

INTRUSION DETECTION USING AN

ENSEMBLE BASED MODEL

 Shabnam Hassaniahari

Computer Science

Uniersity of Ottawa

Ottawa,Canada

Tina Yazdizadeh

Information Technology

Carleton University

Ottawa,Canada

Prudhvi Raj

Computer Science

University of Ottawa

Ottawa,Canada

Arunachalam Dhakshinamurthy

ComputerScience

Carleton University

Ottawa,Canada

Abstract— A massive amount of work has been conducted in

the field of Intrusion Detection System (IDS) which is used to

identify various attacks on the network. Various machine

learning approaches have been carried out to prevent malware

attacks or network intrusion by attackers. Single classifiers have

several limitations which cause low performance in the

classification of normal attacks and anomalies. In other words,

they are not strong enough to create a good Intrusion Detection

System (IDS). This is a reason researchers have the idea of

building ensemble models to take advantage of different models

in combination together. The main goal of using ensemble

classifiers is to achieve higher accuracy and Lower False Alarm

Rate (FAR) will be provided. Two ensemble learning techniques

– Voting and Stacking based models are implemented with PSO

optimizer to obtain weights.

Keywords—Ensemble Classifier, Intrusion detection, NSL-

KDD)

1. INTRODUCTION

In recent days, financial loss and crippled services have

increased to many folds due to sophisticated cyber-attacks.

As a result, traditional firewalls are not enough to protect

networks against intrusions. We can leverage Intrusion

Detection Systems (IDS) along with firewall to provide better

security against intrusions. According to Rajadurai et al. [1]

the IDS systems can be categorized in to four classes based

on the detection approaches: 1. Signature based 2. Anomaly

based 3. Host based and 4. Network based. The recent

advancements in Machine Learning (ML) and Artificial

Intelligence (AI) have helped to identify any type of network

intrusions with ease. Among Machine Learning algorithms,

single classifiers have been used extensively to approach

intrusion detection problems. However, single classifiers

might not fully result in the expected performance due to their

inherent weaknesses for developing an IDS. Thus, more

recent works have been taking advantages of combining

different classifiers as base learners like ensembles in order

to have lower FAR and better accuracy in terms of finding

intrusions. To increase the robustness of IDS, in this research,

five different types of classifiers have been used and they are

categorized into strong and weak learners based on their

performance. A novel ensemble approach is implemented to

boost the performance of IDS by having the pair of weak and

strong base learner, we use the Particle Swarm Optimization

(PSO) for weighting the base learners and inject these

weights to the ensemble classifiers.

Figure 1. The IDS classification techniques

2. LITERATURE REVIEW

Among the several works which have been done in this field,

Kumar et al. [2] studied in detail the methods which were used

in this area. They described the ensemble learning methods as

Bagging, Boosting and Stacking and categorized different

learning algorithms in these categories. For example, they

considered Random Forest and Wagging as Bagging

(Bootstrap aggregating). Moreover, they have demonstrated a

brief overview of ensemble integration methods such as

Majority voting, Threshold Plurality Vote, Fuzzy theory-

based, and Naïve Bayes. In the Majority voting, the output of

each base classifier is interpreted as a vote for a specific class

so that a class with the maximum number of votes will be the

outcome of the ensemble classifier. They counted the

Threshold Plurality Vote method as a generalized version of

majority voting since it imposes a threshold on vote count for

choosing the class. Fuzzy theory-based method as the other

integration method, employs fuzzy set theory for aggregating

the outcomes of base classifiers and Naïve Bayes decision

method considers conditional independence between the base

classifiers.

The other survey by Sagi et al. [3]points out the major

strengths and weaknesses of using an ensemble-based

approach rather than using an individual learner. They talk

about how an ensemble-based approach can overcome the

overfitting avoidance by averaging out different hypotheses

which will reduce the risk of choosing an incorrect hypothesis.
They also focus on the edge that ensemble-based learner has

over the single learner based on computational performance.

In addition, they highlighted various unique advantages it has

compared to the single learners and clearly mentioned how

these ensemble learners can tackle the problem of class

imbalance, concept drift and curse of dimensionality. The

performance of a model can be improved using ensemble

modelling which combines various machine learning

techniques into a single predictive model. The majority of the

ensemble methods fall under homogeneous learners. On the

other hand, some methods use learners of different types

called heterogeneous learners. Bagging, Boosting and

Stacking are some of the commonly used ensemble-learning

techniques. Overall, the paper showcases how these methods

weigh several individual models and finally combine them to

improve the predictive performance.

Abrar et al. [4] proposed a comprehensive approach to prevent

unauthorized access to network resources and detect

anomalies in the network. Several machine learning (ML)

classifiers, namely Support Vector Machine (SVM), K-

nearest neighbour (KNN), Logistic Regression (LR), Naïve

Bayes (NB), Multi-layer Perceptron (MLP), Random Forest

(RF), Extra-tree Classifier (ETC) and Decision Tree were used

for the classification of data as normal or intrusive. Four

feature subsets extracted from the NSL-KDD dataset are used

as the train and target data. The performance of RF, ETC and

DT was observed to be 99% for all the classes using different

subsets of features. They did not use any optimization

technique to improve the performance. An ensemble-based

approach, which combines the output of various algorithms to

predict the final results, could be the possible improvements

in the paper.

