
Bioinformatics, 2024
Advance Access Publication Date: 17 December 2024

Structural Bioinformatics

Introduction
Proteins are an extremely diverse group of molecules, ranging from
simple oligopeptides to aggregated complexes. While the sequence of
amino acids that determines its composition is of primary importance,
more and more research is being devoted to understanding protein func-
tion on a macroscopic level through its overall structure. For example,
Foldseek is a recent computational algorithm that relies on querying
protein structure databases by three-dimensional structure instead of
amino acid sequence to discover similar proteins.3 Furthermore, proteins,
just like every other molecule, are inherently dynamic. A protein’s struc-

ture becomes significantly more informative once molecular dynamics
are added to the equation. While each atom vibrates due to Brownian
motion, movement at the level of protein domains often visualizes the
protein’s overall function. Such movements can be approximated and
studied using molecular dynamics simulations. Data from these simula-
tions enable researchers to predict conformational changes, identify
potential binding sites, and gain insights into mechanisms of enzymatic
activity or protein-protein interactions.

Investigating protein molecular dynamics on a functional level requires
understanding several layers of information. First, it is necessary to

Structural bioinformatics
ProteinRunway: A Blender-based UI for
Molecular Dynamics Trajectory Visualization
Maria Krunic, Evgeniya Polezhaeva, Andrey Radev, Emma Rousseau

Faculty of Bioscience Engineering, MSc Bioinformatics, KU Leuven, Leuven 3000, Belgium.

Abstract
Motivation: Recent years have seen an avalanche of new tools for protein structure prediction,
based on developments in machine learning and AI. They have led to new prediction methods and
databases of predicted 3D structures. However, these databases often do not include information
about the functional dynamics within proteins. In addition, the Blender environment provides a wide
array of powerful tools to visualize 3D objects. There is great potential to compare and understand
protein structures and their dynamics by presenting them in this graphical tool. Extracting the
essential dynamics of proteins and offering a flexible visualization tool would bridge the gap between
static representations and dynamic functional information.
Results: The ProteinRunway project consists of a Snakemake1 workflow that is tuned for a specific
database of proteins provided by Šoštarić N. et al.2 and a Blender extension that can visualize the
output of the workflow. The proteins’ static topologies and Molecular dynamics (MD) trajectories
undergo Normal Mode Analysis (NMA) to extract vibrational normal modes and create a simplified
visualization of the major protein movements. Several segmentation algorithms are applied to
determine functional domains, and the different clustering results are collected in a single Tab-
Separated Value (TSV) file that can be attached to the Blender UI. Once rendered, the protein’s
normal modes can be visualized as an animation and the segmented domains can be wrapped in
convex hulls to provide a cartoon-like object whose movements can be easily tracked.
The code that the workflow executes is organized in an object-oriented library that is intended as a
starting point for a larger project. It has been designed to allow easy addition of new segmentation
methods and to encapsulate the potentially complex processing into easy-to-use function invocations.
Availability: The entire code of the project is available at https://github.com/AndrewRadev/protein-
runway, and the reference documentation can be accessed at https://andrewradev.github.io/protein-
runway/.
Contact: maria.krunic@student.kuleuven.be, andrey.radev@student.kuleuven.be,
evgeniya.polezhaeva@student.kuleuven.be, emma.rousseau1@student.kuleuven.be

determine how a protein is segmented as the primary movement that
determines the functionality is a result of the tertiary and quaternary
structure. There are several computational algorithms that can do this by
relying on either static representations of proteins like Protein Data Bank
(PDB) files, trajectories from the aforementioned molecular dynamics
simulations, or true experimental data from NMR spectroscopy or X-ray
crystallography. Given that protein movement on an atomic level can be
quite complex, other computational analyses can also be integrated to
allow for simplification into its principal components. Normal mode
analysis (NMA) does this by utilizing small oscillation approximation to
reduce protein movement into normal modes where vibrations of mole-
cules are captured in the lower frequencies.4 Once all this information is
acquired, it can then be utilized for the final step of visualizing these
results in a human-readable manner.

