{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Step 11: Cavity Flow with Navier-Stokes\n", "\n", "Here we are, finally solving the Navier-stokes equations in two dimensions. The last two steps of the module will be focusing on solving these equations but with different boundary conditions. \n", "\n", "We begin with the momentum equation in vector form for a velocity field $\\vec{v}$ :\n", "\n", "$$\\frac{\\partial \\vec{v}}{\\partial t} + (\\vec{v} \\cdot \\nabla) \\vec{v} = - \\frac{1}{\\rho} \\nabla p + \\nu \\nabla^2 \\vec{v}$$\n", "\n", "This can also be understoon as a set of scalar equations, one for each velocity component $(u,v,w)$. But we will solve it in two dimensions, so there will only be two scalar equations.\n", "\n", "Now, if you were missing the continuity equation, do not worry! This is where our work on the previous step related to the Poisson equation comes into play.\n", "\n", "Here is the system of differential equations: two equations for the velocity component and one for pressure:\n", "\n", "$$\\frac{\\partial u}{ \\partial t} + u \\frac{\\partial u}{ \\partial x} + v\\frac{\\partial u}{ \\partial y} = - \\frac{1}{ \\rho } \\frac{\\partial p}{ \\partial x} + \\nu \\left ( \\frac{\\partial^2 u}{ \\partial x^2} + \\frac{\\partial^2 u}{ \\partial y^2} \\right )$$\n", "\n", "$$\\frac{\\partial v}{ \\partial t} + u \\frac{\\partial v}{ \\partial x} + v\\frac{\\partial v}{ \\partial y} = - \\frac{1}{ \\rho } \\frac{\\partial p}{ \\partial y} + \\nu \\left ( \\frac{\\partial^2 v}{ \\partial x^2} + \\frac{\\partial^2 v}{ \\partial y^2} \\right )$$\n", "\n", "\n", "$$\\frac{\\partial^2 p}{\\partial x^2} + \\frac{\\partial^2 p}{\\partial y^2} = -\\rho \\left ( \\frac{\\partial u}{ \\partial x} \\frac{\\partial u}{ \\partial x} + 2 \\frac{\\partial u}{ \\partial y} \\frac{\\partial v}{ \\partial x} + \\frac{\\partial v}{ \\partial y } \\frac{\\partial v}{ \\partial y} \\right )$$\n", "\n", "\n", "## Discretization\n", "\n", "From the previous steps, we already have a solid grasp on how to discretize most of the terms. Only in the last equation do we encounter some unfamiliar stuff. In any case, let's begin by first discretizing the u momentum equation:\n", "\n", "$$\\frac{u^{n+1}_{i,j} - u^n_{i,j}}{\\Delta t} + u^n_{i,j} \\frac{u^{n}_{i,j} - u^n_{i-1,j}}{\\Delta x} + v^n_{i,j} \\frac{u^{n}_{i,j} - u^n_{i,j-1}}{\\Delta y} = - \\frac{1}{\\rho} \\frac{p^{n}_{i+1,j}-p^{n}_{i-1,j}}{ 2 \\Delta x} + \\nu \\left ( \\frac{u^{n}_{i+1,j}-2 u^{n}_{i,j} + u^{n}_{i-1,j}}{ \\Delta x^2} + \\frac{u^{n}_{i,j+1}-2 u^{n}_{i,j} + u^{n}_{i,j-1}}{ \\Delta y^2} \\right )\n", "$$\n", "\n", "Similarly for the v equation:\n", "\n", "$$\\frac{v^{n+1}_{i,j} - v^n_{i,j}}{\\Delta t} + u^n_{i,j} \\frac{v^{n}_{i,j} - v^n_{i-1,j}}{\\Delta x} + v^n_{i,j} \\frac{v^{n}_{i,j} - v^n_{i,j-1}}{\\Delta y} = - \\frac{1}{\\rho} \\frac{p^{n}_{i,j+1}-p^{n}_{i,j-1}}{ 2 \\Delta y} + \\nu \\left ( \\frac{v^{n}_{i+1,j}-2 v^{n}_{i,j} + v^{n}_{i-1,j}}{ \\Delta x^2} + \\frac{v^{n}_{i,j+1}-2 v^{n}_{i,j} + v^{n}_{i,j-1}}{ \\Delta y^2} \\right )\n", "$$\n", "\n", "Finally the discretized pressure-poisson equation can be written like so:\n", "\n", "$$\\frac{p^n_{i+1,j} - 2 p^n_{i,j} + p^n_{i-1,j}}{\\Delta x^2} + \\frac{p^n_{i,j+1} - 2 p^n_{i,j} + p^n_{i,j-1}}{\\Delta y^2} = \\rho \\left [ \\frac{1}{\\Delta t} \\left ( \\frac{u^n_{i+1,j} - u^n_{i-1,j}}{2 \\Delta x} + \\frac{v^n_{i+1,j} - v^n_{i-1,j}}{2 \\Delta y} \\right ) - \\frac{u_{i+1,j} - u_{i-1,j}}{2 \\Delta x} \\frac{u_{i+1,j} u_{i-1,j}}{2 \\Delta x} - 2\\frac{u_{i,j+1} - u_{i,j-1}}{2 \\Delta y} \\frac{v_{i+1,j} - v_{i-1,j}}{2 \\Delta x} - \\frac{v_{i,j+1} - v_{i,j-1}}{2 \\Delta y} \\frac{v_{i,j+1} - v_{i,j-1}}{2 \\Delta y} \\right ]\n", "$$\n", "\n", "As always, we shall write these equations in a rearranged form in the way that the iterations need to proceed in the code. First the momentum equations for the velocity at the next time step:\n", "\n", "The momentum in the u direction:\n", "\n", "$$u^{n+1}_{i,j} = u^{n}_{i,j} - u^{n}_{i,j} \\frac{\\Delta t}{\\Delta x} \\left ( u^n_{i,j} - u^n_{i-1,j} \\right ) - v^n_{i,j} \\frac{\\Delta t}{\\Delta y} \\left ( u^n_{i,j} - u^n_{i,j-1} \\right ) - \\frac{\\Delta t}{ \\rho 2 \\Delta x} \\left ( p^n_{i-1,j} - p^n_{i-1,j} \\right ) + \\nu \\left ( \\frac{\\Delta t}{\\Delta x ^2} \\left ( u^n_{i+1,j} - 2 u^n_{i,j} + u^{n}{i-1, j} \\right ) + \\frac{\\Delta t}{\\Delta y^2} \\left ( u^n_{i,j+1} - 2u^n_{i,j} + u^n_{i,j-1} \\right ) \\right )\n", "$$\n", "\n", "The momentum in the v direction:\n", "\n", "$$v^{n+1}_{i,j} = v^{n}_{i,j} - u^{n}_{i,j} \\frac{\\Delta t}{\\Delta x} \\left ( v^n_{i,j} - v^n_{i-1,j} \\right ) - v^n_{i,j} \\frac{\\Delta t}{\\Delta y} \\left ( v^n_{i,j} - v^n_{i,j-1} \\right ) - \\frac{\\Delta t}{ \\rho 2 \\Delta y} \\left ( p^n_{i,j+1} - p^n_{i,j-1} \\right ) + \\nu \\left ( \\frac{\\Delta t}{\\Delta x ^2} \\left ( v^n_{i+1,j} - 2 v^n_{i,j} + v^{n}{i-1, j} \\right ) + \\frac{\\Delta t}{\\Delta y^2} \\left ( v^n_{i,j+1} - 2v^n_{i,j} + v^n_{i,j-1} \\right ) \\right )\n", "$$\n", "\n", "Last but not least, the Pressure-poisson equation:\n", "\n", "$$p^n_{i,j} = \\frac{\\left ( p^n_{i+1,j} + p^n_{i-1,j} \\right )\\Delta y^2 + \\left ( p^n_{i,j+1} + p^n_{i,j-1} \\right ) \\Delta x^2 }{2 \\left ( \\Delta x^2 + \\Delta y^2 \\right )} - \\frac{\\rho \\Delta x^2 \\Delta y^2}{2\\left (\\Delta x^2 + \\Delta y^2 \\right )} \\times \\left [ \\frac{1}{\\Delta t} \\left ( \\frac{u_{i+1, j} - u_{i-1,j}}{2 \\Delta x} + \\frac{v_{i, j+1} - v_{i,j-1}}{2 \\Delta y} \\right ) - \\frac{u_{i+1,j} - u_{i-1,j}}{2 \\Delta x} \\frac{u_{i+1,j} - u_{i-1,j}}{2 \\Delta x} - 2 \\frac{u_{i,j+1} - u_{i,j-1}}{2 \\Delta y} \\frac{v_{i+1,j} - v_{i-1,j}}{2 \\Delta x} - \\frac{v_{i,j+1} - v_{i,j-1}}{2 \\Delta y} \\frac{v_{i,j+1} - v_{i,j-1}}{2 \\Delta y} \\right ]\n", "$$\n", "\n", "## Initial and Boundary Conditions\n", "\n", "The initial conditions are that $u,v,p = 0$ everywhere and the boundary conditions are as follows:\n", "\n", "$u = 1 \\ \\text{at} \\ y = 2 \\ \\text{(\"the lid\")}$ \n", "\n", "$u, v = 0$ on the other boundaries\n", "\n", "$\\frac{\\partial p}{\\partial y} = 0 \\ \\text{at} \\ y = 0$\n", "\n", "$p = 0 \\ \\text{at} \\ y = 2$\n", "\n", "$\\frac{\\partial p}{\\partial x} = 0 \\ \\text{a} \\ x = 0,2$\n", "\n", "We now have all we need to begin the simulation! Let's start by importing all the libraries that we shall use and then declare some key functions and variables.\n", "\n", "## Libraries and Variable declarations\n", "\n", "### Lib import" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Adding inline command to make plots appear under comments\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from matplotlib import cm\n", "from mpl_toolkits.mplot3d import Axes3D\n", "%matplotlib notebook\n", "\n", "import logging\n", "logger = logging.getLogger('matplotlib')\n", "logger.setLevel(logging.INFO)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Variable Declarations" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "nx = 41\n", "ny = 41\n", "nt = 500\n", "nit = 50\n", "c = 1\n", "\n", "dx = 2 / (nx - 1) \n", "dy = 2 / (ny - 1) \n", "\n", "#Initializing arrays\n", "x = np.linspace(0, 2, nx)\n", "y = np.linspace(0, 2, ny)\n", "X,Y = np.meshgrid(x,y)\n", "\n", "rho = 1\n", "nu = .1\n", "dt = 0.001\n", "\n", "#Initializing tu,v and pressure arrays\n", "u = np.zeros((nx, ny))\n", "v = np.zeros((nx, ny))\n", "p = np.zeros((nx, ny))\n", "b = np.zeros((nx, ny))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Function Declarations\n", "\n", "Writing the pressure-Poisson equation that we have described without typos is pretty unlikely. Also the equation is large enough that it makes it somewhat unwieldy to read. To alliviate these issues we have split up the large equations and have created the function build_up_b found below that represents the contents of the square brackets, so that the entirety of the PPE is easier to manage" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def build_up_b(b,rho, dt, u , v, dx, dy):\n", " \n", " b[1:-1, 1:-1] = (rho * (1 / dt * \n", " ((u[1:-1, 2:] - u[1:-1, 0:-2]) / \n", " (2 * dx) + (v[2:, 1:-1] - v[0:-2, 1:-1]) / (2 * dy)) -\n", " ((u[1:-1, 2:] - u[1:-1, 0:-2]) / (2 * dx))**2 -\n", " 2 * ((u[2:, 1:-1] - u[0:-2, 1:-1]) / (2 * dy) *\n", " (v[1:-1, 2:] - v[1:-1, 0:-2]) / (2 * dx))-\n", " ((v[2:, 1:-1] - v[0:-2, 1:-1]) / (2 * dy))**2))\n", " \n", " return b" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This next function pressure_poisson is also defined to help segregate the different rounds of calculations. Note the presence of the pseudo-time variable nit. This sub iteration of the poisson portion of the calculation helps ensure our field stays divergent-free." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def pressure_poisson(p, dx, dy, b):\n", " pn = np.empty_like(p)\n", " pn = p.copy()\n", " \n", " for q in range(nit):\n", " pn = p.copy()\n", " p[1:-1, 1:-1] = (((pn[1:-1, 2:] + pn[1:-1, 0:-2]) * dy**2 + \n", " (pn[2:, 1:-1] + pn[0:-2, 1:-1]) * dx**2) /\n", " (2 * (dx**2 + dy**2)) -\n", " dx**2 * dy**2 / (2 * (dx**2 + dy**2)) * \n", " b[1:-1,1:-1])\n", "\n", " p[:, -1] = p[:, -2] ##dp/dy = 0 at x = 2\n", " p[0, :] = p[1, :] ##dp/dy = 0 at y = 0\n", " p[:, 0] = p[:, 1] ##dp/dx = 0 at x = 0\n", " p[-1, :] = 0 ##p = 0 at y = 2\n", " \n", " return p" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, the rest of the cavity flow equations are wrapped insite the function cavity flow allowing us to plot stuff easily from their results in different lengths of time." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "def cavity_flow(nt, u, v, dt, dx, dy, p, rho, nu):\n", " un = np.empty_like(u)\n", " vn = np.empty_like(v)\n", " b = np.zeros((ny, nx))\n", " \n", " for n in range(nt):\n", " un = u.copy()\n", " vn = v.copy()\n", " \n", " b = build_up_b(b, rho, dt, u, v, dx, dy)\n", " p = pressure_poisson(p, dx, dy, b)\n", " \n", " u[1:-1, 1:-1] = (un[1:-1, 1:-1]-\n", " un[1:-1, 1:-1] * dt / dx *\n", " (un[1:-1, 1:-1] - un[1:-1, 0:-2]) -\n", " vn[1:-1, 1:-1] * dt / dy *\n", " (un[1:-1, 1:-1] - un[0:-2, 1:-1]) -\n", " dt / (2 * rho * dx) * (p[1:-1, 2:] - p[1:-1, 0:-2]) +\n", " nu * (dt / dx**2 *\n", " (un[1:-1, 2:] - 2 * un[1:-1, 1:-1] + un[1:-1, 0:-2]) +\n", " dt / dy**2 *\n", " (un[2:, 1:-1] - 2 * un[1:-1, 1:-1] + un[0:-2, 1:-1])))\n", "\n", " v[1:-1,1:-1] = (vn[1:-1, 1:-1] -\n", " un[1:-1, 1:-1] * dt / dx *\n", " (vn[1:-1, 1:-1] - vn[1:-1, 0:-2]) -\n", " vn[1:-1, 1:-1] * dt / dy *\n", " (vn[1:-1, 1:-1] - vn[0:-2, 1:-1]) -\n", " dt / (2 * rho * dy) * (p[2:, 1:-1] - p[0:-2, 1:-1]) +\n", " nu * (dt / dx**2 *\n", " (vn[1:-1, 2:] - 2 * vn[1:-1, 1:-1] + vn[1:-1, 0:-2]) +\n", " dt / dy**2 *\n", " (vn[2:, 1:-1] - 2 * vn[1:-1, 1:-1] + vn[0:-2, 1:-1])))\n", "\n", " u[0, :] = 0\n", " u[:, 0] = 0\n", " u[:, -1] = 0\n", " u[-1, :] = 1 #set velocity on cavity lid equal to 1\n", " v[0, :] = 0\n", " v[-1, :]=0\n", " v[:, 0] = 0\n", " v[:, -1] = 0\n", " \n", " \n", " return u, v, p" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Solving cavity flow in 2D" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "u = np.zeros((ny, nx))\n", "v = np.zeros((ny, nx))\n", "p = np.zeros((ny, nx))\n", "b = np.zeros((ny, nx))\n", "nt = 100\n", "u, v, p = cavity_flow(nt, u, v, dt, dx, dy, p, rho, nu)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAJmCAYAAAAtnnPEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsnXeYHUeVt99zc5o8mqQJ0kiyspUlW3KQjY0NeNcYk8PCwmdYk5YFlsWAyeAlG0zwwgJeE4yxAQM2YGzjDM6WJVnBSjPSaHJOd27q+v6ovnfuRN3RREn1Pk8/3V1dXX1uT3dP//qcOiVKKQwGg8FgMBgMBoPBMHdwzLYBBoPBYDAYDAaDwWAYihFqBoPBYDAYDAaDwTDHMELNYDAYDAaDwWAwGOYYRqgZDAaDwWAwGAwGwxzDCDWDwWAwGAwGg8FgmGMYoWYwGAwGg8FgMBgMcwwj1AwGg8FgMBgMBoNhjmGEmsFgMBgMBoPBYDDMMYxQMxgMBoPBYDAYDIY5hhFqBoNhBCKyQESUiLwjg7q3iEjN9Ft18ojIdvv3bJ9tWwBE5LMiombbDsP0MZF7yGAwGAyG0TBCzWA4wxCRd9gvkBtn6fhXicifRaRVRKIiUi8ivxaRi2fYjjeLyIemoV01xtQ41ceaLCJSM8zGZhF5VESumm3b5ippoj85xUTksIjcKiLVU3SMrbaYz52K9tLafaWIfHYC9d871UJTRLwi8hX7vg+LyJMicmmG+y4VkW+JyN9FZMA+/wum0j6DwWCYS7hm2wCDwTAnqQX8QGyqGhQRAX4CvAN4Hvgm0AiUAlcBD4jINqXU36fqmGk8gv490bSyNwOrgBun4Xj3AbcOKwtPw3Gmgh3AN+zlMuA9wG9F5Fql1M2zZ9ac5zvA04AbWA+8G3iViKxWStVPsu2twGeAW4DOSbaVziuB9wGfzbD+e4FW246p4hbgtej77gD6efAnEblIKfXYCfY9F/ggsAfYC6ydQrsMBoNhzmGEmsFgGIFSSgEDU9zsR9AvZTcCH7aPkeRLIvI2ID7FxwRAKWUx9b9nPF5SSv18Bo83GY6n2yoitwIHgf8ARhVqtuj2KaXmqvgcFREJKKX6p6i5R5VSd9rLPxWRl9Di7e3ADVN0jNMKEdkMvBH4T6XU1+2yW4HdwFfRAnU8/gDkKqV6ROSjGKFmMBhOc0zoo8FgGMFY/WtE5NUistsOO9qdaYiciPiB64B9wEeHiTQAlFI/U0o9ZdfPF5Gvi8guEekVkW47XHJNWpvFIhIXkc+Mcryltv3vt9eH9FETkYeAVwFVaSFsNSISEpE+Efn2KG2Wi0hCRK7L5DdPFBFxicj1InJIRCK2PV8WEW9anW+KSJstlJJlN9n2fzCtrNguu3aidiilGtHeioVp7dWIyN0icpmIPIP2Dr4nbftbReRZO5StXUR+JSIVw37fEhH5jYg02tdPnV0vJ63OpSLymIh02n/3/SLy5bTtybDdBcPaHtEHUUQesq/RDSLyiIj0A+ltvUJ0mGefiPSIyD0isnKi5yuNv9nzheNVEpGL047bKSK/F5Hlads/C3zNXj2Sdn0uGKW55D7ni8gdInLUvnaO2SGC/rQ6t6C9aUPCc8dpswZYCVyYVv+h8X5bBrwWSAA/TBYopQaAHwPnDr9mhqOUaldK9UzSBoPBYDhlMB41g8GQESLycuA36LCj64AC4KdAXQa7nwfkAzcqpRIZ1K8GXg3cARwBitHC4GERWaGUqldKNYnIw8Drgc8N2/8N6BfCO8Zo/0tADlCO9hwB9CqlekXkd8AbROTDw2x9EyDALzKw3ycihcPKepRSkXH2+V+0N+ZOdCjiFvR5Xo4ODQV41LZ3JdoLAXA+YNnz76SVgQ75nBAi4gYqgLZhm5YCtwH/A/wI2G/X/yTwBeDX9m+YB3wAeERE1imlOkXEA9wLeIGb0CGv84ErgFygyxZJdwM7gU8DEWAxsG2ivyGNAuDPwK+AnwNNts1vA/7Ptum/gABwLfCYbXPNSRxrkT0fft5SiMgltj2H0eGHfvS5elxE1tvH/S1wFvp6+w906CFAyzjHfp39G35gH3+z3W65vQ30360MuBR4Wwa/50Pov1Uv+n6BwfPnQN/PmdCllEqGUK9De5u7h9V5yp6vBY5l2K7BYDCc/iilzGQmM51BEzr8UAEbx6mzwK7zjrSy54F6ICet7FK7Xs0JjvlBu96rM7TRCzhGsWkAuD6t7N12u6uG1X0ReCBtfbtdb3ta2d2j2Q283K57+bDyF4CHMrBdjTGln8vPYkeY2utr7Do/GtbW1+zyi+z1efb6tfZ6DlqQ/hpoTNvv2+gXdjmBrTVosVJoT2ejxZgCvjOsngIuG7Z/FTpc9RPDyleh+zd+wl5fa+//2nFs+ZBdpzCDa3fBsPLR/r4P2WXvGVY3BHQAPxxWXozuD/bDsY4/7Fj/ap+zUnTfryNowbzxBPdQE5CfVna2/Tf8v7Syj472O8exyT9K2cdteyrTyr6bft1l0O7u0a75tN+WybR9WHsPjNLeitH+ViewbULnyExmMpOZTsXJeNQMBsMJEZFS9Mv2fyulupLlSqn7RGQPEDxBE9n2PKOwJZXmeRIRJ9rr0ov24qxPq/pb4HtoD9puu/4q9IvfiPDFDLkfLUjfAvwlrc2zgWsybOP36JfidF4cp/4r7fk3h5V/A/1C+irgQaVUi4jsAy5Ae0+2oV/yvwa8TkSWKKUOoD1qjymlMhkC4OUM9dYkgJ+hPU3pHFFK3Tus7DXoEPpfD/MgNqITRVyEDjdMXjOXicif1Oj9xJJJM64UkZ8q3a9wskTQXt90LkVfT7cNszkBPGnbnAk/GbbeArxdKfXMaJXT7qGvKqXak+VKqZ0ich+D18CEUWl9BUUkiPbU/R3tAV4HHD3ZtsegEX0eM+GFtGU/+m8ynIG07QaDwWCwMULNYDBkQpU9PzDKtuHiaTSSoU5ZmRzMDq36d3TWuYWAM21zKrRMKdUqIg+gwx+vt4vfgPby/DaTYw1HKWWJyC+Aa2Uw+cRb0C+TY4VSDqdOKXX/BA5bhfZ+HBxmS6OIdDJ4/kGHPyZf6s8HnrGnduB8EWlCe+h+meGxnwQ+hfZO9AN7lVKjZRo8MkrZErQYGO26ADtrqFLqiIh8E/gw8BYReRSdGOLnacL/duD/ocMn/9v+u/4WuHMSou24Uio6rGyJPf/b8Mo2w8PyxuLz6L9FAh2euFcpNV4ynOTfcP8o2/aiRWxQKdWX4fFTiEilbc8/A3nDNueM3GNyKN2vbCLXd5Iw2ls+HF/adoPBYDDYGKFmMBhmgn32fDVwVwb1P4Hu9/QTtABrRwuZGxmZBOlX6Kx7a5VSO9Ci7QGlVCsnz63AfwKvFpHb0Kn87073Jk4TmXjAHgOuET1m1/no7INKRB6z1+vR5+jRDI/ZmqGoHO0l2mHb/Aq0YBlOb3JBKfURO6HFlWgv3neA60TkHKVUnVIqLCIXoD1arwIuR4vuv4nIy5XuLzjW+XGOUT6WzaD7aY02tl2mmUd3TVCMTwu2x/k+dJ+xr6DvtT50H8BbmIakYfYx52VYvT1NLDfYdg2n1J5PdlgDg8FgOK0wQs1gMGRCrT1fMsq2pRns/xi6X9CbROTL6sQJRV6LDvV7V3qh6AGAhwuwu9CJEt5gJ0M8i8zSo48pipRSu0XkebQnrQ6oRCdnmC5q0S/US9DeFUBnb0SH6dWm1U0KsEuBTcB/2+uPoBNi1KNf1J+dRnuTHEJ71I4opV46UWWl1C5gF/BFEdkKPA78G9qjh+05e8CePiwin0AnsrgI7cHpsJsaPhB0FZlzyJ43z7DQSv4NR7tflqEFc9KblolgT7Iafc2/XSmVGrtPRh9EeiLtjle/gtE9rKNxEbq/IOgx+y4SkWw1NKHIlrTtBoPBYLAx6fkNBsMJUUo1oF+i3j48nTq6P9iJ9u9Hf+1fDnxFZDC9fFpbbxU9zhJo74wM2/46Rvkab4fp3Yv2pL0RPah1Jl67PsYPC/sZ2vPzIXS45Z8zaPNk+ZM9/9Cw8g/b83uSBUqpI8BxdEZAN1rsgBZwi9Ai94kThOFNFb9F/60+M/xvKpoCezlbRIZ/GNyF9pJ67TqjZRFMvrgnw+WSIuuCtOM40UllMuVedHjjJ+wMl0MQkUw9RRNi2D2UEpp2/8eXM3gNgL42YaQgHY3kR4/0IRsEHTo8nD57eybtJuuPVjfZRy2TKb2P2p1o72fq7yV6+Il/BZ5USh1LK68UkWUZ2mkwGAynJcajZjCcubxTRC4fpXysJBzXoQXDYyLyE3So1QfQSTJCGRzva+i08h9Bf1W/E/3CV4JOxb+ZwQFv7wY+LSI/RSdFWI32bh0eo+3b0enX3wvcO0Yfq+E8i/bCfRN4Gp2e/49p23+JHoT3KuAHajDF+JSjlHpBRP4PeLf9Ev0w+ny8HbhLKfXgsF0eRYvSXUqppJfpOfSL9Vlk3j9tsnYfEpFPoT2YC0TkLnTCmIXo8/ZD4OvAxcB3ReQO4CX0/563oUXGb+zmPm2HPt6D9j4Vof+edWiPLEqpF0XkCeAGW9i1o89Dxv/LlFLdoseX+xnwnIj8Cp0IpBIdcvk48P6TOyMn5D/Rgv8fIvJjBtPzd6EzgSZJekO/ZNsXA/44Rv+1fWgB+3URmY8WoVczsq9aervfEZF7gYRS6lfj2Pssuq/mp9D9J5uVUn872T5qSqkn7WvgBhEpstt8OzqL5LuGVb8VuJChAjSHQc92ctiG99v9ODuVUsMT+BgMBsOpzWynnTSTmcw0sxODKc7HmsoZJbW4ve9r0OOoDaAF2lXofjA1Ezj+1WivRhv6BbQe3c/swrQ6XvQLfj06wcVjwDnoEKqHRmkzy66ngLeMsn07I1OFB9FjonUwxhADaNGggHMn8PsU8N0T1Pksw9Kko8XGp9FiNIrO1PdlwDvK/u+1j/P9YeX32eUXZ2hrDbrv3aTq2dfFo+g+ab3o8M3vAmfZ2xeiBzU+iO431oZO5vGytDYuRntCj6MzAx5HC84lw45Vbf/OAbTQ/xJwySh/34eA3ePYvB2d1bPTtukgOkPkhhOci+S1NOZQA3a9BYx+D73Mvp770QLtD8DyUfb/FFqkJvvmLRjnWMvtc9KDFp0/RGcpHT48gBPdN7AZ7c1UJ/gNxeiPJt12WyPuvYlO6MQhX0P3VxtAj6F22Sj1HhrlHkme09GmEfevmcxkJjOd6pMoNdGQdYPBYDgzsAe/Xq2UWjzbthgMBoPBYDizMH3UDAaDYRTsca9ehQ6RMxgMBoPBYJhRTB81g8FgSENEFqL7v/w/dGjm/8yuRQaDwWAwGM5EjEfNYDAYhnIh2ou2EJ3yfLSxtgwGg8FgMBimlVkVaiJynYg8LSI9ItIsIneJyAnHZBKR14nIPhEZEJFdIvLKYdtFRD4vIg0iEhaR+0VktPGfDAaDYQhKqVuUUqKUqlJK3Tnb9hgMBoPBYJhaRORaEdkpIt329A8RecU49a8RkUdFpMOe7k8bUmjamG2P2oXA99DZ3C5Fjwn0VxEJjrWDPUjqbegMYuvQWcLusseiSfIx4IPogVS3oFNW3ysivun4EQaDwWAwGAwGg+GUoQ74OLAB2IjORPx7EVk5Rv3taP1xEXAucAytWUaM7zqVzKmsj/ZAo83oNN2PjFHndiColLoirewJYIdS6t/sgT7rgW8opb5ub88BmtBpiscbM8ZgMBgMBoPBYDCcYYhIO/CfSqkfZ1DXiR7e5/1KqVuny6a5lkwkx563j1PnXOCbw8ruRQ+YC7pfSQlpg3EqpbpE5El73xFCTUS86HGb0kkOpmowGAwGg8FgMMwlsoB6NZc8LmNgR7R5ZunwEaVUZLwKtuh6HXp81X9k2G4AHQk4rVphzgg1EXEANwKPK6V2j1O1BO0dS6fJLidtPl6d4VwHfCZzaw0Gg8FgMBgMhlmlHDg+20aMh4j4ioqzws1NPTNxuF4gNKzsc8BnR6ssIqvRwsxn73uVUmpPhsf6CjqC7/4TVZwMc0aoofuqrQLOm4Vj38BQL10WUPeer3wDr88/C+YM0tpwHCuemFUbALrb24hHY7NtBuGeHmLR6GybQXQgTCwy7geaGSEWjRCb4b9LLBbh6N7B55jH5yOYk4s/K4QvEEKQGbHDSiQ48uLO1LrL4yUrLw9/MIgvFEJmqAuuQnFk9y6Upe9Tp8tNdn4e3lCIQCiE4JwhO+Dovj3Eo/q6dDidZOXm4wuFCGZnoT8YzgzHD73EQF8fAMH1ayl8w2ux2ttxPL8Th3Nmrg+AjsZmwt365UAcgj8rC4/PhzcYxOmauS7aXS3t9HV0pNb92SE8fj++QBCne+b+Lr2dnXQ3t6XWfaEQ3qAfbyCAyz1zrwPh3j466geTqXqDfnzBIJ5AALfHBTP0DImGB2g9NviO6/H78QYDeIMBPF73jNmRiMVpOlKbWnd7PXizgvj8ATw+L8hMPVMVjYcOp9ZdHg++UAhPwIvP758xO1CKxsO1WAn7mep24cvKwuv3aTscM/cMaa45Rtx+53A4nfiybTsCAWQG7WirqyfSH9Z2OBz4gkE6drwAMCPqZ5J4mpt6eOHFT5KVNX2pInp6Bliz8kshtHhNPy/jvaztB9aiI/peC/yfiFx4IrEmIh8H3ghsV0oNTM7y8ZkTQk1EvgtcAVyglKo7QfVGoHhYWbFdTtq8GGgYVmfHaA3aLtHUH1Lsh5EKlWL5Axn8gtFxOR0Eg15CAQ9+nwfHSdzUi9esPenjGwzTwe++/x38wSCrtp7HqnO3UVBaNit23H/bz3G4HKw6dxurzt1GUWVV6t6dSZ66988kYlFWnbuNleduY/7iJbNix96nn+T3N39Pn4+t51G5bDkOx8znizp+6CC3fO56tr7qn1m59Txq87PY1dHM+k3rOf+NV82YHZ3NLdz8ng+xastGVlywlcUb1+HyzHzkzUBfP995x7UsOXsFKy/YxpItG/D6Z/4DYCIe56Z3vo/KZYtZecE2lp67GX/W8A/P049Sih++/6MUV1ex4vytLD/vHEJ5uTNuB8AvP/VFcueXsuLCraw4bys5RYWzYsfvv/FdfL29rLxgKysu2ErB/Nl5pv7tll/gbG1hxQVbWXnBNooWVM7Ks+zpP/6Fx+uOs/KCC1lxwVbKzlo8K3bs/8dT/OFb32flReex8oKtVKw8uWeqUoqoitGXCNOfGKA/ESam4hnv39PaznP33k9RVSVFC6vILy0mFo7ws8vfO2FbZpOsLB9Z2TOS069HKdWdSUWlVBQ4aK8+KyKbgH8H3jPWPiLyUXQSkkuUUjvHqjdVzGoyETvxx03AVWhVeiCDfW4HAkqpf0or+zuwc1gyka8rpb5hb89GJynJKJmIXb/r7Hd+Gadnai4qEQj6PQSDXoIBLd70sodQwEsw6MEzg18007Esi71P/gOXx8vSDRtnxQbDqUMsEsHtHd6l09gx28xVO27d/zxtA2FeuWIJiwrzZ9QOl8czKy946cSjURwu16yI5nQSsTgIOF2z+33WsiysRAKX2z2rdsDcvWeMHaeWHQmVoD8xMCjErHBquS8Rpt8aIKGmNjIq0Rfhudd+EyAnU1EyWyTfqQ8f/cK0CrWe7gGqK6+HSZwTEfkbcFQp9Y4xtn8M+CRwmVLqiZO1dSLMtkfte8CbgSuBHhFJ9iHrUkqFAUTkVuC4Uuo6e9u3gYdF5CPAPWjX40bg3QBKKSUiNwKfEpEDwBHgC2jxdtdEjCsvzMHtPfkvn9F4gr6BKH0DUSyl6O2P0tsfZSxPtcft1CIu6CFoi7eAz4PX68LndeH1uPF6XHg8zil5+Yj09/PkvX/m4d/8GofTycd+dMuk2zSc/syFf6Bg7BjOXLQjHI/RNqDDdcqys2bNjtlkNrx4o+GcpQ+Bw3E4HLMuWpPMlWvE2DGUuWCHpSziLuiP9xK1okSsGBErSlTFCKcJsP5EmAErs+4YAaeHkMtLyO3F45jc/Rh1DvDcpFowiMgNwJ+Bo+guT29Gp+C/zN4+RH+IyH8Bn7fr1aRpll6lVO902TnbT+5r7flDw8r/FbjFXq4ErOQGpdTfReTNwBeBLwMHgFcPS0DyVXTmlh8CucBjwOUTjSO9dO0S/IExh3TLGEspwpEYPeEIvQNRegci9IaHziOxBNFYgmhXPx1d/eO2JwIetwuv14XXMzgfFHNOvF53apvP68bvc6dCL9ubGnnkt3fyj7v/QLivFxHh32+6GfcceaEwGAynB/V9+qNUnt+H3zP7HhSDwXDmoZQioqL0JwaIWFEtuGzhFVGxlBCLWjEiSm+bSGgigEschNw+slxeW4z5CLm8ZLm9hFx62Wl/oFAqiiI8qd8U7unn9km1YACKgFuBUqAL2In2lN1nbx+iP9CaxQPcOaydMZOVTAWzKtSUUid0Cymlto9Sdgdwxzj7KODT9nTS3PO9x3C5Tt5N6/G5KSjPobA8h8LyXIoLQ5SM4QnT3rcIPeGoFnO2qOuPRInE4gxE40RicWIJC6UgEo0TiWb+IBEBt1OI9LTT1VhHrDdM1pLN+Pq6WLFhLQVVi4nHE7hcM9ex3WAwnN4c79PRJ2U52bNsicFgOB1J9v9K9v3SXq6BVAhictka8r6dOV6HC5/Tjdfpwudw43O68Ls8ZLl8hNxeW4z58DpcY0Y6WaqHhFVDNH6chKrDUi2T+ckADMQnJiQNI1FKvesE27cPW18wnfaMxWx71OY08WgCrJOPK45HE/TvGeDYHj1SgNvromC+Fm4F5bnkl2bhtIWRx+XEEwqQFxo/eUnCslKibSAWHyLixloPR2MoBdG4Qvx55C7MG9JmP/Dbe17QdnicBPwegn4PgYA9t5f9Pg8Bvxuf131SiVEMBsOZxaBQm9mwR4PBcOqT9ISFExHCYwiwifT/8jvdBFweW3DZ4supxZfXLvM5XXid9naHC8cEu5kopbBUKwlVR1wdJ2EdRzGyu5TgnFSGZPMGduZghNo4vPK1G/D7Tj70sa9ngObGLpobu2ht6iYWidN4uI3Gwzo9sgjklw0Kt8L5OXj844cHOR0Ogj4PQV/mYYrJ0MuamiPc+bMfEcOBO5iDO5hD9epNiNtH70CUeMIiGk0QjYbp7BrbLS9CKpzS7/cQ8Lnx+90pIZcq83lwzWAKbIPBMHeIJhI09uuwfSPUDAZDkqQXLCnAUnMrQjgxOB+wIlhklvDO53TrkEN7CroHl0NuL0GXF6dM/fuIUjESqpGELcri6jijZYP3OwsIuYoJuosJuYpwO04+ozhAn7sfeGBSbRhODYxQG4cjD+7C6z750Edflp+qVZWsXl+FUtDR1kuLLdyaG7sZCEdpO95F2/EuePIoANmFwUHhVp5DINs36cQhDhFq9jzHj752PQPhfvIKi2ltbeKci17BGy/eAtgPzniC/kiUvoFYKuyy106G0h+J0h+JEY5o71x4IEZ4IAad4/en87idQ0RcwO8hGPAMmZ/s0AUGg2Hu0tCv+6eFvB6yfbOfHMBgMEw/llIMpHm/+mzv1xBBlohMKBTR53QTdHpGiK+QSwuwkMuLyzH93TaUUij6tDCz6rQ4Uw0wTEw6cBF0FRF0FxFyFRNwzcMpbjyqizwOkqeexGNNbvizbsuEPp4pGKE2Dnv/8hwumXwH+GBhNvNXV1G2uorFyytYtrocpRS9tsetxRZu3Z39dLf20d3ax+Ed9QB4A25C+QGy8gKE8vyE8gKE8v2EcgO4PJk9mB7602+5/X+/hbIszr/sSi6/+l/4yseu4XXv/GCqjojgdbvwul3kjTO0jqUUA9EY/ZHkFB1zOWEpnSAllqCre+w8LiLg97lTIZZBv5dAwK3nfncqBNP0nzMYTh2SYY/zjTfNYDgtUEoxYEXTQg/DqfDD5HrYiqAy9YI5XARcXoIuDwGXh2By2annQZcHv8szLZ6w8VBqAEt1kFDtWKoDiw49Vx3AyAyPLvETchcTdGlh5nfmI+JAVIIs6shTD5OvDhCkeQqtnNp0/4a5ixFq47D0nKV4XCf3JVgpRVdLF42HGulr7ealB3fx0oO7EIdQsrycstULKFtdRfWSYhadpTN8DoSjtDR1p8Rba0sPkf4Ykf4u2uq6RhzDF/IQyguQlZ8m4vL8hPL8OF1OrESCO396E3+7+w5EhNe+8wO87J/egIjwno9/mWDWxDv4O0QIeD0EvOOHXg566IYKuORwBX2RwblS0B+O0R+OQXvfmG16PM6UiEvvR5funfN6xu7QazAYZo76ZP+0GU7LbzAYJo6lFBErkhJd4SECTPcLy9QT5kC00ErLeBhMF2IuLwGnB9csDtOgVGyECLNsYXaijIw+Rw5BdzFBVzEhVzEeRyj13uFWveSxkzzrAHkcwpUWBqkUxJ3FxBwVJByTG1Oyxx0FDk+qDcOpgRFq47DhlRvw+yYXRxyLxmg81Mjxfcc5vv84vR29NLx4jIYXj/Hsrx4lWJhN1aYlrHn1Fnx+DxULCqlYUAhAPJ6gq6Ofnq4w3d1herrC9HT1090VJhqJM9AbZaA3SuuxzhHH9Wd56Oyqp+54K15fkHd++HrWbD4/tX3RstWT+l0nYqiHbuyx6JL959LDLLWAGyrqBvvP9dMxUrOmcDqFgM/2zAU8LF9SQlGheVE0GGaShGVR32f6pxkMc5VjA43UhutTSTom4gkbGYboGxKS6Hd6JpyEY7pRKk4k8QRR6x8Z1XeJH58zB68zG68jW8+dOXgdIRwy8tW5SO2gVD1FFg1Dyi28xJwVxByVxJzlKJmaAZ/jzgmNNmU4hTFCbZpxe9xULK+gYnkFSim6W7qp21fHrgd3EemP0NfazZ4/P0vlhkUUVpcM2dflclIwL4uCeSNfdCIDMXq6w3R3aQHX2d7H8aNtWJZ+0IZ7ongdhSyquJh/fscbWL5xeoXZyeIQSSVHmZczep2kd65vIJrqO6dFXIy+SJTO3jDdYf3VKpFQ9PRF6OnT65FInJdvXz5TP8dgMADtkTAJZeF1OckLjP2hxmAwzA7Pde+h3xr5si9AoTcrrQ+YR3vF7PXALIQiTgWWah1VpAkOcj0L8aUEmRZnzgl2e6lWf0l5zxReJDmCAAAgAElEQVQOBlxnE3UuICGFcAqeL8PcwVw9M0xPWw+Hdxwm0q9vaIfHxdqrt1KwsHhC7Xh9bvwBD/FYgvbWXurr2lMiDcCyEvRFGlh23nyWbVg1pb9hpkl65/KzAlTOy2VRaQHFuVl4PS4GovGUSEsnJ9vHssXFnLNh4SxYbDCc2fTE9D2Z7fOaUGSDYQ6yLXcdC3zz8TuGdu9QQHcsjAB5ngDVoXkszppHqT+HLLfvlBRpAA4pxuvcPqJcYdEbbyBmhXGKB58zd8IiDWC/XE0YPfSRYOFJHMZpdWMS6Rsmi/GozQBKKRoONrDjrztoOaoHOnS4nay4bD3LL1uHN5iZK9yyLFoauzl+rJ36o+10dgztz+X0QN3x52lu30vZ4iL+9T8/hc8/udDNuUA8YdHU2UN9ew/17d00dfaghkVoZAW9lBbnUFKUTWlxNgF/5sMXGAyGqaUvFgMg6DH3ocEwFyn05FHoydORPok+miKtNEZbaYq2E7HiHO5t5XBvKwBZLi/lwXwqAnnMD+Tic04+ydpMIyJ4nZvwOjdhqT7i1hHi1kHiqoaY1U9rZB+tkX04cJHtnk+2p4IcdwUuR2bvZx2yhOeopoRnqVCP4FHdhGJ/Ix5/gX73FuLO8mn+hYbTFSPUppnGw43s+OsOmo7oQa/F6WD5pWtZ8YoN+LJOHBIU7o9Sf6yd40fbaKjrIBYbmumnYH4OJdX5HKl9ij/c/h0ALrnyTbzmX67F4Tw1syTGExbNXb3Ut3VT395N4yjCLBjwaFFWlE1pcQ6h4LCvgkrx/EN/Iys3j4KyMnIL552y58NgONXojenMaEHPqfdCZzCcSYgIOa4QOa4QZwUXYCmL9lgXjdE2miKttMTa6YlH2NvVwN4u3f+qyJtFeTCPikAexf7sU87L5pAgHucqPM5VKBUnro5q0WYdwqKXzlgtnbFaAIKuYnLcFeR4KvE5x+ifYaPESQObaWIt8/kH5dajuGgjO/onYo759Ls3k3DMm4mfaDiNMEJtHA4/f/ikx1FTluLIziM0HNAPNnEIZ118NqtetRF/zviDaMfjCWoPtXBwXwMtTUNHtPf43ZRUF1BaXUDxwnycbuGXN3+Nx++/G4fDyZve8xHOv+zKk7J5tkhYFk2dvdS3d9PQ3k1Dx0hh5ve5KS3OtsVZDlmh8UOqRIRYJMJN//F+AJwuF/klpRSUllE4fz6FpWUUlM1n3vxyShdWm/Asg2EKSQm1E2SHNRgMcwuHOFLetlWhxcStOM2xdhptj1tXvJfmSA/NkR6eaz+KSxzMD+RSHtDCLdcTOKX+n4q4cEs1bkc1Siks1UTMOkhcHcJSzfTFm+iLN1EffgavI5scTwW5ngUEnPPG/J2WeDjGhTQ4NlKhHqVUPYXbOk5O5HdEnNWEXRuxHLkz/EsNpypGqI3DE797YvLjqImw5MKVrLpiE8H88bOftbf2cnBfA0cONA3xnOWVZFGyqIDS6kLySrIQe3Dovt5uvvflT7F/17P4AyGu+dgXWLF28+TsnQESlkVzZ++QUMaENVSZ+X1uSou0MCspyiY768QDfyul6G5vo6m2hsbaWppqa3B7PMSiURLxOC11x2ipOwZPg8PhZOOll3Hpm996Sv1TMRhOBfpSHjUj1AyGUxmXw0WZt4gybxEA/YkBGqOtKeEWsaLU9rVT29cOQNDlpSKQR3kgj/JALn7XqfMMEBGcUoLTUQKch6W6iVuHiFkHSahaIlY3zQMv0jzwIj5nHoXepeR5qnE5Rh/GKS5Bjsjl1KtzqFIPMk/txJs4jCd+mLizlMmkiVBRM+D1mYIRauNQsrICj/PkxlEDCBVms/yy9WQVje0uj0Xj1Bxq5sC+RtpbBkeqD+b4WLCmjAWrSvFnjbShpaGO737xP2k6fpTC4jLe+6mvUlYxNxNnRGJxWrv7Ul6zpo5e4tbQsVj8PndKlJWeQJhZiQRtDQ00Hq2hqbaGpqNalDXV1hK2U4KPhdPt5pxXXMElb3oLBaVlU/YbDQbDIH1xE/poMJyOBJw+qv3lVPvLUUrRGe+hMdpKQ6SF5mg7ffEI+7ob2dfdCEChN0RFII/SQA7FvuxTqn+bQ7LxONfhca5DqShxdYS4dYCYtZ+BRAd1/U9Q1/8U+Z5FFPrOGtPLFpFcXpKrqFNbWaAeIF8O4LYaRjli5rgtM+D1mYIRauNw4ftehd8/fpjiyaCUoq2lh4P7Gjh0oAmVsL1JAuVLi1i4poyiqrwxhcrBPS/wgxuuo6+ni+qlq/i36/6b7Ny8KbfzZIjFE7R299HS3UdLl566+kemAPZ53ZQUZaUSgOSMIsxikQjNdcdsD9mgIGs+doy4/cV+OHnFxRRXVlFcuYCSqgW88OjD7Hv6SdxeL9v+6dVc/IY3kzvPxIgbDNNJMvQxZEIfDYbTFhEhz51Nnjub5cFq4ipBS3QwTLIz3kNrpJfWSC/PdxwDINftp9ifTYkvm2J/Nnme4Jwbc200RDy4ZSlux1J86hJi1h6i1gtYqpX26AHaowdSXrZ8zyKcjpHPvn4pZo+8mZCqx0/bpOzplQhw46TaMJwaGKE2g0QjcY4cbOLA3gY62wczNobyA1SvKaNqVQnewPgvNk8+dC8/++4NxOMxNp5/CW//wCdwe07e6zcZ4gmLtp5BQdbS3UdHb3jUuqGgl8L8YKqPWU72oDDr7+mhZs/uVLhiU20NjUdraG9oQA3vrAY4nE4txqoWUFKlRVlx1QKKKyrxBgazXCqlePSu33DpW/6F7a99PVl5+dNzIgwGQ4qEsuiPm6yPhjMHpdSshtDX7HwRcQgVy5fOeNKsl558hkPP7mDJ5g0sOHslpd55lHr1x9BwIkKTHSbZGuugJ9FPZyxMZyzM/m6dYM3tcFLky6LYNyjeTuR162hqo7eji/KlC2flvIv48DjX43asI6HqiVkvELP2juJlW0rAWTjCxl4po5fJRfT0Sf+k9jecOhihNs0opWhp6ubg3gaOHGpG2X2x9ENVe88Ky3Mz6n91969+zD23/xSAV73hX7nije+asYdUwrJo7wnT0tWb8pa19Yz+oAj4PRTmBynMD1GYH6QgP4jX46KrtZWm2hp27npsMGyxtpbu9tG/LHl8fluQVVFSZYuxyirmzS/H6TrxpZuIx/ngt79HICt7Ur/dYDBkTr+dmt8hgt9t/sUYppdje/YTys8lr2RiY5FOJff/7600HDzMWedsYtnWzeQWF83o8QM5WXz16n/BGwywZNN6zjpnE0vP2URB+fSH91evO5vbP/cV7vvR/+Hx+ahev4YlWzZw1paNlC5ZxAL/fBb45wMQsaK0Rjtpi3XQGuukLdZJzEpwvL+T4/2dqTZzhnnd8od53UK5WXzp6g8Rj8VZsXUtK7atY8W2deSXzmy0jIjgkvm4HPPxqYuJWi8Ss17AUm0pL5vfmU+B96wxvWwGw4mQ0TwWZzoikg10ffkLd+Dzndw4ZAporu/i4L4GujoHBU12YZDqtWVUrizB4xv8atTW3EhBUcmobcWiEW696QaefvQ+XC43b3v/dWzZftlJ2ZWR7UrRG47S1NVLU2cvzZ09tHb3Y41yrfi8rpQgK8wPkZvtJdzVNhiuWFtL01EdtjjQ1zfK0SCUm5sSYTpkUXvLcucV4XCcWml/p4NwXx8P3PYzlm7cQvWq1RmJVINhtmjo6+FXB3eR5fXwji3rZtuc05Ke9g6y8mc33N2yLO762ncoXVLN8vPOJbdodkLKa3e9yLf/5d8orl7A8m3nsGzbFqrXnY1rGr25SikS8TiJWIxEPEFXcwvfess1xKM65Le4egHLzt3M0q2bqV6/Fo9vaNRLIh4nHosRj8aIR6LEY1G9HI3aU0xvj9jrsRixSJRELJbaHrPrJuzlXQ8+Qk9r+5Dj5M8vZdGGdSxcu5qKFctwedzEIhHikSixSISYPY9Ho8QGIsSi0SHbU/Xs7fFo+n5R4tEIsYEo3a1tRMMjo2mCuTks2byBZdu2sOEVL8eZ9uEmEY8Ti0RoH+ikNd5Je6KbLvrod4zs1uCwFP5+ha87jrdtAGdbPy8+9Az7n9w1pF7pogpWbF3HivPWsWzL2fizJtd1JdzTN+E2lFIk1PGUl02/DQI4xvWyTZS+nn5eufjdADlKqe4T1Z9Nku/Uh49+gazsk8ukngk93QNUV14Pp8A5mQhGqI1C8qLavumTuFyTv6jEKVStKGHhmjLyy7