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Synonyms

Core graph decomposition; k-Core decomposi-
tion; k-Coreness; k-Cores; k-Shell decomposition

Glossary
Core The set of all k-cores of a
decomposition graph, for all £.

Core number
(or core index)

For each vertex of a graph,
the highest order of a core
containing that vertex.

Degeneracy The highest order of a core of
a graph. It corresponds to the
maximum core number over
all vertices of the graph.

Distributed graph ~ Graph that is stored across
multiple machines.

Graph A set of objects (called

(or network) vertices or nodes) connected

to each other by /inks (also
known as edges or arcs).
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k-core (or core of
order k)

k-shell

Multilayer graph

Temporal graph
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Links can be represented as
unordered or ordered pairs of
vertices. In the former case,
the graph is said to be
undirected, otherwise it is
directed. Links may be
assigned weights. In this
case, the graph is said
weighted.

Maximal subgraph where
each vertex is connected to at
least & other vertices within
the subgraph.

Subgraph induced by all
vertices belonging to the
k-core but not to the (k + 1)-
core.

Graph composed of multiple
layers, with each layer
corresponding to a specific
type of relation among
vertices. It can be viewed as a
superposition of several
graphs, each one having its
own edge set. It is also
known as multiplex graph or
multidimensional graph.
Graph whose structure can
change over time. It may be
represented as a set of
snapshots, one per temporal
instant, where each snapshot
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is a graph with its own fixed
structure.
Uncertain Graph whose edges and/or
(or probabilistic)  vertices are assigned a
graph probability of existence.
Definition

Let G = (V; E) be an undirected graph, where V'is a
setofverticesand £ C V' x Visasetofedges. Fora
subset of vertices H C V, let G[H] denote the sub-
graph of G induced by H, i.e., G[H] = (H, E[H]),
where E[H] = {(u,v) € E|lu € H,v € H}.
Let also degp(u) denote the degree of u in
G[H], and p(H) the minimum degree of a vertex
in G[H], i.e., W(H) = min,, ¢ ydegy(u).

The k-core (or core of order k) of a graph G =
(V; E) is defined as a maximal subgraph in which
every vertex is connected to at least k other verti-
ces within that subgraph. A k-core is fully identi-
fied by the vertices belonging to it, which we
denote by Cj. The overall k-core subgraph is
given by the subgraph of G induced by C;. All
cores are nested into each other: V= Cy O C; D
L D Cyy, and the “difference” between two con-
secutive cores, i.e., the set S = Ci \ Ciyq, 18
referred to as k-shell. The set of all k-shells there-
fore forms a partition of the vertex set V. Note that
a k-core (or a k-shell) does not necessarily induce
a connected subgraph, and that k-cores are not
necessarily all distinct, i.e., it may happen that,
for some k, C;, = Cjy1 (and the corresponding
k-shell S, = Q).

Let kK denote the highest order of a
core in G, i.e., the degeneracy of G : k¥ = max
{ke[1..|V|]|AK > ks.t.Cy C Ci}. The set C
= {C )i, of all cores forms the
core decomposition of G. The core number
(or core index) of a vertex u € V , denoted
c(u), is the highest order of a core that contains
u:cw)y=max {k € [0.. k] |u € CJ. Tt is
easy to see that the order of a core is guaranteed
to be less than or equal to the minimum degree of a
vertex in that core, i.e., k < u(C;) . In the case
Ci D Cr+ 1 (ie., the shell S; is nonempty), the
equality k£ = p(Cy) holds.
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Figure 1 gives an illustration of core decompo-
sition of a toy graph.

Introduction

Recent advances in social and information science
have shown that linked data is pervasive in our
society and the world around us. Graphs have
become a ubiquitous model to represent real-
world structured data. They are routinely used
to describe a large variety of data such as
the Web, social networks, knowledge bases,
(heterogeneous) information networks, biological
networks, and many more. As the ability to collect
data has increased geometrically in the recent
years, these graphs typically count millions, or
even billions, of vertices and edges. Justifiably,
there has been an increasing demand for methods
that are able to cope with graphs at a large scale.

