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Introduction  
Proteins are an extremely diverse group of molecules, ranging from 
simple oligopeptides to aggregated complexes. While the sequence of 
amino acids that determines its composition is of primary importance, 
more and more research is being devoted to understanding protein func-
tion on a macroscopic level through its overall structure. For example, 
Foldseek is a recent computational algorithm that relies on querying 
protein structure databases by three-dimensional structure instead of 
amino acid sequence to discover similar proteins.3 Furthermore, proteins, 
just like every other molecule, are inherently dynamic. A protein’s struc-

ture becomes significantly more informative once molecular dynamics 
are added to the equation. While each atom vibrates due to Brownian 
motion, movement at the level of protein domains often visualizes the 
protein’s overall function. Such movements can be approximated and 
studied using molecular dynamics simulations. Data from these simula-
tions enable researchers to predict conformational changes, identify 
potential binding sites, and gain insights into mechanisms of enzymatic 
activity or protein-protein interactions. 

Investigating protein molecular dynamics on a functional level requires 
understanding several layers of information. First, it is necessary to 
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determine how a protein is segmented as the primary movement that 
determines the functionality is a result of the tertiary and quaternary 
structure. There are several computational algorithms that can do this by 
relying on either static representations of proteins like Protein Data Bank 
(PDB) files, trajectories from the aforementioned molecular dynamics 
simulations, or true experimental data from NMR spectroscopy or X-ray 
crystallography. Given that protein movement on an atomic level can be 
quite complex, other computational analyses can also be integrated to 
allow for simplification into its principal components. Normal mode 
analysis (NMA) does this by utilizing small oscillation approximation to 
reduce protein movement into normal modes where vibrations of mole-
cules are captured in the lower frequencies.4 Once all this information is 
acquired, it can then be utilized for the final step of visualizing these 
results in a human-readable manner. 

The most popular software for molecular visualization is PyMOL, which 
contains several tools relevant to biological investigation of molecular 
structure, particularly within the realm of proteins. However, the poten-
tial of Blender5, a computer graphics software for 3D visualization, is 
growing within the scientific sphere. It is mostly known for 3D design in 
projects ranging from animated films to video games, but its extremely 
powerful interface and open-source design allow for even wider applica-
tions than originally intended. There are several Blender extensions that 
are already available for download and allow the user, for example, to 
fetch proteins by their PDB code and visualize them within the 3-
dimensional scene. Apart from its extensive functionality for 3D render-
ing, Blender’s support for third-party plug-ins also provides for increased 
flexibility and creativity. 

This project aimed to integrate these three realms of 1) molecular dy-
namics data, 2) protein domain prediction, and 3) protein visualization 
into one workflow. As with all bioinformatics projects, this necessitated 
efficient code organization, robust testing, and clear documentation. 
These three different domains were connected using several tools, cul-
minating in a Blender plug-in organized within an object-oriented 
framework to maximize extensibility and reusability for future develop-
ment. 

Methods 
NMA was performed using ProDy6, a powerful python library that writes 
normal modes to Normal Modes Data (NMD) files for visualization in 
the graphical program VMD7. For segmentation, we used three different 
algorithms. Both Chainsaw8 and Merizo9 are deep learning methods that 
try to predict domain assignment based on a static protein structure. 
Chainsaw uses a program called STRIDE10 to assign secondary structure 
as a first step. We encountered challenges in using Merizo with our 
datasets due to its inability to recognize specific histidine residue codes 
(HIP, HID, HIE), which represent different protonation states, as well as 
the oxidized cysteine residue code CYX. To address this issue, we 
worked with our own fork of the project to implement the necessary 
modifications11 and may contribute the fix to the main repository in the 
future. 

GeoStaS is a method from the R library Bio3D12, which attempts to 
determine domain segmentation based on an atomic movement correla-
tion matrix. 

The central workflow that processed all the data files was built using 
Snakemake and the final products were visualized with the open-source 
project Blender. The MDAnalysis13,14 library is used in both the library 
code and in the blender extension to read and write various structural and 
trajectory files. 

Results 
The project consists of three separate domains: 

• A data processing workflow that is tailored to the specific set 
of proteins we tested with. 

• An object-oriented library that can be reused with a different 
workflow and extended to support different functionalities. 

• A Blender extension that is independent from the processing 
code and only interacts with the rest of the project through the 
two final output files that the workflow creates. 

Workflow 
The data processing was organized using the Snakemake workflow man-
agement system to ensure reproducibility and scalability. The pipeline 
integrates several tools, including Merizo, Chainsaw and the Bio3D R 
package for protein segmentation analysis. It includes custom Python 
modules with intermediate visualization options in PyMOL, ensuring 
flexibility when more advanced tools like Blender are unavailable, and 
benchmarks all tasks for reflecting on their performance. 

The process begins with setting up vendor tools such as Merizo and 
Chainsaw and quality assurance steps to verify their proper installation.  