On the other hand, Seth et al. [5] proposed a new approach for

multiclass attack detection using the ensemble algorithms.

Their approach ranked the detection ability of different base

classifiers for identifying different types of attacks. The

rankings are based on the final F1 score of each classifier for

their predictions. The proposed approach is different from the

voting approach because in the voting, the final predictions are

based on the results of the majority vote among the selected

models, and there is no control on whether the majority vote

algorithm is efficient enough to detect the attack or not.

CICIDS 2018 is their selected dataset, because it is the most

recent dataset for the intrusion detection. This dataset is

imbalanced and Seth et al. used a hybrid approach which used

SMOTE for solving the imbalance issues. In addition to

balancing the dataset, they detected the outliers in the dataset

by using the Isolation Forest method which is an unsupervised

machine learning algorithm based on Random Forest and

Decision Tree. For the feature selection part, first, random

forest is applied, then Principal Component Analysis (PCA) is

used to eliminate the redundant features. Finally, they used 24

most significant features for the next steps. They used the

seven most popular algorithms for the training phase which

are: KNN, Decision Tree, Random Forest, Extra trees,

XGBoost, Histogram-based Gradient Boosting, and Light

GBM. Based on the performance of each classifier, a rank

matrix was calculated and based on this matrix the results of

the best classifier were used for the final prediction. The

experiments showed that some of the classifiers have high

recall but low precision, like RF, that is why Seth et al. used

F1-score as the main metric. The results of the proposed

method outperforms the single base classifiers’ results. For

example, the proposed method obtained 100% for detecting

Bots and DDoS attacks.

Classification performance is improved with ensembles by the

combined use of two effects .i.e., reduction of errors due to

bias and variance. In his study, Govindarajan [6] proposed

new ensemble classification methods with homogeneous

ensemble classifiers using bagging and heterogeneous

ensemble classifiers using arcing. Moreover, Radial Basis

Function (RBF) and Support Vector Machine (SVM) are used

as base classifiers in designing an ensemble classifier. The

researcher’s proposed approach is based on three main parts:

pre-processing phase, classification phase, and combining

phase, and performances are analysed in terms of accuracy.

To know the performance of proposed homogeneous and

heterogeneous classifiers, these are compared to the

performance of other standard homogeneous classifiers such

as Error-correcting output codes (ECOC), Bagging, and

heterogeneous ensembles such as majority voting and

stacking. Experimental results show proposed ensemble

methods show better accuracy than individual classifiers.

Furthermore, ECOC and Bagging are outperformed by the

proposed RBF and SVM. Also, the proposed hybrid Radial

Basis Function -Support Vector Machine performs

significantly better than voting and stacking.

Another research work in this field by Bhati and Rai [7]

proposed an ensemble-based approach for intrusion detection

using extra tree classifiers. They combined the decision of

different classifiers to increase the decisional power of the

classifier. KDDcup99 and NSL-KDD datasets were used for

the comparison as they are the benchmarks for intrusion

detection. The proposed algorithm achieved 99.97% accuracy

on the KDDcup99 dataset and 99.32 % on the NSL-KDD

dataset. They did not implement any optimization approach to

improve the performance of the model.

The aim of Pham et al. [8]work is to improve the performance

of an IDS using the hybrid methods and feature selection.

They used the Bagging and Boosting which are the most

popular ensemble techniques with a tree-based classifier as the

base classifier. The performance of their model was evaluated

on the NSL-KDD dataset and compared with the existing

papers. Decision trees are their selected based classifier

because it is sensitive enough to data resampling and feature

resampling, and this is required for diversity in the ensemble

model. Moreover, this classifier can apply on both nominal

and numeric features with both continuous and discrete

values. Finally, the tree-based algorithms can eliminate the

irrelevant features as well as feature selection because of the

use of the best variable in each split of the tree. Their selected

tree-based algorithms are J48, Random Tree, REP Tree ,

Random Forest. As the feature selection techniques, they used

Leave-One-Out for extracting 25 features and Gain Ration for

extracting 35 features. The experiments showed that in 25

features set, although Bagging with REP Tree increased the

accuracy, it didn’t reduce the FAR. In this subset, the J48 had

the lowest FAR. But in the 35 features subset, they achieved

the goal of having more accuracy with less FAR by using

Bagging with J48.

While Pham et al. [8]focused on ensemble and tree-based

classifiers, Yousef Nezhad et al. [9]use deep learning in the

feature selection phase in addition to using ensemble

classification. Their main classifiers are SVM and KNN with

different hyperparameters in eight versions. The SVM

experimented with two different kernels which are RBF kernel

valued 1 and 3 and Hermit Kernel with the degree of 8 and 10

for increasing the classification speed. They selected the RBF

based on the experimental results which showed it has better

performance. The KNN with 3, 5, 8, and 10 nearest

neighbours is used for considering the diversity and better

performance of the classifier. The output of SVM and KNN

are converted to probable values using sigmoid function and

heuristic algorithms respectively. Then, for integrating the

data, they used Dempster-Shafer combining ensemble

classification. This method can integrate the numerical,

signals, and multidimensional data. Using the Dempster-

Shafer is the final step in their procedure. They used an

ensemble margin which is an important concept in ensemble

learning, for selecting the samples from the KDD99 dataset.