At the same time, the proliferation of hetero-
geneous data acquired from a variety of sources
has given rise to more and more complex linked-
data representations. As a result, today’s real-
world graphs exhibit a wide set of additional
information assigned to their vertices and/or
edges: weights, labels, feature vectors, probabili-
ties of existence, probability distributions over
weights or labels, time series capturing the
dynamic evolution of the network, and so on
(Bonchi et al. 2015, 2014a; Khan et al. 2015,
2014; Parchas et al. 2015; Ruchansky et al.
2015). These enriched graphs constitute a unique
opportunity, but also a serious challenge, for
improving the quality of processing algorithms.

Finding dense substructures in a graph is a
fundamental primitive in many graph-analysis
tasks (Lee et al. 2010; Tsourakakis et al. 2013).
Many different definitions of a dense subgraph
have been proposed, e.g., cliques, n-cliques,
n-clans, k-plexes, f~groups, n-clubs, lambda sets.
Most of these definitions are computationally
intensive: NP-hard or of quadratic time complex-
ity. In this respect, the concept of core decompo-
sition is particularly appealing because it can be
computed in linear time and is related to many of
the various definitions of a dense subgraph.
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Core Decomposition of
Massive, Information-
Rich Graphs, Fig. 1
Core decomposition. The
graph has four cores. The
0-core is the entire graph,
while the 3-core has two
connected components

Key Points

The research community has recently devoted
increasing attention to applying the core-
decomposition tool to graphs with the peculiari-
ties of the ones arising in today’s applications
(Malliaros et al. 2016). Effort has been devoted
to handle massive graphs, by devising external-
memory algorithms (Cheng et al. 2011; Wen et al.
2016), methods suitable for distributed graphs
(Montresor et al. 2013; Aksu et al. 2014), or
algorithms that can exploit multicore parallel pro-
cessing (Dasari et al. 2014). At the same time,
challenging contexts requiring highly efficient
solutions have been taken into consideration,
such as maintenance of cores in a dynamic setting
(Sariytice et al. 2013, 2016; Li et al. 2014) or local
estimation of cores (O’Brien and Sullivan 2014).
Finally, research has also focused on special types
of graph that, apart from the usual information
about vertices and links, come with additional
features that call for the development of ad hoc
nontrivial solutions. This is the case of uncertain
graphs (Bonchi et al. 2014b), temporal graphs
(Wu et al. 2015), and multilayer graphs (Azimi-
Tafreshi et al. 2014).

Historical Background

Core decomposition has been introduced by
Seidman (1983) to quantify the global position

of a vertex in a network. Since then, core decom-
position has been widely used in tasks like ana-
lyzing the complex nature of a network (Bollobas
1984; Luczak 1991; Dorogovtsev et al. 2006;
Alvarez-Hamelin et al. 2008; Carmi et al. 2007),
network visualization (Batagelj et al. 1999;
Gaertler and Patrignani 2004; Alvarez-Hamelin
et al. 2005), and influence spreading (Bae and
Kim 2014; Bonchi et al. 2014b; Pei and Makse
2013; Rossi et al. 2015). More recently, the atten-
tion has been shifted to massive graphs (Aksu
et al. 2014; Cheng et al. 2011; Dasari et al. 2014;
Montresor et al. 2013; Wen et al. 2016) and graphs
coming with additional information such as attri-
butes, probabilities, or labels (Azimi-Tafreshi
et al. 2014; Bonchi et al. 2014b; Wu et al. 2015).

Algorithm 1 k-COREs

Input: A graph G = (V, E).

Output: A |V|-dimensional vector

c containing the core number of each
v € V.

