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Abstract

This thesis deals with two different subjects concerningagiyics of message interchange be-
tween stochastic units.

First, we discuss a theoretical model of an ensemble of adichnon-leaky integrate-and-fire
neurons with global, delayed and excitatory coupling anchallsrefractory period. Simulations with
adiabatic changes of the coupling strength indicate thegpiee of a phase transition accompanied
by a hysteresis around a critical coupling strength. Belwsvdritical coupling production of spikes
in the ensemble is governed by the stochastic dynamics a$éoe coupling greater than the critical
value the stochastic dynamics looses its influence and ftearganize into several clusters with self-
sustained activity. All units within one cluster spike inison and the clusters themselves are phase-
locked. Theoretical analysis leads to upper and lower befordhe average inter-spike interval of the
ensemble valid for all possible coupling strengths. Thenldglallow to calculate the limit behavior
for large ensembles and characterize the phase transit@ytigally. These results may be extensible
to pulse coupled oscillators.

The second part is focused on the analysis of human comntigmdaehavior. We examine
the many-to-many social communication activity on the paptechnology-news website Slashdot.
To find regular patterns in the activity we have concentrateitie dynamics of message production
without considering semantic relations. Regular temppedlerns have been found in the reaction
times of both the community and single users to a news-pde.statistics of these activities follow
log-normal distributions. Daily and weekly oscillatoryabgs, which cause slight variations of this
simple behavior, are identified. The findings are remarkabiee the distribution of the number
of comments per users, which is also analyzed, indicatesat gmount of heterogeneity in the
community. The reader may find surprising that only a few peters, allow a detailed description, or
even prediction, of social many-to-many information exay&in this kind of popular public spaces.
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Resumen

Esta tesis trata de dos temas diferentes referente a laidmémintercambio de mensajes entre
unidades estocasticas.

Primero, discutimos un modelo teérico de un conjunto deoreas estocasticas tipo integracion-
y-disparo con integracién sin pérdidas, un pequefio perefilactario, y con acoplamiento global y
retardado. Simulaciones con cambios adiabéticos de lagfuks acoplamiento indican la presencia
de una transicion de fase acompafada por una histéregieddrede un valor critico de la fuerza
del acoplamiento. Por debajo del acoplamiento critico ¢alpecion de disparos es gobernada por
la dinamica estocéastica, mientras que por encima del vaiticccla dinamica estocastica pierde
su influencia y las unidades se organizan en varios subgagosctividad auto-sostenida. Todas
las unidades de un subgrupo disparan al unisono y los sudxyanire si estan sincronizados fuera
de fase. Un andlisis teorico lleva a cotas superiores eionésrpara el promedio del tiempo entre
dos disparos de la poblacion. Estas cotas son validas pdwa tos posibles valores de la fuerza
del acoplamiento. Las cotas permiten calcular el compaetatm limite para conjuntos grandes y
caracterizar la transicion de fase analiticamente. Esggdtados pueden ser extensibles a osciladores
acoplados por pulsos.

La segunda parte se centra en el analisis de patrones de tamjgmto en comunicacion hu-
mana. Examinamos la actividad causada por comunicaciée emnunidades de usuarios en Slash-
dot, un popular sitio web de noticias relacionados con tegi@. Para encontrar patrones regulares
en la actividad nos hemos concentrado en la dinamica de grigaiude mensajes sin considerar rela-
ciones semanticas. Se han encontrado patrones regulakesnpo de reaccion a una nueva noticia
tanto para la comunidad como para usuarios individualesestadistica de estas actividades sigue
distribuciones log-normales. Se identifican ciclos osuilas diarios y semanales, que causan varia-
ciones leves de este simple comportamiento. Los resulsmosiotables puesto que la distribucion
del nUmero de comentarios por usuarios, también analizadate estudio, indica una gran cantidad
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X Resumen

de heterogeneidad en la comunidad. El lector puede enc@utrarendente que pocos parametros,
permiten una descripcion detallada y pueden permitir ldipcgn del intercambio social de infor-
macioén entre multitudes en esta clase de espacios publigogaes.
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Introduction

Who arewe? The answer to this question isnot only one of the tasks,
but the task of science.

Erwin Schrddingerscience and Humanism

One of the basic motivations of modern science is to undeddt@man nature. As researchers
we have two main possibilities to advance in this task. Weeaitrer focus inside ourselves and try
to understand the interaction of the neurons which form eainband allows us to investigate such
guestions, or aim in the opposite direction and study hunesatior in the way we interact with each
other. In the first case the subject of study are neurons, evbhasic principles and functions, when
considered as isolated objects, are already widely uraatstvhile in the other case comprehension
of the basic subject is the purpose of the study itself. Desyithis enormous difference in the com-
plexity of the basic unit, in both cases additional intricand even qualitatively different behavior
arises due to communication between the subjects of stuldg. communication takes the form of
action potentials in the case of neurons and all kind of amittspoken or even nonverbal forms of
information exchange in the case of humans. We can congidse tforms somehow as the oppo-
site ends in the hierarchy of communication. Neverthelbsit happens if we ignore the difference
in complexity between human and neural communication addoe both to the same basic level,
where we consider the generation and reception of messagwsra processes and that an incoming
message influences the messages production of the recefterthere some underlying common
principles? Can we even consider, both, a network of humangurons just as another manifesta-
tion of the simple general principle that the whole is morntithe sum of its parts, in terms that a
unit as a part of a network shows different behavior form tfan isolated one? Or, at least, can we
identify some patterns in human activity which justify teimplification and allow to speculate about
the existence of self-organized behaviSu(npter 2006) caused by human communication?



2 Introduction

In this thesis we try to give, at least, a partial answer te¢hguestions and investigate on both
ends of the hierarchy of communication. We analyze a simetevork of coupled spiking neurons
to understand more about the principles of self-orgarinadiue to message exchange and study the
imprints of human communication in online forums. In botlsemawe consider that an isolated unit
(either human or neuron) is governed by a stochastic praes$focus on temporal events produced
by these units when they form part of a network. Those are aamwation events with other units in
the form of spikes in the case of neurons, or message postsanlime forum in the case of humans.
The messages may incite other units to produce messagedlagareneurons this process is well
studied experimentallyKandel, Schwarz and Jess2D00) and has lead to several models of neural
dynamics Gerstner and Kistler2002) , of which we concentrate on the integrate-and-fireleho
(Burkitt, 2006).

Less is known when dealing with human communication. It issasy to find a similar situation
to a neural network where a unit is influenced by the messaggiee§) of many others as well as
it influences them by its spikes. Traditionally, human comioation occurs in an one-to-one or at
most in an one-to-many relation between speaker and awei&vwen in an open discussion in a public
sphere as defined byabermag1962/1989), where in principle many-to-many communaratiould
be achieved, we can only listen to one speaker simultangoOsily with the advent of Internet and
online discussion forums it is possible to find real manya@ay communicationRheingold 1994),
with everybody talking at once and software handling theisaging. Many people can publish their
messages at the same time, and reach a large audience.

This motivated us to investigate Slashidas an example of such an online public sph&weof,
2005) focusing especially on the temporal patterns of égtsuch as the time-differences between
two consecutive comments of the same user or the reacti@s toha user and the entire commu-
nity to a certain event. Can we find patterns of activity whigstify the simplification of treating
communication just as a point process, without considetgigemantics? And furthermore can we
describe these patterns with a simple mathematical expr&s3 his description would be important
for evaluation of a theoretical model of human communicabehavior.

In the case of the human communication activity we obsen@lashdot we have no control over
the parameters of the system, we are only observers of a dgalasystem in a very limited region of
its parameter-space or, in other words, of a very reduceduatrad the possible variants of activity.
The simple model of an integrate-and-fire neural networktweysin Part I, on the other hand, gives
us full control over the parameters of the system which weadify at will, and allows us to analyze
phenomena of self-organization in detail. It is an extemsibthe model introduced bRodriguez,
Suérez and L6pef2001) which in turn is a stochastic variant of a simple diseiintegrate-and-fire

Ihttp: // waw. sl ashdot . org
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neuron ofvan Vreeswijk and Abbotf1993). Using this model we can analyze how neurons, ihijtial
governed by stochastic dynamics, self-organize into s¢péiase-locked clusters, as we increase the
coupling strength, i.e. the influence an incoming messageohaa unit. We investigate especially
the effect of a delay in the message reception and periodssehsitivity to incoming messages
(refractory periods) on this type of behavior and measuedahgth of the inter-spike-interval (I1SI)
of the neurons and their distribution among a populatiomdiator of behavior. Furthermore, we
are interested in a theoretical description of these phenamallowing to put limits on the ISI of
the ensemble and determine a critical amount of couplingwftich transition from stochastic to
phase-locked firing occurs, and which in turn may descrildata sptimal for information processing
(Kinouchi and Copelli 2006) and give deeper insight into synchronization pher@anPikovsky,
Rosenblum and Kurth001;Izhikevich, 2007).

Although the two types of communication we investigate iis thesis are loosely related as
we have illustrated in the previous paragraphs, we desthig® in autonomous components which
can be read independently from each other. Together withtamdiuction inPart linto some of the
theoretical background needed for understanding this wibikleads to an organization of this thesis
into three parts.

In Part lwe explain inchapter Ithe terminology used in this work when referring to lockingla
synchronization phenomena in networks of wealkdyramotq 1984) and pulse coupled oscillators
(Canavier and Achuthar2007). A short introduction into those two concepts is gias well.

In chapter 2we give an introduction into the diffusion proce$sok and Miller, 1965) and its
role in neural dynamicsBurkitt, 2006) and models of human reaction tim8snfth, 2000). Then the
stochastic integrate-and-fire neuron, its relation witls@weoupled oscillators and the model used in
Part Il of this thesis are explained.

Afterwards inPart Ilwe present the work on ensembles of stochastic non-leaggrite-and-fire
neurons. Inchapter 3a short introduction into the study of synchronization itwaks of neuron-
like elements which interchange messages is given and ldttéres of our findings with those in the
literature are discussed. We then introduce the methogalegd in this study as well as the model
we have studied ichapter 4

First we study only homogeneous populations with delayalga coupling and a small refrac-
tory period and perform a series of numerical experimenth adliabatic changes of the coupling
strength which we present thapter 5 Analytical approximations of the expected behavior of the
population are given as in the same chapter. Those resalextgnded to heterogeneous networks in
chapter @and their independence of the type of updating used is shoahmaipter 7 Finally, chapter 8
discusses those results and their possible applicatiahs@rsequences.

When dealing with human communicationRart Il we start inchapter 9with an overview of
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recent findings about human population dynamics placinghasip on results which report heavy
tailed probability distributionsSigman 1999). In the same chapter the class of heavy tailed distrib
tions is formally defined and two of its exponents, the polaar{Newman 2005) and the log-normal
(Crow and Shimizu1988) distributions, often creating competing modelsxplan the same data
(Mitzenmacher 2004), are explained in more detail and set in contrast egéth other. We also
describe the popular technology news-platform Slashdwoh fiwhere we obtained the data in this
chapter.

The crawling-process used to mine data from this websitessribed irchapter 1@ogether with
some basic magnitudes extracted from this data and actiyities we could identify. Afterwards in
chapter 11a detailed analysis of the temporal behavior patterns ofifees commenting the news
posts on Slashdot is given. It is shown that user-behaviobeavell approximated with log-normal
distributions and an even further improvement can be aebiévthe log-normal distributions are
modified to account for the activity cycles of the population

To investigate the influence of the community we studghapter 1Zirst the distribution of ac-
tivity among all the users participating in the debates amdi$ then on the temporal activity patterns
of single users, which are similar to those of the entire comity and can be modeled as well by
log-normal distributions. The results Bart 11l are then discussed ohapter 13

Finally, in Conclusions and Future Researdhe last chapter of the dissertation, we give the
main conclusions of this work and describe future reseaerhpectives and in th&ppendixsome
proofs and of the theoretical results presentechiapter 5and a graphical interpretation of them can
be found.
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Chapter 1

Synchronization

In this chapter we explain the terminology used in this wortkew referring to locking and
synchronization. We introduce briefly the concepts of weakld pulse coupled oscillators and con-
centrate on locking and synchronization phenomena in r&snvof such types of oscillators. The
following is based mainly on the textbooks Bikovsky et al(2001) andzhikevich (2007). When-
ever there was a discrepancy between the two works we fatoeddtter.

1.1 Introduction

Synchronization is a phenomena that can be found in mang arezn as natural sciences, en-
gineering and social life and has a long history in sciendarisian Huygens was probably the first
to describe a synchronization phenomena as early as in Weatsenth century when he observed
the synchronization of two clocks hanging on a wall. A repofletters to his father mentioning this
discovery can be found ifP{kovsky et al, 2001). The word “synchronous” originates from the Greek
wordsoOv (syn meaning the same, common) aqoibvog (chronos meaning time), which in a di-
rect translation would mean something like “sharing theeséime” or “occurring in the same time”.
Nowadays synchronization is understood asadjustment of rhythms of oscillating objects due to
their weak interactior(Pikovsky et al. 2001). An oscillator is an active system that contains an in
ternal source of energy which is transformed into oscitlatnovement. Being isolated the oscillator
continues to generate the same rhythm until the source ofgespires.

1.2 Forms of locking and synchronization in periodic osciktors

In what follows we restrict ourselves only on the descriptaf locking and synchronization

phenomena of periodic oscillators. More general forms achyonization, such asomplete and

7



8 Chapter 1: Synchronization

generalized synchronizationcan occur in chaotic oscillators, but a description of thasenomena
is beyond the scope of this thesis. (See for exanik@vsky et al. 2001 for an introduction on

synchronization of chaotic oscillators).

1.2.1 Weakly coupled oscillators

Periodic oscillators generate a periodic procéssand can be characterized by their phede
and amplitudeR(t). The phasep(t) increases continuously in time (usually by @uring a periodl
of the oscillator) and the amplitud&(t) can be written in terms af(t). We consider now a system

of N interacting periodic oscillators of the form:

dx (t) -

ar fi (Xi (t)) "‘eglgij (Xi (t),X; (t)) (L.1)
with functionsg; j being periodic in both arguments. For weak coupkng 1 the above system can
be reduced to the phase model for coupled oscillatbusgmotq 1984;Hoppensteadt and Izhikevich

1997):

d N
?Tit) -9 “;Qii (@) 9 (1) (1.2)

being@ the phase of oscillatarandw; its frequency. Th&);; are 2wperiodic functions in both argu-
ments. Intuitively, the above reduction can be performedesperiodic oscillators can be described
by a stable limit cycle and weak perturbations (or coupliriguence only the phase of an oscillator
but not its amplitudeRikovsky et al. 2001).

With the phase reduction of equatioch ?) we can write a system of two weakly coupled oscil-

lators in the following general form:

dq;l_t(t) = hi(eu(t), @A),
d%—t(t) = hy(@u(t),@(1)). -2

Again h; andh, are 2tperiodic functions in both arguments.

The phaseg, »(t) mod 2t of the two oscillators are defined on circles. Their staigeeps thus a
torus and the system (3 performs a trajectory on this torus. According to the forfnthis trajectory
we can separate different forms of locking and synchroiuinatf the two oscillators:

Frequency locking: The oscillators are frequency-locked if there exists aquticitrajectory on the
state space. If during this trajectogy performsp oscillations andp, during the same timg,

we speak ofp : g frequency-locking |p andq are relatively prime integers).

Entrainment: A 1: 1 frequency locking is called entrainmeént.

INote that in the literature the terms entrainment and symshation are often used as synonyms. Here we we follow
the nomenclature dizhikevich(2007) and define them separately.
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frequency locking

entrainment o .
(11 frequency locking) synchronization phase locking

%

7

Figure 1.1: Degrees of locking for oscillators (Figure iinsg bylzhikevich 2007)

Phase-lockinglf the oscillators arep : g frequency-locked and their phases fulfill

qeu(t) — p@o(t) = const (1.4)
we speak ofp : g phase-locking. Depending on the value of the constant weseparate the
following forms of phase lockingin-phase (const= 0), anti-phase const= =+, or out-of-

phase

The case of 1 : 1 phase-locking is usually referred to as sgnctation, and we have analogous to

the above separation the following nomenclature:

In-phase synchronization: The oscillators do not only share a single common frequdndyalso

tend to oscillate with a common phase angle. i.e. the phédfegatice is zero.

Anti-phase synchronization The oscillators share the same frequency but oscillate tinphiase,
e.@u(t) — @) =+m

Phase-locked synchronization:The most general casg(t) — @(t) = const# 0. The oscillators

share the same frequency but oscillate with a constant phffseence.

Figure 1.1shows in a Venn-like diagram the relationships of the abasxidbed types of synchro-
nizations and locking. Those types can also be found in n&svaf N > 2 oscillators, where their

occurrence is equivalent to pairwise frequency-lockingranment or phase-locking of the oscilla-
tors in the network. However, more complex phenomena, sagbhase-locked clusters or partial
synchronized regions, can be observed in networks and waitlypbe described ifPart 1l of this

thesis.
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1.2.2 Pulse coupled oscillators

If the coupling between oscillators happens at discretedi(wia a pulse) and can be described
as an effect multiplied by a delta function, we speak of pusapled oscillators Ganavier and
Achuthan 2007). Their phase is usually taken to be proportional &tiime between the emis-
sion of two consecutive pulses. That iifis this period, the phasgt) fulfills @t +T) = @(t) + 21t
The coupling between units in this case is pulse like. In ibsisimple form, i.e. without considering
delays nor refractory periods, a system of two pulse coupsaillators can be written as following

way:
d)gt(t) = fl(Xl(t))—{—Slié(t—tz’k)
d’:jt(t) _ fg(xl(t))+£226(t—t17k) (1.5)

whered(t) is the Dirac delta function angt; x|k € N} is the sequence of pulses emitted by oscillator
i.e. itspulse train.

Contrary to weakly coupled oscillators, in the definitionleéking and synchronization phe-
nomena between pulse coupled oscillators their phaseretiife is not required to be constant. It
only has to be bounded and is allowed to oscillate around s@ne. This is justified by the fact that
usually, e.g. in the case of spiking neurons, one is onlyasted in the pulse trains the two oscillators
generate.

Formally we require:
| (t) — pe(t)| < const (1.6)

for p: g phase locking This is equivalent to the definition of frequency lockediltestors, which
implies that there is no separation between frequency aaseplocking for pulse coupled oscillators.
Again we speak ofynchronization in the case of 1 : 1 phase locking.

Since the phase difference is no longer constant in the admnition, it is convenient to define
the different types of synchronization over the time-difece between two consecutive pulses of
the oscillators. That is, if the period of oscillationTs the oscillators are synchronizéaphase
if they emit a pulse exactly at the same time (or within a vesyrow time-window). We speak of
synchronization iranti-phaseif one oscillator emits a pulsg/2 time units after the othérAny other
time-difference is referred to gehase-lockedor out-of-phase synchronizatior® As in the case of

weakly coupled oscillators the definitions extend to neksaria pairwise locking.

2Note that contrary to weakly coupled oscillators we do netdpof in-phase or anti-phage q phase-locking.
3Some authorsRikovsky et al. 2001) use the phase difference in these definitions, rieguiither@y (t) — @ ~ 0 or
@ (t) — @ ~ £11 For our purposes the above definition is more useful.



Chapter 2

Diffusion models

In this chapter we give a brief introduction into differenbdels of neural dynamics and human
behavior which are based on a stochastic accumulation $8d&AP). The following was mainly
inspired by the reviews ddmith (2000) andBurkitt (2006).

2.1 Wiener Process

Before we start with the definition of a SAP, we first give a bdescription of the Wiener Pro-
cess, a continuous stochastic process which was introdacde323 by Norbert Wiener as a rigorous
mathematical model of the Brownian motion and is sometintes r@eferred to as Brownian motion
process. Itis the continuous limit of a simple random w&lkX and Miller, 1965) and can be defined

in the following way Ross 2003):
Definition 1 A stochastic procesg/N(t),t > 0} is said to be a Wiener process if
(i) W(0)=0;
(i) {W(t),t > 0} has stationary and independent increments
(iii) for every t > 0. W(t) is normally distributed with meaf and variances?t.

Foro = 1, we speak of a standard Wiener process. Some interestipgnpies which follow imme-
diately from this definition are: the variance of a standar@&n®r process in an interval is equal
to the length of the interval, i.e.E((W(tl) —W(tz))z) = |ty —t2|, and its correlation function
E(W(t)W(t2)) = min(ty, tp).

1Stationary means th&¥(t 4 s) —W(t) does not depend dn
2|ts increments in successive non-overlapping intervalsratependent.

11
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2.2 Stochastic accumulation process

The time evolution of neural potentials or the informatiact@mulation process in decision
making tasks can be described in a general form as solutitredbllowing SDE:

dX(t) = u(X(t),t)dt+ o (X(t),t)&(t) (2.1)

whereX(t) is a random variable which represents the amount of accuetulaformation at time

t anddX(t) is the random change in the procesd) that occurs in an infinitesimally small time
intervaldt. The stochasticity is introduced in the equatiorglgy) representing Gaussian white noise,
which is equivalent to the first derivative of a standard WigprocessV(t). Equation 2.1) includes
linear as well as nonlinear processes of arbitrary ordeselfestrict ourselves to a linear first order

version of @.1), we can rewrite it as

dX(t) = <u(t) +b(t)X(t))dt+ (o(t) +c(t)X(t))E(t) 2.2)

where(t),b(t),o(t) andc(t) are continuous functions of time. We can distinguish two dntgnt

special cases &.2

dxX(t) = (u(t)—yX(t))dH—oE(t) (2.3)
dX(t) = ut)dt+oE(t) (2.4)

which are obtained setting(t) = o constant,c(t) = 0 andb(t) = —y or b(t) = 0. The diffusion
process of Equatior2(3) is called the Ornstein-Uhlenbeck process, d@hd)(a Wiener Process with
drift. Both have great importance for theory and appligaio the explanation of response times in
simple information processing taskdnfith, 2000) or for neural modelind3rkitt, 2006).