The most popular software for molecular visualization is PyMOL, which
contains several tools relevant to biological investigation of molecular
structure, particularly within the realm of proteins. However, the poten-
tial of Blender5, a computer graphics software for 3D visualization, is
growing within the scientific sphere. It is mostly known for 3D design in
projects ranging from animated films to video games, but its extremely
powerful interface and open-source design allow for even wider applica-
tions than originally intended. There are several Blender extensions that
are already available for download and allow the user, for example, to
fetch proteins by their PDB code and visualize them within the 3-
dimensional scene. Apart from its extensive functionality for 3D render-
ing, Blender’s support for third-party plug-ins also provides for increased
flexibility and creativity.

This project aimed to integrate these three realms of 1) molecular dy-
namics data, 2) protein domain prediction, and 3) protein visualization
into one workflow. As with all bioinformatics projects, this necessitated
efficient code organization, robust testing, and clear documentation.
These three different domains were connected using several tools, cul-
minating in a Blender plug-in organized within an object-oriented
framework to maximize extensibility and reusability for future develop-
ment.

Methods
NMA was performed using ProDy6, a powerful python library that writes
normal modes to Normal Modes Data (NMD) files for visualization in
the graphical program VMD7. For segmentation, we used three different
algorithms. Both Chainsaw8 and Merizo9 are deep learning methods that
try to predict domain assignment based on a static protein structure.
Chainsaw uses a program called STRIDE10 to assign secondary structure
as a first step. We encountered challenges in using Merizo with our
datasets due to its inability to recognize specific histidine residue codes
(HIP, HID, HIE), which represent different protonation states, as well as
the oxidized cysteine residue code CYX. To address this issue, we
worked with our own fork of the project to implement the necessary
modifications11 and may contribute the fix to the main repository in the
future.

GeoStaS is a method from the R library Bio3D12, which attempts to
determine domain segmentation based on an atomic movement correla-
tion matrix.

The central workflow that processed all the data files was built using
Snakemake and the final products were visualized with the open-source
project Blender. The MDAnalysis13,14 library is used in both the library
code and in the blender extension to read and write various structural and
trajectory files.

Results
The project consists of three separate domains:

• A data processing workflow that is tailored to the specific set
of proteins we tested with.

• An object-oriented library that can be reused with a different
workflow and extended to support different functionalities.

• A Blender extension that is independent from the processing
code and only interacts with the rest of the project through the
two final output files that the workflow creates.

Workflow
The data processing was organized using the Snakemake workflow man-
agement system to ensure reproducibility and scalability. The pipeline
integrates several tools, including Merizo, Chainsaw and the Bio3D R
package for protein segmentation analysis. It includes custom Python
modules with intermediate visualization options in PyMOL, ensuring
flexibility when more advanced tools like Blender are unavailable, and
benchmarks all tasks for reflecting on their performance.

The process begins with setting up vendor tools such as Merizo and
Chainsaw and quality assurance steps to verify their proper installation.

The input files, including protein topology and trajectory snapshots of
MD simulations data, are organized in a specific directory structure,
ensuring consistency in data management. Once the setup is complete,
the pipeline generates static and dynamic PDB files based on the
topology and trajectory snapshots data. Some of them include all protein
atoms, while some are limited to only the alpha carbons. To
accommodate Bio3D, DCD files are also built for the trajectories. These
generated files form the foundation for further analysis.

Figure 1. Simplified representation of the Snakemake workflow

Then, clustering is performed using three methods: Chainsaw, Merizo
and GeoStaS (Bio3D). The latter requires picking a number of clusters in
advance, since it segments molecules via K-means or hierarchical clus-
tering. Each of these tools generate segmentation outputs, which are

compared and aggregated to produce a comprehensive view of the pro-
tein’s dynamic regions. An example of the differences in output pro-
duced by the segmentation methods using the yeast protein 1A3W is
included in Figure 2.

Figure 2. Results from three segmentation methods on the yeast protein 1A3W with and

without post-translational modifications.

NMA is another critical component of the workflow where the main
components of biomolecule dynamics are predicted. This step involves
generating NMD files from dynamic PDB structures and producing
visualizable trajectories compatible with tools like PyMOL. These
trajectories provide insights into the protein’s conformational flexibility,
which are essential for understanding its functional dynamics.

Figure 3. An example runtime measurement plot for the Snakemake workflow.

