

XSLWeb 3.0.1
Web application development framework for XSLT and XQuery developers

Quick Start Guide

Maarten Kroon

Arjan Loeffen

January 2020

Table of Contents

1 The fundamentals of XSLWeb ... 3

1.1 Introduction ... 3

1.2 The Request XML ... 4

1.3 The Response XML .. 4

1.4 The Request dispatcher XSLT stylesheet ... 5

1.5 The pipeline transformation stylesheets ... 6

1.6 Web applications ... 7

2 Pipeline steps... 9

2.1 Transformation pipeline steps .. 9

2.1.1 transformer step.. 9

2.1.2 query step .. 9

2.1.3 transformer-stx step .. 9

2.1.4 Extensions .. 9

2.2 Validation pipeline steps ... 10

2.2.1 schema-validator step ... 10

2.2.2 schematron-validator step .. 10

2.3 Serialization pipeline steps .. 11

2.3.1 json-serializer step ... 11

2.3.2 zip-serializer step ... 12

2.3.3 resource-serializer step ... 13

2.3.4 fop-serializer step .. 13

3 Stylesheet parameters .. 14

4 Nested pipelines .. 15

5 Development mode and production mode ... 15

6 Logging .. 15

7 Response caching .. 16

8 Job scheduling ... 17

9 User authentication ... 17

10 Global configuration properties .. 17

11 XPath extension function library ... 18

11.1.1 Built in extension functions ... 18

11.1.2 Response functions ... 18

11.1.3 Session functions ... 19

11.1.4 Webapp functions ... 20

11.1.5 Context functions .. 20

11.1.6 EXPath File ... 20

11.1.7 EXPath HTTP Client .. 22

11.1.8 Base64 ... 23

11.1.9 Execute external processes ... 23

11.1.10 Log ... 23

11.1.11 Email .. 24

11.1.12 Serialization ... 24

11.1.13 Cache ... 24

11.1.14 Image processing ... 24

11.1.15 Input/Output ... 25

11.1.16 Utilities... 25

11.1.17 Zip .. 25

11.1.18 UUID .. 25

11.1.19 JSON ... 25

11.1.20 Script .. 26

11.1.21 SQL ... 27

11.1.22 Custom extension functions .. 28

11.1.23 Extension functions with side effects .. 28

12 Download, install and run XSLWeb ... 28

12.1 The single executable jar distribution ... 28

12.1.1 Download .. 29

12.1.2 Install ... 29

12.1.3 Run ... 29

12.2 The Web Application Archive (.war) distribution .. 30

12.2.1 Download .. 30

12.2.2 Install ... 30

12.2.3 Run ... 30

12.3 Install XSLWeb as a Windows service or Linux/macOS daemon ... 30

13 Support for Saxon PE (Professional) and EE (Enterprise Edition) .. 32

14 Appendix A: Request XML example .. 33

15 Appendix B: Response XML example .. 35

16 Appendix C: Webapp XML example .. 36

1 The fundamentals of XSLWeb

1.1 Introduction
XSLWeb is an open source and free to use web development framework for XSLT and XQuery

developers. It is based on concepts similar to frameworks like Cocoon and Servlex, but aims to be

more easily accessible and pragmatic.

Using XSLWeb, XSLT/XQuery developers can develop both web applications (dynamic websites) and

web services. In essence, an XSLWeb web application is one or more XSLT stylesheets (version 1.0,

2.0 or 3.0) or XQueries (version 1.0, 3.0 or 3.1) that transform an XML representation of the HTTP

request (the Request XML) to an XML representation of the HTTP response (the Response XML).

Which specific XSLT stylesheet or XQuery (or pipeline of XSLT stylesheets and XQueries) must be

executed for a particular HTTP request is governed by another XSLT stylesheet, the request

dispatcher stylesheet.

After every XSLT transformation step, an optional validation pipeline step (XML Schema or

Schematron) can be added to validate the result of the previous transformation step.

During transformations, data sources can be accessed using a library of built-in extension functions

that provide HTTP communication (for example to consume REST or SOAP based web services), file

and directory access, relational database access and so on.

The result of a transformation pipeline can be serialized to XML, (X)HTML or plain text format and

using specific serializer pipeline steps to JSON, ZIP files, PDF, Postscript or RTF (using XSL:FO and

Apache FOP).

The configuration of an XSLWeb web application can be specified in an XML configuration document

called webapp.xml. An XSLWeb server can contain multiple separate web applications.

Diagram 1 shows the flow of a HTTP request to a HTTP response within XSLWeb:

Diagram 1

1. A HTTP request is sent from a client (a web browser or webservice client).

2. The HTTP request is serialized by the Request Serializer to a Request XML document. All

information of the request is preserved in the XML.

http://cocoon.apache.org/
http://servlex.net/

3. The Request XML is the input of the Request Dispatcher, which transform the Request XML

using the webapp specific XSLT stylesheet request-dispatcher.xsl. The output of this

transformation is a pipeline specification, in the simplest form only specifying the path to a

XSLT stylesheet that will be used to transforming the Request XML to the Response XML. This

specification could also contain a pipeline of multiple XSLT transformations and XML Schema

or Schematron validations.

4. The pipeline specification is the input for the Pipeline Processor, which reads the Pipeline

XML and executes the pipeline transformation and validation steps. The input for the first

transformation in the pipeline is the same Request XML as was used as input for the Request

Dispatcher.

5. The Pipeline Processor executes your pipeline of XSLT stylesheets, XQueries and validations.

The last transformation in the pipeline must generate a Response XML document which

conforms to the schema «xslweb-home»/config/xsd/xslweb/response.xsd.

6. The Response XML is then passed on to the Response Deserializer, which interprets your

Response XML and converts it to a HTTP response, which is sent back to the client, a web

browser of webservice client (7).

1.2 The Request XML
The Request XML is an XML representation (or XML serialization) of the HTTP Request. The Request

XML conforms to the XML Schema «xslweb-home»/config/xsd/xslweb/request.xsd, and contains the

following information:

 The request properties: auth-type, character-encoding, content-length, context-path,

content-type, local-addr, local-name, local-port, method, path, path-info, path-translated,

protocol, query-string, remote-addr, remote-host, remote-port, remote-user, requested-

session-id, request-URI, request-url, scheme, server-name, server-port, servlet-path,

webapp-path, is-secure, is-requested-session-id-from-cookie, is-requested-session-id-from-

url and is-requested-session-id-valid.

 HTTP headers

 Request parameters

 Request body

 File uploads

 Session information

 Cookies

See Appendix A: Request XML example for an example of a Request XML document.

1.3 The Response XML
The Response XML is a XML representation (or XML serialization) of the HTTP Response. The

Response XML must conform to the XML Schema «xslweb-home»/config/xsd/xslweb/response.xsd,

and contains the following information:

 HTTP headers

 Response body

 Session information

 Cookies

See Appendix B: Response XML example for an example of a Response XML document

1.4 The Request dispatcher XSLT stylesheet
The task of the XSLT stylesheet request-dispatcher.xsl is to dynamically generate the pipeline

specification that is then used to process the Request XML and convert it to the Response XML. The

input of the request dispatcher transformation is the Request XML so it has all information available

to generate the correct pipeline. The output of the request dispatcher transformation is a pipeline

specification that must conform to the XML Schema «xslweb-home»/config/xsd/xslweb/pipeline.xsd.

Below is an example of a very basic request dispatcher stylesheet that generates a valid pipeline for

the HTTP request http://my-domain/my-webapp/hello-world.html:

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:req="http://www.armatiek.com/xslweb/request"

 xmlns:pipeline="http://www.armatiek.com/xslweb/pipeline"

 version="3.0">

 <xsl:template match="/req:request[req:path = '/hello-world.html']">

 <pipeline:pipeline>

 <pipeline:transformer

 name="hello-world"

 xsl-path="hello-world.xsl"

 log="true"/>

 </pipeline:pipeline>

 </xsl:template>

</xsl:stylesheet>

The following example uses the request parameter lang in the request http://my-domain/my-

webapp/hello-world.html?lang=en to determine the stylesheet. This lang parameter is also passed to

the stylesheet as a stylesheet parameter:

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:req="http://www.armatiek.com/xslweb/request"

 xmlns:pipeline="http://www.armatiek.com/xslweb/pipeline"

 version="3.0">

 <xsl:template match="/req:request[req:path = '/hello-world.html']">

 <xsl:variable

 name="lang"

 select="req:parameters/req:parameter[@name='lang']/req:value[1]"/>

 <pipeline:pipeline>

 <pipeline:transformer

 name="hello-world"

 xsl-path="{concat('hello-world-', $lang, '.xsl')}">

 <pipeline:parameter

 name="lang"

 uri="http://www.armatiek.com/xslweb/my-namespace"

 type="xs:string">

 <pipeline:value>

 <xsl:value-of select="$lang"/>

 </pipeline:value>

 </pipeline:parameter>

 </pipeline:transformer>

 </pipeline:pipeline>

 </xsl:template>

</xsl:stylesheet>

A pipeline consists of:

 One or more of the following transformation pipeline steps:

o transformer: transforms the input of the pipeline step using an XSLT version 1.0, 2.0

or 3.0 stylesheet.

o query: processes the input of the pipeline step using an XQuery version 1.0, 3.0 or

3.1 query.

o transformer-stx: transform the input of the pipeline step using a STX (Streaming

Transformations for XML) version 1.0 stylesheet.

