{ "cells": [ { "cell_type": "code", "execution_count": 10, "id": "0b1323d6", "metadata": {}, "outputs": [ { "data": { "application/javascript": [ "(function(root) {\n", " function now() {\n", " return new Date();\n", " }\n", "\n", " const force = true;\n", "\n", " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", " root._bokeh_onload_callbacks = [];\n", " root._bokeh_is_loading = undefined;\n", " }\n", "\n", "const JS_MIME_TYPE = 'application/javascript';\n", " const HTML_MIME_TYPE = 'text/html';\n", " const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", " const CLASS_NAME = 'output_bokeh rendered_html';\n", "\n", " /**\n", " * Render data to the DOM node\n", " */\n", " function render(props, node) {\n", " const script = document.createElement(\"script\");\n", " node.appendChild(script);\n", " }\n", "\n", " /**\n", " * Handle when an output is cleared or removed\n", " */\n", " function handleClearOutput(event, handle) {\n", " const cell = handle.cell;\n", "\n", " const id = cell.output_area._bokeh_element_id;\n", " const server_id = cell.output_area._bokeh_server_id;\n", " // Clean up Bokeh references\n", " if (id != null && id in Bokeh.index) {\n", " Bokeh.index[id].model.document.clear();\n", " delete Bokeh.index[id];\n", " }\n", "\n", " if (server_id !== undefined) {\n", " // Clean up Bokeh references\n", " const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", " cell.notebook.kernel.execute(cmd_clean, {\n", " iopub: {\n", " output: function(msg) {\n", " const id = msg.content.text.trim();\n", " if (id in Bokeh.index) {\n", " Bokeh.index[id].model.document.clear();\n", " delete Bokeh.index[id];\n", " }\n", " }\n", " }\n", " });\n", " // Destroy server and session\n", " const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", " cell.notebook.kernel.execute(cmd_destroy);\n", " }\n", " }\n", "\n", " /**\n", " * Handle when a new output is added\n", " */\n", " function handleAddOutput(event, handle) {\n", " const output_area = handle.output_area;\n", " const output = handle.output;\n", "\n", " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", " if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n", " return\n", " }\n", "\n", " const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", "\n", " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", " // store reference to embed id on output_area\n", " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", " }\n", " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", " const bk_div = document.createElement(\"div\");\n", " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", " const script_attrs = bk_div.children[0].attributes;\n", " for (let i = 0; i < script_attrs.length; i++) {\n", " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", " toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n", " }\n", " // store reference to server id on output_area\n", " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", " }\n", " }\n", "\n", " function register_renderer(events, OutputArea) {\n", "\n", " function append_mime(data, metadata, element) {\n", " // create a DOM node to render to\n", " const toinsert = this.create_output_subarea(\n", " metadata,\n", " CLASS_NAME,\n", " EXEC_MIME_TYPE\n", " );\n", " this.keyboard_manager.register_events(toinsert);\n", " // Render to node\n", " const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", " render(props, toinsert[toinsert.length - 1]);\n", " element.append(toinsert);\n", " return toinsert\n", " }\n", "\n", " /* Handle when an output is cleared or removed */\n", " events.on('clear_output.CodeCell', handleClearOutput);\n", " events.on('delete.Cell', handleClearOutput);\n", "\n", " /* Handle when a new output is added */\n", " events.on('output_added.OutputArea', handleAddOutput);\n", "\n", " /**\n", " * Register the mime type and append_mime function with output_area\n", " */\n", " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", " /* Is output safe? */\n", " safe: true,\n", " /* Index of renderer in `output_area.display_order` */\n", " index: 0\n", " });\n", " }\n", "\n", " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", " if (root.Jupyter !