JHvUG//+X/4t8+fsMIYdLd2cHNN3ycw/t3E8zK4drrbmDxijWTtimdWDxBS1cfTV29NHdqcRaOxkbU83icFOZpUZab7UX1t9PZcCwtmUcNzcfrSMRG7guQX1yiBVnSQ2b3IwvmjD82iQF++dUbeOJPf8QfDLF002ZWnrOV5ZvPITvfhHMa5hYHOtu4u3Y/JVkhXrdu5aTbm+2wsiSJeJwnf3c3S8/dPCOeivG4+9s3s+fRv7Pigq2svGAbVatXzGjIm2VZWIkEf7/z99z11W8DULJoIUu2bGTxxnWULl4ICFYiMWRKJBKohJVatmJxYtEYsWgEKyk+YrGUiEnYy4nkciJOImZPcT1ZsTgHnn5uiFBwulzkzy8lv6yEvJJinB4PCVvsxKMR4pGYFkep48SJx6Kpdq14gkRcizArkcCKJ1K/2bIsRowfcwIcLhcutwtlKWLR6IT3P1XxBgN4/X6cbheJeEKLzIg+71Zi9GQYziw/oWVlBJeVEVo2n9CyMpyBoULXisbp3VNH986j9LxQQ99LDaj4YIKy4gXz2fLP27nsna+ZlFh7/Df38ecf3cGai89h3cvOoXrtxEJLlQprL1tiJ1ZanzS/M58s9+SeIf09Ef7f2TfDKSBKjFCbHEaojULyorr8os/jnoRQ82d5qVpdSuWKYtzesb0gSik+8PqLedv7P86WCwc9ZY11tdz0+Y/Q1txA8fxK3v+przGvdPKj2yulqGnu4FhrF82dvWOGMBbmB5lXkMW8ghAN+56n5fA+7R2rraW9cfT+Y06Xi3nlFRRXDg1XLKqoxOs/8QDfJ+Lw7l10NjehlIVlKZSyUKPMrSHrFkqp1Nwatj50PtguCpRlDWtLz3s7Oxno7wMciAMkNRcQQQBlzxEBpUaxIRPb9by/p4f2xpFZokqrF1G6sJrqVaspW7QYr8+P2+vF7fHg9nj1steL0+Wa1pfd9qZGjh88gMvtRilFICsbl9uN2+PB5fHi8qQtu93T5int6WjnyO5dON1uXC536gXJ6XLjcrtxulz23I3T5RxS7nA6p+wchfv6eOnZp3E4nanJmVp24XQ6EYcjrSy9jmtY/cFt4nBMyMZ4LMbuvz+W2k8cDhz2XFJzB+IQRBw4HAIIjbU1lFQtwOV2p9WTMdoZ3F8cwr7+bp7sbqUyK8jFVfNT9fc++neU0mHfgoBD9Dax75nk/QL6nrHZ/fBjdDW1ULV6BaWLq3G6h/Zfyfh82PWO7dlHPBLV96P9DNP3pgJlDSlL3bf2cs3OF2k6XIMvK0RucRF5JUX4s7P1i/ewuoPLdvvY65Ze7m3vJB6L6meCNVhfpZ4/Kq3cfkYln0mJBL3tHUPOgcvjweXxpLwWeh9df3TbAKWwEgnbPlK/Awb9AGeKqDgtSd5fSdKu+dnE4XLZz2KX/Yx243A69bPabT+3XXrZ6XHhLsnGVZmHlGfhXlSIIzTMQzkQZeBAE8Eei8W+fErKSgafLUmGLA6uDK0jQxYTiQTff9+XCPfoaKBQfg5rtm9i9fbNrL5wI/5QZhFXg162HcSsfaTdXSfNQG+cj296GE4BUWKE2uQwQm0UkhfVt375V/yBqc/6OJz+3h4+/NbLKSwu47Pf/SUu+0Wko7WZ//7YNZTMr+Ld//VFgqGp6WvV1NnDXU/sGVIWDHiYVxDSwqwwREFuEJdr8GX6a+9+J8de2pda9/oDFFdW2h6yBZTYyT0Ky+ZPa2jejz/9CV545KFpa/9UQ0Qy+scrDocWbh5PSrxpQZd5mcfrxZVW7rGFoMvjYe/TT3LP//5PxnY7XS79Yun22KLSg8vtxmUf2+Vx62PZwi69rsuuO1wEuj0emmpr+cutPz3pc6kFnAun24XL5U6b2+WuwfKR4s9l7+tmoK+PZ+6796TsOBEOh2NcMZe+rBAaaw5Pix1jkffKy8m97BK6H32ctjt/N6PHNpw6pIS/LfKTXrfpwOly4XA5U/dn6p51u1LPmuRzpbOpmZbaY1NzYBHcXt22x+fVzzff4PPV5U0+Tz12PS9un67ffKSW3Q89NjV2pMwRXLY9+rlp2+Dx4Ex+TPPaz1q7Xm9nJ/see2JK7ZgsvvJ8stZUkb2miqyzq3DnDAqmpj88w9Ef3DftNjicTpZvXcNFb76CdZeem/EHI0uFiVt7sVTXpI7/yK/v51fXPwungCgxQm1ymM4uc4CuDu0Sb22q57H7/sD2V14NQF5hER/90vfIKyxOibepoCArSHlBDnVt+kER8HvYtqma+aW5Y+5zwVVXM9DfZ3vIFpA7b/TxQqabs9ZvwB/KwpH2BX/43CGOUT0AmXgURBhS5hjjGId37qT+yCEdIpNIYCXiJBIJO2xmMCwnkUgL0ZmGl5BMP7QoyyI6ECY6MHpWzukm/eumQn+pTPT3E2EOZK5Ks0uHQ0Vhdk5TRliWhWVFYfQI41lHJcf3OcP6l4oIvqwQOfPm4fS4bO+6vc1eHiwTultaiUdjYHvik55FkEHvvO19FEeyXFLegNZjdUOO73C5mFdZTkn1AkoWV+PPzhr00LocOJ0uHG5XSswnxcu+x5+g/XhDyrPh8rhxejy47Q8kTo879dI+KHB0vbo9+3noZ78CIJCbw6L1a1iyeSML167C4/fbHzCcgx863K6U93o4z9/7AIeeeR5nSkTYH2zcSfHgHiqq7OX2+gZ+/fmvUrl6Bcu2bmHFeeeQW1Jsf+jx4HBNzFO+9/EnefGhR4cIqZSg8nhw+9I/WOn5oWd3EOnvZ8X5WykoL9PbfZOLZKjZ+SJZBQW2sHIPfqTyuFMfyJLnJTYwQCAnB39WcPB8pZ9H2/aJnguAhoOHB/tDpv2/GVxUQxxEivQ6QzaMUT5G/WH09/RQv/8g0XCYgbp2BuraabnnefIvWM7Cj1yBw+Mi3h2m/cE9eAO+wcnvw+PXyx6/b0hSEsVYdgwW73tyJ5G+kf8QrESCUG42q7dvmtA5dYgfj3N9xvXHIifHATw76XYMcx/jURuFmfao7dv5LDd++oMAZOfm84Wbf43XN/kwwfFQSnGosZ1/7KulP6Lf+BZU5LN5XRXBwOyk+z/dsSzL7hMRSesMHtEdxaNaIKT6aESjxOx6kXA/D//mDrLz8ymcX05WXj5WIp7qTK7rRoe0k+qAHo2kOp9HI5FUqNXpjMORJtRTL782Svc1subQYKFJG0f7u3j9AbyBAB6vF8uySMRjxGNxPY9GicfjMx6a5nS5KamqYvG69fiDodRHiqRHpLOsiO7FC/E2NpK1e7feFh/ZVym9LLmuLGuwrbTtnU3NI+xwOJ0sWLOKJVs2sHTLJuZVVQwJY7aSocbpYcSjhUGPCD8eFoqcts/+J57mwVt+mbKhsKKc5eefy4rzz2XR+jXTmsAinWf/9Fd+8ckvkFdSzIoLt7Hi/K0s3rgWt3fmnt1KKW779JfJKylm1fbzKF+xdFY+3rXUHiOUn4s/K2vGj22YHeKxGK319ewcOEhbTgQAq66Tppv/RuOuw/oDyCiICPll8yiqLKOoqpSiqrR5ZRnewFBvT/3Bo1x/+Xtw+zys3LaeNRdv5uyLNrPviZ3cct2NRAciLN2ymmu/80myC8f+0D0dhHv6eN/aq+EU8B4Zj9rkMEJtFGZaqD318F/5ybc+l1q/8i3v5hWve/u0HxcgGo/zzIHj7KptBMDhENafXcHKs0pMxsU5gpVITLhv0onaS4m6dKEYTReKQ8tTIjIaGyEuhwpFLQz3Pf3UiOP6Q1ksXLWaqmXLKF+8lEB2VirLWHKKRtMzi41eFo1EUscZq+xkn2sut5tzr7iSzZe/ElFq9POUOhdpvz1dKI9x7mLRKIno4HK6IB/P25pfXMLyLedy6VveRn7xyMywlu3Jjaey0A2KOV0es5MkpIm8WGzQ6xuLperoeYzmumM8+ed7RtixbPMWlm/awpJ1GwiM8WK8q62J++sOsTA/lytWLT2pv0M6dfte4ptvehcAeaUlLN+2hWVbt7B48wZ8wZPLynsyKKW46R3vxRPws/y8c1hx3rnMq6qYseOns+O+BymqqqB0yaI5kWjFYJhJuuK9PN75PF3xHgDW51eyqWABDtEJbDqa2miuqaf5aAPNtfV6spcj/QNjtpszL88Wb2UUVZYy0Bcmt7iAja84n7zigiF1j+07zHev/QItRxvIKynkfd+/nuo1k3/eZYoRaiMxQu0MYqaF2n133cZvbvluat0fCPHF/7mD4AyO/9XW3ceje2po6uwFIDfHz7kbFlJSZMYgM0yMHQ8/yE8+80lcbg+Lzl7DWRs2smzjZuYvXjIj4l8lBVaaeIumCb+7f/w/HHphR6p+QVkZS9dv5Kz1G1mybv2sDIz+4B2387vv6ex5/lAWZ63foM/bhs0Uzp8/4y/jt3z+0+z+++MsWbee5Zu2sGzTZuaVV2Rkx/6OVv509CXKc7K5as3ySdvy8C9+DUqxbOsWihZWzZowice0iPUGZk4cGgyGQZRSHAkf5+nuXVgo/E43LytZRkUws2e2Uoru1g6aa7Voa6qtpyVNzPV19Y65bzA3KyXgkmIuKz+Hv/zoDvY9sROXx81bP/c+Lnj95aPuv+vhZygsL6Z00dR83DFCbSSnq1AzfdTmAN2dg2lbxeFAKYt7f/tzXvP2986YDQXZQa7csoL9x1t4bG8tnV1h/vy3PSxaUMimtVX4fVPXR85wehPu7eW9X7+R6tVr8MxgKFYSEUklF4GhXp/G2hpa6upYf/ElnLV+I0s3bKSgdHZTrUcjEY68uItXvevdLNu4mYqzJpYCeqpJxOOcd+VVvPW660+qb6zbqcV4dIr6ZF74ltdPSTuTxeV2T2lfYYPBkDkxK84z3bupGagHYH4gl0tKlhNwZR5uLCLkzMsnZ14+SzaOHDqkt7OHlqP1NNUMCrikmOtq6eBI536OvLB/xH5Ot4t4NMYt193IA7f+gQvf+ApKF1VSXFVGbkmBHY4vfPLl17D2knO4/JrXsmTDSuMNN2SE8aiNwkx71H76rc8Tysnl8fv+SGQgzNd/9idaG+upWrxs2o89GgPRGE+9VMfeOt0vxOEUNq+t4qzqIpxOEw5pOHUZ6O/D4/ObsN5ppK63izsOvUiu38fbNk3tmI8Gg+HMQilFXaSRHT376U3o5FObCxawLr9ySGKQ6WagL0zz0QZajtbTXNMwxBvX3tAyZri9y+NmXmUphfOL2fXw06nyReuWcfk1r2PdJeec1Ic541EbifGoGaaNV7zu7ZSUV3H00H4OvLiDhqNHpnxQ64ng87i5YNVClpbP44Fn99ATUzzxbA0vvHiclUtLWbqoCI/HXDqGUw/fDHx4OdNxO/RLR2yaUq0bDIbTH6UUDdEWdva8REdcv3MHXR4uKVlOWWBmE3cA+IJ+KpdXU7m8esS2WCRKa10Te594gd9/++f0tHXicrvIKsilu7WDhoNHaTh4dMg+h57fx/fe+wWKF8znsne9hq2vuQSPzyRyM4zEfFaeA5SUVwFQuUh3RK09NNK1PhsUhnwc+uP32bqskoDXTXggxjMvHOW2u57l6R219PVHZttEg8Ewx/A4k0Lt9M4uajAYpoemSBv3tz/Bwx3P0BHvxoGwIb+SN1RtmhWRdiLcXg+liyq4+C1X8N8P/Jh1l24lHovT3drB66+7hhv+9hMufOMrRt23ubaee26+nVs/dRMdja0zbLnhVMC4ReYQSaF2dI4ItYa6Go7XHMDVVcebL9zAgfo2dtY00NEbZve+Bnbva2DxgkJWLSsjL9d0sDcYDEM9akop0w/DYDBkRGu0k529+2mK6n77gnB23nzW5VXgn0BftNnEnxXkfd//FPd8/1fcdePPuO0LN/PSU7s4+PxeqlYupnRRBSXV5ZRU63nxgjK8/ukLBzSc+hihNoeoWqT7pB09tG+WLdEkBeMjf7mL5Ws2sax8HkvnF3K0pZMXjjTQ0NHDwZpWDta0Ul6ay6plpZQUZZsXM4PhDMZjCzUFxC0L9ywmRjEYDHOfjlg3u3pf4nhE94sXYEVOGRsKKgm6Tr1wQIfDwT+9/81UrVrCD//jKzx77+NUrVzM+35wPYXzi2fbPMMphgl9nEMUlVXg9flpPH6UyEB4ts1JCbUXnnyUzvYWQGdNqirK45+3rOCqc1ZSXazT4tY1dPKXB/dy9327OXK0DcsySWoMhjMRd1qiFhP+aDAYxqLbHg/tL22PpUTa0uxi3rxwMxcULzklRVo6Z2/fxKfv+g7lSxdQ++JBPn/lB9jz+POzbZbhFMMItTmEw+GgYuESlGVRV3Nwts3h6OGXALCsBI/f98cR24tyQ1y6bglvPH8NKyqKEIHW9j4e+vsBfvunHew90Eg8bl7UDIYzCRFJedWmKkW/wWA4fehLhHmi6wXuaX2EowMNACwKzeONCzZxcckyst3+WbZw6iiqKuOTd97I5isupLejm2+845P8+Yd3jJkl0mAYjhFqc4xUP7WDsxv+aCUS1B05kFp/7K9/JJGIj1o3J+jj/JULedv29axfNB+Py0lPb4Qnnq3h708fnimTDQbDHCHpVTOZHw0GQzoJleAvrY9xJHwcgIpAHq+r3MDLy1aQ5zk9+7p7Az7ec+PHecMnrgHgjq/8mJs/eAOR/oFZtsxwKmCE2hyj0u6nNtuZHxvrjxKNDD5EOtqa2fXMP8bdJ25Z9A1EicYHX85yc06fL2MGgyEzkuMbmY/GBoMhHd3URuEAACAASURBVEHIcYVS692xAXriA6e9h0lEuOxdV/PR//syofwcnv7TI3zx6g/RVFM/26YZ5jhGqM0xKhfPjcyPRw8OPX4wK5tH/vK7Uev2R6I8tqeG2x7Zwf7jui9bRVkeV162mrNXzJ92Ww0Gw9zi9H7lMhgMJ4tDHFycfw6bs1fjc3joioX5S/2L/KFuJ60DvbNt3rSzfOtaPvP7m6hatYTjL9Xwhas+yM4Hn0pt7+3smUXrDHMRI9TmGCVllXi8PhrqaoZ4tGaajtYm/vVDn2bhWSsA+PfP3sjL/un1xGOxVJ2BaJwn9x/l5w/t4MWjTSgFpUXZvOqSlVxywVLy88zgwgbDmUjy47hJAGswGIbjEGFRoIIrCrezIrgIQagPd3LH0Wd5sHE//fHobJs4rRSUFXHd7V9n29WX0t/dy7ev+Qx/uOkXWJbFLz/3fRoOHZttEw1zCJOef47hcDopX7iEw/t2UVdzkOqlq2bFjsuufhsOh4Pn/vEQAD3dnaxcfw4A0XiCXTWNPHf4eCq747yCEOtXV1BWkjPjtpqxmgyGuYWyfWqCuS8NBsPouB0u1mQtZXGgkh09+zg60MC+7kZe6m5iY0EVa/LKcTlOz+E9PD4v7/zKh6les5Rffv4H3HXjz6jdfZDDL+yj4XAdn7zjm7g87tk20zAHMB61OUjVHBj42mEnA8jJKwCgq72VeMLihSMN3PbwDp45WIdlKfJyA7zs/KW86pKVsyLSWuuPs+PhB2f8uAaDIQOMTjMYDCcg6PSzLXcdl+SfS4E7BwvFU201/KrmaQ72NJ+2/ddEhIvecgUf+8VXyZmXx/P3/4Oulg5qdx/gD9/95WybZ5gjGKE2B6mcA0ItSU5eAeJwcrwnzm2P7OCJ/UcZiMXJzvJx4dbFXHnZairn582KR6uh5gg3fuBacgrnzfixDQbD2CRfrIxOMxgMmTLPk8el+Vs5N2cNAYePnniE+xr2ctexHTSFu2fbvGkjr7SQpVvOHlJ2zw9u5+Cze/4/e/cdV1X9P3D8de5ib5XhQEQEQdzi3qusHGU5MrM9NDWz0vbQb9NKf2maDRuaNtSs1MxtmnuCiooKIspG5t3n98cFBHMyziH9PB8PHtx7OPd+3ox7Oe/PeH9UikioSUSiVgPVlMqPBUYzRq8GRN3/ClnOARSaLLi5Gugc04ght7egUYNaqk05TIo/yqzxT1OUl0v9JuGqxCAIwuWV9H+LKcmCINwISZJo6FKXO2p3J9o9DA0S5425LD2zjzUph8kw3VwFR+x2O/v++oekwwnljst2O/Mnf4CxoEilyISaQqxRq4EC6jVAb3DiXNIpLGYTeoOTYm3LsszZrFwOJ6VyKjUbcEfvBrLVSIeYCMJD66DVqpvfJxzcz9wpkzEVFhLaoiV6g0HVeARBKK80UVM1CkEQ/qt0kpZm7mE0cqnPwfx4ThWdJSE/nYT8dILdfGnt24AAF+WXW1Q1jUZD3zGD6fPgII7timXT4pXsXvU3VrOF9KRzLJ42jzHvTFQ7TEFFIlGrgbRaHfVCGnMqPo7k0wmllRerk8li5djZDA6fSSWn4GK1SW93LfuWfY2vK0SOmlPtcVzL4R3b+fK1qVhMJgBCo1uoHJEgCP9yk64pEQRBWa5aZzp4tSDcNYTDBQkkGc+RWJBFYkEWQS5etPZtQD1XdZZfVCVJkgiPiSY8JpqRrz7FtuXr2LR4FZt/XE2L3u1p1aej2iEKKhGJWg3VIDScU/FxJCXEV2uiln6hgMNnUok/m1G6rkSjkWgSWoeIUH801gI2fLgfbVBQtcVwvfZtXM+3097AZrWWHmukYqImyzKx2/4GSUJvMKA3OKE3GNAV33Z8NqB3csLg7Kz4PxJRDVNQy8049bEmvJ6M+QXoDHp0Ks4iyD6fipu3NwZn5WZ6lGUsKMTJ1UX134WgLB+9J529W9Hc2oQjBSc5WXSGlKILpJw9RG0nD1r7NiDE3e+m+Ltw9/Gk30ND6DtmMMf3xLFvzT9EtG+Oi4fY8uhWJBK1Giq4eJ1aUsLRKn9uq83OyfOZxCWlknahoPS4j5crEWH+hAbXQq93lMS1WQ1IkkReVpaqFyr7Nq7nm7dfx26zlR6TNBpCmkWrEg84LkItJhML3nrtiud4+tXi7nETaNWjl4KROfzx5Txy0jOIaBdDeNt2eHj7KB7DpXLS08k8l0JIs+jSyqJqkmWZtKRE/IMbqh0KAKlJiXj4+OLq4aF2KMT9sxUf/wACQxrd8Ov+Ynn+yjt9IJYjW7cT1b0z9ZqGq/Z3s2P5H8Ru3ELTzh2I6Nwev7rKd17ZbDbevXMUgWGNCG/fjiYd2xHY+MZ/P5WRl5nFO4NHEhwdRZOYNjRu15oGUU3R6pW5nDh3/ATfTXmTsPZtaNK+LWExbfCs5adI22fjT3B8x26ie3XDr55yv3+7zYZslxX7GddkHjo3YryiiXJvzNGCUxwvTCTdlMef5+LwMbjS2rcBjT3qoLkJEjZJkmjSthlN2qqzTZNQM4hXfQ1VHZUfLxQaOZyURvzZdEwWx6iUJEFIAz8iGvtTp5bHv/7ha3U63L19yMvOwlhYiIubOj06rXr0IqpDJ6aPHkF2WioAQY1CVYvHZrWSFH+EtOQzuHl5U3Ahp9zXJY2GbkPuYcDDjysaoyzL2G02rBYLLbr3ZMYTj7Lzz5UA1GsSTtN27YloG0NIs2h0euX3aPHw8eGTcU9gs9lo1aMXrXr2IrhplGoX35Ik8fuXn5OefIbWvfrQulcfagXVVSUWAFNhIe8+/AARbWNo1bM30Z274uLurlo87z78ALXr1adF1+606NaD+uER1/W7urjhdeUvlupHRbDw1Wn8Nf8bPGv5EdmtE1HdOxMW07bKR3XsdjuyzY7NZkO227DbbNhtdux2O2Exrflj1lwOb94GQO3g+kR07kDTzu0JbdMSvVPFY5FlGZvFgtVswWo2Y730tqnkmJkGzZoSu2EL8dt2wsfgUcuXJu3b0qR9O5q0b4tXnVoVj8FqxWI0YjGasJjMmI1GLCYT5iIjFpPZ8TWTCR//OiTs3kfC7n0AOLm60Kh1C8Ji2hAW04bAsNBKvabtdjtWswWLyeT43s1mLCZHTAAunh7sWrGKXStWARAQGkJY+7Y0ad+G0DatcHZzrXDbVxPYOIRvnn+VFR/PJjAslOhe3Yju2Y2gJqHVmyxLEnMef4aeo0cQ1aOLah2mNqsVra5mXDa6aV1o4xlJlHsoxwpOc6TgJNnmQtadP8rOzNO08qlPuGcAuhrQISgIlSHdrPtTVIYkSZ7AhY8XrcHFVb1EYMKIvmi1Wj76fnWl3xz3nEhm94mzpffdXA1ENPYnrFFtXJyvPo3mvUce5GzCcV7+9gf8GwRXKo7KOLxjO/OmPEdw00hqBdXF1dOToeMnqRLL5y+/QOzWvy/7teCmkdz37POKVKNc/+MPrPn+G2wWK1arBZvFcl2PMzi7ENaqNT3vG06TVm0qHceBzRtZOntm8fRPJ/ROjimfjttOpdNB9QYDpw7HknzsYgeETx1/WvboSasevQluGlmpi5CThw7y7bQ30Ds74+TsXPzZBb2TE04uLuidLh43FH+knznD5mU/lz5HcNNIWvfqS+uevSq89UNa8hlmTxpfbvpr6e3SKbJO//6akxMbfvyBvOxsALR6PU3btadVj14069z1hpP+ovx8/jdmJFqtDo1Wi1anQ6src1urQ6PToS2+r9Fp0Wod9zVaLXvXr8NuvziK7V27Ds27dqNF1x40im5+xfelWQf/wSbLPBjTEs/iZOrt24ditVouboItSaW/a0mSSoffJCRHD1KZ4wU5FzAVFJZrQ+/sRJP27Yjq1onIbp2ue1RlxoiHyT6X6kjAbDbsxQmZbLNXeL8mvbMTjdu2ot1dt9Oib8/r+hue9/QkEg8dLk3IqoJGq6XL8Lvp/8TDuHhcX4K/8JW3id2wBbPRhGy3VzqGOg0b0HnY3XQaOuiG/m+t+Hg225f+hsVkvu73sctxcnOl/xMP0XX40AqNQG1Z/Avrv16IRqNBo3O8DsrevpCaTn52+Y4537qBRPfoSnSvbjRs0QyNtvKbNJ/af4jVn31JcPMoGjaPYvPCnzi2YzehbVoycNI46kcqU+3YbrNx+kAsdSPCWPP5Au6a+LQi7ZZVut3HVV5XZruF44WJxBeexmR3vJ48dE4Mrt8Kd33VdOiUdCCoNe23rB+mz+Ovr5YBeMmyXKP3Lii5pj6Z9DYens7V1k5erpFGDV6F/8DP5EbUjK4R4V+0Oh2vfLyAWv5BlU7SEtOyS5O0uoFeRDQOoF6gNxrN9V0QP/nehzi7uuHkWj29lNcrsn0HXpi/ACQJ79p1OJtwXLVYQqNbciE9g/A2bXHz8ubXuZ/i4ubOXY8/Rac7B1bJP+rrYbNaKcx1vB9pdToMzi7o9Dq0Oj1anY7czMxyF9rgGFlr2a0HLbr1qLLEuyA3l+zU1Ao9NjstlQ0/LmbDj4vx9Q+g86Ah9Bg6rELVPIvy88hKPV+hOEokHjlM4pHDLJ8zi9AWrWjTqw8tu/fEzev6K4yZi4pKR34rw2axELvtb2K3/Y1ObyAiJoaOdwykWcfO15UMWK0WLmRkVDqOEjnpaWxe+jObl/5M3dAwhk6YRGjzy60Tlbi4Us0hNzOrUhfgl7IYTZzafxBnd1ec3d2I7tXtut4ri3LzKbxw8X+4pNE4Elcn3cWL8uJEtdxFukbDhbQMzEZjuefzDQokuufFi/Tr7WgwFxkx5heg0WoxODujNejRGfTF61v1aPWOtWg6gx6dXl+8Ns2JnNQ0zsQdKX0ejVZLWExrmvfpQXSPrrj73tgUZ5vFiqmwCJ3TxfW0eicn9M6OD8d9Q5njzpzcu5/UU4kXfwZ1A2nZrxet+vep8OiSzWpz/Dx0WpzcXB2dGU5lOjJKbjsZSD99hqyUc6WP1RkMRHRuT8u+vYjs1qlSI2rG/AIupKXf0GOyzp5j08IfObFnH+3uGkDnewdXepriyb0HOL5zD8d37il3PGHPfj6+/1Ha3tGf28c9hk+Af6XauRq73c68pydxYvd+mvXowolde7l97GOKz8Y4G3+c/3voaSK7dOTBD96+7DkGjZ4o98aEu4VwsvAMhwsSyLOa2Jgazx11o6tkFPL8yWReG/Akrfp2YuzsVyr9fJWRlZymavuCcsSI2mXUhBG1qlJgNPPDlgPYbHaahgXQoU1DtUO6KZRdr7dl+S+ciotl8FPP4Onrq2gcNqsVWZbR6nT/+keUnpzMtNHDke12GkZG0aJbT1p0614tU/usFgumwkLMJpNjmpLZ5PgwmbCYy0xdMpvZtPSnciNqeoOBRs1bEN6mHeFt2lG3cViFp03ZrFaK8vMxG4swm0yYjUbHbaOp+JhjWpfJWITFaMRkNJJ8/BhHd+0o9zxavZ6QqGjCWrWmSas2BDeNvKGLE7vNRlFBAVaz43u2FH//1jK3LeayPyvHz8hsMrHuh4WYjRf3ztFotYRENaNJ8c8nOKLpdXfe2O12TIWF2G02bFYrNpv14m2r9arH83Ky+eH9d0p7s7U6HaHNW9A0pgNNYzpcde3a7EM7MNttPNCuBd4ujh5UU2HhxWKQxTcczy2XPXRxVEuWHbdlmXlPP8fZeEfHTEBoCJFdOxHVvRPB0VE33CliNprQaKTSBO16L+AKc/N4e8BQTAWFBDVpTLOeXSs17c1qNpcmgzdi/jPPE799F01i2jqSs55dcfOueJlyq8VSmpBeD7PRxLQBQ9EZDLTs14uW/XtRPzKi0hfCVosFSZKu+bdtt9l4Z8j95JxPI6JTe1r260lUt844u1fN/2rHe5W5eNqr7eLIa/HHt1Ne5+xRx9+ii6cH4R3a0bRzB8I7xVTpWjljfgFJcUdIPBjHyf0HHVNdL6FzMtBj1DB6PTSqWqZ72m02fp3xKVt+uDjj4PHZHxLRqX2Vt3U1R7buYP64yUT36s5DM6Zd12MuWPNZlbEFGZnudZoQ6R1Y6Ti2LVvLF5M/pNOQPjz64eRKP19lFOUVMLblPfAfGD0SI2qVI0bUbmK5hUb+2n8cm82Or48r7Vo2UDukm0bZi5I2vfvSdfA9qsRxtYuak4cOcPfY8TTv2h2fOtXX6wo4evy9vLjWpVJGyll+/PgDgptGEd6mDU3atCMkslml1veU5VhT6Q14X9f5siwza+JYNFotDSKa0qRVG5q0bkPDqGgMlYhJo9Xi5ul5w487tHULZmMRQaGNCW/Tliat29K4ecsKj2ZrNJoKr3H7bf5c/AKDShOzsJatrjuOkoX89jIdgRX9HhL27Mfdz4chL04ksmvHShfxqOi0pdMHYun/xENE96yaQhIVqdxoKiykRd+ejJz2Km5eN/73ddk4bnB0JC8jk4c+mk5w82ZVurb0euPIPHuO/o+PIap7l+ue3nlDcRRX7r2ck3sPoNFo6fvog0R0bk+DZtffaXKjnN3ditcetuW3T+ZcNlGzmsxs/Wk5CXsPMHjy+CqdDpmfncPnYyeTfKT8OvmD6zcrnqjlZWYC4Fnr+jtCvXTutPAIZ3/eUbakHaeemw+e+solCacOHgMgpHmTSj2PINwIMaJ2GUqOqCWeOEKdoAZV3k7C+UzWH0zAbpfRaiUG9W+Ol6dLlbYhCDcqOy0NJxeXGlHVEBxTNhOPxNEoujnONWD0PPHIYXz8AxQfmb2cCxnpFV6jNy9uF4VWCyNaR1PLvXI9/TWhLL4ggDrFNApyLrDrt1W4enni5uXl+Ozt+Ozq6VGt0+xNhYUsfv0dDqzdWHrM3deHN9YsU2x6P8C6rxfyx6y59H/yYfo/8dB1P84uy6zL2k6GJZsgF28G1mteqfeS6UMnkrDvKC///DGhrZpW+HmqghhR+zcxoiZUi5ysDDatWs7oZ6ZWyfNZbXb+OZrI4TOO+ct1arnTvWMY7m7qL34VBJ86ddQOoRw3T08i29ecjUSDm1b/5vbXq6JJGlx+RK2iRJIm1BRqVDx08/aixwPDFW8XHKPgo99/i3Vffc+q2fORZZn8rGxOH4ilUWvl9jDNz8wCwMPvxjqwNJJEB6/mrMzYTEpRDnEXUmjmXbGp/1aLlaTDJ9HqtDSIDK3QcwhCRYi6pSrTanVsW/c7B3devoLgjcjOL2LZP7GlSVrzpkHc3itSJGmCICjqYqJW+SqCgiCoR5Ik+jzyAI/Oeh/n4mnUB9dvUjSG3NJE7cb3AvXQudHKwzH6tTUtgQvmoms84vJSjidiMZmpG94QvZN6G84Ltx6RqKmsZPrA93PeIz835xpnX54sy8Qnp/PTtkNk5Rfh7KSnX/cI2rRocMU1BPs2rq9wzIIgCFejKa61bxNT6wXhptC0Swee/f5z/EOCObRuc4W3sqiI/KySRK1ixVrCXIOpY/DDjsyac4cptN74dhgl69MaNhPr0wRliURNZVqtYypFbk4Wi+bOuOE3P7PVxoZDCWyMPYlslwn092TQbdHUDbx6MYXYbX/z67zZir7ZCoJwaygZURPvL4Jw86gdXJ8J386jbkQYyUeOKdZuXqZjX8mKjKiBY1SwvWc0WjRkmPL5OWkv6ca8G3oOUUhEUItI1FSmLbMgd++29ezesva6H5uRW8DSbbEcT3FURGodXZ9+3Zvi6nLtYfmwVq1Z98NCFr3/P2xW640HLgiCcAXakqmPdpGoCcLNxNndjTEzpldqS4gblVcy9bESRZbcda7cVqsLHlo3Cqwmfknax/Hc69+L7HSsSNQEdaiaqEmS1E2SpN8kSUqRJEmWJGnwNc5fUHzepR9xZc554zJfP1r9303FXFo56Yd5M8jOvPpmm7IsE5t4nqX/xHKh0Iiri4EBvSNpEVX3ujexDmvZBoAdq/7gy9dewmwyVewbEARBuETJiJqY+igINx+NRoNvUEC1t5ObnoHNYqUg5wJOri4YXCpXMdBT504/v04EOdVGRmbt+SNsTz95zaJHFpOZs/Gn0TsZCAoLrlQMQs0hSdJUSZJ2SZKUJ0lSmiRJyyVJuu49LiRJGl6cYyyvzjjVHlFzAw4AY6/z/AlAYJmP+kAW8NMl58Vdcl6Xqgi2OpRMfSxRWJDH97PfveKUIZPFypr9x9l6JBFZhvpBPgy6LRr/2je2p45fYCC+AY4NIGO3/c2cyRMpzLtpqpkKgqAijeT411IVVR8FQbg1ffviG6ya8wUArl5eHNqwmc2Lfr7Go67OoNHT1bstTd0aAbAv+wyrU2Ix2648syjpcAI2q40GkY3Q6UWx9JtId2A20AHoC+iBNZIkXXOvHkmSGgIfAluqMT5A5URNluVVsiy/Isvysus8/4Isy+dLPoC2gA/w9SWnWsueJ8tyRlXHXlVKpj7q9I7pin0GDqdN515kZ/x7SP58dh4/bz3E6dRsJAliWgXTu2sTnJ1ubMPSEmEtW5XePnnoADPHP82FjKuP5gmCIFyLWKMmCEJl1WkUzPoFCwHIPneerye9jG+gf6WfVyNJtPSIoKNXCyQkEguyWHpm3xUrQp4+dByAhtFi2uPNRJbl22RZXiDLcpwsyweAMUADoM3VHidJkhZYCLwOnKzuONUeUausR4C1siwnXnI8rHg65UlJkhZKktTgak8iSZKTJEmeJR+AYrvxanQ62nbtw8gnJwOQnppCp9534Fvb8WZksdpITMtmc+wpft1xmHyjGQ93J+7s24yo8MBK7TEU1qr83+K5Uyf5eOwTpCcnV/wbEgThlleV+6gJgnBrqh9ZfhaaV53aNO1adfteNnSpS1+/jrhonMg2F7Lk9G52ZZ4m05RfrpNJFBL5z/Eoe00vSdL17lFVsvAy6xrnvQakybL8ZcVDvH7/2TFcSZKCgNuBkZd8aQeOrDgex7TH14EtkiQ1k2X5SmV+phafp7hadYJ4eOJr5Bfk4VoriOSsfHbFJ5JvspJTYCQ9N5+y1zohDfzo1C4EQxUMv4e1al3ufuuevRn+/BScXFwr/dzXy263X3ELAUEQ/ptKyvOLRE0QhIqqHxlR7n77wXdU+abjfnpv+vt1ZkvOXjItOezOTGR3ZiJeehcaudcixL0Wp4oLiYgRtcpJKozDXVt9e9DlF5Zuu3DpaMObwBtXe6wkSRrgE2CrLMuxVzmvC45BopYVDvQG/WcTNeBBIAcot4hPluVVZe4elCRpB5AI3AdcKft9B/iozH0P/v2LrjRZlikwmskpNHKhwEhOQRE5BY7beUUmwoc6RtX2njpf7nHurgbqBfnQoK4PQQFelRpFK8unjj+1guoSEdOe7X/8zr5NG+gz8gHqhSn3ZvTPHytwdnWjda8+VfZ9CYKgsuKXskjTBEGoqIDQEHQGA1azGUmjof3gO6ulHRetM71925NYdI5k03lSTOlcsBSxL/sM+7LPUOfVu3DedRJ7gDt2WS6dMSDcmEJdLyRd9Q0EFOoKgcUA9YCyAzPXUy1vNtCMq9S0kCTJA/gOeEzJJVX/yURNclzRPwx8J8vyVXculGU5R5KkY0Djq5xjoswvsiRhOJtxAScXS4XjNFoco2I5BUVcKDByodCI1Wa/4vka7OSlJePuoqNlxxi8PF3w8XbFy8O52pKYnsNG0OmOgbh7ebP6m6/4aeYMJsz6TLFRrpbde/HmiHvY9MuPDBk7npCoaEXaFQSh+ojLGEEQKkun1xPUJJSk2CM07dwenypYn3YlWklLI9d6NHKth8Vu5ZwpnTOm8yQXnsdQ25NaA1ryW8ohnLV6gly88DK44K13xcvggpfeBRetXnQ21xx5sixfd3U8SZI+Be4EusmyfLVBmlCgIfBbmd+1pvg5rEC4LMsJFYr4Kv6TiRqOSi2NufIIWSlJktxx/HC/u9FG1uw/jtZQuXKw/44HPNyd8fJwxtPDBS9PZ7w8XPD0cMZccIHX730eZ1c3Ro25C52+YkVCbkTXQXcD0GfkA+xas5pTsYfYtWY17W8bUO1tA7h5etLzvhGs+voLPh77BK169mbg40/hFxikSPuCIFQjMaQmCEIl1I9qSlLsETreM0ixNvUaHQ1cAmngEsj6339gy99riBx9G5pQX4w2Cyfz/z2Yotdo8dK74F2cuHmVfnbFWaMTSVwNVDzo83/AEKCHLMunrvGQo8ClownTcMzCmwCcqfIgUTlRK06iyo50hUiS1BLIkmU5SZKkd4C6siyPvuShjwA7LjePVJKkD4HfcEx3DMIxN9UG/HCj8fl4uaBzcrnRh5XS67WOJKw4GfPycMbD3emKo1WuLrUJiYrmZOxBju/bQ9OYDhVu+0YZnJy4+5mJzH/pBX6d+ynRnbvi6qFMTZUeQ4ex6ZcfKczNZd+GdRz8ezM97rmPvvePViwGQRAEQRBqlvqR4Xj71yGic3tV2k8+dJQLO04QdndtmtfpQbo5m2xrLnnWAvJsBeRbCymwF2Gx28gw5ZNhyv/Xcxg0OrzLJW+OEbjKMBYWVurxAuCY7jgSGATkSZJUsjngBVmWiwAkSfoWOCvL8lRZlo1AubxDkqQcgKuta6sstUfU2gIbytwvWSf2DY6CIIE4SmWWkiTJC7gHR/Z6OfVwJGV+QDrwN9BBluUbrjs/oE8zXNyuuZ1ClWretRsnYw9yYMsmRRM1gOhOXYjq0Im47dtY+fV8ho6fpEi7Lm5u9BkxihXz5gBgs1hYt3gh21f+zh2PPE7ngYNFb5QgCIIg3GLqR0bQfsidVV5E5HqdOXzUEUdUBBpJg7+TH/5OfuXOsck28m2F5FkLybMVFCdxheRbCyi0GzHbraSZ8kgzXame3Y2zFVzPsivhGp4q/rzxkuMPAQuKbzcArrxmSQGqJmqyLG/kKssZZFkec5ljF4ArrkaUZXl4VcSmluZdu7P8s0859PcW7ps4GU3xPmtKufuZicTv2c2W5UvpOOAu6jYOU6TdroPvYcOPi8nLvlgVtfeI+2nZvaeiBxomYQAAIABJREFUSVp+Tg7Obm6KTDsVhJtVyStWzHwUBKEy6jRsQMe771Kl7YKcC2Qmp+Dm7YVvUOAVz9NKWrx0Hnjp/j0DyCrbyLMWkG8rKJfIWeQrb7B9Paw6cY1SWbIsX/PiUpblHtf4+piqiudK1B5REy5RK6gudRuHcfbEcU7FxRLavIWi7deuW48+I0c5Cot8MoMJ//eZIomSk4sL/UaN5pf/+6T02O6//qTjAGXfoLU6HTPHP0WtoLo079qdyJgOOLkqt12BINwcxAi4IAiVp9Xp8KxdS9E2s8+nYi4ykn3OUYG7XmR4ha+DdJIWH70nPnrPqgwRo3NBuelows1LbGBVAzXv2h2AA1s2qtJ+n5EP4BsQyMnYg+xas1qxdjvdNRifOv7c++xk6jeJIOVkAnOef5bCvKqbLnAtLu7ujJr6KnHbt/H1G68wddAA5k19nn9W/k5+To5icQjCzUGMqQmC8N8i2+188sDjbFr4IwB1w8M4fSCWtMQklSMTbkUiUauBWhQnage3bEZWYcNYg5MT9zwzEYBf536qWKKkNxi46/GniOl7G09/8DFBjUI5c+woc6c8h7GwQJEYAPwbBPPgq28iSRJWi5m4f7byw/v/4+W772TWhLFsXvYLdptNsXgE4T9HDKgJgvAf5e7jg6mgkPhtOwHYsGARXz07FU8/v2s8UhCqnkjUaqDAkEbUrluPrPPnSD5xTJUYmnXqQmSHjuRlZ7NqwReKtdu2Tz+cXF1x8/Ji7IyZ+DcI5nRcLJ9PfQGz0ahYHFEdOnHno0+UOybb7UgaiSat2yi6dvDA5o3Mf/lFls6eyealP3N4xz+kJiViMV91C0FBUJ0K/UyCIAiVYnBxxsn1YsVvWZbp+9iDOLsrW1xOEEAkajWSJEk071Y8qrZ5k2ox3DPuWbR6PZuX/cLZE8cVj8HDx5dxH82iVlBdThzYxxevTsFiUq7SUZ+RD9C6Z+9yx86dOklqUqJiMQC06NaD5l27s3npz/w86yPmvvgc00ePYHL/nrwz5n7Sk6+2P2PVs1osmAoLKcrPpyA3l/ycHHKzslQZ/RVqJjGgJtyImvDeYbVYSNizX+0whBrC3c+39LZv3UA6DlVuHzdBKEskajVUi649ADi4RZ1EDaB2vXr0GTEK2W7np5kfqfLP1KtWbcZ9/H/4+gdwdNdOFrz1mmJxSJLEyBdfpl5YEwBCm7cgPyeHL1+dyuIZ7ykSQ4n2tw3gqfc/xrnMdhGyLBPVqQu169VTNJYLGel88dpUXryzH1MH3sZLgwfw+xdzVdtCIS35DHH/bGXz0p/ZuWaVKjGUZbfZyDyXonYYAJyMPUTKyQS1wyD56DESYw+rHQappxI5sXuf2mFgKizEarGoGoMsyxzftVfRzq/LyThzliVvvqtqslaQc4G5Tz7L4b//wVigzv5UeZlZpYmisaCQIgXXZl+JzWrFWgNmbsiyrPjfh4ePT+ntAWMfr3GVoM/GK995LqhDJGo1VIOIpsT0v52ew0Zgt6u3hUPfkQ8Q2rwF3e+5V7UYfP0DGPvRLHz9A2jdq4+iCYHB2ZlHp72Lp68fT384k1EvvYqLmzuBIY0Ui6FEeJu2TPy/ufjU8QdQLTHyCwzi6Q8+YdTUV3H1LKlkpd4YiiRJHPx7M8vmzOLozh2qxQGOEdfZkyfwwwfvqhpHia9ef5mfZs5Qrf2SS6sf33qPhS+9rVocJX77ZA5fPfsSNmvlSmNXlNViYf2ChbzZ/25yzqepEoMsyxzfuYfZjzzD3CcmknhInQTaZrWy4dsf+OC+B9n9x5/8vWSpKnGkJSYxc/STnNx7gI3f/MDaL75VPAaLycTXk17m9IFYjmzdwftDH2DZ+7MUj6Msm9XKolens2DyK6onawfXbeKL8S+QeVa5DjB3P0eiVjcijJb9ewGQk5rGd1Pf5MhWdf/PACx7/5NrnyTcFER5/hpKo9EwauqraoeBwdmZCbM+UzsMatetx8vf/oDeyUnxtn39A3j6w0/QGwzE9LudiDYxuJfpbVNSUKNQJs35nHlTnye6Szd6DB2mShySJBHT/3Yi2rVn6aefMPipcarEAY6/jRHPT6X/6IfIz85WLQ5wrC995uNPy+0HqKZH3pqOk4vy20tIlyTuw16folpyVNZdE58mPytbtc1zdXo9vcbcT7uBAzA4K/9eBmC32nDxcKfbqPuI7t0NjzJTvJRyPuEUP771Pomxh5GLOyJlFTokT+zex9fPvUxRrmP0SpZlxf82ZFlmyZvvcfpgLBnJZ8nPcryHXUhLw2IyqfI/z2a1suiVaez7cx1u3l5knTtPneAGiscBYMwvYNn7M8lNz+D0wTj86gYp0q6Hr+N1ceeEp9BoHGMaB9dtYt/qtegMepp2bq9IHFdy95RJfPrwWFVjEJQhEjXhP0ONf1glghqFlt5Wu/KTV63aTJg5h8T4I7i4qbu42dPXlzGvvaXqqG8JX/8AfP0D1A4DcKyvrAlCoqLVDgFwlLeuCfxDgvEPCVY7DDx81enoAdDqddRrGk69puGqxRAQGsL4bxwdgLIsY7fZFE/Udiz/g5+mf4DderGCr5u3Fwl795N9PhWfAH9F4vhr/jfsXfUXAPlZ2Ti5uTJw0lg6DLlLlVkTlyZpT837RLUkDWDVnC/ITc+gSfu2tL6tj2Ltevj50KR9W8I7tCs9duAvx85lLfr0VCyOKwkKC732ScJNQSRqgvAf5OTqSpNWbdQOo1RJj6MgCMKNkCRJ8VGsM3FHSU86w90vTMQnMACfQH98Av1xclV29Hn/mvWs/uzLcsesZguZZ1IwFRbh7KZMPDaLFa1eh81qZeHLb7N/zXpHkvb5TFUTgjNxR/l7yVJ0BgP3vPScoomrh58vd4x/svR+Tlo6p/YfwtndnSYd2ioWhyCIRE0QBEEQhFtG/agI6kdFqBpDYuxhFr02vdwxZ3d3IjrFEBDaULGpwpnJKexZuYbeD43i+5ff4sBfG2pEkmazWvlp+gfIdjt9HnmA2g2ULZrVsn9v3Lw8S+8fWuco7NasR5caV1hEuLmJRE0QBEEQBEEh2edT+WriVKwmM3UaNiCyayciu3UipEU0Wr2yl2UrZ88n+Ug8506cLE3Snp4/i8DGyhfMKmvrj8tIPnKMOiHB9BozUvH2yyZpAAf+2ghAi749FI9FuLWJRE0QBEEQBEEBVrOZLYt+ptdD9xPZpSO1g+urFsuZw/HsW70WgPTEM7j7ePPU5zNVT9JyUtNYNXs+AENfeg6dwaBqPLnpGZzafxBnd7dya9YEQQkiURMEQRAEQVCAzmBg4KSaUa3vj1lzy933DqhD8uF4fAIDFFsfdznL3p+FqbCIdgNvp3HbVqrFUeLg+s2OfUu7d1Y9aRRuPaICgCAIgiAIwi0k/p+dHNuxu9yxnNR0TEVF6AzqrcGK27yVQ+s34ebtxV0Tn1YtjrJqUrVH4dYjRtRucbIsq7ZxsiAIgiAIyrLb7fw+8+JompObKz1Hj6D7qPsUr3xZlqmoiKXvfAzAXc8+jbuPt2qxlMjNyOTk3gM4ubkS3lFMexSUJxK1GiTlZEK5/bqUcHT3Tnzq+BMQ3FDRdgVBEARBUN6+1Ws5G38crV5P5/sG0+fhB3BXcW+/EmvmfU32+VRC27Sk3V23qx0OAIdKpj1266zqXq7CrUtMfaxBdqz+g2P79ijapl9AIDPHP82Z4/GKtisIgiAIgrKsZjOrP/uStnf0Z+ryhQyePF7VJO3Y9t1kpZwn5dgJNn3/I1qdjqEvT64xM332l0x7FNUeBZWIEbUaxGaxsmTG+0z58lvFem5q16uPJMGnE5/hifdm0KhZtCLtCoIgCIKgrNRTSTw0YzpBTRqrHQoAhzZuIed8GvlZ2dhtNvo++iD+IcFqhwVAXmaWY9qjqwvhHdurHY5wixIjajWIzWYjPfkMa77/RrE2JUmiUXQLigrymTN5AvG7dynWtiAINzlZVjsCQRDKqBveuMYkaQDHtu8ibtPfJB6KwzcokN6PPKB2SKUOrd+MbLcT2a0zBmcx7VFQh0jUahCb1QrAX4u+I+VkgmLtNopuDoDZaGTu1Mkc/HuzYm2nn00u/b4FQbjJ1JDpS4Ig1DxZKedJTzxT5v45Xu99F3Gbt6oYFRxYuxG73c6BtSXVHnuoGo9waxOJWg1it1mLP9tYPOM97Ha7Iu2GRrcovW2zWPjqtZfZs26NIm0jwwePP0Tc9m3IovddEG4KMo7XskjTBEG4kmPby8/g0Ts7Mep/rxPVrbNKETn888sKFr70Fid278fg4kJE5w6qxiPc2kSiVoOUHVk6HRfL1t+WK9JuvbAm5dbE2e02vp32Jtt+X1HtbdeuV4/gppHMmzKZOc9PVHQkURCE6lHS5yIG1ARBuJL4Momau483T8+fRVR3dZM0AKvJzL4/1yHb7egMeuY99Swbvv1B7bCEW5RI1GqQS6cA/vb5Z+Skp1d7u1qdjoaRUaX3XT09eevnX+kw4M5qbxug/+iH0Or1xO/exXuPPsjiD98lNzNTkbYFQah6F0fURKYmCMK/2W02ju90VLmuVb8e47+ZS3CzSJWjcrBazKW3Cy/kYiosouvwe1SMSLiViUStBimbqLl6etKmV192rVmlSNuNolsQ3qYdTVq3oTA3ly3LfkGjUebPw9c/gE53DARAttvZ9vsK3h41jDULv8VsMikSg8VsvvZJgiBcl9JJzCJPEwThMpKPHqPwQi7B0VGMXzCHWvXrqh1SKavZUnpbZzBw//RX0RkMKkYk3MpEolaDSBoNo156FSdXV4ry8rjjkcfpe/9oRdpu2q49wydP4e5xE5E0GtYv+YHMc+cUaRug36jR6Mu8EZqKCln55Xx+njlDkSQq61wKsyaOY9WCL0k+fkyslxOESih5/YgRNUEQLufY9l0069GFp+Z9UiM22y7LarmYqN0x/gkCGzdSMRrhVicStRpk6PhJxPS7nfDWbZFlmfg9ypXKbxTdHL/AQIIahdLpzkFYLWZ+nTdbsfa9atWm6+DyUwt63DuMkS+8VC6Bqy7+wQ3pPXwkq7/5ivcfG8Mbw+/m55kfEb97l6hKKQgVJNaoCYJwObUa1GfMh9MwuDirHcq/WE2OzuEm7dvSdcRQlaMRbnUiUatBvGvXBqBpjKPC0JGdO1SJY8DDj+Li5s7+jes5cWCfYu32HjkKg7MLvgGBaPV61i9ZxLrFCxVrP6pDJwY+MRaA7NRUNi/7mdmTJ/DSoAEseOs19m5Yp8hIm91mq/Y2BKE6lbxKxIiaIAiX07JvTzRardphXJbVbMbF04Phb72k2BIQQbgSndoBCP8W0a49AEd37UCWZSSFu6U9vH24bczDLJs9i6WfzmTy3C8VeUP18Pahx9B78a7tj6efH1+9/jK/zp2N3uBEt7uV6dXqNWwE504lsPPPi2sDiwryuZCZQZ169RX5XaQmJbLo/XeQJPALDMI3IBC/wEB8AxwfPnX8FRllFISKElOHBUH4r7JaLNz78mS869RWOxRBEIlaTeQXGEid+g1IO5NESsIJ6jYOUzyGroPvYeuK5SQfP8aO1SvpeMddirTba9hIZLuMm5cXo19+nW+mvcHPsz5CZzDQ6c6B1d6+JEkMm/QCaclnOB0XW3o8LysLi1mZwiaBIY14bNq7fP7S8+xZ99dlYwyOjOLx6e/j7u1drbHYrFasZjMyMrJdRpbtyHYZe/Hnkvt6JyfcPD2rNRbhv6N0RE0MqAmC8B/Tsm9PWvbrpXYYggCIRK3GahrTgbQzSRzZtUOVRE2n1zNk7HjmTZnM71/MpWWPXri4uVV7u64eFy/2W/fqg8VsZuG701gy4z30BgPt+t1W7THonZx49K13+PDJR8hJTyOwYQjnTp/ik2eeoue9wxnw8GMYyuw7Vx08/fwYP3MO305/k4NbNl0SnzMjJk+p9iQNwFhYyLLZs9j558ornuPq6cmEWZ8plqjZ7Xbyc3LISU8r/kgnJy2VnPQ07HY7I198udp/P5cjyzLZqedJPn6MrNTzdLv7XlWnzeRmZpIUf5Sojp0UH5UvW57farGQFHuEkJbRisdRls1i5fTBWBq1bqFqHKaiIo5v302znl1ViwEgPfEMJ3bvo+M91d8BdiV2u53YDVto3ru7ajEIwqXuevZptUMQhFIiUauhmsZ0YNMvP3Jk53b6jBilSgxRHTrRNKYDR3ZuZ833CxhUvH5LSe1vG4DVbGbJR+/z/bvT0BkMtOpR/T1dnn5+PPa/9/h04jNM/vxrNv60mJULvmT9kkXE/bOV+6e8Um7vuepgcHbm4Tens2LeHNYvWVR63Gws4sMnHqZdv9voPnQYgQ1Dqi0GN09PRk19hTa9+7BkxvtkpZ7/1znNu3RTZCpmYV4ev82fy/ZVv2MrU5WrrEfe+p8iSZrNaiU1KZHk48dIPnGM5OPHOXviOEX5eQCMeH6q4klabmYmJw7s4/j+fZzYv5fUpERuf+hRmnVSfgNZm9WxznLjdz+QsHQF7QffQaNWzRWPQ5ZlkmIPs+ePNexfs54WfXsS2qal4nEApCcls+3HZez4dSUdhtypWqKWeTaFv+Z/w+7f/+TOCU+qEgNA6snTLHnrPVw9PWjeu7sq0/wBjm7bQb2IJjWu8qCgHidXV7VDEIRSYpVkDdW4RUv0BgOmwkJVi0sMGTsejUbLmfh47Ha7KjF0HjiYIWMnINvt7Fj9h2LrX+qHhfP4Ox+gNxjoe/9oXvj8axqER5CalMif3y1QJAaNRsPgp8YxbNILaDRadHoDbfr0w2azse33FSyf83+KxNE0pgNTv/6e7vfc+6+Lqe0rf2fRe/+r9hhcPTwYNul5xs2YSeMWrS57jlK/l/wLOezftIEVn3/Gxp+WcGL/3tIkDVCsCI4sy+zdsI53xtzPK/fcxYK3XmPrimWkJiUCsHP1lUdCq1r62WTWL1nErAljSYo/AsDp/YcwFRSy/8/15UpeV3ssiWdYPfcr3hk0kpmjn+TvJUvJz87h4PpN5KZnKBaH3W7n8JZ/+Hzc87wzaASbFv6IMT+f3X/8ybkTJxWLAyD7fCo/TfuQdwaPZOevK7HbbKz98jtO7FauYBQ41v/8Oe9rPhz+MKcPxJKRnML7Q0cTt/FvReMA2LL4F+Y/8wJavY5j23fzxYQX2b9mveJxlGU1m1k1+wv2rV6rahwAx3bs5uC6Tdc+sZrlpKUT/89OtcPAarFwJu6oatdCZS16bbraIQgKESNqNZTB2Zm3f1lRbiqgGgKCG/LcvC+o17iJqtOFet47DO/atWnWsbOicYQ2b1F6OzCkEc/O/pwNPy2mbZ/+isUAjmTVNyCAb6a9weiXX2fg40+zZdnPpRVCleDk6so9zzxLqx69+eGDd0hNSiSoUSgNIiJpGBmpWByhzVvyzCefcnzfHv74aj6nYg8B4OHjQ7NOXRSJwcuvFgMeepT+D4zhwJZNbFn+CwkH9gOO/RCbxrRXJA5JkmjdszchUdHs27CW3ev+IvlYfOnXgxqFKhIHgLuXNz7+AfgGBGDUOf61yHZHp4pnbT/F4kiKO8LGbxeTsGc/eZlZ5b7m5OKqyEWW3W5nx/LfWb9gEZlnzv7r67LdjqmwqNrjAMhNz2DtV9/zzy8r/jUSbcwvIDvl36Pk1eX0wTh+fOs9ziecKj2WdsrRqXBizz7FRhltVivLP/w/ti5ZCsCsB58itTgOq8ms6PqkQxs2Uy8iHJ9Af04fjGPJm++SevI0HrV8adazK3oVpnEDHN+5hy8nTsFmsTJp0RcENWmsShwAv308h32r1zLkxYl0HX7PtR9QTU7tP8Rnj0+gaZcOPPZ/H6gWB0CtekGqti8oRxLVuf5NkiRP4MJ7f/ylyLosQbheKScTCAhuqHpZY4vJxJ/fLSD2n61M+fJb1eKQZZkjO3ew8qvPycvJ5o3FS1XrUEg5mcCW5UvZtWY14z/5lAYRTVWJIzXxNHvWr2XP2jV0umswvYePVDyGhfH7STMWEnDqJIkr1xAQGsKo/72maAyyLJOedIaTew6QsHc/CXv24+Hnx4Rv5yoyLdVut5OZnEJK/HFSjiWQcuwEZ48dJ+d8Gn71gnj+x2+qfQ+ps/EnWD3nC9LPJJNzPg1zUfnk0Nu/DpN++BJ3n+pd72oqLGTlp/P5e/Evl50RcdezT9N91DBFfi9Fefl8O+V14reVH6GpVb8eXYbfQ8zA23F2V+b/fvKReD59eBxjZkwjfttONi/6CVmWqRsRxvA3plI3XPn16QAndu9j/jPPYzGa6DlmJHeOf1K199WEPfuZ/egzOLu7MXX5Ijz8fFWJA2DFx7PZ+O1ibnvqEfo9Pka1OMDRyfJS19sAvGRZzlU1mGsouaZeeeJz3Dyqb1ppQV4hAxo/Dv+Bn8mNEInaZYhETRCuz7lTJwloGKLqaCs4Lspjt/1No+gWqlefLMrPJzcrE/8GwarGUVLcxDcgUPG2v4/fT7qxkIHNwgn29SYnLR2v2rVU/zvJSjmHm483Ti4uqsVQcCGXlGMn8Anwp1b9uoq1K8syxvx8clLTyUlN50JqGjlp6fiHBNOqf+9qazczOYXlH8wiI/ksdpsNu92ObLNjt9uw2+zIdjsGF2cenfU+/iHV+5rJTE7hiwkvknrydLnjWr2ex/7vfZq0b1ut7ZeVk5bOJ6MeJzc9A72zExajCZ3BQL/Hx9Bz9Ai0enUmPCXs2c/8cc9jNhrp8cBw7nr2adVetzarlY9GPsq54wkMem4c3UcNUyWOEu8PHc35hFM8u/AL6keGqxqLSNT+7WZN1MTUR0EQKiwwpJHaIQCOKYDRndWtolfCxd0dF3d3tcNAkiRVkjSAksmFJRd4NWU/It8gdX4eZbl5eRLWrrXi7UqShIuHBy4eHgQ2Vu5161cviEdmvqtYe1dyct9Bvp70EgU