2.3 The diffusion process in human and animal behavior modsl

Diffusion models are often used to explain the response (RT8 distribution of decisions of
human or animal test subjects in simple perceptual and tegtasks. The models are based on the
premise of noisy stimulus representation in the centraloes system and the necessity to accumulate
successive samples of the noisy stimulus until a decigiogshold is reachedR@tcliff and Smith
2004). Correspondence between this models and the grovetinailus information in neural firing
data has been reporte8rfith and Ratcliff 2004).

The solutionX(t) of the SDE g.1) describes in a general form the amount of accumulated

stimulus information at timé. Depending on the type of task, either one or two sided firstage
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a Respond A

W

X(t)

—trial 1

trial 2
—trial 3
- - -drift g

Respond B

time -

Figure 2.1: Diffusion model as explanation of response fimeetwo-choice task (Figure inspired by
Ratcliff and Smith 2004)

time problems of the diffusion proce3qt) are of interest to model the reaction time. Two sided
problems are used when modeling cognitive tasks where aubgct has to choose between two
different responses according to the stimulus presentbide wne sided problems can model tasks
where the decision is between performing a response or dingot
One sided problems involve a single random variablevhich stands for the time where the

accumulate informatioX (t) first reaches the in the general case time dependent detis&shold
aa(t). T is defined as

T =inf{t|X(t) >aa(t)}; X(to) =z<aa(to), (2.5)

with the diffusion process starting at tirgat X(tg) = z.

The two sided problem involves a pair of random variafleandTg, which represent the time
whereX(t) first exceeds the threshod (t) or falls belowag(t). Again both threshold may be time-
dependent and can be interpreted as decision criteria gheting responses. We can formally define

Ta andTg in the following way:

Ta = Inf{t|X(t) (t) AX(T) > ag(t) forallt < 1}, (2.6)

= an
Tg = Inf{t|X(t) <ag(t) AX(1) <aa(r)forallt <1}, (2.7)

with ag(tg) < X(tp) = z < aa(to) andag(t) < aa(t) for all t <to. The statistics of interest are now
the first passage time distributionsTbr Ta andTg respectively, which for certain restrictions on the
parameters 0f4.1) and the decision criteria can written in closed form. Sedth(2000) andRratcliff

and Smith(2004) for more details and examples.
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An example of three different trajectories towards the sleai thresholds in a two decision task
model is given byFigure 2.1 The decision criteriaa andag are set to be constant and the diffusion
processX(t) is a Wiener process with a constant drift, i.e. the solutibf2a) with p(t) = p. The drift
parameter determines the preferred direction of the diffuprocess, indicated by the dashed line in
Figure 2.1 While the trials 1 (black) and 3 (dark gray) reaghleading to the preferred responae
The trajectory of trial 2 (light gray) falls beloag, implying that the corresponding realization of the
task lead to respongg®

If we had a one sided first passage time problem, the latexctal would not stop adg and
X(t) would eventually increase again to reaghat a later time, or in the opposite case the trajectory

would correspond to a ho response trial.

2.4 The diffusion process in neural models

2.4.1 The stochastic integrate and fire model

In neural dynamics one is interested in modeling the evatutif the membrane potentia(t)
of a neuron in time. The membrane potential is modified bytataiy or inhibitory synaptic inputs
form other neuron. If the membrane potential exceeds a fixehold, an output spike is generated
and the membrane potential relaxes to a resting potéftiah other words, a neuron sums up inputs
and fires if they exceed a certain value, which explain theenafrintegrate-and-fire. Often a leaky
term is included in this mechanisms, since the membranafattef real neurons decreases if no new
inputs arrive. A deterministic version of the leaky integrand-fire neural model is often written in
the following form:
c dvit) _  Cn

mgr = g (U Vo) s(t) + in (1), (2.8)

The first term on the right hand side of the equation desctibesurrent due to passive leak of the

membrane, i.e. the leak current. The rest of the variabkesgescribed imable 2.1

Cm ... the membrane capacitance.
Is(t) ... the synaptic input current to the neuron.
linj(t) ... acurrentinjected into the neuron, by an intra-cellulacietsle.
Tm ... the passive membrane time constant, which is relatedwith R,,Cmto Cy, and
the leak resistancB,.
Vo ... theresting potential.

Table 2.1: Explanation of variables used in equat@.8)(

The arrival times of the synaptic input are often modeledasd®n processe€6x and Miller, 1965),
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which is reasonable if we consider a large number of indepetnglynaptic inputs. If we differentiate

between excitatory and inhibitory synaptic inputs, we @mire the synaptic input current as:
|s(t) :Cm(eE%(t)_EIS(t))v (2-9)

WhereS: and§ are the Poisson processes of excitatory and inhibitoryténpith ratesAg andAa,,
andeg > 0 andg; > 0 the changes in current due to a single synaptic event. W2i8gin (2.8) and
settinglinj(t) = O leads to the so called Stein model (1965):
dv(t)
™4t

which can be approximated by a continuous diffusion modehely the Ornstein-Uhlenbeck model

- —(v(t)—vo) +eeSE(t) —a S (). (2.10)

(Uhlenbeck and Ornsteii930), assuming that the discrete evolution of the pakigtisufficiently
small Redney 2001) and is then usually written as (compare with equai@n

avit)  v(t)—Vo
a - T + u+og(t). (2.11)

where&(t) is Gaussian white noise and the intensity coefficierdand the drifty relate with the

parameters of the Poisson process in the following way:

= SE)\E—S|)\|, (212)

u
o = \/8%)\5+8|2)\|. (2.13)

If we omit the leaky term in EqR.11we get a SDE equivalent to e®.4) with p(t) = pconstant,
which can be solved easily. The result is the perfect integia non-leaky integrate-and fire neuron
model, one of the first neural models to be analyZedrétein and Mandelbro1964). We get that

V(t) =vo+ut+oW(t), t>0 (2.14)

wherevp = v(0) andW(t) is the standard Wiener process describeskiction 2.1

2.4.2 Pulse coupled oscillators

The deterministic integrate-and-fire model of equati@r8)(can be simplified using a phase
reduction techniqueWinfree, 2001) in the following way. We set the resting potentigl= 0 and
rescale the membrane potentigl) to eliminate the constants, which results in a voltage liges
variablex(t) with the threshold at 1. We get

dx
gt =0a—VX (2.15)

for0<x< 1andy> 0. If x> 1 then the neuron fires anxds reset to zero. The external input to the

neuron is given by.
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If the external input is strong enough ¢ y), an individual neuron fires repetitively even in the
absence of coupling with other neurons and we have an iteegral-fire oscillator. A combination
of N such oscillators, with pulsed coupling has been used to hibdeself synchronization of the
cardiac pacemakePgéskin 1975). Every unif that reaches threshold increases all other units state
by an amount. If mneurons fire simultaneously the states of all other neurmmgareased byre.
Such a system of pulsed coupled oscillators always syncdeetior almost all initial conditions of
the system.Nlirollo and Strogatz1990).

2.4.3 Discrete integrate-and-fire model

The simplified leaky integrate-and-fire model @15 can be discretizedvan Vreeswijk and
Abbott, 1993), which allows to study the effect of transmissionagislanalytically. Integration of
equation 2.15 over one time-step leads to

ai(t+ 1) =hg(t) 4+ o +em(t) if a(t) <1
a(t+1)=0 if a(t) > 1. (2.16)

whereA = exp—B) andm(t) stands for the number of neurons which reach threshold atttiffihe
transmission delay of the above system is 1, it takes onedtefor a spike to reach all the other
neurons. The units of syster®.{6 also experience a refractory period, which is a small tirmequl
after a neuron has reached its threshold during which itderimible to incoming synaptic events.
This is reflected in the second equation 2f1@ which ignores spikes received from other units.

For the above equations, bounds for regions with self suextafiring patterns of an homoge-
neous ensemble & neurons have been derivedvan Vreeswijk and Abbotf1993) in the absence
of external input to the system, i.e.= 0.

2.4.4 Discrete stochastic integrate-and-fire model

As a variant of systen?(16) Rodriguez et al2001) introduced a stochastic non-leaky integrate-
and-fire model. In their model the threshold is seLtand only discrete values are allowed for the
state variables;(t) and the coupling strength Instead of using a constant inpuitto the neurons,
the state of a unit performs a random walk according to theoma¢ of a Bernoulli process. The state
increases for every success and remains constant in caatuod fbeingp the probability of success.
Combining this with the input from other neurons leads toftlewing equations:

& (t) +m(
ai(t ) m(
g(t+1) = 1+ (m(t) — 1)& with probability 1 ifay(t) > L. (2.17)

t)e+1 with probabilit
;£+ with probability p i at) <L,

t)e with probability (1 — p)
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Againm(t) stands for the number of neurons which reach threshold ie-titapt. The above system
can be seen as a discrete variant of the diffusion mod@ektein and Mandelbrdsee equation
2.14), although the monotonically increasing random walk dagtseactly coincide with a discrete
version of a Brownian motion. Note that the previous syst@m§ treats the refractory period
differently, it does not allow any modification of the statiable while equation2(17) only block
the stochastic increases of the states of the units buteghbhges due to incoming messages from
other neurons during the refractory period.

System 2.17) experiences clustering phenomena for larger values(Bodriguez, Suarez and
Lépez 2002). A more general version of this model will be introdd@nd further analyzed Part Il

of this thesis.
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Chapter 3
Introduction to message interchange in neural populations

The collective dynamics of networks composed of neuroa-dilements which interchange mes-
sages have been studied in many areas of science. Severlsrhagie been developed to simulate
and analyze phenomena produced by pacemaker cells in FegsitiQ 1975), neurons in the brain
(Bienenstock1995), swarms of firefliedBuck, 1988;Copeland and MoiseffL995) or hand clapping
of opera theater attendanfd€da, Ravasz, Brechet, Vicsek and BarabhZ800). Synchronization of
the ensemble units is a common characteristic of these piemm

The observed synchronization effects are different acegrth the model characteristics. Most
studies consider only instantaneous coupling (i.e. noydeldhe message exchange) between the
units which simplifies the analysis of the resulting dynanidJnder this restrictioMirollo and
Strogatz(1990) demonstrated that certain types of identical leagillators with global coupling
synchronize for almost all initial conditions. Their resiés been extended I8enn and Urbanczik
(2000) allowing non-identical oscillators whose intrm$iequencies, thresholds and couplings are
heterogeneous within a certain range. They showed thateady-linear integrate-and-fire neurons
synchronize for any initial condition for almost all paraerevalues of the system and speculate that,
using perturbative arguments, their results might bewatlitl in the presence of a small leakiness. The
influence of an absolute refractory period on the Mirolloe§atz model has been analyzed@yen
(1994) andKirk and Stong(1997). The authors of these papers showed that the sysigmaahes
synchrony for almost all initial conditions if the refracggoeriod is below a critical value.

If a delay for the message exchange is added more compless fofrsynchronization are ob-
served.Gerstner(1996) found than an ensemble of non-leaky oscillators wigimtical frequencies,
converges to periodic phase locked firing but does not nadBs8Bre in unison, under the restriction
that the sum of input due to coupling to each oscillator isstam.Ernst, Pawelzik and Geis€1995;
1998) report that for both, excitatory and inhibitory caogl leaky pulse coupled oscillators tend to
cluster their activities. All oscillators within a clustare synchronized and fire in unison whereas

21
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the clusters are phase-locked with constant phase diffeseriThe number of clusters of the system
was inversely proportional to the length of the delay forilaitory coupling. The stability of these
clusters was analyzed Bymme, Wolf and Geise{2002) andAshwin and Timmg2005). Clusters
have also been observed Ygn Vreeswijk(1996) for coupling witha functions. For very large de-
lays (larger than the period of isolated neuro@seng and van Leeuwegi2007) found that a network
of sparsely connected pulse coupled spiking neurons jupm#aneously between a large variety of
guasi stable phase locked states. Similar phenomena hemgheposed as a possible mechanism for
neural information coding and processing in the form of sgnthains Abeles 1991;Bienenstock
1995;Diesmann, Gewaltig and AertselP99;lkegaya et al.2004). The importance of delay for neu-
ral modeling has recently been addressedzikevich, Gally and Edelma(2004) andizhikevich
(2006), claiming that it allows an unprecedented inforgrattapacity, which translates into an in-
crease of stable firing patterns in more realistic neuralfadjpns due to heterogeneous delays.

In this study we investigate the influence of variations ia toupling strength on a network of
non-leaky integrate-and-fire neurons with delayed, puteegbling and a small refractory period. We
show that a system of these characteristics exhibits a preas@tion with a delay-induced hysteresis.
Phase transition phenomena are well known in populationgeakly coupled oscillators, where the
onset of synchronization represents a second order plesgtion analogous to the formation of
a Bose-Einstein condensatdififree, 1967; Kuramotqg 1984). Interacting chaotic oscillators also
exhibit a special kind of phase transition which closelyerables that seen in spin glass&sifekq
1990). Recent work analyzes the existence of phase tramsiior chains@stborn 2002) and lattices
(Ostborn, Aberg and Ohlé2003) of pulse-coupled oscillators with a particular,digcally inspired
phase response curve. For a review on phase transitionstledaitical phenomena in complex
networks se®orogovtsev, Goltsev and Mendgx)07).

Contrary to the former mentioned studies the neurons of dteark we analyze are driven
by stochastic input, i.e. pulse-coupled oscillators witttkastic frequencies. Such type of model
neurons have been introducedGerstein and Mandelbr@l964) and one possible interpretation of
the stochasticity is random input form background neurtas are not explicitly modeledStein
1967). The units perform a random walk towards a threshotf aocording to the characteristics
of the stochastic input, several studies have analyzedethgting distributions of the inter-spike
intervals of single units for the case of non-leaky integrand-fire (IF) neurorts(Tuckwell, 1988;
Fusi and Mattia 1999; Salinas and SejnowskR002; Middleton, Chacron, Lindner and Longtin
2003; Lindner, 2004). For a review on those results and the more biologizalsible models of
leaky IF neurons sed@(irkitt, 2006) and the references therein.

Here we are interested in a network of such units which canteegreted as a simplified model

1Sometimes also referred to as leak-less or perfect ingnaurons.
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of a pool of globally coupled neurons with similar propestievhich receive stochastic input form
different regions of the brain3erstner 2000). Such networks have been studied for the cases of in-
hibitory (Brunel and Hakim1999;Brunel and HanseRP006) and excitatory couple&érstner2000)
leaky IF neurons. The later work mainly concentrated onenimighe thresholds or the refractoriness
and only makes some comments on the effect of stochastitsinfucombination of excitatory and
inhibitory coupling, where noise leaded to enhanced stalaf long distance synchronization, has
been analyzed in a realistic heterogeneous neural moddpfioHuxley) by McMillen and Kopell
2003).

A common problem of these more biologically plausible medslthat analytical studies are
hard to perform especially if delay and refractory periogl @aided. To bypass this problem we base
our analysis on a discrete-time model introduceRadriguez et ak2001), of globally coupled, non-
leaky integrate-and-fire neurons with a constant transomsdelay and a refractory period, where
the stochastic inputs to the units are provided by a Bernptdicess. This model allows efficient
simulations and a detailed analytical study and is an eiierf the discrete model presentedvan
Vreeswijk and Abbot{1993).

The use of a stochastic model allows to observe that theaafihe dynamics changes abruptly
from a regime where the units show noisy, irregular spikiagdvior at low coupling to a regime with
deterministic, self-sustained and repetitive spikingawédr if the coupling is increased to values
greater than the critical coupling strength. There thesumigganize into several clusters, have all the
same inter-spike interval (ISl), fire in-phase with the siit their own cluster and phase-locked with
constant time differences to the neurons of other clustére clusters are robust to modifications
of the rate of the stochastic input. If the coupling strenigtincreased even more, the number of
clusters and the length of the ISI decrease since some usirge, but the system continues with
the phase-locked firing. If, on the contrary, the couplinglésreased, the units of the population
remain firing phase-locked without an increase of the ISherrtumber of clusters until the critical
coupling strength is reached, where the clusters startdsoblie. Thus a hysteresis effect can be
observed.

The phase transition and the hysteresis can be describelait. dJpper and lower bounds for
the ISI as well as an approximation for the mean ISI are obthand the system’s behavior for large
ensemble sizes (i.e. at its thermodynamic limit) is chardzed.

We conjecture that the observed phenomena can potentéiy o rather different models with
a refractory period and delayed coupling. The results maysbéul to explain certain aspect of animal
behavior e.g. synchronized and non-synchronized flasHihgh American firefliesCopeland and
Moiseff, 1995), create a simple working-memoiy/gng 2001) and may be applied in information

processing.
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Chapter 4

Neural model and experimental procedures

In this chapter we explain the model used in this study andrteéhodology of the simulations

and data analysis.

4.1 A discrete model of an stochastic integrate-and-fire nean

The discrete neural model studied in this work is based omiigeintroduced byRodriguez et
al. (2001), which is an extension of the workdn Vreeswijk and Abbott1993). It is composed of
a globally coupled network dfl non-leaky stochastic integrate-and-fire units. Unlike rinedel of
Rodriguez et al(2001), where only a finite number of states is allowed, eanthius at timet in a
continuous state;(t) € [1,0). Transitions between states can take place only at distne¢esteps
and are limited by a threshold L is a positive real number and limits the range of excitatiorthe
sense that every staagt) > L is meta-stable since it absorbs any further state transitio incoming
messages and relaxes to 1 after the end of a refractory pggyiod

We have two types of state transitions:

1. Stochastic state transitions:
At every discrete time-stetpa single unit can increase its state variable by 1 with pritibatp

if the state of the neuron is below threshald

i(t)+1 with probabilit )
ati1) = 4 a0 P yP if ai(t) <L,
ai(t) with probability (1 — p) (4.1)
gi(t+tef) = 1 with probability 1 ifa(t) > L.

2. State transitions due to coupling between units:
A unit j that reaches the threshdldat timet emits a spike and increases the continuous state

variable of an unit by an amoung;; at timet + 6, whered stands for the synaptic delay.

25
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Rodriguez et al(2001) only allowed positive integer values f&y. We will not use this re-
striction and allow any non-negative real number. The tatabunt of change of a single unit
at timet + & is obtained by summing over all neurons which had reachethtieshold at time
t. This gives us the following transition function due to naggss of other units (we have to

consider three cases depending on the threshold situatithe relation of.e¢ andd):

( N
a(t)+ 3 &Ou(aj(t) ifa(t) <L,
=1
o N
allH0) = Y 1i Sgeam)  fa) >Lands>ter, (4.2)
=1
1 if g(t) > L andd < tres.

Notice that® (x) = ©(x— L) where®(x) is the Heaviside step function whose value is 0 for
negative inputs and 1 elsewhere. We use this function to sulynaver the neurons which

reached threshold in the previous time-step.

We restrict our analysis to the case ®f ter. Consequences of other choices are discussed in
chapter 8 To keep the simulations simple we set bath and & equal to 1, which allows us to

combine these two types of evolutioh.[) and @.2) into a single equation and we get the following

dynamics:
N
a(t)+ Z €jOL(aj(t))+1 with probability p
at+1) = N if aj(t) <L,
ai(t)+ Z &jOL(a;(t)) with probability (1— p) (4.3)
=1
N
at+1) = 1+ Z €O (aj(t)) with probability 1 ifaj(t) > L.
=1

Rodriguez et ali2001) set alkj; = € for i # j and allg; = 0. With these prerequisites the parameter

(4.4)

was introduced to characterize the strength of the interzamong the units. The parametayives
the ratio between the total change in activation needed fa@uaon to fire and the one provided by
the coupling with the rest of the population. Fprs> 1 the following expressions approximate well

the mean and standard deviation of the ISI of a neuron in teemshle:

Tmf:tref+L—(N;1)£—17 Omf:n;l\/(L—(N—lgs—l)(l—p). 4.5)

Details and derivations of these equations, which are basedmean-field approach, replacing the

state transitions due to coupling between units by theirames can be found irRodriguez et a|.
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2001). Equations 4.5) fail to describe the behavior of the system in regions ohtgégupling. At

n = 1 they predict one giant cluster containing all the unitshvah I1SI of 1. This would only be
true for a system without delay and refractory period. In system, however, the more important
correlations due to the delayed message exchange bec@néh@. smaller becomep, the bigger
is the difference betweets and the ISI of the units. This was first reported Rgdriguez et al.
(2002), who found that fon = 1 after an initial transient the system reaches one of a laugeber of
periodic firing patterns, composed of several clusters. SHmee is true fon < 1, as can be observed
in Figure 4.1 where raster plots of spikes of a system consisting of 1@@ams are shown. The
irregular behavior of the system at= 1.2 (Figure 4.R) changes into a regular repetitive spiking
pattern atn = 1 (Figure 4.Db) if the coupling is increased. If increased further somestelrs merge
but the system continues with the phase-locked clusteried fis shown irFigure 4.T forn = 0.9.

INote that Rodriguez et a).2001) used,es = 1 in their analysis, which can be easily extended to the gérase of

tref Variable.
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Figure 4.1: Raster plot of spikes (firing patterns) of 100roes (noise rate = 0.9 and threshold
L = 100) for different values ofj. Simulation started with a random initial state for everyinos.

Coupling strength is slowly increased every 100 time-stmbtime was set to 0 after a transient of
50 time-steps. For clarity in the visualization the neuraresre-labeled according to their spike-time
atn = 1. (a) We observe irregular firing at = 1.2. (b) At n = 1 the neurons organize into 9 phase-
locked clusters (labeled by the boxed numbefs).At n = 0.9 the number of phase-locked clusters
is reduced to 5 since clusters numbe?;14,5; 6,7 and 89 merged into new bigger clusters. Note
that the length of the ISI coincides with the number of clisfern = 1 andn = 0.9.
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4.2 Experimental procedures

To analyze the system describedsiection 4.1we use the following experimental procedures.
The phase transition and the hysteresis are best undermshbsedving how the system reacts to adi-
abati@ changes of the coupling strength. A simple analogy is ugefuinderstand the procedure.
Consider a cloud of particles that is slowly concentratediluted by increasing or decreasing the
volume. We begin with a very dispersed cloud with little natetion between the particles and start
to concentrate it in a stepwise manner. At every conceaftratep the interaction among the par-
ticles increases. At some point the process is inversedrandioud is diluted again until reaching
the original state. We therefore distinguish two differpriicesses in our experiments, to which we
refer asconcentration procesanddilution process The particles are in our case the spiking units
and the interaction can be measured via the relation of tfeshbldL and the coupling strength
multiplied by the number of unitil. As explained above (see equatibd) this relation is reflected
in the parameten, which in our analogy represents the volume of the system.