 Zero or more of the following validation pipeline steps:

o schema-validator: validates the input of the step using an XML Schema version 1.0.

o schematron-validator: validates the input of the step using an ISO Schematron

schema.

 Zero or one of the following serialization pipeline step

o json-serializer: serializes XML output to a JSON representation.

o zip-serializer: serializes a XML ZIP specification to an actual ZIP file.

o resource-serializer: serializes a text or binary file to the response.

o fop-serializer: serializes XSL-FO generated in a previous pipeline step to PDF using the

Apache FOP XSL-FO processor.

See chapter 2 Pipeline steps for a more in depth overview of these different pipeline steps.

The output of the pipeline can be cached by specifying extra attributes on the <pipeline:pipeline/>

element, see chapter 7 Response caching.

In development-mode, the output of the (intermediate) transformation steps can be logged to a log

file, see chapters 5 Development mode and production mode and 6 Logging.

1.5 The pipeline transformation stylesheets
The result of the request dispatcher stylesheet is a pipeline specification containing one or more

transformation, query, validation or serialization steps. The input of the first stylesheet or query in

the pipeline is the Request XML, the output of the last stylesheet in the pipeline must conform to the

Response XML schema.

XSLWeb extends the standard XSLT/XPath 1.0, 2.0 and 3.0 functionality in a number of ways:

 XSLWeb provides a number of built-in XPath extension functions that you can use to read

and write files and directories, execute HTTP requests, access the Request, Response and

Context, Session and WebApp objects, log messages, send e-mails and so on, see chapter 11:

XPath extension function library.

 Other pipelines can be called from within a stylesheet and the result of this nested pipeline

can be used or embedded in the calling stylesheet by passing a URI that starts with the

scheme “xslweb://” to the standard XSLT document() function, see chapter 4 Nested

pipelines.

 URLs that are passed to XSLT’s document() or XQuery’s doc() function and must be proxied

through a proxy server can be provided with two extra request parameters: proxyHost and

proxyPort.

 Within every transformation a number of standard stylesheet parameters is available, see

chapter 3: Stylesheet parameters.

1.6 Web applications
An XSLWeb installation can contain multiple separate web applications. A web application can be

added under the folder «xslweb-home»/webapps and has the following minimal folder structure

(bold):

my-webapp/

 lib/

 static/

 xsl/

 request-dispatcher.xsl

 my-stylesheet.xsl

 xquery/

 my-query.xq

 stx/

 my-stylesheet.stx

 xsd/

 my-xml-schema.xsd

 sch/

 my-schematron.sch

 webapp.xml

This web application can be accessed by using the following uri:

http://<domain>:<port>/<xslweb-context-path>/my-webapp

If you use the jar distribution of XSLWeb with default parameters, this uri will be:

http://localhost:8080/my-webapp

Out of the box, XSLWeb contains four web applications, “documentation”, “examples”, “my-webapp”

and “ROOT”. The ROOT web application is used for Uri’s that doesn’t contain a reference to a web

application, for instance:

http://localhost:8080

The folder my-webapp can have any name you like (provided it doesn’t contain spaces or other

strange characters). The folder lib can contain any custom XPath extension functions you have

developed in Java and 3rd party libraries they depend on, see section 11.1.22 Custom extension

functions. The folder static contains all static files you use in your web application, like images, css

stylesheets and javascript files. The folder xsl contains the XSLT stylesheet request-dispatcher.xsl and

at least one pipeline XSLT stylesheet that transforms Request XML to Response XML. The folders xsd

and sch can contain XML Schema or Schematron validation specifications. The file webapp.xml

contains further configuration of your web application.

The file webapp.xml contains the configuration of your web application. It must conform to the XML

Schema «xslweb-home»/config/xsd/xslweb/xslweb-webapp.xsd, and contains the following

configuration items:

 Title: The title of your web application

 Description: The description of your web application

 Development-mode: see chapter 5 Development mode and production mode.

 Resources: The definition of requests to static files that should not be processed by the

request dispatcher (but should be served straight away) and the duration these resources

should be cached by the browser (default 4 hours).

http://localhost:8080/my-webapp
http://localhost:8080/

 Parameters: The definition of webapp specific configuration parameters that are passed as

stylesheet parameters to every XSLT transformation, see chapter 3 Stylesheet parameters.

 Jobs: The definition of scheduled jobs, see chapter 8 Job scheduling.

 Data sources: the definition of JDBC data sources.

 FOP configurations: configurations for the Apache FOP serialization step (see section 2.3.4).

See Appendix C: Webapp XML example for an example of a webapp.xml configuration.

2 Pipeline steps

2.1 Transformation pipeline steps
The following transformation pipeline steps are available:

 transformer

 query

 transformer-stx

2.1.1 transformer step
The transformer step transforms the input of the pipeline step using an XSLT version 1.0, 2.0 or 3.0

stylesheet.

Example:

<pipeline:pipeline>

 <pipeline:transformer name="my-xsl-step" xsl-path="my-stylesheet.xsl"/>

</pipeline:pipeline>

2.1.2 query step
The query step processes the input of the pipeline step using an XQuery version 1.0, 3.0 or 3.1 query.

Example:

<pipeline:pipeline>

 <pipeline:transformer name="my-xquery-step" xquery-path="my-query.xq"/>

</pipeline:pipeline>

See also example 27 of the examples webapp

2.1.3 transformer-stx step
The transformer-stx step transforms the input of the pipeline step using a STX (Streaming

Transformations for XML) version 1.0 stylesheet.

Example:

<pipeline:pipeline>

 <pipeline:transformer-stx name="my-stx-step" stx-path="my-stylesheet.stx"/>

</pipeline:pipeline>

See also example 28 of the examples webapp

These steps could be combined in a pipeline as follows:

<pipeline:pipeline>

 <pipeline:transformer-stx name="my-stx-step" stx-path="my-stylesheet.stx"/>

 <pipeline:transformer name="my-xsl-step" xsl-path="my-stylesheet.xsl"/>

 <pipeline:query name="my-xquery-step" xquery-path="my-query.xq"/>

</pipeline:pipeline>

2.1.4 Extensions
XSLWeb extends the standard functionality of the transformation steps in a number of ways:

 XSLWeb provides a number of built-in XPath extension functions to the transformer and

query steps (not the transformer-stx step) that you can use to read and write files and

directories, execute HTTP requests, access the Request, Response and Context, Session and

WebApp objects, log messages, send e-mails and so on, see chapter 11: XPath extension

function library.

 Other pipelines can be called from within a stylesheet or query and the result of this nested

pipeline can be used or embedded in the calling stylesheet/query by passing a URI that starts

with the scheme “xslweb://” to the standard XSLT/XQuery document() function or the STX

stx:process-children element, see chapter 4 Nested pipelines.

 Within every transformation of query a number of standard stylesheet parameters is

available, see chapter 3: Stylesheet parameters.

2.2 Validation pipeline steps
XSLWeb supports the XML validation of the output of a transformation pipeline step by adding a

validation pipeline step after the transformation step.

The following validation pipeline steps are available:

 schema-validator

 schematron-validator

2.2.1 schema-validator step
The schema-validator step validates the output of the previous step using an XML Schema version

1.0.

<pipeline:pipeline>

 <pipeline:transformer name="my-transformation " xsl-path="my-transormation.xsl"/>

 <pipeline:schema-validator

 name="schema-validator"

 xsl-param-namespace="http://www.armatiek.com/xslweb/validation"

 xsl-param-name="schema-validation-report">

 <pipeline:schema-paths>

 <pipeline:schema-path>my-schema.xsd</pipeline:schema-path>

 </pipeline:schema-paths>

 </pipeline:schema-validator>

</pipeline:pipeline>

The location(s) of the XML schemas can be specified in the subelements schema-path. These paths

must be relative to the directory «webapp»/xsd.

Any validation warnings and errors are written to the log file. If you specify the attribute xsl-param-

name (and optional attribute xsl-param-namespace), a validation report (in XML format) is added as

a stylesheet parameter of type document-node() to the next XSLT transformation step in the

pipeline.

Validation properties (like http://javax.xml.XMLConstants/property/accessExternalSchema)

and features (like http://javax.xml.XMLConstants/feature/secure-processing) can be

specified in the features and properties subelements (see pipeline.xsd).

See also example 25 of the examples webapp.

2.2.2 schematron-validator step
The Schematron-validator step validates the output of the previous step using an ISO Schematron

schema:

<pipeline:pipeline>

 <pipeline:transformer name="my-transformation " xsl-path="my-transormation.xsl"/>

 <pipeline:schematron-validator

 name="schematron-validator"

 schematron-path="my-schematron.sch "

 xsl-param-namespace="http://www.armatiek.com/xslweb/validation"

 xsl-param-name="schematron-validation-report">

 </pipeline:schematron-validator>

</pipeline:pipeline>

The location of the Schematron schema can be specified in the attribute schematron-path. This path

must be relative to the directory «xslweb-home»/sch.