Then they used the new dataset in their proposed algorithm

using the feature selection based on ensemble margin. Based

on their results, using the Dempster-Shafer as an integrating

module helped them in increasing the performance.

Another way of improving performance is to use the feature

selection optimizers. In [10] Zhou et al. proposed a new

ensemble approach on the basis of the modified adaptive

boosting with the area under the curve (M-AdaBoost-A)

algorithm so that network intrusions will be identified. In this

work authors combined many M-AdaBoost-A-based

classifiers to provide an ensemble classifier by employing

various strategies such as simple majority voting (SMV) and

Particle Swarm Optimization (PSO). In fact, the proposed

approach, M-AdaBoost-A algorithm, takes into account the

area under the curve into the boosting process to be able to

address class imbalance issue in network intrusion detection.

It utilized both the PSO algorithm and SMV to combine

multiple M-AdaBoost-A-based classifiers into an ensemble

with the aim of achieving improvements in network intrusion

detection; thus, this system can be considered as a multiple-

boosting- fused ensemble. In general, the M-AdaBoost-A-

SMV ensemble is described as a set of multilevel nested

models.

In addition to previous work, with irrelevant and redundant

features, the problem of huge network traffic data size and the

invisibility patterns have posed a great challenge in the

domain of intrusion detection. Zainal et al. [11]proposed a

way to address these challenges. In their paper, they employed

two means; one is selecting the appropriate important features

which represent the patterns of traffic and the second is

forming an ensemble classifier model by engineering multiple

classifiers with different learning paradigms. In their study,

researchers formed a 2-tier selection process, by utilizing a

hybrid approach where Rough Set Technique and Binary

Particle Swarm (BPSO) were structured in a hierarchical

manner. Here each class had one specific feature set since

features were obtained based on class-specific characteristics.

Moreover, Rough Set techniques were used to remove the

redundant features and rank the top 15 features for each class

of traffic since BPSO uses the heuristic technique. These

significant features are termed as reducts. In their study,

researchers considered the decision function by taking the

degree of diversity among the classifiers into account. To

classify the network connection, ensemble machine learning

techniques with different learning paradigms .i.e. Linear

Genetic Programming(LGP), Adaptive Neural Fuzzy

Inference System(ANFIS) and Random Forest(RF) were used

and decision function was determined based on the individual

performances on overall accuracy and true positive rates.

Furthermore, the experimental results show an improvement

in detection accuracy for all classes of network traffic.

Nenekazi et al. [12]proposed a performance bound of a

network intrusion detection that uses an ensemble of

classifiers. Till now, all the research focussed on

implementing the network intrusion detection that leverages

ensemble-based classifiers without knowing the performance

of their intrusion detection systems. With the proposed model,

researchers will come to know the performance of their

ensemble-based NIDS even without implementing it. For this

study, researchers used the NSL-KDD dataset that was filtered

for normal and Neptune connections. In this study, researchers

have used classification accuracy as a performance measure

for this ensemble and average information gain associated

with features to define the bound. In addition, the Adaboost

algorithm was used to obtain performance bound in order to

boost the ensemble performance to converge to its optimality.

Moreover, the performance of an Adaboost based network

intrusion detection system that uses a decision stump as a

weak learner to classify Neptune and normal connections can

be estimated by the bound. From the experimental results,

researchers concluded that the accuracy of the ensemble will

be at most 0.9 if the information gain value amongst features

used in the ensemble lies between 0.04561 and 0.25615.

3. DATASET

NSL – KDD is a dataset suggested to solve some of the

inherent problems of the KDD’99 data set and contains the

records of the internet traffic seen by a simple intrusion

detection work. This dataset comprised of two general sub

datasets: KDD_Train+ and KDD_Test+. In this project we

used KDD_Train+ because it prevents the overfitting of the

model. The dataset consists of 42 features and out of which 41

corresponds to the traffic input and the last one corresponds to

the class label. Again, these features can be categorized into

four categories such as Intrinsic, Content, Host-based, and

Time-based.

Intrinsic Features: These features contain the packet

information and can be derived from the header of the packet.

This category contains features 1-9.

Content Features: These features contain original packets

information which can be used by the system to access the

payload. This category contains features 10-22.

Time-based features: These features contain the information

about how many connections it attempted to make to the same

host over 2 two-second windows. This category contains

features 23-31.

Host-based features: These features contain information

about how many requests are made to the same host over x-

number of connections. This category contains features 32-41.

Also, the feature types in this data set can be broken down into

4 types which are categorical, binary, discrete, and

continuous. The distribution of the data types is as follow: 4

Categorical, 6 Binary, 23 Discrete, and 10 Continuous. The

categorical features are Protocol Type, Service, Flag. Among

these columns, Flag values is not easy to understand. This

feature describes the status of the connection showing whether

there is a flag raised or not. Since machine learning algorithms

cannot operate on label data directly, we will convert the

categorical values into numerical values.

The reasons behind using this dataset in this project are first

during the literature review, most of the researchers mentioned

that they used NSL-KDD as it contains complete information

about intrusions inside the internet traffic. Moreover, this

dataset does not have redundant records in the train data, so

the classifier will not provide any biased results during

prediction.