Throughout the workflow, benchmarks are collected to evaluate perfor-
mance. Runtime data is aggregated into a summary file, and scatter plots
visualize the distribution of runtimes across different pipeline rules (Fig-
ure 3). These measurements help identify bottlenecks and guide optimi-
zation efforts.

Library
In the first version of the workflow, all processing code was contained in
procedural scripts. While straightforward, this made it inflexible and
difficult to test in isolation. Therefore, the next step consisted of extract-
ing the logic and organizing it into an object-oriented framework (Figure
4).

The generation of normal modes serves as a great example of what can
be gained from this modular structure. ProDy’s normal mode analysis

output is specifically tailored for viewing in the VMD program. It does
not easily interoperate with other kinds of software, so building a custom
visualization required parsing that file and creating a trajectory by apply-
ing the normal vectors to the initial structure, frame by frame. To control
the number of frames and the scale of the vectors, we implemented a
NormalModes class that encapsulates this logic and provides various
parameters to build an MDAnalysis trajectory in a flexible way. Future
extensions and iteration were therefore made easier to implement, since
changing the shape of the visualization is as easy as changing the specif-
ics of a function invocation. The act of calculating modes in a separate
procedure respects the single responsibility principle15: the class handles
parsing the NMA output to generate a trajectory, while the procedure
invokes ProDy to build the initial NMD file.

Another important target for extraction was the segmentation process.
Much of the work is done by external tools and is procedural in nature.
In addition to segmentation, it was necessary to establish a standardized
protocol for communicating the results, which requires the implementa-
tion of a set of adaptor interfaces. A segmentation base class was de-
signed with a simple constructor and a “parse” method with a specific
interface. A function can be given a list of SegmentationParser objects,
and it produces the final segmentation TSV with the results, ready to be
uploaded to the Blender extension. This lets users of the library program
to an interface, not to an implementation; what they do in their own
parser classes does not interfere with the collection process.

The last main objective was to prevent abstraction leakage of implemen-
tation details across the project. MDAnalysis in particular was referred to
in many different places, since we regularly need to read or write struc-
tures and trajectories. Collecting it all in a Trajectory class allowed us to
encapsulate those details and choose our own interface for trajectory
manipulation, reading, and writing. Moreover, it made testing simpler,
since a Trajectory object was much easier to create and use as input to
other classes and methods. If the test suite increases in size, using a
mock Trajectory object for unit tests can greatly increase the speed of
test execution.

Figure 4. Structure of the object-oriented framework.

Blender extension
Once a simplified trajectory and a segmentation file are created, the last
step is to visualize them in the graphical user interface, although there

are some technical challenges to this. Blender is a multi-purpose pro-
gram meant to work with potentially very complex models, so it is im-
portant to “speak its language” to achieve acceptable performance. Gen-
erating spheres for each individual atom can freeze the entire user inter-
face for up to a minute, therefore it is impractical to render thousands of
separate objects without some computational preparation.

The Atomic Blender16 project was the inspiration for how to handle this
issue. The idea is to create a single representative sphere for all atoms of
a molecule with a particular material. A material represents visual prop-
erties like color, texture, and reflectivity. Blender can use this object as a
template and mirror its visuals in all other desired locations instead of
processing them individually.

Thanks to this performance shortcut, creating the static structure was
almost instantaneous, but this only created a static image. The process of
generating the animation consisted of looping through the frames of the
trajectory, updating the coordinates of the atoms and using snapshots of
these as numbered “frames”. Once again, the naive approach was very
slow, but no clever shortcuts were available to specifically address this.
To circumvent this, the logic was placed in a “modal” operator that only
inserts one frame per invocation and then yields control to the user inter-
face. A timer was set up to check at sub-second intervals whether the job
was finished or could be invoked again. Additionally, to give the users
feedback, a progress bar fills up as the animation frames are inserted into
the scene. The feedback makes waiting more palatable, and the UI is
available during this period. The import action in progress can be seen in
Figure 5.

Figure 5. The import panel in the Blender UI, in the process of inserting animation

frames for a provided trajectory.

This panel is the main interface of the plugin. A user adds both the tra-
jectory and the segmentation file, and once the latter is processed, a list
of methods and parameterizations of the segmentation algorithm is dis-
played. Segmentation colors each fragment in different hues, making it
easy to distinguish the functional domains.