In our experiments we choose a fixed seNafieurons with fixed threshold. The only parameter al-
lowed to change is the global interaction strengthVe start with units at random initial states and at
regions of highm (usuallyn = 2) where the system can be described with high accuracy Iatieqgs
(4.5 and is ergodic in the sense that all accessible microsstatevisited over a long period of time.
The units in these regions can be viewed as nearly independtra threshold lowered by the mean
activity induced by messages received from other units. ofthe difference to real independence is
a period focusing effect described Bpdriguez et al(2001). This results in a slightly lower (by a
factor (n —1)/n) standard deviation than the one of an independent unitlaitered threshold.

Once an experiment is started we let the system evolve entimghsteps to avoid dependence on
unnatural initial conditions (i.e. conditions that are tygical of the system) and let the ISI stabilize.
Now we can start the concentration process by decreaginga stepwise manner. We achieve this
via adaptinge. Notice that, although we changeby a constanfAn, the changes of are not constant
due to the inverse relation of ande. After every decrease of we let the system evolve enough
time-steps until the IS stabilizes again. This procedanmepeated until a value gfin the range be-
tween 1 and ® is reached. Then we reverse the procedure and start thiewliprocess. We increase
n in a stepwise manner until we reach again the starting vdlne o

To analyze the results we calculate two types of statisfitsenlSIs of the units for every value of

1. The statistics of the ISI of the units just before the past@ms of the system are changed (&.e.
is increased or decreased). We call the first two momentsesktktatistics ando (t denotes
the mean ISl of the ensemble aodheir standard deviation).

2We use the termdiabaticas it is used in quantum mechanics, meaning a “sufficienthy’sthange of the system.
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2. The statistics ot ando of different experiments: We calr) the mean andey, the standard
deviation of the ensemble’s mean ISlin the case off we only calculate its mean value, which

we denoteo).

The value of(o) gives us an idea of the likelihood to end up firing with phasekéd clusters for
the given parameter values. The clogeyf is to O the bigger is this likelihood. If the units in one
experiment have all the same 1Sl their standard deviatiequals 00, of equation 4.5) estimates
(0).

On the other handyexp measures the influence of the initial conditions and vanetin the stochastic
state transitions on the mean ISof the ensemble.
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Chapter 5

Results for homogeneous networks

In this chapter we first present the outcome of several exyets that reveal the existence
of a phase transition phenomenon of the system describsdciion 4.1laround a critical value of
the coupling parametey. This phenomenon is accompanied by a hysteresis effechwhiitalso
be described. We then give analytical bounds for the mearu)SIThis description allows us to
calculate the behavior of the observed phenomenélfer . We will refer to this limit behavior as

thermodynamic limit in the rest of this work.

5.1 Experimental Results

5.1.1 Dependence of the ISI on the coupling strength

As explained insection 4.1one of the quantities we are interested in this work is the ESt
pecially we want to know how it is modified by small changesh® toupling parametay. We
therefore performed several experiments for differeneeride sizes as describeddaction 4.2and
observed the dependence of the mean value of thér}Sin the coupling parametey for different
values of the rat@ of the stochastic evolution. First we analyze only the catre¢ion process, where
we slowly increase the amount of coupling between the neurSince the coupling parametgiis
inverse proportional to the coupling strength an increds$leeocoupling strength indicates a decrease
of n.

Figure 5.5 and5.1b show the results for 1000 such concentration experimentadise rates
of p= 0.9 (solid line) andp = 0.6 (dashed line). We used an ensemble sizbl ef 1000 neurons
and can observe how the mean [8)] decreases as we increase the coupling. Initially at highegl
for n there is a clear dependence on the noise pathich seems to disappear as we regch 1. A
closer examination of the mean ISIs of both experimentsigr#yion reveals that their difference for

n close to 1 and below decays exponentially to 0 with decrgagir(Shown in the insets of Figures
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5.1a and5.1b). We will see later in the theoretical analysis that theatgeN the faster is this decay

and at the thermodynamic limit the mean ISl is independemtfof all values of < 1.

When we analyze the deviation of the ISIs we also notice agdanthe behavior of the system
if we approachn = 1. The mean deviatiofo) of several experiments drops to 0 when the critical
value ofn is reached, indicating that the units organize into clgsé@id fire phase-locked, all with the
same ISIFigure 5.2 shows this effect for the concentration experiments vaghtwvo different noise
rates analyzed before. In the inset we notice that for a rieisg of p = 0.9 (solid line) the onset
of phase-locking already happensat 1.04. This can also be observed in the deviatig, of the
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Figure 5.1: Mean ISI: Values of the I1$t) over all neurons and 1000 experiments for increasing
(i.e. decreasing). Number of neuronsl = 1000 equals thresholdin all cases(a) Dependence of
(1) onn for two different noise levelp. Inset shows the difference of both curves in the intergstin
region aroundh = 1. (b) Same as (a) but in logarithmic scale) Dependence dft) onN for different
values ofn andp = 0.9. (d) Same as (c) but in logarithmic scale. We can see a linear depea of
(1) onN for n = 1.15, a square root dependenceifioe 1 and nearly no dependence fpe= 0.9.
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experiments ISIskigure 5.D shows the corresponding valuem§,,. Here the onset of phase-locking
is marked by an increase ofyp

If the units are not phase-locked,yis low since it is the deviation of averages. Although there
may be great differences between the ISIs of the units adlected by the value ofo), once the
mean ISIt of the ensemble is calculated, these fluctuations are jesaged out. But as the units
start to organize into phase-locked clusters the ensenyblandgics starts to govern the system. The
deviation of the ensemble, equals 0 but the deviation of the experimenots,, increases. The mean
ISI T of the ensemble is now an integer value, which depends onvtiiatien of all the units since

the beginning of the experiment. This gives rise to a broatiape of the ISI distribution. Small
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Figure 5.2: Standard Deviations: Values of the deviationgod and ey Of the experiments with
increasinge (e.g. decreasing) presented irFigure 5.1 Number of neuron®\ equals threshold

in all cases.(a) Dependence ofa) onn for two different values op. Inset shows a zoom on the
interesting region aroungl= 1. (b) Same as (a) but farey, () Dependence ofo) onN for different
values ofn andp = 0.9. (o) = 0 for alln < 1 due to synchronizatior(d) Dependence afiex,0on N
for different values of) andp = 0.9.
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fluctuations in the evolution of some units can lead to a dffie ISI of the whole system. Therefore
the averaging effect observed before is lost and differepeéements, although started with the same
initial conditions, can lead to systems with differant

The maximum ofoeyp is reached when the rafeof the stochastic evolution looses most of its
influence on the size of the ISI (Compare wiigure 5.). In this sense the interval between the
local minimum atn > 1 and maximum afj < 1 of oexp Marks the transition between an ensemble
governed by the stochastic evolution to an ensemble wifkssstained activity where the stochastic
evolution does not have much influence on the statistics efstistem. We can see that once the
local maximum is reached the curves foe= 0.9 andp = 0.6 are practically identical if the system
is further concentrated. (i.e. the coupling strength iseéased) oexp reaches a value of 0 gt= 0.5
when the system consists only of one giant cluster whichesit every time-step. The strange bump
atn = 0.7 can be explained by a probability of nearly 80% of having @hdf 2 for this value of
n. The value ofoep experiences thus an important decrease, but starts taasei@gain when the
concentration continues and the probability of having drofd increases.

5.1.2 Dependence of the ISI on the ensemble sikxie

Once the properties of the deviations have been descrihgdaralysis focuses again on the
mean ISI(t). The strange shape of the curves in the logarithmic scalégfre 5.b suggests that
apart from the elimination of the dependency on the noisepaomething else is going on around
the value of = 1. To investigate this point further we observed the depecelef the ISKT) on the
ensemble sizél.

Figures5.1c and5.1d reveal a quite different kind of dependence for differealues of the
coupling parameten. Forn = 1.15 (line with circles) we observe a linear dependencé&pbn N,
whereas fon = 0.9 (line with crosses) the value of the ISl stabilizes onceragenumber of neurons
is in the ensembld\ > 300) and does not show any dependence on the ensemble sige: Atline
with diamonds) another type of relationship is observed: Jlbpe in the double logarithmic scale of
Figure 5.1 has nearly exactly a value ofindicating a relationship of type'N ~ ().

The corresponding values of the deviatiqo$ andoexp for p= 0.9 can be seen in Figurés2c
and5.2d. As expected fon < 1 the mean deviatiofo) = O since the units fire phase-locked. We omit
for clarity the line forn = 0.9 and only show the values fgr= 1 (line with diamonds). Fon = 1.15
(line with circles) we get a linear dependencd@f on /N as predicted by Eq4(5). The additional
curve forn = 1.05 (line with squares) allows to observe that the smalleretmgemble the earlier
happens the onset of phase-locking in the concentratiooepso Here the units are phase-locked
already for ensemble sizes f> 500.

The dependence alexp 0NN can be observed iRigure 5.21. Forn = 1.15 (line with circles),
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where the stochastic state transitions govern the ensemfleslightly decreases since an increase
of N implies an increase of the number of samples taken for e&ry &nd due to the central limit
theorem a decrease of the deviation. fet 0.9 (solid line with crosses) angl= 1.0 (solid line with
circles) theoeyp increases abl increases. This behavior changes in the casg-6f0.9, wheregey,

stabilizes for higher values &f and becomes independent of the ensemble size (data not)shown
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Figure 5.3: Comparison between experimental and theatetsults for the parameterof the as-
sumption thatt) = aN®. 10 sets of 1000 experiments with= 0.9 and different values faXN were
carried out. (Solid lineN € {100, 200,...1000}. Dashed line:N € {1000200Q...10000). The
values ofc have been obtained by a least squares fit of the experimettistié linear equation
In((t)) =In(a)+cIn(N). The shaded areas show the region of possible valueslaained by least
squares fits of the theoretical bounds oy of equations%.10 and 6.11) and the assumption. For
N € {10°,...10°} (darkest area), the value ofs already very close to its thermodynamic limit. The
difference between the values ®bf the two bounds is very low.
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5.2 Characterization of the Phase Transition

The results of the dependence of the meantgbn the ensemble siz¢ for different values of

n presented in Figures. 1c and5.1d motivate us to investigate if there exists a relation oetyp
aN® = (1) (5.1)

and analyze the dependencecadnda on the coupling parametey. Equation 5.1) can be trans-

formed into a linear equation with slopeand y-interceptx
In(a) +cIn(N) = In((1)). (5.2)

This allows us to calculateanda by least squares fits of the simulation data.

The results of these fits are shown in Figube3and5.4. In both we see two curves, each rep-
resents a set of 10 different valueshbf For every value oN the mean IS[t) of 1000 concentration
processes was calculated. For the solid Nhtakes values from 100 to 1000 in steps of 100 and for
the dashed line values from 3@ 10*. We can see that bothanda experience a sharp change of
their value around) = 1. The higher the value dfl the sharper this change is. We can therefore
speak of a phase transition around a critical valug ef 1. We expect that foN — o the value ofc
should jump from 1 fon > 1 via 05 atn = 1to 0 forn < 1.

The gray areas represent bounds obtained from theoretiedysis and will be discussed in

section 5.4

5.3 Hysteresis effect

After having analyzed the concentration process expetatigrand characterized a phase tran-
sition phenomenon we are interested in what happens if vegtitive process. Instead of increasing
the coupling strength we decrease it in a stepwise mannedeéaribed irsection 4.2we call this
type of experiment dilution process. If we combine conaditn and dilution process to obtain a
cyclic process we notice a hysteresis effect comparing ts@nhSIs(t) of both processes for values
of n close to 1 and below.

Figure 5.5shows this effect for 3 different starting points of the tda process. The dotted line
represents the mean 18l) of the concentration process of 1000 experiments. Wherothesntration
process stops and the dilution process is starteahd therefore alsdt) remain constant until a
dilution ofn > 1 is reached. The solid line with circles represents a difufirocess stating gt= 0.5
and the dashed line with markers one starting at= 0.9. In both cases the ISI remains unchanged
until n = 1 where it jumps then to a value slightly higher than the omeligted by the formulagi(5)
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for this case. If we start the dilution process already at0.99 we observe thdf) remains constant
even forn = 1.01. Only if we dilute furthert) increases and starts to coincide wjth of the other
two dilution processes. Approximately gt= 1.08 the ISI of the dilution process coincides with the

one of the concentration process. To understand this phemamin detail we carry out a theoretical
analysis which will be presented in the next section.
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Figure 5.4: Comparison between experimental and theate®sults for the valuer under the as-
sumption that(t) = aN° 10 sets of 1000 experiments with= 0.9 and different values foN
were carried out. (Solid lineN € {100,200,...1000. Dashed line:N € {1000200Q...10000).
The values ofa have been obtained by a least squares fit of the experimettistivé equation

In((1)) = In(a) +cIn(N). The shaded areas show the regions of possible valuasf@f N — oo
according to equation$(20.
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Figure 5.5: Hysteresis effect in the comparison of the dégece of(t) onn between the concentra-
tion and dilution process of the experiments. The y-axiswsho) of 1000 experiments in logarithmic
scale. Four curves are shown] till 0.5: shows the results of the concentration procesg t#0.5.

n 1 from 0.5 is the corresponding part of 1000 dilution processesistafitomn = 0.5. n | from 0.9
shows the result for the dilution process starting afterreceatration tilln = 0.9. Andn | from 0.99

the same for a concentration unji= 0.99. The inset shows a zoom on the interesting region around
n = 1inlinear scale. The number of neurads= 1000 equals thresholdandp = 0.9 in all cases.

5.4 Theoretical Description

Once identified the phenomena occurring in the model in éx@aits we make some theoretical
observations to gain further insight. We base these obsangaon a deterministic approximation of
the model where the stochastic evolutidnlj of a neuron is simplified into the following determin-

istic iterative rule:

at+1l) = at)+p ifat) <L,

(5.3)
alt+ter) = 1 if a(t) > L.
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The random walk performed by the units is replaced by thesraye behavior: a deterministic mo-
tion with constant homogeneous velocjty An equivalent continuous time system but with hetero-
geneous velocities (frequencies) and without delay andwetdry period has been studied 8gnn
and Urbanczik{2000). In the following we will restrict our analysis to thase where the delayof
the message exchange is greater than or equal to the rejraetdodt,e+.

After an initial transient the deterministic system showsdodic pattern of spikes. The period
of a pattern is the ISI of the ensembleidure 4.b and4.1c illustrate such patterns). If we take an
arbitrary neuron and start the pattern at a spike of this ahitinits will spike exactly once until the
next spike of the same unit. The sequence of these spikethetdilstart again with exactly the same
time differences between the spikes, and this pattern gjlkat itself forevermore if the parameters
of the system are not changed. One can derive the followinditon the system fulfills if it shows

a periodic firing pattern.

Theorem 1 (Periodic pattern condition) A system that consists wfclusters, where every cluster i
consists of kelements, shows a periodic firing pattern with 131 for every i€ {1,... K}
(N—1)(1—n)+2E2te) g > 14t

ki > Kmin(T) = (N-1)(1—n) if T<1+tes o0

is fulfilled.

For derivation of this rule se&ppendix A Condition 6.4) simply tells us that every cluster (i.e. units
that reach the threshold at the same time-step) has to beigtkan a certain minimum cluster size
which depends on the system’s parameter and its ISI.

Before we continue our analysis we make some comments onatttity of this rule for the
stochastic system. The firing patterns of the determingst&tem may also occur in the stochastic
system as can be seenhigure 4.b and4.1c. According to the robustness of these patterns against

variations in the stochastic evolution we can distinguistwieen three types of patterns.

Robust firing patterns are totally insensitive to variations of stochastic stededitions in the sense
that, no matter how they evolve, even if they are totally sepped, the system cannot change

its periodic pattern.

Semi-robust firing patterns remain unchanged if one or more units evolve slower than thighr
mean velocityp, but if they evolve much faster the spiking pattern may cleangince such
changes are rare, as will be explained subsequently, anghtterns are robust against at least

half of the possible stochastic events, we choose the namiersbust.

Variable firing patterns may change due to very slow or very fast evolution of one orenumits.
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At n <1 we can find only robust and semi-robust patterns. Cond{gof) gives us the rule for
a semi-robust pattern in the stochastic system. To get thaitoan of a robust pattern in this case we
would have to replace with 1.

A change of a semi-robust pattern of phase-locked clustgrbds that one or more units change
from one cluster to the one firing directly before it. Thisrg&ses the robustness of the resulting new
firing pattern since the smallest cluster has the highegigiitity of receiving a neuron and leads
to a certain balancing of the sizes of the clusters. Only ifhaee two small clusters spiking one
directly after the other a merge of these two clusters migicug which would imply a decrease
of the ISI. Every decrease of the ISI enhances the robustfabe resulting firing pattern, since it
implies a decrease of the minimum cluster dizg(1). Such events however are rare especially for
large populations and their influence is far below the stahdaviation of the experiments. Since we
are mainly interested in the ISIs of our system we can negtech in our analysis. Although we have
to state that for an infinite simulation time all semi-robpatterns would transform into robust ones.

Forn > 1 we only find variable firing pattern&igure 4.1). In the stochastic system, the higher
the value ofn the lower is the probability to observe between three carsacspikes of a certain
single unit the same two spiking patterns of the rest of theores. It is not even granted that the
two ISIs of this unit have the same length. But now, unlikedhse of < 1, the fluctuations of the
noise cannot create irreversible effects on the ISI of tistesy. The mean ISI of the system coincides
therefore with the one of the deterministic system, whiclkesahe following analysis valid in this
region as well.

Every time the coupling strength is increased, after a dhansient, the deterministic system
fulfills again condition $.4). This allows us to make some observations on the ISI of tiséery.
Since the cluster sizes have to be integer numbers we define

Kenin(T) = [ Kmin(T) + 1] (5.5)

and have the conditiok > Rmin(r). This definition guarantees th&{lm(r) > 0 and is necessary for
technical reasons in the derivation of the lower bound wesei later. A system with |1 consists

of Kk = 1/ clusters since a spiking cluster at titnprovokes the spiking of the next one at titne d.
With this we calculate another quantity we need to descriliesgstem, the mean cluster size given a
certain ISIt:

k(1) = —. (5.6)
We then introduce a new functiagit) which gives us the ratio betwedit) andknin(T).

k(T)
Rmin(T) '

g(t) = (5.7)



Chapter 5: Results for homogeneous networks 41

Intuitively this quantity can be seen as the frequency aesystonsisting only of clusters with the
minimum cluster SiZ&min(T) has to fire with, to achieve the same ISI as the system witherhsize
k(t). Note thatg(t) > 0 sincekmin(T) > 0.

Using equationg.5) of the minimum integer cluster siiq\in(r) we arrive after some manipula-
tion to the following inequality (See equati@15in Appendix Bfor details).

No
o (9) (kmin((T)) +1). (5.8)
(g) denotes the expectation gft) with respect to the probability distribution of We will call () i,
from now on the minimum value, whidlg) can take to fulfill inequality %.8). Using(g) i, inequality
(5.8 can be written as
1
TN <g>minZ ) (5.9)

)
when we replacékmin((T)) +1)/(Nd) with . If we plot (t) and{ in double logarithmic scale we

notice a nearly linear dependence betweg(tjland{. This is the reason why by replacifg) .
with a constant one can get a good approximatioftbfs we will see later. Two examples for this
nearly linear relation can be seenhkigure 5.@ for noise rates op = 0.9 andp = 0.6. The inset

shows a comparison betweérandn for p = 0.9. If we take a closer look ofg) i, however, we

min
notice that the hypothesis of a linear relationship doeshon@t. In Figure 5.® we can observe the

exact value ofg) i, for the corresponding two sets of experiments. From engligeidence we can

min
suppose, that for the values p&ndn of our simulations 2 is an upper bound(@f ,;,, Which allows

us to replac€g) with 2 in inequality £.8).

5.4.1 Bounds fort and (1)

With the results of the last section we can derive upper andidt®ounds for and the mean ISl
(1). Both bounds oft) can be used to approximate).
First we derive a lower bound fdr) using definition §.7) and condition §.8). *

C(N—De(n—1) —& 1+ tes (N—1e(n—1)—¢ 14+ter\? Ned
(O min = 2 +—%—+ 2 5 50 (5.10)
In the following we will use (if not stated differently) thevirical upper bound 2 ofg),,, as ex-

plained in the previous section to substityte in (5.10 and to calculate the numerical values of

<T>min'
To get an upper bound for all possible I1Sls we Usd)(and 6.6):

Tmax= 2p 2 +

(N—l)ﬁ(n—l)+l+tref+\/<(N—1)25an_1) 1+2tref>2+'\‘85 (5.11)

INote that if(g) is replaced by(g) i, in (5.10 we get an expression fdr).
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and have that (Se&ppendix Bfor details):

(O min < (1) < Tmax- (5.12)

Note thattmaxis an upper bound for all ISls whereas(t),,,;, is only a lower bound foft) but not

for 1. Because of this facfr),,, is much closer tqt) thantmay as we can observe in the Figures

min
5.6c and5.6d which show the quality of these bounds. The solid linEigure 5.@ representst) for
1000 concentration processes in logarithmic scale. IWigsin a gray area that indicates the interval
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Figure 5.6: (a) Relation of (t) and{ = (knmin((1)) + 1)/(N9) for two different values ofp. (b)
Dependence of parametéy),,,, on n for two different values ofp. We can observég), ., < 2.
(c) The empirical outcomégt) of the concentration processes of 1000 experiments comhparis
theoretical limitstmax and (1),,, (gray area).(d) Difference between the theoretical limitgax and
(T) min (gray area){t) and(t),,,;, (dashed line)rmaxand(t) (black solid line),(t) andtm (gray solid
line with circles). tmax has been calculated using equatidril() and(t),,, substituting 2 for{g) in
equation 5.10.
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limited by the two boundst) ., andTmax.

min
In section B.2we derive a lower bountmin < T. Tmin = tref for N < 1 and coincides with the

approximatiornt s (see equatiod.5) for n > 1. We have therefore that

Tmf < T < Tmax (5.13)

The exact difference betwegn) and its bounds is shown Figure 5.@l. The differenc€t) — (1),
is indicated by the dashed line, angax— (T) by the solid line. The gray area shows the width of the
interval bounded byt)

bound but an excellent approximation faj. It beats by far the approximatian, ¢, whose difference

andtmax. The quantity(t), .. is, for a wide range of values of, not only a

min min
to (1) is shown by the gray solid line with circles Figure 5.@l. In spite of this fact the importance
of (T) min @ndTmax does not only lie in their quality as approximations, bubeatin the fact that they
are bounds and both experience a similar phase transitiect @fs(t). This allows us to derive the

thermodynamic limit of(t).