4. METHODOLOGY

In the current project, after data preprocessing step and

extracting the features of the data, 5 different machine learning

algorithms are chosen and trained on the dataset. After

training, they classified in to weak and strong learners based

on their performance. Then by using Particle Swarm

Optimization (PSO), average weights for the base learners

calculated. The next step is to take advantage of two ensemble

models namely, Stacking and Majority Voting. In this section,

the base learners and the ensemble models will be described

briefly. Then procedure of using PSO will be explained in

detail. An overview of our methodology is shown in Figure 2.

Figure 2. Methodology

4.1 Data Pre-Processing

As a very first step of each machine learning process, data

preprocessing should be done in an effective way. Normally

in this step, the categorical data is converted into the numerical

type of data in order to have better results in the predictions.

For this aim, we use one hot encoding as a method. We applied

this method on 3 categorical columns which exist in the

dataset namely, Protocol Type, Service and Flag. Besides, we

encoded the ‘Label’ column to 0 and 1 by putting 1 instead of

the anomaly and 0 instead of the normal. In addition to

encoding the categorical data, since there are different values

in the dataset, we applied data normalization for increasing the

cohesion of the dataset. Basically, the data normalization

means the reorganization of data to appear similar in whole

dataset. This sub step is important because data normalization

gets rid of the anomalies across the records and fields that can

make the process of prediction complicated. Moreover, this

process can make the dataset keep less space. For the data

normalization, we used “StandardScalar” package from

“sklearn.preprocessing” library. The final sub step is

splitting the dataset into 70% train and 30% test because we

want to see how the model works on the seen samples.

4.2 Feature Selection

The second step of the methodology is feature selection. The

feature selection refers to techniques that make a subset of

most relevant and important features of a dataset. Having

fewer features allows the machine learning algorithm

occupies less space and runs without time complexity. We

used Random Forest as a method for extracting the important

features. This method is one of the embedded methods. The

embedded methods are implemented by algorithms that have

their own built-in feature selection methods. We used one of

the embedded methods, Random Forest, because these

methods are highly accurate and interpretable. In the random

forest, each tree of the random forest is a decision tree and can

calculate the importance of feature based on the feature’s

ability in increasing the pureness of the leaves. With this

method we collected the importance of features. Then we used

Recursive Feature Elimination (RFE) as a wrapper-based

feature selection. It means that a machine learning algorithm

is used as a core and the RFE acts as a wrapper. The idea of

the RFE is to select features by recursively considering the

smaller and smaller sets of features. This method has two main

steps which are: first, an estimator will be trained on a set of

features and calculate the importance of each feature, and

second step is to prune the least important features from the

current set of features. This method is easy to configure and

use. In this project the core machine learning algorithm is

Random Forest as mentioned before. We first plot the feature

importance which obtained by the Random Forest as shown in

Figure 3. And then the total number of features which selected

by RFE is 65.

Figure 3. The Features Importance

4.3. Base Learners

The third step in our proposed method is to select and train 5

base learners. We used Support Vector Machine, Naïve

Bayes, K-nearest Neighbor, Decision Tree, and Logistic

Regression as our base learners. The base learners are selected

based on the literature study and discovering the strengths and

weaknesses of each classifier. In the following a brief

description of each of the base learners is explained. The

results of each base learner are explained in the Section 7 in

detail.

4.3.1 Support Vector Machine

Support Vector Machine (SVM) each data is plotted as a point

in n-dimensional space where n is the number of features. The

classification is done by finding a hyper plane that distinguish

the two classes in a good way. This classifier can address

space complexity and it further creates non-linearity and least

impacted by outliers. The performance of SVM is related to

the hyperparameter tuning. In this project we use SVC with

enabling the probability estimates.

4.3.2 Naïve Bayes

Naïve Bayes Classifier is one of the simple and most operative

Classification algorithms. It is easy and fast to predict class of

test data set. This classifier is a probabilistic one, which means

it predicts based on the probability of an object. Naïve Bayes

classifier performs better compared to other models like

logistic regression when the problem has independence.

Naïve Bayes classifiers are based on Bayes theorem and has

the potential to achieve high accuracy and data

interpretability. We used the GaussianNB among the different

kinds of the Naïve Bayes because it can be used in the online

learning in future.

4.3.3 K-nearest Neighbor

K-Nearest Neighbor is a supervised classifier. Initially, the

value of K is selected, and then Euclidean distance is

computed among the various data points based on which the

data is separated into K-number of clusters. KNN is easy to

interpret outputs and has low computation time. In this work,

we use a KNeighborclassifier from sckit learn package with

default parameters. The number of neighbors we used

1,3,5,7,9, and 11.

4.3.4 Decision Tree

The goal of using Decision Tree is to create a training model

that can use to predict the class or value of the label by learning

simple decision rules inferred from previous data (training

data). Decision tree used tree like models to make decisions

and entirely based on control if statements. This classifier can

observe information and identify critical qualities in the

system that demonstrate the malicious activities like the

intrusions. In this project we used the sckit learn decision tree

as one of the best algorithms for intrusion detection task. The

max depths used in the ensemble part are 2, 4, 6, 8, 10, and 12.

The result of this base learner is reported in Results section

along with other learners.

4.3.5 Logistic Regression

Logistic Regression is used to model the probability of certain

class or event. It is used for the independence and

interpretability of data. This statistical model is easy to

implement and very efficient to train. By the way, if the

number of observed features is less than the number of

features this classifier is not appropriate for classification. We

used the Logistic regression with the maximum iteration of

100 for the solvers to converge. As the maximum iterations

for the ensemble part we used 100,10,1,0.1,0.01, and 0.001.