Any validation warnings and errors are written to the log file. If you specify the attribute xsl-param-

name (and optional attribute xsl-param-namespace), the validation report (in SVRL format) is added

as a stylesheet parameter of type document-node() to the next XSLT transformation step in the

pipeline.

The Schematron phase can be specified using the optional attribute phase on the element

schematron-validator (see pipeline.xsd).

See also example 25 of the examples webapp.

2.3 Serialization pipeline steps
The way the result of the transformation pipeline steps is serialized to XML, XHTML, HTML or text can

be specified by the serialization attributes of the element xsl:output in the last stylesheet or query of

the pipeline, using the attributes method, encoding, indent, omit-xml-declaration and so on.

In case the output of the pipeline should not be XML, XHTML, HTML or text, a specific serialization

pipeline step can be added at the end of the pipeline. XSLWeb provides the serialization steps:

 json-serializer

 zip-serializer

 resource-serializer

 fop-serializer

2.3.1 json-serializer step
The json-serializer step serializes XML to a JSON representation. This step can be added as the last

step in a pipeline like this:

<pipeline:pipeline>

 <pipeline:transformer

 name="my-transformation "

 xsl-path="my-transformation.xsl"/>

 <pipeline:json-serializer

 name="json-serialization"

 auto-array="false"

 pretty-print="true">

 <pipeline:json-serializer/>

</pipeline:pipeline>

The pipeline step supports the following attributes:

 auto-array

 auto-primitive

 multi-pi

 namespace-declarations

http://www.schematron.com/validators.html
http://www.json.org/

 namespace-separator

 pretty-print

 virtual-root-namespace

 virtual-root-name

 repairing-namespaces

See for an explanation of these properties the documentation of StAXON.

Namespace declarations can be specified by adding namespace-declaration elements under the

namespace-declarations sub element of json-serializer (see pipeline.xsd).

See also example 18 of the examples webapp.

2.3.2 zip-serializer step
The zip-serializer step serializes an XML representation of the contents of a ZIP file to the actual file.

A ZIP serializer pipeline step can be added as the last step in a pipeline like this:

<pipeline:pipeline>

 <pipeline:transformer

 name="my-zip-serialization"

 xsl-path="my-zip-serialization.xsl"/>

 <pipeline:zip-serializer name="zip"/>

</pipeline:pipeline>

The last transformation step in the pipeline has to generate a response like the following XML:

<resp:response status="200">

 <resp:body>

 <zip:zip-serializer

 xmlns:zip="http://www.armatiek.com/xslweb/zip-serializer">

 <zip:file-entry

 name="file/myfile.txt"

 src="/home/john/myfile.txt"/>

 <zip:inline-entry

 name="dir1/test.xml"

 method="xml"

 encoding="UTF-8"

 omit-xml-declaration="no"

 indent="yes">

 <a>

 Hello World

 </zip:inline-entry>

 </zip:zip-serializer>

 </resp:body>

</resp:response>

The element zip-serializer can contain two elements:

 zip:file-entry: a representation of a disk file that must be serialized to the zip file. The

attribute “src” holds the path to the file, the attribute “name” holds the name (path) of the

file in the serialized zip file.

 zip:inline-entry: an inline XML, HTML or text fragment that must be serialized to the ZIP file.

The attribute “name” holds the name (path) of the file in the serialized zip file. Other

attributes specify the serialization behavior and are the same as the attributes of xsl:output.

See also example 23 of the examples webapp.

https://github.com/beckchr/staxon/wiki/Getting-Started

2.3.3 resource-serializer step
The resource serializer returns a stored text or binary file to the client. It is typically used in scenarios

where a file is dynamically generated during pipeline execution (for instance by using the extension

function exec-external()) and then must be returned to the client in the same request. Another

scenario is to create download links to static files that are located on the server outside the scope of

the webapp’s “static” directory.

The resource serializer pipeline step can be added as the last step in a pipeline like this:

<pipeline:pipeline>

 <pipeline:transformer

 name="resource-serialization"

 xsl-path="resource-serialization.xsl"/>

 <pipeline:resource-serializer name="resource"/>

</pipeline:pipeline>

In this example the stylesheet resource-serialization.xsl must generate a XML fragment containing

information that the resource serializer uses to create the desired response. The stylesheet must

generate an element resource-serializer in the namespace

http://www.armatiek.com/xslweb/resource-serializer. On this element the following attributes can

be set:

 path: the local path to the file that must be returned to the client.

 content-type (optional): the content type (mime type) that must be set on the response. If

this attribute is not set, XSLWeb will try to determine the content type automatically.

 content-disposition-filename (optional): this attribute can be used to force the browser to

display a “Save as” dialog (instead of display the file “inline”). The specified filename will be

used as the default filename in de dialog.

An example of the output of the XSLT stylesheet resource-serialization.xsl is:

<res:resource-serializer

 path="webapps/examples/xsl/resource/leaves.jpg"

 content-type="image/jpg"

 content-disposition-filename="my-image.jpg"/>

See also example 26 of the examples webapp

2.3.4 fop-serializer step
The fop-serializer step serializes XSL:FO format generated in a previous pipeline step to document

formats like PDF or RTF using the Apache FOP processor version 2.2.

The FOP serializer pipeline step can be added as the last step in a pipeline like this:

<pipeline:pipeline>

 <pipeline:transformer

 name="my-xsl-fo-serialization"

 xsl-path="my-xsl-fo-serialization.xsl"/>

 <pipeline:fop-serializer name="fop-serialization"/>

</pipeline:pipeline>

http://www.armatiek.com/xslweb/resource-serializer
https://www.w3.org/TR/xsl/
https://xmlgraphics.apache.org/fop/

The last transformation step in the pipeline has to generate a response like the following XML:

<resp:response status="200">

 <resp:body>

 <fop:fop-serializer

 xmlns:fop="http://www.armatiek.com/xslweb/fop-serializer"

 output-format="application/pdf"

 config-name="default">

 <fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <!-- Your further XSL:FO code -->

 </fo:root>

 </fop:fop-serializer>

 </resp:body>

</resp:response>

The fop:fop-serializer element supports the following attributes:

 config-name: the name of a FOP configuration in webapp.xml.

 output-format (optional): the output format of the serialization, like “application/pdf”

(default), application/postscript, application/rtf (see the FOP class MimeConstants.java).

 pdf-a-mode (optional): specify a PDF/A profile:

o PDF/A-1a

o PDF/A-1b

o PDF/A-2a

o PDF/A-2b

o PDF/A-2u

o PDF/A-3a

o PDF/A-3b

o PDF/A-3u

See also example 24 of the examples webapp.

3 Stylesheet parameters
Every XSLT stylesheet that is executed within XSLWeb is provided with a number of stylesheet

parameters:

 The configuration parameters from the parameters section in the webapp.xml. The

parameter’s local name can be given a namespace using the attribute uri and the type of the

values can be specified using the attribute type. The value itself can be a sequence of atomic

values.

 config:home-dir: the path to the XSLWeb home directory (config =

http://www.armatiek.com/xslweb/configuration)

 config:webapp-dir: the path to the base directory of the webapp.

 config:webapp-path: The path in de url to the web application (“/” for the webapp ROOT and

“/” + webapp-name for other webapps).

 config:development-mode: whether the webapp runs in development-mode or production-

mode.

 The Java HttpServletRequest, HttpServletResponse and WebApp objects. These are used in

custom XPath extension functions.

Pipeline stylesheets are also provided with any parameters that are defined within the element

pipeline:transformer in request-dispatcher.xsl. The parameter’s local name can be given a namespace

https://xmlgraphics.apache.org/fop/2.1/pdfa.html

using the attribute uri and the type of the values can be specified using the attribute type. The value

itself can be a sequence of atomic values.

The parameters only have to be declared in the stylesheets (as <xsl:param/> elements) when they

are actually used. The parameters for the Java objects doesn’t have to be declared at all.

4 Nested pipelines
It is possible to call another pipeline from a stylesheet using the standard XSLT function document()

providing an URL that starts with the scheme xslweb, for instance:

<xsl:sequence select="document('xslweb:///examples/nestedpipeline.html')"/>

where examples is the name of the webapp of the nested pipeline. The result of the nested pipeline

will be available in the calling stylesheet as a document node. The nested pipeline request will follow

the flow of a normal HTTP request, including the request dispatcher stylesheet. A nested pipeline call

can be seen as an “internal request”, it does not go through the HTTP stack.

5 Development mode and production mode
In webapp.xml a web application can be configured to run in development mode or production mode.

The differences between development and production mode are:

 In development mode, compiled XSLT stylesheets are not cached. That means that for every

request all stylesheets in the pipeline are reread from disk and recompiled and therefore

changes will be visible immediately. In production mode, stylesheets are compiled and

cached the first time they are used. However, in production mode, changes in stylesheets will

automatically be detected by the file alteration monitor and the complete web application

will be reloaded. So there is no need to restart the application server when deploying

stylesheets in production mode. The file alteration monitor will also detect and pick up

changes in the webapp.xml configuration file and plugin extension function library jars.