5.4.2 Thermodynamic Limit

The thermodynamic limits (i.e. the behavior for infinNeandL and finiten) of the bounds from
equation .10 and 6.11) can be derived after some calculations (8@pendix Cfor details) and

allow to set bounds for the thermodynamic limit(@f.

I\Ilim<r>:63 ifn<05,
5 5
<Iim (1) < if0.5<n<1,
@a-n) A= 1oy =
R A i ifn=1,
p(g) ~ N—x /N p
- (1) _en-1) ,
|\I|'Lnooﬁ = 5 ifn>1. (5.14)

The upper bound at® < n < 1 coincides with the one obtained for a model without stobhagput
similar to (van Vreeswijk and Abbottl993). To characterize the quality of these bounds we enami
the quantityAt = Tmax— (T) iy €Specially at its thermodynamic limit. The gray aredigure 5.6l

showsAT for the case o = 1000 andp = 0.9. From 6.10 and 6.11) we can derive after some
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algebra that
0 forn < 0.5,
0 1
— | 1-— for05<n<1,
1-n ( <g>> =1
amAT=9 1 NES (5.15)

lim {1- — — forn=1,

N=eo (9) P

€ 0 1

-4+ —1-— forn>1.
(p n-1 ( <g>> !

Since fromtmax> (1), follows At > 0, we have thafg) and(g),,,;, have lower bounds:

1 forn<1,
lim (g) > lim (g) pn > (5.16)
N—eo N—e T S forn>1.

pd+(n—1)¢

If we compareAt with the difference of s andtmaxwe get
lim (T Tmf) =1+ 0 forn>1 (5.17)
N max mf) = n— 1 n . .

For high values of the limit of this difference tends to 1. Therefore the forasu#.5) of Rodriguez
et al.(2001) really represent a good approximation of the dynarfzicn > 1.
Approximation with(t) .., however is always closer @) if p> €. In the case op < £ we can
derive using(t) > T, an upper bound fofg) .
. )
e
As long as we use a value lower than the right hand side of alegy5.18 to replace(g) in (5.10,

ifn>landp<e. (5.18)

the approximation oft) with (1), beatstnt also forn > 1 andp < €, and is therefore an improve-
ment to earlier studies for all values pf

5.4.3 Application of the Thermodynamic Limit

If we suppose a dependence(@f on N as in 6.1) (aN° ~ (1)) we can now derive the ther-
modynamic limits fora andc from the above results. Ségpendix Cfor details. The value of is
rather straightforward.

0 forn<1,
,\Ilimmc: 05 forn=1, (5.19)
1 forn>1.

This observation coincides with the experimental resusented ifFigure 5.3and indicates a linear
dependence between the ISI and the number of nelNdosn > 1, whereas fon < 1 the ISI does
not depend on the amount of units in the ensemble at all. kwd®at atn = 1 the mean value of the
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ISI distribution (1) depends or/N.
The thermodynamic limit oft follows straightforward from%.14). We get:

’\Ilimazé ifn<05,
> >
<lima< ifo.5<n<1,
(@9(1-n) "Noo T (1-n) 1
€d €d
——<lma<,/— ifn=1,
p(g) " N—w T\ p 1
lim a = en—1) ifn>1. (5.20)

Since we can replac@) with (9),i, and 1< (9),i, < 2 forn < 1 we get an excellent approximation
for a at the limit of largeN. We can observe this iRigure 5.4 The shaded area shows the possible
regions ofa. Already for low N the experimental data fits well into the theoretical resfdtsthe
thermodynamic limit, which give an idea what ISI to expeactrio< 1.

A graphical interpretation of the above findings can be founéippendix D

5.4.4 Hysteresis

Condition 6.4) for a periodic spiking pattern gives us also the explamatd the hysteresis
phenomena. In the dilution process we always start from astobr semi-robust pattern gt< 1
and condition %.4) is not altered by an increase 1pf The inequality gets even sharper, which means
that the probability of changing a semi-robust pattern endewer the more we increage In other
words: the semi-robust patterns tend to be robust duringlithBon process. This changes once we
reachn = 1, since now the stochastic state transitions are needéutagaaintain the ISls. But even
for n > 1 the ISI may remain constant as long as the following comdliis fulfilled. (Seesection B.2
for details and derivation)

(N-1e(n—1)

T2 ther (5.21)

This inequality reflects that the approximatiodss of Rodriguez et al(2001) are a lower bound
for the ISl in the dilution process, which have to be fulfilleg the deterministic system. Only when
a value ofn violating this condition is reached, the system leaves 8idtlhas fired with since the
beginning of the dilution process and changes to a new ISthwtioes fulfill the condition. We can
observe this in the dashed-dotted line witlmarkers offFigure 5.5which shows a dilution process
started already at = 0.99. In this casét) remains constant even fgr= 1.01 since inequalityq.21)

is still fulfilled at this point. Only if we dilute furtheft) increases to values fulfilling conditioBs.@1)

and starts to coincide witft) of the other two dilution processes. Approximatelynat 1.08 the
mean ISI of dilution processes coincides with the one of thecentration processes, since then the

equations 4.5) start to approximatét) well again.
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Chapter 6

Results for heterogeneous networks

In this chapter we show that the results describechagpter Sor homogeneous networks can be

extended to networks consisting of neurons with heteragesmeoupling strengths and thresholds.

6.1 Generalization of the model

To be able to simulate heterogeneous networks we have typ tygpfollowing extensions to the
model presented isection 4.1

e Instead of setting all coupling strengths equal to an homogeneous coupling strergthe
take thee;; from a Gaussian distribution with me&s).

e We allow heterogeneous thresholdsfor every unit. Each.; is taken form a Gaussian distri-
bution with mean(L).

e The relation (denominateg) between standard deviations and means of both distritmifi®
fixed.

e To characterize the new extended system we calculate taenpéem in the same way as be-
fore but use the mean valués and(L) of the distributions instead &fande of a homogeneous
network. We call this paramet@gy.

(6.1)

With this model of a heterogeneous network we perform theesgipe of experiments as described in
section 4.21n the concentration process we start in regions with highand increase the connection
strengths of the system adiabatically. As in the experismiith homogeneous networks we increase

it by resting a constant valuney: from nex.. We have to calculate the corresponding values;jof
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after the change by multiplying them o,/ (Next — Anext). Thus we achieve that after every change
equation 6.1) is still valid.

@) p=0.9 (b) p=0.9, N=10%-10°
‘ | f : pyawev=v=u=s: )|
—— hom. network ST
Al — - het. network: s=10% 0.8
—6— het. network: s=30%
Th. Limits 0.6
S 2 3}
0.4
16 0.2
0
0.5 15 0.5 1.5
Ny =1/Ce O N,,=1/Ce O
(c) p=0.9, N=1000, log. Scale (d) p=0.9, N=1000, s=30%
60 N til0.5
10% | ] 50(| — n t from 0.5
—+— n 1 from 0.9
40
O O
5 N 5 30
10 3
20
10
100 & ; OO0 O« ‘ ‘
0.5 1 15 0.85 0.9 0.95 1 1.05
nextzllDe O r]extzlll}: O

Figure 6.1: (a), (b) and (c) compare the results of 1000 experiments with homogeneods an
heterogeneous networks(a) showsa and (b) ¢ under the assumption th&dt) = aN° for N €
{100,200 ...1000. Coupling strengths and thresholds where taken from Gawslstributions with
deviations of 10% (dash-dotted line) and 30% (gray solid liith circles) of their means. The black
solid lines (homogeneous network) coincide with the rassitown in Figure$.3 and5.4, as well

as the shaded areas, which represerajrihe regions of possible values offor N — « according

to equations§.20 and in(b) the region of possible values ofobtained using equations.¢0 and
(5.12) for finite N as in the experimentgc) Comparison only of the results fof = 1000. The mean
ISIs (1) of the heterogeneous experiments lie within the gray aread®d by(t), ., (Eq. 5.10 and
Tmax (EQ. 5.11). Compare withFigure 5.€. We notice that the results obtained for the theoretical
bounds of the ISl are also valid for heterogeneous netwddsHysteresis in a heterogeneous net-
work with s= 30%. Compare witlrigure 5.5 Hysteresis does also occur in heterogeneous networks,
but vanishes there alreadyraslightly lower than 1.
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6.2 Results for heterogeneous networks

We compare experiments with the generalized model withdbelts ofchapter Sor homoge-
neous networkgrigure 6.1shows this comparison for the valuesoffFigure 6.1) andc (Figure 6.D)
of equation 5.1).

The only noticeable difference between experiments witlndgeneous networks (solid black
line) and the corresponding heterogeneous equivalentsdeitiations of 10% (dash-dotted line) and
30% of the mean value (gray solid line with circles) is thatrfo< 1 the curves show some irregular
bumps which differ from the expected values (gray areasheftheoretical analysis. A closer ex-
amination of the ISIs af < 1 reveals that this bumps are provoked by jumps betweenantedues
of the ISI, as can be observed kigure 6., which showst) for N = 1000. Contrary to intuition
the smooth change of the mean ISI in the homogeneous cas& @uld line) is more step-like in
heterogeneous networks, meaning that for certain intefahe coupling strength (i.e. the plateaus
in Figure 6.%) nearly all the experiments (with different networks) empdwith the same ISI. The ob-
served behavior, which is reproducible and robust despéestochastic inputs and the heterogeneity
of the network, is not fully understood, but might be of biileal relevance and will be subject of
future research. The locations of the steps depend on tleendates size N, which causes the bumps
in Figures6.1a and6.1b. In the thermodynamic limit, however, these bumps shoiddpbear.

In spite of this effect, the upper and lower bounds(ior given by equations(10 and6.11) and
represented by the gray aredHigure 6.k, are valid even for high deviations of the underlying prob-
ability distributions. Also the hysteresis effect is pratsia the heterogeneous networl&dgure 6.1),
although it vanishes slightly before the critical couplistoength is reached gt= 1 (compare with
Figure 5.5. This is caused by some neurons which receive less inpupaged with their threshold
than the others. They need stochastic input to reach thehtblicealready slightly below = 1, which
can cause the end of self-sustained firing and an increake 5t of the ensemble.
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Chapter 7

Sequential versus Parallel Dynamics

The results presented so far have been obtained usinggbarpélating of the units, meaning
that at every time-step all units are updated. Sometimasesgial dynamics, where only a reduced
number of neurons is updated at every time-step, are useatbase neural dynamics instealddrz
and Marcus1993). It has been shown that sequential and parallel ipgdean lead to different be-
havior of the Hopfield modelHontanari and Kober|el988) and multi-state Ising-type ferromagnets
(Bolle and Blancp2004), which motivates us to investigate the dependenoerafsults on the type
of updating.

7.1 Sequential model

We will use the most simple case of sequential updating, &baty one neuron is updated at
each time-step and modify the model presenteskittion 4.1in the following way:

e One time-step of the original model is split up iMidime-steps and at each new time-step only
one neuron is updated. A specific neuiida updated at every time-steévhich fulfills i =t
modN.

e Given a synaptic delag®®?and a refractory periotfeefq, the neuron which is updated at time
t receives all the spikes which have been sent within theviatér— N — 5%¢9t — 3°¢9 by the
other neurons. In case that neurofired in the last update, the interval narrowsftte- N —
osed tseq t— 5seq).

refs

This modification implies that the synaptic delay is no langemogeneous. An update of a post-
synaptic unit occurs now the next time it is updated instdatie precise time-step when the spike
would reach the unit. Therefore the effective delay is unifly distributed betweed**9andd>¢9+ N,
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leading to an average delay of
(%% = 5°%94+-N/2. (7.1)

7.2 Results with sequential updating

To compare simulations with sequential and parallel dyeamie have to s&¢accordingly
to fulfill No = (6°°9 whered is the delay of the parallel dynamics. This leads to

e N (6— %) . (7.2)

The equations for upper (E§.11) and lower bounds (Ecp.10 obtained for the parallel dynamics are
valid only if et < &, which means that the only noticeable effect.gf on the ensemble dynamics is
that the threshold acts as an absorbing barrier. In other words: if the stateceftain uniti exceeds
the threshold, this excess is absorbed and not used as thstamwof the unit after resetting it.
Nevertheless, spikes of other units which occur during #mestime-step as the one of undre not
absorbed if the delay of the message exchange is greater than or equal to thetogfrgeriodt,es.

This means that only a minimum amount of activity is absoringtie parallel dynamics. To achieve

(@  p=0.9, N=1000, log. Scale (b)
Th. Limits 2571 Par. Dyn. |
Par. Dyn. — © — Seq. Dyn.
102 — © — Seq. Dyn. | ol
0.4
(| / O 1.5
Il
3 4 8 A
10"
/4
0.5
0
10° : .
0.5 1 15 0.5 1 15
n=1/ ¢ n=1/ ¢

Figure 7.1: Comparison of 1000 experiments with paralleladyics (continuous lines) and their
equivalent with sequential updating (dashed lines witbles). Number of neurord = 1000 equals
thresholdL andp = 0.9. The results for the sequential dynamics are rescaledebfattior 1000(a)

The mean ISIST) of both type of dynamics nearly coincide and lie within thaygarea bounded by
(Umin (EQ. 5.10 andtmax (Eq. 5.11). (b) The sequential dynamics show a slightly higher mean of
deviation(o) of the units ISIs with the same experiments as the paralleduycs fom > 1 but also

end up in phase-locked clustersrak 1. The inset shows a zoom on the interesting region around
n=1.
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the same effect of the refractory period in the sequentialehave have to setfeefqto a minimal value,

seq__

le.tor=

1. This guarantees that spikes from other units which aafier the threshold crossing are
not affected by the refractory period.t efqgreater than 1 could lead to the absorption of those spikes
and in consequence to a greater ISI of the ensemble than aothesponding parallel experiments.

If we consider these two constraints we obtain similar tesfdr both type of dynamics, as
shown inFigure 7.1 where we compare simulations with increasing couplingngith forN = 1000
neurons and a noise rape= 0.9. Since the delap of the parallel simulations equals &*9was set
to 500. This implies a mean deld$®®% of N, which is coherent with the rescaling bfo t/N. We
observe inFigure 7.4 that after rescaling (i.e. dividing the ISI by the ensengide) the mean ISI
of the sequential dynamics (dashed line with circles) yeewincides with the result of the parallel
simulations (continuous line), and the bounds obtaineskittion 5.4are valid also for this type of
dynamics. Hysteresis can also be observed (data not shdwwiifs with sequential updating show
due to the inhomogeneous delays a slightly greater dewmiafitheir ISIs than their equivalents with
parallel updating (seEigure 7.D). This effect causes that phase-locked clusters, althobgervable
also atn = 1, appear as a general phenomena (ja@.= 0) for couplings slightly greater than the
critical coupling strength as we can observe in the ins&tigidire 7.D.

Despite these small differences due to the enhanced dispafthe I1SIs we can conclude that
the results derived in the previous chapters are also Vadieluential instead of parallel updating is
used.
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Chapter 8

Discussion of the results for neural networks

We analyzed, by varying its coupling strengththe behavior of an ensemble of stochastic,
non-leaky integrate-and-fire neurons with delayed, etaryaglobal coupling and a small refractory
period. Around a critical value of the coupling strength lledavior of the system undergoes a phase

transition Figure 5.3, which has three main consequences on the dynamics of seendate:

Transition from irregular to clustered spiking behavior: The units of the ensemble are homoge-
neous but show, due to a stochastic component in their éwoltdwards threshold, irregular
spiking behavior if they are weakly coupleigure 4.R). The coupling strengthis inversely
proportional to the parameter (see equatiod.4), which describes the system and allows to
fixate the phase transition at= 1. For coupling greater than or equal to the coupling at1
the population splits into several clusters. All neuronthimia cluster spike in unison, although
they still might show different trajectories towards thesghold. The clusters are phase-locked
(Figure 4.D) and have all exactly the same ISI, which is proportiondh&tonumber of clusters.
This number decreases if the coupling is increased furffigu(e 4.k), but usually remains
greater than 1 until a trivial case of only one cluster is heglcat latest aj < 0.5. The activity
atn < 1is self-sustained in the sense that the stochastic inpeitsct needed to maintain the

clustered spiking activity.

Hysteresis: The phase transition is accompanied by a hysteresis effantre 5.5. We applied a
cyclic process to our system which consisted of two submsE® a concentration process
where we increased and a dilution process wheeeis decreased. Starting at an initial con-
figuration with low coupling the process is reversible agjlas we do not reach (at values of
n slightly greater than 1) the onset of phase-locking. If werélase the coupling strength fur-
ther the ISt of the concentration process decreases following rulekigga below, whereas
if we inverse the process (start the dilution process) thed®ains frozen as long ap< 1.

55



56 Chapter 8: Discussion of the results for neural networks

Then it jumps up to a value fulfilling conditiorb(21) and coincides again with the ISI of the

concentration process Rtslightly greater than 1.

Change in the dependence of the ISI on ensemble size and noiage: For low coupling the mean
ISI (1) of the ensemble in the concentration process dependsliir@athe ensemble sizd,
atn = 1 there is a square root dependenceNpmwhereas for coupling greater thanrpt= 1
the mean ISKt) does not depend oN nor on the rate of the stochastic component, which
governs the dynamics for low coupling. Betwegn- 1 andn = 0.5 the ISI only depends on
the coupling strength itself. For a coupling greater tham &t0.5 the influence of on the ISI
is also lost. The length of the time delay determines thetlenfjthe 1Sl in this regime.

To obtain analytical results we used a deterministic apgraa the model dynamics which allowed
us, using a simple conditiorb ), to derive upper and lower boundsngy and (1)) for the mean
ISI (1) of the ensemble in the concentration process. The lowerdgun,, is also an excellent
approximation for(t), as can be observed kKigure 5.@l. Using the bounds we can calculate the be-
havior of the system at its thermodynamic limit (i.e. fbr— o) and characterize the phase transition
analytically.

These theoretical results are also valid if sequentiatatsof parallel updatingHerz and Mar-
cus 1993) is used to simulate the dynami€&sgre 7.). In this case the synaptic delay is no longer
homogeneous, leading to a slightly higher deviation of thi#ulSIs and in consequence a slightly
later onset of clustered spiking behavior in the conceomagirocess.

The above explained effects could also be observed if,adsté an increase or decrease of the
coupling strength, positive or negative external inputeMee added to the system. To calculate the
critical point in this case we would have to add the extemgilit to the denominator of equatiofh.4)
to get the appropriate value nf

Using the hysteresis effect one can generate a simple meoyastimulating the system with
a strong input, which leads the system to a value beajow 1. If the input is then substituted by a
smaller one, which is just big enough to maintain the systelavbthe critical couping strength and
could represent the will to remember the first input, the I&d #he firing pattern of the ensemble
will still be the same as if the strong input were still preseédnce the system receives a short erase
signal (e.g. in form of a negative input, or the absence ofsthall input), which allows it to reach
a state corresponding > 1, the firing pattern produced by the strong input will disegup(i.e.
the memory will be deleted). Such a mechanism might be a meaglto represent working memory
functions WWang 2001), which are often modeled in the form of bistable dyicahattractor networks
(Durstewitz, Seamans and SejnowskD00). In our case it seems that we have multi-stability for

coupling greater than the critical coupling strength, butifer analysis is needed to verify this claim.



Chapter 8: Discussion of the results for neural networks 57

The main difference of our model to those used in earlieristuis the use of discrete time
dynamics and that we combine delayed coupling with an intpiédractory period. Setting delay
0 and refractory periodles identical and equal to 1 in the experiments does not represeritical
restriction on the presented results as can be seen in theetival analysis, which is valid in the
general case as long &s> tet and both are positive. We can observe as well from equat®i$) (
and 6.17) that in a system with no delay, i.& = 0, the upper and lower bounds nearly coincide,
leaving no space for clustering with more than one cluster larsteresis. For a delay lower than
the refractory period some of the inter-population messagmuld get absorbed, leading to different
upper and lower bounds for the ISIs. Such a pair of bounds éas balculated for a system without
stochastic input irvan Vreeswijk and Abbot(1993) for the case o3 slightly lower thant,es. We
expect those results to be valid for our systenm at 1 in the thermodynamic limit. In the case of
sequential dynamics the conditidn> t..¢ translates into setting the refractory period to a minimum

value.

It is straightforward to transfer the discrete time dynaanto the continuous domain replacing
the stochastic state transitions with a continuous iner@fshe state variable. This leads to contin-
uous oscillators similar to the ones analyzed3snn and UrbancziR000), but with the add-ons of
delayed coupling and refractory period, which are bothiaefio observe the reported phase transi-
tion and clustering phenomena. One can even maintain tichagtic dynamics using a continuous
extension of the ISI distribution of a single uncoupled uaihegative binomial distribution in our
case Rodriguez et al.2001). Two different possibilities for such an extensi@venbeen presented
by Gémez, Kaltenbrunner and Lopé006), leading both to gamma distributions. The lengthesf d
lay and refractory-period remain untouched by these ekirasAn analysis of these models is object
of current research using a novel event-driven modelingriegie Gémez et al.2006) allowing to
simulate such extended models (also with non-integer sdbredelay and refractory period) without
precision errors and without determining the exact trajges of the states of the units in the ensem-
ble. The derived formulas for upper and lower bounds shagést from some minor modifications,

be valid in these extended systems as well.