4.4 Ensemble Models

An ensemble classifier is a method which uses or combines

several classifiers to develop robustness of a system as well as

improving the performance from any of the basic classifiers.

Based on Schapire [13]and Dong et al. [14], Ensemble

methods have the improvement on what they can be made to

adapt to any changes in the monitored data stream more

accurately than single model techniques. As an important

parameter for the success of an ensemble approach, diversity

in the individual classifiers with respect to misclassified

instances can be mentioned. Dietterich [15] reported that there

are three main reasons why an ensemble classifier is usually

significantly better than a single classifier. First of all, the

training data does not always deliver enough information for

selecting a single accurate hypothesis. Moreover, the learning

processes of the weak classifier could be imperfect. In

addition, the hypothesis space being searched might not

contain the true target function while an ensemble classifier

can provide a good estimate. Ensemble learning has three

types which are bagging, boosting, and stacking. Bagging and

boosting are the alternatives of the voting methods. In this

project, after training the base learners, we used two different

Ensemble Learners, Majority Voting and Stacking. In the

following, a description and the way of using these classifiers

are explained in detail.

Figure 4. Ensemble Classification Techniques

4.4.1 Particle Swarm Optimization

Particle swarm optimization is a population-based iterative

optimization algorithm, formulated by Kennedy and Eberhart.

PSO is derivative-free, zero-order method. That means it does

not need gradients, so it can be applied to a variety of

problems, including those with discontinuous or non-convex

and multimodal problems. The algorithm starts out with a set

of agents, called particles, in random positions in the problem

space. Each is also assigned random velocity at the outset. A

fitness function is defined on a particle’s location. The

optimization problem to be solved is to find the best position,

i.e. the one that minimizes the fitness function. Through each

iteration, the algorithm evaluates each particle’s fitness,

updates its velocity, and computes its new position. A

particle’s new velocity depends on its current velocity, its

distance from its own best position so far and its distance from

the populations best position yet. Compared to genetic

algorithms (GA), PSO has no evolution operators such as

crossover and mutation which makes it easy to implement

with great success to several problems wherever GA can be

applied.

Figure 5. The Flow Chart for PSO

The weights obtained from PSO are chosen as the weights for

the learners w [0:12].

4.4.2 Majority Voting

A very big drawback of Voting Classifier is that it assumes

that all models in the ensemble are equally effective. This may

not be the case as some models may be better than others

especially if different machine learning algorithms are used to

train each model ensemble member. An alternative to voting

Ensemble
Learning

Voting

Bagging Boosting

Stacking

is to assume that ensemble members are not all equally

capable and instead some models are better than others and

should be given more votes when making a prediction. This

provides the motivation for the weighted average ensemble

method.

Weighted average ensembles allow the contribution of each

ensemble member to a prediction to be weighted

proportionally to the trust or performance of the member on a

holdout dataset. Model averaging is an approach to ensemble

learning where each ensemble member contributes an equal

amount to the final prediction. In the case of predicting a class

label, the prediction is calculated as the mode of the member

predictions. In the case of predicting a class probability, the

prediction can be calculated as the argmax of the summed

probabilities for each class label.

To ensure greater diversity in the classifiers and to potentially

maximize the use of them, each classifier is trained with 6

different parameter and then combined with another classifier

with 6 different parameters to utilize the full potential of these

classifiers. For example, in case of KNN-Logistic Regression

ensemble model, 6 KNN models with value of K tuned for

each model are combined with 6 logistic regression model

with value of C tuned for each model.

Figure 6. The Flow Chart for Ensemble Models

Similarly, all models are trained and tested with this novel

ensemble method.

4.4.3 Stacking

Stacking, stacked generalization, is a different technique of

combining multiple classifiers. Unlike bagging and boosting,

stacking is usually used to combine various classifiers, e.g.

decision tree, neural network, naïve bayes, logistic regression,

and etc. This method is an effective approach as it is a general

framework, which combines many ensemble methods. The

learning process in this method consists of two levels, base

learning and meta-learning. In base learning, the initial (base)

learners are trained with training data set in order to create a

new dataset for the next step which is the meta-learning. The

meta-learner is trained with new training data set. The trained

meta-learner is used to classify the test set. A crucial part in

stacking is the selection of a best base learner. In this project

we choose the base algorithms which are frequently used in

the literature review for intrusion detection and then classified

them into weak and strong based on their performance. The

final estimator in all stacking models is Logistic Regression.

5. EVALUATION

Model evaluation is the subsidiary part of the model

development process. In this phase, whether the model

performs better or not is investigated. Following the different

evaluation metrics that used in this project are described.

Precision, Recall, Accuracy, F1 score, Specificity, and

Sensitivity are the metrics calculated in this project, but based

on F1 score final decisions are made. All the metrics are based

on a confusion matrix which made of the ratio of true or false

predictions to observed samples. A confusion matrix helps us

gain an insight into how correct our predictions were and how

they hold up against the actual values.

5.1 Precision

Precision quantifies the number of positive class predictions

that belong to the positive class. In other words, it is the ratio

of the True Positives to all the observed Positives predictions.