Figure 6. Illustration of the computational and visualization steps leading to the final

form generated by Blender.

The final convenience was to add a convex hull around the individual
domains using Blender’s built-in “convex hull” action. The steps leading
up to this visualization are illustrated in Figure 6. It is useful to recognize
that the result is not necessarily an ideal shape. In Figure 7, we can see
the yeast protein 1A3W segmented by the Chainsaw algorithm on the
left, and by GeoStaS K-means (K=8) on the right. While Chainsaw
draws roughly spherical domains, the ones by GeoStaS are bulkier and
hide some of the internal structure of the “pincers” at the top of the pro-
tein. This could be due to GeoStaS attempting to capture rotational
movements by considering correlated atomic trajectories in the opposite
direction as part of a rigid domain that rotates. Nevertheless, if those two
groups of atoms are clustered together, a convex hull that wraps them
hides much of the structural details. An ideal representation would have
a surface clinging tightly to the outside of the two protrusions, but what
is perceived as a shape greatly depends on the visual density of the cloud
of points. Topological analysis could potentially be an appropriate meth-
od to create a better wrapping surface for this domain.

In order to package the extension, its dependencies must also be includ-
ed. GitHub Actions were used to set up a pipeline that collects all Python
dependencies into archives known as “wheels” and packages them with
the extension code, ready for installation. This process supports the
major operating systems: Linux, Windows, and macOS for the x86 64-
bit architecture. Additionally, a separate build was created for macOS on
ARM x64 due to the platform's transition towards ARM processors.
While manual creation of the Blender extension is feasible, automating
the process to generate these archives and provide them as easy down-
loads offers a more user-friendly solution.

Figure 7. A pyruvate kinase (1A3W) segmented by Chainsaw (left) and by the GeoStaS
algorithm with a k-means clustering with K=8 (right).

Discussion
Blender is a powerful graphics tool, but that power comes at the cost of
complexity. Our extension is simple and focused on doing one task, but
no other Blender plugin we found combines these particular features.
The aforementioned Atomic Blender does a fantastic job of highlighting
and coloring individual atoms but is unable to render trajectories. Mo-
lecularNodes17 is another mature extension we took inspiration from. It
provides a wide variety of rendering tools to make protein models and
animations for professional illustrations. However, it lacks segmentation
and normal mode analysis functionalities. Using specialized software
like PyMOL is a valid option, but one misses out on the general-purpose
abilities of a graphics software like Blender. There is no one tool that
does a perfect job.

What we can aim for is to establish a solid baseline for future work. We
already pointed out the limitations of GeoStaS in particular, but none of
the segmentation algorithms fully solve the domain separation problem.
The main goal was to ensure that adding new methods was straightfor-
ward, rather than selecting a "best” method. More flexibility in deciding
which algorithms to apply for specific proteins might be welcome. An
idea for a future extension is to prepare a “guide” file with algorithm
settings, allowing the user to configure the pipeline on a per-model basis.
Ideally, the Blender extension itself could provide a panel to modify
segmentations or parameterization that can be written back to the pipe-
line. This would increase the coupling between these two major compo-
nents of the toolkit, but it might speed up interacting with the project.

More configuration of the visuals would likely be welcome for users that
are looking for illustrations they can share in presentations or papers.
There is only one set of colors that can easily be picked directly and no
control over the radius and visibility of the atomic spheres. These kinds
of visual augmentations should be straightforward to add, but would take
time, and would require feedback from the users of the project. Personal
preferences regarding interfaces and convenience will vary, so ongoing
refinement would be better than upfront decisions.

Acknowledgements
We would like to thank Prof. Vera van Noort for providing the project
idea and for offering valuable feedback and suggestions throughout our
work. We also want to thank Stefaan Verwimp and Dr. Michiel van
Setten for their additional guidance in the project, along with Dr. Nikoli-
na Šoštarić for providing the data.

Conflict of Interest: none declared.