== undefined) {\n", " const events = require('base/js/events');\n", " const OutputArea = require('notebook/js/outputarea').OutputArea;\n", "\n", " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", " register_renderer(events, OutputArea);\n", " }\n", " }\n", " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", " root._bokeh_timeout = Date.now() + 5000;\n", " root._bokeh_failed_load = false;\n", " }\n", "\n", " const NB_LOAD_WARNING = {'data': {'text/html':\n", " \"<div style='background-color: #fdd'>\\n\"+\n", " \"<p>\\n\"+\n", " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", " \"</p>\\n\"+\n", " \"<ul>\\n\"+\n", " \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n", " \"<li>use INLINE resources instead, as so:</li>\\n\"+\n", " \"</ul>\\n\"+\n", " \"<code>\\n\"+\n", " \"from bokeh.resources import INLINE\\n\"+\n", " \"output_notebook(resources=INLINE)\\n\"+\n", " \"</code>\\n\"+\n", " \"</div>\"}};\n", "\n", " function display_loaded() {\n", " const el = document.getElementById(null);\n", " if (el != null) {\n", " el.textContent = \"BokehJS is loading...\";\n", " }\n", " if (root.Bokeh !== undefined) {\n", " if (el != null) {\n", " el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n", " }\n", " } else if (Date.now() < root._bokeh_timeout) {\n", " setTimeout(display_loaded, 100)\n", " }\n", " }\n", "\n", " function run_callbacks() {\n", " try {\n", " root._bokeh_onload_callbacks.forEach(function(callback) {\n", " if (callback != null)\n", " callback();\n", " });\n", " } finally {\n", " delete root._bokeh_onload_callbacks\n", " }\n", " console.debug(\"Bokeh: all callbacks have finished\");\n", " }\n", "\n", " function load_libs(css_urls, js_urls, callback) {\n", " if (css_urls == null) css_urls = [];\n", " if (js_urls == null) js_urls = [];\n", "\n", " root._bokeh_onload_callbacks.push(callback);\n", " if (root._bokeh_is_loading > 0) {\n", " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", " return null;\n", " }\n", " if (js_urls == null || js_urls.length === 0) {\n", " run_callbacks();\n", " return null;\n", " }\n", " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", " root._bokeh_is_loading = css_urls.length + js_urls.length;\n", "\n", " function on_load() {\n", " root._bokeh_is_loading--;\n", " if (root._bokeh_is_loading === 0) {\n", " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", " run_callbacks()\n", " }\n", " }\n", "\n", " function on_error(url) {\n", " console.error(\"failed to load \" + url);\n", " }\n", "\n", " for (let i = 0; i < css_urls.length; i++) {\n", " const url = css_urls[i];\n", " const element = document.createElement(\"link\");\n", " element.onload = on_load;\n", " element.onerror = on_error.bind(null, url);\n", " element.rel = \"stylesheet\";\n", " element.type = \"text/css\";\n", " element.href = url;\n", " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", " document.body.appendChild(element);\n", " }\n", "\n", " for (let i = 0; i < js_urls.length; i++) {\n", " const url = js_urls[i];\n", " const element = document.createElement('script');\n", " element.onload = on_load;\n", " element.onerror = on_error.bind(null, url);\n", " element.async = false;\n", " element.src = url;\n", " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", " document.head.appendChild(element);\n", " }\n", " };\n", "\n", " function inject_raw_css(css) {\n", " const element = document.createElement(\"style\");\n", " element.appendChild(document.createTextNode(css));\n", " document.body.appendChild(element);\n", " }\n", "\n", " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-2.4.3.min.js\"];\n", " const css_urls = [];\n", "\n", " const inline_js = [ function(Bokeh) {\n", " Bokeh.set_log_level(\"info\");\n", " },\n", "function(Bokeh) {\n", " }\n", " ];\n", "\n", " function run_inline_js() {\n", " if (root.Bokeh !== undefined || force === true) {\n", " for (let i = 0; i < inline_js.length; i++) {\n", " inline_js[i].call(root, root.Bokeh);\n", " }\n", "} else if (Date.now() < root._bokeh_timeout) {\n", " setTimeout(run_inline_js, 100);\n", " } else if (!root._bokeh_failed_load) {\n", " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", " root._bokeh_failed_load = true;\n", " } else if (force !