Therefore, higher precision means the model predicted attacks

more accurately and if it had doubts about an instance, only

with a low probability did it consider as an attack (low False

Positive leads to high Precision)

Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃

5.2 Recall

Recall quantifies the number of positive class predictions

made out of all positive examples in the dataset. Higher recall

means the model tried well in assigning the label attack to

those instances that were actually an attack; therefore, the

system with a high value of recall metric, will be more secure

since it detects attacks with higher chances.

Recall=
𝑇𝑃

𝑇𝑃+𝐹𝑁

5.3 F1 Score

F1-score considers both precision and recall metrics; so it is a

good indicator of how the model performs. In fact, The F1

score can be interpreted as a harmonic mean of the precision

and recall metrics, where an F1 score reaches its best value at

1 and worst score at 0. The relative contribution of precision

and recall to the F1 score are equal.

F1-Score=
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

5.4 Accuracy

Accuracy is the fraction of predictions that the model got right

since it is calculated as the ratio of all true predictions to all

the possible predictions.

Accuracy=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

5.5 Specificity

Specificity is the metric that evaluates a model’s ability to

predict true negatives of each available category. Specificity

is defined as the proportion of actual negatives, which got

predicted as the negative (or true negative). This implies that

there will be another proportion of actual negative, which got

predicted as positive and could be termed as false positives.

This proportion could also be called a false positive rate. It is

worth. Mentioning that while sensitivity measure is used to

determine the proportion of actual positive cases, which got

predicted correctly, Specificity measure is used to determine

the proportion of actual negative cases, which got predicted

correctly.

Specificity=
𝑇𝑁

𝑇𝑁+𝐹𝑃

5.6 Receiver Operator Characteristic (ROC)

The Receiver Operator Characteristic (ROC) curve is an

evaluation metric for binary classification problems. It is a

probability curve that plots the TPR against FPR at various

threshold values and essentially separates the ‘signal’ from the

‘noise’. Also, the Area Under the Curve (AUC) is the measure

of the ability of a classifier to distinguish between classes and

is used as a summary of the ROC curve. The higher the AUC,

the better the performance of the model at distinguishing

between the positive and negative classes.

5.7 Geometric Mean

The geometric mean is calculated as the N-th root of the

product of all values, where N is the number of values. The

geometric mean accepts positive inputs and not the zero.

Geometric mean in machine learning is in the calculation of

the so-called G-Mean (geometric mean) metric that is a model

evaluation metric that is calculated as the geometric mean of

the recall and specificity metrics. This metric can be calculated

using the Scipy package and gmean function.

6. RESULTS

As discussed before, various metrics have been calculated to

assess the performance of our models. Generally, if the data

set is balanced, we can use accuracy metric to assess the

model’s performance. If the dataset is not balanced, then

choosing accuracy as a metric is not ideal because it does not

distinguish between the numbers of correctly classified

examples of different classes. So, in future even though

different dataset is used, to compare our model’s performance

we are choosing F1 score metric as base metric to evaluate

the performance of the models.

 Model

Measure
Decision

Tree SVM LR Naive

Bayes
KNN

Accuracy 0.98255 0.96792 0.95801 0.90686 0.973536369

Precision 0.9835 0.95983 0.94544 0.96384 0.974895

Recall 0.98557 0.98426 0.98216 0.86723 0.978221

F1 score 0.98454 0.97189 0.96345 0.91298 0.976555

Specificity 0.9835 0.95983 0.94544 0.96384 0.974895397

-

Predictive

val

0.98557 0.98426 0.98216 0.86723 0.978220939

+

Predictive

val

0.97867 0.94683 0.92685 0.95801 0.967490687

Geometric

Mean
0.98241 0.96936 0.96048 0.90421 0.973330797

AUCROC

Value
0.98262 0.99536 0.98207 0.94987 0.993251

Table 1. The results of Base learners

Above Table represents the results of our baseline models.

From the results we can infer that Decision Tree is the best

performing model with the F1-score of 0.98. It closely

followed by SVM, K-Nearest Neighbor, Logistic Regression

and Naïve Bayes. Among all these models, Naïve Bayes is

the worst performing model with the F1-score of 0.91. Below

figure represents the ROC plots of our baseline models.

Figure 6. ROC plots for Base Learners; (a) Decision Tree (b) SVM (c)

Naïve Bayes (d) KNN (e) Logistic regression

After assessing the performance of base classifiers and

categorizing them into strong and weak classifiers, we

proceeded with building ensemble models by voting and

stacking.

Table 2. represents the performance metrics of various

ensembles models that are built by using voting method.

 Model

Measure

 (LR,

DT)

 (LR,

KNN)

 (DT,

KNN)

 (SVM,

KNN)

 (SVM,

DT)

 (SVM,

LR)

Accuracy 0.965 0.944 0.960 0.946 0.961 0.962

Precision 0.961 0.941 0.957 0.957 0.954 0.956

Recall 0.978 0.961 0.972 0.981 0.979 0.979

F1 score 0.969 0.951 0.954 0.969 0.966 0.967

Specificity 0.962 0.941 0.957 0.957 0.954 0.956

- Predictive

val

0.978 0.961 0.972 0.981 0.979 0.979

+ Predictive

val

0.949 0.922 0.944 0.942 0.932 0.941

Geometric

Mean

0.966 0.945 0.960 0.966 0.963 0.963

AUCROC

Value

0.991 0.966 0.983 0.99 0.981 0.983

Table 2. The results of Ensemble Learners (Majority Voting)

From the above Table, we can infer that (SVM, KNN) is the

best performing ensemble model followed by (Logistic

Regression, Decision Tree), (SVM, Logistic Regression),

(SVM, Decision Tree), (Logistic Regression, KNN) and

(Decision Tree, KNN). Also, F1-score metric is used to

assess the performance of the models. Furthermore, the

performance of ensemble models (Voting) is lesser than the

baseline models.

