] [occscale] [bfacmax <max>] [occmax <max>]
[adpdata <set>]

dumpq PQR format; write charges (in units of e-) and
GB radii to occupancy and B-factor columns
respectively.

parse PQR format; write charges and PARSE radii to
occupancy/B-factor columns.

vdw PQR format; write charges and vdW radii to
occupancy/B-factor columns.

pdbres Use PDB V3 residue names. Will write a default
chain ID (’Z’) for each residue if the corresponding
topology does not have chain ID information.

pdbatom Use PDB V3 atom names.

pdbv3 Use PDB V3 residue/atom names. Same as
specifying ’pdbres’ and ’pdbatom’.

topresnum Use topology residue numbers; otherwise use
original residue numbers.

teradvance Increment record (atom) number for TER
records (not done by default).

terbyres Print TER cards based on residue sequence
instead of molecules.

pdbter Print TER cards according to original PDB TER
(if available).

noter Do not write TER cards.

model (Default) Frames will be written to a single PDB
file separated by MODEL/ENDMDL keywords.

92

multi Each frame will be written to a separate file with
the frame # appended to <filename>.

chainid <ID> Write PDB file with chain ID <ID>.

sg <group> Space group for CRYST1 record; only used if
box coordinates written.

include_ep Include extra points.

conect Write CONECT records for all bonds.

conectmode <m> Write CONECT records for <m>=’all’
(all bonds), ’het’ (HETATM only), ’none’ (no
CONECT).

keepext Keep filename extension; write
’<name>.<num>.<ext>’ instead (implies ’multi’).

usecol21 Use column 21 for 4-letter residue names.

bfacdefault <#> Default value to use in B-factor
column (default 0.0).

occdefault <#> Default value to use in occupancy
column (default 1.0).

bfacdata <set> Use data in <set> for B-factor column.

occdata <set> Use data in <set> for occupancy column.

bfacbyres If specified assume X values in B-factor data
set are residue numbers.

occbyres If specified assume X values in occupancy data
set are residue numbers.

bfacscale If specified scale values in B-factor column
between 0 and <bfacmax>.

occscale If specified scale values in occupancy column
between 0 and <occmax>.

bfacmax <max> Max value for bfacscale.

occmax <max> Max value for occscale.

adpdata <set> Use data in <set> (e.g. from the
atomicfluct command, on page 104) for anisotropic
B-factors.

10.5.2 Options for Amber ASCII format:

[remdtraj] [highprecision] [mdvel|mdfrc]

remdtraj Write REMD header to trajectory that includes
temperature: ’REMD <Replica> <Step> <Total_Steps>
<Temperature>’. Since cpptraj has no concept of
replica number, 0 is printed for <Replica>. <Step>
and <Total_Steps> are set to the current frame #.

93

highprecision (EXPERT USE ONLY) Write with 8.6 precision
instead of 8.3. Note that since the width does not
change, the precision of large coords may be lower
than 6.

mdvel Write velocities instead of coordinates.

mdfrc Write forces instead of coordinates.

10.5.3 Options for Amber NetCDF format:

[remdtraj] [mdvel] [mdfrc] [mdcrd]

remdtraj Write replica temperature to trajectory.

mdvel Write only velocity information in trajectory.

mdfrc Write only force information in trajectory.

mdcrd Write coordinates to trajectory (only required
with mdvel/mdfrc).

hdf5 Create file as NetCDF4/HDF5 instead of NetCDF4
(classic).

compress Use compression in NetCDF4/HDF5 file.

icompress Use lossy compression in NetCDF4/HDF5 file
via conversion to integers.[6]

10.5.4 Options for Amber Restart/NetCDF Restart format:

[remdtraj] [novelocity] [notime] [time0 <initial time>] [dt <timestep>] [keepext]

remdtraj Write replica temperature to restart. Note
that this will automatically include time in the
restart file (see the time0 keyword).

time0 <initial time> Time for first frame (default 1.0).

dt <timestep> Time step between frames (default 1.0).
Time is calculated as t=(time0+frame)*dt.

keepext Keep filename extension; write
’<name>.<num>.<ext>’ instead.

10.5.5 Options for CHARMM COORdinates:

[keepext] [ext] [segid <segid>] [segmask <mask> <segid> ...]

keepext Keep filename extension; write
’<name>.<num>.<ext>’

ext Use ’extended’ format (default when > 99999 atoms).

94

segid <segid> Use <segid> as segment ID for all atoms.

segmask <mask> <segid> Use <segid> as segment ID for
atoms selected by <mask>. Can be specified more
than once.

10.5.6 Options for CHARMM DCD:

[x64] [ucell] [veltraj] [{shape | namdcell | charmmcell}]

x64 Use 8 byte block size (default 4 bytes).

veltraj Write velocity trajectory instead of
coordinates.

dt Set trajectory time step in ps.

nstep # steps between frames.

step0 Initial step.

shape Force writing box info as CHARMM shape matrix (XX
XY YY XZ YZ ZZ).

namdcell Force writing box info as NAMD unit cell (X
cos(g) Y cos(b) cos(a) Z).

charmmcell Force writing box info as old CHARMM unit
cell (X Y Z a b g).

Note that by default CPPTRAJ will try to write the symmetric shape matrix
if box information is present. If this is not possible, CPPTRAJ will fall back to
writing unit cell parameters (lengths and angles) as long as the cell is X-aligned.
For more information see 10.4.2 on page 89.

10.5.7 Options for GROMACS TRX/XTC format:

[dt <time step>]

dt Time step tp multiply set numbers by (default 1.0).
Ignored if time already present.

Note: these formats can write rotated (i.e. non-X-aligned) unit cells.

10.5.8 Options for mol2 format:

[single | multi] [sybyltype] [sybylatom <file>] [sybylbond <file>] [keepext]

single (Default) Frames will be written to a single Mol2
file separated by MOLECULE keywords.

multi Each frame will be written to a separate file with
the frame # appended to <filename>.

95

sybyltype Convert Amber atom types (if present) to SYBYL
types. Requires $AMBERHOME is set.

sybylatom File containing Amber to SYBYL atom type
correspondance (optional).

sybylbond File containing Amber to SYBYL bond type
correspondance (optional).

keepext Keep filename extension; write
’<name>.<num>.<ext>’ instead (implies ’multi’).

10.5.9 Options for SQM input format:

[charge <c>]

charge <c> Set total integer charge. If not specified
it will be calculated from atomic charges.

10.5.10 Options for XYZ format:

[ftype {namexyz|atomxyz|xyz}] [titletype {none|single|perframe}] [width <#>] [prec <#>]

ftype {atomxyz|xyz} Choose either ’NAME X Y Z’
(default), ’ATOM X Y Z’, or ’X Y Z’ output format.
’namexyz’ format is the standard XYZ format, where
each frame is preceded by the number of atoms and a
comment. The comment written by CPPTRAJ will
include the set number and box information (if
present).

titletype {none|single|perframe} No title, one title
(default), or title before every frame. Only
applies if not ’namexyz’.

width <#> Output format width.

prec <#> Output format precision.

11 Action Commands
Actions in cpptraj operate on frames read in by the trajin or ensemble com-
mands one at a time and extract derived data, modify the coordinates/topology
in some way, or both. Most Actions in cpptraj function exactly the way they do
in ptraj and are backwards-compatible. Some Action commands in cpptraj have
extra functionality compared to ptraj (such as the per-residue RMSD function
of the rmsd Action, or the ability to write out stripped topologies for visualiza-
tion in the strip Action), while other Actions produce slightly different output
(like the hbond/secstruct Actions).

96

Unlike some other command types, when an Action command is issued it
is by default added to the Action queue and is not executed until trajectory
processing is started (e.g. by a run or go command). However, Actions can be
executed immediately on COORDS data sets via the crdaction command (7.3
on page 37).

When a frame is modified by an Action, it is modified for every Action that
follows them during trajectory processing. For example, given a solvated system
with water residues named WAT and the following Action commands:

rmsd R1 first :WAT out water-rmsd.dat
strip :WAT
rmsd R2 first :WAT out water-rmsd-2.dat

the first rms command will be valid, but the second rms command will not
since all residues named WAT are removed from the state by the strip com-
mand.

Note that for commands which can use a reference mask as well as a target
mask (e.g. rms, drmsd , symmrmsd , etc.) there must be a 1 to 1 corre-
spondence between the atoms in each mask, i.e. the number of atoms and the
ordering of selected atoms must be the same.

The following Actions are available. If an Action may modify coordinate/topology
information for subsequent Actions it is denoted with an X in the Mod column.

Command Description Mod
addatom Temporarily add an atom to the system. X

align Align structure to a reference. X
angle Calculate the angle between three points.

areapermol Calculate area per molecule for molecules in a
specified plane.

atomiccorr Calculate average correlation between motions of
specified atoms.

atomicfluct, rmsf Calculate root mean square fluctuation of specified
atoms/residues.

atommap Attempt to create a map between atoms in
molecules with different atom ordering.

X

autoimage Automatically re-image coordinates. X
average Calculate average structure.
avgbox Calculate average unit cell (box), primarily for

unwrapping NPT trajectories.
bounds Calculate the min/max coordinates for specified

atoms. Can be used to create grid data sets.
box Set or overwrite box information for frames.

center Center specified coordinates to box center or onto
reference structure.

X

97

check,
checkoverlap,

Check for bad atomic overlaps or bond lengths.

checkstructure Can be used to skip corrupted frames.
checkchirality Report chirality around alpha carbons in amino

acids (L, D).
closest,

closestwaters
Retain only the specified number of solvent

molecules closest to specified solute.
X

clusterdihedral Assign frames into clusters based on binning of
backbone dihedral angles in amino acids.

contacts Older version of nativecontacts, retained for
backwards compatibility.

createcrd Create a COORDS data set from input frames.
createreservoir Create a structure reservoir for use with reservoir

REMD simulations.
density Calculate density along a coordinate.
diffusion Calculate translational diffusion of molecules.
dihedral Calculate the dihedral angle using four points.
dihrms

dihedralrms
Calculate the RMSD of dihedrals to dihedrals in a

reference structure.
dipole Bin dipoles of solvent molecules in 3D grid. Not

well tested, may be obsolete.
distance Calculate the distance between two points.

drms, drmsd Calculate the RMSD of distance pairs within
selected atoms.

dssp, secstruct Calculate secondary structure content using the
DSSP algorithm

energy Calculate simple bond, angle, dihedral, and
non-bonded energy terms (no PME).

esander Calculate energies using via SANDER; requires
compilation with the SANDER API.

filter Filter frames for subsequent Actions using data
sets and user defined criteria.

fixatomorder Fix atom ordering so that all atoms in molecules
are sequential.

X

fiximagedbonds Fix bonds which have been split across periodic
boundaries by imaging.

gist Perform grid inhomogenous solvation theory.
grid Bin selected atoms on a 3D grid.

hbond Calculate hydrogen bonds using geometric criteria.
image Re-image coordinates. The autoimage command

typically provides better results.
X

jcoupling Calculate J-coupling values from specified dihedral
angles.

keep Keep specified atoms in system. X

98

lessplit Split/average frames from LES trajectories.
lie Calculate linear interaction energy between

user-specified ligand and surroundings.
lipidorder Calculate order parameters for lipids in planar

membranes.
lipidscd Calculate lipid order parameters SCD (|<P2>|) for

lipid chains. Automatically identifies lipids.
makestructure Modify structure by applying dihedral values to

specified residues.
X

mask Print the results of selection by specified atom
mask. Good for distnace-based masks.

matrix Calculate a matrix of the specified type from input
coordinates.

mindist/maxdist Calculate the minimum or maximum distance
between pairs of atoms/residues/molecules.

minimage Calculate minimum non-self imaged distance
between atoms in specified masks.

molsurf Calculate Connolly surface area of specified atoms.
Cannot do partial surface areas.

multidihedral Calculate multiple dihedral angles of
specified/given types.

multivector Calculate multiple vectors between specified atoms.
nastruct Perform nucelic acid structure analysis.

nativecontacts Calculate native contacts within a region or
between two regions using a given reference.
Can also be used to get min/max distances

between groups of atoms.
outtraj Write frames to a trajectory file within a list of

Actions.
pairdist Calculate pair distribution function.
pairwise Calculate pair-wise non-bonded energies.
principal Calculate and optionally align system along

principal axes.
X

projection Project coordinates along given eigenvectors.
pucker Calculate ring pucker using five or six points.

radgyr, rog Calculate radius of gyration (and optionally
tensor) for specified atoms.

radial, rdf Calculate radial distribution function.
randomizeions Swap specified ions with randomly selected solvent

molecules.
X

remap Re-map atoms according to a given data set. X
replicatecell Replicate unit cell in specified (or all) directions

for specfied atoms and write to trajectory.

99

rms, rmsd Perform best fit of coordinates to reference and
calculate coordinate RMSD.

X

Fitting can be disabled.
rotate Rotate the system around X/Y/Z axes, a specified

axis, or via given rotation matrices.
X

runavg, Calculate the running average of coordinates over
specified window size.

X

runningaverage
scale Scale coordinates in X/Y/Z directions by specified

factors.
X

setvelocity Set velocities for specified atoms using Maxwellian
distribution based on given temperature.

spam SPAM method for estimating relative free energies
of waters in hydration shell around proteins.

X

stfcdiffusion Alternative translational diffusion calculation
which can calculate diffusion in specified regions.

strip Remove specified atoms from the system. X
surf Calculate the LCPO surface area of specified

atoms. Can do partial surface areas.
symmrmsd Calculate symmetry-corrected RMSD. X
temperature Calculate system temperature using velocities of

specified atoms.
time Add/remove/modify time information in frames. X

tordiff Calculate diffusion using the
toroidal-view-preserving scheme.

trans, translate Translate specified atoms by specified amounts in
X/Y/Z directions.

X

unstrip Undo all previous strip Action commands.
unwrap Reverse of image ; unwrap selected atoms so they

have continuous trajectories.
X

vector Calculate various types of vector quantities.
velocityautocorr Calculate velocity autocorrelation function.

volmap Create volumetric map for specified coordinates;
similar to grid but takes

into account atomic radii. Similar to VMD
volmap.

volume Calculate unit cell volume.
watershell Calculate the number of waters in the first and

second solvation shells based on distance critera.
xtalsymm Re-image coordinates based on crystal space group

symmetry operations and asymmetric unit volume.
X

100

11.1 addatom
addatom aname <name> [elt <element>] [rname <res name>]

[xyz <X> <Y> <Z>] [mass <mass>] [charge <charge>]
[outprefix <prefix>] [nobox] [parmout <filename>]
[parmopts <comma-separated-list>]

aname <name> New atom name. Required.

[elt <element>] One or two character element string
(e.g. ’H’ is hydrogen etc.). Default is ’H’.

[rname <res name>] New residue name for the new atom.
Default is ’TMP’.

[xyz <X> <Y> <Z>] Cartesian XYZ coordinates of the
new atom. Default is 0 0 0.

[mass <mass>] Mass of the new atom. Default is based
off of the element type.

[charge <charge>] Charge of the new atom. Default is
0.

[outprefix <prefix>] Write out modified topology file
with name ’<prefix>.<Original Topology Name>’.

[nobox] Remove any box information from the modified
topology.

[parmout <file>] Write modified topology to file with
name <file>.

[parmopts <list>] Options for writing modified topology
file.

Temporarily add an atom to the system. This is mostly useful for adding a
placeholder “dummy” atom for subsequent actions to use. For example, this
can be used in conjunction with the ’mask’ command in order to get a list of
atoms within a certain distance of a specified point in space. For example, the
following input gets a list of atoms within 3.0 Angstroms of coordinates 1, 1, 1:

parm tz2.pdb
trajin tz2.pdb 1 1
addatom aname TEMP rname TMP elt H xyz 1 1 1
mask :TMP<@3.0&!:TMP out tz2.mask.dat name TZ2

11.2 align
align <mask> [<refmask>] [move <mask>] [mass]

[first | reference | ref <name> | refindex <#> | previous |
reftraj <name> [parm <name> | parmindex <#>]]

<mask> Target atoms to fit.

101

[<refmask>] Reference atoms to fit (default is target
mask).

[move <mask>] Atoms to move when aligning (default is
target mask).

[mass] Mass-weight the fit.

Reference keywords:

first Use the first trajectory frame processed as
reference.

reference Use the first previously read in reference
structure (refindex 0).

ref <name> Use previously read in reference structure
specified by filename/tag.

refindex <#> Use previously read in reference
structure specified by <#> (based on order read in).

previous Use frame prior to current frame as reference.

reftraj <name> Use frames from COORDS set <name> or
read in from trajectory file <name> as references.
Each frame from <name> is used in turn, so that
frame 1 is compared to frame 1 from <name>, frame 2
is compared to frame 2 from <name> and so on. If
<trajname> runs out of frames before processing is
complete, the last frame of <trajname> continues to
be used as the reference.

parm <parmname> | parmindex <#> If reftraj
specifies a trajectory file, associate it with
specified topology; if not specified the first
topology is used.

Align structure using specified <mask> onto reference. If ’move’ is specified,
only move atoms in the move mask.

11.3 angle

angle [<dataset name>] <mask1> <mask2> <mask3> [out <filename>] [mass]

[<dataset name>] Output data set name.

<maskX> Three atom masks selecting atom(s) to
calculate angle for.

[out <filename>] Output file name.

[mass] Use center of mass of atoms in <maskX> instead of
geometric center.

102

Calculate angle (in degrees) between atoms in <mask1>, <mask2>, and <mask3>.
For example, to calculate the angle between the first three atoms in the system:

angle A123 @1 @2 @3 out A123.agr

11.4 areapermol

areapermol [<name>] {[<mask1>] [nlayers <#>] | nmols <#>} [out <filename>]
[{xy | xz | yz}]

[<name>] Data set name.

[<mask1>] Atom mask for selecting molecules. If any
atom in a molecule is selected the whole molecule is
selected.

[nlayers <#>] Number of layers of molecules. Total
number of molecules used will be # molecules divided
by # layers.

[nmols <#>] If <mask1> is not specified, the number of
molecules to use when calculating area per molecule.

[out <filename>] Output file name.

[{xy|xz|yz}] Cross-section of box to calculate area of.
Default is X-Y.

Calculate area per molecule as Area / # molecules. The area is determined
from the specified cross-section of the box (X-Y by default). Currently the
calculation is only guaranteed to work properly with orthorhombic unit cells.
For example, to get the area per molecule of residues named “OL” which are
arranged in 2 layers:

areapermol OL_area :OL nlayers 2 out apm.dat

11.5 atomiccorr

atomiccorr [<mask>] out <filename> [cut <cutoff>] [min <min spacing>]
[byatom | byres]

<mask> Atoms to calculate motion vectors for.

out <filename> File to write results to.

cut <cutoff> Only print correlations with absolute
value greater than <cutoff>.

min <min spacing> Only calculate correlations for
motion vectors spaced <min spacing> apart.

byatom Default; calculate atomic motion vectors.

103

byres Calculate motion vectors for entire residues
(selected atoms in residues only).

Calculate average correlations between the motion of atoms in <mask>. For
each frame, a motion vector is calculated for each selected atom from its previous
position to its current position. For each pair of motion vectors Va and Vb, the
average correlation between those vectors is calculated as the average of the dot
product of those vectors over all N frames.

AvgCorr(a, b) =
∑

Va(i)·Vb(i)
N

The value of AvgCorr can range from 1.0 (correlated) to 0.0 (no correlation)
to -1.0 (anti-correlated). For example, to calculate the correlation of motion
vectors between residues 1 to 13, writing to a Gnuplot-readable formatted file:

atomiccorr :1-13 out acorr.gnu byres

11.6 atomicfluct | rmsf

atomicfluct [<name>] [out <filename>] [<mask>] [byres [pdbres] | byatom | bymask]
[bfactor] [calcadp [adpout <file>]]
[start <start>] [stop <stop>] [offset <offset>]

<name> Output data set name.

out <filename> Write data to file named <filename>

[<mask>] Calculate fluctuations for atoms in <mask>
(all if not specified).

byres [pdbres] Output the average (mass-weighted)
fluctuation by residue. If ’pdbres’ is specified,
the original residue numbering will be used.

bymask Output the average (mass-weighted) fluctuation
for all atoms in <mask>.

byatom (default) Output the fluctuation by atom.

[bfactor] Calculate atomic positional fluctuations
squared and weight by 8

3π
2; this is similar but not

necessarily equivalent to the calculation of
crystallographic B-factors.

[calcadp [adpout <file>]] Calculate anisotropic
displacement parameters and optionally output them
to <file>.

[<start>] Frame to begin calculation at (default 1).

[<stop>] Frame to end calculation at (default last).

104

[<offset>] Frames to skip between calculations (default
1).

DataSets created

<name> Hold atomic fluctuations.

<name>[ADP] Hold anisotropic displacement parameters
if ’calcadp’ specified.

Compute the atomic positional fluctuations (also referred to as root-mean-
square fluctuations, RMSF) for atoms specified in the <mask>. The RMSF
of a given atom i is calculated as:

RMSFi =
√〈

(xi − ⟨xi⟩)2
〉

where x denotes atomic positions and the averages are over all input frames.
Note that RMS fitting is not done implicitly. If you want fluctuations without

rotations or translations (for example to the average structure), perform an RMS
fit to the average structure (best) or the first structure (see rmsd) prior to this
calculation. The units are (Å) for RMSF or Å2 × 8

3π
2 if bfactor is specified.

If byres or bymask are specified, the mass-weighted average of atomic
fluctuations of each atom for either each residue or the entire mask will be
calculated respectively:

⟨Fluct⟩ =
∑

AtomFlucti∗Massi∑
Massi

If calcadp is specified, anisotropic displacement factors for atoms will be
calculated and written to the file specified by adpout (or STDOUT if not
specified) using PDB ANISOU record format. The displacement factors will be
saved to a data set. Note that calcadp automatically implies bfactor.

With cpptraj it is possible to perform coordinate averaging, the fit to average
coordinates, and the atomic fluctuation calculation in a single execution like so:

parm myparm.parm7
trajin mytrajectory.crd
rms first
average crdset MyAvg
run
rms ref MyAvg
atomicfluct out fluct.agr

To write the mass-weighted B-factors for the protein backbone atoms C, CA,
and N, averaged by residue use the command:

atomicfluct out back.agr @C,CA,N byres bfactor

To write the RMSF or atomic positional fluctuations of the same atoms, use the
command:

105

atomicfluct out backbone-atoms.agr @C,CA,N

To write a PDB of averaged coordinates (after fitting to the first frame) with
both B-factors and anisotropic temperature factors:

parm myparm.parm7
trajin mytraj.nc
rms first
average crdset MyAvg
atomicfluct MyFluct calcadp
run
crdout MyAvg mypdb.pdb adpdata MyFluct[ADP] bfacdata MyFluct

11.7 atommap

atommap <target> <reference> [mapout <filename>] [maponly]
[rmsfit [rmsout <rmsout>]]
[changenames]

<target> Reference structure whose atoms will be
remapped.

<reference> Reference structure that <target> should be
mapped to.

mapout <filename> Write atom map to <filename> with
format:
TargetAtomNumber TargetAtomName ReferenceAtomNumber
ReferenceAtomName
Target atoms that cannot be mapped to a reference
atom are denoted “–-”.

maponly Write atom map but do not reorder atoms.

rmsfit Any input frames using the same topology as
<target> will be RMS fit to <reference> using
whatever atoms could be mapped.

rmsout <rmsout> If rmsfit specified, write
resulting RMSDs to <rmsout>.

changenames If specified, change names of mapped atoms
in <target> to match those in <reference>.

Attempt to map the atoms of <target> to those of <reference> based on struc-
tural similarity. This is useful e.g. when there are two files containing the same
structure but with different atom names or atom ordering. Both <target> and
<reference> need to have been read in with a previous reference command.
The state will then be modified so that any trajectory read in with the same
parameter file as <target> will have its atoms mapped (i.e. reordered) to match

106

those of <reference>. If the number of atoms that can be mapped in <target>
are less than those in <reference>, the reference structure specified by <ref-
erence> will be modified to include only mapped atoms; this is useful if for
example the reference structure is protonated with respect to the target. The
rmsfit keyword is useful in cases where the atom mapping will not be complete
(e.g. two ligands with the same scaffold but different substituents).

For example, say you have the same ligand structure in two files, Ref.mol2
and Lig.mol2, but the atom ordering in each file is different. To map the atoms
in Lig.mol2 onto those of Ref.mol2 so that Lig.mol2 has the same ordering as
Ref.mol2:

parm Lig.mol2
reference Lig.mol2
parm Ref.mol2
reference Ref.mol2 parmindex 1
atommap Lig.mol2 Ref.mol2 mapout atommap.dat
trajin Lig.mol2
trajout Lig.reordered.mol2 mol2

11.8 autoimage

autoimage [<mask> | anchor <mask> [fixed <mask>] [mobile <mask>]]
[origin] [firstatom] [familiar | triclinic]

[<mask> | anchor <mask>] Atoms to image around; this
is the region that will be centered. Default is the
entire first molecule.

[fixed <mask>] Molecules that should remain ’fixed’ to
the anchor region; default is all
non-ion/non-solvent molecules.

[mobile <mask>] Molecules that can be freely imaged;
default is all ion/solvent molecules.

[origin] Center anchor region at the origin; if not
specified, center at box center.

[firstatom] Image based on molecule first atom; default
is to image by molecule center of mass.

[familiar] Image to familiar truncated-octahedral shape;
this is on by default if the original cell is
truncated octahedron.

[triclinic] Force general triclinic imaging.

Automatically center and image (by molecule) a trajectory with periodic bound-
aries. For most cases just specifying ’autoimage’ alone is sufficient. The

107

atoms of the ’anchor’ region (default the entire first molecule) will be cen-
tered; all ’fixed’ molecules will be imaged only if imaging brings them closer to
the ’anchor’ molecule (default for ’fixed’ molecules is all non-solvent non-ion
molecules). All other molecules (referred to as ’mobile’) will be imaged freely.

The autoimage command works for the majority of systems; however, for
very densely packed systems the default anchor (entire first molecule) may not
be appropriate. In these cases, it is recommended to choose as the anchor a
small region which should lie near the center of your system. For example, in a
protein dimer system one could choose a single residue that is near the center
of the interface between the two monomers.

11.9 average
average {crdset <set name> | <filename>} [<mask>]

[start <start>] [stop <stop>] [offset <offset>]
[Trajout Args]

<filename> If specified, write averaged coordinates to
<filename> (not compatible with crdset).

crdset <set name> If specified, save averaged
coordinates to COORDS set <set name> (not compatible
with <filename>).

[<mask>] Average coordinates in <mask> (all atoms if
not specified).

[<start>] Frame to begin calculation at (default 1).
[<stop>] Frame to end calculation at (default last).
[<offset>] Frames to skip between calculations (default

1).
[Trajout args] Output trajectory format argument(s)

(default Amber Trajectory).

Calculate the average of input coordinates and write out to file named <file-
name> or save to COORDS set named <set name> in any trajectory format
cpptraj recognizes (Amber Trajectory if not specified). If the number of atoms
in <mask> are less than the total number of atoms, the topology will be
stripped to match <mask>.

Note that since coordinates are being averaged over many frames, resulting
structures may appear distorted. For example, if one averages the coordinates
of a freely rotating methyl group the average position of the hydrogen atoms
will be close to the center of rotation. Also note that typically one will want to
remove global rotational and translation movement prior to this command by
using e.g. the rms (11.69 on page 192) command.

Any arguments that are valid for the trajout command (10.5 on page 90)
can be passed to this command in order to control the format of the output
coordinates. For example, to write out a PDB file containing the averaged
coordinates over all frames:

108

average test.pdb pdb

To write out a mol2 file containing only the averaged coordinates of residues 1
to 10 for frames 1 to 100:

average test.mol2 mol2 start 1 stop 100 :1-10

To create an average structure of atoms named CA and then use it as a reference
for an rms command in a subsequent run:

trajin Input.nc
average crdset MyAvg @CA
run
rms ref MyAvg @CA out RmsToAvg.dat
run

11.10 avgbox
avgbox [name <setname>] [out <file>]

[name <setname>] Average unit cell data set name.

[out <file>] File to write average unit cell data to.

DataSets created:

<setname>[avg] Hold average unit cell as 3x3 matrix
data.

Calculate the average unit cell vectors for incoming frames and store them
in a 3x3 matrix data set, The average unit cell is particularly useful when
unwrapping trajectories from NPT simulations where the box size fluctuates
(see the unwrap command, 11.89 on page 210).

If writing to a .dat file, the output will look something like:

#Frame MyBox[avg]
1 42.433046075 0.000000000 0.000000000 -14.144347550 40.006259905 0.000000000 -14.144347550 -20.003127532 34.646438786

Where the first 3 floating point numbers are the average X unit cell vector, the
next 3 floating point numbers are the average Y unit cell vector, and the last 3
floating point numbers are the average Z unit cell vector.

11.11 avgcoord
This command is deprecated. Use ’vector center’ (optionally with keyword
’magnitude’) instead.

109

11.12 bounds
bounds [<mask>] [out <filename>]

[dx <dx> [dy <dy>] [dz <dz>] name <gridname> [offset <bin offset>]]

[<mask>] Mask of atoms to determine bounds of.

[out <filename>] File to write bounds to (default
STDOUT if not specified).

[dx <dx> [dy <dy>] [dz <dz>]] Triggers creation of a
grid data set from bounds. Spacings of generated
grid in the X, Y and Z directions. If only dx is
specified <dx> will be used for <dy> and <dz> as
well.

[name <gridname>] Name of generated data sets.

[offset <bin offset>] Number of bins to add/subtract in
each direction to generated grid.

DataSets Generated

<gridname> The 3D grid (only if ’dx’ etc specified).

<gridname>[xmin] The minimum x coordinate
encountered.

<gridname>[xmax] The maximum x coordinate
encountered.

<gridname>[ymin] The minimum y coordinate
encountered.

<gridname>[ymax] The maximum y coordinate
encountered.

<gridname>[zmin] The minimum z coordinate encountered.

<gridname>[zmax] The maximum z coordinate
encountered.

Calculate the boundaries (i.e. the max/min X/Y/Z coordinates) of atoms in
<mask> and write to <filename> (STDOUT if not specified). Useful for
determining dimensions for the grid command, and can be used to generate a
grid data set that can be used by grid (see 11.38 on page 146).

11.13 box

box {[x <xval>] [y <yval>] [z <zval>] {[alpha <a>] [beta] [gamma <g>] |
[truncoct] [x <length>] |

nobox |
auto [offset <offset>] [radii {vdw|gb|parse|none}] |
getbox {ucell|frac|shape} [name <setname>] [out <file>]

}

110

[x <xval>] [y <yval>] [z <zval>] Change box length(s) to
specified value(s).

[alpha <a>] [beta] [gamma <g>] Change box
angle(s) to specified value(s).

[truncoct [x <length>] Set box angles (and optionally a
length) to truncated octahedron.

[nobox] Remove any existing box information.

auto Set an orthogonal bounding box enclosing all atoms
by the specified radii and an optional offset.

offset <offset> Offset in Angstroms to add to each
box length (both + and -).

radii {vdw|gb|parse|none} Radii to use for each
atom: van der Waals, generalized Born, PARSE,
or no radii.

getbox Save existing box information to a 3x3 matrix
data set.

{ucell|frac|shape} Specify the kind of box
information to save: ucell saves the unit cell
vectors, frac saves the fractional unit cell
vectors, and shape saves the symmetric shape
matrix unit cell vectors.

name <setname> The name of the 3x3 matrix data
set.

out <file> File to write the 3x3 matrix data to.

Modify box information during trajectory processing. Note that this will perma-
nently modify the box information for topology files during trajectory processing
as well. It is possible to modify any number of the box parameters (e.g. only
the Z length can be modified if desired while leaving all other parameters in-
tact). If no box is present, an orthogonal bounding box enclosing all atoms
can be created with the auto keyword. If ’getbox’ is specified, the existing box
information will be saved to a data set.

11.14 center
center [<mask>] [origin] [mass]

[reference | ref <name> | refindex <#> [<refmask>]]

[<mask>] Center based on atoms in mask; default is all
atoms.

[origin] Center to origin (0, 0, 0); default is center to
box center (X/2, Y/2, Z/2).

[mass] Use center of mass instead of geometric center.

111

[reference | ref <name> | refindex <#> [<refmask]]
Center using coordinates in specified reference
structure selected by <refmask> (<mask> if not
specified.

Move all atoms so that the center of the atoms in <mask> is centered at the
specified location: box center (default), coordinate origin, or reference coordi-
nates.

For example, to move all coordinates so that the center of mass of residue 1
is at the center of the box:

center :1 mass

11.15 check | checkoverlap | checkstructure

check [<mask>] [around <mask2>] [reportfile <report>] [noimage]
[skipbadframes] [offset <offset>] [minoffset <minoffset>]
[cut <cut>] [nobondcheck] [silent] [plcut <cut>]

[<mask>] Check structure of atoms in <mask> (all if
not specified).

[around <mask2>] If specified, only check for problems
between atoms in <mask> and atoms in <mask2>.

[reportfile <report>] Write any problems found to
<report> (STDOUT if not specified).

[noimage] Do not image distances.

[skipbadframes] If errors are encountered for a frame,
subsequent actions/trajectory output will be
skipped.

[offset <offset>] Report bond lengths greater than the
equilibrium value plus <offset> (default 1.15 Å).

[minoffset <minoffset>] Report bond lengths less than
the equilibrium value minus <minoffset> (default 0.5
Å).

[cut <cut>] Report atoms closer than <cut> (default 0.8
Å).

[nobondcheck] Check overlaps only.

[silent] Do not print information for bad frames - useful
in conjunction with the skipbadframes option.

[plcut <cut>] Pair list cutoff (default 4.0 Å); only
matters if box is present.

112

Check the structure and report problems related to atomic overlap/unusual
bond length. Problems are reported when any two atoms in <mask> (or be-
tween <mask> and <mask2> if using ’around’) are closer than <cut>;
atoms that are bonded to each other are ignored (except if using the ’around’
mask). If bonds are being checked then bond lengths greater than their equi-
librium value plus <offset> and less than their equilibrium value minus <mi-
noffset> are reported as well. If box information is present and not using the
’around’ mask, a pairlist will be used to speed up the calculation.

This command can also be used to skip corrupted frames in a trajectory
during processing. For example, if this message is encountered:

Warning: Frame 10 coords 1 & 2 overlap at origin; may be corrupt.

One could use check so that e.g. a subsequent distance command is not
processed for bad frames:

check @1,2 skipbadframes silent
distance d1 :1 :10

Usually frame corruption can be detected using only a few atoms, but this
may not catch all types of corruption. The more atoms that are used the
better the corruption detection will be, but the slower it will be to process the
command. Typically a good procedure to follow when corruption is suspected
is to run check using all important atoms (e.g. all solute heavy atoms) with
the skipbadframes keyword followed by a trajout command to write all non-
corrupt frames, for example:

trajin corrupted.crd
check :1-13 skipbadframes silent
trajout fixed.corrupted.nc

11.16 checkchirality
checkchirality [<name>] [<mask>] [out <filename>]

[<name>] Data set name.

[<mask>] Atoms to check.

[out <filename>] File to write results to.

DataSet Aspects:

[L] Number of frames ’L’ for each residue.

[D] Number of frames ’D’ for each residue.

Check the chirality around the alpha carbon in amino acid residues selected by
<mask>. Note that cpptraj expects atom names to correspond to the PDB V3
standard: N, CA, C, CB. For each residue, the number of frames in which the

113

amino acid is ’L’ or ’D’ will be recorded. For example, to check the chirality of
all amino acids in a system and write to a file named chiral.dat with data set
name DPDP:

checkchirality DPDP out chiral.dat

Output will have format similar to:

#Res DPDP[L] DPDP[D]
2.000 100 0

So in this example residue 2 was ’L’ for 100 frames and ’D’ for 0 frames.

11.17 closest | closestwaters

closest <# to keep> <mask> [solventmask <solvent mask>] [noimage]
[first | oxygen] [center] [closestout <filename> [name <setname>]]
[outprefix <prefix>] [nobox] [parmout <filename>]
[parmopts <comma-separated-list>]

<# to keep> Number of solvent molecules to keep around
<mask>

<mask> Mask of atoms to search for closest waters
around.

[solventmask <solvent mask>] Optional mask for
selecting solvent atoms. If not specified, atoms in
all molecules marked as “solvent” will be used.

[noimage] Do not perform imaging; only recommended if
trajectory has previously been imaged.

[first | oxygen] Calculate distances between all atoms in
<mask> and the first atom of solvent only
(recommended for standard water models as it will
increase speed of calculation).

[center] Search for waters closest to geometric center of
<mask> instead of each atom in <mask>.

[closestout <filename>] Write information on the closest
solvent molecules to <filename>.

[outprefix <prefix>] Write corresponding topology to
file with name prefix <prefix>.

[nobox] Remove any box information from the topology.

[parmout <file>] Write corresponding topology to file
with name <file>.

[parmopts <list>] Comma-separated list of options for
writing the topology file.

114

DataSet Aspects:

[Frame] Frame number.

[Mol] Original solvent molecule number.

[Dist] Solvent molecule distance in Å.

[FirstAtm] First atom number of original solvent
molecule.

Similar to the strip command, but modify coordinate frame and topology by
keeping only the specified number of closest solvent molecules to the region
specified by the given mask. Solvent molecules can be determined automat-
ically by cpptraj (by default residues named WAT, HOH, or TIP3), can be
specified prior via the solvent command (9.21 on page 82), or can be selected
by solventmask.

The format of the closestout file is:

Frame Molecule Distance FirstAtom#

For example, to obtain the 10 closest waters to residues 1-268 by distance to the
first atom of the waters, write out which waters were closest for each frame to
a file called “closestmols.dat”, and write out the stripped topology with prefix
“closest” containing only the solute and 10 waters:

closest 10 :1-268 first closestout closestmols.dat outprefix closest

As of version 17 this command is CUDA-enabled in CUDA versions of CPP-
TRAJ.

11.18 cluster
Although the ’cluster’ command can still be specified as an action, it is now
considered an analysis. See 12.5 on page 227.

11.19 clusterdihedral

clusterdihedral [phibins <N>] [psibins <M>] [out <outfile>]
[dihedralfile <dfile> | <mask>]
[framefile <framefile>] [clusterinfo <infofile>]
[clustervtime <cvtfile>] [cut <CUT>]

Cluster frames in a trajectory using dihedral angles. To define which dihedral
angles will be used for clustering either an atom mask or an input file specified
by the dihedralfile keyword should be used. If dihedral file is used, each line
in the file should contain a dihedral to be binned with format:

ATOM#1 ATOM#2 ATOM#3 ATOM#4 #BINS

115

where the ATOM arguments are the atom numbers (starting from 1) defining
the dihedral and #BINS is the number of bins to be used (so if #BINS=10
the width of each bin will be 36º). If an atom mask is specified, only protein
backbone dihedrals (Phi and Psi defined using atom names C-N-CA-C and N-
CA-C-N) within the mask will be used, with the bin sizes specified by the phibins
and psibins keywords (default for each is 10 bins).

Output will either be written to STDOUT or the file specified by the out key-
word. First, information about which dihedrals were clustered will be printed.
Then the number of clusters will be printed, followed by detailed information of
each cluster. The clusters are sorted from most populated to least populated.
Each cluster line has format

Cluster CLUSTERNUM CLUSTERPOP [dihedral1bin, dihedral2bin ... dihedralNbin]

followed by a list of frame numbers that belong to that cluster. If a cutoff
is specified by cut, only clusters with population greater than CUT will be
printed.

If specified by the clustervtime keyword, the number of clusters for each
frame will be printed to <cvtfile>. If specified by the framefile keyword, a file
containing cluster information for each frame will be written with format

Frame CLUSTERNUM CLUSTERSIZE DIHEDRALBINID

where DIHEDRALBINID is a number that identifies the unique combination of
dihedral bins this cluster belongs to (specifically it is a 3*number-of-dihedral-
characters long number composed of the individual dihedral bins).

If specified by the clusterinfo keyword, a file containing information on each
dihedral and each cluster will be printed. This file can be read by SANDER
for use with REMD with a structure reservoir (-rremd=3). The file, which is
essentially a simplified version of the main output file, has the following format:

#DIHEDRALS
dihedral1_atom1 dihedral1_atom2 dihedral1_atom3 dihedral1_atom4
...
#CLUSTERS
CLUSTERNUM1 CLUSTERSIZE1 DIHEDRALBINID1
...

11.20 contacts

contacts [first | reference | ref <ref> | refindex <#>] [byresidue]
[out <filename>] [time <interval>] [distance <cutoff>] [<mask>]

NOTE: Users are encouraged to try the nativecontacts command (on page 178),
an update version of this command.

116

For each atom given in mask, calculate the number of other atoms (contacts)
within the distance cutoff. The default cutoff is 7.0 A. Only atoms in mask are
potential interaction partners (e.g., a mask @CA will evaluate only contacts
between CA atoms). The results are dumped to filename if the keyword “out”
is specified. Thereby, the time between snapshots is taken to be interval. In
addition to the number of overall contacts, the number of native contacts is also
determined. Native contacts are those that have been found either in the first
snapshot of the trajectory (if the keyword “first” is specified) or in a reference
structure (if the keyword “reference” is specified). Finally, if the keyword
“byresidue” is provided, results are output on a per-residue basis for each
snapshot, whereby the number of native contacts is written to filename.native.

11.21 createcrd
createcrd [<name>] [parm <name> | parmindex <#>]

This command creates a COORDS data set named <name> using trajectory
frames that are associated with the specified topology.

For example, to save frames that have been previously RMS-fit to a reference
structure into a COORDS set named MyCrd you would use the input:

rms reference :1-12@CA
createcrd MyCrd
strip :6-8

Note that here the strip command will have no effect on the coordinates saved
in MyCrd since it occurs after the createcrd command.

11.22 createreservoir

createreservoir <filename> ene <energy data set> [bin <cluster bin data set>]
temp0 <temp0> iseed <iseed> [velocity]
[parm <parmfile> | parmindex <#>] [title <title>]

<filename> File name of the reservoir to create.

ene <energy data set> Data set with energies
corresponding to frames.

[bin <cluster bin data set>] Data set with bin numbers
(for RREMD=3).

temp0 <temp0> Reservoir temperature.

iseed <iseed> Reservoir random number seed.

[velocity] Include velocities in the reservoir.

[parm <parmfile> | parmindex <#>] Associated
topology.

117

[title <title>] Reservoir title.

Create structure reservoir for use with reservoir REMD simulations using en-
ergies in <energy data set>, temperature <temp0> and random seed <iseed>
Include velocities if [velocity] is specified. If <cluster bin data set> is specified
from e.g. a previous ’clusterdihedral’ command, the reservoir can be used for
non-Boltzmann reservoir REMD (rremd==3).

11.23 density
density [out <filename>] [name <set name>]

[<mask1> ... <maskN> [delta <resolution>] [{x|y|z}]
[{number|mass|charge|electron}] [{bincenter|binedge}]
[restrict {cylinder|square} cutoff <cut>]]

[out <filename>] Output file for histogram(s) (relative
distances vs. densities for each mask) or total
density.

[name <set name>] Output data set name.

<mask1> ... <maskN> Arbitrary number of masks for
atom selection; a dataset is created and the output
will contain entries for each mask.

[delta <resolution>] Resolution, i.e. determines
number of slices (i.e. histogram bins).
(default 0.25 Å)

[{x|y|z}] Coordinate (axis) for density calculation.
(default z)

[{number|mass|charge|electron}] Number, mass,
partial charge (q) or electron (Ne - q) density.
Electron density will be converted to e-/Å3 by
dividing the average area spanned by the other
two dimensions. (default number)

[{bincenter|binedge}] Determine whether histogram
bin coordinates will be based on bin center
(default) or bin edges.

[restrict {cylinder|square}] If ’restrict’ is
specified, only calculate the density that is
within a cylinder or square shape from the
specified axis as defined by a distance cutoff.
cutoff <cut> The distance cutoff for

’restrict’.

DataSets Created if masks specified:

<set name>[avg]:<idx> Average density over coordinate
for mask number <idx>.

118

<set name>[sd]:<idx> Standard deviation of density
over coordinate for mask number <idx>.

DataSets Created if no masks specified:

<set name> Total system density each frame.