1: ¢ «— @, d «— @, D« [@, ..., 2]
2 for all v € V do

3 d[v]l « deg(v)

4 D[deg(v)] « Dldeg(v)] U {v}

5: end for

6 for all k =0, 1, ..., |V| do

7 while D[k] # @ do

8 pick and remove a vertex v from D
[



4

9: clv] « k

10: for all u : (u, v) € E, 4
[ul] > k do

11: move u from D[d[u]] to D[4
[ul — 11

12: dlu] < dfu] — 1

13: end for

14: remove v from G

15: end while

16: end for

Core Decomposition

Core decomposition of a simple, unweighted
graph G = (¥} E) can be computed in time linear
in the size of G. The algorithm designed by
Batagelj and Zaver$nik (2011) (Algorithm 1) iter-
atively removes the smallest-degree vertex from
the graph and sets the core number of the removed
vertex equal to the number reached so far. Vertices
are (kept) ordered based on their degree by bin
sort, thanks to the fact that the degree of a vertex in
G is a bounded integer quantity. Specifically, the
idea is to employ a vector D of size |V] whose
single cells D[7] store the set of all vertices in the
current graph that have degree equal to i. This
way, ordering vertices at the beginning of the
algorithm and keeping them ordered during the
whole execution can be performed in O(] V| ) time
and O(1) time, respectively. As a result, given that
each vertex and all its neighbors are visited only
once, the overall time complexity of the algorithm
is O(|[V|+ |E|). The one by Batagelj and
Zavers$nik is an in-memory algorithm: it exploits
random access of the graph vertices and edges,
thus requiring the whole input graph to be loaded
into main memory.

A number of variants and optimizations of the
basic Batagelj and Zaver$nik’s algorithm have
been proposed. Khaouid et al. (2015) devise an
implementation of the algorithm within the popu-
lar Webgraph graph-compression framework
(Boldi and Vigna 2004). The idea is to efficiently
implement the data structures needed for bin sort
(by using flat arrays instead of hash-tables), while
at the same time exploiting the Webgraph APIs to
lazily access a compressed version of the input
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graph. Dasari et al. (2014) define a variant,
dubbed ParK, which reduces the working-set
size and the number of random accesses, while
also being amenable to parallelization on multi-
core architectures.

Generalized cores. Batagelj and ZaverSnik
(2011) also define a method to compute general-
ized cores efficiently. Traditional cores, i.e., cores
based on the degree of a vertex, are a special case
of generalized cores, which are instead specific of
any vertex property function. As long as the vertex
property function under consideration meets the
requirement of being monotone, Batagelj and
Zavers$nik (2011) show that the corresponding
(generalized) core decomposition can be com-
puted in O(|E| x max{A,log |V|}) time, where
A is the maximum degree of a vertex in G.

Formally, for any vertex v € Vand C C V, a
vertex property function on G is a function ¢-
(v, C) : ¥V x 2" — R. A vertex property function
¢(v, C) is said monotone ifVC, , C, C V: C; C
C, implies that Yv € V: ¢(v, C)) < ¢(v, Cy).
Examples of monotone vertex property functions
are degree, in-degree, out-degree, weighted
(in/out-)degree, maximum weight of an edge inci-
dent to a vertex, and number of cycles of fixed
length k passing through a vertex. Finding cores
based on a monotone vertex property function can
be carried out by a slight modification of Algo-
rithm 1. The main idea is still to iteratively remove
a vertex exhibiting the smallest value of the vertex
property function under consideration. To do so,
though, depending on the specific vertex property
function (i.e., if it is not a bounded integer quan-
tity), it may happen that bin sort cannot anymore
be employed to order vertices. In general, a prior-
ity queue with logarithmic-time access/update
operations should instead be used. That is why,
in the general case, the overall time complexity
becomes the one reported above, i.e.,
O(|E| x max{A,log |[V|}).

Directed graphs. Giatsidis et al. (2011) extend
core decomposition to directed graphs. They
introduce the notion of (k, /)-D-core, which is
defined as a maximal subgraph of the input
directed graph where each node has in-degree at
least £ and out-degree at least / within that sub-
graph. The intuition behind (k, /)-D-cores is to
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look for subgraphs whose nodes share enough
out-links and in-links with the other nodes of the
subgraph.