 In development mode, the caching framework (using the cache attributes on the pipeline

element) is disabled, so no caching is performed.

 In development mode, the output of a pipeline is not streamed directly to the client (e.g. the

browser) but instead buffered until the complete pipeline is executed. If an error occurs

during the execution of the pipeline, the error message and stack trace are sent to the client,

making it easier to debug the error. If an error occurs in production mode, only a HTTP status

code 500 (internal server error) is sent to the client (that is, if the response is not already

committed by the application server).

 In development mode a pipeline step can be configured to log its (intermediate) output to

the log file «xslweb-home»/logs/pipeline.log, by specifying log=”true” on the pipeline step. In

production mode all logging of the output of pipeline steps is disabled.

 In development mode, the generated XSLT of a Schematron schema is logged to the log file

(with severity INFO).

6 Logging
Log files are stored in the directory «xslweb-home»/logs. This directory contains two log files,

xslweb.log and pipeline.log.

Regular XSLWeb specific log messages are logged to xslweb.log. It’s also possible to write to this log

file from web application stylesheets using the XPath extension function log:log(), see paragraph

11.1.10.

In development mode a pipeline step can be configured to log its (intermediate) output to the log file

pipeline.log, by specifying log=”true” on the pipeline step.

By default the log files are rotated when they reach the size of 10Mb, and a maximum of 8 backups is

retained.

XSLWeb makes use of the standard logging framework slf4j with logback. The rotation, backup and

other settings can be configured in the configuration file «xslweb-home»/config/logback.xml.

7 Response caching
The output of a pipeline can be cached by providing optional caching attributes on the element

pipeline:pipeline in the stylesheet request-dispatcher.xsl. The purpose of caching the response output

is to gain performance; a response that can be served from cache will be returned quicker because

no transformations are necessary and also the load on the server is decreased.

The following attributes are supported:

 cache (xs:boolean): specifies whether the output of the response must be cache. Default:

false.

 cache-key (xs:string): specifies the key under which the output of the pipeline must be

cached, default the concatenation of req:method, req:request-URI and req:query-string. It is

only necessary to override the default mechanism if for instance the query string contains

parameters that are different for every request, like with tracking software.

 cache-time-to-live (xs:integer): The number of seconds the output will be cached from the

time it was first added to the cache. Default: 60 seconds.

 cache-time-to-idle: (xs:integer): The number of seconds the output will be cached from the

last time it was actually used. Default”: 60 seconds.

 cache-scope (xs:string): One of “webapp” or “user”. It specifies whether the output should be

cached and reused by all users of the web application (“webapp”), or for a specific user

(“user”). Default “webapp”.

 cache-headers (xs:boolean): Specifies whether XSLWeb should automatically provide the

HTTP response cache headers: ETag, Last-Modified and Expires. It supports conditional GET.

Because browsers and other HTTP clients have the expiry information returned in the

response headers, they do not even need to request the page again. Even once the local

browser copy has expired, the browser will do a conditional GET. Default: false.

XSLWeb uses the standard caching framework Ehcache to support its caching (see

http://ehcache.org). More advanced configuration properties can be specified in the Ehcache specific

configuration file «xslweb-home»/config/xslweb-ehcache.xml, like for instance how many responses

should be cached in memory and how many on disk. See the ehcache documentation for further

details.

N.B. Response caching is only enabled in production mode, see chapter 5 Development mode and

production mode.

http://www.slf4j.org/
http://logback.qos.ch/
http://ehcache.org/
http://www.ehcache.org/generated/2.9.0/html/ehc-all/index.html#page/Ehcache_Documentation_Set/co-cfgbasics_xml_configuration.html

8 Job scheduling
When you want to execute a pipeline (repeatedly) on a certain moment without user interaction, you

can use the job scheduling functionality of XSLWeb. The jobs can be defined and scheduled in the

webapp.xml configuration file, for example:

<job>

 <name>MyJob</name>

 <uri>job/my-job</uri>

 <!-- Execute at 10:15am on the 15th day of every month: -->

 <cron>0 15 10 15 * ?</cron>

 <concurrent>false</concurrent>

</job>

The elements have the following meaning:

 name: the name of the scheduled job. Used in log files.

 uri: the Uri of the request to a pipeline within the current webapp. This internal request will

follow the same flow of a normal HTTP request, including the request dispatcher stylesheet.

The Uri does not contain the name of the webapp.

 cron: the cron expression which is a string comprising five or six fields separated by white

space that represents a set of times to execute the job (see

http://en.wikipedia.org/wiki/Cron#CRON_expression).

 concurrent: specifies whether or not the job can run concurrently with other jobs.

9 User authentication
You can implement (BASIC) user authentication by performing the following steps:

 Include the stylesheet «xslweb-home»/xsl/system/authentication/basic/basic-

authentication.xsl in your request-dispatcher.xsl stylesheet.

 Implement the function auth:must-authenticate($request as element(request:request))):

xs:boolean. In this function you can determine whether $request must be authenticated or

not.

 Implement the function auth:get-realm(): xs:string. This function must return the

authentication realm.

 Implement the function auth:login($username as xs:string, $password as xs:string):

element()?. This function must authenticate $username with $password and return an empty

sequence if the authentication failed or an element() containing the user profile if

authentication succeeded. This element must have the name authentication and a

subelement ID. The element data can be filled with arbitrary data you will need in

subsequent requests.

 This element will be stored by XSLWeb in the user's session object under the name xslweb-

userprofile so it will be available in subsequent requests.

N.B. DIGEST or other authentication methods are not yet supported. BASIC (and DIGEST)

authentication is only secure if HTTPS is used!

10 Global configuration properties
In «xslweb-home»/config/xslweb.properties two global properties can be set:

 xslweb.trustallcerts: specifies if all SSL certificates must be trusted when XSLWeb connects

to an external HTTPS server.

http://en.wikipedia.org/wiki/Cron#CRON_expression

 xslweb.parserhardening: specifies if the Xerces XML parser must be configured to resist XML

External Entity (XXE) attacks.

11 XPath extension function library
11.1.1 Built in extension functions
XSLWeb contains a set of readily available XPath extension functions. To use these extension

functions in your XSLT stylesheets you only have to declare the namespace they are defined in.

11.1.2 Response functions
These functions can be used to set/change specific information in the HTTP response. For a large part

this information can also be specified in the Response XML document, See Appendix B: Response

XML example for an example of a Response XML document.

Namespace: http://www.armatiek.com/xslweb/request

Functions:

add-cookie($cookie as element(response:cookie)) as xs:boolean?

Adds the specified HTTP cookie to the response. An example of a cookie element:

<xsl:variable name="my-cookie" as="element(resp:cookie)">

 <resp:cookie>

 <!-- Comment describing the purpose of this cookie: -->

 <resp:comment>Comment 1</resp:comment>

 <!-- The domain within which this cookie should be presented: -->

 <resp:domain>

 <xsl:value-of select="/*/req:server-name"/>

 </resp:domain>

 <!-- The maximum age in seconds for this cookie: -->

 <resp:max-age>-1</resp:max-age>

 <!-- The name of the cookie -->

 <resp:name>cookie-1</resp:name>

 <!-- The path for the cookie to which the client should

 return the cookie: -->

 <resp:path>

 <xsl:value-of select="/*/req:context-path"/>

 </resp:path>

 <!-- Indicates to the browser whether the cookie should only

 be sent using a secure protocol, such as HTTPS or SSL: -->

 <resp:is-secure>false</resp:is-secure>

 <!-- The value of the cookie -->

 <resp:value>cookie-1-value</resp:value>

 <!-- The version of the cookie protocol that this Cookie

 complies with: -->

 <resp:version>0</resp:version>

 </resp:cookie>

</xsl:variable>

XSLWeb makes uses of the Java Cookie mechanism. See Cookie.

add-date-header($name as xs:string, $value as xs:dateTime) as xs:boolean?

Adds a HTTP response header with the given name and date-value.

add-int-header($name as xs:string, $value as xs:integer) as xs:boolean?

Adds a HTTP response header with the given name and integer value.

https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://docs.oracle.com/javaee/7/api/javax/servlet/http/Cookie.html

add-header($name as xs:string, $value as xs:string) as xs:boolean?

Adds a HTTP response header with the given name and value.

encode-redirect-url($url as xs:string) as xs:string

Encodes the specified URL for use in the send-redirect function or, if encoding is not needed, returns

the URL unchanged.

encode-url($url as xs:string) as xs:string

Encodes the specified URL by including the session ID, or, if encoding is not needed, returns the URL

unchanged.

is-committed() as xs:boolean

Returns a boolean indicating if the response has been committed. A committed response has already

had its status code and headers written.

set-buffer-size($size as xs:integer) as xs:boolean?

Sets the preferred buffer size for the body of the response. The servlet container will use a buffer at

least as large as the size requested. A larger buffer allows more content to be written before

anything is actually sent, thus providing XSLWeb with more time to set appropriate status codes and

headers. A smaller buffer decreases server memory load and allows the client to start receiving data

more quickly. This function must be called before any response body content is written

set-status($status as xs:integer) as xs:boolean?

Sets the HTTP status code for this response.

See example 5 how to use the response functions to set cookies.