References

1 Mölder F, Jablonski KP, Letcher B et al. Sustainable data analysis with Snakemake.

F1000Research 2021, 10:33. doi: 10.12688/f1000research.29032.1
2 Sostaric, N. and van Noort, V. (2021) “Molecular dynamics shows complex interplay and long-

range effects of post-translational modifications in yeast protein interactions”. Zenodo. doi:

10.5281/zenodo.4650406.

3 van Kempen, M., Kim, S.S., Tumescheit, C. et al. Fast and accurate protein structure search

with Foldseek. Nat Biotechnol 42, 243–246 (2024). https://doi.org/10.1038/s41587-023-01773-0

4 Bauer JA, Pavlović J, Bauerová-Hlinková V. Normal Mode Analysis as a Routine Part of a

Structural Investigation. Molecules. 2019 Sep 10;24(18):3293. doi: 10.3390/molecules24183293.

PMID: 31510014; PMCID: PMC6767145.
5 Community, B. O. (2018). Blender - a 3D modelling and rendering package. Stichting Blender
Foundation, Amsterdam. Retrieved from http://www.blender.org
6 She Zhang, James M Krieger, Yan Zhang, Cihan Kaya, Burak Kaynak, Karolina Mikulska-

Ruminska, Pemra Doruker, Hongchun Li, Ivet Bahar, ProDy 2.0: increased scale and scope after

10 years of protein dynamics modelling with Python, Bioinformatics, V. 37, Is. 20, October 2021,

Pages 3657–3659, doi: 10.1093/bioinformatics/btab187
7 Humphrey, W., Dalke, A. and Schulten, K., "VMD - Visual Molecular Dynamics", J. Molec.

Graphics, 1996, vol. 14, pp. 33-38., http://www.ks.uiuc.edu/Research/vmd/
8 Jude Wells, Alex Hawkins-Hooker, Nicola Bordin, Ian Sillitoe, Brooks Paige, Christine Oren-

go, Chainsaw: protein domain segmentation with fully convolutional neural networks, Bioinfor-

matics, Volume 40, Issue 5, May 2024, btae296, doi: 10.1093/bioinformatics/btae296
9 Lau, A.M., Kandathil, S.M. & Jones, D.T. Merizo: a rapid and accurate protein domain segmen-

tation method using invariant point attention. Nat Commun 14, 8445 (2023). doi:

10.1038/s41467-023-43934-4
10 Frishman D, Argos P. Knowledge-Based Protein Secondary Structure Assignment Proteins:

Structure, Function, and Genetics 23:566-579 (1995)
11 https://github.com/AndrewRadev/Merizo
12Grant BJ, Skjaerven L, Yao XQ. The Bio3D packages for structural bioinformatics. Protein Sci.

2021 Jan;30(1):20-30. doi: 10.1002/pro.3923. Epub 2020 Aug 17. PMID: 32734663; PMCID:

PMC7737766.
13 R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler, D. L. Dotson, J.

Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein. MDAnalysis: A Python package for the

rapid analysis of molecular dynamics simulations. In S. Benthall and S. Rostrup, editors, Pro-

ceedings of the 15th Python in Science Conference, pages 98-105, Austin, TX, 2016. SciPy,

doi:10.25080/majora-629e541a-00e
14 N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein. MDAnalysis: A Toolkit

for the Analysis of Molecular Dynamics Simulations. J. Comput. Chem. 32 (2011), 2319-2327,

doi:10.1002/jcc.21787. PMCID:PMC3144279
15 Martin, Robert C. (2003). Agile Software Development, Principles, Patterns, and Practices.

Prentice Hall. p. 95. ISBN 978-0135974445.
16 https://extensions.blender.org/add-ons/atomic-blender-pdb-xyz/
17 Brady Johnston, Johannes Elferich, Russell B. Davidson, Yuxuan Zhuang, Yinying Yao,

Thibault Tubiana, Patrick Kunzmann, Rich, Olivier Laprevote, TheJeran, ludovic autin,

JCZwiggelaar, Domenico Marson, Kai Niklas Spauszus, Brener Ramos, James Hooker, Jessica

A. Nash, Joyce Kim, Louis Colson, Marcelo C. R. Melo. (2024). BradyAJohn-

ston/MolecularNodes: v4.2.9 for Blender 4.2+ (v4.2.9). Zenodo. doi: 10.5281/zenodo.14241983