== true) {\n", " const cell = $(document.getElementById(null)).parents('.cell').data().cell;\n", " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", " }\n", " }\n", "\n", " if (root._bokeh_is_loading === 0) {\n", " console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", " run_inline_js();\n", " } else {\n", " load_libs(css_urls, js_urls, function() {\n", " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", " run_inline_js();\n", " });\n", " }\n", "}(window));" ], "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"<div style='background-color: #fdd'>\\n\"+\n \"<p>\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"</p>\\n\"+\n \"<ul>\\n\"+\n \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n \"<li>use INLINE resources instead, as so:</li>\\n\"+\n \"</ul>\\n\"+\n \"<code>\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"</code>\\n\"+\n \"</div>\"}};\n\n function display_loaded() {\n const el = document.getElementById(null);\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-2.4.3.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\n} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(null)).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "import re\n", "import requests\n", "import base64\n", "import ipywidgets as widgets\n", "import bokeh.palettes\n", "from operator import itemgetter\n", "from IPython.display import display, clear_output, HTML\n", "from hublib.ui import Download\n", "from bokeh.io import show, output_notebook\n", "from bokeh.models import ColorBar, ColumnDataSource, CategoricalColorMapper\n", "from bokeh.plotting import figure\n", "from bokeh.transform import transform\n", "\n", "output_notebook(hide_banner=True)\n", "\n", "#API urls\n", "api_url='http://85.215.208.224:8983/solr/strainAPI/select?q=allele_symbol:'\n", "api_url_two='http://85.215.208.224:8983/solr/strainAPI/select?q=mp_ids:\\\"'\n", "api_url_three='http://85.215.208.224:8983/solr/strainAPI/select?q=name:'\n", "api_url_end='&rows=2000'" ] }, { "cell_type": "code", "execution_count": 12, "id": "2ee417bf", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2be73956f57e47a5a2ee5f81497a3504", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(HTML(value='<h1><em><b>Infrafrontier Strains API</b></em></h1>', layout=Layout(margin='0 0 5em …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "class App():\n", " \n", " def __init__(self):\n", " self.tab = widgets.Tab()\n", " self.tab.children = []\n", " \n", " #fisrt tab\n", " self.table_container = widgets.Output()\n", " self.send_button, send_box = self.create_send_button()\n", " self.res_button = self.create_reset_button()\n", " self.container = widgets.VBox([send_box, widgets.HBox([self.send_button,self.res_button])])\n", " self.down_container = widgets.HBox([])\n", " self.tab_one = widgets.VBox([\n", " self.container,\n", " self.table_container,\n", " self.down_container\n", " ])\n", " \n", " #second tab\n", " self.table_container_two = widgets.Output()\n", " self.send_button_two, send_box_two = self.create_send_button_two()\n", " self.res_button_two = self.create_reset_button_two()\n", " self.container_two = widgets.VBox([send_box_two, widgets.HBox([self.send_button_two,self.res_button_two])])\n", " self.down_container_two = widgets.HBox([])\n", " self.tab_two = widgets.VBox([\n", " self.container_two,\n", " self.table_container_two,\n", " self.down_container_two\n", " ])\n", " \n", " #third tab\n", " self.table_container_three = widgets.Output()\n", " self.plot_container = widgets.Output()\n", " self.send_button_three, send_box_three = self.create_send_button_three()\n", " self.plot_button = self.create_plot_button()\n", " self.res_button_three = self.create_reset_button_three()\n", " self.container_three = widgets.VBox([send_box_three, widgets.HBox([self.send_button_three,self.res_button_three])])\n", " self.down_container_three = widgets.HBox([])\n", " self.slider_container = widgets.HBox()\n", " self.tab_three = widgets.VBox([\n", " self.container_three,\n", " self.table_container_three,\n", " self.down_container_three,\n", " self.slider_container,\n", " self.plot_container\n", " ])\n", " \n", " #final view\n", " self.tab.children = [self.tab_one,self.tab_two,self.tab_three]\n", " self.tab.set_title(0, 'MP terms by gene symbols')\n", " self.tab.set_title(1, 'gene symbols by MP terms')\n", " self.tab.set_title(2, 'common mp terms by strains')\n", " self.final_container = widgets.VBox([\n", " widgets.HTML(('<h1><em><b>Infrafrontier Strains API</b></em></h1>'), \n", " layout=widgets.Layout(margin='0 0 5em 0')),\n", " self.tab\n", " ])\n", " \n", " #FUNCTIONS FOR FIRST TAB PAGE\n", " \n", " \n", " def create_send_button(self):\n", " label = widgets.Label('Gene Symbol:')\n", " self.text_area = widgets.Textarea(placeholder='')\n", " send_b = widgets.Button(description='Submit', tooltip='submit your gene symbol', disabled=True)\n", " send_b.on_click(self.on_change_s)\n", " self.text_area.observe(self.on_change_text, names=['value'])\n", " sub_box = widgets.HBox([label,self.text_area])\n", " return(send_b, sub_box)\n", " \n", " def create_reset_button(self):\n", " reset_b = widgets.Button(description='Reset', tooltip='reset the environment to generate a new table', disabled=True)\n", " reset_b.on_click(self.on_click_r)\n", " return (reset_b) \n", " \n", " def on_change_text(self,_):\n", " if (self.text_area.value == '') | (self.text_area.value.isspace()):\n", " self.send_button.disabled=True\n", " else:\n", " self.send_button.disabled=False\n", " \n", " def on_click_r(self,_):\n", " try:\n", " del(self.df)\n", " for i in self.down_container.children:\n", " remove = self.down_container.children[-1]\n", " self.down_container.children = self.down_container.children[:-1]\n", " remove.close()\n", " for i in self.slider_container.children:\n", " remove = self.slider_container.children[-1]\n", " self.slider_container.children = self.slider_container.children[:-1]\n", " remove.close()\n", " except NameError:\n", " print(\"\")\n", " self.text_area.value=''\n", " self.res_button.disabled=True\n", " self.send_button.disabled=True\n", " self.table_container.clear_output(wait=False)\n", " \n", " def on_change_s(self,_):\n", " with self.table_container:\n", " self.table_container.clear_output(wait=False)\n", " self.send_button.disabled = True\n", " gene = self.text_area.value\n", " query = requests.get(api_url+gene+api_url_end).json()\n", " if (query[\"response\"][\"numFound\"] != 0):\n", " req = query[\"response\"][\"docs\"]\n", " self.df = pd.DataFrame(columns=[\"Gene Symbol\",\"Strain name\",\"MP term ids\", \"MP term names\"])\n", "\n", " sym=[]\n", " names = []\n", " mp_ids = []\n", " mp_terms = []\n", " for i in req:\n", " sym.append(i[\"allele_symbol\"])\n", " names.append(i[\"name\"])\n", " mp_ids.append(i[\"mp_ids\"])\n", " mp_terms.append(i[\"mp_terms\"])\n", "\n", " self.df[\"Gene Symbol\"] = sym\n", " self.df[\"Strain name\"] = names\n", " self.df[\"MP term ids\"] = mp_ids\n", " self.df[\"MP term names\"] = mp_terms\n", " del(sym,names,mp_ids,mp_terms,req)\n", "\n", " #create a copy of the dataframe to better display the table\n", " df2 = self.df.copy()\n", " for i in df2[\"MP term ids\"]:\n", " i[0] = i[0].replace(\",\",\", \")\n", " df2 = df2.applymap(lambda x: re.sub(\"['\\[\\]]\",\"\",str(x)))\n", " \n", " display(HTML(df2.to_html(justify=\"left\", index=False)))\n", " self.csv_file = self.df.to_csv(\"result_table.csv\",index=False)\n", " self.res_button.disabled = False\n", " htmlWidget = widgets.HTML(value=\"\")\n", " self.create_download_link(\"result_table.csv\", htmlWidget)\n", " self.down_container.children = tuple(list(self.down_container.children) + [htmlWidget])\n", " else:\n", " print(\"No data found for gene \"+gene)\n", " self.res_button.disabled = False\n", " \n", " def create_download_link(self, filename, htmlWidget): \n", " title=\"Click here to download the table in csv format\"\n", " \n", " data = open(filename, \"rb\").read()\n", " b64 = base64.b64encode(data)\n", " payload = b64.decode()\n", " \n", " html = '<a download=\"{filename}\" href=\"data:text/csv;base64,{payload}\" target=\"_blank\"><button