Given two positive integers k and /, the (k, /)-D-
core of a directed graph can be computed by a
simple algorithm that iteratively removes nodes
having in-degree less than k or out-degree less
than /, until none of such nodes remains in the
graph. Core decomposition in a directed graph is
therefore defined as the set of all (k, /)-D-cores, for
all k and /. It can be computed by running the
procedure for computing a single (k, /)-D-core
for all possible values of & and /. Its worst-case
time complexity is thus O(Ap X Aow X |E|),
where A;, and A, are the maximum in-degree
and out-degree of a node in the input graph,
respectively.

External-Memory Core Decomposition

When the input graph is too large to fit in main
memory a valuable option is to resort to external-
memory algorithms.

Cheng et al. (2011) propose an external-
memory algorithm for core decomposition which
follows a top-down approach. That method,
dubbed EMcore, recursively computes k-cores
from larger values of & to smaller ones, and pro-
gressively reduces search space and disk I/O cost
by removing the vertices in each computed k-core.
EMcore is based on three main components: a
method for properly partitioning the input graph, a
way to estimate the upper bound on the core
number of a vertex, and a recursive top-down
core-decomposition procedure. The algorithm
processes the partitioned graph in multiple
iterations, starting from vertices having the
largest core number k., and proceeding
down to the vertices of core number 2. In each
iteration, it loads into memory a subgraph
containing all vertices with estimated core number
belonging to an interval [k;, k], and the core
decomposition of this subgraph is computed by
following the traditional bottom-up in-memory
method by Batagelj and ZaverSnik (2011). The
EMcore algorithm takes O(kmax X (V| + | E]))

CPU time, O(%W) I/O time, and O

(W‘Bﬂ) disk-block space, where B is the size of a

disk block.

Wen et al. (2016) devise SemiCore’, an I/O-
efficient core-decomposition method that follows
a semiexternal model. The employed model
assumes that only vertices can be loaded into
main memory, while edges are kept stored on
disk. Specifically, SemiCore” keeps the core
number of each vertex in memory and updates
core numbers iteratively until convergence.
In each iteration, only sequential scans of edges
on disk are required. SemiCore” comes with
guaranteed bounded memory requirement of
O(]V|), and its CPU time complexity and
/O complexity are O(I x (|[V|+ |E|)) and

O(M), respectively, where [ € [1, | V] ]

is the number of iterations needed for conver-
gence (with / = |V] in practice).

Distributed Core Decomposition

Due to the proliferation of data produced and
stored by today’s applications, it is not uncommon
to come across graphs that are distributed through
multiple machines. For such graphs, traditional
core-decomposition methods do not work. There
is hence need for a careful design of ad hoc
methods that can profitably take into account the
peculiarities of the distributed setting.

Montresor et al. (2013) devise an algorithm for
distributed core decomposition which works
under two different computational models: both
one-to-one model, where one computational unit
is associated with one vertex in the graph, and
communication occurs only through direct mes-
sages between vertices connected by an edge, and
one-to-many model in which one host stores mul-
tiple vertices together with their local and remote
incident edges and communication occurs
through messages exchanged between hosts. The
main idea of Montresor et al’s algorithm is to
maintain for each vertex an upper bound on its
core number. At the beginning, this upper bound
corresponds to the degree, and is tightened at each
iteration, until it converges to the true core num-
ber. The algorithm requires O(] V) iterations to
converge to the ultimate solution, while the



overall size of the messages exchanged during its
execution is bounded by O(A X |E|), where A is
the maximum degree of a vertex in the input
graph.

Khaouid et al. (2015) provide an implementa-
tion of Montresor et al’s algorithm on the
GraphChi graph engine (Kyrola et al. 2012) and
the Webgraph compression framework (Boldi and
Vigna 2004), and show that such implementations
scale to really large datasets using only a
single PC.