If no atom masks are specified, calculate the total system density. Otherwise,
calculate specified density along the given axis for atoms in specified mask(s).
Defaults are shown in parentheses above. The format of the file is as follows.
Comments are lines starting with ’#’ or empty lines. All other lines must
contain the atom type followed by an integer number for the electron number.
Entries must be separated by spaces or ’=’. Example input:

density out number_density.dat number delta 0.25 ":POPC@P1" ":POPC@N" \
":POPC@C2" ":POPC"

density out mass_density.dat mass delta 0.25 ":POPC@P1" ":POPC@N" \
":POPC@C2" ":POPC"

density out charge_density.dat charge delta 0.25 ":POPC@P1" ":POPC@N" \
":POPC@C2" ":POPC"

density out electron_density.dat electron delta 0.25 efile Nelec.in \
":POPC@P1" ":POPC@N" ":POPC@C2" ":POPC" ":TIP3" \
":POPC | :TIP3" "*"

density out ion_density.dat number delta 0.25 ":SOD" ":CLA"

See also $AMBERHOME/AmberTools/test/cpptraj/Test_Density.
It can be useful to write out the average and standard deviation as an XYDY

set to a Grace data file, e.g.

density :WAT@O out wato.agr xydy

11.24 diffusion
Note that although the syntax for diffusion has changed as of version 16, the
old syntax is still supported.

diffusion [{out <filename>|separateout <suffix>}] [time <time per frame>] [noimage]
[<mask>] [<set name>] [individual] [diffout <filename>] [nocalc]
[avgucell <avg ucell set>]
[allowmultipleorigins]

[out <filename>] Write mean-square displacement (MSD)
data set output to file specified by <filename>.

[separateout <suffix>] Write each MSD data set type to
files with suffix <suffix>; see description below.

[time <time_per_frame>] Time in-between each
coordinate frame in ps; default is 1.0.

119

[noimage] If specified do not perform imaging. If this
is specified coordinates should be unwrapped prior
to this command.

[<mask>] Mask of atoms to calculate diffusion for;
default all atoms.

[<set name>] MSD data set name.

[individual] Write diffusion for each individual atom as
well as average diffusion for atoms in mask.

[diffout <filename>] Write diffusion contants calculated
from fits of MSD data sets to <filename>.

[nocalc] Do not calculate diffusion constants.

[avgucell] Remove periodic box fluctuations from imaged
NPT trajectories using average unit cell vectors.

[allowmultipleorigins] (MPI only). For imaged
trajectories in parallel, calculate diffusion by
averaging over multiple time origins. Should be
used with caution.

DataSet Aspects:

[X] MSD(s) in the X direction.

[Y] MSD(s) in the Y direction.

[Z] MSD(s) in the Z direction.

[R] Overall MSD(s).

[A] Overall displacement(s).

[D] Diffusion constants (1x10-5 cm2/s).

[Label] Diffusion constant lablels.

[Slope] Linear regression slopes.

[Intercept] Linear refression Y-intercepts.

[Corr] Linear regression correlation coefficients.

[aX]:<atomN> (individual only) Atom <N> MSD in the X
direction.

[aY]:<atomN> (individual only) Atom <N> MSD in the Y
direction.

[aZ]:<atomN> (individual only) Atom <N> MSD in the Z
direction.

[aR]:<atomN> (individual only) Atom <N> overall MSD.

[aA]:<atomN> (individual only) Atom <N> overall
displacement.

120

Compute mean-squared displacement (MSD, in Angstroms squared) plots (us-
ing distance traveled from initial position) for the atoms in <mask>. By
default only the diffusion averaged over all atoms in <mask> is calculated; if
individual is specified diffusion for individual atoms is calculated as well.

In order to correctly calculate diffusion molecules should take continuous
paths, so imaging of atoms is autoimatically performed. If the trajectory is al-
ready unwrapped (or the unwrap command is used prior to this command) the
noimage keyword can be used. To remove the “noise” caused by box fluctua-
tions in NPT trajectories, the average unit cell vectors describing the average
box can be provided with the avgucell keyword; see the avgbox command
(11.10 on page 109). Alternatively, the trajectory can be unwrapped prior us-
ing the unwrap command, 11.89 on page 210. If the trajectory is unwrapped,
the noimage keyword should be specified.

Note that in parallel, imaging becomes difficult because there is no way to
correct for any wrapping that has been done on preceding MPI ranks. Therefore
this command will not work on imaged trajectories in parallel by default. There
are two workarounds. 1) Unwrap the trajectory prior to diffusion with the
unwrap command, then run the diffusion calculation with the noimage key-
word (this is the recommended way), or 2) specify the allowmultipleorigins
keyword to calculate MSD separately on each MPI rank, then averaging over
all MSD plots. This means the maximum length of any given MSD plot will be
<# frames> / <# MPI ranks>, and the calculated diffusion constants will not
be as accurate.

The following types of displacements are calculated. If separateout is spec-
fied the following files will be created:

x_<suffix> Mean square displacement(s) in the X direction (in Å2/ps).

y_<suffix> Mean square displacement(s) in the Y direction (in Å2/ps).

z_<suffix> Mean square displacement(s) in the Z direction (in Å2/ps).

r_<suffix> Overall mean square displacement(s) (in Å2/ps).

a_<suffix> Total distance traveled (in Å/ps).

The diffusion coefficient D can be calculated using the Einstein relation:

2nD = lim
t→∞

MSD

t

Where n is the number of dimensions; for overall MSD n = 3, for single
dimension MSD (e.g. X) n = 1, etc. Unless nocalc is specified, the diffusion
constant is calculated automatically from MSD data sets (and written to the
file specified by diffout) in the following manner. The slope the plot of MSD
versus time is obtained via linear regression. To convert from units of Å2/ps to
1x10-5 cm2/s, the slope is multiplied by 10.0/(2n). Both the calculated diffusion
constants as well as the results of the fit are reported.

121

Due to the fact that diffusion is currently calculated from initial positions
only, diffusion calculated for small numbers of atoms will be inherently stochas-
tic, so the results are most sensible when averaged over many atoms; for exam-
ple, the diffusion of water should be calculated using all waters in the system.
If more averaging is needed, the calcdiffusion Analysis command (12.3 on
page 223) can be used to calculate diffusion from multiple time origins.

For example, to calculate the diffusion of water in a system:

diffusion :WAT@O out WAT_O.agr WAT_O diffout DC.dat

11.25 dihedral

dihedral [<name>] <mask1> <mask2> <mask3> <mask4> [out <filename>] [mass]
[type {alpha|beta|gamma|delta|epsilon|zeta|chi|c2p|h1p|phi|psi|omega|pchi}]
[range360]

[<name>] Output data set name.

<maskX> Four atom masks selecting atom(s) to
calculate dihedral for.

[out <filename>] Output file name.

[mass] Use center of mass of atoms in <maskX>; default
is geometric center.

[range360] Output dihedral angle values from 0 to 360
degrees instead of -180 to 180 degrees.

[type <type>] Label dihedral as <type> for use with
statistics analysis; note ’chi’ is nucleic acid chi
and ’pchi’ is protein chi.

Calculate dihedral angle (in degrees) between the planes defined by atoms in
<mask1>, <mask2>, <mask3> and <mask2>, <mask3>, <mask4>. To cal-
culate multiple dihedral angles see the multidihedral command on page 169.

11.26 dihedralrms | dihrms
dihedralrms [<name>] <dihedral types> [out <file>]

[first | reference | ref <name> | refindex <#> | previous |
reftraj <name> [parm <name> | parmindex <#>]]

[dihtype <name>:<a0>:<a1>:<a2>:<a3>[:<offset>] ...]
[tgtrange <range> [refrange <range>]]

[<name>] Output data set name.

<dihedral types> Dihedral types to look for. Note that
chip is ’protein chi’, chin is ’nucleic chi’.

[out <filename>] Output file name.

122

[dihtype <name>:<a0>:<a1>:<a2>:<a3>[:<offset>]
Search for a custom dihedral type called <name>
using atom names <a0>, <a1>, <a2>, and <a3>.
Offset: -2=<a0><a1> in previous res, -1=<a0> in
previous res, 0=All <aX> in single res, 1=<a3> in
next res, 2=<a2><a3> in next res.

[tgtrange <range>] Residue range to look for target
dihedrals in. Default is all solute residues.

[refrange <range>] Residues range to look for reference
dihedrals in. If not specified, use target range.

Calculate RMSD of selected dihedrals to dihedrals in a reference structure.
See the multidihedral command syntax on page 169 for a list of all available
dihedral types.

11.27 dihedralscan
This command has been replaced by permutedihedrals; see 7.12 on page 42.

11.28 dipole
dipole [out <filename>]

{ data <dsname> | boxref <ref name/tag> <nx> <ny> <nz> |
<nx> <dx> <ny> <dy> <nz> <dz>

[{ gridcenter <cx> <cy> <cz> |
boxcenter |
maskcenter <mask> |
rmsfit <mask> [noxalign]}]

[box|origin|center <mask>] [negative] [name <gridname>]
<mask1> [max <max_percent>]

[out <filename>] File to write out grid to. Use
“.grid” or “.xplor” extension for XPLOR format,
“.dx” for OpenDX format.

Options for setting up grid:

data <dsname> Use previously calculated/loaded grid
data set named <dsname>. When using this option
there is no need to specify grid
bins/spacing/center.

boxref <ref name/tag> <nx> <ny> <nz> Set up grid
using box information from a previously loaded
reference structure. Currently the only way to set
up non-orthogonal grids.

<nx> <dx> <ny> <dy> <nz> <dz> Number of grid
bins and spacing in the X/Y/Z directions.

123

[gridcenter <cx> <cy> <cz>] Location of grid center,
default is origin (0.0, 0.0, 0.0).

[boxcenter] Center grid on box center.

[maskcenter <mask>] Center the grid on the atoms
selected by <mask>.

[rmsfit <mask>] Perform a best-fit rotation of the grid
using the coordinates selected by <mask>.

[noxalign] If specified, grid will not be
re-oriented to align with Cartesian axes once
binning is finished. Will affect file formats
that do not store full unit cell vectors (like
Xplor).

Options for offset during grid binning (must center grid
at origin):

[box] Offset each point by location of box center prior
to gridding. Cannot be used with ’gridcenter’.

[origin] No offset (default)

[center <mask>] Offset each point by center of atoms in
<mask> prior to gridding. Cannot be used with
’gridcenter’.

Other options:

[negative] Grid negative density instead of positive
density.

[name <gridname>] Grid data set name.

<mask1> Mask selecting solvent atoms to bin.

[max <max percent>] Only keep density >= to
<max_percent> of the maximum density.

NOTE: This command is not well-tested and may be obsolete.
Similar to grid (see 11.38 on page 146 below) except that dipoles of the

solvent molecules are binned. The output file format is for Chris Bayly’s dis-
cern delegate program that comes with Midas/Plus. Consult the code in Ac-
tion_Dipole.cpp for more information.

11.29 distance
distance [<name>] <mask1> [<mask2>] [point <X> <Y> <Z>]

[reference | ref <name> | refindex <#>]
[out <filename>] [geom] [noimage] [type noe]

Options for ’type noe’:
[bound <lower> bound <upper>] [rexp <expected>] [noe_strong] [noe_medium] [noe_weak]

[<name>] Output data set name

124

<mask1> Atom mask selecting atom(s) to calculate
distance between.

<mask2> If specified, second atom mask selection
atom(s) to calculate distance from <mask1>.

point <X> <Y> <Z> If specified instead of second
mask, calculate distance between <mask1> and
specified XYZ coordinates.

reference | ref <name> | refindex <#> If specified,
calculate distance between <mask1> in each input
frame and <mask2> in the specified reference.

[out <filename>] Output filename.

[geom] Use geometric center of atoms in <mask1>/<mask2>;
default is to use center of mass.

[noimage] Do not image distances across periodic
boundaries.

[type noe] Mark distance as ’noe’ for use with
statistics analysis.

[bound <lower> bound <upper>] Lower and upper
bounds for NOE (in Angstroms); must specify
both.

[rexp <expected>] Expected value for NOE (in
Angstroms); if not given ’(<lower> + <upper>)’ /
2.0 is used.

[noe_strong] Set lower and upper bounds to 1.8 and
2.9 Å respectively.

[noe_medium] Set lower and upper bounds to 2.9 and
3.5 Å respectively.

[noe_weak] Set lower and upper bounds to 3.5 and
5.0 Å respectively.

Calculate distance between the center of mass of atoms in <mask1> to atoms
in <mask2>, between atoms in <mask1> from each input frame and atoms in
<mask2> in specified reference, or atoms in <mask1> and the specified point.
If geom is specified use the geometric center instead. For periodic systems
imaging is turned on by default; the noimage keyword disables imaging.

A distance can be labeled using ’type noe’ for further analysis as an NOE
using the ’statistics’ analysis command (12.37 on page 274).

11.30 drms | drmsd (distance RMSD)

drmsd [<dataset name>] [<mask> [<refmask>]] [out <filename>]
[first | ref <refname> | refindex <#> |

reftraj <trajname> [parm <trajparm> | parmindex <parm#>]]

125

[<dataset name>] Output data set name.
[<mask>] Atoms to calculate DRMSD for.
[<refmask>] Mask corresponding to atoms in reference;

if not specified, <mask> is used.
[out <filename>] Output file name.
[first] Use the first trajectory frame processed as

reference.
[reference] Use the first previously read in reference

structure.
[ref <refname>] Use previously read in reference

structure specified by <refname>.
[refindex <#>] Use previously read in reference

structure specified by <#> (based on order read in).
previous Use frame prior to current frame as reference.
reftraj <name> Use frames from COORDS set <name> or

read in from trajectory file <name> as references.
Each frame from <name> is used in turn, so that
frame 1 is compared to frame 1 from <name>, frame 2
is compared to frame 2 from <name> and so on. If
<trajname> runs out of frames before processing is
complete, the last frame of <trajname> continues to
be used as the reference.
parm <parmname> | parmindex <#> If reftraj

specifies a file associate trajectory <name>
with specified topology; if not specified the
first topology is used.

Calculate the distance RMSD (i.e. the RMSD of all pairs of internal distances)
between atoms in the frame defined by <mask> (all if no <mask> specified)
to atoms in a reference defined by <refmask> (<mask> if <refmask> not
specified). Both <mask> and <refmask> must specify the same number of
atoms, otherwise an error will occur.

Because this method compares pairs of internal distances and not absolute
coordinates, it is not sensitive to translations and rotations the way that a no-
fit RMSD calculation is. It can be more time consuming however, as (N2-N)/2
distances must be calculated and compared for both the target and reference
structures.

For example, to get the DRMSD of a residue named LIG to its structure in
the first frame read in:

drmsd :LIG first out drmsd.dat

11.31 dssp
See 11.77 on page 197.

126

11.32 energy

energy [<name>] [<mask1>] [out <filename>] [nobondstoh] [openmm [<mdopts>]]
[bond] [angle] [dihedral] {[nb14]|[e14]|[v14]} {[nonbond]|[elec] [vdw]}
[{nokinetic|kinetic [ketype {vel|vv}] [dt <dt>]}]
[etype { simple |

directsum [npoints <N>] |
ewald [cut <cutoff>] [dsumtol <dtol>] [ewcoeff <coeff>]

[erfcdx <dx>] [skinnb <skinnb>] [ljswidth <width>]
[rsumtol <rtol>] [maxexp <max>] [mlimits <X>,<Y>,<Z>] |

pme [cut <cutoff>] [dsumtol <dtol>] [ewcoeff <coeff>]
[erfcdx <dx>] [skinnb <skinnb>] [ljswidth <width>]
[order <order>] [nfft <nfft1>,<nfft2>,<nfft3>]
[ljpme [ewcoefflj <ljcoeff>]]

}]

[<name>] Data set name.

[<mask1>] Mask of atoms to calculate energy for.

[out <filename>] File to write results to.

[nobondstoh] Skip calculating the energy of bonds to
hydrogen.

[openmm] If specified and CPPTRAJ is compiled with
OpenMM support, use OpenMM to calculate energy.
Note this will only calculate total energy; any
keywords pertaining to individual energy components
are not available. For a list of potential options
that can be used with ’openmm’, see 7.7 on page 38.

[bond] Calculate bond energy.

[angle] Calculate angle energy.

[dihedral] Calculate dihedral energy.

[nb14] Calculate nonbonded 1-4 energy.

[e14] Calculate 1-4 electrostatics.

[v14] Calculate 1-4 van der Waals.

[nonbond] Calculate nonbonded energy (electrostatics
and van der Waals).

[elec] Calculate electrostatic energy (Coulomb
potential).

[vdw] Calculate van der Waals energy (Lennard-Jones 6-12
potential).

[nokinetic] Do not calculate kinetic energy even if
velocity/force information present.

127

[kinetic] Attempt to calculate kinetic energy. Requires
force and/or velocity information.

ketype {vel|vv} Specify kinetic energy type. If not
specified, if velocity and force information use
a velocity verlet-type calculation (vv), i.e.
assume velocities are a half-step ahead of the
forces. If only velocity information is
present, calculate from on-step velocities
(vel).

dt <dt> Time step for vv calculation in ps.

[etype <type>] Calculate electrostatics via specified
type.

[simple] Use simple Coulomb term for electrostatics, no
cutoff.

[directsum] Use direct summation method for
electrostatics.

[npoints <N>] Number of cells in each direction to
calculate the direct sum.

[ewald] Use Ewald summation for electrostatics. If van
der Waals energy will be calculated a long-range
correction for periodicity will be applied.

cut <cutoff> Direct space cutoff in Angstroms
(default 8.0).

dsumtol <dtol> Direct sum tolerance (default
0.00001). Used to determine Ewald coefficient.

ewcoeff <coeff> Ewald coefficient in 1/Ang.
erfcdx <dx> Spacing to use for the ERFC splines

(default 0.0002 Ang.).
skinnb Used to determine pairlist atoms (added to

cut, so pairlist cutoff is cut + skinnb);
included in order to maintain consistency with
results from sander.

ljswidth <width> If specified, use a
force-switching form for the Lennard-Jones
calculation from <cutoff>-<width> to <cutoff>.

rsumtol <rtol> Reciprocal sum tolerance (default
0.00005). Used to determine number of
reciprocal space vectors.

mlimits <X>,<Y>,<Z> Explicitly set the number
of reciprocal space vectors in each dimension.
Will be determined automatically if not
specified.

128

[pme] Use particle mesh Ewald for electrostatics. If
van der Waals energy will be calculated a long-range
correction for periodicity will be applied.

cut <cutoff> Direct space cutoff in Angstroms
(default 8.0).

dsumtol <dtol> Direct sum tolerance (default
0.00001). Used to determine Ewald coefficient.

ewcoeff <coeff> Ewald coefficient in 1/Ang.
erfcdx <dx> Spacing to use for the ERFC splines

(default 0.0002 Ang.).
skinnb Used to determine pairlist atoms (added to

cut, so pairlist cutoff is cut + skinnb);
included in order to maintain consistency with
results from sander.

ljswidth <width> If specified, use a
force-switching form for the Lennard-Jones
calculation from <cutoff>-<width> to <cutoff>.

order <order> Spline order for charges.
nfft <nfft1>,<nfft2>,<nfft3> Explicitly set the

number of FFT grid points in each dimension.
Will be determined automatically if not
specified.

ljpme If specified use particle mesh Ewald for
calculating Lennard-Jones interactions.

ewcoefflj Ewald coefficient for Lennard-Jones PME
(implies ljpme).

DataSet Aspects:

[bond] Bond energy.

[angle] Angle energy.

[dih] Dihedral energy.

[vdw14] 1-4 van der Waals energy.

[elec14] 1-4 electrostatic energy.

[vdw] van der Waals energy.

[elec] Electrostatic energy.

[kinetic] Kinetic energy.

[total] Total energy.

Calculate the energy for atoms in <mask>. If no terms are specified, all terms
are calculated. Note that the non-bonded energy terms for ’simple’ do not take
into account periodicity and there is no distance cut-off. Electrostatics can also
be determined via the direct sum, Ewald, or particle-mesh Ewald summation

129

procedures. The particle mesh Ewald functionality requires that CPPTRAJ be
compiled with FFTW and a C++11 compliant compiler.

Calculation of energy terms requires that the associated topology file have
parameters for any of the calculated terms, so for example angle calculations
are not possible when using a PDB file as a topology, etc. All nonbonded
calculations methods other than simple require unit cell parameters.

For example, to calculate all energy terms and write to a Grace-format file:

parm DPDP.parm7
trajin DPDP.nc
energy DPDP out ene.agr

11.33 esander

esander [<name>] [out <filename>] [saveforces] [parmname <file>] [keepfiles]
[<namelist vars> ...]

[<name>] Data set name.
[out <filename>] File to write results to.
[saveforces] If specified, save forces to frames.

Requires writing frames in NetCDF format.
[parmname <file>] Name of temporary topology file

(default: ’CpptrajEsander.parm7’).
[keepfiles] Keep temporary topology file after program

execution.
[<namelist vars>] Namelist variables supported by the

sander API in format ’var <value>’; see below.

Calculate energies for input frames using the sander API. It requires compila-
tion with the SANDER API (sanderlib). This can be considered as a faster
alternative to energy post-processing with sander (imin = 5). Currently the
following sander namelist variables are supported: extidel, intdiel, rgbmax,
saltcon, cut, dielc, igb, alpb, gbsa, lj1264, ipb, inp, vdwmeth, ew_type,
ntb, ntf, ntc. See ?? on page ?? for details.

If ntb/cut/igb are not specified cpptraj will attempt to pick reasonable values
based on the input system. The defaults for a non-periodic system are ntb=0,
cut=9999.0, igb=1. The defaults for a periodic system are ntb=1, cut=8.0,
igb=0. This currently requires writing a temporary Amber topology, the name
of which can be set by parmname. If keepfiles is specified this temporary
topology will not be deleted after execution.

For example, to calculate energies for a non-periodic system using igb=1
(the default) with GB surface area turned on (gbsa=1):

parm DPDP.parm7
trajin DPDP.nc
esander DPDP out Edpdp.dat gbsa 1

130

11.34 filter

filter {<dataset arg> min <min> max <max> ...} [out <file>] [name <setname>]
{[multi] | [filterset <set> [newset <newname>]] [countout <countfile>]}

<dataset arg> Data set name(s) to use for filtering

min <min> Allow values greater than <min> in
dataset(s).

max <max> Allow values greater than <max> in
dataset(s).

[out <file>] File containing 1 for frames that were
allowed, 0 for frames that were filtered.

[name <setname>] Filtered data set name containing 1
for allowed frames, 0 for filtered frames.

[multi] Filter each set separately instead of all
together (creates filter set for each input set).
Cannot be used with ’filterset’.

[filterset <set>] If specified, <set> will be filtered to
only contain data that satisfies cutoffs. Cannot be
used with ’multi’.

[newset <newname>] If specified a new set will be
created from ’filterset’ instead of replacing
’filterset’.

[countout <count>] If specified, write number of
elements passed and filtered to <countfile>. Cannot
be used with ’multi’.

Sets Created (not ’multi’)

<setname> For each input element contains 1 for
elements that “passed”, 0 otherwise.

<setname>[npassed] Number of elements that passed.

<setname>[nfiltered] Number of elements filtered out.

Sets Created (’multi’)

<setname>:<idx> For each input set (number with
<idx>, starting from 0) contains 1 for elements that
“passed”, 0 otherwise.

For all following actions, only include frames that are between <min> and
<max> of data sets in <dataset arg>. There must be at least one <min>
and <max> argument, and there must be as many <min>/<max> argu-
ments as there are specified data sets. If ’multi’ is specified then only filter
data sets will be created for each data set instead. If ’filterset’ is specified, the

131

specified <set> will be modified to only contain ’1’ frames; cannot be used with
’multi’. If ’newset’ is also specified, a new set will be created containing the
’1’ frames instead. The ’filterset’ functionality only works for 1D scalar sets.
If ’countout’ is specified, the final number of elements passed and filtered out
will be written to <countfile>.

For example, to write only frames in-between an RMSD of 0.7-0.8 Angstroms
for a given input trajectory:

trajin ../tz2.truncoct.nc
rms R1 first :2-11
filter R1 min 0.7 max 0.8 out filter.dat
outtraj maxmin.crd

The output trajectory will only contain frames that meet the RMSD require-
ment, and the filter.dat file can be used to see which frames those were that
were output.

A similar command that can be used with data that already exists (e.g. it
has been read in with readdata) is datafilter (see page 54).

11.35 fixatomorder

fixatomorder [outprefix <prefix>] [nobox] [parmout <filename>]
[parmopts <comma-separated-list>]
[pdborder [hetatm <mask>]] (EXPERIMENTAL)

outprefix <prefix> Write re-ordered topology to
<prefix>.<originalname>

[nobox] Remove any box information from the re-ordered
topology.

parmout <filename> Write re-ordered topology to
<filename>

parmopts <list> Options for writing topology file

pdborder (EXPERIMENTAL) Try to reorder atoms according
to PDB information.

hetatm <mask> Mark atoms in mask as HETATM, order
them after other atoms.

Cpptraj (and most of Amber) expects that atom indices in molecules to increase
monotonically. However, occasionally atom indices in molecules can become
disordered or non-sequential, in which case cpptraj will print an error message
such as the following:

Error: Atom 45 was assigned a lower molecule # (1) than previous atom (2).

132

and:

Error: Could not determine molecule information for <topology file>.

. This command fixes atom ordering so that all atoms in molecules are sequen-
tial. The outprefix keyword will write out the re-ordered topology with name
<name>.<original name>.

For example, given an out of order topology named ’outoforder.parm7’ and
a corresponding trajectory ’min1.crd’, the following will produce a reordered
topology named ’reorder.outoforder.parm7’ and a reordered trajectory named
’reorder.mdcrd’:

parm outoforder.parm7
trajin min1.crd 1 10
fixatomorder outprefix reorder
trajout reorder.mdcrd

If ’pdborder’ is specified, attempt to organize atoms by PDB information (i.e.
Chain ID, original residue numbering, and insertion codes). Atoms optionally
specified by ’hetatm <mask>’ will be placed after all other atoms. Note that
the ’pdborder’ keyword is still experimental, and requires that the Topology have
PDB-type information present.

11.36 fiximagedbonds
fiximagedbonds [<mask>]

<mask> Mask expression of atoms to check.

Fix bonds that have been split across periodic boundary conditions by imaging.
It may be desirable to reimage the coordinates after this with autoimage .

11.37 gist (Grid Inhomogeneous Solvation Theory)

gist [name <dataset name>] [doorder [nopl] [plcut <plcut>]]
[doeij] [skipE] [skipS] [refdens <rdval>] [temp <tval>]
[noimage] [gridcntr <xval> <yval> <zval>]
[rmsfit <fitmask>]
[griddim <nx> <ny> <nz>] [gridspacn <spaceval>] [neighborcut <ncut>]
[prefix <filename prefix>] [ext <grid extension>] [out <output suffix>]
[floatfmt {double|scientific|general}] [floatwidth <fw>] [floatprec <fp>]

[intwidth <iw>]
[info <info suffix>]
[nopme|pme [cut <cutoff>] [dsumtol <dtol>] [ewcoeff <coeff>]

[erfcdx <dx>] [skinnb <skinnb>] [ljswidth <width>]
[order <order>] [nfft <nfft1>,<nfft2>,<nfft3>]]

133

[name <dataset name>] Name for output data sets.

[doorder] Calculate the water order parameter [7] for
each voxel.

[nopl] If specified, do not use the pair list for
the order calculation (may be much slower).

[plcut <plcut>] Pair list cutoff for order
calculation (default 10.0 Ang.).

[doeij] Calculate the triangular matrix representing the
water-water interactions between pairs of voxels
(see below).

[skipE] Skip all energy calculations (cannot be
specified with ’doeij’).

[skipS] Skip all entropy calculations.

[refdens rdval>] Reference density of bulk water, used
in computing g_O, g_H, and the translational
entropy. Default is 0.0334 molecules/Å3.

[temp <tval>] Temperature of the input trajectory.

[noimage] Disable distance imaging in energy
calculation.

[gridcntr <xval> <yval> <zval>] Coordinates (Å) of the
center of the grid (default 0.0, 0.0, 0.0).

[rmsfit <fitmask>] If specified, grid will be centered
and rotated to follow atoms selected by <fitmask>.

[griddim <nx> <ny> <nz>] Grid dimensions (number of
bins/voxels) along each coordinate axis (default 40,
40, 40).

[gridspacn <spaceval>] Grid spacing (linear dimension
of each voxel) in Angstroms. Values greater than
0.75 Å are not recommended (default 0.5 Å).

[neighborcut <ncut>] Cutoff in Å for determining
solvent O-O neighbors (default 3.5 Å).

[prefix <filename prefix>] Output file name prefix
(default “gist”).

[ext <grid extension>] Output grid file name extension
(default “.dx”).

[out <output suffix>] Suffix for main GIST output file
name. If not specified, output file will be set to
’<prefix>-output.dat’.

[floatfmt {double|scientific|general}] Format for floating
point values in GIST output file: double (regular

134

fixed decimal point), scientific, or general
(default, chooses fixed or scientific, whichever
fits better).

[floatwidth <fw>] Changes width of floating point values
in GIST output file. Default is no width
restriction.

[floatprec <fp>] Changes precision of floating point
values in GIST output file. Default is to use
whatever the system default is.

[intwidth <iw>] Changes width of integer values in GIST
output file. Default is no width restriction.

[info <info suffix>] Suffix for main GIST info file name.
If not specified, info will be written to standard
output.

[oldnnvolume] Use the old reference volume for the
nearest neighbor entropy, instead of the more
precice new implementation.

[nnsearchlayers <nlayers>] Number of layers of
neighboring voxels that should be used when
searching for nearest neighbors. This has to be at
least 1 to obtain the correct entropy. Higher
values can help to obtain better convergence of the
translational and 6D entropy with little sampling or
fine grid spacings, but increase the calculation
time (default 1).

[solute <mask>] Selection mask for the solute. All
other molecules will be solvent. If this is
omitted, the standard solute/solvent assignment will
be used.

[solventmols <MOLS>] Comma-separated list of names of
solvent molecules. Energies will be computed per
solvent molecule. For the entropy, only the main
solvent (the first one) will be used. Use, e.g.,
solventmols WAT,NA,CL for a GIST calculation
including ions. This needs to be specified if there
is more than one solvent species.

[nocom] Do not use the center of mass to define the
molecular position. Instead, use the first atom in
rigidatoms. Use this flag to restore the behavior
of old GIST runs.

[rigidatoms <CENTRAL> <SUBST1> <SUBST2>]
Specifies how to define the molecular orientation
for the entropy. By default, a simple heuristic

135

will be used. This works for water, but not for all
solvents. The atoms should be representative of the
molecular orientation and should not be collinear.
Note that the central atom goes first. For water,
the default is equivalent to rigidatoms O H1 H2,
corresponding to H1-O-H2 as the rigid substructure.

[nopme] Do not use particle mesh Ewald for the
non-bonded calculation (default).

[pme] Use particle mesh Ewald for the non-bonded
electrostatics calculation. The van der Waals
energy will be calculated using a long-range
correction for periodicity. Does not support doeij.

cut <cutoff> Direct space cutoff in Angstroms
(default 8.0).

dsumtol <dtol> Direct sum tolerance (default
0.00001). Used to determine Ewald coefficient.

ewcoeff <coeff> Ewald coefficient in 1/Ang.
erfcdx <dx> Spacing to use for the ERFC splines

(default 0.0002 Ang.).
skinnb Used to determine pairlist atoms (added to

cut, so pairlist cutoff is cut + skinnb);
included in order to maintain consistency with
results from sander.

ljswidth <width> If specified, use a
force-switching form for the Lennard-Jones
calculation from <cutoff>-<width> to <cutoff>.

order <order> Spline order for charges.
nfft <nfft1>,<nfft2>,<nfft3> Explicitly set the

number of FFT grid points in each dimension.
Will be determined automatically if not
specified.

DataSet Aspects:

[gO] Number density of oxygen centers found in the
voxel, in units of the bulk density.

[gH] Number density of hydrogen centers found in the
voxel in units of the reference bulk density.

[Esw] Mean solute-water interaction energy density.

[Eww] Mean water-water interaction energy density.

[dTStrans] First order translational entropy density.

[dTSorient] First order orientational entropy density.

[dTSsix] First order six-dimensional entropy density.

136

[neighbor] Mean number of waters neighboring the water
molecules found in this voxel multiplied by the
voxel number density.

[dipole] Magnitude of mean dipole moment (polarization).

[order] Average Tetrahedral Order Parameter.

[dipolex] x-component of the mean water dipole moment
density

[dipoley] y-component of the mean water dipole moment
density

[dipolez] z-component of the mean water dipole moment
density

[Eij] Water-water interaction matrix.

[PME] (pme only) Mean water energy on the GIST grid.

[U_PME] (pme only) Mean solute energy on the GIST
grid.

DataSets if the main solvent is not water:

[gELEM] For every element ELEM in the main solvent,
the atomic density relative to rho0 (e.g., gC and gH
for benzene).

DataSets if there are multiple solvents:

[g_mol_NAME] for every solvent species NAME (e.g.,
g_mol_WAT and g_mol_NA if solventmols WAT,NA was
specified).

[Esw_mol_NAME] for every solvent species NAME
(e.g., Esw_mol_WAT and Esw_mol_NA if solventmols
WAT,NA was specified).

[Eww_mol_NAME] for every solvent species NAME
(e.g., Eww_mol_WAT and Eww_mol_NA if solventmols
WAT,NA was specified).

Grid Inhomogeneous Solvation Theory [8, 9] (GIST) is a method for analyzing
the structure and thermodynamics of solvent in the vicinity of a solute molecule.
The current implementation works for only water, but the method can be gener-
alized to other solvents whose molecules are rigid like water, such as chloroform
or dimethylsulfoxide (DMSO). GIST post-processes explicit solvent simulation
data to create a three-dimensional mapping of water density and thermody-
namic properties within a region of interest, which is defined by a user-specified
3D rectangular grid. The small grid boxes are referred to as voxels, and each
voxel is associated with solvent properties. (See Fig. 1.) The GIST implemen-
tation incorporated into AmberTools cpptraj also calculates a number of other
local water properties, as listed below. GIST works for the nonpolarizable water
models currently supported by AMBER.

137

Figure 1: Diagram, in 2D, of GIST’s gridded water properties in a binding site.

In order to carry out a GIST calculation, you must have a trajectory file
generated with explicit water, as well as the corresponding topology file. To
generate the most readily interpretable results, it is recommended that the solute
(e.g., a protein) be restrained into essentially one conformation. GIST will then
provide information about the structure and thermodynamics of the solvent for
that conformation. For a room-temperature simulation of a solvent-exposed
binding site, and a grid-spacing of 0.5 Å, it is recommended that the simulation
be at least 10-20 ns in duration, and it is also a good idea to check for convergence
of the GIST properties you are interested in by loading and then processing
successively more frames of your trajectory file. Because GIST assumes that
the solute of interest comprises all molecules in the simulation that are not
waters, it is a good idea to remove all counterions and cosolutes with cpptraj’s
strip command before running GIST. A sample series of cpptraj commands for
running GIST is provided below.

Although it is not mandatory to supply values of gridcntr, griddim and
gridspcn, these parameters should be carefully chosen, because they determine
the region to be analyzed (gridcntr and griddim) and the spatial resolution
and convergence properties of the results (gridspcn). In particular, although
smaller grid spacings will give finer spatial resolution, longer simulation times
will be needed to converge the properties in the smaller voxels that result. A
larger grid spacing will allow earlier convergence, but will smooth the spatial
distributions. When computing the sum over voxel values in a larger region, the
result is independent of the grid spacing as long as nlayers is high enough for
the given sampling.

The reference density of water (rdval) is taken by default to be the exper-
imental number density of pure water at 300 K and 1 atm. However, different
water models may yield slightly different bulk densities under these conditions,
and the density also depends on T and P. If you know that the bulk density
of the water model you are using, at the T and P of your simulation, deviates
significantly from 0.0334 water molecules/Å3, it would be advisable to supply
the actual value with the refdens keyword, instead of allowing GIST to supply
the default value.

For GIST, a GPU accelerated version is available, in which the interaction
energy is calculated using CUDA. When using the GPU accelerated version of

138

GIST, the doeij keyword is not available. It is recommended to use a grid
covering the entire box, when using the GPU implementation. You may also
choose a smaller grid, but all interaction energies, i.e., each atom with each atom,
will always be calculated independent of the chosen grid. This ensures optimum
performance when calculating the interaction energies. Thus, the additional
time required to calculate the order parameters (doorder) is negligible.

The nonbonded energy calculation can also be accelerated using particle
mesh Ewald via the pme keyword (CPU only).[10]

GIST Output

GIST generates a main output file and a collection of grid data files that
by default are in Data Explorer format (.dx); this can be changed via the ext
keyword. These grid files enable visualization of the various gridded quantities,
such as with the program VMD [11]. If the doeij keyword is provided, GIST
also writes out a matrix of water-water interactions between pairs of voxels. In
addition, run details are written to stdout, which can be redirected into a log
file.

Note that a number of quantities are written out as both densities and
normalized quantities. For example, the output file includes both the solute-
water energy density and the normalized (per water) solute-water energy. In all
cases, the normalized quantity at voxel i, Xi,norm is related to the corresponding
density, Xi,dens, by the relationship Xi,norm = ρiXi,dens, where ρi is the number
density of water in the voxel. The normalized quantity provides information
regarding the nature of the water found in the voxel. The density has the
property that, if the grid extended over the entire simulation volume, the total
system quantity would be given by Xtot = Vvoxel

∑
i Xi,dens, where Vvoxel is the

volume of one grid voxel.
The main output file takes the form of a space-delimited-variable file, where

each row corresponds to one voxel of the grid. This file can easily be opened
with and manipulated with spreadsheet programs like Excel and LibreOffice
Calc. The columns are as follows.

• index - A unique, sequential integer assigned to each voxel

• xcoord - x coordinate of the center of the voxel (Å)

• ycoord - y coordinate of the center of the voxel (Å)

• zcoord - z coordinate of the center of the voxel (Å)

• population - Number of water molecule, ni, found in the voxel over the
entire simulation. A water molecule is deemed to populate a voxel if its
oxygen coordinates are inside the voxel. The expectation value of this
quantity increases in proportion to the length of the simulation.

139

• g_O - Number density of oxygen centers found in the voxel, in units of
the bulk density (rdval). Thus, the expectation value of g_O for a neat
water system is unity.

• g_H - Number density of hydrogen centers found in the voxel in units
of the reference bulk density (2×rdval). Thus, the expectation value of
g_H for a neat water system would be unity.

• g_ELEM - (if the main solvent is not water) Density of every further
element ELEM in the main solvent. Scaled such that the expectation
value in pure solvent is unity.

• g_mol_NAME - (if there is more than one solvent) Density of every
solvent species NAME specified in solventmols. Scaled by rho0.

• dTStrans-dens - First order translational entropy density (kcal/mole/Å3),
referenced to the translational entropy of bulk water, based on the value
rdval.

• dTStrans-norm - First order translational entropy per water molecule
(kcal/mole/molecule), referenced to the translational entropy of bulk wa-
ter, based on the value rdval. The quantity dTStrans-norm equals
dTStrans-dens divided by the number density of the voxel in units of
number/Å3.

• dTSorient-dens - First order orientational entropy density (kcal/mole/Å3),
referenced to bulk solvent (see below).

• dTSorient-norm - First order orientational entropy per water molecule
(kcal/mole/water), referenced to bulk solvent (see below). This quantity
equals dTSorient-dens divided by the number density of the voxel.

• Esw-dens - Mean solute-water interaction energy density (kcal/mole/Å3).
This is the interaction of the solvent in a given voxel with the entire solute.
Both Lennard-Jones and electrostatic interactions are computed without
any cutoff, within the minimum image convention but without Ewald sum-
mation. This quantity is referenced to bulk, in the trivial sense that the
solute-solvent interaction energy is zero in bulk.

• Esw-norm - Mean solute-water interaction energy per water molecule
(kcal/mole/molecule). This equals Esw-dens divided by the number den-
sity of the voxel.

• Eww-dens - Mean water-water interaction energy density, scaled by ½
to prevent double-counting, and not referenced to the corresponding bulk
value of this quantity (see below). This quantity is one half of the mean
interaction energy of the water in a given voxel with all other waters
in the system, both on and off the GIST grid, divided by the volume
of the voxel (kcal/mole/Å3). Unless PME is used, both Lennard-Jones

140

and electrostatic interactions are computed without any cutoff, within the
minimum image convention.

• Esw_mol_NAME-dens and Esw_mol_NAME-norm - (if there
are multiple solvent species) Mean solute-solvent energy per molecule of
species NAME, for each solvent specified in solventmols. Follows the
same conventions as Esw.

• Eww_mol_NAME-dens and Eww_mol_NAME-norm - (if there
are multiple solvent species) Mean solvent-solvent energy per molecule of
species NAME, for each solvent specified in solventmols. Follows the
same conventions as Eww.

• PME-norm - (Only if PME was used) Mean PME solvent energy per
water molecule (kcal/mole/molecule). This equals PME-dens divided
by the number density of the voxel.

• PME-dens - (Only if PME was used) Mean PME solvent energy density
(kcal/mole/Å3). This corresponds roughly to Eww-norm plus one half
of Esw-norm in a non-PME GIST calculation.

• Eww-norm - Mean water-water interaction energy, normalized to the
mean number of water molecules in the voxel (kcal/mole/water). See
prior column definition for details.

• Dipole_x-dens - x-component of the mean water dipole moment density
(Debye/Å3).

• Dipole_y-dens - y-component of the mean water dipole moment density
(Debye/Å3).

• Dipole_z-dens - z-component of the mean water dipole moment density
(Debye/Å3).

• Dipole-dens - Magnitude of mean dipole moment (polarization) (Debye/Å3).

• Neighbor-dens - Mean number of waters neighboring the water molecules
found in this voxel multiplied by the voxel number density. Two waters
are considered neighbors if their oxygens are within 3.5 angstroms of each
other. For any given frame, the contribution to the average is set to zero
if no water is found in the voxel (units of number/Å3).

• Neighbor-norm - Mean number of neighboring water molecules, per wa-
ter molecule found in the voxel (units of number per water).

• Order-norm - Average Tetrahedral Order Parameter [7], qtet, for water
molecules found in the voxel, normalized by the number of waters in the
voxel. The order parameter for water i in a given frame is given by:
qtet(i) = 1 − 3

8
∑3

j=1
∑4

k=j+1(cosϕijk + 1
3)2 where j and k index the 4

closest water neighbors to water i, and ϕijk is the angle formed by water

141

i, j, and k. If the doorder keyword is not provided or is set to FALSE,
then this calculation will not be done, and the entries in this column will
be set to zero.

Grid files are provided for all computed quantities listed above, except that the
normalized quantities are not included. The filenames are as follows: gist-gO.dx,
gist-gH.dx, gist-dTStrans-dens.dx, gist-dTSorient-dens.dx, gist-Esw-dens.dx, gist-
Eww-dens.dx, gist-dipolex-dens.dx, gist-dipoley-dens.dx, gist-dipolez-dens.dx,
gist-dipole-dens.dx, gist-neighbor-dens.dx, gist-neighbor-norm.dx, gist-order-norm.dx.
If the doorder keyword is not provided, then the data in gist-order-norm.dx
will all be zeroes. Note that the file of voxel water densities, gist-gO.dx, can
be used as input to the program Placevent [12], in order to define spherical
hydration sites based on the density distribution. More detailed descriptions of
the files follows:

• gist-dipole-dens.dx - Magnitude of mean dipole moment (polarization)
(Debye/Å3).

• gist-dipolex-dens.dx - X-component of the mean water dipole moment
density (Debye/Å3).

• gist-dipoley-dens.dx- Y-component of the mean water dipole moment
density (Debye/Å3).

• gist-dipolez-dens.dx - Z-component of the mean water dipole moment
density (Debye/Å3).

• gist-dTSorient-dens.dx - Density weighted first order orientational en-
tropy (kcal/mole/Å3). The more negative the isovalue, the more restricted
or unfavorable the orientation of the water is. The value at bulk density
is expected to be zero, most values will fall between 0 and -1.

• gist-dTStrans-dens.dx - Density weighted first order tranlational en-
tropy (kcal/mole/Å3). The more negative isovalue, the more restricted
the water is positionally. The value at bulk density is expected to be zero,
most values will fall between 0 and -1.

• gist-Esw-dens.dx - Density weighted Solute-Water interaction energy
(kcal/mole/Å3). This is the interaction of the water with the entire solute.
Both Lennard-Jones and electrostatic interactions are computed without
any cutoff, within the minimum image convention. The more negative the
number, the more favorable the interaction between the water and solute
is. Isovalues will be negative numbers.

• gist-Eww-dens.dx - Density weighted Water-Water interaction energy
(kcal/mole/Å3). This is the interaction of the water with the entire sol-
vent. Both Lennard-Jones and electrostatic interactions are computed
without any cutoff, within the minimum image convention. The more
negative the number, the more favorable the interaction between water

142

within this voxel and all other water molucules is. Isovalues will be nega-
tive numbers.

• gist-gH.dx - Number density of hydrogen centers found in the voxel, in
units of the bulk density. The expectation value of g_H for a neat water
system is unity. The units of this dx file are the density/bulk density.
Therefore an isovalue of 1 represents every voxel at or greater than bulk
density.

• gist-gO.dx - Number density of oxygen centers found in the voxel, in
units of the bulk density. The expectation value of g_O for a neat water
system is unity. The units of this dx file are the density/bulk density.
Therefore an isovalue of 1 represents every voxel at or greater than bulk
density.