For models with a leaky termMirollo and Strogatz 1990) clustering phenomena have been
reported byErnst et al.(1998) if a delay is added, but these clusters turned out toniséable for
excitatory coupling if noise was added to the coupling gjten We conjecture that this behavior
would change if a positive refractory period were includadhe system. During the refractory
period the threshold acts as an absorbing barrier allowiegystem a certain tolerance against noise
which is the higher the greater the amount of absorption & fact thaternst et al.(1998) reports
stability for inhibition is a clear evidence for this conjer®, since the reset state is a reflecting barrier

in their model, allowing to absorb noisy negative couplifigwould also be interesting to observe
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the effect of delay and refractory period for a model with aldmjical inspired phase response curve
(PRC). For this type of PRC the existence of a phase transitithe case of one&Jstborn 2002) and
two dimensional Q@stborn et al.2003) oscillator lattices has been reported.

Our study shows that synaptic delay changes significantlyahelynamics. It is crucial for
the observed hysteresis effect and the appearance of kphaise-locked clusters. Without it we
would get a totally synchronized ensemble at the criticalptiog strength. The lack of a leaky
term makes our model biologically plausible only at the fiofihigh coupling where integration of
synaptic inputs occurs over a time scale much shorter thamdicay constanB(rkitt and Clark
1999), which is exactly where we find the phase transition laystleresis. We therefore conjecture
that the phenomena described could be found as well in monplea, realistic neural models with
delay. Even in a system with inhomogeneous delays we canifimisresults as shown for the case

of sequential dynamics, which demonstrates the robustfahe findings.

In a network consisting of heterogeneous neurons withréiffecoupling strengths and thresh-
olds drawn from Gaussian distributions the reported phemanare also preserfigure 6.). This
may be of great importance if synaptic dynamics are addetidartodel. We conjecture that in
this context, plasticity may act as a homeostatic mechatismaintain the system in the regime
around the critical coupling strength if it experiencestydrations. In the neighborhood of the crit-
ical state the system explores all possible clusters oee thf¢ other. Clusters that are phase-locked
after crossing this point are then transient states andyters is ready to set in any of the phase-
locked, periodic firing patterns as a reaction to an incrégasige number of received messages. This
could have potential applications in a wide range of engingepplications like image segmentation
(Campbell, Wang and Jayaprakad®99;Rhouma and Frigui2001) or large scale sensor networks
(Hong and Scaglion€005;Hu and Servetta2006), where clustering might be useful to optimize the
information throughput. The application of the resultstfmrmation processing in natural systems is
the subject of current research. In this context a recediygiinouchi and Copelli2006) (See also
Chialva 2006) presents evidence for optimality of informationgassing near a phase transition,
very similar to the one we observe. Those results indicatettie sensitivity of a neural system and
the stimulus interval which it can code robustly seem to b&imiaed near the critical point of the
phase transition.

As a final aspect we would like to highlight the applicatioroaf model (interpreted as a network
of pulse-coupled oscillators with stochastic frequerndiesiescribe animal behavior, e.g. populations
of flashing fireflies Buck, 1988). For the North American firefly several types of synoiration
have been reportedppeland and Moiseffl995) and it seems that a certain number of flashing flies
within a certain area is needed to observe synchronizaflidms would be in consonance with our

model, where an increase in the number of units (fireflies)ldvdacrease the coupling parameter
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For a certain number of units we would reach the critical paimere synchronization would appeatr.
Apart form unison synchrony, wave synchrony has been obdewhich might be explained by the

clusters we report.
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Chapter 9
Introduction into human communication dynamics

9.1 Motivation

Nowadays, an important part of human activity leaves edeatrtraces in form of server logs,
e-mails, loan registers, credit card transactions, bleigs,This huge amount of generated data allows
to observe human behavior and communication patterns diymeacost on a scale and dimension
which would have been impossible some decades ago. A coabldemount of studies has emerged
in recent years using some part of these data to investigaténhe patterns of human activity. The
studied temporal events are rather diverse and reach fragotdiy listings and file transfers (FTP
requests) Paxson and Floydl995), job submissions on a supercomputdelfan and Clearwater
2003), arrival times of consecutive printing-job subnmissi Harder and Paczusk2006) over trades
in bond Mainardi, Raberto, Gorenflo and Scala®00) or currency futuredasoliver, Montero and
Weiss 2003) to messages in Internet chat systebmaes, Wichmann and Feldmarz003), online
gamesfidenderson and Bhat2001), human displacemenBrockmann, Hufnagel and Geis€006),
page downloads on a news sii2ezso et al.2006) and e-mailsJphansen2004).

A common characteristic of these studies is that the obdgovebability distributions for the
waiting or inter-event times are heavy-tailegigman 1999). However, which type of heavy-tailed
distribution provides the best explanation of the datalissst open problem. A recent studgérabasi
2005) tries to illuminate these phenomena under the assumipiat these heavy-tailed distributions
can be well approximated by a power-law or at least by a pdaverwith an exponential cut-off
(Newman 2005). The cited study presents a model which seems toiextpedistribution of e-mail
response times and has been used later to account for thewate times of web-browsing, library
loans, trade transactions and correspondence patteraiestl{azquez et a).2006). However, the
hypothesis of a power-law distribution is not generallyegted, at least in case of e-mail response
times. Stouffer, Malmgren and AmargR006) claim that the data can be much better fitted with
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either a log-normal (LN) distributionQrow and Shimizu1988; Limpert, Stahel and Abht2001)

or the superposition of two LN, a double log-normal (DLN)tdisution (Fowlkes 1979). The de-
bate power-law versus log-normal has been repeated acrasg aneas of science for decades, as
noticed byMitzenmachen2004). For log-normal event-time distributions in otheeas of science
seeLawrence(1988).

9.2 Slashdot

Here we extend the above mentioned debate to the tempotainsabf human communication
in systems where social interaction occurs in a more complarner than just person to person
(one-to-one) communication. We think it is valuable to gmalthe many-to-many social interaction
(Rheingold 1994) on a technology-related news-website which supp@#r participation and have
therefore chosen to investigate the communication patemrSlashddt a popular website for people
interested in reading and discussing about technology @nchinifications. It gave name to the
“Slashdot effect” Adler, 1999), which refers to the phenomenon of a popular wehisikinty to a
small, under-powered one, causing a huge influx of trafficatow the hosted link during a short
period of time, which may force the small website to slow dawven to temporarily collapse.

Slashdot was created at the end of 1997 and has ever sincenanphosed into a website that
hosts a large interactive community capable of influencialglip perceptions and awareness on the
topics addressed. Its role can be metaphorically compar#tht of commercial malls in developed
markets, or hubs in intricate large networks. The site’sranttion consists of short-stopoststhat
often carry fresh news and links to sources of informatiotiwiore details. These posts incite many
readers taaommenton them and provoke discussions that may trail for hours en@ays. Most
of the commentators register and comment under their ninksaalthough a considerable amount
participates anonymously.

Although Slashdot allows users to express their opinioaljtenoderation and meta-modera-
tion mechanisms are employed to judge comments and enaulerseto filter them by quality. The
moderation system was analyzed lbgmpe and Resnick004), who concluded that it upholds the
quality of discussions by discouraging spam and offendorgroents, marking a difference between
Slashdot and regular discussion forums. This high quatitias interaction has prompted several
socio-analytical studies about Slashd&oor (2005) andBaoill (2000) have both conducted inde-
pendent inquiries on the extent to which the site represamtenline public sphere as defined by
Habermag$1962/1989).

Given that a great amount of users with different intereat$ motivations participates in dis-

Ihttp: // waw. sl ashdot . org
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cussions about very different topics, one would expect seole a high degree of heterogeneity on
a site like Slashdot. However, what if the posts and commeats analyzed just as imprints of an
occurring information exchange, with no regard to semaagjoects? Is there a homogeneous behav-
ior pattern underlying heterogeneity? To answer these@ated questions we collected and studied
one year's worth of interchanged messages along with theciated meta-data from Slashdot. We
show here that the temporal patterns of the comments prdvoke post are very similar, indicat-
ing that homogeneity is the rule not the exception. The taalpmatterns of the social activity fit
accurately log-normal distributions, thus giving emgifievidence of our hypothesis and establish-
ing a link with previous studies where social interactiocws in a simpler way. The quality of the
LN-fit depends on the publishing hour of a post. This depecglean be eliminated and therefore
the quality of the fit can be improved by using double log-nalrdistributions, i.e. a mixture of two
independent log-normals, as for example usedSioyffer et al. 2006) to explain the waiting time
in email conversation, or by multiplying a log-normal distition with a periodic function. The best
results are obtained if both methods are combined.

Our analysis allows more insight into questions such asheéseta time-scale common to all
discussions, or are they scale-free? What does incite dusgite a comment, is it the relevance of
the topic, or maybe just the hour of the day? Can we predicatheunt of activity a post will trigger
already some minutes after it has been written? Which typg@plications can we devise on the basis
of using these conclusions?

Even though Slashdot holds much closer ties to web baseetibuioard systems (BBS) and
newsgroups, we can find some related studies about the catoeposts on weblogdMishne
and Glance2006; Duarte, Mattos, Bestavros, Almeida and Almei@@07). It was shown that the
amounts of comments per post and per blog follow heavyetadistributions, but only 30% of the
blogs (15% percent of the posts) received commeavistiine and Glance2006). According tduarte
et al.(2007), 55% of the discussions appearing in these blogsealabsified as many-to-many com-
munication. Among other temporal patterns of the commehnés; study also analyzes the aggregate
of all PCI-distributions, which is fit by a Weibull distribon. The number of comments per user in a
BBS was shown to be distributed according to a truncated Isitidution (Naruse and Kubd2006),
which coincides with our results.

9.3 Statistical preliminaries

In this section we briefly give a formal characterization efty-tailed distributions, the densities
of the probability distributions used for fitting the datadaxplain the principle of the statistical test

used to measure the quality of the fits.
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9.3.1 Definition of heavy-tailed distributions

According with Sigman 1999) we give the following formal definition for the classheavy-
tailed distribution:

Definition 2 Given a non-negative random variable X, its distributiosagd to be heavy-tailed if its
cumulative distribution function &) = P(X < x) fulfills

1-F(x+y)

lim P(X > x+Yy|X > X) = lim
X¢—00 ( = +y| = ) X¢—00 1—F(X)

=1 (9.1)
fory > 0.

In other words, ifX ever exceeds a large value it is likely to exceed any largkrevas well. An
important subclass of the heavy-tailed distributions & 2o called subexponential distributions
(Goldie and Kluppelbergl998), whose tail + F(x) tend to zero slower than any exponengat*.
Several important distributions belong to this class. Bhafthem which we will use in this study are

described in more detail hereafter.

9.3.2 Log-normal and double log-normal distributions

If a random variableY follows a Gaussian distribution thexi= exp(Y) is log-normally dis-
tributed. This implies that lbng-normal (LN) distribution has the following probability density func-
tion (pdf):

_ 2
fin(o) = mexli(%) (9.2)

and its cumulative distribution function (cdf) is given by:

Fn(t o) = %+ %erf <In£t/)§; H) , (9.3)

where erf(x) is the Gauss error function being defined as

erf(x) = %T/OX exp(—u?)du. (9.4)

And a double log-normal (DLN) distribution, which is a superposition of two independei-L
distributions and has the following pdf:

fon(t;0) = Kfin(tpa, 01) + (1—K) fun(t; p2, 02) (9.5)

where® = (W,01,K 2,02).

The corresponding cdf can be easily derived from equati®rgs 4nd ©.5).
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9.3.3 Power law distributions

The tail of a heavy-tailed distributed random variaklés often tried to fit with a function of the

form of a power law

Such distributions are also referred to as Pareto distoibsitor Zipf's laws Newman 2005). The
value ofC depends on the lower bound for the powerlaw behayigr the exponentt and on whether
we are modeling discrete or continuous data. Here we areintesested in the discrefgower law
(PL) distribution, whose pdf is given by

. . _ t_a
pr(t,(X,tmm) = 7Z(G,tmin) (97)
and its cdf by
oty -1 @t
FPL(t,(X,tmm) =1- Z((X,tmin) (98)
where
(a,t) = Z(n+t)’“ (9.9

=
is the generalized or Hurwitz zeta functiohdamchik and Srivastayd 998).

To find the optimal value fotmi, to fit a dataset a recent studglauset, Shalizi and Newman
2007) proposes a method based on findingtthefor which the distance between the cdf of data
and a PL-fit (using maximum likelihood estimation) takes aimum value, which in most cases is
equivalent with maximizing th@-value of a Kolmogorov-Smirnov test, which is describeceladter.

9.3.4 Kolmogorov-Smirnov test

To test whether a given dataset is distributed accordingctrtain model distributioffr, we use

the Kolmogorov-Smirnov (KS) test with the following hypettes:
Ho: The data is a sample of distributién
Hy: The hypothesisig is not true.

The test is based on finding the maximal differeBcleetween the cdf of data and model distribution.
With this maximum and the number of samples (i.e. the numbeomments in our case) we can

calculate thep-value of the KS-test. It gives us the probability of obtamna result as different frofa

as the data. In other words: the greater phealue, the closer is the fit with the test distribution. The

hypothesisHg is accepted if thgp-value is greater than the chosen level of significamgéusually
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set to 005 or Q01). Using the following formula one can calculate {walue, given the numbar

of elements in the dataset:
p=2 Zl(—l)i_lexp(—ziz (Vn+0.12+0.11/y/n)? DZ) . (9.10)
i=

Usually a summation up to= 100 is enough to obtain reliable resul®ré¢ss, Flannery, Teukolsky
and Vetterling 1992). For more details see for examdeGroot and Schervisi2002).

Note that the KS-test is designed to test distributions whmzrameters are independent of the
dataset used. In other words: if we use the dataset to ctddhka parameters of the distribution, e.g..
through maximum likelihood estimation, we introduce a biasards highem-values Goldstein,
Morris and Yen 2004). One could use instead an equivalent to the Lilleefest for normal distri-
bution (Abdi and Molin, 2007). However, this implies a huge amount of Monte Carousitions to
obtain reliable results. Since we are mainly interestedescdbing the quality of a fit, we use the
p-values of the much simpler KS-test as a measure of appréximguality rather than as statistical
proof of the origin of the underlying data.



Chapter 10

The dataset

In this chapter we explain the methods used for data retrawad the analysis of Slashdot. We
give then some basic quantities of the retrieved data andenview of the global activity looking at
the data on different temporal scales.

10.1 Data retrieval process

The crawled data correspond to posts and comments published betweemsAR6th, 2005
and August 31th, 2006. We divided the crawling process wim gtages. The first stage included
crawling the main HTML (posts) and first level comments araldbcond stage covered all additional
comment pages. Crawling all the data took days and produced approximatelyp4 GB of data.
Post-processing caused by the presence of duplicated catsinvas necessary (due to an error of
representation on the website). This explains discrepannithe total number of comments between
our study and Slashdot for certain posts.

Although a high amount of information was extracted from the HTML (sub-domains, ti-
tle, topics, hierarchical relations between comments) wcentrated only on a minimal amount
of information: type of contribution (either post or comment), itkentifier, author’s identifier and
time-stamp or date of publishing. The selected information was ex¢é@td XML-files and imported
into Matlab where the statistical analysis was perforniedhle 10.1shows the main quantities of the
crawling process.

Figure 10.1shows an example of a post (blue dashed box) with 4 of its cantsr{black dash-
dotted box). The time-stamps of post and comments (indidayered boxes irFigure 10.) can be
obtained from Slashdot with minute-precision and correded to the EDT time zone{(GMT—4
hours). They allow to calculate the following two quanttie

1Software used: waget, Perl scripts, and Tidy on a GNU/Linuyktu 6.0.6 OS.
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Period covered 26-8-05 31-8-06
Time needed for crawling .8 days
Amount of data mined 54 GB

Table 10.1: Main quantities of the crawling

ThePost-Comment-Interval (PCI) stands for the difference between the time-stamps of a com-

ment and its corresponding post. The PCl§igfure 10.lare symbolized by the dimensioning.

The Inter-Comment-Interval (ICI) refers to the difference between the time-stamps of two

consecutive comments of the same user (no matter what pssieh@omments on).

The Inter-Comment-Interval (ICI ;) refers to the difference between the time-stamps of two
consecutive comments of the same user to different posiiilg the first comments of a users to a
post is considered in its calculation.

Building Brainlike Computers POST
Posted by kdawson on Friday[April 13, @12:43PM|

from the cortexes-for-all dept.

1

1
newtronic clues us to an article in IEEE Spectrum by Jeff Hawkins (founder of Palm Computing), titled Why can't a " 1
computer be more like a brain? Hawkins brings us up to date with his latest endeavor, Numenta. He covers progregs (e n |
since his book On Intelligence and gives details on Hierarchical Temporal Memory (HTM). which is a platform for b |
|

1

|

simulating neocortical activity. Programming HTMs is different — you essentially feed them sensory data. Numentp —
has created a framework and tools, free in a "research release,” that allow anyone to build and program HTMs. = b E
Il

L e e e e e e e e e e e e e e e e e e e e e e = = = —_ - = 'E'

Sad news...John Corzine dead at 60 (Score:-1, Troll) Comment

by Anonymous Coward on Friday[April 13, @12:50PM|(#18720205)
I just heard some sad new on Talk Radio, John Corzine corrupt billionaire gevernor of the Socialist state of New Jersey was found dead in his New Jersey automobifg

There were no further details. Even if you were not a fan of this criminal sleazebag, there is no denying his contribution to the pelitict of waste and fraud. Truly ang
American Icon!

nd Co

Reply to This

en Post

1 built a brainlike computer, but it wasn't useful (Score:0, Funny) Comment

by Anonymous Coward on Friday[April 13, @12:51PM]|(#18720233) 2
Q
| It spent most of the time watching TV all stoned. Too many receptors. E |
' o,
| | Beply toThis g,
=
'
| this is stupid (Score:0, Troll) Comment
, by corynthian_dude (1087973} Qon Friday Fprll 13, @12:52PM|(#£18720245) E
=

to believe that man could create a brain is absurd. Only god could create a brain. Computer programmers seem to have a delusion that they can make something in I
the image of gods creation. You can make games, wordprocessors, email programs, no problem, those are easy, but to believe you can make something capable of
understanding the world in all its god given glory is heresy.

Reply to This

End of civilization (Score:4, Funny) Comment
by Anenymous Coward on FrldaylAprII 13, @12:52PM|(#18720251) |

Because it would signal the end of civilization...if computers can look like women (porn), feel like women (Realdolls), and think like women (have a brain, at least in
some cases), then all procreation would cease and humans would suffer the same fate as the dinosaurs. |

L Reply to This

Figure 10.1: Example for a post (blue dashed) and a few obitsnaents (black dash-dotted box).
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10.2 Basic quantities of the retrieved data

The data analyzed contain about*Ifews posts which received a total of 20° comments.
We found nearly 19distinguishable users (commentators) responsible ferdtinments. The exact
numbers are shown ifable 10.2 Approximately 186% of the comments were given by anonymous
users. Assuming that many users comment anonymously, rib& anonymous users do not posses
a registered user-name and the number of comments per anasymser is similar to those of the
registered ones, we can suppose that the actual number afieotators is about 20% higher. Never-
theless, for our purposes the exact identification of uniggez-names is only interestingéhapter 12
where we have to eliminate the comments of the anonymous.usehe rest of the study the fact that
a comment is anonymous does not entail any restrictions oamalysis and we can use the entire

dataset.

Posts 10016
Comments 2075085
Anonymous comments 1%

Commentators 93636

Table 10.2: Main quantities of retrieved data

The distribution of the number of comments per post is quitietogeneous. It is shown in the
form of a histogram irFigure 10.2 Half of the posts provoke more than 160 comments and some
of them even trigger more than 1000. In the next section wé/amahe time-distribution of these
comments and in the next chapter we study the distributiadhesf post-comment intervals (PCIs).
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number of posts
N
(o))
o

C)O
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Median = 160
Mean = 194.6231

500 1000 1500
number of comments (bin-width = 10)

Figure 10.2: Histogram of the number of comments per posefishows the corresponding cdf).
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10.3 Activity cycles on Slashdot

In this section we analyze the time-series generated bydbe pnd commenting activity on
SlashdotFigure 10.3 shows these two time-serfagouped into 10 five week periods. The amounts
of posts (blue continuous) and comments (black continumes) per hour show clearly daily and
weekly cyclic behavior. Figure$0.3-d represent the mean and standard deviations (gray areas)
the post and comment activity shown in Figulés3a over different timescales. Figure 10.® we
can observe the average daily cycles of the time seridsgufre 10.3, while Figure 10.8 shows
the average over these time seri€sgure 10.8l finally shows average and standard deviation over
the cycles ofrigure 10.®. The low values of the standard deviations indicate thagttivity cycles
do not change much during the year, they are relatively stabér time especially in the case of the
comments.

2A correction to account for changes in the activity rhythmaszd by the Daylight Saving Time (DST) has to be applied,
since the DST is not reflected in the raw data obtained frorsh8liet. \We used the DST-period of the USA, which slightly
differs from the schedule in the European Union.
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Figure 10.3: Post and comment activity on Slashdot througtie year(a) Evolution of the number
of post and comments per hoyh) Mean and standard deviations of the daily activity cyclaedtie
10 time-series shown in (ajc) Mean and standard deviation over the time-series shown).ifda
Mean and standard deviation of the daily activity cycles)f {(Me observe daily and weekly activity
cycles which are relatively stable throughout the year afadiactivity.
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Interestingly, although post activity shows more fluctoiasi and higher standard deviations than
comment activity, there is little discrepancy betweenrthean temporal profiles. This difference in
the deviations is not surprising since the number of pos2sniggnitudes smaller than the number of
comments (se&able 10.2. This is further confirmed b¥figure 10.4which shows the mean number

of posts and comments per hour, now with the standard dewiafiall the data. It illustrates patterns
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Figure 10.4:(a) Weekly and(b) daily activity cycles

which are in agreement with the social activity outside thbligc sphere.Figure 10.4 shows high
activity working days which slows down during weekends.sTWeekly cycle is interleaved by daily
oscillations illustrated irfrigure 10.4. The daily activity cycle reaches its maximum between 1lam
and 2pm approximately and its minimum during the night betw®am and 6am. At weekends and
holidays (compare also withigure 10.3the maximum of the daily activity cycle reduces to 50% of
its value during working days, while the minimum does notvgimauch variations. We can conclude
that there is a certain stock of activity which is maintainedependent of hour and weekday and
that, although Slashdot is open to public access around dilel vits activity profile is clearly biased

towards the American time-schedule.
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Chapter 11

Analysis of Post-induced activity

In this chapter we focus on the time-distribution of the\atti(comments) a single post induces
on Slashdot. The distribution of the number of comments pstgpwas showrrigure 10.2 To
analyze the time-distribution of these comments we studyr fhost-comment intervals (PCIs). We
are especially interested in the resulting probabilitytritistion of all the PClIs of a certain post,
which gives us the probability of a post to receive a comnteninutes after it has been published.
These distributions are approximated with different typidseavy-tailed probability distributions. To

measure the quality of those approximations we usethalue of a KS-test.