Aksu et al. (2014) propose a distributed core-
decomposition algorithm that works under a com-
putational model similar to the one-to-many
model considered by Montresor et al. (2013),
where the input graph is partitioned across multi-
ple hosts. Nevertheless, unlike Montresor et al,
Aksu et al assume that the subgraph stored in a
single host may still be too large to fit in main
memory. The algorithm by Aksu et al runs on the
partitioned graph data in parallel and takes advan-
tage of the k-core properties to prune unnecessary
computation. Two main pruning rules are used:
each vertex of a k-core is guaranteed to have (7)
degree at least k, and (ii) at least k£ neighbors with
degree at least £.

Efficient Maintenance of Cores

In a streaming setting the structure of the under-
lying graph data is assumed to be dynamic, in the
sense that, at each time instant, there could be
insertions/deletions affecting vertices/edges of
the graph. This context calls for algorithms that
are able to incrementally update a previously
computed core-decomposition structure with little
processing effort, instead of rebuilding it from
scratch.

A major goal in defining an incremental core-
decomposition algorithm is, given a set of inser-
tion/deletion operations, to identify a vertex set
that (i) contains all vertices whose core number
needs to be updated, so as to still guarantee cor-
rectness of the updated core decomposition, and
(i) has size as small as possible, so that the num-
ber of unnecessary updates is minimized.
Sariytice et al. (2013) introduce a set of theoretical
findings to efficiently build a vertex set exhibiting
these two properties when a single edge is added
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to or removed from the graph (extensions to mul-
tiple edge insertions/deletions and vertex inser-
tions/deletions are trivial). Based on these
findings, Sariyiice et al define three algorithms
that trade off between pruning power and time
spent in executing pruning rules. Pruning power
is basically determined by the capability of
retrieving a smaller subset of vertices to be pro-
cessed for an update operation. This is directly
proportional to the number of pruning rules
implemented: more pruning rules lead to smaller
sets. Enhanced versions of these algorithms have
been defined in (Sariyiice et al. 2016).

Other theoretical results to identify small sets
of vertices whose core number is affected by an
edge insertion/deletion have been introduced by
Li et al. (2014). Specifically, Li et al devise a
three-step algorithm. First, it is shown that the
only vertices that may need their core number to
be updated are the vertices that are reachable from
the end vertices of the inserted/deleted edge.
Based on this finding, a coloring algorithm is
employed to find the actual vertices satisfying
such a requirement. Second, from the vertices
found by the coloring algorithm, a further color-
ing algorithm is run to identify all vertices that
ultimately need their core number updated. In the
third and last step, the core number of such verti-
ces is updated by a fast linear-time procedure.

Further effort on efficient maintenance of core
decomposition has been devoted in the context of
external-memory methods (Wen et al. 2016) and
distributed graphs (Aksu et al. 2014).

Local Estimation of Cores

An alternative realistic scenario is when the input
graph cannot be observed as a whole, due to, e.g.,
scale, privacy, or business reasons, and the core
number of a vertex should be estimated by
looking only at its close neighborhood. This sce-
nario is considered by O’Brien and Sullivan
(2014), who propose a method to estimate the
core number of a given vertex by only taking
into account properties local to that vertex. Spe-
cifically, O’Brien and Sullivan define a local esti-
mator that accesses properties of the graph within
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aregion of fixed radius ¢ around the given vertex.
The estimator is based on the main observation
that the core number of a vertex can be precisely
determined from the (exact) core number of its
neighbors. Clearly, the latter information is not
available in a real scenario. However, O’Brien
and Sullivan elaborate on this finding and base
their estimator on the idea of iteratively incorpo-
rating upper bounds on the core numbers of the
neighbors of the input vertex. This method returns
an upper bound on the actual core number of the
input vertex, which becomes tighter as the number
of considered neighbors increases, i.e., the radius
0 gets larger. This way, 0 acts as a knob to trade off
between accuracy and efficiency.