5F8odd/P2wifQn39+WYF/SEO86tSq9lhMRUV8NXFK6XpJi9FE3YgwRv3v9WpPVi9lt9s5ufcAjdu24uS+g8x/5gXMRiPd7r9X1SQN4J9fVnDueAL+jRrSZZh6Ux4BslLOcz7hFO6+PtSNUGekU7g1iURNEARBqFIlMzU0Yh81oQZIO53E7t9X02noYHwC/fEJ9Mc7wB+fAP9qn356KbvdzqJXppF85Fi546mnEtm3ei29Hx6l6Lq0g2s3smXxL9w5/knmj5uMuaiIriOGMui5Z1RN0vKzc1g15wsAhrwwQbURxhJHt24HoGnn9qpuuyLcekSiJgiCIFSp0g2vEZmaoL46DRtw36svqB0GACs//ZxD6zeX3pc0Gho2jyKyayeadu2IToGtTkrYLFZWzZ5PelIyn4+bjKmwiM7D7mbw8+NVn6a8avYXFOXm0bx3d0WnpF7Jka07AIjorFwBL0EAkagJgiAIVaxkRE3tiz1BqEl2rljJ+q8X4uLpQUSn9kR27UhEp/a4eXupFk96UjIApoJCgqOjuGuiutMdwVFkZfvSFeidnRg4aZxqcdisVsxFReidnDi+cw+SRkN4xxjV4hFuTSJREwRBEKqUnZJETeVABKGGyElNIzM5hXFffkpw8yi0OnUvv8xFRv6c93W5Y4mH4pj14JM8Ous9vP3rKBqPLMvsWrGSdgMHsPS9T5BlmV5j7sc3KEDROMqy22x8+sgz9HxwBOaiIkJaRuPq6aFaPMKtSSRqgiAIQpUqHVETUx8FAXBshXD704+qHUapv5f8Um7zd1cvT/o+9iCd7x2s6PTLEpnJKfw0fQYZZ85y+kAsvkGB9HxQ+a1FytJotJw7nsCiV6YBoHdyYvmHs2jZtxcNWzRTNTbh1iESNUEQBKFKlaxR04ghNUGocQpz81j31fcA6JwMdBt5L70fuh8XD/VGixL27MdmsbD2y+8A6PvYg+hULiAiXVIN6diO3VjMZlWnYwq3HpGoCYIgCFXKLoupj4JQU234ZhHG/AJiBg2g/5MP4xPgr3ZIJOzZX+7+kjff5cBfG3joo+mKVsEsS7qkuqNWr+e+V18QVR8FRYlETRAEQahSMqKYiCDURLnpGWQkJfPckq8JCgtVO5xSlyZqLfv1YuS0V9Dp9SpF5Hj/kjQaZLtjZ8h+jz2o+D53giASNaGULMviwkoQhEorHlBD9DsLQs3i7OHBgx+8rXYY5WSlnCf73PnS+x3vGcQ9U59Fo9WqGJWDRqPBZrcTGNaInmPUXTMn3JrE/1GhVE56Ovs2rlc7DEEQ/uNEeX5BqJkMzupMI7yasqNpfR55gKEvP1cjkjQASatB0mi477UXVR3dE25dIlGrgc6dOqlKu161arFkxnsc27tblfYFQbg5lJTnF8VEBEG4lpJEbeCksQwY93iN6uDRaLR0GzGU4GaRaoci3KJEolYD/bXwW9LPJiverkajwTcgkPmvTOHM8XjF209LPoOpsFDxdgVBqFolxUREoiYIwrWcPnCI4W9MoccDw9UO5V9q1a/LbWNrzrYKwq1HJGo1UG5WFivmzVGlbf8GwZgKC5n7wiTSk5VNFp1d3fjwqUc5eeigou0KglC1RKImCML1KMi5wB3jnyBm0B1qh3JZ9776PE4uLmqHIdzCRKJWAxXm5XJg80YSDu6/9slVrE4DR0WjvOxs5rwwkdzMTMXa9vT1JahRKDPHP8Wv82ZjMZkUa1sQhKohy7LYR00QhOvi5u1FdM9uaodxRWLKo6A2kajVQAW5FwBYNnsW9uKysErxb3Cx9GxmSgqfvTCJovx8xdrvMnAIsiyz7oeFfPjEw4pPwczLySZ+967SYgiCINwYOxdfOzVprYkgCIIg/NeIRK0GKszNAyAp/ih71v2laNsBwQ3L3T+bcJz5L7+o2OhW45atSpPFc6dPMePJR/nz26+xWa2KtO/h7cOuv/5k+ugRbPhpMYV5uYq0Kwg3C3uZTg4xoiYIgiAIFScStRrGarFgKro8EfRiAAAgAElEQVRYUOO3zz/DbDQq1n7tuvXK9YKHNIumRbfunE88rUj7kiTReeDg0vt2m40/vprPx+OeIFWhGO4eNwGz0ciy2bN4deggFr43naSjRxRpu4TZZFIsORWEqlQuUdOIRE0QBEEQKkokajVMYV5eufs56Wls+GmxYu3rnZzwDQykdc/eAJw/fZqY2+6gfpNwxWKI6X87eqeLe70YnJ1p1aM3JoUSVlcPD0a8MBUAi8nEjlV/8OGTj/DhEw/zz8rfFUmcJUnim7dfZ9bEcaz4/DMO/r2Z3Kysam9XECpLFiNqgiAIglAlVE3UJEnqJknSb5IkpUiSJEuSNPga5/coPu/Sj4BLzhsrSdJpSZKMkiTtkCQppnq/k6pTsj6tRN3QMLav/F3Roh7dhtzL6FfeIKpDJ4ry89i6YplibQO4enjSulcfwLGHidloxGaz0iA8QrEYmrZrT5dBQ8odS4o/yu/z57Ljz5XVvoZNbzAw6qXX0Gg0rF30HV+8MoVX7r6TN4bfw4K3XmPjz0s4fTgOi9lcrXGA4/tOOnqEzHMpFOXni/V7wlWVHVETaZogCIJQE91oDlL8GCdJkqZLkpQoSZKpONd4uDrj1FXnk18HN+AA8BWw9AYeFw6UXTyUVnJDkqRhwEfAk8AOYCLwpyRJ4bIsp1HDFebmEtqiJQHBIWxdsYwW3XvQb9SDWC0WxWLoee8wAPo98CBx27ex4cfFdLv7XgxlRrmqW5dBQzi8/R9GTX2FeVOe548v5lG3UShRHTsrFsOgJ8ZyZNcOMlNSSo91HjiYLgOHKFIkweDkxGPT32PulOdIOOCoAJp1/hxZ58+xd/1amrRuw8gXX8bXP+Aaz1Q57l5efPXGK6XTPzVaLW6enrh6eOLm6YWrlyf+9YO589En0Oqq9y3FbrNhMhoxG4swFzk+m4xGTEWFmI1GzEVFNGnTFi+/WtUax9WYjUYyUs5Sq249RV8zl1OYl4uzqxsarVaxNkuKiUhcLCZiLjKid3ZSvbiIuciIwcVZ1RgAivLycPHwUDsMctLS8a5TW9UYLCZTuRkUgiAICqlIDvIj4A88ApwAAqnmQS9VEzVZllcBq+CGq4OlybKcc4WvTQLmy7L8dfHzPgncATwMvFvxaJVRp359xn44k/g9u9i6Yhmn42LRaDSqXPCFREUT1qo1x/ftZfsfv9Ht7qGKtR0cEcnIF6bSNKYDd4+bwM+zPuKbaW/w3GdflKtMWZ2cXF0ZNeUVZk0Yi7OrGyZjEau/+YrUpERGvvCSInurOLm48MQ7HzDn+Wc5HRdbelxvMNDxjrvwqeNf7TH4BgQyYdZnLJszi7+XL8Vus5GXnU1edjYAnn61GPT409WepBUVFPDHF/PY8utS5CtUQ23Tuy9t+/av1jjAMUU5I+UsGWeTyUg5S/rZ5NLbFzIyaN6lG4+8/U61x1GW3W4nNfE0p+IOcSoultNxsdSuX5/Hp7+vbBzFI2qSJLHtp+XEbtqKs5sro997U9E4SuOx20nYs58dy39Hp9cz/I2pqsQBcD7hFOu+/h5XLy+GPD9etTgyzpxl+QczCYtpQ/dRw1SLI/VUIss/nMUTs2eoFgNA9vlUfAKq/71UEISa40ZzEEmSbgO6A41kWS5Zi3K6uuIrofaIWkXtlyTJCYgF3pBleSuAJEkGoA1QeoUky7JdkqS1QMcrPVnxc5XNhFTr6vTw8QWgYWQzAE7FxWK329Fo1Jml2u/+Bzm+by/rFi+k88DB1X4xXlbJ6FnXIfeQfOIY21f+ztdvvsoL8xco9vMIbd6SnvcOpzA/j3b9buer119m34Z15GZmMH7mHEVGCJxd3XjqvY+YPXlC6aiWxWzmm7ffYNeaP3nyveq/yNEbDNw3cTKNmjVn8Yfvllunl5uZwe9ffs4jb/2vWmNwcXNj6IRJdBhwJz/NnMGp2EOXPU+J30lGyln+WvgtB7dsuuxUUGc3N0XiyM3KYuuKZZyKO0Ti4cMUFZTfSkPJtaWyLHPmWDx7d++AZmFYi4r4+X+Ov81W/Xtjs1oVff/IPpfKrt9WsXPFSrLOnnPEcVsfTEVFim9geybuKGu/+o5D6zcD0PaO/hRcyMXNy1PROMxFRtZ9/T0bvvkBq9mMt38dcjMy8azlp2gcAP/P3n3HN1X9fxx/nXS3tIUyy957762AbBkCylA24kBUkK+CiAgooCigoKIylK2i7D1l771nmaWlZXSPJPf3R5pSEFy094Qfn+fjwcMmTXLe0pKbzz2fc+6BVev4eeRnZM2bm/0r11G4SgUts3tn9x5g9ZTp9Js6iUvHThCYPTuBOcyfkU97nL8THoGbhzuZsmQ2PUdaSfGO93nds9B2ux2llPYZeVdyYvtO3RFcmf99vyuJhmGkx9blrYG9wLtKqa5ALLAEGGYYRnw6vP4DPW6FWiiOlsa9OAqrPsAmpVQNwzD2A9kANyDsvueFAX+1wGkIMDz94/53fgEBdHhzIDkLFASNa4KKV6lKw45dqFD/aVM/ZKWllOL5twcRe+cOjTq9aHrR2rJ3X0JOHKdYxUr877tpTB02hAYvdDb1oOGTKROvj5vA5IFvYrFYaNjpRZZ+/y0lqlYzLQNA1WeakKdIUaZ9+D7hly9hcXPDy8eXwGzmfbDJW6w4b331LXvWrGLJd1+nzuwBJCZk2HvlPfKXKEnvkaMJuxjCunmz2bN2NXabLfX71y6cNyVHQFAQVZ9pis1q5XpIyJ8KtZN7d5uSIykhgXXzZrNtySISPNzIW/a9e2Y9D6xeT+eR72d4DmtSEkc2bmH34uWc3rn3T0X0gVXraPZab7Lnz5vhWQzD4Ny+g6yfPotTO/bc8729y1dTvW1LilatlOE5nFmObtrConGTuBV6PfX+7QsWU6B8Waq1amZKDnD8jBaP/5ptPzs6jULPnGP2+yNo/nofGr/c3bQcAOcPHGbqm+/hG+DPzPeGc3DNBmq0bUnH4YNNzZEYF8f6GXNo0e9lLhw8wo//+4BchQvR9+vPtR13DcNg/kdjuHHpMr0mjNE643h4/R+smzqTVgNep0RNc495ad0OC2fO0FGUrl+bBt06a8sBsGHGXK3j/xeHb1/A25pxRX9CTOoJ5Cv3fWsE8FE6DFEYqAskAM/hqDm+AbICPdPh9R/osSrUDMM4BaS9AvJ2pVQRYADQ9RFeegyOdW1O/vz5B206M1sNH0YpRdvX3tAdAw9PT17+5FM9Y3t5Uayi4wNVUK5gBk2ZZuqaHydf/wBeHzeR1bNmULlBI8rVqaflDGNwocIM+m4a88eN5fDWLYz6bYlp19lzslgs1GjWgnJ16rHyx6lsXvgbJapU4/m3BpmaI2eBgrw4+AOa9+jNhp/nsWP5EpTFjZ4fjjItQ/a8eXm2zyu06NmHU/v3smvlcg5v2Yw1OYmO77xnSgZPb29a9OxDs+69OHryGOuTo+/Z8bHxy92xmPCB0+LuTu5iRajYpBFZgnNx8cgxrp+9kFqwVWjcgMDsGX9SIfZOFMu/msLeZauxPmDDn7ylipOzcMEMzwFw4+JlFn72JSe37/rT9zJlyUyeEkVNyQFw81ooP707nMvH7r3cSc5CBchd3LwcABcOHuGHNwaRFB9PUnw8B9dswMvPl2z585maA2DJ+G84uX0XmXPmYOGnE7FZreQvUxprcrKphVraWb1102ZxcM0G/DIHPrTV3KxMa3/4idAz54i9defvn5CBQg4d5dy+g2QKyqI1B0DXMcMZ+9yLumP8K/7uVfHx8Muw1/dwj3V+mRdIu4V6en1AsQAG8KJhGHcAlFIDgQVKqdczalbtsSrUHmI3jgoXIAKw4Vjol1ZO4DoPkTIlmvqDlOl18Vd0FGlOmTJn5rnXHWtbPDw9teXw9vWj+4cj2bxwATarFb8Ac1u4nHz9/WnffwA1mz/L6lk/kjm7no0RgnIF0+GtgTTp2oNNC34m5s5tsufN+FmbtCxubpSqVoNS1WoQFx3FvvVrib3zsKW8GZTBYiFnwUJw5jCZAgP4cNVvHN+yg8grV015X7VYLOQsXJCchQtSo21LABJiYrl07AQXjxzn2qkzJCcmZngrl19gAC8Me5cOQwcRdSOCiMtXibh8lcgrV4m8co2Iy1e4fu4C/hn8ge/KydOsmzoTa3Iy+cqUSilKHJvuJMbHE3PrNgfXbDClSDq+ZTtzPviY+KjoP33v1vVw3L3Mez+7eOQY378xiMS4u5+r3Dw8eHXKBAqULW1aDoDjW3aw47fFACz45HMAmr7ay3Fyw+TukbU//ESDbp05vXMPK7/+AYu7Gz0+/5ig3MGm5kjr+B/bCD1zjuz581KxSQMtGS4ePU6e4kW5cMixTrxghbJacqSlo135MRJtGEbU3z/sXwsFrjqLtBQncOydlRc4kwFj/r8o1Cri+MvDMIwkpdQ+oBGwCEApZUm5PVlbQiHSkc5CMS2lFE+1e153DADyFC1Gz48+1h2DgKAgWvd9TXcMfP0DqNe2vZaxnZuJWJQic84c1O7QRksOJ+9MfhSvUZXiNaqaPrbFYiFzzhxkzpnDtDbHtPKWLE6Pzx/+78Jus5GUkIhhGBlWSNvtdrbO/50dCxaRs1ABfAMD8A0IwDfQHx9/f8ftwAAsFkuG5nC6dOwE373+Domxcffcb0tOZv6Ho+k5YTQ5CuTP0AxOMbdu8/PIe/c4q9G2JY37dDO9SEuIjWPTrPnE3Yli9+LlALQfPJAiVSqamgPAlmzF4u44zq354ScAGvXuqu3Yd37/IRaPm0R8ynVuC5Qrw9VTZ8hZuCDuHh5aMgkttgHPK6UyGYbhXGdQHLCTgV14Wgs1pVQmIO2pvEJKqYrATcMwLimlxgB5DMPolvL4t4ELwDHAG8catYZAkzSvMR74SSm1F8ds29s4tuCckdH/P0IIfWQm3DXYUgo1N00bIIl/zuLmhrefb8aOYbFQv0sH6nfR38p/5cQpvnttIAkxsXj5+ZK/TEnyly1N/rKlyF+mtKmbiBiGwW+jvyA64uY99+9atBx3Ly/aDupvatvjvuWrSYyNY8u8BQDU6diOWu1bmzZ+WpePn+TSsZNkz5+XKydOEZQ7mCrNm/z9EzOIj78/IYfv7rr83esDKVq1Mr0nmruzr0hf/7YGAeYCw4AZSqnhONaojQOm/3/eTKQqsDHNbec6sZ+AHjiuT5D21JYn8AWQB4gDDgPPGIaR+hqGYfyslMoOjARyAQeBZoZh3L/BiBBCiHSWdkZNCFcRHx3N4Q2baTOoP/nLlCJHoQLadlMG2LdiDYfWbUq9nSkoC9XbtKBWu9ZkzZvb1CyGYbD153svIxVy8Agrv55Kk749cPMw96Pi9fMhLJkwmawpLZeNer1keoa0fO/bnTU5MZFWA/R3TohH9q9qEMMwYpRSjYFJODY1jMRxXbUPMjKk7uuobcLR2/mw7/e47/ZnwN9eFMgwjMlIq6MQQpjObjg2HpBCTbgSH39/WvR7WXcMwHHdtt/HTgSgWPXK1OrQlrJP19XWRndu30HCzofcc59vYAA1nntWS4EUdj4Eu9XGjUuObrKze/YTeeUazfv10bILpm/AvVdsqtuxnWntsSLj/NsaJOW+k0DjjEv1Z7pn1IQQQvw/Ykdm1IR4GLvdzrKJ31Kz3bPUatea7AXM32XyftvSzKZ5+vjQesDr1OrQRls7+f1F48kdu+k//Wttlyrw8b9bqPkGBtCkb4btxC7En0ihJoQQIt3Y7M41alKoCXE/W3IynUe+j7vGXXvTuh1+gyMbtwBQpGolOn00mKx5zG29vF/YhYupX3t6e/PypHHkKlJIWx7fwLuFWpO+Pf80wyZERpJCTQghRLqRNWpCPJyHl5fuCPfY+dsS3D08aDmoP3VeeE7ruj1wXPzbeVF2N3d3enzxMQXLl9GayVmY5SiYnzrPt9WaRTx5pFATQgiRbqT1UYjHgzU5mbALF3nn5xlkz2/udR8fJvzCJcCxi2+Xjz+gZO0amhM52kEt7m60GvC61k1NxJNJfuOEEEKkG9lMRIjHg2G303XMcJe5Nic4dnwEaDd4AJWaNtIbJoVSiopNGlK6Xm3dUcQTSAo1IYQQ6cZ5HTWLrFETwqW5WhsmODYSaf56H+q88JzuKPdo+05/uVan0EIKNSGEEOlG1qgJIf6r4jWqUqxGFd0x/iRTUBbdEcQTSgo1IYQQ6cY5o+am9G5KIIR4/BSvWVV3BCFcihxJhRBCpBub3bFGTbbnF0IIIR6NFGriT5ISEjh/5LDuGEKIx5Cz9dFN8zbfQgghxONOjqQuKikhQdvYHl5ezBozkts3bmgZ3zAMboZd1zK2EOLR2GSNmhBCCJEupFBzUWvnzsJmtWoZWykFBkz7cAjJiYlaxl/y3Tec2L3T9LGFEI/GZkjroxBCCJEepFBzUWcO7Gf3mlXaxvcPCuLiieP8+uUXGClnyM1UrFJlpgwexLp5s7WMb7fZCL1w3vRxhXjcyWYiQgghRPqQI6mLun0jnNU/TceanKxl/MCs2QDYuWIZWxb9bvr45erUB8NgyXff8NOo4aa3glrc3Ni+bAnThw8lNOSCqWML8ThLveC1zKgJIYQQj0QKNRdkt9u5ExnBzbDr7FixVEsG/6Cg1K9/nzyRs4cOmDp+QFAQhcuVB2D/hnVMeOMVIkNDTc3QrFtPTu3by9ieLzHz448Iv3LZ1PEBbly5wuEtf5AYH2/62EL8F3dn1KRQE0IIIR6FFGouKPbObWwpM2lrZv1IkoZ1YgFBWVO/tttsTB8+lFvhYaZmKF/v6dSvr549w+ev9OL0/r2mje8XGEiz7j0xDIO969YwulsX5n42hpvXzSsYs+XJw5FtW3i/TXO+f/9dti9bQtTNm6aN72S32UwfUzyeUjcTkV0fhRBCiEciR1IXlHa3xTsREWxbssj0DAFpZtQArMnJTPvwfVOLxgr16t9zOzbqDt8MGsCuVStMy1CvbXuy58kLgN1uY+eKpYx6qSO/TPzclF0xlVK8MPBd8hQrztHtW5n/+ViGtW/F+H59WTtnJtcvhpiyhu9OZASTB/ZnYv/XmPvZaNbOncWhzZu4dv6clhMJwnXZnddRkxk1IYQQ4pG46w4g/uz2jfB7bq+bO5Paz7bGy8fHtAz+KTNqmTJnJub2bZ5/exCVGzQybXyAoFzB5CteksunTwLg7efHe1N/ImtwbtMyuHt40PrVfkwbNiT1PrvdTnxMDOGXL5I5e/YMz+Dh6UmfUWP54tXe3AoPwzAMQo4dJeTYUZb+MIX67TrQrt9bWNzcMixDlhw56TXiE34Y+h47Vyy753tKKbLkyMkLA/9H6Rq1MiwDQEJcLEu+/5bLp07h5u6Oxc0NNze3u1+7u9Pm1X5ky50nQ3M4GYZBfEwMUTcjHX8iI4mKjCA2KopnunTFx8/PlBz3i4uO5sqZU1wPCaFO67a4uZv3Vm+77zpqt0LDuHDwCJWaNXLsKKtJfHQM5w8cokz9OtoyACTGxXHxyHGK16iqNUd8dAzXz12gUMVyWnPcDr9BUlw8OQrm15rj0rET5C9TSmsGIYS4n8youaC0hZqbhwcenl5sXrjA1AwBQUE06vQiHd4cCMC2JYtwc3c39QMfQPl69fH196dohUokxMayYsZUU8cHKF+3PkUqVEy9bdjtZM0VTLFKVUzLEBAURJ9PxuLp7X3P/RWfbkj7/gMytEhz8vUP4PVxE6lQ/+l77jcMg1LVa1Kqes0Mz+Dt60f7N96mbO06hBw/ytmD+zm1bw/Hd+3g6PatBOXKZUqRZrfb2bp4IUPaNGdwq6aM7t6FyQP6M/Pjj1j07WQMwzCtSIuLjub0/r2smzebGSOGMbLL8wxu1ZTJA98k6mak6f9mrSkzakc3bGbcCz0Y1aID4RcvmZohrcvHT/HzyE8Z0eQ5rp48o2UXWXB0JWyZ/xuftOrEtVNnteUAOL1rL+Ne6M6NS5e15rh+7gJfdXuVqIhIrTkir17jhzf+R3x0jNYc4RcvceOi+WuhxeMnOUk6WZ4UUqi5oOhbt2j7en8Kly1P6eo1+XDeAqo1bmZqhtyFitCq72uUr/cUgdmyE5gtm5YdKCvUf5qm3XrSdehwfPwyYUtONv36ckopnnv9zdQ87h6ehF26iJHygdQs+YqV4MXBH9xzX1KCuZuMeHh50XP4KOq1bX/P/dcvhZg2W+Lm7k7Trj0YNGUawYUK3/O90/v2mZLBYrFQt81zDJ42i9qt2mCx3Fso71u/xpQcABFXr7B33VpW/jiNAxvXE3Htaur3Ni34xbQcV86cZu5nozlz2LHx0LGNmwk9cw6ANd/NSF13a4bE+Hh2LVrOhJf6MuHFPuxauIykhATW/PAjUTciTcsBjvWde5etYmzbF1n46URibt5i5bdTCT1r/uU/EuPj+X3sBKa8OoDb18NZ/MVkzu8/ZHoOgLN7DzCp5+vcDgtn7rCPOb55u5YcCTGxTHtrMLG37/DtK29zYNV6LTkAlo7/hiMbN7NqynR2L16uLcf1c46djk/t3MPOhcu0Fq/gmJXfs3SVluu6Oh1atwlrcjJHNm7mVqi56/UfZMaAobojCJNI66MLatixM96+fjR8oXPqfWa02KXl4eUFOD6Qfjj3Vzw8PU0d3ylXgYJkz5MXN3d3Bs+YRZYcObXkyF+iJNWbNqd5jz407tKV3EWKmjKLdb9KTzfkeo/erPxxGl3ee5+SVWuY3k5mcXOjw1sDyZwjB0u//5ZqTZr9qXAzQ95ixRn03XRWzpjK+p/nkqtAQZ7t09fUDJmzZ6fTO+/RsGMXVkz/gf0b1uHm4UGLni+bliF/yVJ0KVmKtq+9wd61q9m2ZGHqJSXqtm5rWo48RYvRsGMXFl87RxxAmg1oStaugTJpc5Gw8yEsnfgNZ/cc+NNlPXIVLmRKBnDMNB/7YxsrJn+f+sHXyTuTH7Ykc098hRw6ytxhnxBx+UrqfckJiUTdiDA1B8DBNRuY88HHqcX77evhnN17gDJPmduWarfZmP3+iNSfz5UTp1g/YzYVmzY0fTOc0zv3cmzzNs7s2U9SfDwe3l6UrFOTgGxZ//7J6chuszH1zffo/eVY5g37hKiISAKyBVG6Xm1TcwBcOHiEghXKsu3XhWyYMYdrp87QZlB/03MA7Fu+mvXTZ3HlxGnylCxG3Y7tCciWlVJ1M76T5EEqNWtEyOGjWsYW5pJCzQV5++pZ1/Iwuoo0J2frlq4izal9/wH4ZMpE1uBgrTmadutJ+OVLVGvczPS2NielFI27dCUwWzZi70RRsHQZLTk8PD1p/crrlK1Tj7VzZlKmlp71Rzny5qPHhyNp1PlFlk/9nnzFS5iewdffn/rtOlDvufacP3KYbUsXkTlHDtPGV0qRq0BB/BPvEBcfS5cR7xN75GjqTIlZv6s5Cxekz1efYbfZCA+5xJWTp7ly4hRXjp8m+uZNPH28//5F0kHY+RDCLlykWI2q5CpSiKiISKIjIomKiCTudhR2uzk7qVqTklg1ZTobf5r3py4Aa1ISsXeiTMnh9MecX1jyxeQ/zdLERUWRnJiYepLQDMu+msLxLTvuuc/bz5fQM+fJU6KoaTlsViuLvpgEQFLKpVha9n/V9CIN4PyBw9y8FspX3V8lMS6eknVqUqpuxq49fpg/Zv/MqZ172L3IMbtYvW1LLTkAAnPm4OimrQBcPXmGhZ9OZOiyn7XlqdaqOQs/+1Lb+MI8UqgJ8Q/5ZMqkOwLgmOV8acgwbUVaWtWbNNfajuJUuGw5en30se4Y5CtWglc//ULbherBUTAVKV+BIuUrmN4mDHc3E/Hzz0Splk2p2rIptmQrhmGYOvtrcXMjV5FC5CpSiKotmwKOtYV2k/5OnGM/SGJcHMmJSabkuHHpCvnLlqbX+NFY3NywuLulbsLj3IDHbrdn+AyS3W5n2cRv2TRrPgCe3t5kzZeH7Pnzki1/XrLly0t05C2CcufK0BxOu5esYNPM+ffc5+HthW9AAFdPniK4aCHTuiZ2LVrO9ftaYReN+5LYW7dp9npvU//dHF63CYDEOEfB6Jc5gJ2/L6Xqs01NLaIBoiIiObz+DwAy58rBlROnuX09XMssVmD2bPfcrtu5Pf5Zgx7yaCHSj/5PekKIf80VijQnsw/eD+MqOcCxW6gr0PF7YjNStue33P1w6ebhGr+vFosFi+YOAQAvX1+8fH1NGSu4aGGCixb++wdmsMvHT5K9YD5e/+ErsuXPS2D2bNp2AT1/4DC/jhoHgH+2IMrUr0OZ+nUoVr2KaTOuTvHRMaz65t5NsorXqErTV3uZviOn3W7n8IbN99x3dNNWyjd6Ssv7a1TE3fWkt6+Hs2jcl7w9+wfTcwBkznl3+Yl3Jj8adO+iJYd48rjG0VMIIcT/CzZ7yvb8SvaqEncVKFuaAmVL647BzWuhrPluBg17vEjpp2qTr3RJrRdnXzdtJjG3bgNQpEpFmr3WmyJVKv7NszLGxcPH7lmzmKNgfnp+8Qk5Cxc0PYthGPcUaspioevYj8ieP6/pWQACc9wt1J56qSN+gQFacognjxRqQggh0o31ATNqQriKgGxZeXXKBN0xAEdb6uY5v1KoYjmavd6HYtUqa83jbDMEKPNUXbqMGoqPv56W/4SYGKxp2oNbvvkKJWvX0JIF7hZqvoEB1O/yvLYc4skjhZoQQoh0c/8Fr4VwJe4u0PrqdGTDH/T56lOK16ym9WLw4JjBchZqTV/tReOXu2udaUx7GY1KzZ6hQbfOf/HojBeYw7FGrUH3LtqKV/FkkkJNCCFEurGl7CzopvmDpxCurkH3LtoLNKcrx08RHx1N74ljTb9MwoM42x7zlCxGxw/f0/735OXrS46C+anbqZ3WHOLJI4WaEEKIdOPcTMRdZtSE+Eu6i4+0wi6E8Pas78lRML/uKICjUMuUJTO9xo8xfYOXh2n33gC8fHx0x/j5G5EAACAASURBVBBPGCnUhBBCpAu7YeC8Opa0Pgrx+KjSsqlLFY6xt+/QfdwosgTrvX5qWsVrVtUdQTyBpFATQgiRLmxpLqgsm4kI8fhwpSINoEqLJvhlDtQdQwjt5JSnEEKIdOFsewSZURNC/HdSpAnhIEdSIYQQ6cKasuOjAiwudoZeCCGEeNxIoSaEECJdpO74KLNpQgghxCOTo6kQQoh0YZUdH4UQQoh0I0dTIYQQ6eLujJq0PQohhBCPSgo1IYQQ6cK5Rk1aH4UQQohHJ0dT8VBJiYm6IwghHiNysWshhBAi/cjRVDzU8mnfYbNatY1/Kzwca3KytvGFEP+OVVofhRBCiHQjhZqLir59i6vnzmrNcPXsWVb+OE3b+IbdxneDBxEfG6stQ3JSkraxhXjcyIyaEEIIkX7kaOqiIq9dY+3sn7Rm8PbzY+2cmZzau0fL+EG5gokMvcakt/sRdfOmlgxRkZHMGfsxdyIjtIwvxOPEKtvzCyGEEOlGjqYuKjL0Kgc2bSDs0kVtGbx9fTEMg5mfjNBWKBWvUpUrZ04z4Y2+hF+5bPr4WYODMQz4+KVObPh5rpZWUMMw2L5sCReOHcVI2axBCFckM2pCCCFE+pGjqYuKDA3FMAzWzpmpLYO3rx8A0bduMnvMSOwpZ8vNVLxyVcAxwzjxjVe4ePK46Rkav9iVpIR4Fn07mbG9u3Fq315Tx1dKUbRiJb4Z9DafdOvM2jkzuX3jhqkZAJITE1NPHuj4XRCuz2p37vooa9SEEEKIRyWFmouKuHYNgL1r1xBx7aqWDF6+vqlfn9yzm/XzZpueoVilyqlfx9y+zaS3+3Ni905TM+TMX4BKTzcEIOxiCF+/8ybTP/qAm2HXTcuQI28+nh/wDuGXL7H0hykM7/gc3/xvAPvWrzVtd04PLy88vbwY27sbg1s1ZdKAN1g85Wv2b1xPZOg102b7klIKxuO7dnDh2BFCQy5wJ+IGSQkJMuOomcyoCSGEEOnHXXcA8WA3rzsKNbvdxrq5s+g0aLDpGbzTFGoAy6f9QJEKlShctpxpGfwzZyFPkWJcPXcGAJs1mQVfjqfbBx9RoFRp03I0fqk7+zeuT719YvdOPDw96fDWO/j4+ZmSoXqT5pzcs5u9a1dj2O2c3LOLSyePE3vnDvWea49SGT+LUaZWHfqMHM3UD9/nzIH9nDmwH4BMmTPT86NPKFaxUoZn8PTyIiAoKz+O/JA7EffOLAblCqb/hElkDc6d4TlsVivbly/hxpXLxMfEEB8dTVzKf739fOk7ehw+mTJleI60Yu/c4eq5M1w9d45r586QlJhIt6HDcXM3560+7Ro1wzAIOx/Csc3buRMWznPvvW3K7+iD2JKtHNm0hbDzITR9paeWDE4hh45y+fhJ6nXuoDVH6NnzhJ45T+Xmz2jNEXY+hJhbtylSpaLWHFdOnCIwZw78g7JozXHj4mWyF8inNQOANTkZdw8P3TGEeOLJaU8XdfvGDQKCshKUKxhlcSM+Jsb0DF6+fnh4euLp7Y1fQCAfzJ6Pn7+/6TmKV6mS+nVgtuwMnTnP1CINIE+RopSrUy/1drbgPLw4+APTijSn598eRLbceVJvBxcqbFqR5lSmVh36jBqDW5qDeJ6ixUwp0pyKlK/Ae1N/olT1mvfcnzN/AVOKNAA3d3eqNHwGDNizZhWHt27m7MH9XD13Bg8vb9OKNLvdzvZlSxje8TmGtGnO5IFvsvDrL9m1agVxUVFY3NxMyQGQlLKG8+LBI4xu3YnPOnRj+VdTCL94GbvNZloOp+ibt1g7dSYfP/sCM9/9kItHjpMYH296DoBboWHMGjKCr3q8xpk9+4mPjtaSwzAMdi9ezsSufTm5bScxN29pyQFw/dwFvun7Fsf+2EZURKS2HAmxccwa/BFHNmzWmsMwDGYOHs7l46e0/lwAfhn5GfHRMSTExmnNcWrnHux2u9ZLBQHax7/fjt+X6I4gTCIzai7IMAx6fDgSNw8PPL28yRocrCVHpsBAeo8ai2G3kbtIMbLkyKElR/HKVQm/dImKTzWgaMVKpn7wTKtJ1+4c37WDxi92o1zdelg0tHf5+PnR/cMRTOj3CiWrVadO6+e0zFKUqVmbPqPGMHXYELIF56Zc7Xp//6R0lilzZl4Z+znr581m+bQf8PL1JXeRIqZm8PUPoN0bb1GndVsWfTuZYzu2AeAXGGhaBovFQu1nW1OyajW2Ll7I9uVLiIuKAiA26o5pvx+GYRB+7Sp4KsLOnifyyrXU7106egLDxHWNl4+fYsu8BRxYvR5bmmsxntm1l6jwCFNnLBLj4tjw41w2zpyHNdFxuY+jG7dwsUMbStauYVoOgMT4eH4bPZ69y1YBsHf5avKVKallds9ZpMXcvMWmWfOxJiXRbvAA03MA/D52AjcuXWHBJ59zaO1GXp0yQcv76rE/tnH15Bkm9+5Hllw56f/jt/gFBpieI/ZOFPuWr+bikWMkxsXTc/wnFChr7slRp2VffkvOQgU5vWsvz775CtXbtNSS4074DVZ8/QO3QsMoU782+UqXpGi1ytq6BI5u2qplXGE+KdRckFKKvMWK645BxacbailG7lekfAWCCxYiKJeegtWpQMnSdHhzIHVat9Weo9XLr1G2Vm1yFiioLYezWAs5foz67fS0cVksFhq/2I3C5cqzbNr3tHmln5YcOfMX4JUx4zixZxeLvv6KFj37mJ4hKFcwrV95nWY9erNv/Vo2//4rddu0M218pRRZgoO5GHmdpzq2I/sz9Tm+eTvHNm+nUKVyuHt6mpYla97cVG/TgrylShB65izXTp8j9Nx5sufPR1Bu895HQg4d5bcx4wk9dx679e6Mok+APzkK5jctBzhaHWe++yFhF+7uJKyUMvXvwyltkebk5uGB3WYz/UTc3mWrUgtXcLT83b4eTpbgnKbmMAyDtT84LsmTnJBI9M1bnN6xm5J1auBjcifL2T37MQyDGxcdOy3vWbKS8AuXqPpsU9MLk4TYOPavXAvAptm/sH/lOrqMGkpA9mym5gjMkZ2Dqzdgt9m4cOAwNdu3plj1Kn//xAzSa/xohjV4Vtv4wjxSqImHcoUiDRy7Tzp3oNRNd5Hm1OCFTrojAI5irVjFyn//wAxWpHxF+n7yme4YlKpWg+JTfyIxXl+7kKeXF7VaPEvN5i2JumluG5c1ZTMRDw93ilWvQrHqVWj9zhtEXnFsNmPWhzzfAH+KVq1E0ap323FtVisRl66QEBdn2ixFwQpleWf+dAzDICkhgfioaOKjY4iPiiYxzrwWzGtnzrH2+x/JXaIYRapWwjuTHz7+/vhk8sNmtWK32017vw89e55v+75FzK3bAGTOlYN8pUvilzmA22E3CMqdy5Qc4FgPtmD0+NTbSincPTy4eOQYmXPlMLUoObl9N5ePn0y9nRATy/mDRyheq7ppGZzO7N53z+2jm7ZSu0MbLbNHiTGxqV9fP3ueBt06m16kgaPVPUtwTiKvXMPi5kajni+anuH+POLJID9pIR5DrlJEA3h6e+uOAGD6xh0P4+bujq+/+e1K91NKEZjV3A80zs1E0u76qJQiW748D3uKadzc3clZuKCWsZVSePn44OXjQ+ac5reQ5y5WhO7jRpk+7v2iI2+yZd4C6nZqT77SJclbuoS2zTusSUnMGvIRSfHxZC+Qj2qtmlGlZVOy5DJ3Jg2cs2k/pt4uVKk87d4bQJ4SRU3PAo4WYaechQrQ9+svTJ9hdEqIu3vSq+qzzajWqpmWHABBuYOJvHKNKi0akzWPOWuhhZBCTQghRLqwyvb84i/4Zw3ihWHv6o4BwIYf55KvdCnavTeAAuXLaFtrBI5Ww5BDRwnIlpVWA/tRudkz2vLcCg3jxqUrgGNGuPeXn2pZJweONlTnus4cBfPTfoieNYxOQXmCURYLjXp31ZpDPFmkUBNCCJEuHjSjJoSrMQyDhj26mLpu8q9s+HEODXp0oXGf7nj7+f79EzLQmd2O2bSyDerx0ujheHp7acuSmLLjpLunJ90+HXHPtV11yJonNxWbNCRHAXPXl4onmxRqQggh0kXa66gJ4aqUUi5TpCXExPLcu2+bvrnMw5zevY/aHdrQbvAAbTssOyXEOtantR3Un9zF9bSBppUtXx7KPFVHdwzxhJFCTQghRLpIbX10k0JNiH/CO5Mf3plcY7MswzAoWrUyNdq21NoK6pQQE0eFxg2o1aGN7igAlHmqDh5e+mYYxZNJCjUhhBDpQlofhXh8KaWo+ZzrbPnuncmXF4a96xJFIyBFmtBC69FUKVVfKbVUKXVNKWUopf5y73OlVDul1Fql1A2lVJRSaodSqul9j/ko5bXS/jn5sNcUQgiRPqRQE0Kkl6x5cuPj7xq7+Yr/v5RS/ZRSIUqpBKXULqXUX14TQyn1tlLqlFIqXil1WSk1QSmVYdtf6z6a+gGHgH96ldr6wFqgBVAF2AgsVUpVuu9xx4DgNH/qpktaIYQQDyW7PgohhHhcKKU6AuOBEUBlHDXJaqXUA6+jopTqAoxNeXwpoDfQERidURm1tj4ahrESWAn8o6ltwzDevu+u95VSbYBWwIE091sNw7ieXjmFEEL8vbszaq7RqiSEEEL8hYHAD4ZhzABQSr0KtAR64SjI7lcb2GYYxtyU2yFKqXlAjYwK+Fif9lRKWQB/4OZ93yqW0k55Xik1Ryn1l9spKaW8lFIBzj8prymEEOJfkF0fhRBCaOaf9jO9UuqBiwuVUp44uvPWOe8zDMOecrvWQ157O1DF2R6plCqMo8tvRXr+D6T1uG8mMgjIBPyS5r5dQA/gFI62x+HAFqVUWcMwoh/yOkNSHieEEOI/MAxDdn0UQgjxQHvCr+AZ65Nhr58UG+/88sp93xoBfPSAp2QD3ICw++4PA0o+aAzDMOYqpbIBW5WjFdAdmGIYxv/P1sdHkdInOhxoYxhGuPP+lHZKp8NKqV3AReAFYNpDXm4Mjh5VJ3/+/IMWQgjxELaUIg3Aw6L3+ktCCCFcS3GfEnj7ZtylKBLssc4v8wJpJ2YS02sMpdTTwPvA6zgmhooCXyqlhhmGMSq9xknrsSzUlFKdgKnA84ZhrPurxxqGcVspdRrHX+bDHpNImh+kq2wFK4QQj4tk+91CTWbUhBBCaBJtGEbUP3hcBGADct53f07gYftcjAJmGYYxNeX2EaWUH/C9UuqTlNbJdPXYHU2VUp2BGUBnwzCW/4PHZwKKAKEZnU0IIZ5UzvVpFqWwyMkuIYQQLswwjCRgH9DIeV/K3heNgB0PeZovcH8xZnM+Pb0zguYZtZQiKu1MVyGlVEXgpmEYl5RSY4A8hmF0S3l8F+An4C1gl1IqV8rz4g3DuJPymM+BpTjaHXPj6E21AfPM+H8SQognkXN9mofMpgkhhHg8jAd+UkrtBXYDb+O4dJhzF8iZwFXDMIakPH4pMFApdYC7rY+jgKWGYdjuf/H0oLv1sSqOa6E5OdeJ/YRjQ5BgIO2OjX1xZP465Q/3PR4cvanzgKzADWArUNMwjBvpG10IIYRTslzsWgghxGPEMIyflVLZgZFALuAg0MwwDOcGI/m5dwbtY8BI+W8eHHXGUmBoRmXUfR21TfzFVKFhGD3uu/30P3jNTo+aSzjYbTYMw8DNXXc9L4RwdVa742SiFGpCCCEeF4ZhTAYmP+R7T99324qjU29ExidzkCOqCzMMQ+v4NquVNXNmas0QGRpK2MUQrRmEEH8vdUZNWh+FEEKIdCFHVBd2YNMGreO7eXiweuYMLp44ri1DQNasfPPuAK6dP6ctQ2J8PDtWLMNuT/fNfIT4f8MqrY9CCCFEupIjqosyDIOFX39FXPTDrtGd8SwWC0opZn4ygsT4+L9/Qgbw8PQkMFt2vnq7H5dOndSSwcvHh3OHDjJpwBuEX7msJQPAoS1/cHr/Xu0zrUI8iLNQk2uoCSGEEOlDCjUXFX3rFncibrB18e9ac7h7eHLjymUWffvA9l1TFCpTlrioKL4e+CYXjh3RkuGpDs9z7tBBPu3VlfXz52CzWk3PUKxiZWaNHsmYni+xZfHvJMbFmZ7BZrWybt5sdqxYxo2rV6RoFKmSnWvUpPVRCCGESBdyRHVREVevALBpwc8kJSRoy+Hu4QHAtiULObZjm5YMhcqUAyA+NoZvBg3g7KEDpmfIV6wERSpUJDkpicVTvmZCv76mt2P6+vvT6Z33uB5ygV8nfM6w59vw26SJps7yubm7U6VRE1b9NI1RL77Ah8+35adRw9m6eCE3r5t3qcLE+Hh+mzSR6R99wIKvxrNm9k/sWLGMYzu2EX37lmk5wDH7nZSQQPTtW0SGhhIacoGLJ49rKaTTsttshF++ZNpJBef2/A9qfYy6EeESRX28xg6FtHR1KNzPmpysOwKAtJULIcRDSKHmom6kfPiOuX2bnSv/9rreGcbd01Go+fr7s+m3X4iPiTE9Q6EyZVO/9vbz4/jOHSQlJpqe4+n2L6R+nRAXx/WQC6Z/+CxTqw7Vm7ZwZIiN5eyhA1iTkkzNkCVHDvp9/iX+WbJwJ+IG+9avZfealXj5+pmWwcvHh1Yvv4q7uzubf1/AsqnfMe+z0Wz4ZR7eJuZIjItj4ddf8b8WzzC0bUtGdG7PmB4vsmL6VDy8vU3LkZSYyLEd21g7dxYzPxnBZy/34H/NG7F4ytdY3MxpRUy7mYjdbufSsROs/GYqX3TqxeLxX//NszPW5WMnmT10JEsmfKO1YExOTGTN9z+y6uup2jI4HVq7kQ0z5uiOQciho+z8fanuGFw/d4GT23fpjkF4yCVuXQ/7+wdmsKiISOy2DLks1L/iCid4XNHtsHDdEYRJZN91F+Xp40PL3n3xCwikSIWK2nIEFypMhfpPExCUlSYvddeSITBbdrIG5yZn/gLkL1mKFj37aMlRrk49gnLmQrlZKFu7LpUbPqMlR7s33uTUvt0kxMWRt2gxchcuYnqGHPny8+pn45n09hskxSfgFxCIX0CAqRk8vb3pOnQ4eYuXYPGUrzHsdpITE/Hw9DQtg5evL+3eeIsazVrw68QvOH/0MOA40WIxcVMNTy8vfAMCuXrmNAf/2IQ9pQ3xzMH9KPXQK6CkK+f2/OFnzjPijYFER9xM/d7VU2foPGII7ib+bGxWK0c3bWXznF+4cNDRMm1xd6NJ3x5kyZXTtBxOJ7bu5PfPJhJ5+SqePj5UbtGEfKVLmJ7DbrOx8puprJ8+G7/MgeQvW4qStWuYngPg2umz/ND/f3j7+eHl50uV5o215LBZrcwbPgZbcjI3Ll2hXqf2WnIAbJm3gMiroRSqWI5nenc17d/v/Q6u2cid8HA8vL1p0K0TXr6+WnKc23eQ6IhIboWFU7FxQ4Jy59KSA+DMnv0kJySSNU8wWfPlSe040mHO0FHaxhbmkkLNRVV6uqHuCAD0GvGJqTMUD9N16HAKly2nNYPFzY0mXbtT8amG+Pr7a8vh6x9Ap3feIzYqSluxCI520FfGjGPH8mU8/9ZALRmUUjR8oTN5ihRjwZdf0Hf0OC058hQtxluTvmXPmlUsnjKZTv8bbHqGQmXKUqhMWW6Fh7F54QK2L11CwxfMu6ykc0atQOniNJ46ieObt3Ns83YuHDhMqbq1sJh4PUa73c6+FWs4vnk7sXeisLi5YbfZCAoOxsfkf7s3r4WyaNxXHN20NfU+w7Dj5etjag6AuKhoZr8/kpPbdgIQe/sOibF6WnQjLl/lu37vEB8dQ3x0DFeOndRWqG2aOZ/Lx04AsG/5amq1a2XqSQWnuKho9ixZSVJCAiGHjlCyVnXylCpu6kkfp4uHj3Jg9XoAPLy8KPtUHXIWLmh6jqT4eGYNcVyy6vy+g5R5qi612rc2PQfAvuVr2LNkBZmyZqHdewOo8MzTWnIANOnbgxnvZNg1loULkUJN/CVXKNIA7UWaU62WrbWd4UyrTK06JCclaT2jB1CkfEWCCxXWdrbVqUSVqrz++UQyZc6sLYNSiupNm1O2dl2ta5Cy5MhJm1f60axbL8IuXTRt3NTNRCxu5CiQlxxd8/N0107ERUUTcuiIqf9uLBYL1Vu3oHprR5twcmIi4SGXuX7+AsmJiXj7mff7mhATS91O7anepiXJCQkkxieQFJ9A7O07pmUACD17njlDR5EYF0fBCmXxz5oV/6xZiLl1G8MwTP353AmPYMprA1JnXXMWKkByYiLRkTfxzxpkWg5wtDyumjI99bYt2cqpnXsoU7+OqTkAdi5cmromPSk+gcMb/iBX0UJYvLxMzxJy6Gjq10c2btZWHFmT7q6jPH/gMO0GD9CSAyB7/rwYhoGXjy/lGtTTlgOgWPUqWscX5pFCTYh/wRWKNCczW/z+iq+/uS2PD5Mlh/ntbA/i6++vdcbVycvHh/wlSpo2nnNGzeO+XR99A/wpXa+2aTkexMPLizwlipKnRFHTx85d3PwxHyR7gXwM+nmG7hjER0ez7KtvKfNUXYpUrkChSuXxD8qiJYvNamXeh6MxDDuVmj1D3Y7tKFihrJb3eZvVytb5vwGQp0QxOn40mLwli5ueA+B2+I3UdXKFK1egz1efmXpyI620hVq7994mKHewlhwA2fLnBaBBj86mrf0VQgo1IYQQj8z6kEJNuAbds+9O3pky8eLHw3THAGD/ynWUrl+b3hPHEJA9m9YsRzduIebmbVq80ZcG3Trj5qHv49nFlNm04jWq0mvCGDx9zNsY6X7WZMdmWRUaN6BKy6bacoBjRi0gW1aqPdtMaw7xZJFCTQghxCNL2/ooxMO4UldC1Webukyey8dP8c786eQsVEB3FEIOHaV0vVp0HzcKDw1tl2lZk5IJyJ6NDkMHaf9ZZcuXl6e7dtKyflE8uaRQE0II8cge1voohKvS/cHfyTAMWvTvq2XTkAcJzJGdlm+96hKzsNakZDqPfB+/QP0t9p4+3tTt1E53DPGEkUJNCCHEI7s7o+YaHzaFeFwopVymaAR4qmtHl8lTsfHT2ttS05LZNGE2OaIKIYR4ZHfXqEnroxCPM1cp0gCXKtKE0EEKNSGEEI/MOaMmrY9CCCFE+pAjqhBCiEeWukZNWh+FEEKIdCFHVCGEEI/MWai5S+ujEEIIkS6kUBNCCPFI7IaBzZAZNSGEECI9yRFVCCHEI3FuJALgLmvUhBBCiHQhR1QhhBCPxLmRCMj2/EIIIUR6kSOqEEKIR5J2x0dX2tpbCCGEeJxJoSaEEOKRJMs11IQQQoh0J4WaEEKIR5LknFGTtkchhBAi3chRVQghxCNJtjlbH2VGTQghhEgvUqgJIYR4JHdbH+WQIoQQQqQXOaoKIYR4JHc3E5EZNSGEECK9SKEm/tKt8DDdEUhKSNAdQQjxF9Lu+iiEEEKI9CFHVRcWfeum7ghsX7qYiyeOa81wZNsWjmzfqjVD1M2b3Ay7rjWDEK4qydn6aJEZNSGEECK9SKHmwpZP/0H7bJJhGMweM4qkxERtGXIXLsL0D9/n2I5t2jJkypyZqR8MZteqFRiGoS3HvvVruXzmlLbxhXgQmVETQggh0p8cVV3Y+SOH2bVqudYMFjc3wi5dZMW077VlyJm/AG7u7kz98H2O79qhJYPFYqFSg0bMGfsx04YN0TbbWahsOb7s/zqTB77Jid07tRSNSYmJ/DLxc5ZN/Y4zBw9gTU42PQNAfEwMsXfuaC2chYOsURNCCCHSnxRqLspus3Hj6hU2/DIPm9WqLYcl5YPXxl/nc+7wIW0Z8hYtji05makfDOH4rp1actRs3hI3d3cOb93M2F5dObZzu+kZgnLmokWvPpzev5dv3x3Ip727cfGkua2pnl5eNOvWi33r1zLp7X4MbtWM74b8j8jQa6bmcPfw4LdJExjUrCEfd+3E5IFvMv/zscTcvm1qjlvh4Wz8dT5r5sxkxYypLPn+W5ZNnaJtNjw5KYlr58+xf+N6Nvw815T3j2Tbgy94bRgGYedD2L14ufaCOjE+nmN/6JuVd7Lb7Vw4eFh3DADCQy7pjgBAdKT+Nn+ApAR9nSNp6f63IoRwHVKouajI66H4ZvLH09OLS6dOasthsVjwDQggX/ESxNwx9wNwWvlKlMTN3Z38JUqSOXt2LRn8swRRof7TAAQXKkyJKtW05Hiq3fPkLV4CgICsWSlQsrTpGQKCgnjts/H4BQSSlBCPNTmJrMG5Tc3g4eVF16HDadq1B+GXL3F6/15uXL1CpsyZTc2RJUcOchcuyq6Vy1n103TWzZ3F2YMH8fT2NjXHnYgbzBgxjEHNGjK2V1d+HDGM/RvW4ebunuFjp219tCVbObN7H4s+/4rRbTrzafuubJn/G/aUa62Z7U54BMsnfcfIZu1Z8/2PJMbFackBcO3MOSb37MeS8d8Qe/uOthx2m43Fn09iwegviLoRoS0HwOENm/n1k8+5dV3vxlVhFy6yZPxkboXqzREfHcOmWfO5HX5Daw673c6xzduIvROlNQfAzWuhJGtcfuFks1pdpohePklfl5MwV8YfwcV/EpgtO8Pn/4abm5spH7QeplydetRp1RYvX1/cPTy05ShVvSY1WzxLtuDcePn6astRp/VzFCpbjkpPNdT29+Hm7k6nd95jw89zadqtp5YMADny5afvmM/4efw4mnXrpSWDUoomL3UnZ4GCzPpkJE936KglR4kqVRk8bSbr5s1mzZyZFK9S1fQMgdmy0+PDkZw5sI8Nv8zj+M4dZMmZy5Sxk9K0PiYlJBAdeYvoyFvEpRQj1qRkMPnzTWJ8PGu+/5HNs39JnVW8FXqdxNg4099DEuPjWfPdDP6Y/Qt2mw2Luxu3Qq/jlznQ1BwACTGxzBryESe2OjoTzu0/RKWmjUzPAXDh4BFmvz8Ca2ISwUUK07xfHy057HY7v348jvP7DxF1I4JeE8ZoyQGwb8Ualn05hW0/L2TI4rnajv+Rl68ya/AI7HYb/ad9Ta6ihfDwSLfbUQAAIABJREFU8tKSZdrbQ4i6EUGD7p0p3+hpsuXLoyXHkY1bWDHpe4KLFabD0EH4B2XRkgMg1uTOEaGPFGouylPTG+L9ggsV1h0BgNI1auqOAEDRChUpUq58akuoLvlLlOSFAYPw9Q/QmqNQmXL0GTWGbLn1HDidKtR7iqBJ3xBcUN/vq4eXF8179KZKo8ba2pWVUhSvXJXilasSGnKBiGtXTRnXOaPm6WbBxz8TlZs/Q+Xmz2BLtnLh0BGunjyNxd3cfzNePj60eus1GnbvQtiFi4SdD+HGxctYTP7ga7fZ2L9iLXabnVod2mBNSsKalERSvPmtsZFXrjH1rfcID7lEYI7sZM6ZQ9uMWnjIJaa9PRhrYhJu7u6Eh1wkISYW70x+pmfZvXgF5/c7WvuvnDzNpWMnyF+mlOk5DMNg+4LFGHY7t0Kvs/GneTTq9RJKKdOzXD5+iqT4eABWfjOVnuM/MT2DU9ydKGJv32HXwmXU7dheW46seXITcfkKWfPl1lqkAbww7F0OrtmgNYMwhxRqQvwLSimUi2yYoLtIc9JdpDnlK1ZCdwTAMdPoCoILFiK4YCFTxkp6yBo1Nw93ilatRNGqlUzJ8SB+mQMpXKk8hSuV1zK+xc2NWu1baxn7fjarlb6TPycgW1bcPPQd/qMjb7J04rdUa9Wc4jWrUbhyebx8fPRlmfA1wcWK0KBbJyo2baStW+LCwSNcP3ueoDzBdBk5lMKVK2jJAXD5uGPJRYla1eg5/hNts2kAdrsNZbHQacT7ePqY21KeVvYC+QBo2L2LtgziySOFmhBCiEciuz4+HnIUdI2TCH6ZA+k9UV97YVontu6g26cjKF6zmpaZq7S2L1hEzfataT2gH95++lr8Aa6cOEXxmtXoOX6M1iINwLDZadCtM4UqltOaw9vPlzJP1aVotcpac4gnixRqQgghHklSauujFGri7+luHU+repuWuiMAYEu2UqNNS4pVr6I7Cna7Hd/AAF785EM8vfUvw8hRqADNXtOzDvp+z737lvaCXjxZZNdHIYQQjyTZJhe8FuJRuHm4u0SRBmBLTubFj4e5RJEGjvVY7p6eumMAEJTbnA2ahHCSGTUhhBD/mWEYMqMmxP8julsd7+cqLbtC6CCnP4UQQvxnVsOeuvO+rFETQggh0o8UakIIIf6z5DQXspbWRyGEECL9yFFVCCHEf5Zkd27Nb5FF9kIIIUQ6kkJNCCHEf5YkW/MLIYQQGUIKNSGEEP+Zs/VRNhIRQggh0pcUakIIIf6zuzNqcjgRQggh0pMcWYUQQvxn0voohBBCZAwp1IQQQvxn0voohBBCZAwp1IQQQvxncrFrIYQQImNIoSaEEOI/S3TOqLlLoSaEEEKkJynUhBBC/GfJMqMmhBBCZAgp1IQQQvxnibJGTQghhMgQUqgJIYT4z5LsVkBaH4UQQoj0JoWaEEKI/yzJJtvzCyGEEBlBCjXxl+x2u+4IQggXJrs+CiGEEBnjHxdqSqnc6T24Uqq+UmqpUuqaUspQSrX9B895Wim1XymVqJQ6q5Tq8YDH9FNKhSilEpRSu5RS1dM7uxlsVqvuCFwPucCZA/t1x2D36pW6I3ArPFx3BCFcTlLqGjU57yeEEOLx8m9rBqXU80qpkymPP6KUapGR+f7NkfWYUqpLOo/vBxwC+v2TByulCgHLgY1ARWAiMFUp1TTNYzoC44ERQOWU11+tlMqRvtEz3tYlC0lKSNAdg7mfjSYxLk5rhgMb17Phl3laM1wPOc9Po4YTFx2tLYPNamXTgp+JiozUlgEgMT4ewzC0ZhCuIXVGTdaoCSGEeIz825pBKVUbmAdMAyoBi4BFSqmyGZXx3xRqQ4HvlFK/KqWC0mNwwzBWGobxgWEYC//hU14FLhiG8Y5hGCcMw5gMLAAGpHnMQOAHwzBmGIZxPOU5cUCv9MhspvNHDrNr1XKtGZRSRIZeY+kPU7TmyFO0GIu+mcTmhb9py1CiSjXOHz3Mp727cebgAS0Z3NzdyZQ5Cx91as8vE8YRce2qlhxJCfFMGtCf+Z+P5dCWP4iPjdWS49Kpk+xbv4YLx45wJzJCWnU1SJJdH4UQQjye/m3N8BawyjCMcSl1yDBgP/BGRgX8x4WaYRjfAOWBrMBxpVSrjAr1F2oB6+67b3XK/SilPIEqaR9jGIY95Xath72oUspLKRXg/AP4p3fw/yLs0kU2/jIfe8oHIS2UAmDnymWcPaSnOAHIW6w4AKtnTuf8kcNaMljc3KjZ/FluhYcxZ8woQi+c15KjSqPGFC5Xjq2LFzLlvXe4GXbd9Az+WYLoOGAQB//YyLRhQ5j4xitE375leo48RYpy4dhRJvR7hWHtW/P5q71JiDO/aDxz8ADj+vZi+AvPMfS5Z5k04A2Sk5JMz3H17Bm2LV3E75O/5Jv/DeCHoe9l6PuHYRipM2r3byZit9m4cPAwy76cwrzho7XOwNptNg6t3cjiLyZrnwmOuHyVtVNnas0AkJSQyI7fl+iOgWEYHN+yXXcMAK6dPqs7AgDRkTd1RwDAmpysO4J4iMsnTumO4Mr8036mV0p5PehB/7Fm+Ms6JCO4/5sHG4ZxAWiolHoD+F0pdQKw3veYyumY7365gLD77gsDApRSPkAWwO0hjyn5F687BBieXiHTy1PtXyAgSxaSExPx8vXVksHTy4tnX36VvEWLUbhcBS0ZwFGoVXmmCRXqPUXhcuW15ajRvCXHd+2kVstWBBcqrCWDUorn33qHb997h1otWxGUM5eWHDkLFKT3qLF8P+R/lKlVB//MWUzP4ObuToc3B5I9bz5+n/wlufIXwNvXz/QcxSpWou+Yz/h98pcc2LiebHny4OHpaXqOoFzBnNq3h4N/bOT2jXACs2XHkoEzXTbDwJ5S+KRtfbx07AS/j53ApaMnAMdJjueHDsLd5L+TxPh4di9eweY5vxB55RrKYqFe5/YE5Q42NQeALdnKplnzWf39DAy7QdGqFSlUUc97WVREJNMHDOH6uRB8/f2p0LiBlhwA66fPZsOPc2nxxsvU7dhOW45rp8/yfb9B1OrQhqav9NSWw5Zs5Yf+71K4cnnavNMflXKyVIffRn+Bt58fzfu9jKePt7YcOxcu4074Daq3bkFA9qy4uf+rj67pJubmLXYvXUmuwgUpVbeW1p/N/7F33+FRVYkbx79n0gi9d0FExYog9l5WRVddy9rXrlj3t/beUFdRV7EXECkqiBVRKYKgKFV6771DSM9kkpk5vz9mJsZIEgYyORd4P8/Do5ncufOm3Zl3zrnnfvu/N5099s6atnotKQl8LVv8xyk6a8t8qjvwzHbu0pj4O0N5PSRhL8Ti/m03xrQFLgEygW8pU9R2Uy8SmaMaU4e//qCr3fHnne86Ao1atOTsa65zHYNGLVpy7aNPJvRF545o2Kw5t7/0KrXq1nWao1nbfbnj5ddo1qat0xwHdOpMtxde5oDOiXx/pnKnXnIZjVu2Yp8DK3o/JrHqNWrMjU8/xzHnnEtqmpsXNem1a3PGFVdz6qWXM33sTwk/tzQQ+uPwX3pErc2hB/OfAR+waflK5v0ynqzNW0hKSUlolu0pzM2nQfNmHHfJhWxesZKcjG2k1ar+Ip+flc13r7/H2gWLaNSyBeFwGJ+jF5vrlyyjz/89TObGTfiSk8jZ6u581xkjRjPs7V4ALJs6g+MuuYBkB78n4XCYL194lZytGcwYMZpjLjyPBi2aVXsOgHnjxrN2wSI2r1zNAcd04dBTTnSSw1rL7J9+wZ+bB8CF99/trJhsWLKMXwd9ycLxk7n7o7edZACoUac2w97qRaezz+CQk09wlgPgn48/yJvX3+40Q7yOqd+W9AQef/2p+URPjmkNlF5MIJCwB60GcT1TGGNuBV4lMux3qLV2S0JSlW8jUPbo2QzIsdb6jTEhIFTONuXOD7PWBij1g3T5LolsnzEG45FzYFyXtBjXJS3GdUmLOfQ4t0+cMV7IkZSczNFnnVP5hrvoj2mPPnxljpvGGJq3b0fz9u0SnqM89Zo2pl7TkzjstJOcZQCoVb8eVz7ziNMMEJkCum3dBq7575M0aNmcek0aO3vza+XseUz65jvOvfMWDjrhWFodfCA+n5uVQ6d8O4yNy1Zwxo3XcMrVl1G3cSMnOSAyelSzXl0uf/IhZyUNIHPDRvy5eRx47FGc9+9uTl8XWWtJSknhiqcfdjaaBpCckkKjVi04/fqrnGWIab7fvq4jeFmutTZnB7bbSvydobwekrBzUHb4N94YMwI4BrjbWutqgv1EoOwymGdFb8daW2SMmQacSWQlFowxvujH7t6GERHZAwWi57+lJbl78SQ7zpeU5Ly0xuxzcAfu+OAN1zEIFQfBWp4c9iXpdWo7zZK5YRNYy4Of96de08ZOs6xduIT2XTpxU88XSUnb7ik+1cZayzm33ej0TZ+Yk668lFYdDnAdQ6rATnaGidHPv17qtpIekgjxPLsmAR2ttVU2JdAYUxvYv9RN7YwxnYBt1trVxpgXgVbW2tjcu/eBu40xLwMfAWcAlwN/L7WP14D+xpipwBTgHiKXAehbVblFRKTUio9aml/ilJTijXKflJLMcZe4WBvtr1LSUrnlrZedjSyWllojjVvefMnpuWkxbQ45iCPPO8t1DABOvPxi1xGkalXYGYwxA4B11tpHo9u/AfxijLmfyOXCrgSOArolKuAOHymttYn4KzmKyDXRYmLnifUHbgBaAG1KZVhhjPk70JPIEplrgVustSNLbTPYGNMEeJbIyX0zga7W2rIn/4mIyC4oCkfOUVNRE9l1tRtW/4JM5TnohGNdRyhx1AVdPXNKiuvz5KVq7UBnaAOES20/IXpN6eeBF4AlwEXW2rmJyuj0LS1r7c9AuX991tobyrlP50r2+zaa6igiklABXUNNRBLMKyVN9kwVdQZr7Wnbue0L4IsExyrhfnxdRER2S5r6KCIikjgqaiIislNiUx/TNKImIiJS5VTURERkpwQ0oiYiIpIwKmoiIrJTSqY+anl+ERGRKqeiJiIiOyWgVR9FREQSRkVNRER2SlHJBa9V1ERERKqaipqIiOyU2DlqKRpRExERqXIqaiIislO06qOIiEjiqKiJiMhOiY2opSVrMREREZGqpqImIiI7JRCKjqhp6qOIiEiVU1ETEZG4ha2lOBwGtOqjiIhIIqioiYhI3GKjaQCpOkdNRESkyqmoiYhI3EpWfPT5SPLpqURERKSq6dlVRETiFhtR07RHERGRxFBRExGRuGnFRxERkcRSURMRkbjFrqGmETUREZHEUFHzsHB0RTXXFs+Y5joCK+bNJRQMVr5hAoWCQQpyc51mEPGKkqX5tZCIiIhIQqioedjMX8biz8tzHYMv33iN3KxMpxkyN2/ikx7PE45Ot3IhKTmZQa+8yNJZM5xlAFi1cD4Tvh9KcVGR0xwbVq4gWFzsNIO4E5v6mKqpjyIiIgmhouZhqxfMZ8L337qOQV5WJl+98ZrTDK33P4Bpo39k0P96OB1p7NDlaN66526+//B9ZyN8bToczPQxo3j26n8yZvBAAgUFTnIECgp4+vKL+fCJRxj/3RACfn+1ZwiHw4wZPJBBr7zIyI/78fuokU4KbLC4mMUzprFgyiTmThjP7N/GOR0BttaSuXkTi6dPTdjfy45e7DocCrF2wSKstQnJEY9t6ze4jgBAXmaW6wgAFPkLXUcAcD5bIsYLv6MiIqWpqHlYUaCQtUuXOH/yqNuoMUVFAXIztznL0LhVa+o2bIQ/L4+8LHcvcrqceRZpNWuyceVKigrdvMgxxnDZf+4nLzubpbNmkpya6iTHvoccyuX3PsCc8b8ya9wvpNaoUe0ZfD4fp156OT5fEj/06cWE778lxcH3IzklBZ/Px1dvvU6vxx7kx4/7keRgpClYXMyPnw7g4fPP5unLL+aLN17Dl6Cl8/8YUftrUQsFg8weM45BT7/AM2ddRL8Hn3Q2Gm6tZcnv0+n97wd5t9t/8Oe6m6UQCgYZ038g79zyb3K2ZjjLAbB24WJ63fWA8/Ja5C9k4JP/ZfOq1U5zAIzq3Z/NK93nmDVqLFvXrHMdgzXzF5G5YZPrGORszSBny1ZPnA6Sty2TULH7NxY+fqy76whSTTRnxcMuu+cBjDGuY3Dfu71JTUtzmsHn83H/+32o36SJ0+9Jeu3a/Lvn2zTft52TQhDTrO2+3Pj0c3Q48ignhSDmiFNO46I7/4+jzjrb2c8lKTmZy+97kKZt2tC87b5OMgDsf0RnHu4zgNEDP3ZSWiFSGM++5jo6nXo6P3/xWUJHOf84R+2vv39Jycnsc3AHcrdmkLt1G9lbtjr5/bDWMn3EaKZ9P5LNK1eTn5VFyNF03dXzFvDFc6+wbtESADLWrqdu40ZOssz7ZTwfP9qdIr+f+b9O5KQrLnGSIxwK8cnjzzJ37K8kJSdzZfdHE/bGQmWWTJnGiPf6MPfn37jjg56k16njJEc4FOLbV98mWFTEnb3fpHn7dk5yAEz8eiiTv/me619+lo5nnuosx6o58+j/4FOcceM1nHfXrc5yALx1450cdsYpXPCfO5zmaLH/fiz4daLTDFI9VNQ8zAslDXBe0mIaNG3qOgIA+xzYwXUEADqedIrrCACcftkVriNgjOH0y650PvqckprKuTfc7PRcSoCmrffh8nsfTOg5hLERtRrlTH1s0KIZJ15+MSdefjEBvx/j4AW4MYYu555Fl3PPAiKjN8bn5rjavP1+3Nn7TULBIOFgkJQabo6rWZu3sGnlKq546iEatGxBo1YtnOQAGPl+X8KhEJc+eh8HnXCss5IWLC7mqx49OejE4/jbTf9yVtIAFk38ndyMbZz37240bdfWWQ6AdQuX0PawQzjwuKOd5rAWfElJdDnvbKc5ABrt05qjz+/qOgZ/u+laxvT91HUMqQYqaiKyx/DKmxs+j6yEmJySkrB9F5Zc8Lryp5G09PSE5YhHarqbkU6A1Bpp4KiclVa/aRPOuP5q1zEIh8P87ZZrSfHAG4Gblq/i2hefoVWH/V1HYeWsudzzSS9adTjAaY5QMEhKaio3v9GDGrVqOs2CtZx71y00c1xcAU771xVORzll76OiJiIicYtNfSxvRE2kIj6fD58HShrgiYIWc3a3G0hKcf/SrLgwwI09XyC9Tm3XUWhxQHsOO+0k1zEAOPC4o1xHkL2M+6OBiIjsdgJxjKiJyI7xQkkDqFG7lusIJZq0ae06gogzWvVRRETiVnKOmkdeWIqIiOxpVNRERCQuYWspCkeKWppHzscTERHZ06ioiYhIXGLTHmH711ETERGRXaeiJiIicYlNe0zx+UhytKS6iIjInk7PsCIiEpfY0vxpWkhEREQkYVTUREQkLoGSoqZpjyIiIomioiYiInEJaERNREQk4VTUREQkLrFz1DSiJiIikjgqaiIiEpdCXexaREQk4VTUREQkLrGpj7rYtYiISOKoqImISFwKtZiIiIhIwqmoiYhIXAqD0RE1TX0UERFJGBU1ERGJi1Z9FBERSTwVNRERiYumPoqIiCSeipqIiMSlUIuJiIiIJJyKmoiIxEVTH0VERBJPRU1ERHZY2NqSC15rMREREZHEUVETEZEdVhQdTQOdoyYiIpJIKmoeFg6HXUcAYM2SRa4jkLVlC7mZ21zHIDcr03UErLWuI8herDA6mpbi85Hk01OIiIhIouhZ1sPmT5pI9tYtrmMwsn9fNq1e5TRDeq1avPvAvc6L0vyJE/j2g3coLipylsGGwwzt9R4Lp05xWtrysrKY8fMY8nNynGUACBQUEI6WB0m8Qp2fJiIiUi1U1Dxs/fKl/PzV565jECwu5rP/9XD6YjitZk2CwWL6PvMkxYGAsxydTjuD8UOH8OETjzgra76kJDqdejrvPXQfHz7xCMHiYic5atevz5Z1a3nsH+fS79mnCAWDld8pAQr9Bbzxnzt5+oqL+eTF55zlWL98Gf2efYr3H7k/8vfiaER8y9q1TBk5nKEfvMtXb/Ws8jJfspDIDqz46M/NY8bInxj2di/nI8EZ69YzdsAg5zmCxcVMGTrMeQ6AxZOmeiLHhqXLXUcAIHvzVtcRgMibT16gN8C8a+648a4jSDVRUfOwjiefytFndXUdgzOvvIYr7n8Y43ia099vupWL7riblLQ0ZxnS0tO54NbbOeuaa0lJTXWWo02Hgzjzyms44YJ/kJyS4izHWVdfywnn/4MDOh1JkqMRlnqNGnPXq2+y7yGHUbt+A2c5Wu7XnnNvuJniQIC87Gx8jv5e6jVpQnFRgNm/jWPpzJkYY6p0/4XRIlyjkvPTtqxawxfPv8Lg7i8x8auhhINuXvTlbM1g4BPP88KFVzHs7d7kZribQr18+ixevfImPnv6RdYvXuosRzgcZtg7vel19wPM+/k3ZzkgUtLeueXf/Db4a6c5wuEw/R98kmFv93KaA2B0n48Z9PQLFBW6e1MSYP6vE+l7/+NkbtzkNEfO1gz63v84K2bOcZoDYFTv/iycMNl1DMZ96v5NfKkemrviYc3b7us6AgAHdD7SdQQAOp16uusIAJx80aWuIwBw/i23OSsDMcYY/vmf+5xmAEhNS+P6J7s7fye6WZu23P3aW2RvdffOfGpaGidecBHH//3ChExZ3tGpj03a7sN1L3WnOBBg9dwF+BwtPFK3cSOu7P4oZ3W7gc0rVpGanu4kR5G/kIKcXM657UaCRUXUqFXLSQ5rLdO+H0lBVjZd77iZ2o0aOskBkLV5C4OeeoGDTjiWOg0bOMsBMPHLb8ncuIn0unUIFhc7ewMsWFzM5CE/cPBJxxEOBgF3b0yumb+QTctXOnvzKyYUDDJ/3ATOuf0mpzkgMjJ/6GknuY7BdT2688KFV7qOIdVARU1kN+W6pMW4fhKP8fl8pNeu7ToGxhjqN2niOgY+n48W+7ar8v3Ge7HrlLQ02nfpVOU54uFLSqJJm9Y0adPaWYbU9Boc5oEXeMYYjr7wXI6+8FzXUUitUYN7Punl/FgWDoWo17QJj38/2OkMBYCVs+byz8cfoOMZpzjNAVBU4OeOD96gbuNGTnPYcJhzbr+Jlge0d5oD4KQrL/VEjtoN6ruOINXEG6+wRERkt1AYipwTqWuoya6qWbeO6whApMh7oUQDtO/SqcqnK++srnfdQpqjEejSajdowOnXX+U6BgCtDzrQdQTZy+iZVkREdljsHDWt+ihS9bxS0gBPlDSIjEaL7K28MXdKRER2C/FOfRQREZGdo6ImIiI7rKSoOVocREREZG+hoiYiIjtMUx9FRESqh4qaiIjsME19FBERqR6eKGrGmLuMMSuNMYXGmMnGmGMq2PZnY4zdzr8fSm3TbzufH1E9X42IyJ7JWkugZOqjipqIiOz5jDENjTGfGmNyjDFZxpg+xpgKrwdkjGlujPnYGLPRGJNvjJlujIn7QrzOi5ox5grgNaA7cCQwCxhpjGlazl0uAVqU+ncYEAK+KLPdiDLbeWNtVxGR3VQwHCZkLQBpGlETEZG9w6fAocBZwPnAKUCvSu4zAOgAXAgcDnwNfG6M6RzPAzsvasB9QG9rbV9r7XzgdqAA2O4l6K2126y1G2P/iHzTCvhrUQuU3s5am5nIL0JEZE8Xm/boM4YUj1xwXUREJFGMMQcDXYFbrLWTrbW/Af8GrjTGtKzgricAb1lrp1hrl1trnweygC7xPL7TZ1pjTCqRwKNjt1lrw9GPj9/B3dwMfGatzS9z+2nGmM3GmEXGmPeMMY2qJLSIyF6q9PlpXrrek4iISIIcD2RZa6eWum00EAaOreB+E4ArotMmfcaYK4EawM/xPLjruSuNgSRgU5nbNwEHVXbn6LlshxEpa6WNIDLEuAJoD7wADDfGHG+tDW1nP2lAWqmb6uzoFyAisrfwl6z4qKX5RURkx81YvJbU9JoJ23+RvyD2v3XKvJEYsNYGdmHXzYHNpW+w1gaNMduinyvP5cBgIAMIEpn9d7G1dmk8D+66qO2qm4E51toppW+01n5W6sM5xpjZwDLgNOCn7eznUeDpRIUUEdkTFIaKAaiRnOI4iYiI7E6ObdaK9Jq1ErZ/f0E+0Rf/a8t8qjvwTNntjTE9gIcr2e3BuxDpOaA+8DdgK3ARkXPUTrbWztnRnbgualuJLATSrMztzYCNFd3RGFMLuBJ4qrIHsdYuN8ZsBfZn+0XtRSILmsTU4a8/aBGRvZqW5hcREY9rDeSW+ri80bRXgX6V7Gs5kT7ypwUOjTHJQEPK6SrGmPbA3cBh1tp50ZtnGWNOBu4ish7HDnH6bGutLTLGTAPOBIYAGGN80Y/fruTulxGZrvhJZY9jjGkNNAI2lJMjQKkfpM69EBH5q9jFrrU0v4iIeFSutTanso2stVuALZVtZ4yZCNQ3xnSx1k6L3nwGkXU+Jpdzt9gcz3CZ20PEuT6IF5bteg241RhzfXRllfeAWkBfAGPMAGPMi9u5383AEGttRukbjTG1jTGvGGOOM8bsa4w5E/gWWAqMTOhXIiKyB/PHpj5qRE1ERPYC1toFRNa+6G2MOcYYcyKRwaTPrLXrAYwxrYwxC0tdB3ohkd7xQfQ+7Y0x9xNZqX5IPI/v/NnWWjvYGNMEeJbISXkzga7W2tgCI20o00iNMR2Ak4Czt7PLENARuJ7I3ND1wI/Ak7t4MqGIyF5NI2oiIrIXuoZIOfuJSCf5Cvi/Up9PIXLNtJoA1tpiY8x5QA/gO6A2keJ2vbV2WDwP7IlnW2vt25Qz1dFae9p2blsEbHd+orXWD5xTlflERETnqImIyN7HWrsNuLqCz6+kTC+x1i4BLt3Vx/bC1EcREdkN+DWiJiIiUm1U1EREZIdoRE1ERKT6qKiJiMgOKQxqMREREZHqoqImIiKVstb+MaKmqY8iIiIJp6LmYaHo+SCurVu6xHUErLWsWbzIdQyyM7ZSXFTkOoZVRtaiAAAgAElEQVQnMsjeJRAOYaP/rxE1ERGRxFNR87DF06d6oiRNHjGMBVMmOc1gjOG73u+xZOYMpzlSUlN54//uYOX8eZVvnECLpv7OJy8+x+pFC51lsNYyfugQxgweyOpFCwmHy17XsXqEgkGmj/2JeZMmsGbJIqy1ld8pQTlyMjLYun4dG1aucJYjJhwOk7FhfZXliC3Nn+zzkeyL76kjLzPL+fcDoDC/wBM5gh55oyUcCrmOAOCJn4nI7iTgL3AdQaqJipqHhcNh1i5Z7DoGjVu1ZtXCBa5j0O6wjiz8fbLTJ/Wadeqy78GHMuPnn5zmOOyEEykqLGTCd0OcFSRjDEef3ZXZv45j9KBPMGa7V8xIuKTkZFrs246v3uzJ0PffdZbDGMPMcT/zyq038vELzzrLURwIMLxfHx467yzevu//qixHYZwXuw4VB/l10Je8ft1tvPzP6wgH3ZWCjLXr+eaVN3nln9dRkJPrLAfA/F8n8Pq1t7Ft/QanOfIys/jo3kfZuGyF0xzWWr5/4z3WzHc/Y2LmqLEsmzbTdQw2LF3OwgmTXcegMC+feePGu44BwJIp0zzxxsLmVavx57o9hgD0u/8J1xGkmmj+iocdetwJriMAcMrFu3wZiCpxzr+ux5eU5DoGF3S7g7T0dNcxuOzeB6hVtx6+OEc3qlJqjRp0e/FlQsGgs2IC0KLdftz/fh9ytmU4y+BLSuKUiy+l06mns3GVuxe/KWlpnHvDzXQ58yxWLqi6kd94l+ZPSknm+EsvpGm7tqyeuwBfspu/XWstWZs203ifVhx62kkkOTyGLJkyjTljf6V5+3YEi4qd5chYt56ve/SkOFBE9uYtNG/fzlmWMX0/Zfrw0TRq1ZJ9DungLEfetky+7tGTzuecSbvOHZ0eV8cN/IItq9awX+cjSE2v4SzH6nkL+Py5l7n3k97Ub9bUWQ6Afg88Qbd3/kfbww91mmPil0PpdPbpznMcff65rJoz32kGqR5GUw7+yhhTF8h+6YdRpNeq5TqOiIhzCzK3MGL1ElrXr8vFHQ92HUf2AMHiYrI2bqZR65ZO3+gBWD59FvWaNqFR65ZOcwQKCpj09XecdMWlJDk+F3TS19/RtuOhtNh/P6c5AEZ+0JdzbrvRdQw2Llvh9I2NmMK8fB47uStAPWttjus8FYm9pu458EfSaybuNbW/IJ97rz4bdoPvSTw0oiYiIpXya2l+qWLJKSk03qeV6xgA7HfkEa4jAJBWsyan/usK1zEAOPrCc0nyyAqvf7vpWtcRADxR0mTvonPURESkUrGl+dM98sJNRBLLKyUNcD66KOKKipqIiFQqtupjjZQUx0lERET2DipqIiJSKU19FBERqV4qaiIiUil/KL5VH0VERGTXqKiJiEil/pj6qKImIiJSHVTURESkUiUXvNaImoiISLVQURMRkUrFpj6ma0RNRESkWqioiYhIhYLhMMFwGNDURxERkeqioiYiIhWKTXs0QGpSktswIiIiewkVNRERqZC/1EIixhjHaURERPYOKmoiIlIhv1Z8FBERqXYqaiIiUqHY1Mf05BTHSURERPYeKmoiIlIhjaiJiIhUPxU1ERGpUMk11FTUREREqo2KmoiIVEgjaiIiItVPRU1ERCpUcrHrZBU1ERGR6qKiJiIiFSoMxqY+ajERERGR6qKiJiIiFdLURxERkeqnoiYiIhX6Y3l+FTUREZHqoqImIiIV0oiaiIhI9VNRExGRcoVsmKJwCFBRExERqU4qalKpFfPmEg6FXMdg8fSpWGudZigOBFizZJHTDAC5mdsoLMh3HYNQdKRF9lyFpX7GaZr6KCIiUm1U1Dxs0vDv+fqdN1zHYM3iRYz9YrDrGCyaNpXRgz5xmiElLY2fBn7CqE8HOM1Ro2Yt3n3wXkZ+3M9pjo2rVvLaXd0Y3q+P0xK9eMY0ej32ED981NtpjgVTJvHlm6/xQ59eTnOsXrSQcd98xbC+H+5yjtjS/DWSk/EZE9d9Q8EgS6fOYHSfAc7fZMnPzmH85984f3PBWsusUWMJFbt/k2PVnHmeyJG5YRNFhQHXMQj4/QQKClzHwFpLwO93HQPwzptxro8fMcPe6c2vn33lOga/ff6N6whSTVTUPGzZ7FnM+e1X5weozqefwXHn/t1pBoATL/gHx55znusYnHP9TRx5xt+cZkhJS+OqBx6hQ5ejneZo1X5/Lrvnflru1x4T54v4qnRg5y6cftmV1Kpb12mOg44+lnaHHk6g0O80R6MWLSkOFLJ+2dJdzvHH0vzxj6atmb+ImT+OYcbIMU5H5TcuW8Hg7j0Y3edj8jOznOXIzdjGx488w2fde7Bm/kJnOay1jBv4BW/fdDczR41xlgMga9Nm3u32f4ztP9BpDoAhr7zJ1y+97joG88dN4KN7HnU+k6UwL5/X/9WNwnz35bXfA0+SuXGT6xjM++U3lk2d4ToGCydMch1BqolxXQK8yBhTF8h+6YdRpNeq5TRLcSBASlqa0wwisnuy1u5yUVuSlcH3qxbRvG5tLut06E7nAJyW15iq+J7s7oLFxfhzckmvW4dkx9fGWzl7HjXr1aFJm32c/lwyN2xi5ey5HHbaSc6fc8cN/IKOfzuN+k2bOM2xdOoMigNFHHzisU5zAPz88Wecdu2VrmN45jWZPzePx085F6CetTbHdZ6KxF5T9xz4I+k1E/ea2l+Qz71Xnw27wfckHjrhwOO8cEAQkd1TVbzwLYxOfdyVpfm9VIy8lMWV5JQU6jRq6DoGAPt23LnyX9UatGhGgxbNXMcA4JSrL3MdAYD9jjwCn88bE69OueZy1xEA77wm03Fs7+GNv0AREfEk/y5MfRSR3ZdXShp4K4tIddJvvoiIlCs2oqaiJiIiUr1U1EREpFwlI2paml9ERKRaqaiJiEi5Spbnd7zohIiIyN5GRU1ERMoVu+C1pj6KiIhULxU1EREpV2EoMvVxV1Z9FBERkfipqImISLn8GlETERFxQkVNRES2K2ytVn0UERFxREVNRES2KxAtaaBVH0VERKqbipqIiGxXbNpjalISSbrgrIiISLXSM6+IiGyXP7qQiKY9ioiIVD8VNRER2a7Y0vzpKmoiIiLVTkVNRES2yx+Mjqjp/DQREZFqp6ImIiLbpRUfRURE3FFRExGR7YqNqKWnpDhOIiIisvdRURMRke0qGVHT1EcREZFqp6ImIiLbFVueX1MfRUREqp+KmoiIbJfOURMREXFHRU1ERLZLqz6KiIi444miZoy5yxiz0hhTaIyZbIw5poJtbzDG2DL/CstsY4wxzxpjNhhj/MaY0caYAxL/lYiI7Dk0oiYiIns7Y8zjxpgJxpgCY0xWHPc72Bgz1BiTbYzJN8b8boxpE89jOy9qxpgrgNeA7sCRwCxgpDGmaQV3ywFalPrXtsznHwL+D7gdOBbIj+6zRtWmFxHZM1lrdcFrERERSAW+AN7b0TsYY9oDvwELgdOAjsBzQGEFd/sLLzz73gf0ttb2BTDG3A78HbgJ6FHOfay1duP2PmGMMcA9wPPW2m+jt10HbAIuAj6r2vgiInueonCIMBaAGslanl9ERPZO1tqnITKrL467/RcYZq19qNRty+J9bKcjasaYVKALMDp2m7U2HP34+AruWtsYs8oYs8YY860x5tBSn2sHNC+zz2xgciX79JycbdvYsHKF6xjkZ2ezZvEi1zHw5+ezcv48pxmstfz+4wjyc3Kc5igOBJg+ZjR5WTs8Ap8QeVlZLJ4xjZyMDKc58rOz2bJ2LdlbtzjNARAsLnb+/YjJz87GWrtT942t+Jjs85GctGtPFYX5BTudoyoVBwKeyBEOhQiHw65jYK31RA7AEz8X+as18xdRkJPrOgbrFy8lN2Ob6xhsWbWGrE2bXcdg24YNriNIBYwxPiKDTouNMSONMZujp3ZdFO++XE99bAwkERntKm0TkbK1PYuIjLb9A/gXka9hgjGmdfTzsfvt8D6NMWnGmLqxf0CduL6KBPnsfz149fZbnD+Bff/hB7x6+y0U5LotJ2M/H8Rrd97KptWrnGUwxlCrXj1m/jzGWQaAlLQ0QqEQvw75ymmOWvXqsXrhAkZ+3M9pjuTUVMZ8Poiv3n7DaY6t69fR56nH6Pvsk05zZGxYzwePPkjPu28jMskgfoWh6EIiuzDtMXvzVj557Fl6XHQ14VBop/ezq/y5uXz/5vu8eNHV+HPznOWw1jL/1wm8etXNZG7Y7qSQapOXmUW/B55kzfyFTnMAjOk/kAW/TXQdg5Wz5jJt2I+uY+DPzWXi10NdxyB781Zev7Ybo3r3d5qjqDDA69fdxpD/veU0B8DbN9/Np48/5zoGA5/4r+sIcZs7ew2zZq5O2L+5s9fEHqpO6df0xpg0B19uU6A28AgwAjgb+Ab42hhzajw78sLUx7hYaycCJUd0Y8wEYAFwG7Czr44eBZ7e9XRV65xrb+Dos7vu9AutqnLyxZfS7rDDqVmnrtMcx537d+o0bEjTfeI6D7PKHXzMcU4fP+bos85x+uIXIsX1b1f9i+KiIqc50tLTueK+B/Hn5zvN0bhlK2578RXnI2qNWrSk2wsvs3X9up3eR+z8tF1Z8bFe08Zc/dzjrF+8FF9S0k7vZ1el16nD326+jkNPOYGUtFRnOcLBEPWbNeUf991NWs2aznIAbFy2gi7nnUWdhg2c5ti0fCVp6ek0aFHee7PVozgQYOnUGbTv0slpDoD5v06kTsOGWGudPv/Xa9qYyx5/wPn3JLVGGlc98yhN2u7jNAfAZU88SM16bl8LAZx75y30uecR1zHiclSblqSn10rY/v3+fPpE/ndtmU91B54pu70xpgfwcCW7PdhauzPvZsUGwr611vaM/v9MY8wJRNbP+GVHd2RcjtZEpz4WAP+01g4pdXt/oL619h87uJ8vgKC19ipjzH5E5oB2ttbOLLXNL8BMa+1/tnP/NKB0464DrH3ph1Gk10rcL5WIiFctzNzC8NVLaF2/Lhd3PNh1HBERiSrMy+exk7sC1LPWup3uVInoTLXs994dnvCidsed