class=\"button-style\">Download table as csv file</button></a>'\n", " htmlWidget.value = html.format(payload=payload,title=title,filename=filename)\n", "\n", " \n", " #FUNCTIONS FOR SECOND TAB PAGE\n", " \n", " def create_send_button_two(self):\n", " label = widgets.Label('MP term id:')\n", " self.text_area_two = widgets.Textarea(placeholder='')\n", " send_b = widgets.Button(description='Submit', tooltip='submit your MP term id', disabled=True)\n", " send_b.on_click(self.on_change_s_two)\n", " self.text_area_two.observe(self.on_change_text_two, names=['value'])\n", " sub_box = widgets.HBox([label,self.text_area_two])\n", " return(send_b, sub_box)\n", " \n", " def create_reset_button_two(self):\n", " reset_b = widgets.Button(description='Reset', tooltip='reset the environment to generate a new table', disabled=True)\n", " reset_b.on_click(self.on_click_r_two)\n", " return (reset_b) \n", " \n", " def on_change_text_two(self,_):\n", " if (self.text_area_two.value == '') | (self.text_area_two.value.isspace()):\n", " self.send_button_two.disabled=True\n", " else:\n", " self.send_button_two.disabled=False\n", " \n", " def on_click_r_two(self,_):\n", " try:\n", " del(self.df_two)\n", " for i in self.down_container_two.children:\n", " remove = self.down_container_two.children[-1]\n", " self.down_container_two.children = self.down_container_two.children[:-1]\n", " remove.close()\n", " except NameError:\n", " print(\"\")\n", " self.text_area_two.value=''\n", " self.res_button_two.disabled=True\n", " self.send_button_two.disabled=True\n", " self.table_container_two.clear_output(wait=False)\n", " \n", " \n", " def on_change_s_two(self,_):\n", " with self.table_container_two:\n", " self.table_container_two.clear_output(wait=False)\n", " self.send_button_two.disabled = True\n", " term = self.text_area_two.value\n", " query = requests.get(api_url_two+term+'\\\"'+api_url_end).json()\n", " if (query[\"response\"][\"numFound\"] != 0):\n", " req = query[\"response\"][\"docs\"]\n", " self.df_two = pd.DataFrame(columns=[\"MP term id\", \"Genes\"])\n", "\n", " sym=[]\n", " for i in req:\n", " sym.append(i[\"allele_symbol\"][0])\n", "\n", " sym = list(dict.fromkeys(sym))\n", " self.df_two[\"MP term id\"] = [term]\n", " self.df_two[\"Genes\"][0] = sym\n", " del(sym,req)\n", "\n", " #create a copy of the dataframe to better display the table\n", " df2_two = self.df_two.copy()\n", " df2_two = df2_two.applymap(lambda x: re.sub(\"['\\[\\]]\",\"\",str(x)))\n", "\n", " display(HTML(df2_two.to_html(justify=\"left\", index=False)))\n", " self.csv_file_two = self.df_two.to_csv(\"result_table.csv\",index=False)\n", " self.res_button_two.disabled = False\n", " htmlWidget_two = widgets.HTML(value=\"\")\n", " self.create_download_link_two(\"result_table.csv\", htmlWidget_two)\n", " self.down_container_two.children = tuple(list(self.down_container_two.children) + [htmlWidget_two])\n", " else:\n", " print(\"No gene found with the MP term id \"+term)\n", " self.res_button_two.disabled = False\n", " \n", " def create_download_link_two(self, filename, htmlWidget): \n", " title=\"Click here to download the table in csv format\"\n", " \n", " data = open(filename, \"rb\").read()\n", " b64 = base64.b64encode(data)\n", " payload = b64.decode()\n", " \n", " html = '<a download=\"{filename}\" href=\"data:text/csv;base64,{payload}\" target=\"_blank\"><button class=\"button-style\">Download table as csv file</button></a>'\n", " htmlWidget.value = html.format(payload=payload,title=title,filename=filename)\n", " \n", " \n", " #FUNCTIONS FOR THIRD TAB\n", " \n", " def create_send_button_three(self):\n", " label = widgets.Label('Strain names list:')\n", " self.text_area_three = widgets.Textarea(placeholder='')\n", " send_b = widgets.Button(description='Submit', tooltip='submit your list', disabled=True)\n", " send_b.on_click(self.on_change_s_three)\n", " self.text_area_three.observe(self.on_change_text_three, names=['value'])\n", " sub_box = widgets.HBox([label,self.text_area_three])\n", " return(send_b, sub_box)\n", " \n", " def create_reset_button_three(self):\n", " reset_b = widgets.Button(description='Reset', tooltip='reset the environment to generate new results', disabled=True)\n", " reset_b.on_click(self.on_click_r_three)\n", " return (reset_b) \n", " \n", " def on_change_text_three(self,_):\n", " if (self.text_area_three.value == '') | (self.text_area_three.value.isspace()):\n", " self.send_button_three.disabled=True\n", " else:\n", " self.send_button_three.disabled=False\n", " \n", " def on_click_r_three(self,_):\n", " try:\n", " del(self.df_t)\n", " #del(self.matr)\n", " for i in self.down_container_three.children:\n", " remove = self.down_container_three.children[-1]\n", " self.down_container_three.children = self.down_container_three.children[:-1]\n", " remove.close() \n", " except NameError:\n", " pass\n", " self.text_area_three.value=''\n", " self.res_button_three.disabled=True\n", " self.send_button_three.disabled=True\n", " self.table_container_three.clear_output(wait=False)\n", " \n", " def on_change_s_three(self,_):\n", " with self.table_container_three:\n", " self.table_container_three.clear_output(wait=False)\n", " self.send_button_three.disabled = True\n", " strains = self.text_area_three.value\n", " #Commented parts regard using the strain id instead of names (here for reference, remove in final release)\n", " #s = strains.split(\",\")\n", " #self.df_t[\"Strain id\"] = s\n", " #for i in s:\n", " #try:\n", " #x = requests.get(api_url_three+i+api_url_end).json()[\"response\"][\"docs\"][0]\n", " #self.df_t.loc[self.df_t['Strain id'] == i, \"Strain name\"] = x[\"name\"]\n", " #self.df_t.loc[self.df_t['Strain id'] == i, \"MP term ids\"] = x[\"mp_ids\"]\n", " #self.df_t.loc[self.df_t['Strain id'] == i, \"MP term names\"] = x[\"mp_terms\"]\n", " #del(x)\n", " #except IndexError:\n", " #self.df_t.loc[self.df_t['Strain id'] == i, \"Strain name\"] = \"nan\"\n", " #self.df_t.loc[self.df_t['Strain id'] == i, \"MP term ids\"] = \"nan\"\n", " #self.df_t.loc[self.df_t['Strain id'] == i, \"MP term names\"] = \"nan\"\n", " query = requests.get(api_url_three+strains+api_url_end).json()\n", " if (query[\"response\"][\"numFound\"] != 0):\n", " req = query[\"response\"][\"docs\"]\n", " self.df_t = pd.DataFrame(columns=[\"Strain id\",\"Strain name\",\"MP term ids\", \"MP term names\"])\n", " \n", " ids =[]\n", " names = []\n", " mp_ids = []\n", " mp_terms = []\n", " for i in req:\n", " ids.append(i[\"strain_id\"])\n", " names.append(i[\"name\"])\n", " mp_ids.append(i[\"mp_ids\"])\n", " mp_terms.append(i[\"mp_terms\"])\n", "\n", " self.df_t[\"Strain id\"] = ids\n", " self.df_t[\"Strain name\"] = names\n", " self.df_t[\"MP term ids\"] = mp_ids\n", " self.df_t[\"MP term names\"] = mp_terms\n", " del(ids,names,mp_ids,mp_terms,req)\n", " \n", " \n", " #create a copy of the dataframe to better display the table\n", " df3 = self.df_t.copy()\n", " df3 = df3.applymap(lambda x: re.sub(\",\",\", \",str(x)))\n", " df3 = df3.applymap(lambda x: re.sub(\"['\\[\\]]\",\"\",str(x)))\n", "\n", " display(HTML(df3.to_html(justify=\"left\", index=False)))\n", " self.csv_file_three = self.df_t.to_csv(\"result_table.csv\",index=False)\n", " self.res_button_three.disabled = False\n", " htmlWidget_three = widgets.HTML(value=\"\")\n", " self.create_download_link_three(\"result_table.csv\", htmlWidget_three)\n", " self.down_container_three.children = tuple(list(self.down_container_three.children) + [htmlWidget_three])\n", " #Parts to allow the plotting of the heatmap.\n", " #self._slider, self.slider_box = self.create_slider()\n", " #self.slider_container.children = tuple(list(self.slider_container.children) + [self.slider_box])\n", " #self.update_app()\n", " \n", " else:\n", " print(\"No strains found with the name \"+term)\n", " self.res_button_three.disabled = False \n", " \n", " \n", " def create_download_link_three(self, filename, htmlWidget): \n", " title=\"Click here to download the table in csv format\"\n", " \n", " data = open(filename, \"rb\").read()\n", " b64 = base64.b64encode(data)\n", " payload = b64.decode()\n", " \n", " html = '<a download=\"{filename}\" href=\"data:text/csv;base64,{payload}\" target=\"_blank\"><button class=\"button-style\">Download table