Core Decomposition of Uncertain Graphs

An uncertain (or probabilistic) graph is a triple G
= (V,E,p), where Vis a set of vertices, E C V' X
Vis a set of edges, and p: E — (0, 1] is a function
that assigns a probability of existence to
each edge.

Bonchi et al. (2014b) define core decomposi-
tion in uncertain graphs based on the notion of
(k, m)-core: given an uncertain graphG = (V, E, p)
, and a threshold n € [0, 1], the (k, n)-core of G
is a maximal subgraph 3¢ = (C, E| C, p) such
that the probability that each vertex v € C
has degree at least k in J€ is greater than or
equal to n, i.e., Vv € C : Pr[degge(v) > k] > n.
The corresponding (k, n)-core decomposition is
defined as the set of all (k,7)-cores of G, for a given
n and all .

To compute a (k, n)-core decomposition of an
uncertain graph, Bonchi et al design an algorithm
that resembles the traditional algorithm by
Batagelj and ZaverSnik for the deterministic
case. Let the n-degree of a vertex v be the maxi-
mum degree such that the probability for v to have
that degree is no less than 7. Bonchi et al’s algo-
rithm iteratively removes the vertex having the
smallest n-degree until all vertices have been pro-
cessed. Despite the similarity to Batagelj and
Zaver$nik’s algorithm, this method comes with a
major critical point given by the computation (and
update) of n-degrees. While its counterpart in the
deterministic case (i.e., computing/updating the
degree of a vertex) is a straightforward operation,

such a step in uncertain graphs needs a great deal
of attention, as approaching it naively may even
lead to intractable (exponential) time complexity.
Ultimately, Bonchi et al show how to overcome
the exponential-time complexity by devising an
efficient dynamic-programming method. As a
result, it is demonstrated that computing the (%,
n)-core decomposition of an uncertain graph can
be carried out in O(A x |E|) time, where A is the
maximum 7-degree of a vertex in the input uncer-
tain graph.

Core Decomposition of Temporal Graphs

A (discrete) temporal (or time-evolving) graph is a
triple G = (¥, T, f), where Vis a set of vertices, T'is
a set of discrete time instants, and £ 7— 2" * Visa
function assigning an edge set £, C V' x V'to every
time instant ¢ € T.

Wu et al. (2015) study the problem of core
decomposition in temporal graphs. They intro-
duce the notion of (k, /)-core, which is defined
as follows. For any two vertices u, v, let n(u, v)
denote the total number of edges connecting u and
vover all time instants, i.e., n(u, v) = |{¢t|t € T, (u,
v) € f9)}]. The (k, h)-core of a temporal graph
G is a maximal subgraph H where every vertex of
H is connected to at least & other vertices in H with
which it shares at least 4 temporal edges, i.e., Vu
€ H:|{v|v € H, n(u, v) > h}| > k. Wu et al.
(2015) propose two distributed algorithms to
compute (k, h)-cores in temporal graphs, one
working under Pregel’s vertex-centric computing
model (Malewicz et al. 2010), and a second one
following Blogel’s block-centric model (Yan
etal. 2014).

Core Decomposition of Multilayer Graphs

A multilayer (or multiplex, or multidimensional)
graph is a triple G = (V] E, L), where Vis a set of
vertices, L is a set of layers, and F is a set of per-
layer edges, i.e., a set of triples (u, v, [), where u,
v € Vand!/ € L.