The input files, including protein topology and trajectory snapshots of 
MD simulations data, are organized in a specific directory structure, 
ensuring consistency in data management. Once the setup is complete, 
the pipeline generates static and dynamic PDB files based on the 
topology and trajectory snapshots data. Some of them include all protein 
atoms, while some are limited to only the alpha carbons. To 
accommodate Bio3D, DCD files are also built for the trajectories. These 
generated files form the foundation for further analysis.  

Figure 1. Simplified representation of the Snakemake workflow 

Then, clustering is performed using three methods: Chainsaw, Merizo 
and GeoStaS (Bio3D). The latter requires picking a number of clusters in 
advance, since it segments molecules via K-means or hierarchical clus-
tering. Each of these tools generate segmentation outputs, which are 



compared and aggregated to produce a comprehensive view of the pro-
tein’s dynamic regions. An example of the differences in output pro-
duced by the segmentation methods using the yeast protein 1A3W is 
included in Figure 2. 

Figure 2. Results from three segmentation methods on the yeast protein 1A3W with and 

without post-translational modifications. 

NMA is another critical component of the workflow where the main 
components of biomolecule dynamics are predicted. This step involves 
generating NMD files from dynamic PDB structures and producing 
visualizable trajectories compatible with tools like PyMOL. These 
trajectories provide insights into the protein’s conformational flexibility, 
which are essential for understanding its functional dynamics. 

Figure 3. An example runtime measurement plot for the Snakemake workflow. 

Throughout the workflow, benchmarks are collected to evaluate perfor-
mance. Runtime data is aggregated into a summary file, and scatter plots 
visualize the distribution of runtimes across different pipeline rules (Fig-
ure 3). These measurements help identify bottlenecks and guide optimi-
zation efforts. 

Library 
In the first version of the workflow, all processing code was contained in 
procedural scripts. While straightforward, this made it inflexible and 
difficult to test in isolation. Therefore, the next step consisted of extract-
ing the logic and organizing it into an object-oriented framework (Figure 
4). 

The generation of normal modes serves as a great example of what can 
be gained from this modular structure. ProDy’s normal mode analysis 

output is specifically tailored for viewing in the VMD program. It does 
not easily interoperate with other kinds of software, so building a custom 
visualization required parsing that file and creating a trajectory by apply-
ing the normal vectors to the initial structure, frame by frame. To control 
the number of frames and the scale of the vectors, we implemented a 
NormalModes class that encapsulates this logic and provides various 
parameters to build an MDAnalysis trajectory in a flexible way. Future 
extensions and iteration were therefore made easier to implement, since 
changing the shape of the visualization is as easy as changing the specif-
ics of a function invocation. The act of calculating modes in a separate 
procedure respects the single responsibility principle15: the class handles 
parsing the NMA output to generate a trajectory, while the procedure 
invokes ProDy to build the initial NMD file. 

Another important target for extraction was the segmentation process. 
Much of the work is done by external tools and is procedural in nature. 
In addition to segmentation, it was necessary to establish a standardized 
protocol for communicating the results, which requires the implementa-
tion of a set of adaptor interfaces. A segmentation base class was de-
signed with a simple constructor and a “parse” method with a specific 
interface. A function can be given a list of SegmentationParser objects, 
and it produces the final segmentation TSV with the results, ready to be 
uploaded to the Blender extension. This lets users of the library program 
to an interface, not to an implementation; what they do in their own 
parser classes does not interfere with the collection process. 

The last main objective was to prevent abstraction leakage of implemen-
tation details across the project. MDAnalysis in particular was referred to 
in many different places, since we regularly need to read or write struc-
tures and trajectories. Collecting it all in a Trajectory class allowed us to 
encapsulate those details and choose our own interface for trajectory 
manipulation, reading, and writing. Moreover, it made testing simpler, 
since a Trajectory object was much easier to create and use as input to 
other classes and methods. If the test suite increases in size, using a 
mock Trajectory object for unit tests can greatly increase the speed of 
test execution. 

Figure 4. Structure of the object-oriented framework. 

Blender extension 
Once a simplified trajectory and a segmentation file are created, the last 
step is to visualize them in the graphical user interface, although there 



 

are some technical challenges to this. Blender is a multi-purpose pro-
gram meant to work with potentially very complex models, so it is im-
portant to “speak its language” to achieve acceptable performance. Gen-
erating spheres for each individual atom can freeze the entire user inter-
face for up to a minute, therefore it is impractical to render thousands of 
separate objects without some computational preparation. 

The Atomic Blender16 project was the inspiration for how to handle this 
issue. The idea is to create a single representative sphere for all atoms of 
a molecule with a particular material. A material represents visual prop-
erties like color, texture, and reflectivity. Blender can use this object as a 
template and mirror its visuals in all other desired locations instead of 
processing them individually. 