• gist-neighbor-norm.dx - Mean number of neighboring water molecules,
per water molecule found in the voxel (units of number per water). Two
waters are considered neighbors if their oxygens are within 3.5 Angstroms
of each other.

• gist-order-norm.dx - Average Tetrahedral Order Parameter for water
molecules found in the voxel, normalized by the number of waters in the
voxel. doorder must be declared in the command line for this file to be
produced.

Similar grid files with other computed quantities can be generated by reading
the gist.out file into a spreadsheet program, processing the numbers to generate
a new column of voxel data of interest, and writing this column to an ascii text
file. Then the Perl script write_dx_file.pl, which should be available on the
GIST tutorial web-site, may be used to read in the column of data and create
the corresponding dx file. The input format, and an example, are as follows:

./write_dx_file.pl [filename] [x-dimension y-dimension z-dimension]
[x-origin y-origin z-origin] [grid spacing]
./write_dx_file.pl file.dat 40 40 40 13.0 13.0 13.0 0.75

If the doeij keyword is provided, GIST also writes a large file, Eww_ij.dat,
containing the mean water-water interaction energies between pairs of voxels,
scaled by ½. (See below.) This file has three columns. The first two columns are
voxel indexes, i, j, where j > i, so that no pair appears more than once, and
the third column is the mean interaction energy (kcal/mole) of water in voxels
i andj, scaled by ½. If the occupancy of either voxel is 0, such as for voxels
covered by solute atoms, then the interaction energy is zero. In order to save
space, such interactions are omitted from the file.

Sample cpptraj input file to run GIST

143

The following input file, gist.in, causes cpptraj to read a parameter file named
topology.top; read in the first 5000 frames of the trajectory file named trajecto-
ryfile.mdcrd; strip out all Na and Cl ions; and carry out a GIST run which com-
putes order parameters, uses a 41x41x45 grid centered at (25.0, 31.0, 30.0) with
a spacing of 0.5 Å, uses the default bulk water density of 0.0334 molecules/Å3,
and generates the main output file gist.out.

parm topology.top
trajin trajectoryfile.mdcrd 1 5000
strip @Na
strip @Cl
gist doorder doeij gridcntr 25.0 31.0 30.0 griddim 41 41 45

gridspacn 0.50 out gist.out
go

To execute this run in the background, use

cpptraj<gist.in>gist.log& or cpptraj –i gist.in>gist.log&

Referencing GIST results to unperturbed (bulk) water

Inhomogeneous fluid solvation theory, which is the basis of GIST, is designed
to provide information on how water structure and thermodynamics around a
solute molecule, such as a protein, are changed relative to the structure and
thermodynamics of unperturbed (bulk) water. Accordingly, the quantities re-
ported by GIST are most informative when the results are referenced to the
corresponding bulk water properties. For the orientational entropy, the refer-
ence value is the same regardless of water model or conditions, because the first
order orientational distribution of water in the bulk is always uniform. There-
fore, the GIST results for orientational entropies are already referenced to bulk.
However, cpptraj reports unreferenced values for those GIST quantities whose
reference values depend upon the water model and the simulation conditions;
i.e., the energies. The translational entropy as well as the number densities will
be referenced to bulk using the input referenced density or the default density
value of 0.0334. The table below provides useful reference values for these quan-
tities, computed for various water models at P=1atm, T=300K, using GIST in
order to ensure a consistent minimum image treatment of periodic boundary
conditions.

Users running calculations under significantly different conditions, or with
different water models, should consider generating their own reference quanti-
ties by applying GIST to a simulation of pure water under their conditions of
interest. The quantities of interest can then be obtained in their most precise
available form by averaging over voxels, for the pure water simulation. If the

144

Water Model Mean Energy (Eww-norm) (kcal/mol/water) Number Density (Å−3)
TIP3P -9.533 0.0329

TIP4PEW -11.036 0.0332
TIP4P -9.856 0.0332
TIP5P -9.596 0.0329

Tip3PFW -11.369 0.0334
SPCE -11.123 0.0333

SPCFW -11.873 0.0329

Table 3: Water model energy and density.

quantity of interest is Q, then its average reference value is Qreference =
∑

niQi∑
ni

,

where Qi and ni are, respectively, GIST’s reported values of the quantity and
the population in voxel i. The densities, ρi, are referenced to the correspond-
ing bulk densities, ρo, as gi = ρi/ρ

o, while the energy and entropy terms are
referenced by subtracting their bulk values.

Note that the Eww reference needs to be subtracted from the normal-
ized water-water energy Eww-norm. A referenced Eww-dens can be ob-
tained by multiplying the referenced Eww-norm by the solvent number den-
sity ρ = gOρ

o = Nw

NfVvox
, where Nw is the number of water molecules in a voxel

(population), Nf is the number of frames, and Vvox is the voxel volume.

Interpreting GIST results

GIST provides access to the first order entropies and the first- and second-
order energies of inhomogeneous fluid solvation theory. Non-zero higher-order
entropies exist but are not yet computationally accessible. However, for a pair-
wise additive force-field, such as those listed in the Table above, the energy is
fully described at the second order provided by GIST.

GIST is a research tool, and its applications (to, for example, protein-ligand
binding and protein function) are still being explored. The following general
comments may be helpful to users studying GIST results.

1. The water in voxels near a solute (e.g., a protein) almost always has
unfavorable water-water interaction energies, relative to bulk, simply because
the solute displaces water, resulting in fewer proximal water-water interactions.

2. The unfavorable water-water energies mentioned in [8] may be balanced
by favorable water-solute interactions. If they are not, as may occur especially
for voxels in small, hydrophobic pockets, then the net energy of the water in
the voxel may be unfavorable relative to bulk, in which case a ligand which
displaces water from the voxel into bulk may get a boost in affinity.

3. Because the first order orientational distribution of bulk water is uniform,
and a nonuniform distribution always has lower entropy than a uniform one, the

145

solute can only lower the orientational entropy of water, relative to bulk. Thus,
this term always opposes solvation, and displacing oriented water into the bulk
is always favorable from the standpoint of orientational entropy.

4. Localized water, which corresponds to voxels with high water density,
has a low first order translational entropy, and the translational entropy around
a solute is lower than that in bulk, as a nonuniform translational distribution
takes the place of the uniform translational distribution of bulk water.

5. The displacement of highly oriented (low orientational entropy) and lo-
calized (low translational entropy) water into bulk leads to a favorable increase
in these entropy terms.

6. However, highly oriented and localized water is often the consequence of
strongly favorable polar interactions, such as hydrogen-bonding, between water
and the solute. As a consequence, the net favorability of displacing such water is
frequently a balance between favorable entropic consequences and unfavorable
energetic consequences.

7. The water-water energy associated with a given voxel accounts for the
interactions of the waters in this voxel with all other waters in the system,
including waters in other voxels. This quantity is multiplied by ½, so that, in
a pure-water system where the GIST grid covers the entire simulation box, the
sum over all voxels equals the correct mean water-water interaction energy. Note
that Reference [9] does not include this factor of ½.

8. For a typical GIST application, in which the grid occupies only part of the
simulation box, the energy bookkeeping can become complicated, as discussed in
Section II.B.3 (page 044101-6) of Reference [9]. That section also explains how
one can compute the water-water energy associated with a region R defined by
a set of voxels, ER

WW . The regional water-water energy, on a normalized (per
water) basis, is given by ER

WW = 2(
∑

i∈R Ei,WW −
∑

i∈R

∑
j∈R,j>i Ei,j,WW)

where i ∈ R means that voxel i is in region R, Ei,WW is the value of Eww-
norm for voxel i, and Ei,j,WW is the value of the water-water interaction energy
between voxels i and j, taken from the file Eww_ij.dat. The extra factor of 2
in the present formula, relative to that in the paper, results from application of
an extra factor of ½ to the reported water-water interaction energies here.

9. If the GIST grid contains the entire solute and the calculation is suffi-
cently converged, the energy and first-order entropy of hydration can be cal-
culated by numerical integration. E.g., the energy of hydration is ∆Ehyd =∑voxels(Edens

sw + Edens
ww) × Vvox. For this, Eww has to be referenced carefully,

since numerical inaccuracies can add up quickly. It can be advisable to omit all
voxels above a certain distance to the solute to obtain more stable results.

11.38 grid
grid [out <filename>]

{ data <dsname> | boxref <ref name/tag> <nx> <ny> <nz> |
<nx> <dx> <ny> <dy> <nz> <dz>

[{ gridcenter <cx> <cy> <cz> |
boxcenter |

146

maskcenter <mask> |
rmsfit <mask> [noxalign]}]

[box|origin|center <mask>] [negative] [name <gridname>]
<mask> [normframe | normdensity [density <density>]]

[pdb <pdbout> [max <fraction>]] [{byres|mymol}]
[[smoothdensity <value>] [invert]] [madura <madura>]

[out <filename>] File to write out grid to. Use
“.grid” or “.xplor” extension for XPLOR format,
“.dx” for OpenDX format.

Options for setting up grid:

data <dsname> Use previously calculated/loaded grid
data set named <dsname>. When using this option
there is no need to specify grid
bins/spacing/center.

boxref <ref name/tag> <nx> <ny> <nz> Set up grid
using box information from a previously loaded
reference structure. Currently the only way to set
up non-orthogonal grids.

<nx> <dx> <ny> <dy> <nz> <dz> Number of grid
bins and spacing in the X/Y/Z directions.

[gridcenter <cx> <cy> <cz>] Location of grid center,
default is origin (0.0, 0.0, 0.0).

[boxcenter] Center grid on box center.

[maskcenter <mask>] Center the grid on the atoms
selected by <mask>.

[rmsfit <mask>] Perform a best-fit rotation of the grid
using the coordinates selected by <mask>.

[noxalign] If specified, grid will not be
re-oriented to align with Cartesian axes once
binning is finished. Will affect file formats
that do not store full unit cell vectors (like
Xplor).

Options for offset during grid binning (must center grid
at origin):

[box] Offset each point by location of box center prior
to gridding. Cannot be used with ’gridcenter’.

[origin] No offset (default)

[center <mask>] Offset each point by center of atoms in
<mask> prior to gridding. Cannot be used with
’gridcenter’.

Other options:

147

[negative] Grid negative density instead of positive
density.

[name <gridname>] Grid data set name.

<mask> Mask of atoms to grid.

[normframe] Normalize grid bins by the number of
frames.

[normdensity [density <density>]] Normalize grid bins by
density: GridBin = GridBin / (Nframes * BinVolume *
density). Default particle density
(molecules/Ang^3) for water based on 1.0 g/mL.

[pdb <pdbout> [max <fraction>]] Write a pseudo-PDB of
grid points that have density greater than
<fraction> (default 0.80) of the grid max value.

[{byres|bymol}] Grid the centers of mass of residues or
molecules selected by <mask>.

Less common options:

[smoothdensity <smooth>] Used to smooth density. The
smoothing takes the form of GridBin = 0 if GridBin <
smooth, otherwise GridBin = GridBin - (GridBin *
exp[-(GridBin - smooth)^2 / (0.2 * smooth^2)]).

[invert] (Only used if smoothdensity also used) Do
inverse smoothing (i.e. if GridBin > smooth).

[madura <madura>] Grid values lower than <madura>
become flipped in sign, exposes low density.

Data Sets Created:

<dsname> Grid data set.

Create a grid representing the histogram of atoms in mask1 on the 3D grid that
is "nx * x_spacing by ny * y_spacing by nz * z_spacing angstroms (cubed).
By default the grid is centered at the origin unless gridcenter is specified.
Grid points can be offset by either the box center (using box) or the center of
specified atoms (using center <mask>); if either of these options are used
the grid must be centered at the origin. Note that the bounds command (on
page 110) can be very useful for determining grid dimensions.

Note that when calculating grid densities for things like solvent/ions, the
solute of interest (about which the atomic densities are binned) should be rms
fit, centered and imaged prior to the grid call in order to provide any meaningful
representation of the density. If the optional keyword negative is also specified,
then these density will be stored as negative numbers. Output can be in the
XPLOR or OpenDX data formats.

148

Examples

Example 1: Grid water density around a solute. The solute is imaged to the
origin and rms fit to the first frame. The grid will be centered on the origin as
well.

trajin tz2.truncoct.nc
autoimage origin
rms first :1-13
Create average of solute to view with grid.
average avg.mol2 :1-13
grid out.dx 20 0.5 20 0.5 20 0.5 :WAT@O

Example 2: Grid water density around a solute. The grid is centered on the
solute.

trajin tz2.truncoct.nc
autoimage
grid out.dx 20 0.5 20 0.5 20 0.5 :WAT@O maskcenter :1-13

Example 3: Grid water density around a solute. The grid is centered on the
solute and rms-fit. The density obtained should be equivalent to the first ex-
ample.

trajin tz2.truncoct.nc
image :WAT
grid out.dx 20 0.5 20 0.5 20 0.5 :WAT@O rmsfit :1-13

Example 4: Generate grid from bounds command.

trajin tz2.ortho.nc
autoimage
rms first :1-13&!@H= mass
bounds :1-13 dx .5 name MyGrid out bounds.dat
average bounds.mol2 :1-13
Save coordinates for second pass.
createcrd MyCoords
run
Grid using grid data set from bounds command.
crdaction MyCoords grid bounds.xplor data MyGrid :WAT@O

Example 5: Create non-orthogonal grid based on the box.

trajin tz2.truncoct.nc
reference ../tz2.truncoct.nc [REF]
autoimage triclinic
grid nonortho.dx boxref [REF] 50 50 50 :WAT@O pdb nonortho.pdb

149

11.39 hbond

hbond [<dsname>] [out <filename>] [<mask>] [angle <acut>] [dist <dcut>]
[donormask <dmask> [donorhmask <dhmask>]] [acceptormask <amask>]
[avgout <filename>] [printatomnum] [nointramol] [image]
[solventdonor <sdmask>] [solventacceptor <samask>]
[solvout <filename>] [bridgeout <filename>] [bridgebyatom]
[series [uuseries <filename>] [uvseries <filename>]]
[bseries [bseriesfile <filename>]]
[uuresmatrix [uuresmatrixnorm {none|frames}] [uuresmatrixout <file>]]
[splitframe <comma-separated-list>]

[<dsname>] Data set name.

[out <filename>] Write # of solute-solute hydrogen
bonds (aspect [UU]) vs time to this file. If
searching for solute-solvent hydrogen bonds, write #
of solute-solvent hydrogen bonds (aspect [UV]) and #
of bridging solvent molecules (aspect [Bridge]), as
well as the residue # of the bridging solvent and
the solute residues being bridged with format
’<solvent resnum>(<solute res1>+<solute
res2>+...+),...’ (aspect [ID]).

[<mask>] Atoms to search for solute hydrogen bond
donors/acceptors.

[angle <acut>] Angle cutoff for hydrogen bonds (default
135°). Can be disabled by specifying -1.

[dist <dcut>] Distance cutoff for hydrogen bonds
(acceptor to donor heavy atom, default 3.0 Å).

[donormask <dmask>] Use atoms in <dmask> as solute
donor heavy atoms. If ’donorhmask’ not specified
only atoms bonded to hydrogen will be considered
donors.

[donorhmask <dhmask>] Use atoms in <dmask> as solute
donor hydrogen atoms. Should only be specified if
’donormask’ is. Should be a 1 to 1 correspondence
between donormask and donorhmask.

[acceptormask <amask>] Use atoms in <amask> as solute
acceptor atoms.

[avgout <filename>] Write solute-solute hydrogen bond
averages to <filename>.

[printatomnum] Add atom numbers to the output, in
addtion to residue name, residue number and atom
name.

150

[nointramol] Ignore intramolecular hydrogen bonds.

[image] Turn on imaging of distances/angles.

[solventdonor <sdmask>] Use atoms in <sdmask> as
solvent donors. Can specify ions as well.

[solventacceptor <samask>] Use atoms in <samask> as
solvent acceptors. Can specify ions as well.

[solvout <filename>] Write solute-solvent hydrogen bond
averages to <filename>. If not specified and
’avgout’ is, solute-solvent hydrogen bonds averages
will be written to that file.

[bridgeout <filename>] Write information on detected
solvent bridges to <filename>. If not specified,
will be written to same place as ’solvout’.

[bridgebyatom] Report bridging results by atom instead
of by residue.

[series] Save hydrogen bond formed (1.0) or not formed
(0.0) per frame for any detected hydrogen bond.
Solute-solute hydrogen bonds are saved with aspect
[solutehb], solute-solvent hydrogen bonds are saved
with aspect [solventhb].

[uuseries <filename>] File to write solute-solute
hbond time series data to.

[uvseries <filename>] File to write solute-solvent
hbond time series data to.

[bseries] Save bridge formed (1.0) or not formed (0.0)
per frame for any detected bridge. Bridges are
saved with aspect [bridge_<indexlist>], where
<indexlist> is an underscore (’_’) delimited list of
bridged atom/residue numbers (depending on
bridgebyatom).

[bseriesfile <filename>] File to write bridge time
series data to.

[uuresmatrix] If specified, create a matrix with aspect
[UUresmat] containing # of hydrogen bonds between
each possible solute residue pair.

[uuresmatrixnorm {none|frames}] Control how matrix
is normalized: none=no normalization,
frames=normalize by total # frames.

[uuresmatrixout <file>] If specified, write matrix
data to specified file.

151

[splitframe <comma-separated-list>] If specified, aplit
the average hydrogen bond (avgout, solvout,
bridgeout) analysis into sections delimited by the
frame numbers. For example, ’splitframe
250,500,1000’ will divide analysis into frames
1-249, 250-499, 500-999, and 1000 to end.

Data Sets Created:

<dsname>[UU] Number of solute-solute hydrogen bonds.

<dsname>[UV] (only for solventdonor/solventacceptor)
Number of solute-solvent hydrogen bonds.

<dsname>[Bridge] (only for
solventdonor/solventacceptor) Number of bridging
solvent molecules.

<dsname>[ID] (only for solventdonor/solventacceptor)
String identifying bridging solvent residues and the
solute residues they bridge.

<dsname>[solutehb] (series only) Time series for
solute-solute hydrogen bonds; 1 for present, 0 for
not present.

<dsname>[solventhb] (series only) Time series for
solute-solvent hydrogen bonds; 1 for present, 0 for
not present.

<dsname>[bridge_<indexlist>] (bseries only) Time
series for bridge; 1 for present, 0 for not present.
The <indexlist> is an underscore (’_’) delimited
list of bridged atom/residue numbers (depending on
bridgebyatom).

<dsname>[UUresmatr] (uuresmatrix only) Solute
residue hydrogen bond matrix.

Note that series data sets are not generated until hydrogen bonds are actually
determined (i.e. run is called).

Determine hydrogen bonds in each coordinate frame using simple geometric
criteria. A hydrogen bond is defined as being between an acceptor heavy atom
A, a donor hydrogen atom H, and a donor heavy atom D. If the A to D distance
is less than or equal to the distance cutoff and the A-H-D angle is greater than
or equal to the angle cutoff a hydrogen bond is considered formed. Imaging of
distances/angles is not performed by default, but can be turned on using the
image keyword.

Potential hydrogen bond donor/acceptor atoms are searched for as follows:

1. If just <mask> is specified donors and acceptors will be automatically
determined from <mask>.

152

2. If donormask is specified donors will be determined from <dmask>
(only atoms bonded to hydrogen will be considered valid). Optionally,
donorhmask can be used in conjunction with donormask to explicitly
specify the hydrogen atoms bonded to donor atoms. Acceptors will be
automatically determined from <mask>.

3. If acceptormask is specified acceptors will be determined from <amask>.
Donors will be automatically determined from <mask>.

4. If both acceptormask and donormask are specified only <amask>
and <dmask> will be used; no searching will occur in <mask>.

Automatic determination of hydrogen bond donors/acceptors uses the simplistic
criterion that “hydrogen bonds are FON”, i.e., hydrogens bonded to F, O, and N
atoms are considered donors, and F, O, and N atoms are considered acceptors.
Intra-molecular hydrogen bonds can be ignored using the nointramol keyword.

The number of hydrogen bonds present at each frame will be determined
and written to the file specified by out. If desired, the bridge [ID] data can be
used in conjunction with the keep command to generate structures that only
contain bridging solvent (11.42 on page 157). If the series keyword is specified
the time series for each hydrogen bond (1 for present, 0 for not present) will also
be saved for subsequent analysis (e.g. with lifetime , see on page 255); solute-
solute hydrogen bonds will be saved to ’<dataset name>[solutehb]’ and solute-
solvent hydrogen bonds will be saved to ’<dataset name>[solventhb]’. The data
set legends are set with the residues and atoms involved in the hydrogen bonds.
In the case of solute to non-specific solvent hydrogen bonds, a V is used in place
of solvent.

If avgout is specified the average of each solute-solute hydrogen bond (sorted
by population) formed over the course of the trajectory is printed with the for-
mat:

Acceptor DonorH Donor Frames Frac AvgDist AvgAng

where Acceptor, DonorH, and Donor are the residue and atom name of the
atoms involved in the hydrogen bond, Frames is the number of frames the bond
is present, Frac is the fraction of frames the bond is present, AvgDist is the
average distance of the bond when present, and AvgAng is the average angle
of the bond when present. The printatomnum keyword can be used to print
atom numbers as well.

Solute to non-specific solvent hydrogen bonds can be tracked by using the
solventdonor and/or solventacceptor keywords. The number of solute-
solvent hydrogen bonds and number of “bridging” solvent molecules (i.e. solvent
that is hydrogen bonded to two or more different solute residues at the same
time) will also be written to the file specified by out. These keywords can also
be used to track non-specific interactions with ions. If avgout or solvavg is
specified the average of each solute solvent hydrogen bond will be printed with
the format:

153

Acceptor DonorH Donor Count Frac AvgDist AvgAng

where Acceptor, DonorH, and Donor are either the residue and atom name of
the solute atoms or “SolventAcc”/”SolventH”/”SolventDnr” representing solvent,
Count is the total number of interactions between solute and solvent (note
this can be greater than the total number of frames since for any given frame
more than one solvent molecule can hydrogen bond to the same place on solute
and vice versa), AvgDist is the average distance of the bond when present, and
AvgAng is the average angle of the bond when present. If avgout or bridgeout
is specified information on residues that were bridged by a solvent molecule over
the course of the trajectory will be written to <bfilename> with format:

Bridge Res <N0:RES0> <N1:RES1> ... , <X> frames.

where ’<N0:RES0> ...’ is a list of residues that were bridged (residue # followed
by residue name) and <X> is the number of frames the residues were bridged.

hbond Examples

To search for all hydrogen bonds within residues 1-22, writing the number of
hydrogen bonds per frame to “nhb.dat” and information on each hydrogen bond
found to “avghb.dat”:

hbond :1-22 out nhb.dat avgout avghb.dat

To search for all hydrogen bonds formed between donors in residue 1 and ac-
ceptors in residue 2:

hbond donormask :1 acceptormask :2 out nhb.dat avgout avghb.dat

To search for all intermolecular hydrogen bonds only and solute-solvent hydro-
gen bonds, saving time series data to HB:

hbond HB out nhb.dat avgout solute_avg.dat \
solventacceptor :WAT@O solventdonor :WAT \
solvout solvent_avg.dat bridgeout bridge.dat \
series uuseries uuhbonds.agr uvseries uvhbonds.agr

To search for non-specific hydrogen bonds between solute and ions named Na+:

hbond HB-Ion out nhb.agr avgout ion_avg.dat \
solventacceptor :Na+ solventdonor :Na+

154

11.40 image

image [origin] [center] [triclinic | familiar [com <commask>]] [<mask>]
[bymol | byres | byatom] [xoffset <x>] [yoffset <y>] [zoffset <z>]

[origin] Image to coordinate origin (0.0, 0.0, 0.0);
default is to image to box center.

[center] For bymol/byres, image by center of mass;
default is to image by first atom position.

[triclinic] Force imaging with triclinic code. This is
the default for non-orthorhombic cells.

[familiar [com <commask>]] Image to truncated
octahedron shape. If ’com <commask>’ is given,
image with respect to the center of mass of atoms in
<commask>.

[<mask>] Image atoms/residues/molecules in mask.
[bymol] Image by molecule (default).
[byres] Image by residue.
[byatom] Image by atom.
[xoffset <x>] Shift atoms by a factor of <x> in the

X-direction.
[yoffset <y>] Shift atoms by a factor of <y> in the

Y-direction.
[zoffset <z>] Shift atoms by a factor of <z> in the

Z-direction.

Note this command is intended for advanced use; for most cases the autoimage
command should be sufficient.

For periodic systems only, image molecules/residues/atoms that are out-
side of the box back into the box. Currently both orthorhombic and non-
orthorhombic boxes are supported. A typical use of image is to move molecules
back into the box after performing center . For example, the following com-
mands move all atoms so that the center of residue 1 is at the center of the box,
then image so that all molecules that are outside the box after centering are
wrapped back inside:

center :1
image

The xoffset etc. keywords can be used to shift the entire unit cell in a certain
direction by the given factor, which can be useful for visualizing trajectories
with periodic boundary conditions. For example, to generate a trajectory that
is offset by 1.0 box length in the X direction, one could use:

image xoffset 1.0
trajout traj.offsetx1.nc

155

11.41 jcoupling

jcoupling <mask> [outfile <filename>] [kfile <param file>] [out <filename>]
[name <dsname>]

<mask> Atom mask in which to search for dihedrals
within.

[outfile <filename>] File to write j-coupling values to
with fixed format.

[kfile <param file>] File containing Karplus parameters.
If not specified will check CPPTRAJHOME, AMBERHOME,
and KARPLUS environment variables (see below).

[out <filename>] File to write data set output to.

[name <dsname>] Data set name.

Note data sets are not generated until run is called.
Calculate J-coupling values for all dihedrals found within <mask> (all

atoms if no mask given). In order to use this function, Karplus parameters
for all dihedrals which will be calculated must be loaded. By default cpptraj
will use the data found in either $CPPTRAJHOME/dat/Karplus.txt or $AM-
BERHOME/dat/Karplus.txt; if this is not found cpptraj will look for the file
specified by the $KARPLUS environment variable.

In the Karplus parameter file each parameter set consists of two lines for
each dihedral with the format:

[<Type>]<Name1><Name2><Name3><Name4><A><C>[<D>]
<Resname1>[<Resname2>...]

The first line defines the parameter set for a dihedral. <Type> is optional;
if not given the form for calculating the J-coupling will be as described by
Chou et al.[13]; if ’C’ the form will be as described by Perez et al.[14]. The
<NameX> parameters define the four atoms involved in the dihedral. Each
<NameX> parameter is 5 characters wide, starting with a plus ’+’, minus ’-’ or
space ’ ’ character indicating the atom belongs to the next, previous, or current
residue. The remaining 4 characters are the atom name. The parameters <A>,
, <C>, and <D> are floating point values 6 characters wide describing
the Karplus parameters. For the ’C’ form A, B, and C correspond to C0, C1,
and C2; D is unused and should not be specified. The second line is a list of
residue names (4 characters each) to which the dihedral applies. For example:

C HA CA CB HB 5.40 -1.37 3.61
ILE VAL

Describes a dihedral between atoms HA-CA-CB-HB using the Perez et al. form
with constants C0=5.40, C1=-1.37, C2=3.61 applied to ILE and VAL residues.

156

Output can be in both a fixed format (outfile <filename>) and using
cpptraj data set/data file formatting (out <filename>). The fixed format has
each dihedral that is defined from <mask1> printed along with its calculated
J-coupling value for each frame, e.g.:

#Frame 1
1 SER HA CA CB HB2 45.334742 4.024759
1 SER HA CA CB HB3 -69.437134 1.829510
...

First the frame number is printed, then for each dihedral: Residue number,
residue name, atom names 1-4 in the dihedral, the value of the dihedral, the
J-coupling value.

In cpptraj format, only the J-coupling value is written.

11.42 keep

keep [bridgedata <bridge data set> [nbridge <#>] [nobridgewarn]
[bridgeresname <res name>] bridgeresonly <resrange>]]

[keepmask <atoms to keep>] [charge <new charge>]
[outprefix <prefix>] [nobox] [parmout <filename>]
[parmopts <comma-separated-list>]

bridgedata <bridge data set> Data set containing bridge
ID strings from the hbond command (11.39 on
page 150).

nbridge <#> Number of bridging residues to keep
(default 1).

nobridgewarn If specified, suppress warnings for
when active # bridges does not equal requested
number.

bridgeresname <res name> Name of bridging
residues (default ’WAT’).

bridgeresonly <range> If specified, only keep
bridges that bridge residues in the <resrange>
list.

keepmask <atoms to keep> Mask of atoms to keep.

charge <new charge> Scale charges so total charge of
remaining atoms matches the specified <new charge>.

outprefix <prefix> Write modified topology to
<prefix>.<originalname>

[nobox] Remove any box information from the modified
topology.

157

parmout <filename> Write modified topology to
<filename>.

parmopts <list> Options for writing topology file.

Keep only specified atoms (opposite of strip). This can also be used in conjunc-
tion with output from the hbond command to retain solute and only bridging
residues (e.g. bridging waters). For example, the following run generates bridg-
ing data with the ’hbond’ command in a first pass, then uses the bridge ID
data to retain only 1 single bridging water between residues 10 and 11:

parm tz2.ortho.parm7
trajin tz2.ortho.nc
First pass, generate bridge time series
hbond hb solventacceptor :WAT@O solventdonor :WAT out hb.dat
run
Second pass, retain only frames where the bridge is present
for residues 10 and 11.
keep bridgedata hb[ID] nbridge 1 bridgeresonly 10,11 parmout keep.parm7
Write trajectory
trajout keep.nc
run

This run reads in bridge ID data from a previous hbond run and uses it to keep
only residues 10, 11, and a bridging water:

parm tz2.ortho.parm7
trajin tz2.ortho.nc
readdata hb.dat
keep keepmask :10,11 bridgedata hb.dat:5 nbridge 1 bridgesonly 10,11 \

parmout keep.10.11.parm7
trajout keep.10.11.nc
run

11.43 lessplit

lessplit [out <filename prefix>] [average <avg filename>] <trajout args>

[out <filename prefix>] Write split LES trajectories to
<filename prefix>.X, where X is an integer.

[average <avg filename>] Write trajectory of averaged
LES regions to <avg filename>.

<trajout args> Arguments for output trajectories.

Split and/or average LES trajectory. At least one of ’out’ or ’average’ must
be specified. If both are specified they share <trajout args>.

158

11.44 lie

lie [<name>] <Ligand mask> [<Surroundings mask>] [out <filename>] [nopbc]
[noelec] [novdw] [cutvdw <cutoff>] [cutelec <cutoff>] [diel <dielc>]

DataSet Aspects:

[EELEC] Electrostatic energy (kcal/mol).

[EVDW] van der Waals energy (kcal/mol).

For each frame, calculate the non-bonded interactions between all atoms in
<Ligand mask> with all atoms in <Surroundings mask>. Electrostatic and
van der Waals interactions will be calculated for all atom pairs. A separate elec-
trostatic and van der Waals cutoff can be applied, the default is 12.0 Angstroms
for both. <dielc> is an optional dielectric constant. Either the electrostatic
or van der Waals calculations can be suppressed via the keywords noelec and
novdw, respectively. Periodic boundary conditions (and the minimum image
convention) can be abandoned with the “nopbc” keyword. Note, however, that
no prior imaging is performed if the frames contain periodic boundaries. This
may be useful for instances when you are simulating a microscopic droplets.

The electrostatic interactions are calculated according to a simple shifting
function shown below. The data file will contain two data sets—one for electro-
static interactions and one for van der Waals interactions. Periodic topologies
and trajectories are required (i.e., explicit solvent is necessary). The minimum
image convention is followed.

Eelec = k
qiqj
rij

(
1 −

r2
ij

r2
cut

)2

11.45 lipidorder
order out <filename> [x|y|z] [scd] [unsat <mask>]

[taildist <filename> [delta <resolution>] tailstart <mask>
tailend <mask>] <mask0> ... <maskN>

out Output file for order parameters: Sx, Sy, Sz (each
succeeded by the standard deviation), and two
estimates for the deuterium-order parameter |SCD| =
0.5Sz and |SCD| = -(2Sx + Sy)/3. If scd is set then
the order parameter directly computed from the C-H
vectors is output.

x|y|z Reference axis. (z)

unsat Mask for unsaturated bonds. Sz is calculated for
vector Cn-Cn+1. This is only relevant if scd
(below) is not set, i.e. order parameters are
calculated from carbon position only.

159

scd Calculate the deuterium-order parameter |SCD|
directly from the C-H vectors (masks must contain
C-H-H triplets, see below). Otherwise the order
parameter is estimated from carbon positions only
(masks must contain only relevant carbons). (false)

taildist Optional output file for end-to-end distances.

delta Optional resolution for taildist. (0.1)

tailstart Mask for the start of the tail. Must be given
if taildist.

tailend Mask for the end of the tail. Must be given if
taildist.

mask0 ... maskN Masks for each group in the lipid
chain.

The order parameters Sx, Sy, Sz and |SCD| are calculated. Carbons must be
given in bonding order. If scd the masks must be made up of C-H-H triples,
hence hydrogens to double bonds must be enumerated twice while methyl groups
require an additional mask which will also create two entries in the output.

Szis the vector joining carbons Cn−1 and Cn+1, Sx the vector normal to
the Cn−1 − Cn and Cn − Cn+1 plane and Sy is the third axis in the molecular
coordinate system. The order parameter is then calculated from Sc = 0.5 <
3 cos(2θ) > −1, where θ is the angle to the chosen reference axis. See example
input file.

Example input (all atom names according to CHARMM27 force field for
POPC).

sn1 chain: order parameters Sx, Sy, Sz and |SCD| = 0.5×Sz and |SCD| =
−(2Sx + Sy)/3

lipidorder out sn1.dat z taildist e2e_sn1.dat delta 0.1 \
tailstart ":POPC@C32" tailend ":POPC@C316" \
":POPC@C32" ":POPC@C33" ":POPC@C34" ":POPC@C35" \
":POPC@C36" ":POPC@C37" ":POPC@C38" ":POPC@C39" \
":POPC@C310" ":POPC@C311" ":POPC@C312" ":POPC@C313" \
":POPC@C314" ":POPC@C315" ":POPC@C316"

See also $AMBERHOME/AmberTools/test/cpptraj/Test_LipidOrder.

11.46 lipidscd
lipidscd [<name>] [<mask>] [{x|y|z}] [out <file>] [p2]

<name> Output data set name.

<mask> Atom mask specifying where to search for
lipids.

160

x|y|z Axis to calculate order parameters with respect to
(default z).

out <file> File to write order parameters to.

p2 If specified, report raw <P2> values.

DataSets Generated:

<name>[H1]:<idx> Hold lipid order parameters for
each C-H1. Each lipid type will have a different
<idx> starting from 0.

<name>[H2]:<idx> Hold lipid order parameters for
each C-H2. If no H2, the C-H1 value will be used.

<name>[H3]:<idx> Hold lipid order parameters for
each C-H3. If no H3, the C-H2/C-H1 value will be
used.

<name>[SDHX]:<idx> Hold standard deviation of lipid
order parameters for each C-HX.

Calculate lipid order parameters SCD (|<P2>|) for lipid chains in mask <mask>.
Lipid chains are identified by carboxyl groups, i.e. O-(C=O)-C1-...-CN, where
C1 is the first carbon in the acyl chain and CN is the last. Order parameters
will be determined for each hydrogen bonded to each carbon. If ’p2’ is specified
the raw <P2> values will be reported.

11.47 makestructure
makestructure <List of Args>

Apply dihedrals to specified residues using arguments found in <List of Args>,
where an argument is 1 or more of the following arg types:

<sstype keyword>:<res range>

Apply secondary structure type (via phi/psi backbone angles) to residues in
given range. If the secondary structure type is a turn, the residue range must
correspond to a multiple of 2 residues.

161

Keyword phi, psi (deg.) # residues
alpha -57.8, -47.0 1
left -57.8, 47.0 1
pp2 -75.0, 145.0 1

hairpin -100.0, 130.0 1
extended -150.0, 155.0 1

typeI -60.0, -30.0 | -90.0, 0.0 2
typeII -60.0, 120.0 | 80.0, 0.0 2

typeVIII -60.0, -30.0 | -120.0, 120.0 2
typeI’ 60.0, 30.0 | 90.0, 0.0 2
typeII 60.0, -120.0 | -80.0, 0.0 2

typeVIa1 -60.0, 120.0 | -90.0, 0.0 2
typeVIa2 -120.0, 120.0 | -60.0, 0.0 2
typeVIb -135.0, 135.0 | -75.0, 160.0 2

<custom ss name>:<res range>[:<phi>:<psi>]

If <phi> and <psi> are given, define a custom secondary structure conforma-
tion named <custom_ss> and apply to residues in range. If <custom_ss> has
been previously defined then apply it to residues in range.

<custom turn name>:<res range>[:<phi1>:<psi1>:<phi2>:<psi2>]

If <phi1>, <psi1>, <phi2>, and <psi2> are given, defined a custom turn
conformation named <custom_turn> and apply to residues in range (range
must correspond to a multiple of 2 residues). If <custom_turn> has been
previously defined then apply it to residues in range.

<custom dih name>:<res range>[:<dih type>:<angle>]

<dih type> = alpha beta gamma delta epsilon zeta nu0 nu1 nu2 nu3 nu4
h1p c2p chin phi psi chip omega chi2 chi3 chi4 chi5

If <dih type> and <angle> are given, apply <angle> to selected dihedrals of
type in range. If <custom dih> has been previously defined then apply it to
residues in range.

<custom dih name>:<res range>[:<at0>:<at1>:<at2>:<at3>:<angle>[:<offset>]]

Apply <angle> to dihedral defined by atoms <at1>, <at2>, <at3>, and
<at4>, or use previously defined <custom_dih>.

162

<offset> Description
-2 <at0> and <at1> in previous residue.
-1 <at0> in previous residue.
0 All atoms in single residue.
1 <at3> in next residue.
2 <at2> and <at3> in next residue.

ref:<range>:<refname>[:<ref range>[:<dih types>]] [refvalsout <file>]
[founddihout <file>]

Apply dihedrals from residues <ref_range> in previously loaded reference struc-
ture <refname> to dihedrals in <range>. If <ref range> is specified, use those
residues from reference. The dihedral types to be used (see <dih_type>
above) can be specified in a comma-separated list; default is phi/psi. Note that
in order to specify <dih types>, <ref range> must be specified. The ’refval-
sout’ and ’founddihout’ keywords can be used to print dihedrals found in the
reference and target structures respectively to files.

Examples

Assign polyproline II structure to residues 1 through 13:

makestructure pp2:1-13

Make residues 1 and 12 ’extended’, residues 6 and 7 a type I’ turn, and two
custom assignments, one (custom1) for residues 2-5, the other (custom2) for
residues 8-11:

makestructure extended:1,12 \
custom1:2-5:-80.0:130.0:-130.0:140.0 \
typeI’:6-7 \
custom2:8-11:-140.0:170.0:-100.0:140.0

Assign residue 5 phi 90 degrees, residues 6 and 7 phi=-70 and psi=60 degrees:

makestructure customdih:5:phi:90 custom:6,7:-70:60

Create a new dihedral named chi1 and assign it a value of 35 degrees in residue
8:

makestructure chi1:8:N:CA:CB:CG:35

Assign ’extended’ structure to residues 1 and 12, a custom turn to residues 2-5
and 8-11, and a typeI’ turn to residues 6-7:

makestructure extended:1,12 \
custom1:2-5:-80.0:130.0:-130.0:140.0 \
typeI’:6-7 \
custom1:8-11

163

Assign secondary structure from reference structure:

parm ../tz2.parm7
reference ../tz2.rst7
trajin pp2.rst7.save
makestructure "ref:1-13:tz2.rst7" rmsd reference
trajout fromref.pdb multi

11.48 mask

mask <mask> [maskout <filename>] [out <filename>] [nselectedout <filename>]
[name <setname>] [{maskpdb <filename> | maskmol2 <filename>}

[trajargs <comma-separated args>]]

<mask> Atom mask to process.
maskout <filename> Write information on atoms in

<mask> to <filename>.
out <filename> Write the frame, atom number, atom name,

residue number, residue name, and molecule number
for each selected atom to file.

nselectedout <filename> Write the total number of
selected atoms to file.

name <setname> Name for output data sets.
maskpdb <filename> Write PDB of atoms in <mask> to

<name>.X.
maskmol2 <filename> Write Mol2 of atoms in <mask> to

<name>.X.
trajargs <comma-separated args> When writing output

PDB/Mol2, additional trajectory arguments to pass to
the output trajectory.

DataSets Created

<name> Number of atoms selected each frame.
<name>[Frm] Frame number for each selected atom.
<name>[AtNum] Atom number for each selected atom.
<name>[Aname] Atom name for each selected atom.
<name>[Rnum] Residue number for each selected atom.
<name>[Rname] Residue name for each selected atom.
<name>[Mnum] Molecule number for each selected atom.

For each frame determine all atoms that correspond to <mask>. This is
most useful when using distance-based masks, since the atoms in the mask are
updated for every frame read in. If maskout is specified information on all
atoms in <mask> will be written to <filename> with format:

164

#Frame AtomNum Atom ResNum Res MolNum

where #Frame is the frame number, AtomNum is the number of the selected atom,
Atom is the name of the selected atom, ResNum is the residue number of the
selected atom, Res is the residue name, and MolNum is the molecule number of
the selected atom.

If maskpdb or maskmol2 are specified a PDB/Mol2 file corresponding to
<mask> will be written out every frame with name “<name>.frame#”.

For example, to write out all residues within 3.0 Angstroms of residue 195
that are named WAT to “Res195WAT.dat”, as well as write out corresponding
PDB files:

mask “(:195<:3.0)&:WAT” maskout Res195WAT.dat maskpdb Res195WAT.pdb

To write all out atoms outside of 5.0 Angstroms of residues named ARG to PDB
files with a chain ID of ’B’:

mask :ARG>@5.0 maskpdb Outside5Arg.pdb trajargs “chainid ’B’”

11.49 matrix

matrix [out <filename>] [start <#>] [stop|end <#>] [offset <#>]
[name <name>] [byatom | byres [mass] | bymask [mass]]
[ired [order <#>]]
[{distcovar | idea} <mask1>]
[{dist | correl | covar | mwcovar} <mask1> [<mask2>]]
[dihcovar dihedrals <dataset arg>]

[out <filename>] If specified, write matrix to
<filename>.

[start <#>] [stop|end <#>] [offset <#>] Start, stop,
and offset frames to use (as a subset of all frames
read in).

[name <name>] Name of the matrix dataset (for
referral in subsequent analysis).

byatom Write results by atom (default). This is the
sole option for covar, mwcovar, and ired.

byres Write results by calculating an average for each
residue (mass weighted if mass is specified).

bymask Write average over <mask1>, and if <mask2> is
specified <mask1> x <mask2> and <mask2> as well
(mass weighted if mass is specified).

165

Calculate matrix of the specified type from input coordinate frames:

dist <mask1> [<mask2>] Distance matrix (default).

correl <mask1> [<mask2>] Correlation matrix (aka dynamic cross correlation[15]).

covar <mask1> [<mask2>] Coordinate covariance matrix.

mwcovar <mask1> [<mask2>] Mass-weighted coordinate covariance ma-
trix.

distcovar <mask1> Distance covariance matrix.

idea <mask1> Isotropically Distributed Ensemble Analysis matrix.[16]

ired [order <#>] Isotropic Reorientational Eigenmode Dynamics matrix[17]
with Legendre polynomials of specified order (default 1). IRED vectors
must have been specified previously with ’vector ired’ (see 11.90 on
page 211).

dihcovar dihedrals <dataset arg> Dihedral covariance matrix. Dihedral
data sets must have been previously defined with e.g. dihedral or mul-
tidihedral commands or read in externally with readdata and marked
as dihedrals.

Matrix dimensions will be of the order of N x M for dist, correl, idea, and
ired, 2N x 2N for dihcovar, 3N x 3M for covar and mwcovar, and N(N-1) x
N(N-1) / 4 for distcovar (with N being the number of data sets in the case of
ired and dihcovar and the number of atoms in <mask1> otherwise, and M
being the number of atoms in <mask2> if specified or <mask1> otherwise).
No mask is required for ired; the matrix will be made up of previously defined
IRED vectors (see the vector command on page 211). Similarly no mask is
required for dihcovar; dihedral data sets must have been previously defined.
Only one mask can be used with distcovar and idea matrices (i.e. they can
be symmetric only), otherwise one or two masks can be used (for symmetric
and full matrices respectively). If two masks are specified the number of atoms
covered by mask1 must be greater than or equal to the number of atoms covered
by mask2, and on output <mask1> corresponds to columns while <mask2>
corresponds to rows.