11.1 Approximation with log-normal (LN) distributions

We start by analyzing the PCI-distribution of some exampigtpand use LN-distributions as a
first guess to approximate them. Figuldsla andl1.1b show in linear and logarithmic scale the PCI-
distribution of a post, let us call it postl, which trigger&841 comments. We noticEigure 11.4)
that the activity starts directly after the post has beerighibd, reaches its maximum after around
30 minutes and decays then successively. Some fluctuationsdthis general behavior can be ob-
served. The characteristic shape of the probability dgfgitction (pdf) resembles a LN-distribution,
which becomes even more visible in its bell shape in loganithscale ofFigure 11.b. However, a
better picture can be obtained from the cumulative prolitdistribution (cdf) which is shown in
Figuresll1.1lc and11.1d, again in both linear and logarithmic scale. There thedltbns of the pdf
are averaged out, the fit with a LN-distribution (dashed$elg resembles the data (continuous line)
and it is thus not surprising that a KS-test gives us a Ipghalue of 0637 an we would accept the
LN-fit as a valid hypothesis to explain the PCI-distributimfrthis post. The parametepsando of the
LN-distribution are obtained simply by calculating the meand standard deviation of the logarithm
of the PCls in the dataset.
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Figure 11.1: LN approximation (dashed lines) of the PCltritigtion (solid lines and bars) qfost1l
which received 1341 commeni&) Comments per minutes (bin-with2 for better visualization) for
the first few hours after the post has been publishH&dl.Same as (a) in logarithmic scalé) The
cumulative distribution of the data shown in (a). Inset sh@wzoom on the first 2000 minute@)
Same as (c) in logarithmic scale.

The PCI-cdf of three more posts and their LN-fits are showigure 11.2 The top two sub-
figures show good fits witlp-values of 03 and 099 respectively, both much greater than the usual
criteria of rejection. The topmost Figure on the right shitlweg even for a post with a smaller number
of comments the PClI-distributions is well approximatedwet_N-distributions. The question is now
whether all posts show this LN-pattern in the time-disttitn of their comments. The answer is no,
the LN-fit is not accurate for all posts. E.g. the PCls of thetphown inFigure 11.2bottom), post2
from now on, start to show considerable different behaviomfthe LN-approximation about 3 hours
after its publication around midnight. The activity is lantban the LN would predict, but starts to
increase again at about 8am in the morning the following daground 10:30am it increases further
to recover the lost activity during the night. More such tatons of activity can be observed during

the subsequent days. The time-spans of variations in ggctigincide quite exactly with the average
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Figure 11.2: LN-approximation of the PClI-distribution ofiBferent posts.

daily activity cycle shown irFigure 10.4, which suggests that it may be the cause for the aberration
of the LN-behavior. We will investigate this further gection 11.5but first we try to improve the fit

in those cases.

11.2 Approximation with double log-normal (DLN) distribut ions

To approximate PCls of posts like pos®dure 11.2bottom) for which a LN-fit gives bad re-
sults, we can use a double log-normal distribution (DLN), & superposition of two LN-distributions
(Seesubsection 9.3)2 To find their parameters and especially their mixing cogffit we use max-
imum likelihood estimation (MLE) $touffer et al. 2006; DeGroot and Schervist2002), which is
performed by minimizing the negative logarithm of the likelod function withf mi nsear ch in MAT-
LAB. Since the DLN has five parameters compared to only twdefltN, it should lead to better
results.

In Figure 11.3wve compare LN and DLN approximation of the the PCI-distiitaut(black con-

tinuous line) of post2, shown previouslykigure 11.Zbottom. The red and blue lines indicate the two
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Figure 11.3: Comparison of LN and DLN-approximations (agsdotted lines) of the PCI-
distribution (solid lines and bars) of a post which receit&®7 comments. The DLN-distribution
is a superposition of LNand LN, which in the above figure are rescaled according to the ciegffi
k of the DLN. Rest of legend as figure 11.1

log-normals (LN an LN,) rescaled according to the mixing parametemheir superposition results
in a DLN (gray, dash-dotted), which clearly outperforms pinevious LN (black, dashed) approach.
The p-value of the DLN approximation is.077, which is above the usual level of significance. We
would therefore accept the DLN-distribution as a valid maafethe PCI-distribution in this case,
while the LN hypothesis is rejected withpavalue below 10'°. The two LN-distributions which
form the DLN can be interpreted as two waves of activity. The fne (LN, red line)) starts directly
after a post has been published and approximates well thé firgurs of activity. Then the activity
increases due to the rise in the circadian activity cyclenfzare also withigure 10.4 and the text
labels inFigure 11.2bottom). The second wave (LLNblue line) accounts for the extra of activity due
to this rise and therefore the DLN-approximation reflectsfitst bump in the PCI-cdf and fits well
the data. However, a second bump in the cdf, caused by thequidrst oscillation of activity due
to the circadian circle during the following day is not regwoed by the DLN-approximation. Since
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Figure 11.4: Transformation of LN into LNxC.

its amplitude is low compared to the rest of activity trigegbiby the post, it is not strong enough to
force us to reject the DLN-hypothesis in the KS-test. Néwagss, in the following section we try to
approximate this minor bumps as well.

11.3 Approximation with LN and DLN distributions combined w ith the
circadian cycle

Another possibility to improve the LN-fits is the use of moelifiLN and DLN distributions
which incorporate fluctuations which account for the atgiihanges due to the circadian rhythm.
We denominate them LNxC and DLNxC and describe them in moalde what follows.

11.3.1 Definition of LNxC and DLNxC

The distributions LNxC and DLNxC are generated by pointenisultiplicatiort of the LN or
DLN pdf with a periodic continuation of an “ad hoc” circadiaycle as shown ifrigure 11.4. The
circadian cycle is approximated by the normalized mean rmurobcomments per hour of the day,
which is then linearly interpolated to achieve minute ragoh. Alternatively, higher dimensional

INote that we use a discretized version of the pdfs, since wdehtliscrete data with minute precision.
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interpolation could be used, but the differences are nibdgidor our purposes.

The starting point of the periodic function coincides witte tmoment the post is published.
After the multiplication we have to normalize to obtain theafipdf. We denominate the two resulting
probability distributions LNxC and DLNXC. This procedusavisualized irFigure 11.4 Figure 11.4
shows an example of a LN-pdf. After multiplying it with therjmlic continuation of the circadian
activity cycle Figure 11.4) and a renormalization we obtain the LNxC-pBfgure 11.4). In order
to find the parameters of the above described distributidmishwbest approximate a given post we

use again MLE.
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Figure 11.5: Approximation with LNXC (red dashed line) andNXC (blue dashed doted) of the
PCl-distribution (solid lines and bars)Ya) Comments per minute (bin-wi#2) for the first 1000

minutes after the post’'s publishingb) Same as (a) but in logarithmic scaléc) The cumulative

distribution of the data shown in (a). Inset shows a zoom erfitet 2000 minutes(d) Same as (c)

but in logarithmic scale.
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Figure 11.6: Example of improvement of fit with DLNxC. LegeaslinFigure 11.5

11.3.2 Two example posts

We use the PClI-distributions of postl and post2 to show tladitgwof the LNXC or a DLNxC-
approximation in comparison with the LN and DLN-fits. We staith the PCI-distribution of postl
which was well approximated by a plain LN distributiop £ 0.637 in Figure 11.). Figure 11.5
shows the fits with LNXC (red dashed) and DLNxC (blue dasteddine) distributions. The later
improves the LN-fit and adjusts very well even the small buingbe cdf after about 1000 minutes
of activity (Figure 11.% andFigure 11.%9). This implies the higlp-value of 0975, meaning a nearly
perfect fit. On the contrary the LNxXC, although it also adatshape to the bumps, shows worse
results than the simple LN distribution. It achieves onlg-@alue of 0009, which is below the usual
choices for the level of significance, which implies the céfn of the null hypothesis . Although
the p-values of the three other distributions of the LN family arech greater than those significance
levels, they indicate that the DLNxXC-fit is the closest to da¢a.

Moreover, the DLNXC leads to excellent results even for ¢hcasses where the KS-test rejects
the LN-hypothesis. We show this igure 11.60n the example of post2, which was published late in
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Figure 11.7: Two examples of the approximation of the taP@f-distribution with power-laws (PL).
The PCl-cdf of(a) postl(b) post2 is shown in logarithmic scale. The gray areas correspo the
amount of discarded data for the PL-fits. Inset in (a) showstlf of the two variants of PL used.

the evening and suffers thus distortions due to the circacliale. The LN-hypothesis is rejectep(
value < 1019), but a DLNxC-fit would be accepted with@value of 0509. Also the DLN variant
has ap-value (0177) which is above the thresholds of rejection. The outcofie KS-test for
the LNxC depends on the chosen value of the significance ¢eyedince the correspondingrvalue
of 0.029 can either lead to acceptanocs) & 0.01) or rejection §g = 0.05). Although the LNxC
represents an improvement compared to the simple LN fo2pdgioes not reach the quality of the
DLN or the DLNxC. If we compare the approximation quality oRkC and DLNXC visually we
note that both LNxC and DLNxC seem to adjust well the PCI-gdfj¢res11.6a and11.&), but
the corresponding PCI-cdf (Figuréd.6 and11.6d) shows us that the DLNXC is closer to the data.
For the two example post analyzed in this section we notiatttte DLNXC adapts very well to the
oscillations of activity. A more general comparison of thelity of the four different distributions of
the LN family involving all posts will be given isection 11.5

11.4 Approximation with power-law (PL) distributions

As explained insubsection 9.3.8e tail of heavy tailed distributions is often fit with a pawe
law. We will try this as well for the PCI-distributions of thp@sts on Slashdot and give in this section
two examples for these fits. Apart from the power-law (PL)ribgtion we also use a powerlaw
distribution modified by the circadian cycle (PLxC) which generate in the same way as the LNxC
and DLNxC multiplying a PL-distribution with a periodic extsion of the circadian cycle. The inset
in Figure 11.7a illustrates the relationship between the pdfs of PL (resheiotted line) and PLxC
(blue dashed curve) in a log-log plot.

We take as example, as in the previous sections, the PCibdiibns of postl and post2, whose
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cdfs are shown ifrigure 11.7together with their approximation in log-scale. We use tle¢hodology
explained irsubsection 9.3.® find the optimal value for the cut-off paramexgy;,. Only PCl greater
than Xmnin are considered for the fits. We set the maximal cut-off at 1@@@utes to guarantee at
least one magnitude of data for the fit. The discarded P@-datepresented by the gray areas in
Figure 11.7(dark gray for the PLxC and light gray for the PL-distribut)o For postl we have to
cut-off more than 89% of the comments to achieve the bestBitth post showp-values above the
levels of significance, although the Ph £ 0.086) is very close to rejection. For post2 bgtvalues
are 0. We would have to allow higher values fgy, to achieve better results in this case, which then
of course would imply an even greater percentage of disdadéa.

In the next section we will show that this is the general peabbf trying to fit power-laws with
the tails of the PCI-distributions. The more data one didsdne easier becomes a powerlaw fit, but

the less significant is it to explain the data.

11.5 Comparison of all six approximation variants

After these analysis of some example posts we will try to@aaha general picture by performing
KS-tests for all posts and all six types of distributionsgemted earlier. We then compare their
p-values to analyze their overall approximation quality. eTligher thep-value the better is the

approximation.

11.5.1 Overall performance of the approximations

The cdfs of thep-values of these tests are showrFigure 11.8. The axes are interchanged so
that thex-axis gives the proportion of posts whgs&alue is lower than or equal to the corresponding
y—coordinate of a curve. This implies that the closer a curne fobability distribution is to the top
border of the plot, the better it approximates the data “@ragye”.

First we compare only the four different variants of logmat distributions, which we will refer
to in what follows as the LN-family. We observe that the LNgdead line) gives the worst results of
all tested distributions, it is the closest curve to the drotiof the plot. A significant improvement
is achieved if we use a log-normal plus circadian cycle (LINgtribution (black continuous line).
And as expected from the results for the example-posts, ébegderformance is obtained by the two
double log-normal distributions. For both, DLN and DLNxGsfihe proportion of posts which low
p-values is much smaller than those of their single LN coynateés. However, the improvement
achieved by using the circadian cycle is very small, the esiof DLNXC (dash-dotted line) and
DLN-curve (gray continuous line with circles) nearly cdite.

The same ranking of the distributions can be observed if wehéxsignificance levai of the
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Figure 11.8:(a) Result of KS-test of all posts for different approximatior(p) Percentage of dis-
carded comments for the PL and PLxC-fits.

KS-test with either @1 or Q05 (shown as gray areas kigure 11.&). We can then quantify the
percentage of posts for which the KS-test rejects the nydbthesis. The corresponding number can
be found inTable 11.1 We observe that while a single LN-distribution can only lekpin 83% of
the cases the activity provoked by a post, both double lagiabvariants are a valid model of the
data for more than 99% of all posts. The best results are obtained for DLNxC wiganly rejected
for 11 of 10016 postsop = 0.01). We can conclude that both DLN and DLNXxC are valid models t
explain the activity provoked by the posts on Slashdot.

To compare our results with other studies which favor polaers to fit heavy tailed distributions,
we also analyzed the approximation quality of two classd®Leflistributions. The corresponding re-
sults of the KS-tests are similar to those of the LNxCrigure 11.&. However, we have to stress
out that we cannot compare the distributions of the p-vabighe PL with those of the LN-family
directly, since the PL-variants only approximate a frattid the PCI-distribution. A large number of
comments, those with the lowest PCls, have to be discardadhieve reasonable results in approx-
imating the tail of the PCI-distribution. In other words: Wwave to make the heavy tail very short to
fit it with a PL. The distribution of the percentage of diseaccomments is shown irigure 11.8.

0p=0.01 ap=0.05 PCls used
LN 16.68% 2562% 100%
LNxC 4.80% 988% 100%
PL 6.79% 1277% | 44.50%(+-20.04%)
PLxC 8.36% 1394% | 38.79%(+22.17%)
DLN 0.44% Q96% 100%
DLNxC 0.11% 033% 100%

Table 11.1: Percentage of rejected 0-hypotheses and daddarshe PCl-approximation.
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Figure 11.9: Results of KS-tests per publishing hour of pdga) DLN and LN, (b) DLNxC and
LNxC.

On average 55% of the comments have to be discarded in the case of a sirh@adPeven 621%
when we approximate with PLxC. llrigure 11.& we observe that in the case of DLN and DLNXC,
the performance of PL (gray continuous line with squared)RInxC (dash-dotted line with triangles)
are very similar, although here the PL is slightly bettemtita oscillatory variant as can be seen in
Table 11.1 A PL allows to explain 93% of the tails of the PCI-distrilartiversus the 91% of PLxC.
We observe that the PLxC does not lead to an improvement oésudts of the PL distribution, since
the PL explains more data and achieves better approxinsatibtie tails of the PCI-distributions.
However, it is no surprise that parts of LN-distributed deaa be fit by PLsNewman 2005).
A LN-distribution is a quadratic curve in log scales and adyatic curve looks straight (i.e. a PL in
log scale) if looked on a sufficient small portion of,itvhich can represent a relatively large portion
of its range depending on the parameters of the LN. The sarneedor DLN distributions. This,
together with the fact that the LN-family is able to explalire tentire PCl-distribution with similar
(LNxC) or even much better quality (DLN and DLNxC) than a Plotivates us to concentrate only
on the LN-family in what follows.

11.5.2 Dependency of the approximation quality on the circdian cycle

The analysis of the example postssaction 11.1suggested that the publishing hour of a post
influences the quality of a LN-fit of their PCI-distributianlere we will investigate whether there
exist a dependency of the outcome of the KS-tests on the Hdbealay. To do so we arrange the
posts in 24 groups according to their publishing hétigure 11.9shows mean (continuous), median

2The exponentr of the corresponding PL-fit of this portion would depend tlenwhich part of the data we were
approximating and only secondarily, over the parametetBeoEN, on the data itself.
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(dashed lines) and standard deviations (gray areas) op-tredues for each of the groups and the
four distributions of the LN-family. We observe that the tjtyaof LN (black lines inFigure 11.9)
and LNxC-approximation (black lines Figure 11.®%) depends on the publishing hour, although this
dependence diminishes in the case of LNXC. Posts publishedgdthe phase of increased activity
of the circadian cycle (sefeigure 10.4 achieve significantly highep-values than those made public
outside of this time-span. This explains the bad approxonatf post2 (seéigure 11.3, published
around midnight, with LN and LNxC distributions.

On the contrary, both types of double log-normal distrimsi show only minor variations due
to the publishing hour of the post. Although the DLNXC (granek inFigure 11.9) is slightly more
constant than DLN (gray lines iRigure 11.@) we can conclude that both DLN-variants, account for

the main part of the variations in the activity patterns eausy the circadian rhythm.

11.6 Approximation parameters

After having analyzed the quality of different approxinoais of the PCI-distributions, we now
take a look on the parameters of two of this approximations.

We start with the LN-distribution which, when it leads to gloapproximation results, allows
to describe the activity triggered by a post with only twograeters: the mediahand the geomet-
ric standard deviatiowg of the LN. Both quantities are commonly used to compare lognally
distributed datal(impert et al, 2001). The median andy relate to the parametegsand o of a
LN-distribution in the following way:

median= exp(l) , 0g = exp(0); (11.1)

Estimates for the values pfando are given by the mean and standard deviation of the logamthm
the PCls.

Figure 11.1@ shows the distribution of the medians of the LN-fits of a{go The medians are
rather short (for 50% of the posts they are belo® 2ours, for 90% below 6 hours) compared to the
maximum PCI (approx. 14 days), which implies that, althotlghactivity a post generates covers a
large time span, the major part of it happens within the fast fiours after the post’s publication. We
can use the median of the LN-approximation as a measureddihtif-life” of a discussion, which
is an indicator of how fast after the publication of a post ithayor part of its comments have been
put online. The geometric standard deviat@yy on the other hand, gives us an idea of how dispersed
in time the activity is. Its distribution, which is centeradound 45 (stdv= 0.91), is shown in the

inset of Figure 11.1@. The lower the value afy the more peaked is the discussion, i.e the faster is

SNote that the median coincides with the geometric mean foganbrmally distributed random variable.
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the decay of activity once the median has been reached, whalgeoy indicates a tail with slowly
decreasing activity. It is interesting to note that no digant correlation between the median and
could be found (correlation coefficieat0.0076), making this two parameters independent indicators

which allow to describe the reaction of the community to daiemews post.

When we use a DLN-distribution to approximate the data wel fige parameters to describe the
activity. Their distributions together with those of thergaeterso andu of the LN-approximation
can be observed iRigure 11.10. For better visualization we choose a stair plot instead bér-
graph and relabel the parameters when necessary to ensaiteaof the mixing coefficiert > 0.5.
Clearly, the regions afi; (continuous line with circles) and; (continuous line) are very similar to
those of the parameters of LN-approximations (dashecakddimes), indicating that the first one of
the two log-normal distributions used to generate the DLBinsilar to the LN-approximation. The
parametersl, (dashed with squares) and (dashed), on the other hand, show an interesting bimodal
distribution. The first of its two peaks lies within the regsoof the values ofly or a1 respectively,
corresponding to posts for which the two superposed logaabdistributions are very similar and the
data fits well already a single LN. However, the second peakem,-distribution represents posts
which trigger a second wave of activity starting after thetmecrease of the circadian cycle. In those
cases the parametes is usually smaller thaoy, which indicates that the second wave of activity is

less extended than the first one.

Finally, we observe in the inset é¢figure 11.10 the distribution of the mixing paramet&r
which is nearly uniform except that values[i7, 1] are slightly more likely than lower ones. To get
a better picture of the distribution &fand the other parameters we analyze in the following section

aggregate distributions of several posts.
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Figure 11.11: PCI of aggregate posts and parameters of Dpkbapby publication hour.

11.7 Two waves of activity

As explained already igection 11.2he fact that a DLN, a combination of two LN distributions
(LN; and LN), allows to approximate well the PCI-distributions sudgedkat the activity triggered
by a post consists of two major waves, each one representedéipf the two LNs. To verify this
claim we combine the PCls of all posts of our dataset whicletsen published during the same
hour of the day into an aggregate post. For example, to olfteiffirst aggregate post we generate
the distribution of the PCls of the posts published betweam And 2am. In this way we obtain
24 aggregate posts, which we approximate with DLN-distiiims. The normalized PCl-cdfs of
those aggregates (black solid lines) and their DLN-appnaxions (gray dashed lines) are shown in
Figure 11.1d. The shift on the-axis of the curves corresponds to the hour, which the agtgqupst

represents.

The parameters of these 24 DLN-approximations can be obdenvthe top three subplots of
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Figure 11.11 We notice that the parametgrsando, (continuous lines in Figurekl.1la andl1.1Xk)
of the first LN-distribution (LN), which corresponds to the first wave of activity, experennly
minor variations due to the hour of publication. The mixireggmetek, |, ando, (dashed lines), on
the other hand, vary significantly.