11.1.3 Session functions
HTTP protocol and Web Servers are stateless, what it means is that for web server every request is a

new request to process and they can’t identify if it’s coming from client that has been sending

request previously.

But sometimes in web applications, we should know who the client is and process the request

accordingly. For example, a shopping cart application should know who is sending the request to add

an item and in which cart the item has to be added or who is sending checkout request so that it can

charge the amount to correct client.

Session is a conversional state between client and server and it can consists of multiple request and

response between client and server. Since HTTP and Web Server both are stateless, the only way to

maintain a session is when some unique information about the session (session id) is passed between

server and client in every request and response.

XSLWeb makes use of the session mechanism of the Java Application Server is runs on, see

HttpSession.

Namespace: http://www.armatiek.com/xslweb/session

Functions:

attribute-names() as xs:string*

Returns a sequence of strings containing the names of all attributes bound to this session.

get-attribute($name as xs:string) as item()*

Returns the attribute bound with the specified $name in this session, or an empty sequence if no

attribute is bound under the name.

https://www.codejava.net/java-ee/servlet/how-to-use-session-in-java-web-application
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpSession.html

invalidate() as xs:boolean?

Invalidates this session then unbinds any attributes bound to it.

set-attribute($name as xs:string, attr as item()*) as xs:boolean?

Binds an attribute to this session, using the name specified.

set-max-active-interval($interval as xs:integer) as xs:boolean?

Specifies the time, in seconds, between client requests before the servlet container will invalidate

this session automatically.

See example 7 how to use the session functions to set and get session attributes.

11.1.4 Webapp functions
These functions can be used to get and set web application specific attributes. These can be used to

share session independent attribute between multiple requests within one web application.

Namespace: http://www.armatiek.com/xslweb/functions/webapp

Functions:

get-attribute($name as xs:string) as item()*

get-cache-value($cache-name as xs:string,

 $key-name as xs:string) as item()*

set-attribute($name as xs:string, attr as item()*) as xs:boolean?

set-cache-value($cache-name as xs:string,

 $key-name as xs:string,

 $attrs as item()*,

 $time-to-idle as xs:integer,

 $time-to-live as xs:integer) as xs:boolean?

See example 7 how to use the webapp functions to set and get webapp attributes, and example 14

how to use the caching functions.

11.1.5 Context functions
These functions can be used to get and set “XSLWeb context” specific attributes. These can be used

to share attributes between web applications.

Namespace: http://www.armatiek.com/xslweb/functions/context

Functions:

get-attribute($name as xs:string) as item()*

set-attribute($name as xs:string, attr as item()*) as xs:boolean?

See example 7 how to use the context functions to set and get session attributes.

11.1.6 EXPath File
EXPath File is a standard file system API for XPath. It defines extension functions to perform file

system related operations such as listing, reading, writing, copying and moving files or directories.

The API is described here.

Namespace: http://expath.org/ns/file

Functions:

http://expath.org/spec/file

exists($path as xs:string) as xs:boolean

is-dir($path as xs:string) as xs:boolean

is-file($path as xs:string) as xs:boolean

last-modified($path as xs:string) as xs:dateTime

size($file as xs:string) as xs:integer

append($file as xs:string, $items as item()*) as xs:boolean?

append($file as xs:string,

 $items as item()*,

 $params as element(output:serialization-parameters)) as xs:boolean?

append-binary($file as xs:string,

 $value as xs:base64Binary) as xs:boolean?

append-text($file as xs:string,

 $value as xs:string) as xs:boolean?

append-text($file as xs:string,

 $value as xs:string,

 $encoding as xs:string) as xs:boolean?

append-text-lines($file as xs:string,

 $values as xs:string*) as xs:boolean?

append-text-lines($file as xs:string,

 $lines as xs:string*,

 $encoding as xs:string) as xs:boolean?

copy($source as xs:string, $target as xs:string) as xs:boolean?

create-dir($dir as xs:string) as xs:boolean?

create-temp-dir($prefix as xs:string, $suffix as xs:string) as xs:string

create-temp-dir($prefix as xs:string,

 $suffix as xs:string,

 $dir as xs:string) as xs:string

create-temp-file($prefix as xs:string, $suffix as xs:string) as xs:string

create-temp-file($prefix as xs:string,

 $suffix as xs:string,

 $dir as xs:string) as xs:string

delete($path as xs:string) as xs:boolean?

delete($path as xs:string, $recursive as xs:boolean) as xs:boolean?

list($dir as xs:string) as xs:string*

list($dir as xs:string, $recursive as xs:boolean) as xs:string*

list($dir as xs:string,

 $recursive as xs:boolean,

 $pattern as xs:string) as xs:string*

move($source as xs:string, $target as xs:string) as xs:boolean?

read-binary($file as xs:string) as xs:base64Binary

read-binary($file as xs:string, $offset as xs:integer) as xs:base64Binary

read-binary($file as xs:string,

 $offset as xs:integer,

 $length as xs:integer) as xs:base64Binary

read-text($file as xs:string) as xs:string

read-text($file as xs:string, $encoding as xs:string) as xs:string

read-text-lines($file as xs:string) as xs:string*

read-text-lines($file as xs:string, $encoding as xs:string) as xs:string*

write($file as xs:string, $items as item()*) as xs:boolean?

write($file as xs:string,

 $items as item()*,

 $params as element(output:serialization-parameters)) as xs:boolean?

write-binary($file as xs:string,

 $value as xs:base64Binary) as xs:boolean?

write-binary($file as xs:string,

 $value as xs:base64Binary,

 $offset as xs:integer) as xs:boolean?

write-text($file as xs:string, $value as xs:string) as xs:boolean?

write-text($file as xs:string,

 $value as xs:string,

 $encoding as xs:string) as xs:boolean?

write-text-lines($file as xs:string,

 $values as xs:string*) as xs:boolean?

write-text-lines($file as xs:string,

 $values as xs:string*,

 $encoding as xs:string) as xs:boolean?

name($path as xs:string) as xs:string

parent($path as xs:string) as xs:string?

path-to-native($path as xs:string) as xs:string

path-to-uri($path as xs:string) as xs:anyURI

resolve-path($path as xs:string) as xs:string

dir-separator() as xs:string

line-separator() as xs:string

path-separator() as xs:string

temp-dir() as xs:string

The structure of element(output:serialization-parameters) is described in XSLT and XQuery

Serialization 3.0. See example 10 how to use some of the EXPath File functions.

11.1.7 EXPath HTTP Client
EXPath HTTP Client is a standard HTTP client interface for XPath 2.0. It defines one extension function

to perform HTTP requests and handle responses. The API is described here.

http://www.w3.org/TR/xslt-xquery-serialization-30/
http://www.w3.org/TR/xslt-xquery-serialization-30/
http://expath.org/spec/http-client

EXPath HTTP Client provides a lot more functionality than XSLT’s document() function:

 Execution of other HTTP methods (POST, HEAD, PUT, DELETE etc), making it possible to

consume both SOAP and REST based web services.

 Request text or even binary documents.

 Authentication (Basic and Digest).

 Specify HTTP headers in the request and read the HTTP headers of the response.

 Execute requests to HTML pages and parse them as well-formed XML.

Namespace: http://expath.org/ns/http-client

Functions:

send-request($request as element(http:request)) as item()+

send-request($request as element(http:request)?,

 $href as xs:string?) as item()+

send-request($request as element(http:request)?,

 $href as xs:string?,

 $bodies as item()*) as item()+

See examples 11 and 21 how to use some of the EXPath HTTP Client function.

11.1.8 Base64
Namespace: http://www.armatiek.com/xslweb/functions/base64

Functions:

encode($str as xs:string) as xs:string

Encodes a string using the base64 algorithm but does not chunk the output.

decode($str as xs:string) as xs:string

Decodes a Base64 string into octets which then are converted to a UTF-8 string.

11.1.9 Execute external processes
Namespace: http://www.armatiek.com/xslweb/functions/exec

Functions:

exec-external(

 $command-line as xs:string,

 $args as xs:string*,

 $exit-value as xs:integer?,

 $time-out as xs:integer?

 $async as xs:boolean) as xs:integer

Where $command-line is the path to the executable, $args a sequence of arguments to the

application, $exit-value the exit code that is considered as success, $time-out the time in milliseconds

after an asynchronous process is killed and $async indicates if the process must be started

asynchronous or not.

11.1.10 Log
Logging functionality. The logging information is written to the main XSLWeb log file, default

«xslweb-home»/logs/xslweb.log.

Namespace: http://www.armatiek.com/xslweb/functions/log

Functions:

log($level as xs:string, $message as item()*) as xs:boolean

log($level as xs:string,

 $message as item()*,

 $params as element(output:serialization-parameters)) as xs:boolean

Where $level is one of “ERROR”, “WARN”, “INFO” or “DEBUG”. The structure of

element(output:serialization-parameters) is described in XSLT and XQuery Serialization 3.0. See

example 15 how to use some of the log functions.

11.1.11 Email
Functionality for sending e-mail via SMTP.

Namespace: http://www.armatiek.com/xslweb/functions/email

Functions:

send-email($email as element(email:email)) as xs:boolean

See example 12 how to use the send-email example and an example of the structure of

element(email:email).