Note that for backwards compatibility, output files written with ’out <file-
name>’ will have the options ’noheader noxcol square2d’ applied to them
(see 6 on page 27 for more details). To prevent any of these from taking effect,
simply specify ’header’, ’xcol’, and/or ’nosquare2d’ after ’out <filename>’.

As a simple example, a distance matrix of all CA atoms is generated and
output to ’distmat.dat’.

matrix dist @CA out distmat.dat

166

11.50 mindist/maxdist

{min|max}dist mask1 <mask1> [mask2 <mask2>] [{byatom|byres|bymol}]
[noimage] [name <setname>] [out <file>] [resoffset <#>]

mask1 <mask1> First mask for selecting atoms.
[mask2 <mask2>] Optional second mask for selecting

atoms.
[{byatom|byres|bymol}]

byatom Report the minimum or maximum distance
between atoms in <mask1> or between atoms in
<mask1> and atoms in <mask2>.

byres Report the minimum or maximum distance
between all residue pairs selected by <mask1>,
or pairs of residues selected by <mask1> and
residues selected by <mask2> (excluding certain
pairs, see resoffset).

bymol Report the minimum or maximum distance
between all molecule pairs selected by <mask1>,
or pairs of molecules selected by <mask1> and
molecules selected by <mask2>.

[noimage] Do not use the minimum image convention for
distances.

[name <setname>] Output data set name.
[out <file>] Write data to <file>.
[resoffset <#>] For byres, ignore residue pairs if the

difference in residue numbers is greater than the
cutoff (default 1).

Data Sets Created:

<name> For byatom, a set containing the minimum or
maximum distance for each frame.

<name>[<#>_<#>] For byres/bymol, a set containing
the minimum or maximum distance between the
residue/molecule pair specified by the numbers in
the aspect, e.g. ’<name>[1_3]’ for byres would be
between residues 1 and 3.

Calculate the minimum or maximum distance in Angstroms between atoms or
residue/molecule pairs.

11.51 minimage

minimage [<name>] <mask1> <mask2> [out <filename>] [geom] [maskcenter]

167

<name> Data set name.

<mask1> First atom mask.

<mask2> Second atom mask.

out <filename> File to write to.

geom (maskcenter only) If specified, use geometric
center instead of center of mass.

maskcenter Calculate distance from center of masks
instead of between each atom.

Data Sets Created:

<name> Minimum distance to an image in Ang.

<name>[A1] Atom number in mask 1 involved in minimum
distance.

<name>[A2] Atom number in mask 2 involved in minimum
distance.

Calculate the shortest distance to an image, i.e. the distance to a neighboring
unit cell, as well as the numbers of the atoms involved in the distance. By default
the distance between each atom in <mask1> and <mask2> is considered; if
maskcenter is specified the center of the masks is used. By convention, the
lower atom number is saved as A1 and the higher is saved as A2.

11.52 molsurf

molsurf [<name>] [<mask>] [out filename] [probe <probe_rad>]
[radii {gb | parse | vdw}] [offset <rad_offset>]

[<name>] Name of surface area data set.

[<mask>] Atoms to calculate surface area of.

[out <filename>] File to write values to.

[probe <probe_rad>] Probe radius (default 1.4
Angstrom).

[offset <rad_offset>] Add <rad_offset> to each atom
radius (default 0.0).

[radii {gb|parse|vdw}] Specify radii to use:

gb GB radii (default).
parse PARSE radii.
vdw van der Waals radii.

Calculate the Connolly surface area[18] of atoms in <mask> (default all atoms
if no mask specified) using routines from molsurf (originally developed by Paul
Beroza) using the probe radius specified by probe (1.4 Å if not specified). Note

168

that if GB/VDW radii are not present in the topology file (e.g. for PDB files),
then PARSE[19] radii can be used. Also note that this routine only calculate
absolute surface areas, i.e. it cannot be used to get the contribution of a subset
of atoms to overall surface area; if such functionality is needed try the surf
command (11.82 on page 205).

11.53 multidihedral

multidihedral [<name>] <dihedral types> [resrange <range/mask>] [out <filename>] [range360]
[dihtype <name>:<a0>:<a1>:<a2>:<a3>[:<offset>] ...]

Offset -2=<at0><at1> in previous res, -1=<at0> in previous res,
0=All <atX> in single res,
1=<at3> in next res, 2=<at2><at3> in next res.

<dihedral types> = alpha beta gamma delta epsilon zeta
nu0 nu1 nu2 nu3 nu4 h1p c2p chin
phi psi chip omega chi2 chi3 chi4 chi5

[<name>] Output data set name.

<dihedral types> Dihedral types to look for. Note that
chip is ’protein chi’, chin is ’nucleic chi’.

[resrange <range/mask>] Residue range to look for
dihedrals in. Default is all solute residues. If a
mask expression is given, use residues selected by
the mask expression; if any part of a residue is
selcted it will be used.

[out <filename>] Output file name.

[range360] Wrap torsion values from 0.0 to 360.0
(default is -180.0 to 180.0).

[dihtype <name>:<a0>:<a1>:<a2>:<a3>[:<offset>]
Search for a custom dihedral type called <name>
using atom names <a0>, <a1>, <a2>, and <a3>.
Offset: -2=<a0><a1> in previous res, -1=<a0> in
previous res, 0=All <aX> in single res, 1=<a3> in
next res, 2=<a2><a3> in next res.

DataSets Generated:

<name>[<dihedral type>]:<#> Aspect corresponds to
the dihedral type name (e.g. [phi], [psi], etc).
The index is the residue number.

Note data sets are not generated until run is called.
Calculate specified dihedral angle types for residues in given range/mask. By

default, dihedral angles are identified based on standard Amber atom names.
The resulting data sets will have aspect equal to [<dihedral type>] and index

169

equal to residue #. To differentiate the chi angle, chip is used for proteins and
chin for nucleic acids. For example, to calculate all phi/psi dihedrals for residues
6 to 9:

multidihedral MyTorsions phi psi resrange 6-9 out PhiPsi_6-9.dat

This will generate data sets named MyTorsions[phi]:6, MyTorsions[psi]:6, My-
Torsions[phi]:7, etc. Dihedrals other than those defined in <dihedral types>
can be searched for using dihtype. For example to create a custom dihedral
type called chi1 using atoms N, CA, CB, and CG (all in the same residue), then
search for and calculate the dihedral in all residues:

multidihedral dihtype chi1:N:CA:CB:CG out custom.dat

11.54 multipucker

multipucker [<name>] [<pucker types>] [out <filename>] [resrange <range>]
[altona|cremer] [puckertype <name>:<a0>:<a1>:<a2>:<a3>:<a4>[:<a5>] ...]

[amplitude [ampout <ampfile>]] [theta [thetaout <thetafile>]]
[range360] [offset <offset>]
<pucker types> = nucleic furanose pyranose

[<name>] Output data set name.

<pucker types> Pucker types to look for.

[out <filename>] Output file name to write pucker data
to.

[resrange <range>] Residue range to look for puckers
in. Default is all solute residues.

[puckertype <name>:<a0>:<a1>:<a2>:<a3>:<a4>[:<a5>]
Search for a custom pucker type called <name> using
atom names <a0>, <a1>, <a2>, <a3>, and <a4> (also
<a5> for 6 atom puckers).

[altona] Use method of Altona & Sundaralingam (5 atoms
only). This is the default when pucker has 5 atoms.

[cremer] Use method of Cremer and Pople (5 or 6 atoms).
This is the default when pucker has 6 atoms.

[amplitude] Also calculate amplitude (in degrees).

ampout <ampfile> File to write amplitude sets to.

[theta] (Valid for 6 atoms only) Also calculate theta (in
degrees).

thetaout <thetafile> File to write theta sets to.

170

[range360] Wrap pucker values from 0.0 to 360.0 (default
is -180.0 to 180.0).

[offset <offset>] Add <offset> to pucker values.

DataSets Generated:

<name>[<pucker type>]:<#> Aspect corresponds to
the pucker type name (e.g. [nucleic], [furanose],
etc). The index is the residue number.

<name>[<pucker type>Amp]:<#> amplitude only.
Data set for pucker amplitude.

<name>[<pucker type>Theta]:<#> theta only. Data
set for pucker theta.

Note data sets are not generated until run is called.
Calculate specified pucker types for residues in given range. By default,

puckers are identified based on standard Amber atom names. The resulting
data sets will have aspect equal to [<pucker type>] and index equal to residue
#. In order to be identified as a pucker, all consecutive atoms in the pucker
must be bonded, and the last atom of the pucker must be bonded to the first.

For example, to calculate all nucleic acid ribose puckers for residues 6 to 9:

multipucker MyPuckers nucleic resrange 6-9 out Pucker_6-9.dat

This will generate data sets named MyPuckers[nucleic]:6, MyPuckers[nucleic]:7,
etc. Puckers other than those defined in <pucker types> can be searched for
using puckertype. For example to create a custom pucker type called furanoid
using atoms C2, C3, C4, C5, and O2, then search for and calculate that pucker
(with amplitudes) using the method of Cremer and Pople in all residues:

multipucker Furanoid puckertype furanoid:C2:C3:C4:C5:O2 cremer \
out furanoid.dat amplitude ampout furanoid.dat

11.55 multivector

multivector [<name>] [resrange <range>] name1 <name1> name2 <name2> [out <filename>]
[ired]

[<name>] Data set name.

[resrange <range>] Range of residues to look for
vectors in.

name1 <name1> Name of first atom in each residue.

name2 <name2> Name of second atom in each residue.

[out <filename>] File to write results to.

171

Search for and calculate atomic vectors between atoms named <name1> and
<name2> in residues specified by the given <range>; each one is equivalent to
the command ’vector <name1> <name2>’. For example, to calculate all vectors
between atoms named ’N’ and atoms named ’H’ in residues 5-20, storing the
results in data sets named NH and writing to NH.dat:

multivector NH name1 N name2 H ired out NH.dat resrange 5-20

11.56 nastruct

nastruct [<dataset name>] [resrange <range>] [sscalc] [naout <suffix>]
[noheader] [resmap <ResName>:{A,C,G,T,U} ...] [calcnohb]

[noframespaces] [baseref <file>] ...
[bpmode {3dna|babcock}] [allhb]

[hbcut <hbcut>] [origincut <origincut>] [altona | cremer]
[zcut <zcut>] [zanglecut <zanglecut>] [groovecalc {simple | 3dna}]

[axesout <file> [axesoutarg <arg> ...] [axesparmout <file>]]
[bpaxesout <file> [bpaxesoutarg <arg> ...] [bpaxesparmout <file>]]
[stepaxesout <file> [stepaxesoutarg <arg> ...] [stepaxesparmout <file>]]

[axisnameo <name>] [axisnamex <name>] [axisnamey <name>] [axisnamez <name>]
[{ first | reference | ref <name> | refindex <#> |

allframes |
specifiedbp pairs <b1>-<b2>,... }]

[<dataset name>] Output data set name.

[resrange <range>] Residue range to search for nucleic
acids in (default all).

[sscalc] Calculate parameters between consectuive bases
in strands.

[naout <suffix>] File name suffix for output files;
BP.<suffix> for base pair parameters,
BPstep.<suffix> for base pair step parameters, and
Helix.<suffix> for base pair step helical
parameters. If sscalc is specified, also
SS.<suffix> for parameters of consecutive bases in
strands.

[noheader] Do not print header to naout file.

[resmap <ResName>:{A,C,G,T,U}] Attempt to treat
residues named <ResName> as if it were A, C, G, T,
or U; useful for residues with modifications or
non-standard residue names. This will only work if
enough reference atoms are present in <ResName>.

172

[calcnohb] Calculate parameters between bases in base
pairs even if no hydrogen bonds present between
them.

[noframespaces] If specified there will be no spaces
between frames in the naout files.

[baseref <file>] Specify a custom nucleic acid base
reference. One file per custom residue; multiple
’baseref’ keywords may be present. See below for
details.

[bpmode {3dna|babcock}] Specify axis conventions for
calculating base pair parameters. If ’3dna’
(default), use conventions of 3DNA[20]; flip Y and Z
of complimentary base for antiparallel. If
’babcock’, use conventions of Babcock et al.[21] ;
flip Y and Z of complimentary base for antiparallel,
flip X and Y for parallel.

[allhb] Report the total number of hydrogen bonds
detected instead of just the number of
Watson-Crick-Franklin hydrogen bonds.

[hbcut <hbcut>] Distance cutoff (in Angstroms) for
determining hydrogen bonds between bases (default
3.5).

[origincut <origincut>] Distance cutoff (in Angstroms)
between base pair axis origins for determining which
bases are eligible for base-pairing (default 2.5).

[altona] Use method of Altona & Sundaralingam to
calculate sugar pucker (default, see pucker
command).

[cremer] Use method of Cremer and Pople to calculate
sugar pucker (see pucker command).

[zcut] Distance cutoff (in Angstroms) between base
reference axes along the Z axis (i.e. stagger) for
determining base pairing (default 2).

[zanglecut] Angle cutoff (in degrees) between base
reference Z axes for determining base pairing
(default 65).

[groovecalc] Groove width calculation method:

simple Use P-P distance for major groove, O4-O4
distance for minor groove. Output to
’BP.<suffix>’.

3dna Use groove width calculation of El Hassan and
Calladine[22]. Output to ’BPstep.<suffix>’.

173

[axesout <file>] Trajectory file to write base axes to.

[axesoutarg <arg>] Trajectory argument to pass to
base axes trajectory file (can specify more than
once).

[axesparmout <file>] Topology file to write base
axes pseudo topology to.

[bpaxesout <file>] Trajectory file to write base pair
axes to.

[bpaxesoutarg <arg>] Trajectory argument to pass
to base pair axes trajectory file (can specify
more than once).

[bpaxesparmout <file>] Topology file to write base
pair axes pseudo topology to.

[stepaxesout <file>] Trajectory file to write base pair
step axes to.

[stepaxesoutarg <arg>] Trajectory argument to pass
to base pair step axes trajectory file (can
specify more than once).

[stepaxesparmout <file>] Topology file to write
base pair step axes pseudo topology to.

[axisnameo <name>] Change name of axis origin pseudo
atom (default ’Orig’).

[axisnamex <name>] Change name of axis origin pseudo
atom (default ’X’).

[axisnamey <name>] Change name of axis origin pseudo
atom (default ’Y’).

[axisnamez <name>] Change name of axis origin pseudo
atom (default ’Z’).

How to determine base pairing:

[first] Use first frame to determine base pairing
(default).

[reference | refindex <#> | ref <name>] Reference
structure to use to determine base pairing.

[allframes] If specified determine base pairing each
frame.

[specifiedbp pairs <b1>-<b2>,...] User specified base
pairing. Base pairs are specified in a
comma-separated list after the ’pairs’ keyword as
<b1>-<b2>, where <b1> and <b2> are the residue
numbers of bases in the base pair, e.g. ’pairs
1-16,2-15,3-14,4-13’. Can specify ’pairs’ multiple
times.

174

DataSets Created:

<name>[pucker]:X Base X (residue number) sugar
pucker.

Base pairs:

<name>[shear]:X Base pair X (starting from 1) shear.

<name>[stretch]:X Base pair stretch.

<name>[stagger]:X Base pair stagger.

<name>[buckle]:X Base pair buckle.

<name>[prop]:X Base pair propeller.

<name>[open]:X Base pair opening.

<name>[hb]:X Number of WC hydrogen bonds between
bases in base pair.

<name>[bp]:X Contain 1 if bases are base paired, 0
otherwise.

<name>[major]:X (If groovecalc simple) Major groove
width calculated between P atoms of each base.

<name>[minor]:X (If groovecalc simple) Minor groove
width calculated between O4 atoms of each base.

Base pair steps:

<name>[shift]:X Base pair step X (starting from 1)
shift.

<name>[slide]:X Base pair step slide.

<name>[rise]:X Base pair step rise.

<name>[title]:X Base pair step tilt.

<name>[roll]:X Base pair step roll.

<name>[twist]:X Base pair step twist.

<name>[zp]:X Base pair step Zp value.

<name>[major]:X (If groovecalc 3dna) Major groove
width, El Hassan and Calladine.

<name>[minor]:X (If groovecalc 3dna) Minor groove
width, El Hassan and Calladine.

Helical steps:

<name>[xdisp]:X Helical step X (starting from 1) X
displacement.

<name>[ydisp]:X Helical Y displacement.

<name>[hrise]:X Helical rise.

<name>[incl]:X Helical inclination.

175

<name>[tip]:X Helical tip.

<name>[htwist]:X Helical twist.

Strands (sscalc only):

<name>[dx]:X Strand pair X (starting from 1) X
displacement.

<name>[dy]:X Y displacement.

<name>[dz]:X Z displacement.

<name>[rx]:X Relative rotation around X axis.

<name>[ry]:X Relative rotation around Y axis.

<name>[rz]:X Relateive rotation around Z axis.

Note that base pair data sets are not created until base pairing is determined.
Calculate basic nucleic acid (NA) structure parameters for all residues in the

range specified by resrange (or all NA residues if no range specified). Residue
names are recognized with the following priority: standard Amber residue names
DA, DG, DC, DT, RA, RG, RC, and RU; 3 letter residue names ADE, GUA,
CYT, THY, and URA; and finally 1 letter residue names A, G, C, T, and U. Non-
standard/modified NA bases can be recognized by using the resmap keyword.
For example, to make cpptraj recognize all 8-oxoguanine residues named ’8OG’
as a guanine-based residue:

nastruct naout nastruct.dat resrange 274-305 resmap 8OG:G

The resmap keyword can be specified multiple times, but only one mapping
per unique residue name is allowed. Note that resmap may fail if the residue
is missing heavy atoms normally present in the specified base type.

Base pairs are determined either once from the first frame or from a reference
structure, or can be determined each frame if allframes is specified. Base
pairing can also be specified via the specifiedbp and pairs keywords. Base
pairing is determined first by base reference axis origin distance, then by stagger,
then by angle between base Z axes, then finally by hydrogen bonding (at least
one hydrogen bond must be present). Base pair parameters will only be written
for determined base pairs. Both Watson-Crick and other types of base pairing
can be detected. Note that although all possible hydrogen bonds are searched
for, only WC hydrogen bonds are reported in the BP.<suffix> file.

The procedure used to calculate NA structural parameters is the same as
3DNA[20], with algorithms adapted from Babcok et al.[21] and reference frame
coordinates from Olson et al.[23]. Given the same base pairs are determined,
cpptraj nastruct should give the exact same numbers as 3DNA. One notable
exception are parameters for G-quadruplex structures.

Calculated NA structure parameters are written to three separate files, the
suffix of which is specified by naout. Base pair parameters (shear, stretch,
stagger, buckle, propeller twist, opening, # WC hydrogen bonds, base pairing,

176

and simple groove widths) are written to BP.<suffix>, along with the number
of WC hydrogen bonds detected. Base pair step parameters (shift, slide, rise,
tilt, roll, twist, Zp, and El Hassan and Calladine groove widths) are written
to BPstep.<suffix>, and helical parameters (X-displacement, Y-displacement,
rise, inclination, tip, and twist) are written to Helix.<suffix>. If noheader is
specified a header will not be written to the output files. Note that although
base puckering is calculated, it is not written to an output file by default. You
can output pucker to a file via the create or write/writedata commands after
the data has been generated, e.g.:

nastruct NA naout nastruct.dat resrange 1-3,28-30
run
writedata NApucker.dat NA[pucker]

Note that while the underlying procedure is geared towards calculating param-
eters for base pairs, the code can be made to calculate parameters between
consecutive bases in single strands by specifying sscalc.

Base axes, base pair axes, and base pair step axes can be written to trajectory
files using the axesout, bpaxesout, and stepaxesout and related keywords.
The axes are written using 4 points: an origin, and X Y and Z which are
bonded to the origin. The names of these pseudo atoms can be changed using
the axisnameo, axisnamex, axisnamey, and axisnamez keywords.

Custom Nucleic Acid Base References

Users can now specify baseref <file> to load a custom nucleic acid base ref-
erence. The base reference files are white-space delimited, begin with the line
NASTRUCT REFERENCE, and have the following format:

NASTRUCT REFERENCE
<base character> <res name 0> [<res name 1> ...]
<atom name> <X> <Y> <Z> <HB type> <RMS fit>
...

There is a line for each reference atom. Lines beginning with ’#’ are ignored as
comments.

<base character> Used to identify the underlying base type: A G C T or
U. If none of these, it will be considered an unknown residue (which just
means WC hydrogen bonding will not be identified).

<res name X> Specifies what residue names this reference corresponds to.
There must be at least one residue name. There can be any number of
these specified.

<atom name> A reference atom name.

<X> <Y> <Z> The X Y and Z coordinates of the reference atom.

177

<HB type> Denotes if and how the atom participates in hydrogen bonding.
Can be ’d’onor, ’a’cceptor, or ’n’one (or the numbers 1, 2, 0 respectively).
Only the first character of the word actually matters.

<RMS fit> Denotes whether the atom is involved in RMS-fitting.

Here is an example for GUA:

NASTRUCT REFERENCE
G G G5 G3
Modified into format readable by cpptraj nastruct
C1’ -2.477 5.399 0.000 0 0
N9 -1.289 4.551 0.000 0 1
C8 0.023 4.962 0.000 0 1
N7 0.870 3.969 0.000 accept 1
C5 0.071 2.833 0.000 0 1
C6 0.424 1.460 0.000 0 1
O6 1.554 0.955 0.000 accept 0
N1 -0.700 0.641 0.000 donor 1
C2 -1.999 1.087 0.000 0 1
N2 -2.949 0.139 -0.001 donor 0
N3 -2.342 2.364 0.001 accept 1
C4 -1.265 3.177 0.000 0 1

11.57 nativecontacts

nativecontacts [<mask1> [<mask2>]] [writecontacts <outfile>] [resout <resfile>]
[noimage] [distance <cut>] [out <filename>] [includesolvent]
[first | reference | ref <name> | refindex <#>]
[resoffset <n>] [contactpdb <file>] [pdbcut <cut>] [mindist] [maxdist]
[name <dsname>] [byresidue] [map [mapout <mapfile>]]
[series [seriesout <file>]]
[savenonnative [seriesnnout <file>] [nncontactpdb <file>]]
[resseries { present | sum } [resseriesout <file>]] [skipnative]

<mask1> First mask to calculate contacts for.

[<mask2>] (Optional) Second mask to calculate contacts
for.

[writecontacts <outfile>] Write information on native
contacts to <outfile> (STDOUT if not specified).

[resout <resfile>] File to write contact residue pairs
to.

[noimage] Do not image distances.

[distance <cut>] Distance cutoff for determining native
contacts in Angstroms (default 7.0 Ang).

178

[out <filename>] File to write number of native
contacts and non-native contacts.

[includesolvent] By default solvent molecules are
ignored; this will explicitly include solvent
molecules.

[first | reference | ref <name> | refindex <#>] Reference
structure to use for determining native contacts.

[resoffset <n>] (byresidue only) Ignore contacts between
residues spaced less than <n> residues apart in
sequence.

[contactpdb <file>] Write PDB with B-factor column
containing relative contact strength for native
contacts (strongest is 100.0).

[pdbcut <cut>] If writing contactpdb, only write
contacts with relative contact strength greater than
<cut>.

[mindist] If specified, determine the minimum distance
between any atoms in the mask(s).

[maxdist] If specified, determine the maximum distance
between any atoms in the mask(s).

[name <dsname>] Data set name.

[byresidue] Write out the contact map by residue instead
of by atom.

[map] Calculate matrices of native contacts
([nativemap]) and non-native contacts ([nonnatmap]).
These matrices are normalized by the total number of
frames, so that a value of 1.0 means “contact always
present”. If byresidue specified, the values for
each individual atom pair are summed over the
residues they belong to (this means for byresidue
values greater than 1.0 are possible).

[mapout <mapfile>] Write native/non-native matrices to
’native.<mapfile>’ and ’nonnative.<mapfile>’
respectively.

[series] Calculate native contact time series data, 1 for
contact present and 0 otherwise.

[seriesout <file>] Write native contact time series data
to file.

[savenonnative] Save non-native contacts; series must
also be specified. This is enabled by default if
skipnative specified.

179

[seriesnnout <file>] Write non-native contact time
series data to file.

[nncontactpdb <file>] Write PDB with B-factor
column containing relative contact strength for
non-native contacts (strongest is 100.0).

[resseries {present | sum} Create contacts time series by
residue; series must also be specified.

present Record a 1 if any contact is present and 0
if no contact is present for the residue pair.

sum The sum of all individual contacts is recorded
for the residue pair.

[resseriesout <file>] Write residue time series data
to <file>.

[skipnative] If specified, skip native contacts
determination, i.e. treat all sonctacts as
non-native contacts. Implies savenonnative.

Data Sets Created:

<dsname>[native] Number of native contacts.

<dsname>[nonnative] Number of non-native contacts.

<dsname>[mindist] (mindist only) Minimum observed
distance each frame.

<dsname>[maxdist] (maxdist only) Maximum observed
distance each frame.

<dsname>[nativemap] (map only) Native contacts matrix
(2D).

<dsname>[nonnatmap] Non-native contacts matrix (2D).

<dsname>[NC] Native contacts time series.

<dsname>[NN] Non-native contacts time series.

<dsname>[NCRES] Residue native contacts time
series.

<dsname>[NNRES] Residue non-native contacts time
series.

Define and track “native” contacts as determined by a simple distance cut-off,
i.e. any atoms which are closer than <cut> in the specified reference frame
(the first frame if no reference specified) are considered a native contact. If one
mask is provided, contacts are looked for within <mask1>; if two masks are
provided, only contacts between atoms in <mask1> and atoms in <mask2>
are looked for (useful for determining intermolecular contacts). By default only
native contacts are tracked. This can be changed by specifying the savenon-
native keyword or by specifying skipnative. The time series for contacts

180

can be saved using the series keyword; these can be further consolidated by
residue using the resseries keyword. When using <resseries> the data set in-
dex is calculated as (r2 * nres) + r1 so that indices can be matched between
native/non-native contact pairs. Non-native residue contact legends have an
nn_ prefix.

Native contacts that are found are written to the file specified by writecon-
tacts (or STDOUT) with format:

Contact Nframes Frac. Avg Stdev

Where Contact takes the form ’:<residue1 num>@<atom name>_:<residue2
num>@<atom name>, Nframes is the number of frames the contact is present,
Frac. is the total fraction of frames the contact is present, Avg is the average
distance of the contact when present, and Stdev is the standard deviation of
the contact distance when present. If resout is specified the total fraction of
contacts is printed for all residue pairs having native contacts with format:

#Res1 #Res2 TotalFrac Contacts

Where #Res1 is the first residue number, #Res2 is the second residue number,
TotalFrac is the total fraction of contacts for the residue pair, and Contacts
is the total number of native contacts involved with the residue pair. Since
TotalFrac is calculated for each pair as the sum of each contact involving that
pair divided by the total number of frames, it is possible to have TotalFrac
values greater than 1 if the residue pair includes more than 1 native contact.

During trajectory processing, non-native contacts (i.e. any pair satisfying
the distance cut-off which is not already a native contact) are also searched
for. The time series for native contacts can be saved as well, with 1 for contact
present and 0 otherwise (similar to the hbond command). This data can be
subsequently analyzed using e.g.12.21 on page 255.

Contact maps (matrices) are generated for native and non-native contacts.
If byresidue is specified, contact maps are summed over residues, and contacts
between residues spaced <resoffset> residues apart in sequence are ignored.

If contactpdb is specified a PDB is generated containing relative contact
strengths in the B-factor column. The relative contact strength is normalized
so that a value of 100 means that atom participated in the most contacts with
other atoms.

Example command looking for contacts between residues 210 to 260 and
residue named NDP, using reference structure ’FtuFabI.WT.pdb’ to define na-
tive contacts:

parm FtuFabI.parm7
trajin FtuFabI.nc
reference FtuFabI.WT.pdb
nativecontacts name NC1 :210-260&!@H= :NDP&!@H= \

byresidue out nc.all.res.dat mindist maxdist \
distance 3.0 reference map mapout resmap.gnu \

181

contactpdb Loop-NDP.pdb \
series seriesout native.dat

11.58 outtraj
outtraj <filename> [trajout args]

[maxmin <dataset> min <min> max <max>] ...

<filename> Output trajectory file name.

[trajout args] Output trajectory arguments (see 10.5 on
page 90).

[maxmin <dataset> min <min> max <max>] Only write
frames to <filename> if values in <dataset> for
those frames are between <min> and <max>. Can be
specified for one or more data sets.

The outtraj command is similar in function to trajout , and takes all of the same
arguments. However, instead of writing a trajectory frame after all actions are
complete outtraj writes the trajectory frame at its position in the Action queue.
For example, given the input:

trajin mdcrd.crd
trajout output.crd
outtraj BeforeRmsd.crd
rms R1 first :1-20@CA out rmsd.dat
outtraj AfterRmsd.crd

three trajectories will be written: output.crd, BeforeRmsd.crd, and AfterRmsd.crd.
The output.crd and AfterRmsd.crd trajectories will be identical, but the Befor-
eRmsd.crd trajectory will contain the coordinates of mdcrd.crd before they are
RMS-fit.

The maxmin keyword can be used to restrict output using one more more
data sets. For example, to only write frames for which the RMSD value is
between 0.7 and 0.8:

trajin tz2.truncoct.nc
rms R1 first :2-11
outtraj maxmin.crd maxmin R1 min 0.7 max 0.8

11.59 pairdist
pairdist out <filename> mask <mask> [delta <resolution>]

Calculate pair distribution function. In the following, defaults are given in
parentheses. The out keyword specifies output file for histogram: distance,
P(r), s(P(r)). The mask option specifies atoms for which distances should be
computed. The delta option specifies resolution. (0.1 Å)

182

11.60 pairwise

pairwise [<name>] [<mask>] [out <filename>] [cuteelec <ecut>] [cutevdw <vcut>]
[reference | ref <name> | refindex <#>] [cutout <cut mol2 prefix>]

[vmapout <vdw map>] [emapout <elec map>] [avgout <avg file>]
[eout <eout file>] [pdbout <pdb file>] [scalepdbe] [printmode {only|or|and|}]

[<name>] Data set name; van der Waals energy will get
aspect [EVDW] and electrostatic energy will get
aspect [EELEC].

[<mask>] Atoms to calculate energy for.

[out <filename>] File to write total EELEC and EVDW to.

[eout <eout file>] File to write individual EELEC and
EVDW interactions to.

[reference | ref <name> | refindex <#>] Specify a
reference to compare frames to (i.e. calculate Eref
- Eframe).

[cuteelec <cut>] Only report interaction EELEC (or delta
EELEC) if absolute value is greater than <ecut>
(default 1.0 kcal/mol).

[cutevdw <cutv>] Only report interaction EVDW (or
delta EVDW) if absolute value is greater than <vcut>
(default 1.0 kcal/mol).

[cutout <cut mol2 prefix>] Write out mol2 containing
only atom pairs which satisfy <ecut> and <vcut>.

[vmapout <vdw map>] Write out interaction EVDW (or
delta EVDW) matrix to file <vdw map>.

[emapout <elec map>] Write out interaction EELEC (or
delta EELEC) matrix to file <elec map>.

[avgout <avg file>] Print average interaction EVDW|EELEC
(or average delta EVDW|EELC) to <avg file>.

[pdbout <pdb file>] Write PDB with EVDW|EELEC in
occupancy|B-factor columns to <pdb file>.

[scalepdbe] Scale energies written to PDB from 0 to 100.

[printmode {only|or|and}] Control when/how average
energies are written

Data Sets Created:

<name>[EELEC] Electrostatic energy in (kcal/mol).

<name>[EVDW] van der Waals energy in (kcal/mol).

<name>[VMAP] van der Waals energy matrix.

183

<name>[EMAP] Electrostatic energy matrix.

This action has two related functions: 1) Calculate pairwise (i.e. non-bonded)
energy (in kcal/mol) for atoms in <mask>, or 2) Compare pairwise energy of
frames to a reference frame. This calculation does use an exclusion list but is
not periodic.

When comparing to a reference frame, the eout file will contain the differ-
ences for each individual interaction (i.e. Eref - Eframe), otherwise the eout file
will contain the absolute value of each individual interaction. The cuteelc and
cutevdw keywords can be used to restrict printing of individual interactions
to those for which the absolute value is above a cutoff. The VMAP and EMAP
matrix elements will contain these values as well (differences for reference, abso-
lute value otherwise) averaged over all frames. The avgout file will contain only
these values averaged over all frames that satisfy the cutoffs. The printmode
keyword controls when the average energies are written: only means only aver-
age energy components that satisfy cutoffs will be printed, or means that both
energy components will be printed if either satistfy a cutoff, and and means
that both energy components will be written only if both satisfy the cutoffs.

The cutout keyword can be used to write out MOL2 files each frame named
’<cut mol2 prefix>.evdw.mol2.X’ and ’<cut mol2 prefix>.eelec.mol2.X’ (where
X is the frame number) containing only atoms with energies that satisfy the
cutoffs. Similarly, the pdbout keyword can be used to write out a PDB file
(with 1 MODEL per frame). The occupancy and B-factor columns will contain
the total van der Waals and electrostatic energy for each atom if cutoffs are
satisfied, or 0.0 otherwise.

11.61 principal

principal [<mask>] [dorotation] [out <filename>] [name <dsname>]

[<mask>] Mask of atoms used to determine principal
axes (default all).

[dorotation] Align coordinates along principal axes.

[out <filename>] Write resulting
eigenvalues/eigenvectors to <filename>.

[name <dsname>] Data set name (3x3 matrices).

Data Sets Created (name keyword only):

<dsname>[evec] Eigenvectors (3x3 matrix, row-major).

<dsname>[eval] Eigenvalues (vector).

Determine principal axes of each frame determined by diagonalization of the
inertial matrix from the coordinates of the specified atoms. At least one of
dorotation, out, or name must be specified. The resulting eigenvectors are
sorted from largest eigenvalue to smallest, and the corresponding axes labelled

184

using the cpptraj convention of X > Y > Z (similar to ’vector principal’). If
out is specified the eigenvectors and eigenvalues will be written for each frame
N with format:

<N> EIGENVALUES: <EX> <EY> <EZ>
<N> EIGENVECTOR 0: <Xx> <Xy> <Xz>
<N> EIGENVECTOR 1: <Yx> <Yy> <Yz>
<N> EIGENVECTOR 2: <Zx> <Zy> <Zz>

NOTE: The eigenvector 3x3 matrix data set could subsequently be used e.g.
with the rotate action.

Example: Align system (residues 1-76) along principle axes:

parm myparm.parm7
trajin protein.nc
principal :1-76 dorotation out principal.dat

11.62 projection

projection [<name>] evecs <dataset name> [out <outfile>] [beg <beg>] [end <end>]
{[<mask>] | [dihedrals <dataset arg>] | [data <dataset arg> ...]}
[start <start>] [stop <stop>] [offset <offset>]

[<name>] Output data set name.

evecs <dataset name> Data set containing eigenvectors
(modes).

[out <outfile>] Write projections to <outfile>.

[beg <beg>] First eigenvector/mode to use (default 1).

[end <end>] Final eigenvector/mode to use (default 2).

[<mask>] (Not dihedral covariance) Mask of atoms to
use in projection; MUST CORRESPOND TO HOW
EIGENVECTORS WERE GENERATED.

[dihedrals <dataset arg>] (Dihedral covariance only)
Dihedral data sets to use in projection; MUST
CORRESPOND TO HOW EIGENVECTORS WERE GENERATED.

[data <dataset arg>] (Data covariance only, e.g. from
TICA). 1D data sets to use in projection; MUST
CORRESPOND TO HOW EIGENVECTORS WERE GENERATED.

[start <start>] Frame to start calculating projection.

[stop <stop>] Frame to stop calculating projection.

[offset <offset>] Frames to skip between projection
calculations.

185

Data Sets Created:
DataSet indices correspond to mode #.

<name> (All execpt IDEA) Projection data set.

<name>[X] X component of mode (IDEA modes only).

<name>[Y] Y component of mode (IDEA modes only).

<name>[Z] Z component of mode (IDEA modes only).

<name>[R] Magnitude of mode (IDEA modes only).

Projects snapshots onto eigenvectors obtained by diagonalizing covariance or
mass-weighted covariance matrices. Eigenvectors are taken from previously gen-
erated (e.g. with diagmatrix/tica) or previously read-in (e.g. with readdata)
eigenvectors with name <dataset name>. The user has to make sure that the
atoms selected by <mask> agree with the ones used to calculate the modes
(i.e., if mask = ’@CA’ was used in the “matrix” command, mask = ’@CA’ needs
to be set here as well). See 13 on page 283 for examples using the projection
command. If only 1D data sets need to be projected, see the projectdata
analysis command, 12.28 on page 264.

11.63 pucker

pucker [<name>] <mask1> <mask2> <mask3> <mask4> <mask5> [<mask6>] [geom]
[out <filename>] [altona | cremer] [amplitude] [theta]
[range360] [offset <offset>]

<name> Output data set name.

<maskX> Five (optionally six) atom masks selecting
atom(s) to calculate pucker for.

[geom] Use geometric center of atoms in <maskX> (default
is center of mass).

[out <filename>] Output file name.

[altona] Use method of Altona & Sundaralingam (5 masks
only).

[cremer] Use method of Cremer and Pople (5 or 6 masks).
This is the default when 6 masks are specified.

[amplitude] Also calculate amplitude.

[theta] (6 masks only) Also calculate theta.

[range360] Wrap pucker values from 0.0 to 360.0 (default
is -180.0 to 180.0).

[offset <offset>] Add <offset> to pucker values.

Data Sets Created:

186

<name> Pucker in degrees.

<name>[Amp] Amplitude (if amplitude was specified).

<name>[Theta] Theta (if theta and 6 masks were
specified).

Calculate the pucker (in degrees) for atoms in <mask1>, <mask2>, <mask3>,
<mask4>, <mask5> using the method of Altona & Sundarlingam[24, 25] (de-
fault for 5 masks, or if altona specified), or the method of Cremer & Pople[26]
(default for 6 masks, or if cremer is specified). If the amplitude or theta
keywords are given, amplitudes/thetas (also in degrees) will be calculated in
addition to pucker. The results from pucker can be further analyzed with the
statistics analysis.

By default, pucker values are wrapped to range from -180 to 180 degrees. If
the range360 keyword is specified values will be wrapped to range from 0 to
360 degrees. Note that the Cremer & Pople convention is offset from Altona
& Sundarlingam convention (with nucleic acids) by +90.0 degrees; the offset
keyword will add an offset to the final value and so can be used to convert
between the two. For example, to convert from Cremer to Altona specify “offset
90”.

To calculate nucleic acid pucker specify C1’ first, followed by C2’, C3’, C4’
and O4’. For example, to calculate the sugar pucker for nucleic acid residues 1
and 2 using the method of Altona & Sundarlingam, with final pseudorotation
values ranging from 0 to 360:

pucker p1 :1@C1’ :1@C2’ :1@C3’ :1@C4’ :1@O4’ range360 out pucker.dat
pucker p2 :2@C1’ :2@C2’ :2@C3’ :2@C4’ :2@O4’ range360 out pucker.dat

11.64 radgyr | rog

radgyr [name>] [<mask>] [out <filename>] [mass] [nomax] [tensor]

[<name>] Data set name.

[<mask>] Atoms to calculate radius of gyration for;
default all atoms.

[out <filename>] Write data to <filename>.

[mass] Mass-weight radius of gyration.

[nomax] Do not calculate maximum radius of gyration.

[tensor] Calculate radius of gyration tensor, output
format ’XX YY ZZ XY XZ YZ’.

Data Sets Created:

<name> Radius of gyration in Ang.

<name>[Max] Max radius of gyration in Ang.

187

<name>[Tensor] Radius of gyration tensor; format ’XX
YY ZZ XY XZ YZ’.

Calculate the radius of gyration of specified atoms. For example, to calcu-
late only the mass-weighted radius of gyration (not the maximum) of the non-
hydrogen atoms of residues 4 to 10 and print the results to “RoG.dat”:

radgyr :4-10&!(@H=) out RoG.dat mass nomax

11.65 radial | rdf

radial [out <outfilename>] <spacing> <maximum> <solvent mask1> [<solute mask2>]
[noimage]

[density <density> | volume] [<dataset name>] [intrdf <file>] [rawrdf <file>]
[{{center1|center2|nointramol|toxyz <x>,<y>,<z>} |

[byres1] [byres2] [bymol1] [bymol2]}]

[out <outfilename>] File to write RDF to.

<spacing> Bin spacing, required.

<maximum> Max bin value, required.

<solvent mask1> Atoms to calculate RDF for, required.

[<solute mask2>] (Optional) If specified calculate RDF
of all atoms in <solvent mask1> to each atom in
<solute mask2>.

[noimage] Do not image distances.

[density <density>] Use density value of <density> for
normalization (default 0.033456 molecules Å−3).

[volume] Determine density for normalization from
average volume of input frames.

[<dataset name>] Name of output data sets.

[intrdf <file>] Calculate integral of RDF bin values
(averaged over # of frames but otherwise not
normalized) and write to <file> (can be same as
<output_filename>).

[rawrdf <file>] Write raw (non-normalized) RDF values to
<file>.

[center1] Calculate RDF from geometric center of atoms in
<solvent mask1> to all atoms in <solute mask2>.

[center2] Calculate RDF from geometric center of atoms in
<solute mask2> to all atoms in <solvent mask1>.

[nointramol] Ignore intra-molecular distances.

188

[toxyz <x>,<y>,<z>] Calculate RDF from center of
atoms in <solvent mask1> to point specified by <x>
<y> and <z> (in Ang.).

[byres1] Calculate using the centers of mass of each
residue in the first mask.

[bymol1] Calculate using the centers of mass of each
molecule in the first mask.

[byres2] Calculate using the centers of mass of each
residue in the second mask.

[bymol2] Calculate using the centers of mass of each
molecule in the second mask.

DataSet Aspects:

<setname> The radial distribution function.

<setname>[int] (intrdf only) Integral of RDF bin
values.

<setname>[raw] (rawrdf only) Raw (non-normalized) RDF
values.

Calculate the radial distribution function (RDF, aka pair correlation function)
of atoms in <solvent mask1> (note that this mask does not need to be
solvent, but this nomenclature is used for clarity). If an optional second mask
(<solute mask2>) is given, calculate the RDF of ALL atoms in <solvent
mask1> to EACH atom in <solute mask2>. If desired, the geometric center
of atoms in <solvent mask1> or <solute mask2> can be used by specifying
the center1 or center2 keywords respectively, or alternatively intra-molecular
distances can be ignored by specifying the nointramol keyword.

The RDF is calculated from the histogram of the number of particles found
as a function of distance R, normalized by the expected number of particles at
that distance. The normalization is calculated from:

Density ∗ 4π
3

(
(R + dR)3 −R3

)
where dR is equal to the bin spacing. Some care is required by the user in

order to normalize the RDF correctly. The default density value is 0.033456
molecules Å−3, which corresponds to a density of water approximately equal to
1.0 g mL−1. To convert a standard density in g mL−1, multiply the density by
0.6022
Mr

, where Mr is the mass of the molecule in atomic mass units. Alternatively,
if the volume keyword is specified the density is determined from the average
volume of the system over all Frames.

Note that correct normalization of the RDF depends on the number of atoms
in each mask; if multiple topology files are being processed that result in changes
in the number of atoms in each mask, the normalization will be off.

189

The basic (i.e. no center1/center2/byres1/byres2/bymol1/bymol2) RDF cal-
culations are now CUDA parallelized. However, the calculation is done in single-
precision on GPUs so the resulting histograms may differ slightly from the CPU
(on the order of 0.0002 - 0.0004).

11.66 randomizeions

randomizeions <mask> [around <ardoundmask> by <distance>] [{allowoverlap|overlap <value>}]
[noimage] [seed <value>] [originalalgorithm]

<mask> Mask of ions to randomize.

around <mask> by <distance> Ensure ions come no
closer than <distance> Ang. to atoms in
<aroundmask>.

allowoverlap No restrictions on how close ions can be to
each other.

overlap <value> Ions in <mask> can be no closer than
<value> Ang. to each other.

[noimage] Do not image distances.

[seed <value>] Seed for the random number generator.

[originalalgorithm] Use the original, slower algorithm
(from versions before 5.1.0).

This can be used to randomly swap the positions of solvent and single atom ions.
The “overlap” specifies the minimum distance between ions, and the “around”
keyword can be used to specify a solute (or set of atoms) around which the ions
can get no closer than the distance specified. The optional keywords “noimage”
disable imaging and “seed” update the random number seed. An example usage
is

randomizeions @NA around :1-20 by 5.0 overlap 3.0

The above will swap Na+ ions with water getting no closer than 5.0 Å from
residues 1 – 20 and no closer than 3.0 Å from any other Na+ ion.

11.67 remap
remap data <setname>

[outprefix <prefix>] [nobox] [parmout <filename>]
[parmopts <comma-separated-list>]

data <setname> Data set to use for remapping; should
be a 1D integer data set with X= reference (old)
atom index, Y = target (new) atom index.