5wK0BkrP1w1YawPbydUEaFTJbpdba0veiY6eo/a6tbZ+RXeK9pt8oLu19vlSt78EnGStPbGSxy3hdETNWltkjJkGnAkMgZJ5nWcCb+/IPowxScDhwLDoTSuAjdF9zIxuU5fI6o/bXa0l+gMs+SG6HsESEXHNXwUjaiIiItUsd0fKq7V2C5CQE9uj/eZ3oEOZTx0IxHX+jheegV8D+htjpgJTiKzYWAuIrQI5AFhnrX00+vFTwCRgKVAfeJDI8vwfQmQ5SGPM68ATxpglRIrbc8B6omVQREQqVhXnqImIiOzuotc+awi0AZKMMbH5wEuttXnRbRYCj1prv4l+7hVgsDFmHDAW6ApcQGSp/h3m/BnYWjs4Ovz4LJHFPmYCXa21scVA2gCll6VqAPSObpsJTANOsNbOL7XNy0TKXi8iZe636D7junaBiMjequRi1xpRExGRvduzwPWlPp4R/e/pwM/R/+8A1IttYK39JnrJsUeBN4kshniptfa3eB7YE8/A1tq3KWeqo7X2tDIf3wvcW8n+LPBU9J+IiMQptphImkbURERkL2atvQG4oZJt/nLelLX2I+CjXXls18vzi4iIB8VG1NI1oiYiIuKEipqIiPyFXyNqIiIiTqmoiYjIX+gcNREREbdU1ERE5C+06qOIiIhbKmoiIvInYWsJhEKARtRERERcUVETEZE/CUSnPYJG1ERERFxRURMRkT+JnZ+WmpSEz/xlxWERERGpBipqIiLyJ7FrqGnao4iIiDsqaiIi8iexEbW0lCTHSURERPZeKmoiIvInJUVNI2oiIiLOqKiJiMifBHQNNREREedU1ERE5E9i56hpRE1ERMQdFTUREfkTnaMmIiLinoqaiIj8iaY+ioiIuKeiJiIif6LFRERERNxTURMRkT8pLBlR09RHERERV1TURETkT7SYiIiIiHsqaiIi8icl56ilqKiJiIi4oqImIiJ/onPURERE3FNR87Dh/frQ67GHXMfg1yFf8cZ/7iRYXOw0x6xxP/O/228mN3Ob0xxLZ83g5VtvYPOa1U5zrF++jJduuZ5VC+Y7yxAsLmZ4/48Y/90QZxkAAgUFDO/Xh7FffOY0hz8vj58++5QfP+nvNkd+PpNHDGNY3w/jvm8wHCJkLbDr56iFgkGWz5jNyA/6Eg6Hd2lfuyo3Yxu/fDKY4kDAaY5wKMS04aPw5+Y5zQGwet4CcrZmuI5BztYMMjduch2D9UuW8eqVN7FqrrtjKkDmxk28dvUtLBg/2WkOf24eb914J1N/GOk0Rzgc5oM772NM/4FOcwB88tizDH3tHdcxGPr6u64jSDVRUfOwcDhMYX6+8xc4oWCQ4sJCQtHzVlwpLiqiMD8fn8/tAgehYIiiwkKs459LOBSiOBAgFAo5y5CcksIZl13JPgce5CwDQFrNmpxy8T9p3nZfpznSa9em82lnUL9pU7c5atWiVfv9qVGzZtz3LYz+PhkgJWnX/tZsOEyR309xodtyFAoGWTJlOhlr1xMsKnKWw1rLvHHjWT5tFnmZWc5yAKxduJgJXwxh2/qNTnPkZ2Uzqnd/NixZ5jQHRH9fCwsJB90dUyNBoMjvJ+z4OdeXnIQ/L58if6HTHOFQiKLCgPPvB0BBTq7z536AYsc/E6k+xkbfOZU/GGPqAtkv/TCK9Fq1XMcREak2GYUFDFg0kxrJydx6QhfXcUREpIzCvHweO7krQD1rbY7rPBWJvaZ+793hpKcn7jW135/PHXeeC7vB9yQeGlETEZESgeiIWqqW5hcREXFKRU1EREoEShYSUVETERFxSUVNRERKFEVH1NKStOKjiIiISypqIiJSIrY0v6Y+ioiIuKWiJiIiJTT1UURExBtU1EREpERsMRFd7FpERMQtFTURESkRCGvqo4iIiBeoqImISIkijaiJiIh4goqaiIiUKDlHLUkjaiIiIi6pqImISImAVn0UERHxBBU1EREpocVEREREvEFFTURESpSMqGnqo4iIiFMqaiIiUqIoHBtRU1ETERFxSUVNREQACFtLcTgMaERNRETENRU1EREB/hhNAy0mIiIi4pqKmoiIAFAcXUjEZwxJPj09iIiIuKRnYhERASAQHVHTaJqIiIh7KmoiIgJAUXRETeeniYiIuKeiJiIiABRpaX4RERHPUFETERHgj8VEVNRERETcU1ETERGg1NRHnaMmIiLinIqaiIgAGlETERHxEhU1EREBNKImIiLiJSpqHrZu2VLmTRzvOgab16xmxs9jXMcgc/Nmfv9xBNZapzkKcnOYNPx7igMBpzmKi4qYOOx7CnJzneaw1jJ5xDByMjKc5ggFg+RnZzvNAJHvR25WpusYAORlZcW1faJG1Apycp3/3QIE/H7C4bDrGISCQULFQdcxsNYSCrrPkZeZxZRvfyAcClW+cQIFCgqYPOQHivyFTnOEioP8PnQ4edvcH0emDx9Nxrr1rmMw9+ff2LB0uesYLJr0O2vmLXQdg1Vz5rmOINVERc3Dvuv9Hv2ff8b5k9eYwQPp/+zTFOTmOM0x8YehfPzCs2xctdJpjmljRjPwpRdYPme20xwLJk9k0MsvOC/zqxct4NMez/P7qBHOMoSCQX4b+g0jBvR1liGWY8zggXzR83+eyNHr8Yfiul8geqxJqaKiFg6FmPjVUN64tpvT45i1llmjxvLKZddTmJfvLAfAyllz6XnNrWxdu85pjswNm/jonkdZNnWm0xwAs3/6hc+e6cHSqTOc5lgyZTqDu/dg9k8/O82xdtFiBj39ApO/HeY0R9amzXzyWHd+G/SV0xxFhQEGPPI0oz8c4DQHwKAn/8u3r77tOgbfvf6u6whSTYwX3uX0GmNMXSD7pR9GkV6rlrMc2zZuIC87mzYdDnKWASA7YysZ69ez3+EdneYI+P2snDeXA7schTHGWY5gcTFLZk7noKOOcZojFAyyePpUOnQ5Gp/Dc4rCoRCLpk9l/46dSElLc5YDIi/IXf5MYsLhMD6f+/fBwqFQXL8bw1ctZmHWVk7arw2dW7eoshyhYBBfUpLzn004HAZrnf69QOT3NBwKkZSc7DRHLIvrn0uoOMiS36dxwNFdSEpx9z2x1rJ40u+079KJ5NRUZzkAFk+aSrvOhzs/pi6ZMo3WB3cgvU5tpzlWzZlH3SaNadC8mdMc6xYtJa1mOo33aeU0x+p5C3j9X90A6llr3b6LXonYa+r33h1OenriXlP7/fnccee5sBt8T+KhorYdXilqIiLV6dsVC1iek8npB7TjsBZNXccREZHtKMzL57GTu8JuUEpU1HaN+7d8RUTEE4qj52+leGA0UEREZG+nZ2MREQEgGF1MJDlJTw0iIiKu6dlYRESAUiNquo6aiIiIcypqIiIC/LE8f4pG1ERERJzTs7GIiAAQLDlHTSNqIiIirqmoiYgIAMUaURMREfEMTzwbG2PuMsasNMYUGmMmG2OOqWDbW40xvxpjMqP/Rpfd3hjTzxhjy/xzdzVeERGPs9bqHDUREZFSjDH7GmP6GGNWGGP8xphlxpjuxpgdutiiiRge7SIXxfv4zouaMeYK4DWgO3AkMAsYaYwp7yI+pwGDgNOB44E1wI/GmLJXHxwBtCj176oqDy8isoeITXsErfooIiISdRCRvnQbcChwL3A78MIO3v8eYKcvWp28s3esQvcBva21fQGMMbcDfwduAnqU3dhae03pj40xtwCXAmcCA0p9KmCt3Zio0CIie5LYtEfQddREREQArLUjiAz+xCw3xnQA7gAeqOi+xphOwP3AUcCGnXl8p8/G0WHDLsDo2G3W2nD04+N3cDc1gRRgW5nbTzPGbDbGLDLGvGeMaVQVmUVE9kSxaY/JPh/GGMdpREREPKsef+0df2KMqQkMBO7alYEj1yNqjYEkYFOZ2zcRGWrcES8B6ylV9og036+BFUB7IsOTw40xx1trQ2V3YIxJA9JK3VRnBx9bRGSPoIVEREQkUeZOWkpaanrC9h8o8sf+t06ZNxsD1tpAVT2OMWZ/4N9UMpoG9AQmWGu/3ZXHc13Udokx5hHgSuA0a21h7HZr7WelNptjjJkNLCNyfttP29nVo8DTCYwqIuJpQfvHiJqIiEhVOmL/pqTXqJmw/fsLC2L/u7bMp7oDz5Td3hjTA3i4kt0ebK1dWOo+rYgMBn1hre1d3p2MMRcCZwCdKw1eCddFbSsQApqVub0ZUOEwoTHmAeAR4G/W2tkVbWutXW6M2Qrsz/aL2otEFjSJqcNff9AiInus2GIiSSpqIiKy+2oN5Jb6uLzRtFeBfpXsa3nsf4wxLYGxwASgWyX3O4PIjL6sMqN7XxljfrXWnlbJ/Us4LWrW2iJjzDQiC4EMATDG+KIfv13e/YwxDwGPA+dYa6dW9jjGmNZAI8o5kS86JBootX0cX4WIyO4vGNaImoiI7PZyrbU5lW1krd0CbNmRHUZH0sYC04Abo+tpVKQH8GGZ2+YQWTHyux15zBjXI2oQGcnqb4yZCkwhsoxlLSC2CuQAYJ219tHoxw8DzwJXAyuNMc2j+8mz1uYZY2oTmcb4FZFRufbAy8BSYGS1fVUiIrsRTX0UERH5s2hJ+xlYReS8tCaxAZ3YIiHRbX4CrrPWTonevrHMfgBWW2tXxPP4zouatXawMaYJkfLVHJgJdLXWxhYYaQOUbq53AKnAl2V2FZuDGgI6AtcD9YksNPIj8GRVnkwoIrInCYUjl3lRURMRESlxFpFTp/bnr6dFxabgpQAdiKxEX6WcFzUAa+3blDPVsew8TmvtvpXsyw+cU1XZRET2BsHogrhJPk39FhERAbDW9qOSc9mstSv5o7SVt81OPbnqrVMREfnjHDUtzy8iIuIJekYWERGCVlMfRUREvETPyCIiouX5RUREPEbPyCIiouX5RUREPEbPyCIiQshqRE1ERMRL9IwsOyQcCrmOAEAoGHQdAfDO9yMcruyai9XDRs9vkt2XRtTEJa8cQ7xyTPXKc4yec0Xc0jOyhw18+QX+e91Vzg9Qw/t/xNNXXII/P99pjgnff8sTl1xA5uZNlW+cQHPG/8ojF3Zl3dIlTnOsmDeHh/9+NgunTnGaY/PaNTx8/tlM+XG40xy5WZk8dtF5jBr4sdMcxYEAz1x5KV+99bqzDNZa5kz4je96v7/D9/njHLWqXZ5/6dQZDH3tHefHsY3LVjD8nQ8pzHN7HAMY/u6HPHPWRfhz85zmGP/5Nzx+yrlkbnR7TJ09ZhyPnXQO6xa5PaaunDWXx0/uyuJJU53m2LJ6LU+cdj7Tho9ymiM/K5vu51zCL58MdpojWFTEC/+4iqE933GaA+C1q2+h/0NPuY5BvwefcB1BqoknrqMm29f2oENITknBl5TkNEezNm1pf3hH0tLTneZo3LIV7Tse4TxH/SZN2f+IztSsW9dpjjoNGrL/EZ2o17iJ0xy169Wj/eFH0Lhla6c5atauw/5HdKZ5232d5khJS+PAI7vQev8DnGUwxtChy9HUqFlrh++TqKmP+xzSgeLCAMbxSF29pk1o2/EQklLcP+212H8/9j/6SNJqVfm1UePSpO0+7HdkJ2rVq+c0R6NWLWjX+QhqN2jgNEedRg1p36UTdZs0cpqjRq2a7H90Zxq2aOY0R3JqCvt17kjjNm6P7cmpqbQ/8giatdvXaQ6A9l06Ub95U9cxaNvxUOdvKEj1MF6ZbuAlxpi6QPZLP4wivdaOv9AREdld/bByEYuzMzilfVuOaNXcdRwRESlHYV4+j53cFaCetTbHdZ6KxF5T93p2MOk1EvfmlL+wgG5PXQG7wfckHpr6KCIihIm8aeczVTv1UURERHaOipqIiBCyKmoiIiJeoqImIiKEwypqIiIiXqKiJiIihIksJuKr4lUfRUREZOeoqImISMnUxySNqMLF8hkAABWBSURBVImIiHiCipqIiBDWOWoiIiKeoqImIiJ/FDXH1zsTERGRCD0ji4iIRtREREQ8RkVNRERU1ERERDxGRU1ERHQdNREREY9RURMREcI2ujy/ipqIiIgnqKiJiAjR612rqImIiHiEipqIiGCJNDX1NBEREW9QURMREazOURMREfEUFTURESEc/a9RURMREfEEFTURESkZUVNNExER8QYVNRERKTlHTVMfRUREvEFFTUREiA6oaeqjiIiIR6ioiYjIH6s+Os4hIiIiESpqIiJCOHaOmkbUREREPEFFTUREouNpOkdNRETEK1TURET2crEVH0EXvBYREfEKFTURkb1cmFJFTWepiYiIeIKKmofNnzyJX7763HUMVsybw/D+HxEOhyvfOIE2rlrJ0F7vUVxU5DRH1pYtDHnvbfx5eU5zFOTm8u3775C9dYvTHMHiYr7r/T6bVq9ymsNay/B+fVi9cIHTHABjPh/E4ulTXcdgwvdDmf3rL5VuV2pADV8CetrMH8fw+3cjqn7HcVowfjK/fvaV6xismDmH0X0GuI7B+iXLGP7Oh4RDIac5tq3fwHdvvEfA73eaIz8rm6E93yF3W6bTHEWFAb574z22rlnnNEc4HGb4Ox+yduFipzkAfvroE5b8Pt11DCZ+NZQ5Y8e5jsHsMZUf12XPoKLmYZOGfcewvn2cF6TfR41k9KcDCBQUOM0x85exjBk8kKzNm53mWPD7ZMYMHsiGlSuc5lg5fx4/ffYpy+fOcZpj06qVjPp0AAunTnGaI2dbBiM/7sfMcT87zVEUCDCi/0dMGTncaQ6AHz/ux69Dvt6BLUs1tQSMqP3yyeeM6fdple83XpO+HsqoXv0IBYNOc8wYMZofe/enICfXaY754yYwus8AMtZtcJpj6dQZjO03kHULlzjNsXbBIn4e8BlLHReCravX8HP/QcwbN95pjryMbYwdMIjpw0c5zREKBhn14QB+/3aY0xwAo3r3Z8IXQ1zHYPzgb1xHkGpiSp+bIBHGmLpA9ks/jCK9Vi1nOfz5+YSDQWrVq+csA0QOkjnbttGgaVOnOcKhEFlbt9CwWXPnOTI3b6JRi5ZOc1hrydiwnsYtWznNAZCxYQP1mzQhKTnZaY7MzZupVa8eqWlpTnPkZGSQml6DGjXdHT8AcrMySUpKpmadOhVuFwqHeXPOJAC6ndCFtCr+OeZn54C11Krv9lhWmJdPcSBAnUYNneYI+P0U5uZTr2ljpzmCxcXkbt1GgxbNnOYIh8Nkrt9Io9Zuj6kAGWvX06Blc3w+t+9jb1u/gXpNPXBM3biJuo0bOc+RtXkLtRvUJzklxWkOf27kzZX0So6piZaxfiP//ftlAPWstTlOw1Qi9pq617ODSa9RM2GP4y8soNtTV8Bu8D2Jh9u/PKmQy5JYWlJysvOSBuBLSnJe0mI5XJc0iCyj7oWSBtCoRQvXEQA88XsKULdRI9cRAKhTv8EObVd6Sf5wAt68q1WvbpXvc2fUqF2LGrXdH1fT0tNJS093HYPklBTnJQ3A5/N5oqQBnsnRsKVHjqnN3f9+ANRv2sR1BMB9QYupVdcbOSTxNPVRRGQvV3qyoyZZiIiIeIOKmojIXs6YP9Z6TMSImoiIiMRPRU1EREoudK3zlkVERLxBRU1EREqun6aaJiIi4g0qaiIiohE1ERERj1FRExERYgs/6hw1ERERb1BRExGRP6Y+qqiJiIh4goqaiIiUTH0MO84hIiIiESpqIiKiETURERGPUVETERF8OkdNRETEU1TUREQEU7Lqo+MgIiIiAqioiYiIiIiIeI6KmoiIiIiIiMeoqImIiIiIiHiMipqIiIiIiIjHqKiJiIiIiIh4jIqaiIiIiIiIx6ioiYiIiIiIeIyKmoiIiIiIiMd4oqgZY+4yxqw0xhQaYyYbY46pZPvLjDELo9vPMcacV+bzxhjzrDFmgzHGb4wZbYw5ILFfhYiIiIiI7EmMMUONMaujvWODMeZjY0zLCrZvaIx5yxizKNpDVhtj3jTG1Iv3sZ0XNWPMFcBrQHfgSGAWMNIY07Sc7U8ABgF9gM7AEGCIMeawUps9BPwfcDtwLJAf3WeNRH0dIiIiIiKyxxkLXA50AC4F2gNfVrB9y+i/B4DDgBuArkS6S1ycFzXgPqC3tbavtXY+kXJVANxUzvb/AUZYa1+x1i6w1j4JTAfuhshoGnAP8Ly19ltr7WzgOiLfsIsS/LWIiIiIiMgewlrb01o7yVq7ylo7AegBHGeMSSln+7nW2kuttd9Za5dZa8cAjwMXGGOS43lsp0XNGJMKdAFGx26z1oajHx9fzt2OL7191MhS27cDmpfZZzYwuYJ9elKgoIC8rCzXMSgKBMjZts11DILFxWRv3eI6BuFwmMzNm1zHAGDbpo1Ya13HIGvLFkLBoOsY5GRkUFxU5DoGuVmZFBUWuo5Bfk4OhQX5rmPgz82jICfXdYzIMTXTA8fUwgC5GR45pm7e6jpG5Ji60RvH1MwNm7xxTN3skWPq1gyCHjim5m3LpMjvgWNqdg6F+QWuY+DPy3MdYa9ljGkIXANMsNYWx3HXekCOtTauP+y4Wl0CNAaSgLJH6E3AQeXcp3k52zcv9Xkq2eZPjDFpQFqpm+oAzl/gfPzf7qycP4/H+w/El+zuR/Xt+2/z+48jeHzAQNJr13WWY8zngxg5oC8P9epLo5atnOWYNvpHPu/5Cne88jr7HnKosxyLp0+lz5OPcs0jT9Dx5FOd5di4cgU97+rGhbfdyYkXXuwsR862DF688V+ccvGlnHvDLc5yFAcCPH/tlRx63PFcft9DznIAvHzrDTRq2ZJbn3+p0m2b+lIIWz82UEhhnqnSHB/ccR+FBQXcM+CDKt1vvD594jlWzZ7Pw19/TJLDY+rQ199l2vcjefibT6lZp7azHGM//oxRvftz/6A+NGpV7ukWCTd92Ci+fPFVbnv3Vdoe7u6YumTKNPre/zhXPfsYh59+irMcG5at4K0b7uD8/9zOCf90NxEoZ2sGL192PSddcQldby9vklPiFQUC9Ljoag456Xj++fgDznIAvHbVTTRs1Yqbe77gNEffex9z+vg7w1+Y2IJbav91IpPrSgSstYFd3b8x5iUis/dqApOA8+O4b2PgSaBX3I/r8p2j6Il464ATrLUTS93+MnCqtfbY7dynCLjeWjuo1G13Ak9ba5tFz2EbD7S01m4otc3ngLXWXrGdfT4DPF11X5mIiIiISEK1s9audB2iItH1IVZQzmBJFcsDyr771d1a+8x2cvUAHq5kfwdbaxdGt28MNATaEukM2cD5tpIiZYypy/+3d/+xlpT1HcffH7AisLAmlrJtKbJFxVZMgVYR2sDiFqSkQaRBgVgkElqrjbWRACaWUrQl0jbdpmupRuMWa8SSNDSWuLBQ12B3hUoFFoIoP5YswgoUKEbYReHpH89cdvbsPffec/Zcztx73q9ksntmnpk78z3fO3e+Z57zDKwDngROHfAu3NjvqD0BvAAc2DP/QGBrn3W2ztJ+a2veoz1tbu+zzcupA5pM2Q94GDgIGH9/ncXBmM4P4zp6xnT0jOnoGdP5YVxHz5iO3lRMx9+HehallG1JlgOvHNMu9Lub9rfAmlnWfWDqP6WUJ6h1y/eS3ANsAd4GbOyzLkn2A9ZS8/5dgxZpMOZCrZTyfJLbgJXU0RtJskfzenWf1TY2y1e15p3IjkA9SC3WVtIUZk01ezRwZZ/92E7rjWzdMv1RKeWZQY9LuzKm88O4jp4xHT1jOnrGdH4Y19EzpqPX07Wv80op24Dxf8mwpZTyODDswAdTY3zs1a9BU3tcT60vTm1iMLBx31GDeifrn5N8G7iVOmLjvsAXAJJcBfyglPKxpv3fA99I8lHgOuBM4DeAP4DatzHJKuDjSb5PLdw+ATxCUwxKkiRJ0kySHA28Bfgm8BR1aP5PAPfT3CRK8ovATcA5pZRbmyLtBur32d4L7N/MA3i8lPLCXH/+2Au1UspXkhwAXEbtv3o7cHIpZWowkIOBF1vtNyQ5G/gk8FfA94HTSil3tTZ7BbXY+yzwampwTx62mpUkSZI0cZ4FTqc+73lf6teq1lIfAzbVG+9nqM9Y26d5fRS1Jx/AfT3bWw5snusPH3uhBlBKWU2fro6llBXTzLsGuGaG7RXgkmYaxnbqG7Lbo8ToJcZ0fhjX0TOmo2dMR8+Yzg/jOnrGdPSM6cuklLIJePssbTYDab1e3369O8Y66qMkSZIkaVdjfeC1JEmSJGlXFmqSJEmS1DEWapIkSZLUMRZqkiRJktQxE1OoJflQks1JtiW5JclbZ2l/RpLvNu03JTmlZ3mSXJbk0STPJbkxyevn9yi6ZZCYJjk/yc1JnmqmG3vbJ1mTpPRMa+f/SLpjwJieO028tvW0MU8Hi+n6aWJaklzXajPReZrkuCRfTfJIc+ynzWGdFUn+J8n2JPclOXeaNgOdoxeTQWOa5PQk65I8nuSZJBuTvKOnzaXT5Ol35/dIumWIuK7o8/u/rKeduTr3mE53vixJ7m61mehcTfKxJP+d5EdJHktybZLD5rCe16kTYCIKtSTvoT5Y+y+ozza4A7g+yc/1aX8s8GXg88CR1AdlX5vk8FazC4EPAx+gPivhx802XzVfx9Elg8YUWEGN6QnAMcAW4IbUhwS2rQV+vjWdNfKd76ghYgrwDDvH67U9y83TwWJ6OjvH83DgBXZ9HMjE5in1OTJ3AB+aS+Mky4HrgK8DRwCrgM+1C4shc38xGSimwHHAOuAU4Nepsf1qkiN72t3Nznn6WyPZ24Vj0LhOOYyd4/bY1AJzdeCY/gk7x/KXgCfZ9Zw6ybl6PPBp4G3AidRnct2QZN9+K3idOkFKKYt+Am4BVrde7wH8ALi4T/uvAP/RM+9bwD81/w/1gXcXtJYvBbYBZ477eLsY02nW35NaZJzTmrcGuHbcx7ZQYgqcCzw9w/bM093P0480ebpva95E52lPfApw2ixtPgXc1TPvamDtqN6nxTTNJaZ91rsbuKT1+lLg9nEfT1emOebqiqbdq2doY64OENNp1jkNeBF4bWueubpzjA5oYnvcDG28Tp2QadHfUUvySuonjjdOzSulvNi8PqbPase02zeub7VfDizr2eb/UU/g/ba5aAwZ0177UD81erJn/orm1v+9Sa5M8ppR7HPX7UZMlyR5KMmWJP+e5E2tZebp7ufpecDVpZQf98yfyDwd0ozn0xG9TxMtyR7Afux6Pn1900XtgSRfSnLwGHZvIbq96S62LslvTs00V0fiPODGUspDPfPN1R2WNv/2/j63eZ06IRZ9oQb8LPXuzQ975v+QmsTTWTZL+2WteXPd5mIyTEx7fQp4hJ1PNGuBc4CVwEXU7gBfS7Lnbu3twjBMTO8F3g+8E3gv9fd5Q5KDmuXm6W7kafO9k8OBz/UsmuQ8HUa/8+n+SfZmNOeTSXcBsAT419a8W6h33U8G/oh64XZzkv1e9r1bOB6ldhP7vWbaAqxPclSz3FzdDUl+Afgddj2nmquN5kOXVcB/lVLumqGp16kT4hXj3gFNniQXA2cCK0opLw1+UUq5utVsU5I7gfup3VFuell3cgEopWwENk69TrIBuAf4Q+DPxrVfi8h5wKZSyq3tmeapuiTJ2cCfA+8spbz0XapSytdaze5McgvwEPBu6vda1KOUci/1A7ApG5IcCvwp8Pvj2atF5X3A09TvU73EXN3Jp6kfEE7Sd/Q0g0m4o/YEdTCAA3vmHwhs7bPO1lnab23Nm+s2F5NhYgpAkguAi4GTSil3ztS2lPJA87NeN/yuLhhDx3RKKeUnwHfYES/zdPg83Zf6YcKsFwkTlqfD6Hc+faaU8hwjyP1JleRM6t2Jd5dSertB7aSU8jTwPczTQd3KjpiZq0NKEmoPkC+WUp6fqe2k5mqS1cDvAieUUh6epbnXqRNi0RdqzQnhNmo3JeClW8srad2N6LGx3b5xYqv9g9REb29zf+qoOv22uWgMGVOSXEi903NyKeXbs/2cpgvfa6jdURa1YWPa1nS9ezM74mWeDh/TM4C9gH+Z7edMUp4Oacbz6ShyfxIlOQv4AnBWKeW6ObRfAhyKeTqoI2hiZq7uluOphdesH35NWq42w+ivBt4FvL2U8uAcVvM6dVKMezSTl2MC3kMd6eZ9wK8AnwGeAg5sll8FXN5qfyzwE+CjwBupIxI9DxzeanNRs41TqRfH1wIPAK8a9/F2NKYXAdup/f6XtaYlzfIlwF9Th6c9hHpyuY36qdpe4z7ejsb0EuAk4Jepw0R/GXgO+FXzdLiYtta7mTqISO9887TG4IhmKtRuYUcABzfLLweuarVfTh0W+ormfPpB4KfAO+b6Pi32aYiYnk39G/XBnvPp0labv6FeHB9C/Zu2DngcOGDcx9vhuH6E+p3f11G7n62i3kFbaa4OF9PWel8EvtVnmxOdq8A/UruEHt/z+7x3q43XqRM6jX0HXrYDhT+m9nneTv3i6tGtZeuBNT3tz6D2Vd8O3AWc0rM8wGXUTyy2UQfFeMO4j7OrMQU2Nyf13unSZvne1BGLHmtONpuBz07KH78hY/p3rbZbqc+qOrJne+bp4L/7hzW5eeI025r4PGXHEOa905pm+Rpg/TTrfKd5D+4Hzh3kfVrs06AxbfK2b/umzdXUAZu2Aw83rw8d97F2PK4XAvdRP/D6X+rz6U6YZrvm6mC//0uBZ4Hz+2xzonO1TzxL+zyJ16kTO6V5MyVJkiRJHbHov6MmSZIkSQuNhZokSZIkdYyFmiRJkiR1jIWaJEmSJHWMhZokSZIkdYyFmiRJkiR1jIWaJEmSJHWMhZokSZIkdYyFmiRp5JLsmWRDkn/rmb80yZYkfzmufZMkaSFIKWXc+yBJWoSSvAG4HTi/lPKlZt5VwK8BbymlPD/O/ZMkqcss1CRJ8ybJh4FLgTcBbwWuoRZpd4xzvyRJ6joLNUnSvEkS4D+BF4A3A/9QSvnkePdKkqTus1CTJM2rJG8E7gE2AUeVUn465l2SJKnzHExEkjTf3g88CywHDhrzvkiStCB4R02SNG+SHAt8AzgJ+Hgz+7eLf3wkSZqRd9QkSfMiyT7AGuDKUsrXgfOoA4p8YJz7JUnSQmChJkmaL5cDAS4GKKVsBi4ArkhyyNj2SpKkBcCuj5KkkUtyPHATsKKU8s2eZdcDr8AukJIk9WWhJkmSJEkdY9dHSZIkSeoYCzVJkiRJ6hgLNUmSJEnqGAs1SZIkSeoYCzVJkiRJ6hgLNUmSJEnqGAs1SZIkSeoYCzVJkiRJ6hgLNUmSJEnqGAs1SZIkSeoYCzVJkiRJ6hgLNUmSJEnqmP8HcXmnpAeB9BcAAAAASUVORK5CYII=\n", "text/plain": [ "