Azimi-Tafreshi et al. (2014) define the notion
of k-core: given a multilayer graph G = (V, E, L)
and an |L|-dimensional integer vector k = {k;},c 1,
the k-core of G is defined as the largest subgraph
in which each vertex has at least k; edges in that
subgraph, for each layer / € L. Azimi-Tafreshi



et al. (2014) first show that, for any given vector
k = {k;},c 1, the k-core of a multilayer graph can
be computed by iteratively removing vertices
whose degree in a layer / € L is less than £,
until no such vertices appear in the graph. Based
on this, Azimi-Tafreshi et al. (2014) generalize the
theory of k-core percolation in simple graphs
(Goltsev et al. 2006) to k-core percolation in
multilayer graphs. They derive self-consistency
equations to obtain the birth points of the
k-cores and their relative sizes for uncorrelated
multilayer graphs with an arbitrary degree distri-
bution. Such results are studied in detail for the
case of graphs composed of two layers, where
equations are solved for Erdds-Renyi and scale-
free multilayer graphs.

Key Applications

Core decomposition has been traditionally used to
quantify the global position of a vertex in a net-
work, analyze the complex nature of a network,
and discover dense substructures (Seidman 1983).
It has been employed to describe the evolution of
random graphs (Bollobds 1984; Luczak 1991;
Dorogovtsev et al. 2006); for analyzing complex
networks (e.g., the Web), in particular their hier-
archies, self-similarity, centrality, and connectiv-
ity (Alvarez-Hamelin et al. 2008); for discovering
cooperative processes within a network (Carmi
et al. 2007); for designing effective network-
visualization tools (Batagelj et al. 1999;
Gaertler and Patrignani 2004; Alvarez-Hamelin
et al. 2005).

As another appealing feature, core decomposi-
tion provides principled ways of speeding-up the
computation of more complex definitions of a
dense subgraph. As an example, it can serve as
an easy method to improve the efficiency of find-
ing maximal cliques (Eppstein et al. 2010), as a
clique of size k is guaranteed to be contained into a
(k — 1)-core, which can be significantly smaller
than the original input graph. Moreover, core
decomposition is at the basis of linear-time
approximation algorithms for the densest-
subgraph problem (Kortsarz and Peleg 1994)
and the densest at-least-k-subgraph problem
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(Andersen and Chellapilla 2009). It is also used
to approximate betweenness centrality (Healy
et al. 2006), for designing proper indexing struc-
tures (Barbieri et al. 2015), and for clustering
(Giatsidis et al. 2014).

As far as social networks, core decomposition
has been largely employed for community detec-
tion (Papadopoulos et al. 2012). Furthermore,
Kitsak et al. (2010) show that the core index is
an indicator of influence of a user with respect to
information spreading in a network, while Bonchi
et al. (2014b) employ core decomposition of
uncertain graphs to speed-up the detection of
influential spreaders. Further work on using core
decomposition for influential-spreader discovery
has been conducted by Pei and Makse (2013), Bae
and Kim (2014), and Rossi et al. (2015). Also,
core decomposition has been employed by Garcia
et al. (2013) to do an “autopsy” of the dead
Friendster social network and, in the context of
uncertain graphs, for the problem of fask-driven
team formation (Bonchi et al. 2014Db).

Finally, core decomposition has been applied in
several orthogonal domains, from bioinformatics —
e.g., for protein-interaction discovery (Altaf-Ul-
Amin et al. 2003; Bader and Hogue 2003; Wuchty
and Almaas 2005), or gene-network analysis
(Cheng et al. 2013), to the inspection of large-
scale software systems (Zhang et al. 2010) and an
analysis of the diffusion network of political parties
on Twitter (Aragon et al. 2013).

Future Directions

Despite the great deal of attention received since
its introduction, several aspects of core decompo-
sition still remain unexplored. As an example,
several types of information-rich network that
are commonly encountered in today’s applica-
tions, such as heterogeneous information net-
works, signed networks, or (edge-)labeled
graphs, still miss a principled definition of the
notion of k-core and the corresponding problem
of core decomposition. Also, the streaming con-
text abounds of interesting unstudied problems,
such as approximated core-decomposition main-
tenance, or efficient incremental update for
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multiple insertion/deletion operations performed
at a time. Other interesting directions include core
decomposition in uncertain graphs where the
assumption of independence among edge proba-
bilities does not hold, or in temporal graphs where
a time window of interest is provided as input by
the user.
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