190

outprefix <prefix> Write remapped topology to
<prefix>.<originalname>

[nobox] Remove any box information from the remapped
topology.

parmout <filename> Write remapped topology to
<filename>

parmopts <list> Options for writing topology file

Re-map atoms according to the given reference data set which is of the format:

Reference[Target]

with atom numbering starting from 1. E.g. Reference[1] = 10 would mean
remap atom 10 in target to position 1.

11.68 replicatecell
replicatecell [out <traj filename>] [name <dsname>]

{ all | dir <XYZ> [dir <XYZ> ...] } [<mask>]
[outprefix <prefix>] [nobox] [parmout <filename>]
[parmopts <comma-separated-list>]

out <traj filename> Write replicated cell to output
trajectory file.

name <dsname> If specified save replicated cell to
COORDS data set.

all Replicate cell once in all possible directions.

dir <XYZ> Repicate cell once in specified directions.
<XYZ> should consist of 3 numbers with no spaces in
between them and are restricted to values of -1, 1,
and 0. May be specified more than once.

<mask> Mask of atoms to replicate.

outprefix <prefix> Write replicated topology to
<prefix>.<originalname>

[nobox] Remove any box information from the replicated
topology.

parmout <filename> Write replicated topology to
<filename>

parmopts <list> Options for writing topology file

Create a trajectory where the unit cell is replicated in 1 or more directions
(up to 27). The resulting coordinates and topology can be written to a trajec-
tory/topology file. They can also be saved as a COORDS data set for subse-
quent processing. Currently replication is only allowed 1 axis length in either

191

direction. The all keyword will replicate the cell once in all directions. The
dir keyword can be used to restrict replication to specific directions, e.g. ’dir
10-1’ would replicate the cell once in the +X, -Z directions.

For example, to replicate a cell in all directions, writing out to NetCDF
trajectory cell.nc:

parm ../tz2.truncoct.parm7
trajin ../tz2.truncoct.nc
replicatecell out cell.nc parmout cell.parm7 all

11.69 rms | rmsd
rmsd [<name>] <mask> [<refmask>] [out <filename>] [mass]

[nofit | norotate | nomod]
[savematrices [matricesout <file>]]
[savevectors {combined|separate} [vecsout <file>]]
[first | reference | ref <name> | refindex <#> | previous |

reftraj <name> [parm <name> | parmindex <#>]]
[perres perresout <filename> [perresavg <avgfile>]
[range <resRange>] [refrange <refRange>]
[perresmask <additional mask>] [perrescenter] [perresinvert]

[<name>] Output data set name.
[<mask>] Mask of atoms to calculate RMSD for; if not

specified, calculate for all atoms.
[<refmask>] Reference mask; if not specified, use

<mask>.
[out <filename>] Output data file name.
[mass] Mass-weight the RMSD calculation.
[nofit] Do not perform best-fit RMSD.
[norotate] If calculating best-fit RMSD, translate but

do not rotate coordinates.
[nomod] If calculating best-fit RMSD, do not modify

coordinates.
[savematrices] If specified save rotation matrices to

data set with aspect [RM].
matricesout <file> Write rotation matrices to

specified file.
[savevectors {combined|separate}] If specified save

translation vectors: combined means save
target-to-origin plus the origin-to-reference
translation vectors, separate means save
target-to-origin as Vx, Vy, Vz and save
origin-to-reference as Ox Oy Oz in the output vector
data set.

192

vecsout <file> Output translation vector data set
to <file>.

Reference keywords:

first Use the first trajectory frame processed as
reference.

reference Use the first previously read in reference
structure (refindex 0).

ref <name> Use previously read in reference structure
specified by filename/tag.

refindex <#> Use previously read in reference
structure specified by <#> (based on order read in).

previous Use frame prior to current frame as reference.

reftraj <name> Use frames from COORDS set <name> or
read in from trajectory file <name> as references.
Each frame from <name> is used in turn, so that
frame 1 is compared to frame 1 from <name>, frame 2
is compared to frame 2 from <name> and so on. If
<trajname> runs out of frames before processing is
complete, the last frame of <trajname> continues to
be used as the reference.

parm <parmname> | parmindex <#> If reftraj
specifies a trajectory file, associate it with
specified topology; if not specified the first
topology is used.

Per-residue RMSD keywords:

perres Activate per-residue no-fit RMSD calculation.

perresout <perresfile> Write per-residue RMSD to
<perresfile>.

perresavg <avgfile> Write average per-residue RMSDs to
<avgfile>.

range <res range> Calculate per-residue RMSDs for
residues in <res range> (default all solute
residues).

refrange <ref range> Calculate per-residue RMSDs to
reference residues in <ref range> (use <res range>
if not specified).

perresmask <additional mask> By default residues are
selected using the mask ’:X’ where X is residue
number; this appends <additional mask> to the mask
expression.

193

perrescenter Translate residues to a common center of
mass prior to calculating RMSD.

perresinvert Make X-axis residue number instead of frame
number.

Data Sets Created:

<name> RMSD of atoms in mask to reference.
<name>[RM] (savematrices only) Rotation matrices of

target to reference.
<name>[TV] (savevectors only) Translation vector.
<name>[res] (perres only) Per-residue RMSDs; index is

residue number.
<name>[Avg] (perres only) Average per-residue RMSD

for each residue.
<name>[Stdev] (perres only) Standard deviation of RMSD

for each residue.

Note that perres data sets are not generated until run is called.
Calculate the coordinate RMSD of input frames to a reference frame (or

reference trajectory). Both <mask> and <refmask> must specify the same
number of atoms, otherwise an error will occur.

For example, say you have a trajectory and you want to calculate RMSD to
two separate reference structures. To calculate the best-fit RMSD of the C, CA,
and N atoms of residues 1 to 20 in each frame to the C, CA, and N atoms of
residues 3 to 23 in StructX.crd, and then calculate the no-fit RMSD of residue 7
to residue 7 in another structure named Struct-begin.rst7, writing both results
to Grace-format file “rmsd1.agr”:

reference StructX.crd [structX]
reference md_begin.rst7 [struct0]
rmsd BB :1-20@C,CA,N ref [structX] :3-23@C,CA,N out rmsd1.agr
rmsd Res7 :7 ref [struct0] out rmsd1.agr nofit

Per-residue RMSD calculation

If the perres keyword is specified, after the initial RMSD calculation the no-fit
RMSD of specified residues is also calculated. So for example:

rmsd :10-260 reference perres perresout PRMS.dat range 190-211 perresmask &!(@H=)

will first perform a best-fit RMSD calculation to the first specified reference
structure using residues 10 to 260, then calculate the no-fit RMSD of residues
190 to 211 (excluding any hydrogen atoms), writing the results to PRMS.dat.
Two additional recommendations for the ’perres’ option: 1) try not including
backbone atoms by using the ’perresmask’ keyword, e.g. "perresmask &!@H,N,CA,HA,C,O",
and 2) try using the ’perrescenter’ keyword, which centers each residue prior to
the ’nofit’ calculation; this is useful for isolating changes in residue conformation.

194

11.70 rms2d | 2drms
Although the ’rms2d’ command can still be specified as an action, it is now
considered an analysis. See 12.31 on page 266.

11.71 rmsavgcorr
Although the ’rmsavgcorr’ command can still be specified as an action, it is
now considered an analysis. See 12.32 on page 267.

11.72 rmsf | atomicfluct
See 11.6 on page 104.

11.73 rotate
rotate [<mask>] { [x <xdeg>] [y <ydeg>] [z <zdeg>] |

axis0 <mask0> axis1 <mask1> <deg> |
usedata <set name> [inverse] |

calcfrom <set name> [name <output set name>] [out <file>]
}

[<mask>] Rotate atoms in <mask> (default all).

[x <xdeg] Degrees to rotate around the X axis.

[y <xdeg] Degrees to rotate around the Y axis.

[z <xdeg] Degrees to rotate around the Z axis.

axis0 <mask0> Mask defining the beginning of a
user-defined axis.

axis1 <mask1> Mask defining the end of a
user-defined axis.

<deg> Value in degrees to rotate around user
defined axis.

usedata <set name> If specified, use 3x3 rotation
matrices in specified data set to rotate
coordinates.

[inverse] Perform inverse rotation from input
rotation matrices.

calcfrom <set name> Instead of rotating coordinates,
calculate rotations around the X Y and Z axes (as
well as total rotation) in degrees from existing
rotation matrices specified by <set name>.

[name <output set name>] Output set name.
[out <file>} File to write output sets to.

DataSets Created:

195

<output set name>[TX] (caclfrom only) Rotation around
the X axis in degrees.

<output set name>[TY] (caclfrom only) Rotation around
the Y axis in degrees.

<output set name>[TZ] (caclfrom only) Rotation around
the Z axis in degrees.

<output set name>[T] (caclfrom only) Total rotation in
degrees.

Rotate specified atoms around the X, Y, and/or Z axes by the specified amounts,
around a user-defined axis (specified by <mask0> and <mask1>), or use a
previously read in or generated data set of 3x3 matrices to perform rotations.

For example, to rotate the entire system 90 degrees around the X axis:

rotate x 90

To rotate residue 270 90 degrees around the axis defined between atoms C1, C2,
C3, C4, C5, and C6 in residue 270 and atoms C7, C8, C9, C10, C11, and C12
in residue 270:

rotate :270 axis0 :270@C1,C2,C3,C4,C5,C6 axis1 :270@C7,C8,C9,C10,C11,C12 90.0

To rotate the system with rotation matrices read in from rmatrices.dat:

trajin tz2.norotate.crd
readdata rmatrices.dat name RM mat3x3
rotate usedata RM

To calculate rotations from rotation matrices generated by a previous RMSD
calculation:

parm ../tz2.parm7
reference tz2.separate.rotate.rst7.save name REF
trajin ../tz2.nc
rms R0 reference savematrices matricesout matrices.dat
rotate calcfrom R0[RM] name Rot out rotations.dat

11.74 rotdif
The ’rotdif’ command is now an analysis (see 12.33 on page 269), and requires
that rotation matrices be generated via an rmsd action. For example:

reference avgstruct.pdb
trajin tz2.nc
rms R0 reference @CA,C,N,O savematrices
rotdif rmatrix R0[RM] rseed 1 nvecs 10 dt 0.002 tf 0.190 \

itmax 500 tol 0.000001 d0 0.03 order 2 rvecout rvecs.dat \
rmout matrices.dat deffout deffs.dat outfile rotdif.out

196

11.75 runavg | runningaverage
runavg [window <window_size>]

Note that for backwards compatibility with ptraj “runningaverage” is also ac-
cepted.

Replaces the current frame with a running average over a number of frames
specified by window <window_size> (5 if not specified). This means that in
order to build up the correct number of frames to calculate the average, the first
<window_size> minus one frames will not be processed by subsequent actions.
So for example given the input:

runavg window 3
rms first out rmsd.dat

the rms command will not take effect until frame 3 since that is the first time
3 frames are available for averaging (1, 2, and 3). The next frame processed
would be an average of frames 2, 3, and 4, etc.

11.76 scale
scale x <sx> y <sy> z <sz> <mask>

Scale the X|Y|Z coordinates of atoms in <mask> by <sx>|<sy>|<sz>.

11.77 secstruct

secstruct [<name>] [out <filename>] [<mask>] [sumout <filename>]
[assignout <filename>] [totalout <filename> [ptrajformat]
[betadetail]
[namen <N name>] [nameh <H name>] [nameca <CA name>]
[namec <C name>] [nameo <O name>] [namesg <sulfur name>]

[<name>] Output data set name.

[out <filename>] Output file name for secondary
structure vs time.

[<mask>] Atom mask in which residues should be looked
for.

[sumout <sumfilename>] Write average secondary
structure values for each residue to <sumfilename>;
if not specified <filename>.sum is used.

[assignout <filename>] Write overall secondary structure
assignment (based on dominant secondary structure
type for each residue) to file.

[ptrajformat] Write secondary structure as a string of
characters for each frame, similar to ptraj output.

197

[betadetail] Record anti-parallel beta and parallel beta
in place of extended and bridge secondary structure.
If a residue could be both only anti-parallel is
reported.

[namen <N name>] Backbone amide nitrogen atom name
(default ’N’).

[nameh <H name>] Backbone amide hydrogen atom name
(default ’H’).

[nameca <CA name>] Backbone alpha carbon atom name
(default ’CA’).

[namec <C name>] Backbone carbonyl carbon atom name
(default ’C’).

[nameo <O name>] Backbone carbonyl oxygen atom name
(default ’O’).

[namesg <SG name>] Cysteine sulfur atom name, used to
ignore disulfide connectivity (default ’SG’).

Data Sets Created:

<name>[res] Residue secondary structure per frame;
index corresponds to residue number. If ptrajformat
specified these will be characters, otherwise
integers (see table below).

<name>[avgss] Average of each type of secondary
structure; index corresponds to secondary structure
type (see table below; no index for “None”).

<name>[None] Total fraction of residues with no
structure vs time.

<name>[Para] Total fraction of residues with parallel
beta structure vs time.

<name>[Anti] Total fraction of residues with
anti-parallel beta structure vs time.

<name>[3-10] Total fraction of 3-10 helical structure
vs time.

<name>[Alpha] Total fraction of alpha helical
structure vs time.

<name>[Pi] Total fraction of Pi helical structure vs
time.

<name>[Turn] Total fraction of turn structure vs
time.

<name>[Bend] Total fraction of bend structure vs
time.

198

As of version 4.18.0, this command now produces output that better
conforms with the original definitions in Kabsch and Sander 1983;
namely that Extended beta (i.e. 2 or more consecutive beta bridges
of the same type) and beta Bridge (i.e. an isolated beta bridge) are
now reported instead of anti-parallel and parallel beta. To restore
the original behavior the ’betadetail’ keyword must be specified.

Note that the residue and [avgss] data sets are not generated until run is
called.

Calculate secondary structural propensities for residues in <mask> (or
all solute residues if no mask given) using the DSSP method of Kabsch and
Sander[27], which assigns secondary structure types for residues based on back-
bone amide (N-H) and carbonyl (C=O) atom positions. By default cpptraj
assumes these atoms are named “N”, “H”, “C”, and “O” respectively. If a differ-
ent naming scheme is used (e.g. amide hydrogens are named “HN”) the backbone
atom names can be customized with the nameX keywords (e.g. ’nameH HN’).
Note that it is expected that some residues will not have all of these atoms
(such as proline); in this case cpptraj will print an informational message but
the calculation will proceed normally. If a residue has no atoms selected it will
be skipped. When determining residue connecivity, disulfide bonds will be ig-
nored; cpptraj identifies such bonds based on the namesg atom name (default
“SG”).

Results will be written to filename specified by out with format:

<#Frame> <ResX SS> <ResX+1 SS> ... <ResN SS>

where <#Frame> is the frame number and <ResX SS> is an integer repre-
senting the calculated secondary structure type for residue X. If the keyword
ptrajformat is specified, the output format will instead be:

<#Frame> STRING

where STRING is a string of characters (one for each residue) where each charac-
ter represents a different structural type (this format is similar to what ptraj had
outputed and is retained for backwards compatibility). The various secondary
structure types and their corresponding integer/character are listed below. If
’betadetail’ is specified what is reported and the characters used change slightly.

STRING (betadetail) Integer DSSP SS type (betadetail)
0 0 ’ ’ None

E (b) 1 ’E’ Extended beta (parallel beta)
B 2 ’B’ Isolated beta (anti-parallel beta)
G 3 ’G’ 3-10 helix
H 4 ’H’ Alpha helix
I 5 ’I’ Pi (3-14) helix
T 6 ’T’ Turn
S 7 ’S’ Bend

199

Average structural propensities over all frames for each residue will be writ-
ten to the file specified by sumout (or “<filename>.sum” if sumout is not
specified). The total structural propensity over all residues for each secondary
structure type will be written to the file specified by totalout. If assignout
is specified, the overall secondary structure assignment for each residue will be
printed in two line chunks of 50 residues, with the first line containing the residue
number the line starts with and one character residue names, and the second line
containing secondary structure assignment using DSSP-style characters, like so:

1 KCNTATCATQ RLANFLVHSS NNFGAILSST NVGSNTRn
SSS TH HHHTTSEEEE TTTEEEE SS S

The output of secstruct command is amenable to visualization with gnuplot. To
generate a 2D map-style plot of secondary structure vs time, with each residue
on the Y axis simply give the output file a “.gnu” extension. For example,
to generate a 2D map of secondary structure vs time, with different colors
representing different secondary structure types for residues 1-22:

secstruct :1-22 out dssp.gnu

The resulting file can be visualized with gnuplot:

gnuplot dssp.gnu

Similarly, the sumout file can be nicely visualized using xmgrace (use “.agr”
extension).

secstruct :1-22 out dssp.gnu sumout dssp.agr
xmgrace dssp.agr
C <X> <Y> <Z> <Density>

Values of dgbulk and dhbulk for different water models can be calculated from
pure water simulations with the purewater keyword.

11.78 setvelocity
setvelocity [<mask>]

[{ tempi <temperature> |
scale [factor <fac>] [sx <xfac>] [sy <yfac>] [sz <zfac>] |
add [value <val>] [vx <xval>] [vy <yval>] [vz <zval>] |
none |
modify}]

[[ntc <#>]] [[dt <time>] [epsilon <eps>]]
[zeromomentum] [ig <random seed>]

<mask> Mask of atoms to assign velocities to.

tempi <temperature> Assign velocities at specified
temperature (default 300.0 K).

200

scale Scale existing velocities

[factor <fac>] Factor to scale velocities by.
[sx <xfac>] Factor to scale X component of

velocities by.
[sy <yfac>] Factor to scale Y component of

velocities by.
[sz <zfac>] Factor to scale Z component of

velocities by.

add Add to existing velocities

[value <val>] Value to add to velocities.
[vx <xval>] Value to add to X component of

velocities.
[vy <yval>] Value to add to Y component of

velocities.
[vz <zval>] Value to add to Z component of

velocities.

none Remove any velocities.

modify If specified, do not set, just modify any
existing velocities (via ’ntc’ or ’zeromomentum’).

ig <random seed> Random seed to use to generate
velocity distribution.

ntc <#> Correct set velocities for SHAKE constraints.
Numbers match sander/pmemd: 1 = no SHAKE, 2 = SHAKE
on hydrogens, 3 = SHAKE on all atoms.

dt <time> Time step for SHAKE correction.

epsilon <eps> Epsilon for SHAKE correction

zeromomentum If specified adjust velocities so the
total momentum of atoms in <mask> is zero.

Set velocities in frame for atoms in <mask> using Maxwellian distribution based
on given temperature, optionally adjusted for SHAKE constraints. Can also be
used to modify existing velocity information or remove it entirely. The total
momentum of the system can be set to zero as well, which can be useful for
NVE simulations.

11.79 spam

spam [name <name>] [out <datafile>] [cut <cut>] [solv <solvname>]
{ purewater |

<peaksname> [reorder] [info <infofile>] [summary <summary>]
[site_size <size>] [sphere] [temperature <T>]
[dgbulk <dgbulk>] [dhbulk <dhbulk>] }

201

name <name> Output data sets name.

out <datafile> Data file with all SPAM energies for
each snapshot.

cut <cut> Non-bonded cutoff for energy evaluation

solv <solvname> Name of the solvent residues.

[purewater] The system is pure water. Used to
parametrize the bulk values. If this is specified,
none of the below options are relevant.

<peaksname> Data set or file (XYZ- format: see
below) with the peak locations present .

[reorder] The solvent should be re-ordered so the same
solvent molecule is always in the same site.

info <infofile> File with stats about which sites are
occupied when.

summary <summary> File with the summary of all SPAM
results. If not specified, no SPAM energies will be
calculated.

site_size <size> Size of the water site around each
density peak (sphere diameter/box edge length) in
Ang.

[sphere] Treat each site like a sphere.

temperature <T> Temperature at which SPAM calculation
was run.

dgbulk <dgbulk> SPAM free energy of the bulk solvent
in kcal/mol; default is -30.3 kcal/mol (SPC/E
water).

dhbulk <dhbulk> SPAM enthalpy of the bulk solvent in
kcal/mol; default is -22.2 kcal/mol (SPC/E water).

Data Sets Created for ’purewater’:

<name> Energies for each water at each frame.

Data Sets Created otherwise:

<name>:<#> SPAM energies for peak <#> starting from
1.

<name>[DG] SPAM delta G values for valid peaks.

<name>[DH] SPAM delta H values for valid peaks.

<name>[-TDS] SPAM -T * delta S values for valid
peaks.

202

Perform profiling of bound water molecules via SPAM analysis[28]. Briefly, this
method identifies and estimates the free energy profiles of bound waters via
calculation of the distribution of interaction energies between the water and it’s
environment from explicit solvent MD trajectories. The interaction energies are
calculated using a force- and energy-shifted electrostatic term with a hard cutoff.
For a given peak, SPAM energies will only be calculated for peaks where the
peak is singly-occupied (i.e. a multiple-occupied peak is not considered valid).

Prior to this command, the volmap command should be run with the peak-
file keyword (see 11.92 on page 214) to generate the peaks file. If not using peaks
from the volmap command, the peaks file should have one line per peak with
format:

<# of peaks>
C <X> <Y> <Z> <Peak Density>
...

With a ’C’ line for each peak.

11.80 stfcdiffusion

stfcdiffusion mask <mask> [out <file>] [time <time per frame>]
[mask2 <mask> [lower <distance>] [upper <distance>]]
[nwout <file>]) [avout <file>] [distances] [com]
[x|y|z|xy|xz|yz|xyz]

mask Atoms for which MSDs will be computed.

out Output file: time vs. MSD.

time Time step in the trajectory. (1.0 ps)

mask2 Compute MSDs only within the lower and upper
limit of mask2. IMPORTANT: may be very slow!!!

lower Smaller distance from reference point(s). (0.01
Å)

upper Larger distance from reference point(s). (3.5 Å)

nwout Output file containing number of water molecules
in the chosen region, see mask2. (off)

avout Output file containing average distances. (off)

x|y|z|xy|xz|yz|xyz Computation of the mean square
displacement in the chosen dimension. (xyz)

distances Dump un-imaged distances. By default only
averages are output. (off)

com Calculate MSD for centre of mass. (off)

Calculate diffusion for selected atoms using code based on the ’diffusion’ routine
developed by Hannes Loeffler at STFC (http://www.stfc.ac.uk/CSE).

203

11.81 strip
strip <mask> [charge <new charge>]

[outprefix <prefix>] [nobox] [parmout <filename>]
[parmopts <comma-separated-list>]

<mask> Remove atoms specified by mask from the
system.

charge <new charge> Scale charges so total charge of
remaining atoms matches the specified <new charge>.

[outprefix <prefix>] Write out stripped topology file
with name ’<prefix>.<Original Topology Name>’.

[nobox] Remove any box information from the stripped
topology.

[parmout <file>] Write stripped topology to file with
name <file>.

[parmopts <list>] Options for writing topology file.

Strip all atoms specified by <mask> from the frame and modify the topology
to match for any subsequent Actions. The outprefix keyword can be used
to write stripped topologies; stripped Amber topologies are fully-functional.
Available options for <parmopts> can be determined by running the help
Formats parmwrite command.

Note that stripping a system renumbers all atoms and residues, so for ex-
ample after this command:

strip :1

residue 1 will be gone, and the former second residue will now be the first, and
so on.

For example, to strip all residues named WAT from each topology/coordinate
frame:

strip :WAT

The next example uses a distance-based mask to strip atoms in a single frame.
Note that with the exception of the mask command, distance-based masks do
not update on a per-frame basis. To strip all residues outside of 6.0 from any
atom in residues 1 to 14 and write out the stripped topology and coordinates,
both with no box information:

parm parm7
trajin frame_1000.rst.1
reference frame_1000.rst.1
strip !(:1-14<:6.0) outprefix f1.1 nobox
trajout f1.1.x restart nobox

204

11.82 surf

surf [<name>] [<mask1>] [out <filename>] [solutemask <mask>]
[offset <offset>] [nbrcut <cut>]

<name> Output data set name.

<mask1> Atoms to calculate surface area for.

out <filename> File to write surface area to.

solutemask <mask> If specified, calculate the
contribution of <mask1> to <mask>.

offset <offset> Increment van der Waals radii by
<offset>; 1.4 Ang. is the default (as used by
Amber).

nbrcut <cut> Only atoms with van der Waals radii
greater than <cut> are considered to have neighbors
(2.5 Ang Amber default).

Calculate the surface area in Å2 of atoms in <mask> (if no mask specified, all
atoms not marked as ’solvent’ that are part of a molecule > 1 atom in size)
using the LCPO algorithm of Weiser et al.[29]. In order for this to work, the
topology needs to have bond information and atom type information.

Note that even if <mask> does not include all solute atoms, the neighbor
list is still calculated for all solute atoms so the surface area calculated reflects
the contribution of atoms in <mask> to the overall surface area, not the surface
area of <mask> as an isolated system. As a result, it may be possible to obtain
a negative surface area if only a small fraction of the solute is selected.

For example, to calculate the overall surface area of all solute atoms, as well
as the contribution of residue 1 to the overall surface area, writing both results
to “surf.dat”:

surf out surf.dat
surf :1 out surf.dat

11.83 symmrmsd

symmrmsd [<name>] [<mask>] [<refmask>] [out <filename>] [nofit] [mass] [remap]
[first | reference | ref <name> | refindex <#> | previous |

reftraj <name> [parm <parmname> | parmindex <#>]]

[<name>] Output data set name.

[<mask>] Mask of atoms to calculate RMSD for; if not
specified, calculate for all atoms.

[<refmask>] Reference mask; if not specified, use
<mask>.

205

[out <filename>] Output data file name.

[nofit] Do not perform best-fit RMSD (not recommended).

[mass] Mass-weight the RMSD calculation.

[remap] Re-arrange atoms according to symmetry. See
below for more details.

Reference keywords:

first Use the first trajectory frame processed as
reference.

reference Use the first previously read in reference
structure (refindex 0).

ref <name> Use previously read in reference structure
specified by filename/tag.

refindex <#> Use previously read in reference
structure specified by <#> (based on order read in).

previous Use frame prior to current frame as reference.

reftraj <name> Use frames from COORDS set <name> or
read in from trajectory file <name> as references.
Each frame from <name> is used in turn, so that
frame 1 is compared to frame 1 from <name>, frame 2
is compared to frame 2 from <name> and so on. If
<trajname> runs out of frames before processing is
complete, the last frame of <trajname> continues to
be used as the reference.

parm <parmname> | parmindex <#> If reftraj
specifies a file associate trajectory <name>
with specified topology; if not specified the
first topology is used.

Perform symmetry-corrected RMSD calculation. This is done by identifying
potential symmetric atoms in each residue, performing an initial best-fit, then
determining which configuration of symmetric atoms will give the lowest RMSD
using atomic distance to reference atoms.

Note that when re-mapping, all atoms in the residues of interest
should be selected to prevent cases where selected symmetric atoms
are swapped but the atoms they are bonded to are not. Also, occasion-
ally larger symmetric structures (e.g. 6 membered rings) may become distorted
due to only part of the residue being corrected for symmetry. This appears
to happen about 4% of the time but does not overly inflate the RMSD. The
’check’ command can be used after symmrmsd to look for such distortions.

Warning: the symmetry correction is generally robust enough to account for
symmetries in the standard amino and nucleic acid residues, but has not been
extensively tested on residues with more extended types of symmetry.

206

11.84 temperature
temperature [<name>] [out <filename>]

{ frame |
[<mask>] [ntc <#>] [update] [remove {trans|rot|both}]

}

[<name>] Data set name.

[out <filename>] File to write values to.

frame Do not calculate temperature; use existing frame
temperature.

[<mask>] Atoms to calculate temperature for.

[ntc <#>] Value of SHAKE bond constraint: 1 - none, 2
- bonds to H, 3- all bonds (equivalent to
SANDER/PMEMD).

[update] Update temperature in Frames with calculated
temperatures.

[remove {trans|rot|both}] Correct for removed
translational, rotational, or both kinds of degrees
of freedom.

Calculate temperature in frame based on velocity information. If ’update’ is
specified, update frame temperature too. If ’frame’ is specified just use frame
temperature (e.g. read in from a REMD trajectory).

The ’ntc’ keyword can be used to correct for lost degrees of freedom due
to SHAKE constraints (2 = bonds to hydrogen, 3 = all bonds). The ’remove’
keyword can be used to account for removed translational and/or rotational
degrees of freedom.

For example, if using a trajectory that has been generated with SHAKE
on hydrogens, no periodic boundary conditions (i.e. no box), and has had the
center of mass periodically removed:

temperature T1 ntc 2 remove both out T1.dat

If using a trajectory that has been generated with SHAKE on hydrogens, pe-
riodic boundary conditions (i.e. with a box), and has had the center of mass
periodically removed:

temperature T1 ntc 2 remove trans out T1.dat

If using a trajectory that has been generated with SHAKE on all bonds, periodic
boundary conditions, and no center of mass motion removal:

temperature T1 ntc 3 out T1.dat

207

11.85 time
time {time0 <initial time> dt <step> [update] | remove}

time0 <initial time> Time of the first frame (ps).

dt <step> Time step between frames (ps).

[update] If specified, modify any existing time info.

remove Remove any time info from frame.

Either add time information to frames, modify existing time information in
frames, or remove existing time information from frames. Note that currently
COORDS data sets do not store time information, so using this command with
the crdaction command will have no effect.

11.86 tordiff

tordiff [<set name>] [<mask>] [mass] [out <file>] [diffout <file>] [time <dt>]

[<set name>] Output mean-squared-displacement data sets
name.

[<mask>] Mask of molecules to calculate diffusion for.

[mass] Use center of mass of molecules instead of
geometric center.

[out <file>] File to write mean-squared-displacement
sets to.

[diffout <file>] Write diffusion contants calculated from
fits of mean-squared-displacent data sets to
<filename>.

[time <dt>] Time between frames in ps.

DataSet Aspects:

[X] MSD(s) in the X direction.

[Y] MSD(s) in the Y direction.

[Z] MSD(s) in the Z direction.

[R] Overall MSD(s).

[A] Overall displacement(s) in Å.

[D] Diffusion constants (1x10-5 cm2/s).

[Label] Diffusion constant lablels.

[Slope] Linear regression slopes.

[Intercept] Linear refression Y-intercepts.

[Corr] Linear regression correlation coefficients.

208

Calculate the diffusion via mean-squared displacement (in Å2/ps) of specified
molecules using the toroidal-view-preserving (TOR) scheme of Hummer et al.
Note that currently this only works for orthogonal boxes. (https:
//arxiv.org/abs/2303.09418). Unlike the diffusion (11.24 on page 119) and
unwrap (11.89 on the next page) commands which correct for box fluctuations
via fractional coordinates, the TOR scheme corrects for box fluctuations by
tracking the displacement of each molecule with respect to its position in the
previous frame in Cartesian space.

Diffusion constants are calculated in the same manner as the diffusion
command; for more details see 11.24 on page 119.

For example, to calculate the diffusion (with data set name TOR) of waters
(name WAT) in an orthogonal box using the toroidal scheme:

parm tz2.ortho.parm7
trajin tz2.ortho.nc
tordiff TOR :WAT@O out tor.msd.dat diffout tor.diff.dat

11.87 trans | translate

translate [<mask>] {[x <dx>] [y <dy>] [z <dz>] | topoint <x>,<y>,<z> [mass]}

<mask> Mask of atoms to translate (all atoms if not
specified).

x <dx> Translation (delta) in the X direction (Å).

y <dx> Translation (delta) in the Y direction (Å).

z <dx> Translation (delta) in the Z direction (Å).

topoint <x>,<y>,<z> If specified, translate center
of specified atoms to a specific point defined by
<x>, <y>, and <z> in the given comma-separated list
instead of by deltas.

mass If specified, translate center of mass of
specified atoms (topoint only).

Translate atoms in <mask> (all atoms if no mask specified) <dx> Å in the
X direction, <dy> Å in the Y direction, and <dz> Å in the Z direction. If
’topoint’ is specified, translate atoms in <mask> to the specified coordinates
(also in Å).

11.88 unstrip
unstrip

Requests that the original topology and frame be used for all following actions.
This has the effect of undoing any command that modifies the state (such as
strip). For example, the following code takes a solvated complex and uses a

209

https://arxiv.org/abs/2303.09418
https://arxiv.org/abs/2303.09418

combination of strip, unstrip, and outtraj commands to write out separate dry
complex, receptor, and ligand files:

parm Complex.WAT.pdb
trajin Complex.WAT.pdb
Remove water, write complex
strip :WAT
outtraj Complex.pdb pdb
Reset to solvated Complex
unstrip
Remove water and ligand, write receptor
strip :WAT,LIG
outtraj Receptor.pdb pdb
Reset to solvated Complex
unstrip
Remove water and receptor, write ligand
strip :WAT
strip !(:LIG)
outtraj Ligand.pdb pdb

11.89 unwrap

unwrap [center] [{byatom | byres | bymol}] [avgucell <avg ucell set>]
[reference | ref <name> | refindex <#>] [<mask>]
[scheme {frac|tor}]

[center] Unwrap by center of mass; otherwise unwrap by
first atom position (byres and bymol).

byatom Unwrap by atom (default).

byres Unwrap by residue.

bymol Unwrap by molecule.

[avgucell <avg ucell set>] Average unit cell data set;
useful when unwrapping NPT trajectories.

[reference | ref <name> | refindex <#>] Reference
structure to use in unwrapping.

[<mask>] Selection to unwrap.

[scheme frac|tor}] Unwrap using either fractional
coordinates (default) or toroidal-view-preserving
scheme (orthogonal boxes only).

Under periodic boundary conditions, MD trajectories are not continuous if
molecules are wrapped(imaged) into the central unit cell. Especially, in sander,
with iwrap=1, molecular trajectories become discontinuous when a molecule

210

crosses the boundary of the unit cell. This command, unwrap processes the tra-
jectories to force the masked molecules continuous by translating the molecules
into the neighboring unit cells. It is the opposite function of image, but this
command can also be used to place molecules side by side, for example, two
strands of a DNA duplex. However, this command may fail if the masked en-
tities travel more than half of the box size within a single frame. Note that
uwrapping by atom (the default behavior) is slower than unwrapping by residue
or molecule, but is usually the safer method, especially if it is unknown if the
original imaging was done by atom, by residue, or by molecule. If the optional
reference arguments are specified, then the first frame is unwrapped according
to the reference structure. Otherwise, the first frame is not modified.

To remove the “noise” caused by box fluctuations in NPT trajectories, the
average unit cell vectors describing the average box can be provided with the
avgucell keyword; see the avgbox command (11.10 on page 109).

By default coordinates are unwrapped using fractional coordinates. To un-
wrap via the toroidal-view-preserving scheme (https://arxiv.org/abs/2303.
09418) specify scheme tor. However, note that this currently only works for
orthogonal boxes and may result in unrealistic trajectories (particularly at
long times when molecules have had the chance to traverse multiple box lengths)
and is only currently recommended for calculating diffusion.

As an example, assume that :1-10 is the first strand of a DNA duplex and
:11-20 is the other strand of the duplex. Then the following commands could
be used to create system where the two strands are not separated artificially:

unwrap :1-20
center :1-20 mass origin
image origin center familiar

To unwrap an NPT trajectory by using the average unit cell (box), the calculate
diffusion from the unwrapped trajectory:

parm tz2.ortho.parm7
trajin tz2.ortho.nc
Create average box data
avgbox MyBox
run
Unwrap using average box data
unwrap bymol avgucell MyBox[avg]
Calculate diffusion
diffusion Water :WAT@O out tz2.ortho.wato.dat
run

11.90 vector

vector [<name>] <Type> [out <filename> [ptrajoutput]] [<mask1>] [<mask2>]
[magnitude] [geom] [ired] [gridset <grid>] [debye]

211

https://arxiv.org/abs/2303.09418
https://arxiv.org/abs/2303.09418

<Type> = { mask | minimage | dipole | center | corrplane |
box | boxcenter | ucellx | ucelly | ucellz

momentum | principal [x|y|z] | velocity | force }

[<name>] Vector data set name.

<Type> Vector type; see below.

[out <filename>] Write vector data to <filename> with
format ’Vx Vy Vz Ox Oy Oz’ where V denotes vector
coordinates and ’O’ denotes origin coordinates.

[ptrajoutput] Write vector data in ptraj style (Vx Vy Vz
Ox Oy Oz Vx+Ox Vy+Oy Vz+Oz). This prevents
additional formatting of <filename> and is not
compatible with ’magnitude’.

[<mask1>] Atom mask, required for all types except
’box’.

[<mask2>] Second atom mask, only required for type
’mask’.

[magnitude] Store the magnitude of the vector with
aspect [Mag].

[geom] If specified, use geometric centers instead of
centers of mass.

[ired] Mark this vector for subsequent IRED analysis with
commands ’matrix ired’ and ’ired’.

[gridset <grid>] Name of grid data set to get box info
from instead of frame for box, boxcenter, and
ucell[x|y|z].

[debye] (’dipole’ vector only) Report dipole vector in
units of Debye instead of e-*Ang.

Data Sets Created:

<name> Vector data set.

<name>[Mag] (magnitude only) Vector magnitude.

This command will keep track of a vector value (and its origin) over the trajec-
tory; the data can be referenced for later use based on the name (which must
be unique). The types of vectors that can be calculated are:

mask (Default) Store vector from center of mass of atoms in <mask1> to
atoms in <mask2>.

minimage Store minimum-imaged vector from center of mass of atoms in
<mask1> to atoms in <mask2>.

212

dipole Store the dipole and center of mass of the atoms specified in <mask1>.
The dipole vector has units of e-*Ang unless ’debye’ is specified for units
of Debye. The center is always stored as simply Ang (since it is just
coordinates). Note that the value may not be well-defined if the atoms in
the mask are not overall charge neutral.

center Store the center of mass of atoms in <mask1>. The reference point
is the origin (0.0, 0.0, 0.0).

corrplane This defines a vector perpendicular to the (least-squares best) plane
through the atoms in <mask1>. The reference point is the center of mass
of atoms in <mask1>.

box (No mask needed) Store the box lengths of the trajectory. The reference
point is the origin (0.0, 0.0, 0.0).

boxcenter (No mask needed) Store the center of the box as a vector.

ucell{x|y|z}: (No mask needed) Store specified unit cell (i.e. box) vector.

momentum Store momentum of atoms selected by <mask1> (requires veloc-
ities).

principal [x|y|z] Store one of the principal axis vectors determined by diago-
nalization of the inertial matrix from the coordinates of the atoms specified
by <mask1>. The eigenvector with the largest eigenvalue is considered
“x” (i.e., the hardest axis to rotate around) and the eigenvector with the
smallest eigenvalue is considered “z”. If none of x or y or z are specified,
then the “x” principal axis is stored. The reference point is the center of
mass of atoms in <mask1>.

velocity Store velocity of atoms in <mask1> (requires velocities).

force Store force of atoms in <mask1> (requires forces).

Cpptraj supports writing out vector data in a pseudo-trajectory format for easy
visualization. Once a vector data set has been generated the writedata command
can be used with the vectraj keyword (see 6 on page 27 for more details) to write
a pseudo trajectory consisting of two atoms, one for the vector origin and one
for the vector from the origin (i.e. V+O). For example, to create a MOL2
containing a pseudo-trajectory of the minimum-imaged vector from residue 4 to
residue 11:

trajin tz2.nc
vector v8 minimage out v8.dat :4 :11
run
writedata v8.mol2 vectraj v8 trajfmt mol2

Auto-correlation or cross-correlation functions can be calculated subsequently
for vectors using either the corr analysis command or the timecorr analysis
command (to calculate via spherical harmonic theory).

213

11.91 velocityautocorr

velocityautocorr [<set name>] [<mask>] [usevelocity] [out <filename>] [diffout <file>]
[maxlag <frames>] [tstep <timestep>] [direct] [norm]

[<set name>] Data set name.

[<mask>] Atoms(s) to calculate velocity
autocorrelation (VAC) function for.

[usevelocity] Use velocity information in frame if
present. This will only give sensible results if
the velocities are recorded close to the order of
the simulation time step.

[out <filename>] Write VAC function to <filename>.

[diffout <file>] File to write diffusion constants to.

[maxlag <frames>] Maximum lag in frames to calculate
VAC function for. Default is half the total number
of frames.

[tstep <timestep>] Time between frames in ps (default
1.0).

[direct] Calculate VAC function directly instead of via
FFT (will be much slower).

[norm] Normalize resulting VAC function to 1.0.

DataSet Aspects:

[D] Diffusion constant calculated from integral over VAC
function in 1x10-5 cm2/s.

Calculate the velocity autocorrelation (VAC) function averaged over the atoms
in <mask>. Pseudo-velocities are calculated using coordinates and the speci-
fied time step. As with all time correlation functions the statistical noise will
increase if the maximum lag is greater than half the total number of frames. In
addition to calculating the velocity autocorrelation function, the self-diffusion
coefficient will be reported in the output, calculated from the integral over the
VAC function.

11.92 volmap

volmap [out <filename>] <mask> [radscale <factor>] [stepfac <fac>]
[sphere] [radii {vdw | element}] [splinedx <spacing>]
[calcpeaks] [peakcut <cutoff>] [peakfile <xyzfile>]
{ data <existing set> |

name <setname> <dx> [<dy> <dz>]
{ size <x,y,z> [center <x,y,z>] |

214

centermask <mask> [buffer <buffer>] |
boxref <reference> } }

out <filename> The name of the output file with the
grid density.

<mask> The atom selection from which to calculate the
number density.

radscale <factor> Factor by which to scale radii (by
division). To match the atomic radius of Oxygen
used by the VMD volmap tool, a scaling factor of
1.36 should be used. Default 1.0.

stepfac <factor> Factor for determining how many voxels
to smear Gaussian (default 4.1, 1.0 for sphere).

sphere When smearing Gaussian, skip voxels farther than
radii/2.

radii {vdw|element} Specify either van der Waals radii
(default) or elemental radii.

splinedx <spacing> Spacing to use for cubic spline
interpolation (default 0.01 Ang.).

calcpeaks If specified, peaks in the grid density will
be calculated and saved to set <setname> with aspect
“peaks”.

peakcut <cutoff> The minimum density required to
consider a local maximum a ’density peak’ in the
outputted peak file (default 0.05).

peakfile <xyzfile> A file in XYZ-format that contains a
carbon atom centered at the grid point of every
local density maximum. This file is necessary input
to the spam action command.

data <setname> Name of existing grid data set to use.

name <setname> Name of grid set that will be created
(size/center or centermask/buffer keywords).

dx, dy, dz The grid spacing (Angstroms) in the X-, Y-,
and Z-dimensions, respectively.

size <x,y,z> Specify the size of the grid in the X-, Y-,
and Z-dimensions. Must be used alongside the center
argument.

center <x,y,z> Specify the grid center explicitly.
Note, the size argument must be present in this
case. Default is the origin.

215

centermask <mask> The mask around which the grid
should be centered (via geometric center). If this
is omitted and the center and size are not
specified, the default <mask> entered (see above) is
used in its place.

buffer <buffer> A buffer distance, in Angstroms, by
which the edges of the grid should clear every
atom of the centermask (or default mask if
centermask is omitted) in every direction. The
default value is 3. The buffer is ignored if
the center and size are specified (see below).

boxref <reference> Set up the grid using the unit cell
info in the specified reference.

Data Sets Created:

<setname> The 3D grid.

<setname>[peaks] The density peaks if calcpeaks
specified.

Grid data as a volumetric map, similar to the ’volmap’ command in VMD.
The density is calculated by treating each atom as a 3-dimensional Gaussian
function whose standard deviation is equal to the van der Waals radius. The
density calculated is the number density averaged over the entire simulation.
The grid can be specified in one of three ways:

1. An existing grid data set (from e.g. bounds), specified with the data
keyword.

2. Via the sizes and center specified by the size and center keywords (comma-
separated strings, e.g. ’20,20,20’).

3. Centered on the atoms in the mask given by centermask with an addi-
tional buffer in each direction specified by buffer.

The calculation is sped up by using cubic splines to interpolate the exponential
function when calculating the Gaussians.[30]

11.93 volume
volume [<name>] [out <filename>]

<name> Data set name.

out <filename> Output file name.

Calculate unit cell volume.

216

11.94 watershell

watershell <solutemask> [out <filename>] [lower <lower cut>] [upper <upper cut>]
[noimage] [<solventmask>]

<solutemask> Atom mask corresponding to solute of
interest (required).

[out <filename>] Output file name.

[lower <lower cut>] Cutoff for the first water shell
(default 3.4 Angstroms).

[upper <upper cut>] Cutoff for the second water shell
(default 5.0 Angstroms).

[noimage] Do not image distances.

[<solventmask>] Optional atom mask corresponding to
solvent.

DataSet Aspects:

[lower] Number of solvent molecules in first solvent
shell.

[upper] Number of solvent molecules in second solvent
shell.