as csv file</button></a>'\n", " htmlWidget.value = html.format(payload=payload,title=title,filename=filename)\n", " \n", " def create_slider(self):\n", " slider_label = widgets.Label('Threshold: ')\n", " slider = widgets.IntSlider(value=0, min=0, max = 0, step=1, orintation='horizontal', readout=True, readout_format=\"d\")\n", " slider.observe(self.on_change, names=['value'])\n", " slider_box = widgets.HBox([slider_label,slider])\n", " return (slider, slider_box)\n", " \n", " def on_change(self, _):\n", " self.update_app()\n", " \n", " def update_app(self):\n", " try:\n", " self._slider.max = max(list(self.matr.max()),key=itemgetter(0))[0]\n", " except AttributeError:\n", " self.matr = self.create_matrix()\n", " self._slider.max = max(list(self.matr.max()),key=itemgetter(0))[0]\n", " threshold = self._slider.value\n", " try:\n", " with self.plot_container:\n", " p = self.create_plot(threshold)\n", " self.plot_container.clear_output(wait=True)\n", " show(p, notebook_handle=True)\n", " except (NameError,AttributeError) as e:\n", " pass\n", " \n", " def create_matrix(self):\n", " df = self.df_t.copy().dropna()\n", " t = pd.DataFrame(columns=df[\"Strain name\"].values,index=df[\"Strain name\"].values)\n", "\n", " for i in t.index:\n", " x = df.where(df[\"Strain name\"] == i).dropna()[\"MP term ids\"].values[0].split(\",\")\n", " for j in t.columns:\n", " y = df.where(df[\"Strain name\"] == j).dropna()[\"MP term ids\"].values[0].split(\",\")\n", " s = re.sub(\"[\\[\\]']\",\"\",str(list(np.intersect1d(x,y))))\n", " t.loc[i,j] = (len(np.intersect1d(x,y)),s)\n", " del(x,y)\n", " del(i,j,df)\n", "\n", " t.columns.name=\"strain_col\"\n", " t.index.name=\"strain_ind\"\n", " return(t)\n", " \n", " def create_plot(self,threshold):\n", " tem_mat = self.matr.copy()\n", " rem = []\n", " if threshold != 0:\n", " for i in tem_mat.index:\n", " if tem_mat.loc[i].max()[0] < threshold:\n", " rem.append(i)\n", " tem_mat.drop(rem, inplace=True, axis=0)\n", " tem_mat.drop(rem, inplace=True, axis=1)\n", "\n", " # Create a custom palette and add a specific mapper to map color with values, we are converting them to strings to create a categorical color mapper to include only the\n", " # values that we have in the matrix and retrieve a better representation\n", "\n", " tmp = tem_mat.stack(dropna=False).rename(\"value\").reset_index()\n", " tmp[\"terms\"] = \"\"\n", " for i in range(0, len(tmp)):\n", " tmp.terms[i] = tmp.value[i][1]\n", " tmp.value[i] = tmp.value[i][0]\n", " fact = tmp.value.unique()\n", " fact.sort()\n", " fact = fact.astype(str)\n", " tmp.value = tmp.value.astype(str)\n", " tmp.terms = tmp.terms.astype(str)\n", "\n", " mapper = CategoricalColorMapper(palette=bokeh.palettes.inferno(len(tmp.value.unique())), factors=fact, nan_color='gray')\n", "\n", " # Define a figure\n", " p = figure(\n", " width=1280,\n", " height=800,\n", " x_range=list(tmp.strain_col.drop_duplicates()),\n", " y_range=list(tmp.strain_ind.drop_duplicates()[::-1]),\n", " tooltips=[('number of common MP terms ', '@value'), ('MP term ids', '@terms')],\n", " x_axis_location=\"above\",\n", " output_backend=\"webgl\",\n", " toolbar_location=\"right\",\n", " tools=\"pan,wheel_zoom,box_zoom,reset,save\")\n", "\n", " # Create rectangles for heatmap\n", " p.rect(\n", " x=\"strain_col\",\n", " y=\"strain_ind\",\n", " width=1,\n", " height=1,\n", " source=ColumnDataSource(tmp),\n", " fill_color=transform('value', mapper))\n", " p.xaxis.major_label_orientation = 45\n", " p.yaxis.major_label_orientation = 45\n", "\n", " # Add legend\n", " color_bar = ColorBar(\n", " color_mapper=mapper,\n", " label_standoff=6,\n", " border_line_color=None)\n", " p.add_layout(color_bar, 'right')\n", " del(tem_mat)\n", " return(p)\n", " \n", " def create_plot_button(self):\n", " plot_b = widgets.Button(description='Common MP heatmap', tooltip='Create an heatmap showing the common MP terms between strains', disabled=True)\n", " #plot_b.on_click(self.on_click_p)\n", " return (plot_b)\n", " \n", "app = App()\n", "app.final_container" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.11" } }, "nbformat": 4, "nbformat_minor": 5 }