11.1.12 Serialization
Functionality for serializing a node to a string.

Namespace: http://www.armatiek.com/xslweb/functions/serialize

Functions:

serialize($nodes as node()*, $options as element(output:serialization-

parameters)?) as xs:string

The structure of element(output:serialization-parameters) is described in XSLT and XQuery

Serialization 3.0.

Deprecated: use https://www.w3.org/TR/xpath-functions-31/#func-serialize.

See example 11 how to use the serialize function.

11.1.13 Cache
Namespace: http://www.armatiek.com/xslweb/functions/cache

Functions:

Remove a cache entry from the response output cache:

remove($cache-key as xs:string) as xs:boolean?

11.1.14 Image processing
Namespace: http://www.armatiek.com/xslweb/functions/image

Functions:

Resizes an image and optionally convert it to another format:

scale(

 $source as xs:string,

 $target as xs:string,

http://www.w3.org/TR/xslt-xquery-serialization-30/
http://www.w3.org/TR/xslt-xquery-serialization-30/
http://www.w3.org/TR/xslt-xquery-serialization-30/
https://www.w3.org/TR/xpath-functions-31/#func-serialize

 $format-name as xs:string,

 $target-size as xs:integer) as xs:boolean?

Where $source is the path or url to the source image, $target the path to the scaled image, $format-

name the name of the target format (like png, gif, jpg) and $target-size the maximum image width or

height of the scaled image.

11.1.15 Input/Output
Namespace: http://www.armatiek.com/xslweb/functions/io

Functions:

Registers a temporary file or directory that will automatically be deleted after the pipeline has

executed.

register-temp-file($path as xs:string) as xs:boolean?

11.1.16 Utilities
Namespace: http://www.armatiek.com/xslweb/functions/util

Functions:

Remove supplied document from memory pool so it will be released by the Java garbage collector:

discard-document($document-node()) as document-node()

Parse a XML string to a document node:

parse($serialized-xml as xs:string) as document-node()

Deprecated: use https://www.w3.org/TR/xpath-functions-31/#func-parse-xml.

11.1.17 Zip
(Un)zip functionality

Namespace: http://www.armatiek.com/xslweb/functions/zip

Functions:

Zip a file on path $source to a new file on path $target:

zip($source as xs:string, $target as xs:string) as xs:boolean?

Unzip a file on path or url $source to a new file on path $target:

unzip($source as xs:string, $target as xs:string) as xs:boolean?

See also section 2.3.2.

11.1.18 UUID
Namespace: http://www.armatiek.com/xslweb/functions/uuid

Functions:

Generate a universally unique identifier:

uuid() as xs:string

11.1.19 JSON
(Experimental)

https://www.w3.org/TR/xpath-functions-31/#func-parse-xml

Namespace: http://www.armatiek.com/xslweb/functions/json

Functions:

serialize-json($items as item()*) as xs:string

Serializes a sequence of items to a JSON representation.

parse-json($json as xs:string) as document-node()?

Parses a JSON string to a document node.

escape-json($str as xs:string) as xs:string?

Escapes the characters in $str using JSON string rules.

unescape-json($json as xs:string) as xs:string?

Unescapes any JSON literals found in $json.

See also section 2.3.1.

Alternative: now you can also use the standard XPath 3.1 functions, see:

https://www.w3.org/TR/xpath-functions-31/#json-functions.

11.1.20 Script
(Experimental)

Namespace: http://www.armatiek.com/xslweb/functions/script

Functions:

invoke($script as xs:string,

 $function-name as xs:string,

 $arg1 as anyAtomicType*,

 $arg2 as anyAtomicType*,

 $arg3 as anyAtomicType*,

 $arg4 as anyAtomicType*,

 $arg5 as anyAtomicType*,

 $arg6 as anyAtomicType*,

 $arg7 as anyAtomicType*,

 $arg8 as anyAtomicType*) as anyAtomicType*

Executes a function named $function-name in the Javascript code $script. The Javascript function

must have the following signature:

function function-name(context, webapp, request, response, arg1, arg2,

arg3, arg4, arg5, arg6, arg7, arg8)

The first argument of the Javascipt function is the XSLWeb Context object, the second the XSLWeb

WebApp object, the third the Java EE HttpServletRequest object and the fourth argument the Java EE

HttpServletResponse object. The $arg* parameters of the invoke extension function must correspond

to the fifth and higher arguments of the Javascript function and are all optional. The arguments are

converted to Javascript arrays. Only sequences of atomic types can be used as arguments. The result

of the Javascript function must be a primitive type or Javascript array containing primitive types.

Within the Javascript, Java objects can be instantiated by using JavaImporter (see example 20).

XSLWeb uses the Mozilla Rhino scripting engine on Java 7 (see documentation) and the Oracle

Nashorn scripting engine on Java 8 (see documentation).

See example 20 how to use some of the script extension functions.

https://www.w3.org/TR/xpath-functions-31/#json-functions
https://developer.mozilla.org/en-US/docs/Rhino_documentation
http://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/

11.1.21 SQL
Functionality to query data from and store data in a relational database. These extension functions

make use of the Java JDBC framework. You can place the JDBC driver for your database in the

directory «xslweb-home»/common/lib (restart required). Then you can define a datasource in the

datasources section of the application’s webapp.xml, for instance for a H2 database:

<datasource>

 <name>my-datasource</name>

 <driver-class>org.h2.Driver</driver-class>

 <jdbc-url>jdbc:h2:file://${webapp-dir}/database/my-database.mv</jdbc-url>

 <property name="user">sa</property>

</datasource>

With the extension function sql:get-connection(“my-datasource”) a database connection can be

retrieved from the connection pool. This connection then can be used to execute one or more

queries.

The connection pool is implemented using the Java connection pool framework c3p0. The c3p0

specific properties that can be used in the datasource definition in webapp.xml are described here.

De default c3p0 properties can be configured in the configuration file «xslweb-home»/config/c3p0-

config.xml.

Connections and resultsets can be explicitly closed by using the extension function sql:close(). The

sql:close() function on a connection will also return the connection to the connection pool.

Connections and resultsets that are not closed that way will be implicitly closed at the end of the

pipeline, and connections will be returned to the connection pool automatically.

JDBC drivers are available for most relational database systems (like MySQL, Oracle, PostgreSQL,

MSSQL Server, Sybase, Cloudscape and Firebird), but also for non-relational database datasources

like CSV files and LDAP directory services (untested).

Namespace: http://www.armatiek.com/xslweb/functions/sql

Functions:

sql:close($connection as java.sql.Connection

 or $resultset as java.sql.ResultSet) as xs:boolean?

Closes a database connection or result set.

sql:commit($connection as java.sql.Connection) as xs:boolean?

Makes all changes made since the previous commit/rollback permanent and releases any database

locks currently held by this Connection object.

sql:execute-query($connection as java.sql.Connection,

 sql as xs:string) as java.sql.ResultSet

Executes query $sql and returns the result of the query as a Java ResultSet object. This ResultSet can

then be passed to the function sql:get-next-row() to iterate through the records of the resultset, or

sql:resultset-to-node() to get an XML representation of the complete resultset.

sql:get-connection($name as xs:string,

 $username as xs:string?,

 $password as xs:string?,

 $readonly as xs:boolean?,

 $autocommit as xs:boolean?) as java.sql.Connection

Creates or gets a database connection. XSLWeb uses a connection pool for fast creation and reuse of

database connections. This function returns a Java Connection object that can be passed as a

http://en.wikipedia.org/wiki/Java_Database_Connectivity
http://www.h2database.com/html/main.html
http://www.mchange.com/projects/c3p0/
http://www.mchange.com/projects/c3p0/#configuration_properties

parameter to other sql functions. $name is the name of a datasource specification in the webapp.xml

of the web application.

sql:get-next-row($resultset as java.sql.ResultSet) as xs:anyAtomicType*

Returns the next row in a Java ResultSet represented as a sequence of atomic types.

sql:rollback($connection as java.sql.Connection) as xs:boolean?

Undoes all changes made in the current transaction and releases any database locks currently held

by this Connection.

sql:resultset-to-node($resultset as java.sql.ResultSet) as element()

Returns an XML representation of the complete ResultSet.

See example 22 how to use some of the sql extension functions.

11.1.22 Custom extension functions
It is also possible to write your own custom XPath extension functions in Java and add them to an

XSLWeb web application. These extension functions must be integrated extension functions that use

the full interface of Saxon version 9.8.

The compiled jar of a custom extension function together with any libraries that the function depend

on can be placed in the folder «web-app»/lib. There is no need to restart the application server,

XSLWeb will detect the jars and will load and register the extension function automatically.

11.1.23 Extension functions with side effects
A number of the extension functions described in previous sections perform a certain task and

thereby change the state of something outside the stylesheet, like write or log to a file, send an e-

mail etc. These functions don’t have any return information and should have an empty sequence as

their return type. In XSLWeb, the return type of these functions is actually declared as xs:boolean?