This option will count the number of waters within a certain distance of the
atoms in the <solutemask> in order to represent the first and second solvation
shells. The optional <solventmask> can be used to consider other atoms as the
solvent; the default is “:WAT”.

This action is often used prior to the closest command in order to determine
how many waters around a solute should be retained to maintain the first and/or
second water shells.

As of version 17 this command is CUDA-enabled in CUDA versions of CPP-
TRAJ.

11.95 xtalsymm
xtalsymm <mask> group <space group> [collect [centroid]]

[first | reference | ref <name> | refindex <#>]
[na <na>] [nb <nb>] [nc <nc>]

<mask> Atom mask defining the asymmetric unit within
the larger system (required).

group <space group> The space group to which the
system belongs. Omit spaces in the name. Example:
“P22(1)2(1)”.

217

[collect] Optional flag to have all solvent particles,
not just the asymmetric units, re-imaged. This will
trigger cpptraj to compute the unit cell volume that
constitutes the aymmetric unit and thereby classify
all particles for re-imaging.

[centroid] If specified along with collect, re-image
solvent molecules by centroids, not individual
atom coordinates. This is useful for keeping
water molecules intact.

[first | reference | ref <name> | refindex <#>] Reference
structure to use for determining crystal symmetry.

[na <na>] [nb <nb>] [nc <nc>] The number of times the
crystal unit cell is replicated along the “a,” “b,”
or “c” axes (for orthorhombic unti cells, these are
the x, y, and z axes) of the simulation; default is
1. Many crystal unit cells are too small in one or
more dimensions for our simulation cutoffs, and
replicating the unit cell is an effective way to
counter imaging artifacts even for larger unit
cells.

Calculate the optimal approach for superimposing symmetry-related subunits
of the simulation back onto one another. The calculation assumes that the
system is a simulation of an X-ray structure in its native crystal lattice, finds
all copies of the asymmetric unit among the entire system, and devises plans
for re-imagining their coordinates to superimpose them back on the original
asymmetric unit. The space group information can be found in a PDB X-
ray structure used as the initial coordinates for a simulation. All 230 space
groups are supported, and a scan of the PDB was made to ensure that common
variants of the names are included (P2(1)22(1) is the same as P22(1)2(1), but
with different axis conventions). If your space group is not understood, contact
the Amber mailing list. This command is compute intensive, especially for
simulations that are “supercells” containing many crystallographic unit cells.

This command will cause cpptraj to locate all asymmetric units from within
the topology, then determine what wrapping, if any, has occurred in order to
bring about an optimal re-alignment based on the space group symmetry op-
erations. The user need not worry about wrapping or drift of the simulation
over time–the asymmetric units will be re-imaged frame by frame. Coordinate
modifications due to this action are permanent and will affect the results of
subsequent actions and analyses.

12 Analysis Commands
Analyses in cpptraj operate on data sets which have been generated by Ac-
tions in a prior Run or read in with a readdata command (8.22 on page 64).

218

Unlike ptraj, Analysis commands in cpptraj do not need to be prefaced with
’analysis’. The exception to this is ’analyze matrix ’ in order to differenti-
ate it from the matrix Action command; users are encouraged to use the new
command diagmatrix instead.

Like Actions, when an Analysis command is issued it is by default added
to the Analysis queue and is not executed until after trajectory processing is
completed; a complete list of data sets available for analysis is shown after
trajectory processing (prefaced by ’DATASETS’) or can be shown with the
’list dataset ’ command. Analyses can also be executed immediately via the
runanalysis command (8.27 on page 66).

Note that for Analysis commands that use COORDS data sets, if no CO-
ORDS data set is specified then a default one will be automatically created from
frames read in by trajin commands.

Command Description Set Type(s)
autocorr Calculate autocorrelation function for

multiple data sets.
N 1D sclar

avg Calculate average, standard deviation,
min, and max for (or over) data sets.

N 1D scalar

calcdiffusion Calculate diffusion using multiple time
origins.

COORDS

calcstate Calculate states based on given data
sets and criteria.

N 1D scalar

cluster Perform cluster analysis. COORDS, N 1D
scalar

corr, Calculate auto or cross correlation for
1 or 2 data sets.

1D scalar, vector

correlationcoe
cphstats Calculate statistics for constant pH

data sets.
pH data sets

crank, Calculate crankshaft motion between
two data sets.

2 1D scalar

crankshaft
crdfluct Calculate atomic fluctuations (RMSF)

for atoms over time blocks.
COORDS

crosscorr Calculate a matrix of Pearson
product-moment

N 1D scalar

coefficients between given data sets.
curvefit Perform non-linear curve fitting on

given data set.
1D scalar

diagmatrix Calculate eigenvectors and eigenvalues
from given symmetric matrix.

symmetric matrix

divergence Calculate Kullback-Leibler divergence
between two data sets.

2 1D scalar

219

evalplateau Evaluate whether the data in a 1D set
has reached a single exponential

plateau.
FFT Perform a fast Fourier transform on

data sets.
N 1D scalar

hausdorff Calculate the Hausdorff distance for
given matrix data set(s).

N 2D matrices

hist, histogram Calculate N-dimensional histogram for
N given data sets.

N 1D scalar

integrate Perform integration on each of the
given data sets.

N 1D scalar

ired Perform isotropic reorientational
eigenmode dynamics

N IRED vectors

analysis using given IRED vectors.
kde Calculate 1D histogram from given

data set using a kernel density
estimator.

1 or 2 1D scalar

Also time-dependent Kullback-Leibler
divergence analysis with another set.

lifetime Perform lifetime analysis on given data
sets.

N 1D scalar

lowestcurve For each given data set, calculate a
curve that traces

N 1D scalar

the lowest N points over specified bins.
meltcurve Calculate a melting curve from given

data sets assuming simple 2 state
kinetics.

N 1D scalar

modes Perform various analyses on
eigenmodes (from e.g. diagmatrix).

eigenmodes

multicurve Perform non-linear curve fitting for
multiple input data sets.

N 1D scalar

multihist Calculate 1D histograms (optionally
with a kernel

N 1D scalar

density estimator) from multiple input
data sets.

phipsi Calculate and plot the average phi and
psi values from input dihedral data

sets.

N phi/psi dihedrals

projectdata Project data along eigenmodes. eigenmodes, N 1D
scalar

regress Perform linear regression on multiple
input data sets.

N 1D scalar

remlog Calculate various statistics from a
replica log data set.

replica log

220

rms2d, 2drms Calculate 2D RMSD between frames in
1 or 2 COORDS data sets.

1 or 2 COORDS

rmsavgcorr Calculate RMS average correlation
curve for a COORDS data set.

COORDS

rotdif Calculate rotational diffusion using
given rotation matrices (from e.g.

rms).

rotation matrices

runningavg Calculate running average for given
data sets using given window size.

N 1D scalar

spline Calculate cubic splines for given data
sets.

N 1D scalar

stat, statistics Calculate various statistics for given
data sets.

N 1D scalar

ti Peform Gaussian quadrature
integration for given DV/DL data sets.

N 1D scalar

tica Perform time-independent correlation
analysis.

COORDS, N 1D
scalar

timecorr Calculate auto/cross-correlation
functions for given

1 or 2 vector

vector(s) using spherical harmonics.
vectormath Perform math on given vector data

sets.
2 vector

wavelet Perform wavelet analysis on
coordinates from given COORDS set.

COORDS

12.1 autocorr

autocorr [name <dsetname>] <dsetarg0> [<dsetarg1> ...] [out <filename>]
[lagmax <lag>] [nocovar] [direct]

<dsetarg0> [dsetarg1> ...] Argument(s) specifying
datasets to be used.

[name <dsetname>] Store results in dataset(s) named
<dsetname>:X.

[out <filename>] Write results to file named
<filename>.

[lagmax] Maximum lag to calculate for. If not specified
all frames are used.

[nocovar] Do not calculate covariance.

[direct] Do not use FFTs to calculate correlation; this
will be much slower.

221

This is for integer/double/float datasets only; for vectors see the ’timecorr’
command.

Calculate auto-correlation (actually auto-covariance by default) function for
datasets specified by one or more dataset arguments. The datasets must have
the same # of data points.

12.2 avg

avg <dset0> [<dset1> ...] [torsion] [out <file>] [oversets]
[name <name>] [nostdout]

<dsetX> Data set(s) to calculate the average for.

[torsion] If the data sets are not already marked
periodic (e.g. if read in via ’readdata’), treat
them as periodic torsion.

[out <file>] File to write results to.

[oversets] If specified, calculate the average over all
inpout sets instead of each input set.

[name <name>] Output data set name.

[nostdout] If ’nostdout’ specified do not write averages
to STDOUT when ’out’ not specified.

DataSets Created (not oversets):

<name>[avg] Average of each set.

<name>[sd] Standard deviation of each set.

<name>[ymin] Y minimum of each set.

<name>[ymax] Y maximum of each set.

<name>[yminidx] Index of minimum Y value.

<name>[ymaxidx] Index of maximum Y value.

<name>[names] Name of each set.

DataSets Created (oversets)

<name> Average over all input sets for each frame.

<name>[SD] Standard deviation over all input sets for
each frame.

Calculate the average, standard deviation, min, and max of given 1D data sets.
Alternatively, if oversets is specified the average over each set for each point
is calculated; this requires all input sets be the same size.

For example, to read in data from a file named perres.peptide.dat and cal-
culate the averages etc for all the input sets:

readdata perres.peptide.dat
avg perres.peptide.dat out output.dat name V

222

12.3 calcdiffusion

calcdiffusion [crdset <coords set>] [maxlag <maxlag>] [<mask>] [time <dt>]
[<name>] [out <file>] [diffout <file>]

[crdset <coords set>] Input COORDS set to calculate
diffusion for.

[maxlag <maxlag>] Maximum lag to calculate diffusion
for in frames. Defaults to half the number of input
frames if not specified.

[<mask>] Mask of atoms to calculate diffusion for.
[time <dt>] Time between frames in ps.
[<name>] Output MSD data sets name.
[out <file>] File to write MSD data sets to.
[diffout <file>] Write diffusion contants calculated from

fits of MSD data sets to <filename>.

DataSet Aspects:

[X] MSD(s) in the X direction.
[Y] MSD(s) in the Y direction.
[Z] MSD(s) in the Z direction.
[R] Overall MSD(s).
[A] Overall displacement(s) in Å.
[D] Diffusion constants (1x10-5 cm2/s).
[Label] Diffusion constant lablels.
[Slope] Linear regression slopes.
[Intercept] Linear refression Y-intercepts.
[Corr] Linear regression correlation coefficients.

Calculate diffusion via mean-squared-displacements (MSD) of specified atoms.
Unlike the diffusion Action (11.24 on page 119), which calculates MSD from
a single time origin, the calcdiffusion command calculates diffusion from mul-
tiple time origins up to a user-specified lag (in frames). Note that no imaging
is performed for this command, so any unwrapping should be performed prior
to this command (see 11.89 on page 210). Diffusion constants are calculated
in the same manner as the diffusion command; for more details see 11.24 on
page 119.

This command is both OpenMP- and MPI-parallelized; either or both can
be active. In order to keep per-process memory requirements low, it is recom-
mended that TRAJ (i.e. on-disk) data sets be used with MPI instead of CRD
(in-memory) sets (see 7.11 on page 42).

For example, to calculate diffusion from multiple time origins (with a maxi-
mum lag of half the number of trajectrory frames) from an input trajectory in
memory (unwrapping first):

223

parm tz2.ortho.parm7
loadcrd tz2.ortho.nc name TZ2
crdaction TZ2 unwrap bymol
runanalysis calcdiffusion crdset TZ2 out tz2.diff.dat :WAT@O

To do the same calculation using MPI parallelism, it will first be necessary
to unwrap the trajectory (non-MPI parallel, but OpenMP parallelism can be
used):

parm tz2.ortho.parm7
trajin tz2.ortho.nc
unwrap bymol
trajout unwrap.dcd

Then diffusion can be calculated using MPI (and/or OpenMP):

parm tz2.ortho.parm7
loadtraj unwrap.dcd name TZ2
runanalysis calcdiffusion crdset TZ2 out tz2.traj.diff.dat :WAT@O

12.4 calcstate

calcstate {state <ID>,<dataset>,<min>,<max>[,<dataset1>,<min1>,<max1>]} ...
[out <state v time file>] [name <setname>]
[curveout <curve file>] [stateout <states file>]
[transout <transitions file>] [countout <count file>]

state <ID>,<dataset>,<min>,<max> Define a state
according to given data set and criteria. Multiple
states can be given, and each state can have
multiple criteria. If multiple criteria are
specified, each one must be satisfied in order to
assign the state. If the same state is defined
multiple times, the state will be assigned if either
criteria match.

<ID> Name to give each state index. State indices
start at 0. -1 means “undefined state”.

<dataset> Data set to use.
<min>,<max> Frames with data set value above

<min> and below <max> will be assigned <ID>.

[out <state v time file>] File to write state index vs
frame to.

[name <setname>] Data set name.

[curveout <curve file>] File to write state lifetime and
transition curves to.

224

[stateout <states file>] File to write state lifetime data
to.

[transout <transitions file>] File to write state
transition data to.

[countout <state count file>] File to write state counts
(i.e. how many frames each state was observed) to.

DataSets Created:

<setname> State index vs frame.

<setname>[Count] Number of frames each state was
observed.

<setname>[Frac] Fraction of time each state was
observed

<setname>[Nlifetimes] Number of times each state was
reached.

<setname>[Avglife] Average lifetime length for each
state.

<setname>[Maxlife] Maximum lifetime of each state.

<setname>[Name] Name (<ID>) of each state.

<setname>[Xlifetimes] Number of times each state
transitioned to each other state.

<setname>[Xavglife] Average lifetime of each state
before transitioning to each other state.

<setname>[Xmaxlife] Maximum lifetime of each state
before transitioning to each other state.

<setname>[Xname] Name of each transition, format
“StateA->StateB”.

<setname>[sCurve]:X State curves; lifetime curve for
transitions from given state to any other state.

<setname>[tCurve]:X Transition curves; lifetime curve
for transitions from given state to other specific
state.

Data for the specified data set(s) that matches the given criteria will be assigned
a state index. State indices start from 0 and match the order in which state
keywords were given. The -1 state index is reserved for “undefined state”. For
example, the following input:

parm DPDP.parm7
trajin DPDP.nc
distance d1 :19@O :12@N
angle a1 :19@O :12@H :12@N

225

calcstate state D,d1,3.0,4.0 state A,a1,100,120 out state.dat curveout curve.agr \
stateout States.dat transout States.dat name d1_a1

run

Defines two states. State index 0 is defined as a state named “D” based on
the distance from ’:19@O’ to ’:12@N’ (data set d1) being between 3 and 4
Angstroms. State index 1 is defined as a state named “A” based on the angle
between ’:19@O’, ’:12@H’, and ’:12@N’ (data set a1) being between 100 and 120
degrees. The output in state.dat might look like:

#Frame d1_a1
1 -1
2 0
3 0
4 0
5 -1
6 1
7 -1
8 -1
9 0

10 -1

where the values in column d1_a1 refer to state index: -1 is undefined, 0 is
state “D”, and 1 is state “A”.

To define a state State1 as having a distance named “dist” between 2.5 and
5.0 Ang. and an angle named “ang” between 30 and 60 degrees OR having a
distance named “distA” between 0.0 and 3.0 Ang.:

calcstate state State1,dist,2.5,5.0,ang,30,60 \
state State1,distA,0.0,3.0

Lifetime curves (see 12.21 on page 255 for further explanation) are calculated
for transitions from each state to any other state (aspect [sCurve]) and each
state to each other state (aspect [tCurve]). In this case there will be 3 sCurves
and 4 tCurves:

d1_a1[sCurve]:0 "Undefined" (double), size is 10
d1_a1[sCurve]:1 "D" (double), size is 3
d1_a1[sCurve]:2 "A" (double), size is 1
d1_a1[tCurve]:0 "Undefined->D" (double), size is 10
d1_a1[tCurve]:1 "D->Undefined" (double), size is 3
d1_a1[tCurve]:2 "Undefined->A" (double), size is 1
d1_a1[tCurve]:3 "A->Undefined" (double), size is 1

Lifetime analysis from each state to any other state is directed to the file specified
by stateout and has format:

#Index N Average Max State

226

Where #Index is the state index, N is the number of lifetimes in that state,
Average is the average lifetime while in that state (in frames), Max is the max-
imum lifetime while in that state (in frames) and State is the name of the
state.

Finally, lifetime analysis of transitions from each state to each other state is
directory to the file specified by transout and has format:

#N Average Max Transition

Where #N is the number of transitions, Average is the average lifetime (in
frames) in the first state before transitioning to the second state, Max is the max
lifetime (in frames) before transitioning to the second state, and Transition is
the name of the transition.

12.5 cluster

cluster [crdset <crd set>] [data <dset0>[,<dset1>...]] [nocoords]
[<name>] [<Algorithm>] [<Metric>] [<Pairwise>] [<Sieve>] [<BestRep>]
[<Output>] [<Coord. Output>] [<Graph>]

[readinfo {infofile <info file> | cnvtset <dataset>}]
[useframesincache]

Algorithm Args: [{hieragglo|dbscan|kmeans|dpeaks}]
[hieragglo [epsilon <e>] [clusters <n>] [linkage|averagelinkage|complete]

[epsilonplot <file>]]
[dbscan minpoints <n> epsilon <e> [kdist <k> [kfile <prefix>]]]
[kmeans clusters <n> [randompoint [kseed <seed>]] [maxit <iterations>]]
[dpeaks epsilon <e> [noise] [dvdfile <density_vs_dist_file>]

[choosepoints {manual | auto}]
[distancecut <distcut>] [densitycut <densitycut>]
[runavg <runavg_file>] [deltafile <file>] [gauss]]

Metric Args:
[{dme|rms|srmsd|qrmsd} [mass] [nofit] [<mask>]] [{euclid|manhattan}] [wgt <list>]

Pairwise Args:
[pairdist <name> [pairdistfile <file>]] [pwrecalc]
[loadpairdist] [savepairdist] [pairwisecache {mem|disk|none}]

Sieve Args:
[sieve <#> [sieveseed <#>] [random] [includesieveincalc] [includesieved_cdist]
[{sievetoframe|sievetocentroid|closestcentroid}] [repsilon <restore epsilon>]]
BestRep Args:

[bestrep {cumulative|centroid|cumulative_nosieve}] [savenreps <#>]
Output Args:

[out <cnumvtime> [gracecolor]] [noinfo|info <file>] [summary <file>]
[summarysplit <splitfile>] [splitframe <comma-separated frame list>]
[clustersvtime <file> [cvtwindow <#>]] [sil <prefix> [silidx {idx|frm}]]
[metricstats <file>] [cpopvtime <file> [{normpop|normframe}]] [lifetime]

227

Coordinate Output Args:
[clusterout <trajfileprefix> [clusterfmt <trajformat>]]
[singlerepout <trajfilename> [singlerepfmt <trajformat>]]
[repout <repprefix> [repfmt <trajformat>] [repframe]]
[avgout <avgprefix> [avgfmt <trajformat>]]
[assignrefs [refcut <rms>] [refmask <mask>]]

Graph Args:
[{drawgraph|drawgraph3d} [draw_tol <tolerance>] [draw_maxit <iterations]]

[crdset <crd set>] Name of COORDS data set to cluster on
and/or use for coordinate output. If not specified
the default COORDS set will be generated and used
unless nocoords has been specified.

[data <dset0>[,<dset1>,...] Distance between frames
calculated using specified data set(s). Currently
1D scalar sets and COORDS sets are supported.

[nocoords] Do not use a COORDS data set; distance
metrics that require coordinates and coordinate
output will be disabled.

[<name>] Data set Name for generated cluster data
sets.

[readinfo] Use previous cluster results to set up initial
clusters. Clustering will continue if possible
(i.e. this can be used to restart clustering).

infofile <file> Cluster info file to read clusters
from.

cnvtset <dataset> Cluster number vs time data set
to use to generate initial clusters.

[useframesincache] If a pairwise cache is specified,
cluster on the frames stored in the cache.

Algorithms:

hieragglo (Default) Use hierarchical agglomerative
(bottom-up) approach.

[epsilon <e>] Finish clustering when minimum
distance between clusters is greater than <e>.

[clusters <n>] Finish clustering when <n> clusters
remain.

[linkage] Single-linkage; use the shortest distance
between members of two clusters.

[averagelinkage] Average-linkage (default); use the
average distance between members of two
clusters.

228

[complete] Complete-linkage; use the maximum
distance between members of two clusters.

[epsilonplot <file>] Write number of clusters vs
epsilon to <file>.

dbscan Use DBSCAN clustering algorithm of Ester et
al.[31]

minpoints <n> Minimum number of points required to
form a cluster.

epsilon <e> Distance cutoff between points for
forming a cluster.

[kdist <k>] Generate K-dist plot for help in
determining DBSCAN parameters (see below).

[kfile <prefix>] Prefix for K-dist plot file.

dpeaks Use the density peaks algorithm of Rodriguez and
Laio[32]

epsilon <e> Cutoff for determining local density in
Angstroms.

[noise] If specified, treat all points within epsilon
of another cluster as noise.

[dvdfile <density_vs_dist_file>] File to write
density versus minimum distance to point with
next highest density. This can be used to
determine appropriate cutoffs for distance and
density in a subsequent step with choosepoints
manual.

[choosepoints {manual | auto}] Specify whether
clusters will be chosen based on specified
distance/density cutoffs, or automatically. If
not specified only the density vs distance file
will be written and no clustering will be
performed. Currently manual is recommended.

[distancecut <distcut>] [densitycut <densitycut>] If
choosepoints manual, points with minimum
distance greather than or equal to <distcut> and
density greater than or equal to <densitycut>
will be chosen.

[runavg <runavg file>] If choosepoints automatic,
the calculated running average of density versus
distance will be written to <runavg file>.

[deltafile <file>] If choosepoints automatic, distance
minus the running average for each point will be
written to this file.

229

[gauss] Calculate density with Gaussian kernels
instead of using discrete density.

kmeans Use K-means clustering algorithm.

clusters <n> Finish clustering when number of
clusters is <n>.

[randompoint] Randomize initial set of points used
(recommended).

[kseed <seed>] Random number generator seed for
randompoint.

[maxit <iteration>] Algorithm will run until frames
no longer change clusters of <iteration>
iterations are reached (default 100).

Distance Metric Options:

[{rms | srmsd} [<mask>]] (Default rms) For COORDS data,
distance between coordinate frames calculated via
best-fit coordinate RMSD using atoms in <mask>. If
srmsd specified use symmetry-corrected RMSD (see
11.83 on page 205).

[mass] Mass-weight the RMSD.
[nofit] Do not fit structures onto each other prior

to calculating RMSD.

qrmsd [<mask>] For COORDS data, distance between
coordinate frames calculated using best-fit
quaternion RMSD (can be 15-20% faster than regular
RMSD) using atoms in <mask>.

[mass] Mass-weight the RMSD.

dme [<mask>] For COORDS data, distance between
coordinate frames calculated using distance-RMSD
(aka DME, distrmsd) using atoms in <mask>.

euclid Use Euclidean distance (sqrt(SUM(distance^2)))
when more than one data set has been specified
(default).

manhatttan Use Manhattan distance (SUM(distance)) when
more than one data set has been specified.

wgt <list> Factor to multiply distances from each
metric by in a comma-separated list. Can be used to
adjust the contribution from each metric. Default
is 1 for each metric. Output from the metricstats
keyword can be used to determine the relative
contribution of each metric to the distance.

Pairwise Distance Matrix Options:

230

[pairdist <name>] Pairwise cache DataSet/File name to
use for loading/saving pairwise distances.
[pairdistfile <file>] File name to use for pairwise

cache; if not specified and ’pairdist’
specified, uses ’pairdist’.

[pwrecalc] If the loaded pairwise distance matrix does
not match the current setup, force recalculation.

[loadpairdist] Load pairwise distances from file
specified by pairdist (CpptrajPairDist if pairdist
not specified).

[savepairdist] Save pairwise distances to file specified
by pairdist (CpptrajPairDist if pairdist not
specified). NOTE: If sieving was performed only the
calculated distances are saved.

[pairwisecache {mem | disk | none}] Cache pairwise
distance data in memory (default), to disk, or
disable pairwise caching. No caching will save
memory but be extremely slow. Caching to disk will
likely be slow unless writing to a fast storage
device (e.g. SSD) - data is saved to a file named
’CpptrajPairwiseCache’.

Sieving Options:

[sieve <#>] Perform clustering only for every <#>
frame. After clustering, all other frames will be
added to clusters.

[random] When sieve is specified, select initial frames
to cluster randomly.

[sieveseed <#>] Seed for random sieving; if not set the
wallclock time will be used.

[includesieved_cdist] Include sieved frames in final
cluster distance calculation (may be very slow).

[includesieveincalc] Include sieved frames when
calculating within-cluster average (may be very
slow).

[sievetoframe] When restoring sieved frames, compare
frame to every frame in a cluster using a cutoff of
<restore epsilon> (default is algorithm epsilon when
using DPeaks/DBscan) instead of the centroid; slower
but more accurate.

[sievetocentroid] When restoring sieved frames, compare
frame to cluster centroid using a cutoff of <restore
epsilon> (default is algorithm epsilon when using
DPeaks/DBscan). Default method for DPeaks/DBSCAN.

231

[closestcentroid] When restoring sieved frames, add each
frame to its closest centroid. Default method for
hieragglo/kmeans.

[repsilon <restore epsilon>] Epsilon to use for
sievetoframe/sievetocentroid (default is algorithm
epsilon when using DPeaks/DBscan).

Best Representative Options:

[bestrep {cumulative|centroid|cumulative_nosieve}]
Method for choosing cluster representative frames.

cumulative Choose by lowest cumulative distance to
all other frames in cluster. Default when not
sieving.

centroid Choose by lowest distance to cluster
centroid. Default when sieving.

cumulative_nosieve Choose by lowest cumulative
distance to all other frames, ignoring sieved
frames.

[savenreps <#>] Number of best representative frames
to choose (default 1).

Output Options:

[out <cnumvtime>] Write cluster # vs frame to
<cnumvtime>. Algorithms that calculate noise (e.g.
DBSCAN) will assign noise points a value of -1.

[gracecolor] Instead of cluster # vs frame, write
cluster# + 1 (corresponding to colors used by
XMGRACE) vs frame. Cluster #s larger than 15
are given the same color. Algorithms that
calculate noise (e.g. DBSCAN) will assign noise
points a color of 0 (blank).

[summary <summaryfile>] Summarize each cluster with
format ’#Cluster Frames Frac AvgDist Stdev Centroid
AvgCDist’:

#Cluster Cluster number starting from 0 (0 is most
populated).

Frames # of frames in cluster.
Frac Size of cluster as fraction of total

trajectory.
AvgDist Average distance between points in the

cluster.
Stdev Standard deviation of points in the cluster.

232

Centroid Frame # of structure in cluster that has
the lowest cumulative distance to every other
point. If multiple representatives are being
saved this column is replaced with two columns
for each representative, ’Rep’ (representative
frame #) and ’RepScore’ (score according to
current best representative metric).

AvgCDist Average distance of this cluster to every
other cluster.

[info <infofile>] Write ptraj-like cluster information to
<infofile>. This file has format:
#Clustering: <X> clusters <N> frames
#Cluster <I> has average-distance-to-centroid <AVG>
...
#DBI: <DBI>
#pSF: <PSF>
#SSR/SST: <SSR/SST>
#Algorithm: <algorithm-specific info>
<Line for cluster 0>
...
#Representative frames: <representative frame list>
Where <X> is the number of clusters, <N> is the
number of frames clustered, <I> ranges from 0 to
<X>-1, <AVG> is the average distance of all frames
in that cluster to the centroid, <DBI> is the
Davies-Bouldin Index, <pSF> is the pseudo-F
statistic, <SSR/SST> is the SSR/SST ratio, and
<representative frame list> contains the frame # of
the representative frame (i.e. closest to the
centroid) for each cluster. Each cluster has a line
made up of characters (one for each frame) where ’.’
means ’not in cluster’ and ’X’ means ’in cluster’.

[noinfo] Suppress printing of cluster info.

[summarysplit <splitfile>] Summarize each cluster based
on which of its frames fall in portions of the
trajectory specified by splitframe with format
’#Cluster Total Frac C# Color NumInX ... FracX ...
FirstX ... RepX’:

#Cluster Cluster number starting from 0 (0 is most
populated).

Total # of frames in cluster.
Frac Size of cluster as a fraction of the total

trajectory.
C# Grace color number.

233

Color Text description of the color (based on
standard XMGRACE coloring).

NumInX Number of frames in Xth portion of the
trajectory.

FracX Fraction of frames in Xth portion of the
trajectory.

FirstX Frame in the Xth portion of the trajectory
where the cluster is first observed.

RepX Best representative frame in the Xth portion
of the trajectory for that cluster.

[splitframe <frame>] For summarysplit, frame or
comma-separated list of frames to split the
trajectory at, e.g. ’100,200,300’.

[clustersvtime <filename>] Write number of unique
clusters observed in a given time window to
<filename>.
[cvtwindow <windowsize>] Window size for

clustersvtime output.
[sil <prefix>] Write average cluster silhouette value for

each cluster to ’<prefix>.cluster.dat’ and cluster
silhouette value for each individual frame to
’<prefix>.frame.dat’.
[silidx {idx|frm}] Choose what indices to write to

the cluster silhouette frame file: idx (the
default) specifies the sorted index (starting
from 0), frm specifies the actual frame number.

[metricstats <file>] When more than one metric in use,
print the fraction contribution of each metric to
the total distance. This information can be used in
conjunction with the wgt keyword to adjust the
contribution of each metric to the total distance.
It is written to <file> with format:
#Metric FracAv FracSD Avg SD Min Max Description
Where #Metric is the metric number, FracAv and
FracSD are the average and standard devation of the
fraction contribution of that metric to the total
distance (taking into account distance type and
weights), Avg, SD, Min, and Max are the average,
standard devation, minimum, and maximum of the
unmodified distance contribution from that metric,
and Description is the metric description. This may
be slow for large numbers of frames, so it is
advisable to run this on a smaller (potentially
sieved) number of frames.

234

[cpopvtime <file> [normpop | normframe]] Write cluster
population vs time to <file>; if normpop specified
normalize each cluster to 1.0; if normframe
specified normalize cluster populations by number of
frames.

[lifetime] Create a DataSet with aspect [Lifetime] for
each cluster; for each frame, have 1 if the cluster
is present and 0 otherwise. Can be used with
lifetime analysis (12.21 on page 255).

Coordinate Output Options:

clusterout <trajfileprefix> Write frames in each cluster
to files named <trajfileprefix>.cX, where X is the
cluster number.

clusterfmt <trajformat> Format keyword for
clusterout (default Amber Trajectory).

singlerepout <trajfilename> Write all representative
frames to single trajectory named <trajfilename>.

singlerepfmt <trajformat> Format keyword for
singlerepout (default Amber Trajectory).

repout <repprefix> Write representative frames to
separate files named <repprefix>.X.<ext>, where X is
the cluster number and <ext> is a format-specific
filename extension.

repfmt <trajformat> Format keyword for repout
(default Amber Trajectory).

repframe Include representative frame number in
repout filename.

avgout <avgprefix> Write average structure for each
cluster to separate files named <avgprefix>.X.<ext>,
where X is the cluster number and <ext> is a
format-specific filename extension.

avgfmt <trajformat> Format keyword for avgout.

assignrefs In summary/summarysplit, assign clusters to
loaded reference structures if RMSD to that
reference is less than specified cutoff. This will
be printed in summary and summarysplit files as 2
extra columns: ’Name’ (reference name) and ’RMS’
(RMS to cluster centroid).

[refcut <rms>] RMSD cutoff in Angstroms.
[refmask <mask>] Mask to use for RMSD calculation.

If not specified the default mask is all heavy
atoms.

235

DataSets Created:

<name> Cluster number vs time (color number if
gracecolor specified).

<name>[DBI] Hold final Davies-Bouldin index.

<name>[PSF] Hold final pseudo-F value.

<name>[SSRSST] Hold final SSR/SST value.

<name>[NCVT] (clustersvtime only). Number of unique
clusters observed over time.

<name>[Pop]:<X> Cluster X population vs time; index
X corresponds to cluster number.

<name>[Lifetime]:<X> (lifetime only). For each
cluster X, contain 1 if cluster present that frame,
0 otherwise.

Note cluster population vs time data sets are not generated until the analysis
has been run.

Cluster input frames using the specified input data sets (can be any com-
bination of coordinates/COORDS and/or 1D scalar data) with the specified
clustering algorithm. For COORDS sets, the distance metric can be RMSD,
symmetry-corrected RMSD, or DME. When multiple data sets are present, the
total distance can be determined either via the Euclidean (default) or Manhat-
tan method.

In order to speed up clustering of large trajectories, the sieve keyword can
be used. In addition, subsequent clustering calculations can be sped up by
writing/reading calculated pair distances between each frame to/from a file
specified by pairdist (or “CpptrajPairDist” if pairdist not specified).

Example: cluster on a specific distance:

distance endToEnd :1 :255
cluster data endToEnd clusters 10 epsilon 3.0 summary summary.dat info info.dat

Example: two clustering commands on the CA atoms of residues 2-10 using
average-linkage, stopping when either 3 clusters are reached or the minimum
distance between clusters is 4.0 for the first, and 8 clusters or minimum distance
2.0 for the second. The first command will write the cluster number vs time
to “cnumvtime.dat” and a summary of each cluster to “avg.summary.dat”. The
second clustering command will use the pairwise distance matrix from the first
to speed things up:

cluster C1 :2-10 clusters 3 epsilon 4.0 info C1.info out cnumvtime.dat summary avg.summary.dat pairdist PW
cluster C2 :2-10 clusters 8 epsilon 2.0 info C2.info pairdist PW

236

Clustering Success Metrics

The Davies-Bouldin Index (DBI, reported in the info file) measures sum over
all clusters of the within cluster scatter to the between cluster separation; the
smaller the DBI, the better. The DBI is defined as the average, for all
clusters X, of fred, where fred(X) = max, across other clusters Y, of (Cx +
Cy)/dXY. Here Cx is the average distance from points in X to the centroid,
similarly Cy, and dXY is the distance between cluster centroids.

The pseudo-F statistic (pSF, reported in the info file) is another measure of
clustering goodness. It is intended to capture the ’tightness’ of clusters, and is
in essence a ratio of the mean sum of squares between groups to the mean sum
of squares within group. Higher values of pseudo-F are good. Generally,
one selects a cluster-count that gives a peak in the pseudo-f statistic. Formula:
A/B, where A = (T - P)/(G-1), and B = P / (n-G). Here n is the number of
points, G is the number of clusters, T is the total distance from the all-data
centroid, and P is the sum (for all clusters) of the distances from the cluster
centroid.

The SSR/SST (reported in the info file) is the ratio of the sum of squares
regression (SSR or between sum of squares) and the total sum of squares (SST).
The SSR is calculated via the sum of the squared distances of all points within
a given cluster to its centroid, and summed together for all clusters. The total
sum of squares is the sum of squared distances for all frames to the overall mean.
The ratio lies between 0 and 1 and is supposed to give the fraction of explained
variance by the data. The ratio should increase with cluster count. There
should be a point at which adding more clusters does not substantially
increase SSR/SST, i.e. the point where increasing the cluster count does not
add new information and should not increase further.

The cluster silhouette (sil/silidx keywords) is a measure of how well each
point fits within a cluster. Values of 1 indicate the point is very similar to other
points in the cluster, i.e. it is well-clustered. Values of -1 indicate the point
is dissimilar and may fit better in a neighboring cluster. Values of 0 indicate
the point is on a border between two clusters. The sil <prefix> keyword will
write two files. The first, <prefix>.cluster.dat, which has the format:

#Cluster <Si> StdDev

Where #Cluster is the cluster number, <Si> is the average silhouette value for
all frames in the cluster, and StdDev is the standard deviation of the silhouette
value for all frames in the cluster. The second, <prefix>.frame.dat, will contain
the silhouette value for each frame grouped by cluster, with indices controlled
by the silidx keyword (default sorted by ascending silhouette value), e.g.:

#C0 Silhouette
#C0 Silhouette

0 -0.135988
1 -0.0266746
2 -0.0167628

237

3 0.0609673
4 0.0649603
5 0.0835595

#C1 Silhouette
6 0.319039
7 0.319785
8 0.348833
9 0.358286
0 0.1376
9 0.1376

The last two lines will contain the overall average silhouette value twice, one at
the lowest index and one at the highest. The file is formatted in this way to
make it easy to visualize each cluster silhouette relative to the average value in
e.g. the XMGRACE plotting program. If the clustering results in one or more
cluster with silhouette values completely below the average line, the clustering
is likely poor.

Hints for setting DBSCAN parameters with ’kdist’

It is not always obvious what parameters to set for DBSCAN. You can get a
rough idea of what to set ’mindist’ and ’epsilon’ to by generating a so-called
"K-dist" plot with the ’kidst <k>’ option. The K-dist plot shows for each point
(X axis) the Kth farthest distance (Y axis), sorted by decreasing distance. You
supply the same distance metric and sieve parameters you want to use for the
actual clustering, but nothing else. For example:

cluster C0 dbscan kdist 4 rms :1-4@CA sieve 10 loadpairdist pairdist CpptrajPairDist

The K-dist plot will be named <prefix>.<k>.dat, with the default prefix being
’Kdist’ (in this case the file name would be Kdist.4.dat). The K-dist plot usually
looks like a curve with an initially steep slope that gradually decreases. Around
where the initial part of the curve starts to flatten out (indicating an increase
in density) is around where epsilon should be set; minpoints is set to whatever
<k> was. It has been suggested that the shape of the K-dist curve doesn’t
change too much after Kdist=4, but users are encouraged to experiment.

Using ’dpeaks’ clustering

The ’dpeaks’ (density peaks) algorithm attempts to find clusters by identifying
points in high density regions which are far from other points of high density[32].
There are two ways these points can be chosen. The first and recommended
way is manually. In this method, clustering if first run with choosepoints
not specified to generate a plot containing density versus minimum distance
to point with next highest density (the decision graph). Appropriate cut offs
for distance and density can then be chosen based on visual inspection; cutoffs

238

should be chosen so that they select points that have both a high density and
a high distance to point with next highest density. Clustering can then be run
again with distancecut and densitycut set.

The second way is automatically; cpptraj will attempt to identify outliers
in the density vs distance plot based on distance from the running average.
Although this only requires a single pass, this method of choosing points is not
well-tested and currently not recommended.

The Binary pairwise matrix file format

When NetCDF is not present, the pairwise matrix file will be written in binary.
The exact format depends on what version of cpptraj generated the file (since
earlier versions had no concept of ’sieve’). The CpptrajPairDist file starts with
a 4 byte header containing the characters ’C’ ’T’ ’M’ followed by the version
number. A quick way to figure out the version is to use the linux ’od’ command
to output the first 4 bytes as hexadecimal, e.g.:

$ od -t x1 -N 4 CpptrajPairDist 0000000 43 54 4d 02

So the CpptrajPairDist file version in the above example is 2.
The next few numbers describe the matrix size and depend on the version.

Version 0: Two 4-byte integers: # of rows and # of elements.

Version 1: Two 8-byte unsigned integers (equivalent to size_t on most sys-
tems): # of rows and # of elements.

Version 2: Three 8 byte unsigned integers: original # of rows, actual # of
rows, and sieve value.

This is followed by the actual matrix data, stored as a single array of floats (4
bytes). For versions 1 and 2 the number of elements is explicitly stored. For
version 2, to calculate the number of matrix elements you need to read:

Elements = (actual_rows * (actual_rows - 1)) / 2

The cluster pair-distance matrix is an upper-right triangle matrix without the
diagonal (in row-major order), so the first element is the distance between ele-
ments 0 and 1, the second is between elements 0 and 2, etc.

In version 2 files, if the sieve value is greater than 1 that means original_rows
> actual_rows and there is an additional array of characters original_nrows
long, with ’T’ if the row is being ignored (i.e. it was sieved out) and ’F’ if the
row is active (i.e. is active in the actual pairwise-distance matrix).

The code that cpptraj uses to read in CpptrajPairDist files is in ClusterMa-
trix::LoadFile() (ClusterMatrix.cpp).

239

The NetCDF pairwise matrix format

The default way to write pairwise matrix files as of version 6.0.0 is with NetCDF.
This will be set up with the following parameters:

Attributes:

Conventions “CPPTRAJ_CMATRIX”

Version <version string>

MetricDescription <description of the distance metric
used to create matrix>

Dimensions:

n_original_frames Number of frames originally in the
set (i.e. before sieving).

n_rows Number of rows in the upper-triangle pairwise
matrix.

msize Actual size of the matrix; should be (nRows_ *
(nRows_-1)) / 2;

Variables:

sieve (integer, no dimension). Sieve value.

matrix (float, dimension msize). The pairwise matrix,
flattened to 1 dimension. Index calc is: i1 = i +
1; index = (((nRows_ * i) - ((i1 * i) / 2)) + j -
i1);

actual frames (integer, dimension n_rows). The actual
frame numbers for which pairwise distances were
calculated.

12.6 cphstats

cphstats <pH sets> [name <name>] [statsout <statsfile>] [deprot]
[fracplot [fracplotout <file>]]

<pH sets> Previously read in pH data sets.

name <name> Output set name.

statsout <statsfile> Write pH statistics to <statsfile>

deprot If specified, calculate fraction deprotonated
instead of protonated.

fracplot If specified, calculate fraction
protonated/deprotonated vs pH.

fracplotout <file> File to write fraction plots to.

Data Sets Generated

240

<name>[Frac]:<idx> Fraction protonated/deprotonated
for residue <idx>.

Calculate statistics for constant pH simulation data previously read in with
readdata (see 6.11 on page 34). Statistics are calculated for each residue at
each input pH. Output format is as follows:

Solvent pH is <pH>
<res name> <res num> : Offset <off> Pred <pred> Frac Prot <frac> Transitions <#trans>
...
Average total molecular protonation: <avg>

Where <off> is offset from predicted, <pred> is predicted pH, and <#trans>
is the number of transitions. A line is printed for each residue. This functionality
is similar to the cphstats utility that comes with Amber (see ?? on page ??).

Note that data from constant pH REMD must be sorted prior to use with
cphstats. See the readensembledata (8.23 on page 65) and sortensemble-
data (8.30 on page 67) commands for more details.

For example, to read in constant pH data from constant pH REMD, sort
and analyze:

readensembledata ExplicitRemd/cpout.001 cpin ExplicitRemd/cpin name PH
sortensembledata PH
runanalysis cphstats PH[*] statsout stats.dat fracplot fracplotout frac.agr deprot

12.7 corr | correlationcoe
corr out <outfilename> <dataset1> [<dataset2>]

[lagmax <lag>] [nocovar] [direct]

out <outfilename> Write results to file named
<outfilename>. The datasets must have the same # of
data points.

<dataset1> [<dataset2>] Data set(s) to calculate
correlation for. If one dataset or the same dataset
is given twice, the auto-correlation will be
calculated, otherwise cross-correlation.

[lagmax] Maximum lag to calculate for. If not specified
all frames are used.

[nocovar] Do not calculate covariance.

[direct] Do not use FFTs to calculate correlation; this
will be much slower.

DataSet Aspects:

[<dataset1>] (Auto-correlation) The aspect will be the
name of each of the input data set.

241

[<dataset1>-<dataset2>] (Cross-correlation) The aspect
will be the names of each of the input data sets
joined by a dash (’-’).

DataSet Aspects:

[coeff] Correlation coefficient.

Calculate the auto-correlation function for data set named <dataset1> or the
cross-correlation function for data sets named <dataset1> and <dataset2> up
to <lagmax> frames (all if lagmax not specified), writing the result to file
specified by out. The two datasets must have the same # of datapoints.

12.8 crank | crankshaft

crank {angle | distance} <dsetname1> <dsetname2> info <string>
[out <filename>] [results <resultsfile>]

angle Analyze angle data sets.

distance Analyze distance data sets.

<dsetname1> Data set to analyze.

<dsetname2> Data set to analyze.

info <string> Title the analysis <string>.

[out <filename>] Write frame-vs-bin to <filename>.

[results <resultsfile>] Write results to <resultsfile>.

Calculate crankshaft motion between two data sets.

12.9 crdfluct

[crdset <crd set>] [<mask>] [out <filename>] [window <size>] [bfactor]

Calculate atomic positional fluctuations for atoms in <mask> over windows of
size <size>. If bfactor is specified, the fluctuations are weighted by 8

3π
2(similar

but not necessarily equivalent to crystallographic B-factor calculation). Units
are Å, or Å2x 8

3π
2 if bfactor specified.

12.10 crosscorr

crosscorr [name <dsetname>] <dsetarg0> [<dsetarg1> ...] [out <filename>]

[name <dsetname>] The resulting upper-triangle matrix
is stored with name <dsetname>.

242

<dsetarg0> [<dsetarg1> ...] Argument(s) specifying
datasets to be used.