Figure 11.1b shows thak experiences a cyclic behavior, similar to the circadiaivagtcycle
(Figure 11.4). The location in time of the maximums and minimums of botbles approximately
coincide. The value df reaches its maximum around 3pm, which indicates that fotspmsblished
at this time of the day most of the activity can be modeled @yly:N1. At the same timew, reaches
its maximum andb, its minimum. The difference between the medians(pxpand exgpy) of LN
and LN, is of about 16 hours. This connotes that 4. Models the activity of those users which
comment the post during the following day, i.e. during th&triegh-phase of the circadian cycle.
For publishing times later than 3pm the valuekafecreases successively, whilgincreases, which
implies that the proportion of the total number of commemtseived during this second wave of
activity increases as well. Parallel to this ripgdecays likewise to the decrease of the time-difference
between the publishing of the post and the next rise of &gtiVhis trend stops in the morning around
5am when the proportion of comments provided by the first vedaetivity increases again. Between
9am and 2pm, during the high-phase of activity, the valugs; @nd, are very similar, making a
separation of the two waves and the interpretation of theiameters very difficult. During this time
window the DLN leads only to minor improvements compared $ogle LN distribution as it is also
the case in the approximation of the aggregate post of 3prahatbads us back to the beginning of
the paragraph and closes the cycle.

The gray areas ifrigure 11.18 representing the activity within egm » + 01 2), visualize the
influence of the above described two waves of activity in th@jgosition of the DLN-approximation.
We observe the relative evenness ofjL{Nne with circle marks and light gray area) and the strong
variations of LN (dashed line with squares and dark gray area), which canelspto the second
wave of activity.

This analysis gives us further insight why posts like pogtifre 11.), published during the
high-phase of activity on Slashdot, can be well approxichéea single LN distribution, while posts
similar to post2 Figure 11.3, published late at night, need a DLN or (a DLNxC) to appraaientheir
PCl-distribution.
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Chapter 12

User Dynamics

In this chapter we analyze the activity on Slashdot takirggatthorship of the comments into
account. We first study the distribution of activity amonigla¢ users participating in the debates and
then focus on the temporal activity patterns of single usecs obvious reasons we do not consider
the anonymous comments, which represené%Bof the total amount of comments (s&rtion 10.2

for more details), in this chapter.

12.1 Global user activity

To illustrate the activity of a users we use the number of bimments. The resulting distribution
of the number of comments per user, which we refer to as thatgaistribution in the following,
is heavy tailed and gives a quite heterogeneous pictureeoSthshdot-users. It is shown as black
dots in double-logarithmic scale Figure 12.h. Most of the approximately 2Qunique users we
identified write a low number of comments (53% write 3 or ledgjing the time-span which is
covered by our data (approximately a year). Neverthelessnsiderable amount of user writes more
then 10 comments (285%) and the small number of 93 usersl@®) writes even more than 1000
comments. Se&able 12.1for more details. It is interesting to note that, althougty@4% of the
users write more than 100 comments, these approximatelyy 32€rs generate more than 51% of all
the comments in our dataset, whereas the 53% of the userk whie 3 or less are responsible only
for 4.6% of the total amount of interaction on the site.

Contrary to the PCl-distributions analyzed in the previohapter, the lower limit of the sup-
port of the activity distribution has highest probabilityhich then (apart from some fluctuations in
the tail decays successively for higher numbers of commeastsiser. Such a decay, which at first
sight resembles linear in log-log scale, has been frequemtideled with a power-law (PL) proba-
bility distribution (seesubsection 9.3)3 Indeed, after applying linear regression as in otheristud
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# comments per usedr% of users % of comments
1] 3090%  171%
(1,10 | 4425%  1053%
(10,100 | 2143%  3639%
(100,1000 3.32%  4357%
(100Q o) 0.10%  780%
) | 10000% 10000%
) 342% 5137%
(50, ) 7.00%  6532%
)

2485%  8776%
(0,3 | 5299%  462%

Table 12.1: Percentage of users (second column) which aitertain number of comments (first
column) and the percentage of the total number of commeritd ¢column) produced by these users.

(Faloutsos, Faloutsos and Faloutst399;Albert, Jeong and Barabadi999) we obtain a quite large
correlation coefficienR? = —0.97 for an exponent oft = 1.79. However, if we apply rigorous sta-
tistical analysis as proposed (poldstein et al(2004) the picture changes. First, we estimate the
power-law exponent computing the less biased maximumititetl estimator (MLE). The resulting
PL with exponentt = 1.48 differs significantly from the previous one and is illaséd inFigure 12.1
as dark gray dashed line. Although this PL-fit of the pdfigure 12.4 is tempting to accept the
PL hypothesis, the cdf shown Iigure 12.b clearly discards it. It is thus not surprising that the
Kolmogorov-Smirnov (KS) test forces us to reject the PL fihisTdoes not change if we apply the
method ofClauset et al(2007) and approximate only the tail of the distributionhwatPL. The result-
ing distribution, which is shown as blue dashed lin€igure 12.1is only a minor improvement. We
have to discard more than 95% of the users, represented lgyakereas irfFigure 12.1to achieve

at least a good optical fit of the cdf. Nevertheless, ghalue of a KS-test remains smap & 108)
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Figure 12.1:(a) Histogram of the number of comments per user @jdnd its corresponding cdf.
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and we are forced to reject the PL-fit of the tail as well.

As an alternative hypothesis to describe the data we propdsaicated LN probability distri-
bution, shown irFigure 12.1as red solid-line. Its parameters are found using MLE. Gjetire fit is
much better using this hypothesis and a KS-test accepts {fevalue= 0.64) of the entire data-set.

We can thus conclude that the distribution of activity amadimg Slashdot-users is not scale
free, which implies that the parameters of the LN-fit may dpen the size of the datadetWe
have only made a momentary picture of the distribution, Wimay change if for example a second
year of activity would be considered. This findings coincidiéh those ofNaruse and Kub¢2006),
who found that the number of articles submitted by individua public distributions bulletin board
system is also distributed like a LN. Truncated LN distribos give also good fits of the distribution
of different parameters describing the communicationatiseand the social network on Slashdot, as

will be shown inGAmez, Kaltenbrunner and L6p&008).

12.2 Single user dynamics

After characterizing the user activity at a general leved, imvestigate the temporal behavior

patterns of single users. First we analyze some example asdrgive than an overview of all users.

12.2.1 Four examples of single users

The following analysis concentrates on the temporal dgtpatterns of four users, to protect
their privacy we refer to them as userl, user2, etdalle 12.2ve can find the number of comments
these users have published during the time-span coveredrigata and how many post have been
commented by them. The temporal patterns of the users wgzanate the distributions of the PCls

userl user2 user3 userd

commented posts 1189 1306 64 113
comments 3642 3350 73 163

Table 12.2: Contributions of four example users. Userl amidiare the two most active users.

of their comments as well their inter-comment-intervalljl@istributions, i.e. the time-differences
between two subsequent comments of the same user.

First we focus only on the two most active users in our datasstrl and user2figure 12.2
shows the PCI-cdf of userl (light grey continuous) and ugga?k gray continuous). We observe a

great similarity to the PCI-distributions of the posts gmall inchapter 11which motivates us to use

1For example, if the LN were the results of the multiplicatinfridentical random variableX;, one for every time-step
i, the parameters of the LN would be influenced according ta¢méral limit theorem by the number of time-steps.
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Figure 12.2: Activity patterns of the two most active usd€ey:PCl-distributions, insets shows daily
and weekly activity cycles(b) Distribution of the inter-comment intervals (ICl) compdreith the
whole population (dashed line).

here as well LN and DLN-approximations. The LN-fits are shasndashed (usersl) and dashed-
dotted lines (user2) ifrigure 12.2, and the DLN-fits as red curve with circle markers (userd) an
blue curve with box markers (user2) ibid. To measure the agpration quality we use again the
p-value of a KS-test. While the LN shows bad performance ir@gmating the PCl-distribution
(p= 0 for both users), a DLN is a good explanation of the PCls &t lea userl, for which it achieves

a p-value of approximately 8. For user2 thg-value of the DLN-fit is below the usual choices of
the level of significance, which implies that the it is regetfor this user. Nevertheless, we observe
that the first 8 hours of his PCl-cdf are well approximated DL, then the activity decays relative
to the approximation but increases again after 16 hourss Bininp in the cdf, causing the rejection
of the DLN-hypothesis, is originated by the activity cycleuser2, whose participation on Slashdot
concentrate almost exclusively on the working hours fromnifay to Friday, as can be observed
in the insets ofFigure 12.2. Userl, on the other hand, whose daily and especially wetivity
cycles are much more balanced than those of user2, doesowtssith prominent bumps and the
time difference between his comments and the correspormiats are hence easier to approximate
by a DLN.

The DLN does not account for the alteration due to the ciaradiycle in the PCI-distribution
of user2, since we mix here all posts, independent of thddtighing hour, which makes it difficult
to isolate the exact influence of the circadian cycle on tis&rilution. To get a better picture we
would have to investigate only the comments of user2 to gmgitished at the same hour of the day.
Unfortunately the number of his comments (as well those efotiner users) in the dataset is too low

to achieve reliable information from such an analysis. Wietiverefore perform the observations in
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this section without considering this aspgect

The influence of the activity cycle becomes even more evidettie ICI-distribution, which
for userl (light grey) and user2 (dark gray curve) is illastd inFigure 12.». The ICI-cdf, shown
in the inset ofFigure 12.D, of user2 reveals an even more pronounced increase as PCthedf
around an ICl-length of 16 hours, which is clearly causedhey@h of inactivity in the activity cycle
of user2. We further notice that the ICI-pdf peaks for boterass well as for the whole population
(dashes curve) at 3 minutes. This is probably caused by atralhfiilter (Malda, 2002), which
should prevent a user from commenting more than once witBthskeconds. The medians of the
ICI-distributions of userl and user2 are rather short (Id aminutes respectively) compared to the
median of the whole population (about 17 hours), indicatirag the two users engage in discussions

frequently during their activity phase.
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Figure 12.3: DLN fit of the distribution of the inter-post émvals (ICL) of userl and user2 between
their first comments to different posts.

An approximation of the ICI-distribution with LN or DLN doewot lead to good results, since
a user may write more than one comment to a post during a shwtinterval, bounded below by
the anti-troll filter, which leads to an abundance of shotslGowever, if we group the activity into
sessions as proposed Dyarte et al(2007), we achieve much better results. We consider the first
comment to a post as the beginning of a new session and thecaidrg comments to the post as
within the same session.

To refer to the time difference between two sessions we wsalbreviation ICl, which cor-
responds to the time-difference between two subsequentdinsments of the same user to different
posts. The cdf of the resulting IGHistributions of userl and user2 is showrrigure 12.3 As in the

2However, one has to keep in mind that a similar study usingatgr dataset could probably obtain better results, if the
publishing hour of the post were considered.
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case of the PCI-distribution the LN approximation does aatlto good results (data not shown) and
the DLN-approximation is acceptable for userl. For usegdiltcome of the KS-test depends on the
choice of the significance level,. The resultingp-value of 0045 accepts the DLN-hypothesis for
0o = 0.01, but rejects it foop = 0.05.

If we compare the medians of the IGFigure 12.D) and the IC]-distributions Figure 12.3
of userl and user2, we observe that although their ICI-medage quite similar the two users show
different behavior, when looking on their I3l User2 changes the post very frequently (median
~ 0.5h), while userl is more persistent to the post's subjecti{ame= 3h).

In Figure 12.4ve show the temporal patterns of two more users (user3 amd)usdiich are less
active than those analyzed previously. For both users wepgroximate their IGlas well as their
PClI-distributions with DLNSs, as is shown Figure 12.4(see Figure legend for the correspondimng
values). The daily activity cycle of user2 is similar to theewf user4 (compare insetskifjure 12.4
andFigure 12.2). Nevertheless, since about 95% of all the comments ofluaergiven within the
first 16 hours after the publishing of the respective postsbumps affecting the outcome of the
KS-tests can be observed in the activity distributions o tiser.
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Figure 12.4: Activity patterns of user3 and use(@). PCl-distributions, insets show daily and weekly
activity cycles.(b) Distribution of the inter-comment intervals (IQlof the first comment to a post.

User3 shows an even more complicated activity pattern. &llg ectivity cycle shows a bimodal
behavior, with an second phase of reduced activity arounchitime (light gray curves in the lower
inset of Figure 12.4). This causes decreased activity in the PCl-distribubietween 2 and 4 hours
after the posts are published. It is interesting to noteithttis case we are able to approximate the
bump well with a DLN-distribution. When comparing the meadiaof PCI and IC] distribution we
note as a second interesting fact that although user3 & faasthe respond to a new post than user4,
the latter has a shorter ICI It seems thus that we observe two independent parametéch whl
allow us to describe the activity of the users. A more dedadlealysis on this subject will be given at
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Figure 12.5:(a) Results of KS-test of PCI- and I¢Histributions for users which write more than 50
comments(b) Medians of their PCI (inset) and I&distributions.

the end of this chapter.

12.2.2 Description of the activity patterns the most activeisers

After having analyzed the activity patterns of some userdeitail, we will now compare the
approximation quality of the patters of the most active péthe users as well as present parameters
which allow to describe their activity.

Approximation Quality

We concentrate on the 6736 users for which we can identifyenttuein 50 comments in our
dataset and analyze the quality of LN and DLN-approximatiohtheir PCI and IGl-distributions.
To measure the approximation quality we use, as in the catbee d?Cl-distributions of single posts,
the p-values of KS-tests.

Figure 12.% shows the cdf of the resultingvalues. We notice that a DLN allows to approximate
the activity patterns of most of the users. The result iflijgoetter for the PCI-distributions, where
the DLN approximation ins rejected for only 12 users with\aelef significanceng = 0.01, whereas

in the case of the IGlwe reject it for 44. This corresponds td8% and 066% of the total amount of

0ag=0.01 0ag=0.05

ICl1: LN 38.89% 5438%
DLN 0.66% 177%

PCIl: LN 6.43% 1179%
DLN 0.18% 048%

Table 12.3: Percentage of users with rejected 0-hypothadgasir PCl and IC{-approximations.
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users investigated. The LN distribution does not give gasdilts for the IC{, but we can still explain
the reaction times to a post, i.e. the PCI-distribution, ofethan 93% of the users (séable 12.3.
We can conclude that a DLN is a valid explanation for the #gtpatterns of single users, since
it allows to fit the reaction time distribution (PCI) as wedl the distribution of the time differences
between two consecutive comments to different post,jIGf more than 99% of the investigated
users. Again, the DLN shows to be very flexible in accountiongliie alterations in these distributions

caused by the activity cycles of single users.

Characterization of single users

As insinuated in the previous subsection we will use the aregliof PCI and IC} distribution
to characterize the activity of single users. We concemiagiin on the users which wrote more than
50 comments.

The distribution of the two medians of these users can berebddan Figure 12.5. While
the PCl-medians, shown in the insetkifjure 12.B, are distributed in an right skewed unimodal
distribution, the medians of the IgH give rise to an interesting multi-modal distribution, ahhpeaks
around time differences between the comments of 24, 48hetes. This is caused by activity cycles
of users with very narrow peaks. Such users comment maimipgla very short time interval, e.qg.
once a day, what then naturally results in time differended@ast 24h between comments, weekends
and casual absence of commenting can cause the peaks gl @sudti 24h.

Only a very small correlation (correlation coefficieat0.082) can be found between the two
medians, which allows to use these largely independenttitieanfor user characterization. The
median of the PCI-distribution gives us a measure of howdaster reacts to a new post, and the ICI

median tells us how frequent a user joins a new discussiont@mther subject.

3Since we deal with heavy tailed distributions we use as @@ parameter the median instead of the mean, to avoid
dependency on a few very large values in the tail.



Chapter 13
Discussion of the results for human communication

The special architecture of the technology-related newssitee Slashdot allowed us to analyze
the temporal communication patterns of an online societhiiait considering semantic aspects. The
interactions on the site are driven by news-posts whichgk@wcommunication activity in the form
of comments.

The number of comments per uséfigure 12.1and Table 12.} indicates a high amount of
heterogeneity in the behavior of Slashdot users. The vagirityaof the users writes only a very
reduced number of comments while a small nucleus of “hard?“ccommentators is responsible for
the main part of the comments. We can fit the distribution efrthmber of comments well with a
truncated log-normal (LN) distribution. A similar resulashbeen obtained on a much smaller scale
by Naruse and Kub@¢2006) analyzing the number of comments per individual ith Wwased bulletin
board systems.

Despite the heterogeneity in the distribution of activitpang the users and the diversity of
themes (games, politics, science, books, etc.) simple geneous patterns can be identified on
Slashdot, which repeat themselves over and over againeTaterns appear in the reaction time of
both community and single users to new posts as well as inrtteedifference between consecutive
comments to different posts of single users.

We show with Kolmogorov-Smirnov tests that the distribotif the time differences between a
post and its comments (the PCIs) can be well approximatedbydistribution for most of the posts.
The only remarkable deviations from these approximatioesaused by oscillatory daily and weekly
activity patternsigure 10.4 on the site, which become less noticeable if a post is pudsdigarly in
the morning Figure 11.9. A significant improvement of the approximation can be aehd using a
superposition of two log-normal distributions. Such a dedbg-normal (DLN) accounts for the first
vacillation of activity caused by the circadian cycle and ba interpreted as two independent waves
of activity (Figure 11.1), one starting directly after a post has been publishedtl@decond at the

99
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next increase of activity due to the circadian rhythm. Althb more such vacillations may occur
during the life-time of a post, their amplitude is low comgito the first one, suggesting that a com-
bination of more than two LN-distributions would only inese the complexity of parameter-finding
(via MLE) without improving significantly the approximatioquality. Nevertheless, a combination
of a DLN-distribution with an oscillatory function (DLNxGdmulating the circadian cycle leads to
slightly better results without affecting the complexitiyMLE.

In single user behavior akin patterns appear in the PCifoligion of all comments a user writes
(to several posts) and in the izdlistribution of single-users, i.e. the time-span betwemconsec-
utive comments of a certain user to different posts. Bottridigions can be well approximated for
nearly all users by DLNs, which again are able to accountfedeviations from a simple LN pattern

caused now by the individual circadian activity cycles & tisers.

We would expect that the time-spans between publishing esudimg of a post, or in other words
the number of readers of a post per time-interval, alsovioltig-normal patterns. This is supported
by a study of visits of news-pages on an Hungarian web8tz$o et al. 2006), which revealed
patters quite similar to the PCI-distribution on Slashdi.verify our claim one could for example
check the server logs of Slashdot or the access-times oftamakhomepage linked by a Slashdot
post. Such a study has been performed to show the Slashdot @ftller, 1999), but the scale of the
data presented does not allow to draw significant conclgsiurther investigation on this issue is
needed.

Log-normal and DLN temporal patterns similar to those dbscrabove for many-to-many com-
munication were found in the waiting and inter-event timesingle users in person-to-person e-malil
communication bystouffer et al(2006). The temporal patterns of the e-mail data were pusiyo
claimed to show power-law (PL) behavior, which could be akpgd by a queuing modeB&arabasi
2005). Although the model darabasimight allow insight into temporal patterns of other types of
human activity Yazquez et a).2006) it is not able to account for the observed log-nornedavior
patterns in e-mail conversationStouffer et al. 2006). The same is true for the temporal patterns in
Slashdot, as we show for the posts’ PCI-distributions. Qxftgr discarding on average more than
50% of the comments can the tail of the PCI-distributions Xq@aéned by PLs. The multiplication
of a PL with an oscillatory function, in analogy to the DLNx@hly deteriorates the fit. One can
conclude that the temporal patterns of human communicati@stigated are not scale-free and thus
not covered by the model d@arabasi We hope therefore to encourage further research towards a
theoretical understanding of the underlying phenomengoresble for this apparently quite general

human behavior patterns.

The mediansKigure 11.10 of the PCI-distributions are very small compared to theralWe

duration of the activity provoked by a post. Although thetpasight be available for commenting
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for more than 10 days, the first few hours decide whether thilypecome highly debated or just
receive some sporadic comments. We would therefore expadite simplicity of the approximation
together with the high initial activity should make an a@terprediction of the expected user behavior
feasible at an early phase after a post has been put onlireadduracy of such forecasting methods
is subject of current research and will be published elsesvii€altenbrunner, Gomez and Lépez
2007a).

An early characterization of the activity triggered by atposuld be applied, for instance, on
dynamic pricing or placing of online advertisements or o@ timprovement of online marketing.
The success of a campaign might be predicted already afteora time-period, thus allowing an
early adaptation of the strategy of information diffusidn.this context the viral marketing concept
(Leskovec, Adamic and Hubermga2006) which relies on personal communication might be thetm
promising field.

In our opinion, the regular communication activity pattedescribed in this work may be rel-
evant in two aspects. The first, simpler one, is related tdicaijpns where a better understanding
of information trade in the web translates easily into advetiescription, and even quantification,
of Internet audience. But a second, more complex, aspeetated to the human “communicative”
behavior uncovered at present time: Internet based conuation capabilities. We face a new, large
scale, all-to-all public space in which a novel kind of sbbiehavior arises, a scenario that we do not
yet fully understand. However, we should not forget thatribes activity is being largely recorded
and the data can be available for research. The work presentkis contribution is a good example
of how those data can be collected and analyzed to give, st, laajuantitative description of the
behavior. This is a first step towards a more ambitious tatgedevelop “ab initio” models for the
population dynamics of message interchange, which is hesgaal of our current research.

Our results are independent of the semantics of the comnamatgposts we have analyzed,
which allows us to speculate that in an abstract sense a cohwae be treated as a simple binary
message between humans. Furthermore, and in relation étfirst part of this thesis where we
describe synchronization phenomena in networks of eXeitstochastic elements which exchange
messages, we postulate the existence of phenomena whersucication between humans may
lead to synchronized behavior as for example observed icdke of hand-clapping\Néda et al.
2000). A candidate for this type of behavior, although plbpaetter described as a burst of activity,
might be flash mobs{uran 2006), phenomena where a large amount of people, inciteskfomple
by e-mail o0 mobile messages, meets in a predetermined do¢gierforms some action, and then
disperses again.
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Conclusions

We have presented two different aspects of the dynamics sgage interchange between stochas-
tic units. Both can be considered as two subclasses of coinatiom between living beings, one at
a high cognitive level of human communication and the othénebasic level of intra-cellular com-
munication in the form of pulsed spikes between neurons.