The reason is that in that case the Saxon XSLT optimizer cannot ignore these functions, because they

could add something to the result tree (a boolean value). In reality, these functions never return this

boolean value and always return an empty sequence. Therefore it is safe to do something like:

<xsl:sequence select="log:log('INFO', 'Hello World!')"/>

without having to worry that something is written to the result tree.

12 Download, install and run XSLWeb
The sources of XSLWeb can be found on GitHub. XSLWeb is licensed under the Apache License

version 2.0.

Compiled binaries of XSLWeb 3.0.1 can be downloaded in two distributions:

1. As a .zip (Windows) or .tgz (Linux/macOS) archive, containing a single executable java library

(.jar) with embedded application server (Apache Tomcat 7).

2. As a web application archive (.war)

12.1 The single executable jar distribution
This distribution contains the XSLWeb home directory and a single executable java library (xslweb.jar)

with embedded application server (Tomcat 7). This distribution is the easiest to install and run and is

most suitable to try out and develop applications in XSLWeb.

http://www.saxonica.com/html/documentation/extensibility/integratedfunctions/ext-full-J.html
https://github.com/Armatiek/xslweb

12.1.1 Download
You can download the archives from the following locations:

 https://github.com/Armatiek/xslweb/releases/download/v3.0.1/xslweb-3.0.1-jar.zip

(Windows)

 https://github.com/Armatiek/xslweb/releases/download/v3.0.1/xslweb-3.0.1-jar.tgz

(Linux/macOS).

12.1.2 Install
Extract the archive to a directory of your choice. You will need the Java Runtime Environment (JRE)

version 1.8 or higher. At a command line, check your Java version like this:

$ java -version

java version "1.8.0_121"

Java(TM) SE Runtime Environment (build 1.8.0_121-b13)

Java HotSpot(TM) 64-Bit Server VM (build 25.121-b13, mixed mode)

The output will vary, but you need to make sure you have version 1.8 or higher. If no JRE/JDK is

installed yet or you have an older version, you can download an Oracle JDK or an OpenJDK. This

article will help you decide which to choose (TL;DR : Do not download or use the Oracle JDK unless

you intend to pay for it).

12.1.3 Run
The embedded jar version of XSLWeb can be started from the directory where the archive was

extracted using the following command (one line):

java -Dxslweb.home=./home -cp xslweb.jar;home/config

org.apache.tomcat.maven.runner.Tomcat7RunnerCli

The following additional arguments are supported:

-ajpPort <ajpPort> ajp port to use

-clientAuth enable client authentication for

 https

-D <arg> key=value

-extractDirectory <extractDirectory> path to extract war content,

 default value: .extract

-h,--help help

-httpPort <httpPort> http port to use

-httpProtocol <httpProtocol> http protocol to use: HTTP/1.1 or

 org.apache.coyote.http11.Http11Nio

 Protocol

-httpsPort <httpsPort> https port to use

-maxPostSize <maxPostSize> max post size in bytes to use

-keyAlias <keyAlias> alias from keystore for ssl

-loggerName <loggerName> logger to use: slf4j to use slf4j

 bridge on top of jul

-obfuscate <password> obfuscate the password and exit

-resetExtract clean previous extract directory

-serverXmlPath <serverXmlPath> server.xml to use, optional

-X,--debug debug

Now you can open a browser and go to the address http://localhost:8080. A web page with the text

“It works!” should appear. From here you can go to the examples and the documentation.

https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://jdk.java.net/11/
https://blog.joda.org/2018/09/do-not-fall-into-oracles-java-11-trap.html
https://blog.joda.org/2018/09/do-not-fall-into-oracles-java-11-trap.html
http://localhost:8080/

12.2 The Web Application Archive (.war) distribution
This distribution contains the XSLWeb home directory and a web application archive (.war) and is

most suitable to run XSLWeb in a production setting. The web application archive is a standard J2EE

web application that can be installed on any Java application server that supports Servlet Spec 3.0

(Tomcat 7+, TomEE 1.6+, WebLogic, Jetty 8+, Glassfish 3+, JBoss AS 6.x/7.x etc.).

12.2.1 Download
You can download the archives from the following locations:

 https://github.com/Armatiek/xslweb/releases/download/v3.0.1/xslweb-3.0.1-war.zip

(Windows)

 https://github.com/Armatiek/xslweb/releases/download/v3.0.1/xslweb-3.0.1-war.tgz

(Linux/macOS)

12.2.2 Install
Extract the archive to a directory of your choice. This directory will contain the directory xslweb-3.0.1

containing a directory called home and a file called xslweb.war. The installation of a war is application

server specific, so please consult the manual of your server for that. Regardless of which application

server is used, two settings are essential:

1. The home directory of XSLWeb must be specified using a Java System Property called

xslweb.home.

2. The path «xslweb-home»/config must be added to the Java classpath.

12.2.3 Run
Start your application server. Open a web browser and go to the address:

http://localhost:<port>/xslweb

where port is the port your application server runs on. A web page with the text “It works!” should

appear. From here you can go to the examples and the documentation.

12.3 Install XSLWeb as a Windows service or Linux/macOS daemon
One way to install XSLWeb as a Windows service or Linux/macOS daemon is to use YAJSW (Yet

Another Java Service Wrapper). This installation involves the following steps:

1. Execute the steps described in sections 12.1.1 and 12.1.2.

2. Download YAJSW version 12.11+ from https://sourceforge.net/projects/yajsw/files/ and

extract the archive in the directory created in step 1.

3. Create YAJSW wrapper config file wrapper.xslweb.conf and place it in YAJSW's conf folder.

You can use the example below. You may need to modify this example to:

o Specify the location of java (wrapper.java.command)

o Specify the installation directory of XSLWeb (wrapper.working.dir)

o Change the amount of memory available to XSLWeb from 1024m (for example, 512m

or 2048m)

YAJSW configuration for XSLWeb

wrapper.java.command=C:/ProgramData/Oracle/Java/javapath/java.exe

wrapper.working.dir=D:\\xslweb-3.0.1

http://yajsw.sourceforge.net/
http://yajsw.sourceforge.net/
https://sourceforge.net/projects/yajsw/files/

wrapper.java.app.mainclass=org.apache.tomcat.maven.runner.Tomcat7Run

nerCli

wrapper.java.classpath.1 = xslweb.jar

wrapper.java.classpath.2 = home/config

wrapper.java.additional.1 = -Xmx1024m

wrapper.java.additional.2 = -Dfile.encoding=utf-8

wrapper.java.additional.3 = -Dxslweb.home=./home

wrapper.java.additional.4 = -

Dorg.terracotta.quartz.skipUpdateCheck=true

wrapper.ntservice.name= XSLWEB_3_0
wrapper.ntservice.displayname= XSLWeb 3.0.1
wrapper.ntservice.description= XSLWeb 3.0.1
wrapper.ntservice.starttype=DELAYED_AUTO_START

wrapper.console.loglevel=INFO

wrapper.logfile=${wrapper.working.dir}/home/logs/wrapper-xslweb.log

wrapper.logfile.maxsize=10m

wrapper.logfile.maxfiles=10

wrapper.on_exit.0=SHUTDOWN

wrapper.on_exit.default=RESTART

You can add any optional arguments mentioned in section 12.1.3 as wrapper.app.parameter.NN.

After you have created the wrapper configuration file:

1. Open a command prompt as administrator (Windows) or shell (Linux/macOS)

2. Navigate to the YAJSW folder

3. Install the service:
java -jar wrapper.jar --install conf\wrapper.xslweb.conf

4. Start the service:
java -jar wrapper.jar --start conf\wrapper.xslweb.conf

XSLWeb is now running as a service/daemon, and will start automatically when the operating system

starts. Open a web browser and go to the address:

http://localhost:8080

A web page with the text “It works!” should appear. From here you can go to the examples and the

documentation.

If you make changes to the configuration you can follow this sequence:

1. Stop the service:
java -jar wrapper.jar --stop conf\wrapper.xslweb.conf

2. Remove the service:
java -jar wrapper.jar --remove conf\wrapper.xslweb.conf

3. Make your changes to the wrapper or application configuration.

http://localhost:8080/

4. Install the service:
java -jar wrapper.jar --install conf\wrapper.xslweb.conf

5. Start the service:
java -jar wrapper.jar --start conf\wrapper.xslweb.conf

13 Support for Saxon PE (Professional) and EE (Enterprise Edition)
The downloadable binaries of XSLWeb contain the open source Home Edition (HE) of the Saxon XSLT

processor. You can build a version of XSLWeb that contains Saxon PE or EE by following these steps:

 Install Java 1.8+, maven 2.2.1+ and make a clone of the git repository

https://github.com/Armatiek/xslweb.git.

 Purchase a PE or EE license from http://www.saxonica.com/.