[out <filename>] Write results to file named
<filename>.

Calculate the Pearson product-moment correlation coefficients between all spec-
ified datasets.

12.11 curvefit
curvefit <dset> { <equation> |

name <dsname> {gauss | nexp <m> [form {mexp|mexpk|mexpk_penalty}} }
[AX=<value> ...] [out <outfile>] [resultsout <results>]
[maxit <max iterations>] [tol <tolerance>]
[outxbins <NX> outxmin <xmin> outxmax <xmax>]

<dset> Data set to fit.

<equation> Equation to fit of form <Variable> =
<Equation>. See 5.2 on page 25 for more details on
equations cpptraj understands.

name <dsname> Final data set name (required if using
nexp or gauss).

gauss Fit to Gaussian of form A0 * exp(-((X - A1)^2) /
(2 * A2^2))

nexp <m> Fit to specified number of exponentials.

form <type> Fit to specified exponential form:

mexp Multi-exponential, SUM(m)[An * exp(An+1 *
X)]

mexpk Multi-exponential plus constant, A0 +
SUM(m)[An * exp(An+1 * X)]

mexpk_penalty Same as mexpk except sum of
prefactors constrained to 1.0 and exponential
constants constrained to < 0.0.

AX=<value> Value of any constants in specified
equation with X starting from 0 (can specify more
than one).

out <outfile> Write resulting fit curve to <outfile>.

resultsout <results> Write details of the fit to
<results> (default STDOUT).

maxit <max iterations> Number of iterations to run
curve fitting algorithm (default 50).

tol <tolerance> Curve-fitting tolerance (default 1E-4).

243

outxbins <NX> Number of points to use when generating
final curve (default same number of points as input
data set).

outxmin <xmin> Minimum X value to use for final curve
(default same number of points as input data set).

outxmax <xmax> Maximum X value to use for final
curve (default same number of points as input data
set).

Perform non-linear curve fitting for the specified data set using the Levenberg-
Marquardt algorithm. Any equation form that cpptraj understands (see 5.2
on page 25) can be used, or several preset forms can be used. Similar to Grace
(http://plasma-gate.weizmann.ac.il/Grace/), an equation can contain constants
for curve fitting termed AX (with X being a numerical digit, one for each con-
stant), and is assigned to a variable which then becomes a data set. For example,
to fit a curve to data from a file named Data.dat to a data set named ’FitY’:

readdata Data.dat
runanalysis curvefit Data.dat \

"FitY = (A0 * exp(X * A1)) + (A2 * exp(X * A3))" \
A0=1 A1=-1 A2=1 A3=-1 \
out curve.dat tol 0.0001 maxit 50

To perform the same fit but to a multi-exponential curve with two exponentials:

readdata Data.dat
runanalysis curvefit Data.dat nexp 2 name FitY \

A0=1 A1=-1 A2=1 A3=-1 \
out curve1.dat tol 0.0001 maxit 50

12.12 diagmatrix

diagmatrix <matrix name> [out <filename>] [thermo [outthermo <filename>]]
[vecs <#>] [name <modesname>] [reduce]
[nmwiz [nmwizvecs <#>] [nmwizfile <filename>]]

<matrix name> Name of symmetric matrix to
diagonalize.

[out <filename>] Write results to <filename>.

[thermo [outthermo <filename>]] Mass-weighted
covariance (mwcovar) matrix only. Calculate
entropy, heat capacity, and internal energy from the
structure of a molecule (average coordinates, see
above) and its vibrational frequencies using
standard statistical mechanical formulas for an

244

ideal gas. Results are written to <filename> if
specified, otherwise results are written to STDOUT.
Note that this converts the units of the calculated
eigenvalues to frequencies (cm-1).

[vecs <#>] Number of eigenvectors to calculate.
Default is 0, which is only allowed when ’thermo’ is
specified.

[name <modesname>] Store resulting modes data set
with name <modesname>.

[reduce] Covariance (covar/mwcovar/distcovar) matrices
only. For coordinate covariance (covar/mwcovar)
matrices, each eigenvector element is reduced via Ei
= Eix^2 + Eiy^2 + Eiz^2. For distance covariance
(distcovar) the eigenvectors are reduced by taking
the sum of the squares of each row. See Abseher &
Nilges, JMB 1998, 279, 911-920 for further details.
They may be used to compare results from PCA in
distance space with those from PCA in
cartesian-coordinate space.

[nmwiz] Generate output in .nmd format file for viewing
with NMWiz[33]. See
http://prody.csb.pitt.edu/tutorials/nmwiz_tutorial/
for further details.

[nmwizvecs <#>] Number of vectors to write out
for nmwiz output, starting with the lowest
frequency mode (default 20).

[nmwizfile <filename>] Name of nmwiz file to write
to (default ’out.nmd’).

[nmwizmask <mask>] Mask of atoms corresponding
to eigenvectors - should be the same one used to
generate the matrix.

Calculate eigenvectors and eigenvalues for the specified symmetric matrix. This
is followed by Principal Component Analysis (in cartesian coordinate space in
the case of a covariance matrix or in distance space in the case of a distance-
covariance matrix), or Quasiharmonic Analysis (in the case of a mass-weighted
covariance matrix). Diagonalization of distance, correlation, idea, and ired ma-
trices are also possible. Eigenvalues are given in cm−1 in the case of a mass-
weighted covariance matrix and in the units of the matrix elements in all other
cases. In the case of a mass-weighted covariance matrix, the eigenvectors are
mass-weighted.

For quasi-harmonic analysis the input must be a mass-weighted covariance
matrix. Thermodynamic quantities are calculated based on statistical mechan-
ical formulae that assume the input system is oscillating in a single energy well:

245

see Statistical Thermodynamics by D. A. McQuarrie, particularly chapters 4,
5, and 6 for more details.[34] For an in-depth discussion of the accuracy of
thermodynamic parameters obtained via quasi-harmonic analysis see Chang et
al..[35]

Note that the maximum number of non-zero eigenvalues obtainable depends
on the number of frames used to generate the input matrix; the number of
frames should be equal to or greater than the number of columns in the matrix
in order to obtain all eigenmodes.

Results may include average coordinates (in the case of covar, mwcovar,
correl), average distances (in the case of distcovar), main diagonal elements (in
the case of idea and ired), eigenvalues, and eigenvectors.

For example, in the following a mass-weighted covariance matrix of all atoms
is generated and stored internally with the name mwcvmat; the matrix itself is
written to mwcvmat.dat. Subsequently, the first 20 eigenmodes of the matrix
are calculated and written to evecs.dat, and quasiharmonic analysis is performed
at 300.0 K, with the results written to thermo.dat.

matrix mwcovar name mwcvmat out mwcvmat.dat
diagmatrix mwcvmat out evecs.dat vecs 20 \

thermo outthermo thermo.dat temp 300.0

Output Format

The “modes” or “evecs” output file is a text file with the following format:

[Reduced] Eigenvector file: <Type> nmodes <#> width <width>
<# Avg Coords> <Eigenvector Size>

<Average Coordinates>

Where <Type> is a string identifying what kind of matrix the eigenvectors/eigenvalues
were determined from, nmodes is how many eigenvectors are in the file, and
<Average Coordinates> are in lines 7 columns wide, with each element having
width specified by <width>. Then for each eigenvector:

<Eigenvector#> <Eigenvalue>
<Eigenvector Coordinates>
...

Where <Eigenvector Coordinates> are in lines 7 columns wide, with each ele-
ment having width specified by <width>.

12.13 divergence
divergence ds1 <ds1> ds2 <ds2>

Calculate Kullback-Leibler divergence between specified data sets.

246

12.14 evalplateau

evalplateau [name <set out name>] [tol <tol>] [valacut <valacut>]
[initpct <initial pct>] [finalpct <final pct>]
[chisqcut <chisqcut>] [slopecut <slopecut>] [maxit <maxit>]
[out <outfile>] [resultsout <resultsfile>] [statsout <statsfile>]
<input set args> ...

name <set out name>] Name for output data sets.

tol <tol> Curve fitting tolerance. Default 0.00001.

valacut <valacut> (“Value A cutoff”) Cutoff for last
half average vs estimated long term value. Default
0.01.

initpct <initial pct> The initial percentage of data to
use for the initial density guess. Default 1%.

finalpct <final pct> The final percentatge of data to
use for the final density guess. Default 50%.

chisqcut <chisqcut> Curve fit chi-squared cutoff.
Defualt 0.5.

slopecut <slopecut> Final slope of fitted curve cutoff.
Default 0.000001.

maxit <maxit> Maximum number of iterations to perform
during curve fit.

out <outfile> File to write data and fitted curve to.

resultsout <resultsfile> File to write plateau results
to.

statsout <statsfile> File to write curve fitting stats
to.

<input set args> Data sets to evaluate plateau for.

Data Sets Created

<name>[A0] The A0 (initial density) values.

<name>[A1] The A1 (rate constant) values.

<name>[A2] The A2 (final density) values.

<name>[OneA1] One over the A1 (rate constant)
values.

<name>[corr] Curve fit correlation.

<name>[vala] Difference between last half average of
data vs final density (A2).

<name>[chisq] Chi-squared of the curve fit.

247

<name>[pltime] Plateau time (time at which all cutoffs
satisfied).

<name>[fslope] Final slope of fitted curve.

<name>[name] Input set legend.

<name>[result] Final result: yes, no, err (error).

Attempt to determine if data has “plateaued”, i.e. stopped changing significantly
by the end of the set. Currently the defaults are set up to evaluate density data
as part of the system preparation protocol described by Roe & Brooks.[36]

12.15 fft

fft <dset0> [<dset1> ...] [out <outfile>] [name <outsetname>] [dt <samp_int>]

<dset0> [<dset1 ...] Argument(s) specifying datasets to
be used.

[out <outfile>] Write results to file named <outfile>.

[name <outsetname>] The resulting transform will be
stored with name <outsetname>.

[dt <samp_int>] Set the sampling interval (default is
1.0).

Perform fast Fourier transform (FFT) on specified data set(s). If more than 1
data set, they must all have the same size.

12.16 hausdorff
hausdorff <set arg0> [<set arg1> ...]

[outtype {basic|trimatrix nrows <#>|fullmatrix nrows <#> [ncols <#>]}]
[name <output set name>] [out <file>] [outab <file>] [outba <file>]

<set arg0> ... Input matrix data set(s) to calculate
Hausdorff distance(s) for.

[outtype] Specify the output type.

basic Output the Hausdorff distance for each input
matrix as scalar 1D data.

trimatrix nrows <#> Output Hausdorff distances
for each input matrix as a 2D upper-triangular
matrix with the given number of rows. Must have
(nrows * (nrows-1)) / 2 input sets.

fullmatrix nrows <#> ncols <#> Output Hausdorff
distances for each input matrix as a full matrix
with the given number of columns and rows. If
ncols is not given, use nrows. Must have nrows
* ncols input sets.

248

[name <output set name>] Name of output data sets.

[out <file>] File to write Hausdorff distances to.

[outab <file>] File to write directed A->B Hausdorff
distances to.

[outba <file>] File to write directed B->A Hausdorff
distances to.

Calculate the symmetric Hausdorff distance for one or more matrices. The
results can be saved as an array or as a full or upper-triangular matrix with the
specified dimensions. The Hausdorff distance H is determined from:

H = max{dH(A,B), dH(B,A)]

Where dH(A,B) is the directed Hausdorff distance between sets A and B, etc.
Colloquially speaking, the directed Hausdorff distance between A and B is de-
termined as follows:

1. What is the closest approach (distance) of each point in A to any point in
B?

2. Choose the largest distance from among those distances.

If desired, the output can be formed into a matrix, which can be useful e.g.
when doing multiple 2D rms calculations on different regions of a trajectory.
For example, the following input divides a 100 frame trajectory into 10 frame
chunks, calcultes the 2D RMS matrix for each chunk, then performs Hausdorff
analysis on the resulting matrices and forms a full output matrix.

parm ../DPDP.parm7
for beg=1;beg<100;beg+=10 end=10;end+=10 i=1;i++

loadcrd ../DPDP.nc \$beg \$end name Chunk\$i
done
Do the 2drms in chunks
for i=1;i<11;i++

for j=1;j<11;j++
2drms crdset Chunk\$i reftraj Chunk\$j M\$i.\$j

done
done
hausdorff M* out hausdorff.fullmatrix.gnu title hausdorff.matrix.gnu \

outtype fullmatrix nrows 10
runanalysis

This type of calculation lends itself well to parallelization. The parallelanalysis
command can be used to run all the 2drms calculations in parallel with MPI-
enabled cpptraj:

249

parm ../DPDP.parm7
for beg=1;beg<100;beg+=10 end=10;end+=10 i=1;i++

loadcrd ../DPDP.nc \$beg \$end name Chunk\$i
done
Do the 2drms in chunks
for i=1;i<11;i++

for j=1;j<11;j++
2drms crdset Chunk\$i reftraj Chunk\$j M\$i.\$j

done
done
parallelanalysis sync
runanalysis hausdorff M* out hausdorff.fullmatrix.gnu title hausdorff.matrix.gnu \

outtype fullmatrix nrows 10

12.17 hist | histogram
hist <dataset_name>[,<min>,<max>,<step>,<bins>] ...
[free <temperature>] [norm | normint] [gnu] [circular] out <filename>
[amd <amdboost_data>] [name <outputset name>]

[traj3d <file> [trajfmt <format>] [parmout <file>]]
[min <min>] [max <max>] [step <step>] [bins <bins>] [nativeout]

<dataset_name>[,<min>,<max>,<step>,<bins>]
Dataset(s) to be histogrammed. Optionally, the min,
max, step, and/or number of bins can be specified
for this dimension after the dataset name separated
by commas. It is only necessary to specify the step
or number of bins, an asterisk ’*’ indicates the
value should be calculated from available data.

[free <temperature>] If specified, estimate free energy

from bin populations using Gi = −kBT ln
(

Ni

NMax

)
,

where KB is Boltzmann’s constant, T is the
temperature specified by <temperature>, Ni is the
population of bin i and NMax is the population of
the most populated bin. Bins with no population are
given an artificial barrier equivalent to a
population of 0.5.

[norm] If specified, normalize bin populations so the
sum over all bins equals 1.0.

[normint] Normalize bin populations so the integral over
them is 1.0.

[gnu] Internal output only; data will be
gnuplot-readable, i.e. a space will be printed
after the highest order coordinate cycles.

250

[circular] Internal output only; data will wrap, i.e. an
extra bin will be printed before min and after max
in each direction. Useful for e.g. dihedral
angles.

out <filename> Write results to file named <filename>.

[amd <amdboost_data>] Reweight bins using AMD boost
energies in data set <amdboost_data> (in KT).

[name <outputset name>] Output histogram data set
name.

[traj3d <file> [trajfmt <format>]] (3D histograms only)
Write a pseudo-trajectory of the 3 data sets (1
atom) to <file> with format <format>.

[parmout <file>] (3D histograms only) Write a topology
corresponding to the pseudo-trajectory to <file>.

[min <min>] Default minimum to bin if not specified.

[max <max>] Default max to use if not specified.

[step <step>] Default step size to use if not specified.

[bins <bins>] Default bin size to use if not specified.

[nativeout] Do not use cpptraj data file framework; only
necessary for writing out histograms with > 3
dimensions.

Create an N-dimensional histrogram, where N is the number of datasets spec-
ified. For 1-dimensional histograms the xmgrace ’.agr’ file format is recom-
mended; for 2-dimensional hisograms the gnuplot ’.gnu’ file format is recom-
mended; for all other dimensions plot formatting is disabled and the routine
uses its own internal output format; this is also enabled if gnu or circular is
specified.

For example, to create a two dimensional histogram of two datasets ’phi’
and ’psi’:

dihedral phi :2@C :3@N :3@CA :3@C
dihedral psi :3@N :3@CA :3@C :4@N
hist phi,-180,180,*,72 psi,-180,180,*,72 out hist.gnu

In this case the number of bins (72) has been specified for each dimension and
’*’ has been given for the step size, indicating it should be calculated based on
min/max/bins. The following ’hist’ command is equivalent:

hist phi psi min -180 max 180 bins 72 out hist.gnu

251

12.18 integrate

integrate <dset0> [<dset1> ...] [out <outfile>] [intout <intfile>]
[name <name>]

<dset0> [<dset1> ...] Data set(s) to integrate.

[out <outfile>] If specified, write cumulative sum
curves to <outfile>.

[intout <intfile>] If specified, write final integral
values to <intfile>.

[name <name>] Output data set(s) name.

DataSets Created:

<name> Final integral values, 1 for each input data
set (indexed from 0).

<name>[Sum]:<idx> Cumulative sum curves if out was
specified, 1 for each input data set (indexed from
0).

Integrate specified data set(s) using trapezoid integration. If ’out’ is specified
write cumulative sum curves to <outfile>. If ’intout’ is specified write final
integral values for each set to <intfile>.

12.19 ired

ired [relax freq <MHz> [NHdist <distnh>] [noefile <noefilename>]]
[order <order>] [orderparamfile <orderfilename>]

tstep <tstep> tcorr <tcorr> out <filename> [norm] [drct]
modes <modesname> [name <output sets name>] [ds2matrix <file>]

[relax freq <MHz>] Should only be used when ired
vectors represent N-H bonds; calculate correlation
times τm for each eigenmode and relaxation rates
and NOEs for each N-H vector. ’freq <MHz>’
(required) is the Lamor frequency of the
measurement.

[NHdist <distnh>] Specifies the length of the NH
bond in Angstroms (default is 1.02).

[noefile <noefilename>] File to write the T1, T2,
and NOE data to.

[order <order>] Order of the Legendre polynomials to
use when calculating spherical harmonics (default
2).

252

[orderparamfile <orderfilename>] File to write the S2
data to.

[tstep <tstep>] Time between snapshots in ps (default
1.0).

[tcorr <tcorr>] Maximum time to calculate correlation
functions for in ps (default 10000.0).

[out <filename> Name of file to write plateau and TauM
data. Also the prefix for the .cmt and .cjt files
(see below).

[norm] Normalize all correlation functions, i.e.,
Cl(t = 0) = Pl(t = 0) = 1.0.

[drct] Use the direct method to calculate correlations
instead of FFT; this will be much slower.

modes <modesname> Name of previously calculated
eigenmodes corresponding to IRED vectors.

[name <name>] Output data set name.

[ds2matrix <file>] If specified, write full delta*S^2
matrix (# IRED vector rows by # eigenmodes columns)
to <file>.

DataSets Created:

<name>[S2] S2 order parameters for each vector.

<name>[Plateau] Plateau values for each vector.

<name>[TauM] TauM values for each vector.

<name>[dS2] Full delta*S^2 matrix.

<name>[T1] T1 relaxation values for each vector.

<name>[T2] T2 relaxation values for each vector.

<name>[NOE] NOEs for each vector.

<name>[Cm(t)]:X Cm(t) function for vector X.

<name>[Cj(t)]:X Cj(t) function for vector X.

Peform IRED[17] analysis on previously defined IRED vectors (see vector ired)
using eigenmodes calculated from those vectors with a previous ’diagmatrix’
command. The number of defined IRED vectors should match the number
of eigenmodes calculated. Autocorrelation functions for each mode and the
corresponding correlation time τm will be written to <filename>.cmt. Autocor-
relation functions for each vector will be written to <filename>.cjt. Relaxation
rates and NOEs for each N-H vector will be written to <filename> or added to
the the end of the standard output. For the calculation of τm the normalized
correlation functions and only the first third of the analyzed time steps will be
used. For further information on the convergence of correlation functions see
[Schneider, Brünger, Nilges, J. Mol. Biol. 285, 727 (1999)].

253

Example of IRED in Cpptraj

In cpptraj, IRED analysis[17] can now be performed in one pass (as opposed to
the two passes previously required in ptraj). First, IRED vectors are defined
(in this case for N-H bonds) and an IRED matrix is calculated and analyzed.
The IRED vectors are then projected onto the calculated IRED eigenvectors in
the ired analysis command to calculate the time correlation functions. If the
parameter order is specified, order parameters based on IRED are calculated.
By specifying the relax parameter, relaxation rates and NOEs can be obtained
for each N-H vector. Note that the order of the IRED matrix should be the
same as the one specified for IRED analysis.

Define N-H IRED vectors
vector v0 @5 ired @6
vector v1 @7 ired @8
...
vector v5 @15 ired @16
vector v6 @17 ired @18‘
Define IRED matrix using all previous IRED vectors
matrix ired name matired order 2
Diagonalize IRED matrix
diagmatrix matired vecs 6 out ired.vec name ired.vec
Perform IRED analysis
ired relax NHdist 1.02 freq 500.0 tstep 1.0 tcorr 100.0 out v0.out \

noefile noe order 2

12.20 kde

kde <dataset> [bandwidth <bw>] [out <file>] [name <dsname>]
[min <min>] [max <max] [step <step>] [bins <bins>] [free]
[kldiv <dsname2> [klout <outfile>]] [amd <amdboost_data>]

[bandwidth <bw>] Bandwidth to use for KDE; if not
specified bandwidth will be estimated using the
normal distribution approximation.

[out <file>] Output file name.

[name <dsname>] Output data set name.

[min <min>] Minimum bin.

[max <max>] Maximum bin.

[step <step>] Bin step.

[bins <bins>] Number of bins.

[free] Calculate free energy from bin population.

254

[kldiv <dsname2> [klout <outfile>]] Calculate
Kullback-Leibler divergence over time of <dataset>
distribution to <dsname2> distribution. Output to
<outfile> if klout specified.

[amd <amdboost_data>] Reweight histogram using AMD
boost data from data set <amdboost_data> (in KT).

Histogram 1D data set using a Gaussian kernel density estimator.

12.21 lifetime
lifetime [out <filename>] <dsetarg0> [<dsetarg1> ...]

[window <windowsize> [name <setname>]] [averageonly]
[cumulative] [delta] [cut <cutoff>] [greater | less] [rawcurve]

[fuzz <fuzzcut>] [nosort]

[out <filename>] Write results to file named
<filename>, and lifetime curves to ’crv.<filename>’.
If performing windowed lifetime analysis, <filename>
contains the fraction present over time windows, and
2 additional files are written: ’max.<filename>’,
containing max lifetime over windows, and
’avg.<filename>’, containing average lifetime over
windows.

<dsetarg0> [<dsetarg1> ...] Argument(s) specifying
datasets to be used.

[window <windowsize>] Size of window (in frames) over
which to calculate lifetimes/averages. If not
specified lifetime/average will be calculated over
all frames.

[name <setname>] Store results in data sets with name
<setname>.

[averageonly] Just calculate averages (no lifetime
analysis).

[cumulative] Calculate cumulative lifetimes/averages
over windows.

[delta] Calculate difference from previous window
average.

[cut <cutoff>] Cutoff to use when determining if data is
’present’ (default 0.5).

[greater] Data is considered present when above the
cutoff (default).

[less] Data is considered present when below the cutoff.

255

[rawcurve] Do not normalize lifetime curves to 1.0.

[fuzz <fuzzcut>] Ignore changes in lifetime state that
are less than <fuzzcut> frames.

[nosort] Do not sort data sets by name.

Data Sets Created:

<setname> Number of lifetimes for each set, or if
window specified fraction present over time windows.

<setname>[max] Maximum lifetime for each set, or if
window specified maximum lifetime over time windows.

<setname>[avg] Average lifetime for each set, or if
window specified average lifetime over time windows.

<setname>[curve] Lifetime curves.

The following are created only if window not specified:

<setname>[frames] Total number of frames lifetime
present for each set.

<setname>[name] Name of each set.

Perform lifetime analysis for specified data sets. Lifetime data can either be
determined for the entire set, or for time windows of specified size within the
set if window specified.

A “lifetime” is defined as the length of time something remains ’present’;
data is considered present when above or below a certain cutoff (the default is
greater than 0.5, useful for analysis of hbond time series data). For example,
in the case of a hydrogen bond ’series’ data set, if a hydrogen bond is present
during a frame the value is 1, otherwise it is 0. Given the hbond time series
data set {1 1 1 0 1 0 0 0 1 1}, the overall fraction present is 0.6. However, there
are 3 lifetimes of lengths 3, 1, and 2 ({1 1 1}, {1}, and {1 1}). The maximum
lifetime is 3 and the average lifetime is 2.0, i.e. (3 + 1 + 2) / 3 lifetimes = 2.0.
One can also construct a “lifetime curve”, which is constructed as the sum of all
individual lifetimes. By default these curves are normalized to 1.0, but the raw
curve can be obtained using the rawcurve keyword. For the example data set
here the raw lifetime curve would be 3 frames long:

1 1 1
1
1 1

Curve: 3 2 1

By default data sets are sorted by name unless nosort is specified. The lifetime
command can calculate lifetimes over specific time windows by using the win-
dow keyword. This can be particularly useful if one wants to get a sense for
how lifetimes are changing over the course of very long time series data. In addi-
tion, averages can be calculated instead of lifetimes by specifying averageonly.

256

Cumulative averages over windows can be obtained using the cumulative key-
word, or the change from the average value in the previous window can be
obtained using the delta keyword.

The fuzz keyword can be used to try and smooth the input data by ignoring
changes in state that occur for fewer frames than <fuzzcut>. For example,
in the above example hbond time series data set there is a one frame change
in state between the first and second lifetimes which could be interpreted as a
transient breaking of the hydrogen bond. Using a <fuzzcut> value of 1, this
one frame change in state would be ignored, and the data set would effectively
appear to lifetime as {1 1 1 1 1 0 0 0 1 1}. The state change between the second
and third lifetimes is longer than <fuzzcut> (3 frames) and so it would remain.

If window is not specified, two files are output: <filename> and crv.<filename>.
The file <filename> contains overall lifetime stats for each set with format:

#Set <setname> <setname>[max] <setname>[avg] <setname>[frames] <setname>[name]

where <setname> denotes the total number of lifetimes, <setname>[max] de-
notes the maximum lifetime, <setname>[avg] denotes the average lifetime,
<setname>[frames] denotes the total number of frames present in all lifetimes,
and <setname>[name] is the data set name. The file crv.<filename> contains
the lifetime curves for each set.

If window is specified, four files are output: <filename>, max.<filename>,
avg.<filename>, and crv.<filename>. <filename> contains the fraction “present”
over each time window for each set, max.<filename> contains the maximum
lifetime in each time window for each set, avg.<filename> contains the aver-
age lifetime over each window for each set, and crv.<filename> contains the
overall lifetime curves for each set. For window output, Gnuplot format is rec-
ommended.

Example: hbond lifetime analysis

parm DPDP.parm7
trajin DPDP.nc
hbond HB out hbond.dat @N,H,C,O series uuseries solutehb.agr \

avgout hbavg.dat printatomnum
’run’ is used here to process the trajectory and generate hbond data
run
Perform lifetime analysis
runanalysis lifetime HB[solutehb] out lifehb.dat

Calculate ion lifetimes from hbond over windows of size 100 frames:

hbond ION out ion.dat solventdonor :WAT solventacceptor :WAT@O series
run
lifetime HB[solventhb] out ion.lifetime.100.gnu window 100

257

12.22 lowestcurve

lowestcurve points <# lowest> [step <stepsize>] <dset0> [<dset1> ...]
[out <file>] [name <setname>]

<# lowest> Number of lowest points in each bin to
average over.

[step <stepsize>] Bin step size

<dset0> [<dset1> ...] Data set(s) to use.

[out <file>] File to write lowest curve to.

[name <setname>] Output lowest curve set name.

Calculate a curve of the average of the # lowest points in bins of stepsize.
Essentially each input data set is binned over bins of stepsize, then the lowest
<#> points are averaged over for each bin.

12.23 meltcurve

meltcurve <dset0> [<dset1> ...] [out <outfile>] [name <outsetname>] cut <cut>

Calculate melting curve from input data sets (i.e. fraction ’folded’ for each data
set) assuming a simple 2-state transition model, using data below <cut>as
’folded’ and data above <cut> as ’unfolded’.

12.24 modes

modes {fluct|displ|corr|eigenval|trajout|rmsip} name <modesname> [name2 <modesname>]
[beg <beg>] [end <end>] [bose] [factor <factor>] [calcall]
[out <outfile>] [setname <name>]
Options for ’trajout’: (Generate pseudo-trajectory)

[trajout <name> parm <name> | parmindex <#>
[trajoutfmt <format>] [trajoutmask <mask>]

[pcmin <pcmin>] [pcmax <pcmax>] [tmode <mode>]]
Options for ’corr’: (Calculate dipole correlation)

{ maskp <mask1> <mask2> [...] | mask1 <mask> mask2 <mask> }
parm <name> | parmindex <#>

Types of Calculations:

fluct RMS fluctuations (X, Y, Z, and total) for each
atom across specified normal modes.

displ Displacement of cartesian coordinates in the X, Y
and Z directions for each atom across specified
normal modes.

258

corr Dipole-dipole correlation functions. Must also
specify maskp (see below).

eigenval Calculate eigenvalue fractions.

trajout Create a pseudo-trajectory along the given mode
from the average structure.

rmsip Calculate the root-mean-square inner product
between modes specified by name and name2.

Options:

name <modesname> Previously read-in or generated
Modes data set name.

[beg <beg>] [end <end>] If modes taken from datafile,
beginning and end modes to read. Default for beg
is 7 (which skips the first 6 zero-frequency modes
in the case of a normal mode analysis); for end it
is 50.

[bose] Use quantum (Bose) statistics in populating the
modes.

[factor <factor>] multiplicative constant on the
amplitude of displacement/pseudo-trajectory, default
1.0.

[calcall] If specified use all eigenvectors; otherwise
eigenvectors associated with zero or negative
eigenvalues will be skipped.

[out <outfile>] File to write data results to. If not
given results are written to STDOUT.

[setname <name>] Output data set name.

Options for ’trajout’:

<name> Output trajectory file name.

[parm <parmfile/tag>|parmindex <#>] Topology file to
use (default first Topology loaded).

[trajoutfmt <format>] Output trajectory format.

[trajoutmask <mask>] Mask of atoms that correspond to
how modes were originally generated.

[pcmin <pcmin>] Lowest principal component projection
value to use for output trajectory.

[pcmax <pcmax>] Highest principal component
projection value to use for output trajectory.

[tmode <mode>] Mode to generate pseudo-trajectory
for.

Options for ’corr’:

259

[maskp <mask1> <mask2> [...]] If corr, pairs of atom
masks (mask1, mask2 ; each pair preceded by “maskp”
and each mask defining only a single atom) have to
be given that specify the atoms for which the
correlation functions are desired.

mask1 <mask> mask2 <mask> Instead of maskp,
specify two masks; atoms from the first mask will be
paired up with atoms from the second mask.

DataSets Created (fluct)

<name>[rmsX] RMS fluctuations in the X direction.

<name>[rmsY] RMS fluctuations in the Y direction.

<name>[rmsZ] RMS fluctuations in the Z direction.

<name>[rms] Total RMS fluctuations.

DataSets Created (displ)

<name>[displX] Displacement in X direction.

<name>[displY] Displacement in Y direction.

<name>[displZ] Displacement in Z direction.

DataSets Created (eigenval)

<name>[Frac] Fraction eigenvalue contributes to
overall motion.

<name>[Cumulative] Cumulative fraction.

<name>[Eigenval] Value of eigenvlue.

DataSets Created (rmsip)

<name> Result of RMSIP calculation.

Analyze previously calculated eigenmodes obtained from principal component
analyses (of covariance matrices) or quasiharmonic analyses (diagmatrix analysis
command). Modes are taken from a previously generated data set (i.e. from
diagmatrix) or read in from a data file with readdata . By default, classical
(Boltzmann) statistics are used in populating the modes. A possible series
of commands would be “matrix covar | mwcovar ...” to generate the matrix,
“diagmatrix ...” to calculate the modes, and, finally, “modes ...”.

For example, to calculate the RMS fluctuations or displacements of the first
3 eigenmodes caluclated from a mass-weighted covariance matrix:

matrix mwcovar name mwcvmat out mwcvmat.dat
diagmatrix mwcvmat name evecs vecs 5
modes fluct out rmsfluct.dat name evecs beg 1 end 3
modes displ out resdispl.dat name evecs beg 1 end 3

Additionally, dipole-dipole correlation functions for modes obtained from prin-
ciple component analysis or quasiharmonic analysis can be computed.

260

modes corr out cffromvec.dat name evecs beg 1 end 3 \
maskp @1 @2 maskp @3 @4 maskp @5 @6

or

mode corr out cffromvec.dat name evecs beg 1 end 3 mask1 @1,3,5 mask2 @2,4,6

If eigenval is specified, the fraction contribution of each eigenvector to the total
motion is calculated and output with format:

#Mode Frac. Cumulative Eigenval

where #Mode is the eigenvector number, Frac. is the eigenvalue over the sum of
all eigenvalues, Cumulative is the cumulative sum of Frac., and Eigenval is the
eigenvalue itself. Note that in order to get an idea for how much each eigenvector
contributes to all motion, this is best used when all possible eigenvectors have
been determined for a system.

In order to visualize eigenvectors, pseudo-trajectories along eigenvectors can
be created using average coordinates with the trajout keyword. For example,
to write a pseudo-trajectory of the first principal component from principal
component value of -100 to 100 for a previously calculated Modes data set
corresponding to heavy atoms (no hydrogens) for residues 1 to 36:

parm ../GAAC.nowat.parm7
readdata evecs.dat
runanalysis modes name evecs.dat trajout test.nc trajoutfmt netcdf \

trajoutmask :1-36&!@H= pcmin -100 pcmax 100 tmode 1

12.25 multicurve
multicurve set <dset> [set <dset> ...]

<dset> { <equation> |
name <dsname> nexp <m> [form {mexp|mexpk|mexpk_penalty} }

[AX=<value> ...] [out <outfile>] [resultsout <results>]
[maxit <max iterations>] [tol <tolerance>]
[outxbins <NX> outxmin <xmin> outxmax <xmax>]

set <dset> [set <dset> ...] Data set(s) to fit.

<equation> Equation to fit of form <Variable> =
<Equation>. See 5.2 on page 25 for more details on
equations cpptraj understands.

name <dsname> Name of output data sets (required if
using nexp).

nexp <m> Fit to specified number of exponentials.

form <type> Fit to specified exponential form:

261

mexp Multi-exponential, SUM(m)[An * exp(An+1 *
X)]

mexpk Multi-exponential plus constant, A0 +
SUM(m)[An * exp(An+1 * X)]

mexpk_penalty Same as mexpk except sum of
prefactors constrained to 1.0 and exponential
constants constrained to < 0.0.

AX=<value> Value of any constants in specified
equation with X starting from 0 (can specify more
than one).

out <outfile> Write resulting fit curve to <outfile>.

resultsout <results> Write details of the fit to
<results> (default STDOUT).

maxit <max iterations> Number of iterations to run
curve fitting algotrithm (default 50).

tol <tolerance> Curve-fitting tolerance (default 1E-4).

outxbins <NX> Number of points to use when generating
final curve (default same number of points as input
data set).

outxmin <xmin> Minimum X value to use for final curve
(default same number of points as input data set).

outxmax <xmax> Maximum X value to use for final
curve (default same number of points as input data
set).

Fit each input data set <dset> to <equation>. See the curvefit command on
page 243 for more details.

12.26 multihist

multihist [out <filename>] [name <dsname>] [norm | normint] [kde]
[min <min>] [max <max>] [step <step>] [bins <bins>] [free <T>]
<dsetarg0> [<dsetarg1> ...]

out <filename> Output file.

name <dsname> Name for resulting histogram data
sets.

norm (Only used if not kde) Normalize so that max bin
is 1.0.

normint (Default for kde) Normalize integral over
histogram to 1.0.

262

kde Use kernel density estimator to construct
histogram.

min <min> Histogram minimum (default data set
minimum).

max <max> Histogram maximum (default data set
maximum).

step <step> Histogram step.

bins <bins> Number of histogram bins.

free <T> Calculate free energy from bin populations as
G = -R * <T> * ln(Ni / Nmax).

<dsetargX> Data set argument - may specify more than
one.

Histogram each data set separately in 1D. Must specify at least bins or step.

12.27 phipsi

phipsi <dsarg0> [<dsarg1> ...] resrange <range> [out <file>]

<dsargX> Argument selecting data sets. Can specify
more than 1.

resrange <range> Residue range to use (actually uses
data set index).

[out <file>] Output file.

Calculate the average and standard deviation of [phi] and [psi] data set pairs,
write to <file> with format:

#Phi Psi SD(Phi) SD(Psi) Legend

Where Phi is the average value of phi, Psi is the average value of psi, SD(Phi)
is the standard deviation of phi, SD(psi) is the standard deviation of psi, and
Legend contains text describing the phi and psi data sets used in the calculation.
Periodicity is taken into account during averaging. The data sets must have been
internally labeled as type ’phi’/’psi’ and must have a data set index set (actions
like dihedral and multidihedral do this automatically). For example:

parm ../DPDP.parm7
trajin ../DPDP.nc
multidihedral DPDP phi psi
run
phipsi DPDP[phi] DPDP[psi] out phipsi.dat resrange 1-22

263

12.28 projectdata

projectdata evecs <evecs dataset> [name <name>] [out <outfile>] [beg <beg>] [end <end>]
{[dihedrals <dataset arg>] | [data <dataset arg> ...]}

evecs <dataset name> Data set containing eigenvectors
(modes).

[name <name>] Output data set name.

[out <outfile>] Write projections to <outfile>.

[beg <beg>] First eigenvector/mode to use (default 1).

[end <end>] Final eigenvector/mode to use (default 2).

[dihedrals <dataset arg>] (Dihedral covariance only)
Dihedral data sets to use in projection; MUST
CORRESPOND TO HOW EIGENVECTORS WERE GENERATED.

[data <dataset arg>] (Data covariance only, e.g. from
TICA). 1D data sets to use in projection; MUST
CORRESPOND TO HOW EIGENVECTORS WERE GENERATED.

Data Sets Created:

<name>:<#> Projection data set for mode <#>.

Project data along previously generated eigenmodes from e.g. PCA or TICA.
This is a faster alternative to the projection command (11.62 on page 185) if
only 1D data sets need to be projected.

12.29 regress

regress <dset0> [<dset1> ...] [name <name>] [nx <nxvals>]
[out <filename>] [statsout <filename>]

dsetX Data set(s) to perform linear regression for.

name <name> Data set name for resulting linear fits.

nx <nxvals> Number of X values to use in output data
set(s) (ranging from input set min to max X). If not
specified, input X values used.

out <filename> File to write fit lines to.

statsout <filename> File to write fit statistics to.

DataSets Generated:

<name>:<idx> Output fit line(s) (indexed by input
set order if more than one input set).

<name>[slope]:<idx> Output fit line slope(s).

<name>[intercept]:<idx> Output fit line intercept(s).

264

Perform linear regression on the specified data set(s). The fit line is calculated
using either the input X values or <nxvals> values ranging from the input set
minimum to maximum X. Statistics for the fit(s) are saved to the file specified
by statsout or reported to STDOUT.

For example, to fit data read in from a file and then create a set using the
fit parameters:

readdata esurf_vs_rmsd.dat.txt index 1 name XY
runanalysis regress XY name FitXY statsout statsout.dat
createset "Y = FitXY[slope] * X + FitXY[intercept]" xstep .2 nx 100
writedata Y.dat Y

12.30 remlog

remlog {<remlog dataset> | <remlog filename>} [out <filename>] [crdidx | repidx]
[stats [statsout <file>] [printtrips] [reptime <file>]] [lifetime <file>]
[reptimeslope <n> reptimeslopeout <file>] [acceptout <file>] [name <setname>]

[edata [edataout <file>]]

<remlog dataset> Previously read-in REM log data.

<remlog filename> REM log file name to read in.

[out <filename>] Write replica/coordinate index versus
time to <filename>.

crdidx Print coordinate index vs exchange; output
sets contain replica indices.

repidx Print replica index vs exchange; output sets
contain coordinate indices.

stats [statsout <file>] Calculate round-trip statistics
and optionally write to <file>.

printtrips Print details of each individual round trip.

[reptime <file>] Write time spent at each replica to
<file>.

[lifetime <file>] Print lifetime data at each replica to
<file>.

[reptimeslope <n>] Calculate the slope of time spent at
each replica every <n> exchanges.

[reptimeslopeout <file>] File to write reptimeslope
output to.

[acceptout <file>] Write overall exchange acceptances to
<file>.

[name <setname>] Output data set name.

265

[edata [edataout <file>]] Extract energy data from
replica log, optionally write to file.

DataSets created:

<setname>:<idx> Replica/coordinate index vs exchange.

<setname>[E]:<idx> If ’edata’ specified, energy data
from replica log.

Analyze previously read in (via readdata) M-REMD/T-REMD/H-REMD replica
log data. Statistics calculated include round-trip time, which is the time needed
for a coordinate set to travel from the lowest replica to the highest and back, and
the number of exchanges each coordinate spent at each replica. For example,
to read in REM log data from an Amber M-REMD run and analyze it:

readdata rem.log.1.save rem.log.2.save dimfile remd.dim as remlog nosearch
remlog rem.log.1.save stats reptime mremdreptime.dat

For an example of remlog analysis applied to actual REMD data, see Roe et
al.[37].

12.31 rms2d | 2drms

rms2d [crdset <crd set>] [<name>] [<mask>] [out <filename>]
[{dme | nofit | srmsd | qrmsd}] [mass]
[reftraj <traj> [parm <parmname> | parmindex <parm#>] [<refmask>]]
[corr <corrfilename>]

[crdset <crd set>] Name of previously generated COORDS
DataSet. If not specified the default COORDS set
will be used.

[<mask>] Mask of atoms to calculate 2D-RMSD for.
Default is all atoms.

[out <filename>] Write results to <filename>.

[dme] Calculate distance RMSD instead of coordinate
RMSD; this is substantially slower.

[nofit] Calculate RMSD without fitting.

[srmsd] Calculate symmetry-corrected RMSD (see 11.83 on
page 205).

[qrmsd] Use quaternion RMSD calculation (can be 15-20%
faster).

[mass] Mass-weight RMSD.

[reftraj <traj>] Calculate 2D RMSD to frames in
trajectory <traj> instead (can also be another
COORDS set).

266

[parm <parmname> | parmindex <#>] Topology to use
for <traj>; only useful in conjunction with reftraj.

[<refmask>] Mask of atoms in reference; only useful in
conjunction with reftraj.

[corr <corrfilename>] Calculate pseudo-auto-correlation

C for 2D-RMSD as C(i) =
∑j<N−i

j=0
exp(−RMSD(j,j+i))

N−i ,
where i is the lag, j is the frame #, and N is the
total number of frames. An exponential is used to
weight the RMSD since 0.0 RMSD is equivalent to
correlation of 1.0. This can only be done if
reftraj is not used.

DataSet Aspects:

[Corr] (corr only) Pseudo-auto-correlation.

Note: For backwards compatibility with ptraj the command ’2drms’ will also
work.

Calculate the best-fit RMSD of each frame in <crd set> (the default CO-
ORDS set if none specified) to each other frame. This creates an upper-triangle
matrix named <name> (or a full matrix if reftraj specified). The output of the
rms2d command can be best-viewed using gnuplot; a gnuplot-formatted file can
be produced by giving <filename> a ’.gnu’ extension. For example, to calculate
the RMSD of non-hydrogen atoms of each frame in trajectory “test.nc” to each
other frame, writing to a gnuplot-viewable file “test.2drms.gnu”:

trajin test.nc
rms2d !(@H=) out test.2drms.gnu

To calculate the RMSD of atoms named CA of each frame in trajectory “test.nc”
to each frame in “ref.nc” (assuming test.nc and ref.nc are using the default
topology file):

trajin test.nc
rms2d @CA out test.2drms.gnu reftraj ref.nc

12.32 rmsavgcorr

rmsavgcorr [crdset <crd set>] [<name>] [<mask>] [out <filename>] [mass]
[stop <maxwindow>] [offset <offset>]
{reference <ref file> parm <parmfile> | first}

[crdset <crd set>] COORDS data set to use (if not
specified the default COORDS set will be used).

[<name>] Output data set name.

267

[<mask>] Atoms to calculate RMS average correlation
for.

[out <filename>] Output filename.

[mass] Mass weight the RMSD calculation.

[stop <maxwindow>] Only calculate RMS average
correlation up to <maxwindow>.

[offset <offset>] Skip every <offset> windows in
calculation.

[first] Use first averaged frame as reference for each
window (default).

[reference <ref file> [parm <parmfile>] Use reference
file (with specified parm) as reference for each
window.