Figure 7. ROC plots for Majority Voting; (a) SVM&LR (b)

SVM&DT (c) DT&KNN (d) KNN&LR (e) SVM&KNN (f)

DT&LR

Furthermore, we built ensembles using stacking and assessed

the performance of the models. To assess the performance,

we considered F1-score as base metric.

 Model

Measure

(LR,

DT)

 (LR,

KNN)

 (DT,

KNN)

 (SVM,

KNN)

(SVM,

DT)

(SVM,

LR)

Accuracy 0.973 0.984 0.972 0.983 0.973 0.984

Precision 0.977 0.983 0.971 0.979 0.975 0.985

Recall 0.976 0.989 0.979 0.992 0.977 0.986

F1 score 0.976 0.986 0.975 0.985 0.976 0.986

Specificity 0.977 0.983 0.971 0.978 0.975 0.985

-

Predictive

val

0.976 0.989 0.070 0.992 0.977 0.986

+

Predictive

val

0.970 0.978 0.962 0.972 0.967 0.981

Geometric

Mean

0.973 0.984 0.972 0.984 0.972 0.984

AUCROC

Value

0.997 0.998 0.995 0.997 0.997 0.999

Table 3. The results of Stacking Learners

From the above results, we can observe that (SVM, Decision

Tree) and (Decision Tree, K-Nearest Neighbour) has same

F1-scores followed by (Decision Tree, Logistic Regression),

(SVM, K-Nearest Neighbour), (Logistic Regression, K-

Nearest Neighbour) and (SVM, Logistic Regression). Even

though (SVM, DT) and (DT, KNN) have same F1-score, we

will choose (DT, KNN) is the best performing model because

of the complexities involved with (SVM, DT) model.

Furthermore, ensembles by stacking performed better than

baseline models and ensembles by voting. One possible

reason for this would be stacking allows to use the strength

of each individual estimator by using their output as input of

final estimator whereas voting classifier takes the most

common output to be the output of final estimator.

Figure 8. ROC plots for Stacking Ensembles; (a) SVM&LR (b) SVM&DT
(c) LR&DT(d) SVM&KNN (e) LR&KNN (f) DT&KNN

7. COMPETITOR MODELS

We have critically compared and analyzed the results from

literature survey with our proposed methodology. The

comparison table is as follows,

Table 4. Comparison of Competitor Models

Compared to all the baselines, the proposed method using

majority voting with PSO and stacking method performed

better in terms of F1-score, Accuracy and Precision. Primarily,

our models were trained and tested using the best hyper-

parameters for each ensemble learning. So, a greater diversity

is obtained and the use of each classifier in the ensemble

model is maximized by using the approach of combining 6

LRs and 6 KNNs in our approach.

The main drawback of using m-AdaBoost method [10], which

is similar to our approach, did not perform better because of

the problems related to overfitting the training data and failed

to address the outliers.

8. LIMITATIONS AND ADVANTAGES

Generally, IDS has its own limitations. For example, most IDS

do not process encrypted packets which results in the intrusion

of network. In case of real-world intrusions, the number of

false alarms is more compared to the number of real attacks

which may lead to misclassification of real attacks.

Although we used a clean dataset, as a limitation in the

intrusion detection system, we can mention the noises in a

dataset. The bad packet generated from different sources like

software bugs can severely limits the effectiveness of systems.

The hyper parameter tuning of SVM model was time-

consuming and more powerful hardware setup was required

especially while training large datasets.

As a learning lesson from the project, not always a

combination of strong base learners would perform better than

the others (combination of weak learners). Also, it is not

necessary for ensembles to perform better than the base

learners all the time. It will be affected by the way, how this

vase learners are combined to form the ensembles. For

instance, in our case stacking performed better than voting

classifiers because stacking allows us to use the strength of

each individual estimator by using their output as the input of

final estimator. Contrastingly, voting classifiers takes the most

common output to the output of the final estimator which will

work better only if we have multiple good models.

9. CONCLUSION AND FUTURE WORK

In this project we used 5 different base learners to have pairs

of weak and string classifiers and then by using these pairs we

performed classification with two ensemble learning models

which are Majority Voting and Stacking. Moreover, we used

Particle Swarm Optimization (PSO) as a mean for optimizing

the weights of the ensemble models. Based on the results,

stacking based ensembles outperformed voting based

ensembles and the baseline models. Furthermore, out of all

models, stacking based Decision Tree and K-nearest Neighbor

ensemble model performed better with an F1 score of 98.6%.

For the future works, using online ensemble learning can be

used to cover more data. Despite using the static data, we want

to adapt the model with data streams while considering the

concept drift. Moreover, there are always open problems in

the feature selection step to make the predictions better.

Furthermore, using PSO with LUS optimization will obtain

better weights.