 Download the PE of EE package from http://www.saxonica.com/download/SaxonPE9-8-0-

8J.zip or http://www.saxonica.com/download/SaxonEE9-8-0-8J.zip

 Extract and register the jars in your local Maven repository using the following commands:

o PE:
 mvn install:install-file -Dfile=saxon9pe.jar -

DgroupId=net.sf.saxon -DartifactId=Saxon-PE -Dversion=9.8.0-8 -

Dpackaging=jar

 mvn install:install-file -Dfile=saxon9-icu.jar -

DgroupId=net.sf.saxon -DartifactId=Saxon-PE-icu -

Dversion=9.8.0-8 -Dpackaging=jar

 mvn install:install-file -Dfile=saxon9-sql.jar -

DgroupId=net.sf.saxon -DartifactId=Saxon-PE-sql -

Dversion=9.8.0-8 -Dpackaging=jar

o EE:
 mvn install:install-file -Dfile=saxon9ee.jar -

DgroupId=net.sf.saxon -DartifactId=Saxon-EE -Dversion=9.8.0-8 -

Dpackaging=jar

 mvn install:install-file -Dfile=saxon9-icu.jar -

DgroupId=net.sf.saxon -DartifactId=Saxon-EE-icu -

Dversion=9.8.0-8 -Dpackaging=jar

 mvn install:install-file -Dfile=saxon9-sql.jar -

DgroupId=net.sf.saxon -DartifactId=Saxon-EE-sql -

Dversion=9.8.0-8 -Dpackaging=jar

 Place your purchased license file saxon-license.lic in <<xslweb.home>>/config

 Build XSLWeb with the maven profile “Saxon-PE” or “Saxon-EE”:
o mvn -PSaxon-PE clean install

or
o mvn -PSaxon-EE clean install

https://github.com/Armatiek/xslweb.git
http://www.saxonica.com/
http://www.saxonica.com/download/SaxonPE9-8-0-8J.zip
http://www.saxonica.com/download/SaxonPE9-8-0-8J.zip
http://www.saxonica.com/download/SaxonEE9-8-0-8J.zip

14 Appendix A: Request XML example

<?xml version="1.0" encoding="UTF-8"?>

<request xmlns="http://www.armatiek.com/xslweb/request">

 <character-encoding>UTF-8</character-encoding>

 <content-length>-1</content-length>

 <context-path>/xslweb</context-path>

 <local-addr>127.0.0.1</local-addr>

 <local-name>127.0.0.1</local-name>

 <local-port>8080</local-port>

 <method>GET</method>

 <path>/log/log.html</path>

 <path-info>/examples/log/log.html</path-info>

 <path-translated>D:\webapps\xslweb\examples\log\log.html</path-translated>

 <protocol>HTTP/1.1</protocol>

 <remote-addr>127.0.0.1</remote-addr>

 <remote-host>127.0.0.1</remote-host>

 <remote-port>55451</remote-port>

 <requested-session-id>D5984A4C38D09BE74C04F1D89022AE90</requested-session-id>

 <request-URI>/xslweb/examples/log/log.html</request-URI>

 <request-url>http://localhost:8080/xslweb/examples/log/log.html</request-url>

 <scheme>http</scheme>

 <server-name>localhost</server-name>

 <server-port>8080</server-port>

 <servlet-path/>

 <webapp-path>/examples</webapp-path>

 <is-secure>false</is-secure>

 <is-requested-session-id-from-cookie>true</is-requested-session-id-from-cookie>

 <is-requested-session-id-from-url>false</is-requested-session-id-from-url>

 <is-requested-session-id-valid>true</is-requested-session-id-valid>

 <headers>

 <header name="host">localhost:8080</header>

 <header name="connection">keep-alive</header>

 <header

name="accept">text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;

q=0.8</header>

 <header name="user-agent">Mozilla/5.0 (Windows NT 6.1; WOW64)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36</header>

 <header name="referer">http://localhost:8080/xslweb/examples</header>

 <header name="accept-encoding">gzip, deflate, sdch</header>

 <header name="accept-language">nl-NL,nl;q=0.8,en-US;q=0.6,en;q=0.4</header>

 <header name="cookie">JSESSIONID=D5984A4C38D09BE74C04F1D89022AE90</header>

 </headers>

 <parameters>

 <parameter name="country">

 <value>US</value>

 </parameter>

 <parameter name="states">

 <value>AZ</value>

 <value>CA</value>

 </parameter>

 </parameters>

 <!-- If this request was a file upload POST request:

 <file-uploads>

 <file-upload>

 <file-path>C:\Users\John\AppData\Local\Temp\48226ce5-7bba-4986-8d1f-

c4a8f34638cf\MyDocument1.docx</file-path>

 <field-name>file1</field-name>

 <file-name>MyDocument1.docx</file-name>

 <content-type>application/vnd.openxmlformats-

officedocument.wordprocessingml.document</content-type>

 <size>177032</size>

 </file-upload>

 </file-uploads>

 -->

 <session>

 <creation-time>2015-01-06T13:06:04.925+01:00</creation-time>

 <id>D5984A4C38D09BE74C04F1D89022AE90</id>

 <last-accessed-time>2015-01-06T14:36:04.909+01:00</last-accessed-time>

 <max-inactive-interval>1800</max-inactive-interval>

 <is-new>false</is-new>

 </session>

 <cookies>

 <cookie>

 <max-age>-1</max-age>

 <name>JSESSIONID</name>

 <is-secure>false</is-secure>

 <value>D5984A4C38D09BE74C04F1D89022AE90</value>

 <version>0</version>

 </cookie>

 </cookies>

</request>

15 Appendix B: Response XML example

<?xml version="1.0" encoding="UTF-8"?>

<resp:response

 xmlns:resp="http://www.armatiek.com/xslweb/response"

 status="200">

 <resp:headers>

 <resp:header name="Pragma">no-cache</resp:header>

 <resp:int-header name="Expires">0</resp:int-header>

 <resp:date-header

 name="Last-Modified">2006-04-10T13:40:23.83-05:00</resp:date-header>

 </resp:headers>

 <resp:session max-active-interval="1800">

 <resp:attributes>

 <resp:attribute name="msg">

 <item type="xs:string">Hello World</item>

 <item type="node()">

 <msg>Hello World!</msg>

 </item>

 </resp:attribute>

 </resp:attributes>

 </resp:session>

 <resp:cookies>

 <resp:cookie>

 <resp:comment>Comment 1</resp:comment>

 <resp:domain>localhost.com</resp:domain>

 <resp:max-age>-1</resp:max-age>

 <resp:name>cookie-1</resp:name>

 <resp:path>/examples</resp:path>

 <resp:is-secure>false</resp:is-secure>

 <resp:value>cookie-1-value</resp:value>

 <resp:version>0</resp:version>

 </resp:cookie>

 </resp:cookies>

 <resp:body>

 <html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <title>Hello World!</title>

 </head>

 <body>

 <h1>Hello World</h1>

 </body>

 </html>

 </resp:body>

</resp:response>

16 Appendix C: Webapp XML example

<?xml version="1.0" encoding="UTF-8"?>

<webapp

 xmlns="http://www.armatiek.com/xslweb/webapp"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.armatiek.com/xslweb/webapp

../../config/xsd/xslweb/webapp.xsd">

 <title>XSLWeb examples</title>

 <description>XSLWeb examples</description>

 <development-mode>true</development-mode>

 <!-- Resources to serve straight away: -->

 <resources>

 <resource pattern="/favicon.ico" media-type="image/x-icon"/>

 <resource

 pattern="/(styles|images)/.+\.png"

 media-type="image/png"

 duration="P7DT0H0M0S"/>

 <resource pattern="/(styles|images)/.+\.gif" media-type="image/gif"/>

 <resource pattern="/(styles|images)/.+\.(jpg|jpeg)" media-type="image/jpg"/>

 <resource pattern="/scripts/.+\.js" media-type="text/javascript"/>

 <resource pattern="/styles/.+\.css" media-type="text/css"/>

 <resource pattern="/downloads/.+\.docx?" media-type="application/msword"/>

 </resources>

 <!-- Stylesheet parameters: -->

 <parameters>

 <parameter

 name="hostname"

 uri="http://www.armatiek.com/xslweb/functions/email"

 type="xs:string">

 <value>smtp.googlemail.com</value>

 </parameter>

 <parameter

 name="port"

 uri="http://www.armatiek.com/xslweb/functions/email"

 type="xs:integer">

 <value>465</value>

 </parameter>

 <parameter

 name="username"

 uri="http://www.armatiek.com/xslweb/functions/email"

 type="xs:string">

 <value>MYUSERNAME</value>

 </parameter>

 <parameter

 name="password"

 uri="http://www.armatiek.com/xslweb/functions/email"

 type="xs:string">

 <value>MYPASSWORD</value>

 </parameter>

 <parameter

 name="use-ssl"

 uri="http://www.armatiek.com/xslweb/functions/email"

 type="xs:boolean">

 <value>true</value>

 </parameter>

 </parameters>

 <!-- Scheduled job definitions: -->

 <jobs>

 <job>

 <name>WriteTimeJob</name>

 <uri>execute-writetime-job.html</uri>

 <!-- Execute every 60 seconds: -->

 <cron>0/60 * * * * ?</cron>

 <concurrent>true</concurrent>

 </job>

 </jobs>

 <datasources>

 <datasource>

 <name>datasource-worldcup</name>

 <driver-class>org.h2.Driver</driver-class>

 <jdbc-url>jdbc:h2:file://${webapp-dir}/xsl/relational-

database/worldcup.mv</jdbc-url>

 <property name="user">sa</property>

 </datasource>

 </datasources>

</webapp>