The RMS average correlation[1] (RAC) is calculated as the average RMSD of
running-averaged coordinates over increasing window sizes (or lag). Output has
format:

<WindowSize> <RAC>

The first entry has a window size of 1, and so is just the average RMSD of
all frames to the specified reference structure. The second entry has a window
size of two, so it is the average RMSD of all frames averaged over two adjacent
windows to the specified reference, and so on. The RAC will be calculated up
to the number of frames minus 1 or the value specified by stop, whichever is
lower. The offset can be used to speed up the calculation by skipping window
sizes. To calculate mass-weighted RMSD specify mass. Note that to reduce
memory costs it can be useful to strip all coordinates not involved in the RMS
fit from the system prior to specifying ’rmsavgcorr’. For example, to calculate
the correlation of C-alpha RMSD of residues 2 to 12:

strip !(:2-12@CA)
rmsavgcorr out rmscorr.dat

The curve generated by RAC decays towards zero due to the way RAC is de-
fined. By the time the "lag" is N-1 (where N is the total number of frames) you
have only two averaged coordinates: call them Avg1 (averaged over 1 though
N-1 frames) and Avg2 (averaged over 2 through N frames). Barring any extraor-
dinary circumstances the RMSD between Avg1 and Avg2 will almost certainly
be quite low.

The RAC is a way to probe the time scales of interesting events. Any
deviation from a smoothly decaying curve is an indication that there are some
significant structural differences occurring over that time interval. RAC curves
can be particularly useful when comparing independent simulations of the same
system.

268

One thing to keep in mind that since the underlying metric is RMSD, it can
be sensitive to the reference frame you choose. It may be useful to try looking
at both RAC from the first frame, as well as an averaged reference frame. For
an example of use see Galindo-Murillo et al.[38], in particular Figure 2.

12.33 rotdif
rotdif [outfile <outfilename>] [usefft]

Options for generating random vectors:
[nvecs <nvecs>] [rvecin <randvecIn>] [rseed <random seed>]
[rvecout <randvecOut>] [rmatrix <set name> [rmout <rmOut>]]

Options for calculating vector time correlation functions:
[order <olegendre>] [ncorr <ncorr>] [corrout <corrOut>]

*** The options below only apply if ’usefft’ IS NOT specified. ***
Options for calculating local effective D, small anisotropy:

[deffout <deffOut>] [itmax <itmax>] [tol <tolerance>] [d0 <d0>]
[nmesh <NmeshPoints>] dt <tfac> [ti <ti>] tf <tf>

Options for calculating D with full anisotropy:
[amoeba_tol <tolerance>] [amoeba_itmax <iterations>]
[amoeba_nsearch <n>] [scalesimplex <scale>] [gridsearch]

*** The options below only apply if ’usefft’ IS specified. ***
Options for curve-fitting:

[fit_tol <tolerance>] [fit_itmax <max # iterations>]

outfile <outfilename> File to write all output from
rotdif command to.

Options for generating random vectors:

nvecs <nvecs> Number of random vectors to generate
(default 1000).

rvecin <randvecIn> File to read random vectors from
(format is 1 per line, 4 columns, <#> <VX> <VY>
<VZ>).

rseed <random seed> Seed for random number generator
(default 80531). Specify -1 to use wallclock time.

rvecout <randvecOut> File to write random vectors to
(format is 1 per line, 4 columns, <#> <VX> <VY>
<VZ>).

rmatrix <set name> Data set to read rotation matrices
from. Rotation matrices will be used to rotate
random vectors.

rmout <rmOut> Write rotation matrices to file, 1 per
line, frame # followed by matrix in row-major order.

Options for calculating vector time correlation functions:

269

order <olegendre> The order of Legendre polynomials to
use when calculating vector time correlation
functions (default 2).

ncorr <ncorr> Maximum length of time correlation
functions in frames. If this is not specified it
will be set to (tf - ti) / dt (recommended).

corrout <corrOut> If specified write vector time
correlation functions to <corrOut>.X with format:
<Time> <Px>

Options for calculating local effective D, small anisotropy:

deffout <deffOut> File to write out local effective
diffusion constants determined in the limit of small
anisotropy.

itmax <itmax> Maximum number of iterations to
determine each local effective diffusion constant
(small anisotropy) assuming fit to single
exponential form (default 500).

tol <tolerance> Tolerance for determining local
effective diffusion constant (small anisotropy)
assuming fit to single exponential form (default
1E-6).

d0 <d0> Initial guess for small anisotropy diffusion
constant in radians^2/ns (default 0.03).

nmesh <NmeshPoints> Number of points per frame to
use when creating cubic-splined-smoothed forms of
vector time correlation curves (default 2).

dt <tfac> Time interval between frames (used in
integrating vector time correlation curves) in ns.

ti <ti> Initial time value in ns for integrating the
time correlation functions (default 0.0).

tf <tf> Final time value in ns for integrating the time
correlation functions. It is recommended this be
less than the maximum simulation time since the
tails of time correlation functions tend to be
noisy.

Options for calculating D with full anisotropy:

amoeba_tol <tolerance> Tolerance for downhill-simplex
minimizer (default 1E-7).

amoeba_itmax <iterations> Number of iterations to run
downhill-simplex minimizer (default 10000).

270

amoeba_nsearch <n> Number of searches to perform
with downhill-simplex minimizer (default 1).

scalesimplex <scale> Factor to use when scaling
simplexes (default 0.5).

gridsearch If specified, perform a brute-force grid
search to attempt to find a better solution for
diffusion tensor with full anisotropy (may be
expensive).

Evaluate rotational diffusion properties of a molecule over a trajectory according
to an expanded version of the procedure laid out by Wong & Case[39]. Briefly,
random vectors (representing the orientation of the molecule) are rotated ac-
cording to rotation matrices obtained from an RMS fit to a reference structure
(typically an averaged structure). For each random vector the time correlation
function of the rotated vector is calculated using Legendre polynomials of the
specified order. The integral over this time correlation function (which may be
smoothed using cubic splines to improve the integration) is then used to find
the effective diffusion constant (D) in the limit of small anisotropy. Then, using
each calculated D, the diffusion tensor is determined with full anisotropy. Fi-
nally, a downhill simplex minimizer is used to optimize D with full anisotropy;
(this last step is not described in the original paper).

Rotation matrices are generated via an RMS fit to a reference structure (see
11.69 on page 192). It is recommended that the RMS fit be done to an average
structure (see 11.9 on page 108). These rotation matrices are used to rotate
each random vector M times (where M is the total number of frames), which
creates a time series for each random vector. The time correlation functions
are calculated for each random vector time series using Legendre polynomials of
the specified order (default 2). Calculation of time correlation functions can be
sped up by using the OpenMP version of CPPTRAJ. The maximum length of
the correlation function (or lag) can be specified by ncorr (in frames). If ncorr
is not specified it will be set internally based on the specified values of ti, tf,
and dt; this is recommended. Note that if ncorr is specified it should be set to
a number less than the total number of frames since noise in time correlation
functions increases as ncorr approaches the # of frames. The integration over
the correlation function is from ti (in whatever units are used of dt, generally
ns; 0.0 ns if not specified) to tf (same units as ti), with the time between
frames specified by dt; the final time should be less than the total simulation
time (see example below). The relative size of the mesh used with cubic spline
interpolation for integration is controlled by nmesh (size of the mesh is ncorr
points * nmesh); nmesh = 1 means no interpolation, default is 2. Note that if
the integral of the correlation function for a vector is negative, that vector will
be skipped in subsequent calculations (since it would imply a negative value for
effective diffusion).

The iterative solver for effective value of the diffusion constant from the
correlation functions is controlled by itmax, tol, and d0, where itmax specifies

271

the number of iterations to perform (default 500), tol specifies the tolerance
(default 1E-6), and d0 specifies the initial guess for the diffusion constant in
radians^2 / ns (default 0.03). Effective diffusion constants for each random
vector can be written out to a file specified by deffout. Results are printed
to the file specified by outfile. Details on the Q and D tensors are given, as
well as observed and calculated tau for each random vector. First, results are
printed for analysis in the limit of small anisotropy. Next, results are printed
for analysis with full anisotropy. The results of the full anisotropic calculation
are first given using results from the small anisotropic analysis as an initial
guess, followed by the final results after minimization using the downhill simplex
(amoeba) minimizer.

Example

There are two important things to keep in mind when using rotdif analysis:

1. When calculating any kind of diffusive property it is best to simulate
in the microcanonical (NVE) ensemble with a shorter time step and in-
creased SHAKE tolerance; thermostats and barostats will effect diffusion
calculations.

2. Time correlation functions become noisier as the length of the function
approaches the maximum. Therefore in general one should choose param-
eters for the time correlation function that are much shorter than the total
simulation length.

For example, given a trajectory ’mdcrd.nc’ containing 10000 frames with a total
simulation time of 200 ns (so the time between frames is 0.02 ns), to calculate
rotational diffusion using 100 vectors using rotation matrices generated via an
RMS fit to ’avgstruct.pdb’, computing and integrating the time correlation func-
tion for each vector from 0 to 5 ns (1/40th of the simulation), and writing out
the effective diffusion constants and results to ’deffs.dat’ and ’rotdif.out’ respec-
tively:

reference avgstruct.pdb [avg]
rms R0 @CA,C,N,O ref [avg] savematrices
trajin mdcrd.nc
rotdif nvecs 100 rmatrix R0[RM] \

ti 0.0 tf 5.0 dt 0.02 deffout deffs.dat \
outfile rotdif.out

12.34 runningavg

runningavg <dset1> [<dset2> ...] [name <dsetname>] [out <filename>]
[[cumulative] | [window <window>]]

<dset1> [<dset2> ...] Data set(s) to calculate running
average for.

272

[name <dsetname>] Output running average data set
name.

[out <filename>] File to write results to.

[cumulative] Calculate cumulative running average
instead.

[window <window>] Size in frames of window over which
to calculate running average.

Calculate running average over windows of given size for data in selected data
set(s).

12.35 slope

slope <dset0> [<dset1> ...] [out <outfile>] [name <name>]
[type {forward|backward|central}]

<dset0> [<dset1> ...] Data set(s) to calculate finite
difference for.

[out <outfile>] File to write finite difference curves
to.

[name <name>] Output data set(s) name.

[type {forward|backward|central}] Specify type of finite
difference to calculate (default forward).

DataSets generated:

<name>:<idx> Output finite difference curves for
each input data set (indexed from 0).

Calculate finite differences for each input data set.

12.36 spline

spline <dset0> [<dset1> ...] [out <outfile>] [meshsize <n> | meshfactor <x>]
[meshmin <mmin>] [meshmax <mmax>]

<dsetX> Data set(s) to perform splining on.

[out <outfile>] Write splined data to <outfile>.

[meshsize<n>] Size of the mesh to use for splining.

[meshfactor <x>] If meshsize is not given, use a mesh
of data set size * <x>.

[meshmin <mmin>] Mesh X minimum value.

[meshmax <mmax>] Mesh X maximum value.

Apply cubic splines to the given input data sets to create new data sets.

273

12.37 statistics | stat

stat {<name> | ALL} [shift <value>] [out <filename>] [noeout <filename>]
[ignorenv] [name <noe setname>]

<name> Name of data set to analyze.

ALL analyze all data sets.

shift <value> Subtract <value> from all elements in
each data set.

[out <filename>] Write analysis results to <filename>
(STDOUT if not specified).

[noeout <filename>] (Type ’noe’ only) Write summary of
NOE results to <filename>.

[ignorenv] (Type ’noe’ only) Ignore negative NOE
violations (i.e. shorter-than-expected distances).

[name <noe setname>] (Type ’noe’ only) Name for
output NOE data sets.

DataSet Aspects for type ’noe’ output:

[R6] Averaged 1/r6distance for each set.

[NViolations] Number of violations based on given bounds
for each set.

[AvgViolation] 1/r6 averaged distance minus expected
distance for each set.

[NOEnames] Name of each set.

Analyze angles, dihedrals, distances, and/or puckers and calculate various prop-
erties. More specific analyses can be obtained by labelling distances/dihedrals/puckers
(from e.g. the distance , dihedral , pucker commands or with the dataset
command) with the ’type <label>’ keyword:

dihedral type labels: alpha, beta, gamma, delta, epsilon, zeta, chi, c2p h1p,
phi, psi, omega, pchi

distance type labels: noe

pucker type labels: pucker

For each input data set, the average, standard deviation, initial and final values
will be reported. The cyclic nature of dihedral/pucker data sets is taken into
consideration when averaging.

274

12.37.1 Torsion Analysis

A table will be written in ASCII format showing the distribution of torsion
values for each data set. More specific information may be printed based on the
set type. Values in the output marked SNB are from those defined by Schneider,
Neidle, and Berman.[40] For more information on nucleic acid torsion as pertains
to RNA see further work by Schneider et al..[41]

For example, to perform in-depth analysis on some nucleic acid dihedral
angles:

dihedral g0 out dihedrals.dat :1@O5’ :1@C5’ :1@C4’ :1@C3’ type gamma
dihedral d0 out dihedrals.dat :1@C5’ :1@C4’ :1@C3’ :1@O3’ type delta
dihedral c0 out dihedrals.dat :1@O4’ :1@C1’ :1@N9 :1@C4 type chi
analyze statistics all out stat.dat

12.37.2 Distance Analysis

A table will be written in ASCII format showing the distribution of distance
values < 6.5. If a distance is labled as ’type noe’ a compact time series will
be printed in ASCII format showing the NOE as strong, medium, or weak.
In addition the <r^-6>^(-1/6) averaged value will be reported, as well as the
number of upper/lower bound violations. If ’noeout’ is specified, a summary
of these results will be written with format:

<#NOE> <R6> <Nviolation> <AvgViolation> <Name>

Where <#NOE> is an index, <R6> is the <r^-6>^(-1/6) averaged distance,
<Nviolation> is the total number of bounds violations, <AvgViolation> is the
average difference from expected distance Rexp when the distance is violated
(note that if not explicitly set, Rexp is set to the upper bound when the lower
bound is 0.0, or the average of upper and lower bounds otherwise), and <Name>
is the data set legend.

For example, the following input could be used to check certain distances
for NOE violations:

distance :3@HB= :10@HG= type noe noe_medium
distance :3@HE= :10@HG= type noe noe_strong
distance :3@HA :12@HA type noe noe_medium
distance :3@HD= :12@HG= type noe noe_medium
distance :3@HE= :12@HA type noe noe_strong
analyze statistics all out dpdp.noe.dat noeout noe_graph.dat name Res3_NOE

12.37.3 Pucker Analysis

A table will be written in ASCII format showing the distribution of pucker
phases for each data set.

275

12.38 ti

ti <dset0> [<dset1> ...] {nq <n quad pts> | xvals <x values>}
[name <set name>] [out <file>] [curveout <ti curve file>]
[nskip <#s to skip>]
[avgincrement <#> [avgmax <#>] [avgskip <#>]]
[bs_samples <samples> [bs_points <points>] [bs_seed <#>]
[bs_fac <factor>]]

<dset0> [<dset1> ...] Data set arguments specifying
input DV/DL values.

nq <n quad pts> Number of points for Gaussian
quadrature integration. Expect one data set per
point.

xvals <x values> Comma-separated list of X values for
integration. Expect one data set per value.

name <set name> Output data set name.

out <file> File to write results of integration to.

curveout <ti curve file> File to write TI curves to.

nskip <#s to skip> Comma separated list of number of
points to skip. For each number given, the TI
integration will be repeated.

avgincrement <#> [avgmax <#>] [avgskip <#>]
Starting from point ’avgskip’ (default 0), repeat
the TI integration calculation in increments of <#>
up to ’avgmax’ (default all points), so
’avgincrement 10’ will do points 0-10, 0-20, etc.

bs_samples <samples> [bs_points <points>] [bs_seed<#>] [bs_fac <factor>]
Estimate error via bootstrap analysis, repeating the
TI integration <samples> times using <points> points
or <factor> times the total number of points.
Randomize with given seed.

DataSet Aspects:

[TIcurve] Raw TI curve. If ’nskip’ index is number of
points skipped. If bootstrapping, index is sample
index. If ’avgincrement’ the index is the number of
points.

[SD] For bootstrap analysis, standard deviation of
average free energy over samples.

Calculate free energy using DV/DL energies from thermodynamic integration.
The results of integration of the DV/DL curve will be written to <file>, while
the curves themselves will be written to <ti curve file>. Use nq to specify

276

number of Gaussian quadrature points; otherwise the lambda values should be
specified by xvals, where <x values> is a comma-separated list.

For example, to perform Gaussian quadrature integration using data sets
named ’TIdata’, repeating the calculation for various number of skipped data
points:

ti TIdata nq 9 name Curve out skip.agr curveout curve.agr nskip 0,5,10,15,20,30,40,50

12.39 tica
tica { crdset <COORDS set name> [mask <mask>] |

data <input set arg1> ... }
[lag <time lag>] [map {kinetic|commute|none}]
[name <output set name>] [out <file>] [cumvarout <file>]

crdset <COORDS set name> Input coordinates (COORDS)
data set.

mask <mask> Selected atoms in input coordinates
(COORDS) data set.

data <input set arg1> Input 1D data set name(s), may
specify more than once. If any data set is
periodic, all need to be periodic.

lag <time lag> TICA lag time in frames.

map {kinetic|commute|none} How to transform the
resulting eigenvectors.

kinetic (default) Scale eigenvectors by eigenvalues
so that distances in the transformed data
approximate kinetic distances; particularly
useful if using the projections to cluster.

commute Scale eigenvectors by regularized time
scales, sqrt(timescale_i / 2), so that distances
in the transformed data will approximate commute
distances. Timescales smaller than the lag time
are dampened.[42]

none Do not scale eigenvectors.

name <output set name> Output data set name.

out <file> File to write TICA modes to.

cumvarout <file> File to write eigenvalue cumulative
variance to.

Perform time-independent correlation analysis (TICA). Similar to principal com-
ponent analysis (PCA), TICA calculates eigenvectors/eigenvalues (i.e. eigen-
modes) from input data sets (either coordinates or a combination of other 1D

277

data sets). Whereas the eigenvectors from PCA describe the variance in the
input data, the eigenvectors from TICA describe the maximal autocorrelation
in the input data at the given lag time.[43] The analysis can be performed on
either coordinates or 1D data sets; the data sets can either be all periodic (in
which case they will be converted to cos/sin form) or not.

12.40 timecorr

timecorr vec1 <vecname1> [vec2 <vecname2>] out <filename> [name <dsname>]
[order <order>] [tstep <tstep>] [tcorr <tcorr>]
[dplr] [norm] [drct] [dplrout <dplrfile>] [ptrajformat]

vec1 <vecname1> [vec2 <vecname2>] Vector(s) on which
to operate. By default the auto-correlation
function will be calculated if one vector is
specified, and the cross-correlation function will
be calculated if two vectors are specified.

out <filename> Name of file to write output to.

[name <dsname>] Name of output vector data sets.

[order <order>] Order of Legendre polynomials to use;
default 2.

[tstep <tstep>] Time between snapshots (default 1.0).

[tcorr <tcorr>] Maximum time to calculate correlation
functions for (default 10000.0).

[dplr] Output correlation functions Cl ≡< Pl/(r(0)3r(τ)3) >
and < 1/(r(0)3r(τ)3) > in addition to the Pl

correlation function.

[norm] Normalize all correlation functions, i.e.,
Cl(t = 0) = Pl(t = 0) = 1.0.

[drct] Use the direct method to calculate correlations
instead of FFT; this will be much slower.

[dplrout] (dplr only) Write extra information for each
vector related to dplr option to <dplrfile>.

[ptrajformat] Write output in ptraj style (prevents use
of data formatting options).

DataSet Aspects:

[P] P<order> correlation function.

[C] C<order> correlation function (dplr only).

DataSet Aspects for dplr only:

[R3R3] <1/(r(0)3r(t)3> correlation function.

278

[R] Average magnitude (<R>).

[RRIG] Sqrt(<R^2>).

[R3] <1/R^3>.

[R6] <1/R^6>.

[Name] Vector name.

Calculate time auto/cross-correlation functions for vectors using spherical har-
monics theory. NOTE: To calculate direct correlation functions for vectors just
use the corr analysis command. The norm keyword will normalize the result-
ing correlation functions. Note that if dplr is specified, several additional data
sets with aspects [R], [RRIG], [R3], [R6], and [Name] will be created containing
either 1 or 2 values depending on how many vectors were specified.

Examples

Vectors between atoms 5 and 6 as well as 7 and 8 are calculated below, for which
auto and cross time correlation functions are obtained.

vector v0 @5 @6
vector v1 @7 @8
timecorr vec1 v0 tstep 1.0 tcorr 100.0 out v0.out order 2
timecorr vec1 v1 tstep 1.0 tcorr 100.0 out v1.out order 2
timecorr vec1 v0 vec2 v1 tstep 1.0 tcorr 100.0 out v0_v1.out order 2

Similarly, a vector perpendicular to the plane through atoms 18, 19, and 20 is
obtained and further analyzed.

vector v2 @18,@19,@20 corrplane
timecorr vec1 v3 tstep 1.0 tcorr 100.0 out v2.out order 2

12.41 vectormath

vectormath vec1 <vecname1> vec2 <vecname2> [out <filename>] [norm] [name <setname>]
[dotproduct | dotangle | crossproduct]

vec1 <vecname1> vec2 <vecname2> Vector(s) on which
to operate.

[out <filename>] Name of file to write output to.

[dotproduct] (Default) Calculate the dot-product of the
two vectors.

[dotangle] Calculate angle from dot-product between the
two vectors; vectors will be normalized.

[crossproduct] Calculate cross-product of the two
vectors.

279

[norm] Normalize the vectors; this will affect any
subsequent calculations with the vectors. This is
turned on automatically if dotangle specified.

Calculate dot product, angle from dot product (degrees), or cross product for
specified vectors. Note that norm normalizes the vectors themselves; the vec-
tors will remain normalized for subsequent calculations or output. Either vec1
or vec2 can be of size 1; in that case each vector in the set with N frames
operates on the single vector. For example, if vec1 is size N and vec2 is size 1,
then each frame of vec1 is operated on the single vector from vec2.

For example, to get the angles between two previously calculated vectors v1
and v2:

vectormath vec1 v1 vec2 v2 dotangle out dotproduct.dat name acos(|V1|*|V2|)

12.42 wavelet

wavelet [crdset <set name>] nb <n scaling vals> [s0 <s0>] [ds <ds>]
[correction <correction>] [chival <chival>] [type <wavelet>]
[out <filename>] [name <setname>]
[cluster [minpoints <#>] [epsilon <value>] [clusterout <file>]

[clustermapout <file>] [cmapdetail] [kdist] [cprefix <PDB prefix>]
[overlay <trajfile>] [overlayparm <parmfile>]]

[crdset <set name>] COORDS data set to use

nb <n scaling vals> Number of scales. The smaller the
number the better resolution, but slower to plot.

[s0 <s0>] The smallest scale of the wavelet function
(default 2dt where dt is time between snapshots in
ps)

[ds <ds>] Spacing between discrete scales. (Default is
0.25. Smaller value of ds gives finer resolution.
The largest values that give adequate sampling in
scale for Morlet and Paul are 0.5 and 1.5,
respectively)

[correction <correction>] The scale-to-wavelength
parameter (1.01 for Morlet, 1.389 for Paul).
Automatically set based on wavelet if not otherwise
specified.

[chival <chival>] The value of χ2
2at a particular

confidence level

[type <wavelet>] Type of wavelet function to use
<morlet> or <paul>

280

[out <filename>] Write results to file named <filename>

[name <setname>] Store results in data set with name
<setname>

[cluster] Perform wavelet clustering i.e. wavelet
feature extraction analysis.

[minpoints <#>] Minimum number of points necessary
to form a region of interest.

[epsilon <value>] Minimum region of interest size.
[clusterout <file>] Output for clustering (see

below).
[clustermapout <file>] Output cluster map

(recommended gnuplot format, see below).
[cmapdetail] Instead of the map being smoothed to

cluster regions, show full detail.
[kdist] Can be used to determine minpoints and

epsilon - see below.
[cprefix <PDB prefix>] Output cluster region PDBs

(only containing from minimum to maximum atom
and minimum to maximum frame) with given prefix.

[overlay <trajfile>] Create a trajectory that can be
overlaid with the original trajectory to
highlight atoms of interest. Atoms in cluster
regions will get their normal coordinates - all
others are set to the common center of mass.

[overlayparm <parmfile>] Topology that can be used
with the overlay trajectory.

<wavelet>: morlet, paul

Perform the wavelet analysis using fast Fourier transform (FFT) algorithm on
specified trajectory and write out to a gnuplot-formatted file named <name.gnu>.
The created Wavelet map provides a clear picture of the significant motions
which are characterized both in time and space. Note that typically the tra-
jectory in question should have rotational and translational movement removed
(via e.g. the rms command); otherwise these will be reflected in the wavelet
analysis results.

Wavelet analysis contains two main steps which performs continues wavelet
transform (CWT) and statistical significance testing as proposed by Torrence
and Compo[44]. Analysis is executed on one dimensional (1-D) coordinate which
is defined as the displacement from the starting position. For each atom, CWT
is calculated over a specified range of scales from S0up to S02(nb−1)ds. To
obtain the CWT of the trajectory the Fourier transform of atom’s displace-
ment and wavelets which scaled by S (S is calculated from: S = S02jds; j =
0, 1, 2, . . . , nb − 1) is computed and then the inverse Fourier transform of the
product of Fourier transforms will be calculated as the CWT. After calculating

281

the wavelet coordinates for all atoms, a significance testing is performed to de-
termine the significance of each wavelet coordinate. For doing this test we need
to have an appropriate background spectrum to consider as a mean or expected
spectrum and compare our wavelet coordinates against this background. In or-
der to calculate the background spectrum since wavelet spectrum (according to
the convolution theorem) follows the Fourier spectrum, the Fourier coefficients
over every atom’s displacement is calculated using the following formula and a
model (µk) is constructed on average which Fourier coefficients fit (Xn) is the
time series which is the atom’s displacement and k is the frequency index[45].

fk= 1
N

N−1∑
n=0

exp
(
−2πikn

N

)
Xn

This test is implemented based on the null hypothesis that the assumption is
that Fourier coordinates normally distributed around the expected value, then
the wavelet coordinates should also be normally distributed. Assuming the
expected background spectrum and since the square of a normally distributed
variable is chi-square distributed, then the distribution for the square of the
absolute values of wavelet coordinates (|Wi,k|2 is as follows (σ2is the variance
of the atom’s displacement).

σ2µkχ
2
2/2

Then choosing a confidence level we can determine the minimum acceptable
value for |Wi,k|2to be considered as a significant coordinates at that certain
confidence level. In the final map the scales of only those wavelet coordinates
which are significantly above the expected distribution are stored.

For example, to perform wavelet analysis on residues 1 to 17 with 40 scal-
ing values starting from scaling of 0.2 with a spacing of 0.25 using the Morlet
wavelet:

parm nowat.withions.parm7
trajin nowat.image.nc
rms :1-17@C*,N*,O*,P* first mass
wavelet nb 40 s0 0.2 ds 0.25 correction 1.01 chival 1.6094 type morlet \

:1-17 out wavelet.gnu usemap

Wavelet Analysis Feature Extraction

Wavelet analysis feature extraction (WAFEX)[46] uses a density-based clus-
tering algorithm (a modified version of the DBSCAN algorithm) to highlight
physical and temporal regions that have significant motions from wavelet map-
sand can extract the specific atoms and frames involved in these motions for
further analysis. Cluster regions shown in the map will be smoother by de-
fault for easier visualization (unless cmapdetail is specified). Details of the
clustering are provided via the clusterout keyword with format:

282

#Cluster [points] [minatm] [maxatm] [minfrm] [maxfrm] [avgval]

#Cluster Cluster region number.

points Number of points in the cluster.

minatm Starting atom of the region.

maxatm End atom of the region.

minfrm Starting frame of the region.

maxfrm End frame of the region.

avgval Average value of points in the region.

For example, to create a 2D gnuplot map highlight regions of interest called
’cluster.gnu’ one could use the following input.

parm ../DPDP.parm7
trajin ../DPDP.nc
rms @C,CA,N first
wavelet nb 10 s0 2 ds 0.25 type morlet correction 1.01 chival 0.25 \

:1-22 name DPDP \
cluster clustermapout cluster.gnu clusterout cluster.dat \

minpoints 66 epsilon 10.0
datafile cluster.gnu usemap palette kbvyw

Some experimentation with kdist may be required to obtain reasonable values
for minpoints and epsilon. See 12.5 on page 238 as well as the Heidari et al
paper for further discussion.

13 Analysis Examples
Please note that typically for principal component analysis (PCA) the trajectory
needs to be aligned against a reference structure to remove overall global and
translation motion. Use the rms command for this.

13.1 Cartesian covariance matrix calculation and projec-
tion (PCA)

After calculating modes, snapshots can be projected onto these in an additional
pass through the trajectory. It is very important that the snapshots used when
projecting are exactly the same as those used to generate the original covariance
matrix. This example takes advantage of the COORDS data set functionality
in cpptraj to save snapshots for the purposes of projection.

Step one. Generate average structure.
RMS-Fit to first frame to remove global translation/rotation.
parm myparm.parm7

283

trajin mytraj.nc
rms first !@H=
average crdset AVG
run
Step two. RMS-Fit to average structure. Calculate covariance matrix.
Save the fit coordinates.
rms ref AVG !@H=
matrix covar name MyMatrix !@H=
createcrd CRD1
run
Step three. Diagonalize matrix.
runanalysis diagmatrix MyMatrix vecs 2 name MyEvecs
Step four. Project saved fit coordinates along eigenvectors 1 and 2
crdaction CRD1 projection evecs MyEvecs !@H= out project.dat beg 1 end 2

13.2 Dihedral covariance matrix calculation and projec-
tion for backbone phi/psi (PCA)

parm ../1rrb_vac.prmtop
trajin ../1rrb_vac.mdcrd
Generation of phi/psi dihedral data
multidihedral BB phi psi resrange 2
run
Calculate dihedral covariance matrix and obtain eigenvectors
matrix dihcovar dihedrals BB[*] out dihcovar.dat name DIH
diagmatrix DIH vecs 4 out modes.dihcovar.dat name DIHMODES
run
Project along eigenvectors
projection evecs DIHMODES out dih.project.dat beg 1 end 4 dihedrals BB[*]
run

References
[1] Daniel R. Roe and Thomas E. Cheatham, III. PTRAJ and CPPTRAJ:

Software for Processing and Analysis of Molecular Dynamics Trajectory
Data. J. Chem. Theory Comput., 9:3084–3095, 2013.

[2] Daniel R. Roe and Thomas E. Cheatham III. Parallelization of CPPTRAJ
enables large scale analysis of molecular dynamics trajectory data. Journal
of Computational Chemistry, 39(25):2110–2117, 2018.

[3] Daniel R. Roe and Christina Bergonzo. PrepareForLeap: An Automated
Tool for Fast PDB-to-Parameter Generation. Journal of Computational
Chemistry, 43:930–935, may 2022.

284

[4] Melissa E. O’Neill. Pcg: A family of simple fast space-efficient statistically
good algorithms for random number generation. Technical Report HMC-
CS-2014-0905, Harvey Mudd College, Claremont, CA, September 2014.

[5] Sebastiano Vigna. Further scramblings of Marsaglia’s xorshift generators.
Journal of Computational and Applied Mathematics, 315:175–181, may
2017.

[6] Daniel R. Roe and Bernard R. Brooks. Quantifying the Effects of Lossy
Compression on Energies Calculated from Molecular Dynamics Trajecto-
ries. Protein Science, 2022.

[7] S. Chatterjee, P. G. Debenedetti, F. H. Stillinger, and R. M. Lynden-Bell.
A Computational Investigation of Thermodynamics, Structure, Dynam-
ics and Solvation Behavior in Modified Water Models. J. Chem. Phys.,
128:124511, 2008.

[8] T. Lazaridis. Inhomogeneous Fluid Approach to Solvation Thermodynam-
ics. 1 Theory. J. Phys. Chem. B, 102:3531–3541, 1998.

[9] C. N. Nguyen, T. Kurtzman Young, and M. K. Gilson. Grid Inhomoge-
neous Solvation Theory: Hydration Structure and Thermodynamics of the
Miniature Receptor cucurbit[7]uril. J. Chem. Phys., 137:044101, 2012.

[10] Lieyang Chen, Anthony Cruz, Daniel R. Roe, Andrew C. Simmonett, Lau-
ren Wickstrom, Nanjie Deng, and Tom Kurtzman. Thermodynamic De-
composition of Solvation Free Energies with Particle Mesh Ewald and Long-
Range Lennard-Jones Interactions in Grid Inhomogeneous Solvation The-
ory. Journal of Chemical Theory and Computation, page acs.jctc.0c01185,
apr 2021.

[11] W. Humphrey, A. Dalke, and K. Schulten. VMD Visual Molecular Dynam-
ics. J. Molec. Graph., 14:33–38, 1996.

[12] D. J. Sindhikara, N. Yoshida, and F. Hirata. Placevent: An Algorithm
for Prediction of Explicit Solvent Atom Distribution-Application to HIV-1
Protease and F-ATP Synthase. J. Comput. Chem., 33:1536–1543, 2012.

[13] J.J. Chou, D.A. Case, and A. Bax. Insights into the mobility of methyl-
bearing side chains in proteins. J. Am. Chem. Soc., 125:8959–8966, 2003.

[14] C. Perez, F. Lohr, H. Ruterjans, and J.M. Schmidt. Self-Consistent Karplus
Parameterization of (3)J couplings depending on the polypeptide side-chain
torsion chi(1). J. Am. Chem. Soc., 123:7081–7093, 2001.

[15] P.H. Hunenberger, A.E. Mark, and W.F. van Gunsteren. Fluctuation
and Cross-correlation Analysis of Protein Motions Observed in Nanosec-
ond Molecular Dynamics Simulations. J. Mol. Biol., 252:492–503, 1995.

285

[16] J.J. Prompers and R. Brüschweiler. Dynamic and structural analysis of
isotropically distributed molecular ensembles. Proteins, 46:177–189, 2002.

[17] J.J. Prompers and R. Brüschweiler. General framework for studying the
dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy
and MD simulation. J. Am. Chem. Soc., 124:4522–4534, 2002.

[18] M.L. Connolly. Analytical molecular surface calculation. J. Appl. Cryst.,
16:548–558, 1983.

[19] Doree Sitkoff, Kim A. Sharp, and Barry Honig. Accurate Calculation of Hy-
dration Free Energies Using Macroscopic Solvent Models. J. Phys. Chem.,
98:1978–1988, 1994.

[20] XJ Lu and WK Olson. 3dna: a software package for the analysis, rebuilding
and visualization of three-dimensional nucleic acid structures. NUCLEIC
ACIDS RESEARCH, 31:5108–5121, 2003.

[21] M.S. Babcock, E.P.D. Pednault, and W.K. Olson. Nucleic Acid Structure
Analysis. J. Mol. Biol., 237:125–156, 1994.

[22] M. A. El Hassan and C. R. Calladine. Two distinct modes of protein-
induced bending in dna. J. Mol. Biol., 282:331–343, 1998.

[23] Wilma K. Olson, Manju Bansal, Stephen K. Burley, Richard E. Dicker-
son, Mark Gerstein, Stephen C. Harvey, Udo Heinemann, Xiang-Jun Lu,
Stephen Neidle, Zippora Shakked, Heinz Sklenar, Masashi Suzuki, Chang-
Shung Tung, Eric Westhof, Cynthia Wolberger, and Helen M. Berman. A
standard reference frame for the description of nucleic acid base-pair ge-
ometry. J. Mol. Biol., 313:229–237, 2001.

[24] C Altona and M Sundaralingam. Conformational analysis of the sugar
ring in nucleosides and nucleotides. a new description using the concept of
pseudorotation. J Am Chem Soc, 94:8205–8212, 1972.

[25] SC Harvey and M Prabhakaran. Ribose puckering - structure, dynamics,
energetics, and the pseudorotation cycle. J Am Chem Soc, 108:6128–6136,
1986.

[26] D Cremer and JA Pople. A general definition of ring puckering coordinates.
J Am Chem Soc, 97:1354–1358, 1975.

[27] W. Kabsch and C. Sander. Dictionary of protein secondary structure: pat-
tern recognition of hydrogen-bonded and geometrical features. Biopoly-
mers, 22:2577–2637, 1983.

[28] G. Cui, J. M. Swails, and E. S. Manas. SPAM: A Simple Approach for
Profiling Bound Water Molecules. J. Chem. Theory Comput., 9:5539–5549,
2013.

286

[29] J. Weiser, P.S. Shenkin, and W.C. Still. Approximate Atomic Surfaces from
Linear Combinations of Pairwise Overlaps (LCPO). J. Comput. Chem.,
20:217–230, 1999.

[30] Daniel R. Roe and Bernard R. Brooks. Improving the Speed of Volumet-
ric Density Map Generation via Cubic Spline Interpolation. Journal of
Molecular Graphics and Modelling, 104:107832, 2021.

[31] M. Ester, H. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. Proc. Second
Int. Conf. Knowledge Disc. Data Mining (KDD-96), pages 226–231, 1996.

[32] Alex Rodriguez and Alessandro Laio. Clustering by fast search and find of
density peaks. Science, 344:1492–1496, 2014.

[33] A. Bakan, L.M. Meireles, and I. Bahar. ProDy: Protein Dynamics Inferred
from Theory and Experiments. Bioinformatics, 27(11):1575–1577, 2011.

[34] Donald A. McQuarrie. Statistical Thermodynamics. Harper and Row, New
York, 1973.

[35] Chia-En Chang, Wei Chen, and Michael K. Gilson. Evaluating the Accu-
racy of the Quasiharmonic Approximation. Journal of Chemical Theory
and Computation, 1(5):1017–1028, 2005. PMID: 26641917.

[36] Daniel R. Roe and Bernard R. Brooks. A protocol for preparing explicitly
solvated systems for stable molecular dynamics simulations. The Journal
of Chemical Physics, 153(5):054123, aug 2020.

[37] Daniel R. Roe, Christina Bergonzo, and Thomas E. Cheatham III. Evalua-
tion of enhanced sampling provided by accelerated molecular dynamics with
hamiltonian replica exchange methods. J. Phys. Chem. B, 118(13):3543–
3552, 2014.

[38] Rodrigo Galindo-Murillo, Daniel R. Roe, and Thomas E. Cheatham, III.
Convergence and reproducibility in molecular dynamics simulations of the
DNA duplex d(GCACGAACGAACGAACGC). Biochim. Biophys. Acta,
1850:1041–1058, 2015.

[39] V. Wong and D.A. Case. Evaluating rotational diffusion from protein md
simulations. J. Phys. Chem. B, 112:6013–6024, 2008.

[40] B. Schneider, S. Neidle, and H. M. Berman. Conformations of the
sugar-phosphate backbone in helical dna crystal structures. Biopolymers,
42(1):113–124, 1997.

[41] B. Schneider, Z. Moravek, and H. M. Berman. Rna conformational classes.
Nucleic Acids Res., 32(5):1666–1677, 2004.

287

[42] Frank Noé, Ralf Banisch, and Cecilia Clementi. Commute maps: Separat-
ing slowly mixing molecular configurations for kinetic modeling. Journal
of Chemical Theory and Computation, 12(11):5620–5630, 2016.

[43] Guillermo Pérez-Hernández, Fabian Paul, Toni Giorgino, Gianni De Fab-
ritiis, and Frank Noé. Identification of slow molecular order parame-
ters for Markov model construction. The Journal of Chemical Physics,
139(1):015102, 07 2013.

[44] C. Torrence and G. P. Compo. A practical guide to wavelet analysis. Bull.
Am. Meteorol. Soc., 79(1):61–78, 1998.

[45] N. C. Benson and V. Dagget. Wavelet analysis of protein motion. Int. J.
Wavelets Multi., 10(4), 2012.

[46] Z. Heidari, D. R. Roe, R. Galindo-Murillo, J. B. Ghasemi, and T. E.
Cheatham, III. Using Wavelet Analysis To Assist in Identification of Sig-
nificant Events in Molecular Dynamics Simulations. J. Chem. Inf. Model.,
56:1282–1291, 2016.

288

	Introduction
	Manual Syntax Format
	Installation
	Examples

	Running Cpptraj
	Command Line Syntax
	Commands
	Getting Help
	Batch mode
	Interactive mode
	Trajectory Processing “Run”
	Actions and multiple topologies

	Parallelization
	MPI Trajectory Parallelization
	OpenMP Parallelization
	CUDA Parallelization

	General Concepts
	Units
	Atom Mask Selection Syntax
	Ranges
	Parameter/Reference Tagging

	Variables and Control Structures
	for
	set
	show

	Data Sets and Data Files
	Data Set Selection Syntax
	Data Set Math

	Data File Options
	Standard Data File Options
	Grace Data File Options
	Gnuplot Data File Options
	Amber REM Log Options
	Amber MDOUT Options
	Evecs File Options
	Vector psuedo-traj Options
	OpenDX file options
	CCP4 file options
	Charmm REPD log options
	Amber Constant pH Out options

	Coordinates (COORDS) Data Set Commands
	catcrd
	combinecrd
	crdaction
	crdout
	crdtransform
	createcrd
	emin
	extendedcomp
	graft
	loadcrd
	loadtraj
	permutedihedrals
	prepareforleap
	reference
	rotatedihedral
	sequence
	splitcoords
	zmatrix

	General Commands
	activeref
	calc
	clear
	create
	createset
	datafile
	datafilter
	dataset
	debug | prnlev
	ensextension
	exit | quit
	flatten
	go | run
	help
	list
	noexitonerror
	noprogress
	parallelanalysis
	parsedata
	precision
	random
	readdata
	readensembledata
	readinput
	removedata
	rst
	runanalysis
	select
	selectds
	sortensembledata
	usediskcache
	write | writedata
	System Commands

	Topology File Commands
	angleinfo | angles | printangles
	atominfo | atoms | printatoms
	bondinfo | bonds | printbonds
	bondparminfo
	change
	charge
	comparetop
	dihedralinfo | dihedrals | printdihedrals
	hmassrepartition
	improperinfo | impropers | printimpropers
	mass
	molinfo
	parm
	PDB format:
	Charmm PSF:
	Gromacs Top

	parmbox
	parminfo
	parmstrip
	parmwrite
	Amber Topology
	Charmm PSF

	printub | ubinfo
	resinfo
	scaledihedralk
	solvent
	updateparameters

	Trajectory File Commands
	ensemble
	ensemblesize
	reference
	trajin
	Options for Amber NetCDF, Amber NC Restart, Amber Restart:
	Options for CHARMM DCD:
	Options for PDB files:

	trajout
	Options for pdb format
	Options for Amber ASCII format:
	Options for Amber NetCDF format:
	Options for Amber Restart/NetCDF Restart format:
	Options for CHARMM COORdinates:
	Options for CHARMM DCD:
	Options for GROMACS TRX/XTC format:
	Options for mol2 format:
	Options for SQM input format:
	Options for XYZ format:

	Action Commands
	addatom
	align
	angle
	areapermol
	atomiccorr
	atomicfluct | rmsf
	atommap
	autoimage
	average
	avgbox
	avgcoord
	bounds
	box
	center
	check | checkoverlap | checkstructure
	checkchirality
	closest | closestwaters
	cluster
	clusterdihedral
	contacts
	createcrd
	createreservoir
	density
	diffusion
	dihedral
	dihedralrms | dihrms
	dihedralscan
	dipole
	distance
	drms | drmsd (distance RMSD)
	dssp
	energy
	esander
	filter
	fixatomorder
	fiximagedbonds
	gist (Grid Inhomogeneous Solvation Theory)
	grid
	hbond
	image
	jcoupling
	keep
	lessplit
	lie
	lipidorder
	lipidscd
	makestructure
	mask
	matrix
	mindist/maxdist
	minimage
	molsurf
	multidihedral
	multipucker
	multivector
	nastruct
	nativecontacts
	outtraj
	pairdist
	pairwise
	principal
	projection
	pucker
	radgyr | rog
	radial | rdf
	randomizeions
	remap
	replicatecell
	rms | rmsd
	rms2d | 2drms
	rmsavgcorr
	rmsf | atomicfluct
	rotate
	rotdif
	runavg | runningaverage
	scale
	secstruct
	setvelocity
	spam
	stfcdiffusion
	strip
	surf
	symmrmsd
	temperature
	time
	tordiff
	trans | translate
	unstrip
	unwrap
	vector
	velocityautocorr
	volmap
	volume
	watershell
	xtalsymm

	Analysis Commands
	autocorr
	avg
	calcdiffusion
	calcstate
	cluster
	cphstats
	corr | correlationcoe
	crank | crankshaft
	crdfluct
	crosscorr
	curvefit
	diagmatrix
	divergence
	evalplateau
	fft
	hausdorff
	hist | histogram
	integrate
	ired
	kde
	lifetime
	lowestcurve
	meltcurve
	modes
	multicurve
	multihist
	phipsi
	projectdata
	regress
	remlog
	rms2d | 2drms
	rmsavgcorr
	rotdif
	runningavg
	slope
	spline
	statistics | stat
	Torsion Analysis
	Distance Analysis
	Pucker Analysis

	ti
	tica
	timecorr
	vectormath
	wavelet

	Analysis Examples
	Cartesian covariance matrix calculation and projection (PCA)
	Dihedral covariance matrix calculation and projection for backbone phi/psi (PCA)