Thanks to this performance shortcut, creating the static structure was 
almost instantaneous, but this only created a static image. The process of 
generating the animation consisted of looping through the frames of the 
trajectory, updating the coordinates of the atoms and using snapshots of 
these as numbered “frames”. Once again, the naive approach was very 
slow, but no clever shortcuts were available to specifically address this. 
To circumvent this, the logic was placed in a “modal” operator that only 
inserts one frame per invocation and then yields control to the user inter-
face. A timer was set up to check at sub-second intervals whether the job 
was finished or could be invoked again. Additionally, to give the users 
feedback, a progress bar fills up as the animation frames are inserted into 
the scene. The feedback makes waiting more palatable, and the UI is 
available during this period. The import action in progress can be seen in 
Figure 5. 

Figure 5. The import panel in the Blender UI, in the process of inserting animation 

frames for a provided trajectory. 

This panel is the main interface of the plugin. A user adds both the tra-
jectory and the segmentation file, and once the latter is processed, a list 
of methods and parameterizations of the segmentation algorithm is dis-
played. Segmentation colors each fragment in different hues, making it 
easy to distinguish the functional domains.  

Figure 6. Illustration of the computational and visualization steps leading to the final 

form generated by Blender.  

The final convenience was to add a convex hull around the individual 
domains using Blender’s built-in “convex hull” action. The steps leading 
up to this visualization are illustrated in Figure 6. It is useful to recognize 
that the result is not necessarily an ideal shape. In Figure 7, we can see 
the yeast protein 1A3W segmented by the Chainsaw algorithm on the 
left, and by GeoStaS K-means (K=8) on the right. While Chainsaw 
draws roughly spherical domains, the ones by GeoStaS are bulkier and 
hide some of the internal structure of the “pincers” at the top of the pro-
tein. This could be due to GeoStaS attempting to capture rotational 
movements by considering correlated atomic trajectories in the opposite 
direction as part of a rigid domain that rotates. Nevertheless, if those two 
groups of atoms are clustered together, a convex hull that wraps them 
hides much of the structural details. An ideal representation would have 
a surface clinging tightly to the outside of the two protrusions, but what 
is perceived as a shape greatly depends on the visual density of the cloud 
of points. Topological analysis could potentially be an appropriate meth-
od to create a better wrapping surface for this domain. 

In order to package the extension, its dependencies must also be includ-
ed. GitHub Actions were used to set up a pipeline that collects all Python 
dependencies into archives known as “wheels” and packages them with 
the extension code, ready for installation. This process supports the 
major operating systems: Linux, Windows, and macOS for the x86 64-
bit architecture. Additionally, a separate build was created for macOS on 
ARM x64 due to the platform's transition towards ARM processors. 
While manual creation of the Blender extension is feasible, automating 
the process to generate these archives and provide them as easy down-
loads offers a more user-friendly solution.  

Figure 7. A pyruvate kinase (1A3W) segmented by Chainsaw (left) and by the GeoStaS 
algorithm with a k-means clustering with K=8 (right).  



Discussion 
Blender is a powerful graphics tool, but that power comes at the cost of 
complexity. Our extension is simple and focused on doing one task, but 
no other Blender plugin we found combines these particular features. 
The aforementioned Atomic Blender does a fantastic job of highlighting 
and coloring individual atoms but is unable to render trajectories. Mo-
lecularNodes17 is another mature extension we took inspiration from. It 
provides a wide variety of rendering tools to make protein models and 
animations for professional illustrations. However, it lacks segmentation 
and normal mode analysis functionalities. Using specialized software 
like PyMOL is a valid option, but one misses out on the general-purpose 
abilities of a graphics software like Blender. There is no one tool that 
does a perfect job. 

What we can aim for is to establish a solid baseline for future work. We 
already pointed out the limitations of GeoStaS in particular, but none of 
the segmentation algorithms fully solve the domain separation problem. 
The main goal was to ensure that adding new methods was straightfor-
ward, rather than selecting a "best” method. More flexibility in deciding 
which algorithms to apply for specific proteins might be welcome. An 
idea for a future extension is to prepare a “guide” file with algorithm 
settings, allowing the user to configure the pipeline on a per-model basis. 
Ideally, the Blender extension itself could provide a panel to modify 
segmentations or parameterization that can be written back to the pipe-
line. This would increase the coupling between these two major compo-
nents of the toolkit, but it might speed up interacting with the project. 

More configuration of the visuals would likely be welcome for users that 
are looking for illustrations they can share in presentations or papers. 
There is only one set of colors that can easily be picked directly and no 
control over the radius and visibility of the atomic spheres. These kinds 
of visual augmentations should be straightforward to add, but would take 
time, and would require feedback from the users of the project. Personal 
preferences regarding interfaces and convenience will vary, so ongoing 
refinement would be better than upfront decisions. 
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