We have found that a network of non-leaky integrate-andrfinerons with delayed, pulsed cou-
pling experiences a phase transition around a criticalevafuithe coupling strength. For sub-critical
coupling the neurons can be considered as nearly indepeaddnare mainly governed by exter-
nal stochastic input to the system. If, on the contrary, thapting is greater than the critical value
(supercritical) we observe a self-organization phenomueiigere the communication between units
becomes dominant. The neurons group into phase-lockettdusith an IS, which is independent
of the number of neurons or the stochastic input. It only ddpen the coupling strength. Hysteresis
can be observed in the supercritical region and theordiiék for the ISI and its expectation, valid
of the entire parameter range of the system are given.

We conclude that synaptic delay changes significantly thehjcs of neural networks. It is
crucial for the observed hysteresis effect and the appearahseveral phase-locked clusters. Our
results are also valid for networks of neurons with hetemeges thresholds and coupling strengths
or if the updating is changed form parallel to sequential.e Tdter implies heterogeneous delays.
This robustness of the findings allows us to conjecture timphenomena described could be found
as well in more complex, realistic neural models with delay.

In the case of human communication we have analyzed the taipatterns of discussions
triggered by the tech-news website Slashdot. We have fahtiaily and weekly activity cycles and
analyzed the distributions of the time differences betwtberpublishing of a new news-post and the
comments it triggers. These distributions have been appaigd with several different heavy-tailed

distributions based on either power-law and log-normatibiistions. Although in some cases good
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fits can be achieved with a single log-normal distributidw best approximation quality was reached
by a superposition of two log-normal distributions (a deuldg-normal), which can be interpreted
as two waves of activity, one starting directly after a poas lbeen published, and the second at
the next increase of the activity cycle. The double log-redr(DLN) distribution accounts for the
variations caused by the daily activity cycle. We have otgdisimilar results for the reaction time of
single users to a new posts and expect a double log-norndbdifons to be a good approximation
for the temporal patterns of other types of human commuicdtehavior, e. g. in the time-spans
between publishing and reading of news articles. This hg®i$ is supported by an analysis of
e-mail communication bgtouffer et al(2006)

Unlike most studies which fit similar data-sets with powaasldistributions, double log-normal
distributions approximate the entire data. We do not havauteff an important (if not the mayor)
part of the probability mass on the left hand side of the ithigtion to achieve good fits]lauset et aJ.
2007). The fits with DLN distributions are even better thapsthof power-laws with cutoff. These
cutoffs (apart from the weaker quality of the fits) presentayan drawback for some recent models
which try explain temporal patterns in human behavior upimger-law distributionsBarabasi2005;
Vazquez 2005), and leave the question for a theoretical explanatidhis behavior open.

When comparing the two types of communication we have agdlyz this work, we observe
that the human communication patterns we have found showunbtative difference between a
single user answering his e-mailSt¢uffer et al. 2006) or a large population reacting to a news
article in an online forum. This indicates that the behavi@ have observed is sub-critical in the
sense that the users can be considered basically as indspandts, yet they are responding in a
similar fashion to a stimulus. We can only speculate whetthere exist supercritical phenomena in

human communication.



Future Research

Most of the approaches we have introduced here can still peovad. Moreover, they generate
new perspectives of work and have other possible applitatitVe outline plans for future research
and some for each of the subjects involved in this thesis:

PART Il : Neural populations

- Extension to other models of pulse coupled oscillators:

The main results dPart Ilis the existence of a phase transition in a network of stdichasilse-
coupled, non-leaky integrate-and-fire neurons aroundtiaalrivalue of the coupling strength where
the system transforms from an ensemble of asynchronoubatma to a system of stable phase-
locked clusters. We conjecture that this result is regiticod our special model configuration, but is a
general property that can be observed in a wide range ofeliffenodels, as long as they incorporate
a delayed coupling and an explicit refractory period.

Candidates for an occurrence of the phenomena would be:

e The leaky integrate-and-fire oscillator Miirollo and Strogat1990).
e The linear, non-leaky-integrate and fire oscillator use&byn and Urbanczi{2000).
¢ Oscillators with biological inspired phase response csitike the one used b@stborn(2002).
e Models where the coupling is defined via alpha functions bikean Vreeswijk(1996) instead
of point processes.
- Detecting synchronization between populations of stoclstic spiking neurons:

We plan to used two coupled networks of populations of stetitapiking neurons as described
in this thesis to generate pairs of time series. We will thgrtd uncover the direction of coupling
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with standard methods of nonlinear time series analysis¢ctwaire used irQuiroga, Arnhold and

Grassbergef2000); Smirnov and Andrzejak2005) to analyze coupling between chaotic oscillators.
Those methods allow to detect the direction of coupling ag ks the coupled systems do not show a
strict periodic behavior and can therefore also be apptid¢dea case of coupled networks of stochastic

oscillators.

- Provide a more detailed prediction of the mean period of thesystem:

In Rodriguez et al(2002) an approximation for the distribution of the ISI a ttritical cou-
pling strength was given. We plan to extend this approxiomato the complete domain of possible
coupling strengths.. As a first step we will derive this digttion for a network of deterministic neu-
rons starting at random initial conditions with low couliand receiving adiabatic increases of the

coupling strength.

- Application of the Hysteresis as a simple memory mechanism

The hysteresis effect might be used to generate a simple mpesh@ strong stimulus, which
leads the system below the critical point around which tresptiransition occurs. If the strong stim-
ulus would be substituted by a weaker but sufficient strong tonmaintain the system below the
critical point, the system would still evolve as if the stgostimulus would still be present (“remem-
bered”) due to the hysteresis. The memory could be erasednbgving the weaker input or a short

negative input leading the system back to a sub-criticahbien

- Perform a stability analysis of the system:

Working memory function are often modeled in the form of &iidé dynamical attractor net-
works (Durstewitz et al.2000). We would expect the system analyzed here to be staltie in the
region of supercritical coupling in the where hysteresisuos, since it can choose there between a
large amount of different, apparently quite stable pedditing patterns, with different amounts of
neurons in the clusters or even different amount of clus#efermal stability analysis of these firing
patterns should be performed. The result will be intergstincompare with the unstable attractors
found in networks of pulse coupled oscillators with delagedpling Timme et al, 2002; Ashwin
and Timme 2005).
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PART Ill : Human communication behavior
- Develop a model which generates the log-normal behavior:

Develop a model similar to those explainedsiection 2.3which is able to reproduce the log-

normal distributions in the reaction time of the commun@yatnews item.

- Predict the activity on Slashdot:

Using the excellent approximation quality of the PCI-disitions we will develop an algorithm
which allows the prediction of expected server-loads.

- Analyze the nesting of the comments:

The comments a news-post receives on Slashdot are threadested. We plan to investigate
two aspects of the structure of the nesting tree.

e Analysis of the social network of Slashdot usét& consider that two users (userl and user2)
are related when userl replies to a comment of user2. Usiagvih can generate a social
network, which can be analyzed with standard measiNewan 2003) like clustering coef-
ficient, average path length, etc. We expect the numberkd [er user to follow a heavy-tailed
distribution similar to the one of the number of posts per (seeFigure 12.2.

e Measure the controversy caused by a certain post or usksing an adapted version of the
h-index of Hirsch (2005), commonly used to characterize the scientific oubpuesearchers,
we can generate a measure to quantify the amount of conssogenerated by a certain post
or user. For a posts we order its comments in nesting lexagslievel comments which reply
directly to the post are in level one, replies to these comsinlevel two and so fort. The
h-index h of a post is then the maximum nesting levehich has at leagt > i comments, or
in other wordsh+ 1 is the first nesting levalwhich has less thencomments. This measure
should be more robust than just the maximum nesting levatiwhight reach high values, for
example, due to debates between only two users for on poshwatherwise does not initiate
much discussions in the community. In the case of users wejdsr the comments of a user
by their number of replies. THeindexi of the user is then the maximum number of comments
which obtained at leastreplies, in analogy to the-index of citations.

- Use the content of the comments:

Standard methods of text classificatiatog&chims 2002) and clustering will be applied on the

content of the comments to analyze how useful the commeat® adentify the topic of the post and
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to generate clusters of users with similar characteristics
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Appendix A

Proof of Periodic Pattern Condition 5.4

In this Appendix we give a proof of the periodic pattern caiodi, which enables us to calculate
the minimum number of neurons per cluster to allow a repetitiring pattern with a given period.
This condition is the basis of the theoretical resultsextion 5.4

In the following analysis we use the deterministic rle3( instead of the stochastic state transi-
tions @.1) and restrict ourself to the case®$ tre¢. A unit with ISI T can makea — 1—t,¢; transitions
due to this rule before reaching the threshold. The terneorresponds to the refractory period where
no increase of the state of an unit is allowed and-teto the last time-step when the threshold is
reached. We have therefore a contributiompf— 1 —te)O(T — 1—trer) because of rulex3) to the
total evolution of a neuron before its threshold is reaéhed

With this result we can calculate the mean minimum clustez sf a system ok clusters. We
call the cluster (i € {1,...,k}) and set the number of elements of every clugitgf = k. The
clusters are ordered according to their spiking time. Argtiene-step one cluster reaches threshold
starting with clusteK;. After clusterKy spikes the cycle starts again with cluskar When cluster
Ki reaches threshold, the elements of cluier (or of K1 in case ofi = k) have received the inputs
of all clusters except clustd; and an increase qi(t — 1 —tief) due to rule §.3). This leads to the
following condition:

K

1+<—1+ij>s+ P(T— 1~ tef)O(T — 1 —tref) < L. (A.1)
J.;.l
i

Which due toy §_; kj = N is equivalent to

€

ki > Kmin=N—1+

forallie {1,...,k}. (A.2)

INote the use of the Heaviside step function to have a valimditet also for the case af< tjef + 1.
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Written in terms of this is equal to

c .

ki > kmin(T) = (N—1)(1—-n) + (A-3)

We have proved the periodic pattern conditi&my.



Appendix B

Bounds for T

In this Appendix we derive theoretical upper and lower baufar the I1SIT of populations
of stochastic non-leaky integrate-and-fire neurons. Apgraiower bound for the expectation of the
inter-spike interval over is also given. Again we use thedatnistic rule 6.3) instead of the stochas-
tic dynamics 4.1). We will obtain two absolute bounds such thaf, < T < Tmaxfor all possible I1Sls
of the system, and a lower bound for the mean vatyever all possible initial conditions which we
call (t)min. We get thus

(Dmin < (T) < Tmax- (B.1)

B.1 Maximum ISI Tmax

First we derive the maximum possible I§lax Of the system. It is obvious that the mean cluster

sizek(t) > kmin, Wwhich can be written using equatioris &) and @A.3) as

K1) =" > (- (1 4 PO ), (8.2)

This results in an inequality of degree 2 fowhich has the only solution

T<Tmax=

(N—1)e(N—1) 1+t (N=1)g(n—1) 1+ter\® Ned
. B.3

2p * 2 * 2p * 2 * 3
compatible with the condition > 0. We omitted thé(1 — 1 —t) term to calculate.3). This can
be done ift > 1+tet. Inequality B.2) permits us to calculate the minimum valuerpfor which a
certain ISIt is possible. We get

P(T—1—tes)O(T—1—trer) No
(N—1)e +1- N_1t (B.4)

N > Nmin(T) =

It is sufficient to calculate)min(20) since we assume that> ts > 1 and the system will be fully

synchronized = 9), i.e. it consists of only one cluster, for valuesrpbelow this limit, which we
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call nsyno We get

> =05- . B.5
N 2 Nsync AN—1) (N—1) (B.5)

For the limit of largeN this transforms into
|\I|im rlsynC: 0.5 . (B.G)

Condition B.3) is therefore valid if] > 0.5.

B.2 Minimum ISI Tnmin

If, instead of looking at the state of a neuron before thestiwéd is reached as in the proof of
the periodic pattern condition idppendix A we observe the state of a neuron just after it has passed
the threshold, we can derive a condition for the minimum itesd4SI. We use that a neuron with an
ISI of lengtht increases its state due to the deterministic rél8)(by p(t —tief) during every ISI.
Moreover, since the ensemble is homogeneous we expectuhagdn ISI of a single neuron all
other neurons fire once, which translates into an increasdeaictivation state b{N — 1) due to the

ensemble dynamics. Combining the two terms we get
L <1+ (N—1)e+ p(T —teef), (B.7)

which we can transform into a condition for

L-1-(N-De_,  (N-De(-1 (B.8)

p

Comparing this result with equatiod.f), we observe thatmin = Tms and have thus found that the

T2> fmin =tref +

formulas @.5) are a lower bound for the I1S1 This bound of course can be improved for fpk 1,
since theréd i, is negative, although can never be smaller thags. We use therefore the Heaviside
step function and get

Tmin:tref‘F@(w) ) (B.9)

p
which is a lower bound for valid for all values of.

B.3 Minimum mean ISI (1)

To derive a lower bound foft) we start with

Nd
T

= 9(1) [kmin(T) + 1

(B.10)

< g('[) <(N _ 1)(1_ r])+ p(T—l—tref)@(T—l—tref) +1> 7

€
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which can be obtained fronb(6), (5.7) and @A.3). We calculate the mean of the left and right hand
side according to the probabilitié¥1), which denominate the probability of the system ending up in
a system with ISK.

Tmax N & Tmax <N DA-n)+ Pli —1—trer)O(i — 1 —trer)

5 < S :

We set 1 = f wheref is the spiking-frequency, us®(t) = P(f) = P(g(1)), eliminate the terms of

+1> P(i) . (B.11)

the summation which equal 0 and get

N(F)S < <g>(<N—1><1—n>+1—

1ttt Tmax
( Zl g(i) + g(i)i ())« (B.12)
e f

Using the following identity(XY) = (X)(Y) + Cov(X,Y) for two random variablexX andY we

(1+;ref)p> n

achieve

NI < <g>(<N_1)<1_n>+1_<1+t7refN>>+

€
1+tret

+2 (@) + covgrn. )= 3 -1 ). (B.13)

From B.10) it is easy to see that C@y(1),T) < 0 since an increase aftranslates into a decrease
of g(1) and vice versa. Because of this fact afd) > 0 we can eliminate the two leftmost terms of
inequality B.13) by weakening the inequality.

N(f)3 < (g) <(N_1)(1_”)+1+w>' (B.14)

The mean frequencyf) is equal to the inverse of the harmonic mégmn). Since for a set of positive

numbers its harmonic mean is never greater than its aritbmetan Bullen, 2003) we have- &y <

% = (f). Applying this on inequality B.14) leads to

< g ((N-p-n+ 1y MELte0), 19

We can transform this into a quadratic inequalityOfsince(t) > 0. It has the only positive solution

(N B 1)€(f1 B 1) —& 1+tref

)2 Oin = Tt

(N-De(n—1)—&  1+ter\? Ned
+\/< 2 + >+p<g>. (B.16)

We have found a lower bound for the mean value of our IS| tistion.
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Appendix C

Thermodynamic limits of (1) .. and Tyax

min

In this Appendix we will calculate the thermodynamic limite( the behavior foN — o) of
(t) for the different regions of). We first calculate the thermodynamic limits of the bourds,,,
andtmax Of (1) calculated inAppendix Band then situate the thermodynamic limit(@f between
the limits of the bounds to show the change in behavior of yfstesn around the critical coupling
strength.
We start with the limit for(t) ,;, using B.16):

en>1
. (Omin o EMN=1) eM—1)  1+tes
MmN T M T TN TN T
eM-1) eN—1)  Lter 2 €d
+\/< 20 2N 2N ) TpgN
_ g¢n-1) |en-1)
= ot | (C.1)
which forn > 1is
: <T>min _ E(I’] — 1)
r\ll'Lnoo N = 0 (C.2)

This coincides with the limit of it /N (See equatior4(5)).

e = 1
Settingn =1 in (B.16) leads to

O o Liter e \/1 ( e>2 &5 [
lim mn — |im — +4 — [ 14ter—— ) +— =4/ ——. C.3
AN AL N zpon ¢V an e ) o Vg ©Y

en<l
Equation C.1) for n < 1 leads to limy_.e (T),,,/N = O, but we can improve this result. We
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transform B.16) slightly and calculate

: o 14ter (N—1)g(l—n)+e
|\I|IToo <T>min - ,\IIIEIOO 2 2p +
+\/<(N—1)£(1—r])—|—£_ 1+tref>2+N_£6 |
2p 2 p(g)
Applying —a+b = =2+ we get
Ned
lim <T>min = lim 2o
N—oo N—oo 2
(N-De(1-n)+e  Litres + \/((N—l)s(l—n)—s—s o 1+tref) + Ned
2p 2 2p 2 p(g)
-1
_ 5<<g>(1—n) +'<g>(1—n)D (C.4)
2 2
and have therefore fay < 1
)
lim (1) ;.= ——— . C5
N*)00< >m|n <g>(1_n) ( )

The limits fortmax can be calculated analogously from equatiBr8]. Combining the limits for both
bounds with the result of equatioB.@) that the system has an I1SI &for n < 0.5 we obtain

'\Ilim (1)=190 ifn<0.5,
5 5
< Iim (1) < ifo.5<n<1,
@) A= Ty =N
0 _ jim LU [0 ifn=1,
p(g) ~ N—w= /N p
() en-1)

,\IllinmW = 5 ifn>1. (C.6)



Appendix D

Graphical interpretation of the bounds for (1)

In this Appendix we present a graphical interpretation @f ilwer bound for the expectation
(T)min Of the ISI. The expression is interpreted as the sides offa tigangle whose acute angles
experience a phase transition at the critical couplinghgtte The special form of the formula for

() min (s€€ equatioB.10andAppendix Bfor derivation)

C(N—De(n—1)—& 1+ tes (N—1e(n—-1)—¢ 1+ter)\? Ned
(O min= 2 +— +\/( 2 + >+p<g> (D.1)

suggests that it might be interpreted as showRigure D.1lin the form of a right triangle.

(@) b)Yy Ja
_ Ned
a=1/v@
h b p_ (-benDe | ite h b
_ e J((NDEm-D e Liter\Z | Ne
¢ h= a+b_\/< T 2>+p<g>

Figure D.1: Graphical interpretation of equatidh ) for (1), for different regions ofy. (a) n > 1:
The sum of the lengths of the thick red linesandb is equivalent ta1) ;.. (b) N < 1: The length of
the thick red line is equivalent to— |b| which is approximately equal t@) .

Figure D.k represents the interpretation fpr> 1 andFigure D.J forn < 1. Each of the sides,
b andh of the triangle represents a part of equatidri. The definitions fora, b andh are shown
in Figure D.1 Sincea® + b? = h? the triangle is right-angled. With the variables of the getninal

interpretation equatioB.1 for (1), reduces to
(Omin=Db-+h=b+va?+b% (D.2)
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The thick red lines irFigure D.1lrepresent this equation. Using the absolute véthiénstead ofb,

equation D.2) can be approximately written as

h—|b] forn<1
(Omin~=4{ a forn=1 (D.3)
h+|b forn>1

Note: In this part of the Appendix we don not take care of ttet fhat the formula forTt),,,, does
not lead to correct results foy < 0.5. We are only interested in its geometrical interpretatigrich

is valid forn > 0.5.

0.5+y(n)/1;, p=0.9
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Figure D.2: Phase transition gfat the critical coupling strength = 1 for differentN. N =L,
p=0.9 and(g) = 2. and in all cases. The interviatJ, 5] was transformed int¢0, 1] using 05+ .
We observe thay undergoes a phase transitiomat 1 for N — oo,
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D.1 Dependency on the anglg

A way to determine the sign dfis to use the anglg between the hypotenuseand on-cathetus
a of the triangle.y can be calculated by

tanty) = 7. 0.4

which transforms into

y= arctan<(N_1)(g_l) _11/ EI%;SJF l+2tref \/ ifgg) : (D.5)

We can determine the sign gfapproximately according to the value mpfif we do not fixate on the

small fluctuations due to the constant termtles —€/p of b

y<0 forn<1,
y=0 forn=1, (D.6)
y>0 forn>1.

With y we can, using some trigonometric identities, calculajg,,. Due to

b = atan(y), (D.7)
a
- 2 D.8
cogy) -9
we get
(o =b+h=a (e + o). 0.9
which sincegsgo = +/1+tarf(y) is equivalent to

(W= tany) + 1+ tari(y) ). (0.10)

The angley encodes the phase transition as can be seen in Fiju2esdD.3. In order to show the
similarity with the parametec of Figure 5.3the transformation 8+ £ was used to transforms the
interval [—7, 7] into [0, 1] in both figures. The value @f has been set equal to its empirical limit 2.
Figure D.2showsy in relation ton for different values oN. If we compare the slope at= 1 of
the curves foN = 10 (dotted line withC) markers) andN = 10° (solid line with circles) we observe
that the higher the value &f the more abrupt is the change of the valugatn = 1. The curve for
N = 10° is already very close at the thermodynamic limit wheexperiences a phase transition at
the critical coupling strength = 1.

The influence of the probabilitp of a stochastic state transition grcan be seen ifrigure D.3in
relation to the value off. The curve forp = 0.9 (solid line with circles) has a lower slopert= 1
than the curve fop = 0.1 (dashed line with+ markers). We observe thus that loweripchas a
similar effect as increasiny. The jump from 0 to 1 at) = 1 is more abrupt.
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0.5+y(n)/rc N=1000
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Figure D.3: Phase transition gfor differentp. N = L = 1000 and(g) = 2 in all cases. The interval
[— 7, 3] was transformed int¢0, 1] using 05+ £. We can observe that the lower the valueppthe
greater is the expression of the phase transitiap-atl.

D.2 Conclusions of the graphical interpretation

The value of the anglg represents the degree of interaction between two forcemhware
represented by the cathetiandb of a right triangle. Ify is close toJ the system is governed by
b, which means it acts approximately as predicted by the medoh formulas 4.5). If y~ 0, the
dynamics of the system are governedaoyhich represents the solution of the period fioe 1. For
y close to—7 the value ot is again dominated bly, but sinceb has negative sign for negatiyethe
value of (1), Is equal toh— |b|. This leads to the cancellation bfif it is dominated byb. In other
words (1), is of o(1) if yis close to—7.

A similar interpretation can be done with the uppere boupg of the ISI.
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