Research

Papers

Dataset

used

Model

used

F1-

Score

(%)

Accura

cy (%)

Precision

(%)

[10] NSL-

KDD

M-

AdaBoost
using PSO

91.64 99.89 88.34

[7] NSL-

KDD

Ensemble

Trees
Classifier

97.8% - 99%

[16] NSL-

KDD

Majority

Voting –

(SVM,
ETC,

KNN,
MLP, RF)

87% 92% -

Proposed

model

NSL-

KDD

Majority

Voting

with PSO

96.9% 96.5% 96.1%

Proposed

Model

NSL-

KDD

Stacking

method

98.6% 98.4% 98.3%

References

[1] H. Rajadurai and U. D. Gandhi, “A stacked ensemble

learning model for intrusion detection in wireless

network,” Neural Comput. Appl., May 2020, doi:

10.1007/s00521-020-04986-5.

[2] G. Kumar, K. Thakur, and M. R. Ayyagari, “MLEsIDSs:

machine learning-based ensembles for intrusion

detection systems—a review,” J. Supercomput., vol. 76,

no. 11, pp. 8938–8971, Nov. 2020, doi: 10.1007/s11227-

020-03196-z.

[3] O. Sagi and L. Rokach, “Ensemble learning: A survey,”

WIREs Data Min. Knowl. Discov., vol. 8, no. 4, Jul.

2018, doi: 10.1002/widm.1249.

[4] I. Abrar, Z. Ayub, F. Masoodi, and A. M. Bamhdi, “A

Machine Learning Approach for Intrusion Detection

System on NSL-KDD Dataset,” in 2020 International

Conference on Smart Electronics and Communication

(ICOSEC), Trichy, India, Sep. 2020, pp. 919–924. doi:

10.1109/ICOSEC49089.2020.9215232.

[5] S. Seth, K. K. Chahal, and G. Singh, “A Novel Ensemble

Framework for an Intelligent Intrusion Detection

System,” IEEE Access, vol. 9, pp. 138451–138467,

2021, doi: 10.1109/ACCESS.2021.3116219.

[6] M. Govindarajan, “Evaluation of Ensemble Classifiers

for Intrusion Detection,” vol. 10, no. 6, p. 9, 2016.

[7] B. S. Bhati and C. S. Rai, “Ensemble Based Approach

for Intrusion Detection Using Extra Tree Classifier,” in

Intelligent Computing in Engineering, vol. 1125, V. K.

Solanki, M. K. Hoang, Z. (Joan) Lu, and P. K. Pattnaik,

Eds. Singapore: Springer Singapore, 2020, pp. 213–220.

doi: 10.1007/978-981-15-2780-7_25.

[8] N. T. Pham, E. Foo, S. Suriadi, H. Jeffrey, and H. F. M.

Lahza, “Improving performance of intrusion detection

system using ensemble methods and feature selection,”

in Proceedings of the Australasian Computer Science

Week Multiconference, Brisband Queensland Australia,

Jan. 2018, pp. 1–6. doi: 10.1145/3167918.3167951.

[9] M. Yousefnezhad, J. Hamidzadeh, and M. Aliannejadi,

“Ensemble classification for intrusion detection via

feature extraction based on deep Learning,” Soft

Comput., vol. 25, no. 20, pp. 12667–12683, Oct. 2021,

doi: 10.1007/s00500-021-06067-8.

[10] Y. Zhou, T. A. Mazzuchi, and S. Sarkani, “M-AdaBoost-

A based ensemble system for network intrusion

detection,” Expert Syst. Appl., vol. 162, p. 113864, Dec.

2020, doi: 10.1016/j.eswa.2020.113864.

[11] A. Zainal, M. A. Maarof, and S. M. Shamsuddin,

“Ensemble Classifiers for Network Intrusion Detection

System,” p. 10.

[12] N. N. P. Mkuzangwe, F. Nelwamondo, N. N. P.

Mkuzangwe, and F. Nelwamondo, “Ensemble of

classifiers based network intrusion detection system

performance bound,” in 2017 4th International

Conference on Systems and Informatics (ICSAI),

Hangzhou, Nov. 2017, pp. 970–974. doi:

10.1109/ICSAI.2017.8248426.

[13] R. E. Schapire, “The Boosting Approach to Machine

Learning: An Overview,” in Nonlinear Estimation and

Classification, vol. 171, D. D. Denison, M. H. Hansen,

C. C. Holmes, B. Mallick, and B. Yu, Eds. New York,

NY: Springer New York, 2003, pp. 149–171. doi:

10.1007/978-0-387-21579-2_9.

[14] Yan-Shi Dong and Ke-Song Han, “A comparison of

several ensemble methods for text categorization,” in

IEEE International Conference onServices Computing,

2004. (SCC 2004). Proceedings. 2004, Shanghai, China,

2004, pp. 419–422. doi: 10.1109/SCC.2004.1358033.

[15] T. G. Dietterich, “Machine-Learning Research,” p. 40.

[16] A. M. Bamhdi, I. Abrar, and F. Masoodi, “An ensemble

based approach for effective intrusion detection using

majority voting,” TELKOMNIKA Telecommun. Comput.

Electron. Control, vol. 19, no. 2, p. 664, Apr. 2021, doi:

10.12928/telkomnika.v19i2.18325.

