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Abstract— A massive amount of work has been conducted in 

the field of Intrusion Detection System (IDS) which is used to 

identify various attacks on the network. Various machine 

learning approaches have been carried out to prevent malware 

attacks or network intrusion by attackers. Single classifiers have 

several limitations which cause low performance in the 

classification of normal attacks and anomalies. In other words, 

they are not strong enough to create a good Intrusion Detection 

System (IDS).  This is a reason researchers have the idea of 

building ensemble models to take advantage of different models 

in combination together. The main goal of using ensemble 

classifiers is to achieve higher accuracy and Lower False Alarm 

Rate (FAR) will be provided. Two ensemble learning techniques 

– Voting and Stacking based models are implemented with PSO 

optimizer to obtain weights. 

Keywords—Ensemble Classifier, Intrusion detection, NSL-

KDD) 

1.  INTRODUCTION  

In recent days, financial loss and crippled services have 

increased to many folds due to sophisticated cyber-attacks. 

As a result, traditional firewalls are not enough to protect 

networks against intrusions. We can leverage Intrusion 

Detection Systems (IDS) along with firewall to provide better 

security against intrusions. According to Rajadurai et al. [1] 

the IDS systems can be categorized in to four classes based 

on the detection approaches: 1. Signature based 2. Anomaly 

based 3. Host based and 4. Network based. The recent 

advancements in Machine Learning (ML) and Artificial 

Intelligence (AI) have helped to identify any type of network 

intrusions with ease. Among Machine Learning algorithms, 

single classifiers have been used extensively to approach 

intrusion detection problems. However, single classifiers 

might not fully result in the expected performance due to their 

inherent weaknesses for developing an IDS. Thus, more 

recent works have been taking advantages of combining 

different classifiers as base learners like ensembles in order 

to have lower FAR and better accuracy in terms of finding 

intrusions. To increase the robustness of IDS, in this research, 

five different types of classifiers have been used and they are 

categorized into strong and weak learners based on their 

performance. A novel ensemble approach is implemented to 

boost the performance of IDS by having the pair of weak and 

strong base learner, we use the Particle Swarm Optimization 

(PSO) for weighting the base learners and inject these 

weights to the ensemble classifiers.  

 

 
Figure 1. The IDS classification techniques 

 

2.  LITERATURE REVIEW 

Among the several works which have been done in this field, 

Kumar et al. [2] studied in detail the methods which were used 

in this area. They described the ensemble learning methods as 

Bagging, Boosting and Stacking and categorized different 

learning algorithms in these categories. For example, they 

considered Random Forest and Wagging as Bagging 

(Bootstrap aggregating). Moreover, they have demonstrated a 

brief overview of ensemble integration methods such as 

Majority voting, Threshold Plurality Vote, Fuzzy theory-

based, and Naïve Bayes. In the Majority voting, the output of 

each base classifier is interpreted as a vote for a specific class 

so that a class with the maximum number of votes will be the 

outcome of the ensemble classifier. They counted the 

Threshold Plurality Vote method as a generalized version of 

majority voting since it imposes a threshold on vote count for 



choosing the class. Fuzzy theory-based method as the other 

integration method, employs fuzzy set theory for aggregating 

the outcomes of base classifiers and Naïve Bayes decision 

method considers conditional independence between the base 

classifiers.  

The other survey by Sagi et al. [3]points out the major 

strengths and weaknesses of using an ensemble-based 

approach rather than using an individual learner. They talk 

about how an ensemble-based approach can overcome the 

overfitting avoidance by averaging out different hypotheses 

which will reduce the risk of choosing an incorrect hypothesis. 
They also focus on the edge that ensemble-based learner has 

over the single learner based on computational performance. 

In addition, they highlighted various unique advantages it has 

compared to the single learners and clearly mentioned how 

these ensemble learners can tackle the problem of class 

imbalance, concept drift and curse of dimensionality. The 

performance of a model can be improved using ensemble 

modelling which combines various machine learning 

techniques into a single predictive model. The majority of the 

ensemble methods fall under homogeneous learners. On the 

other hand, some methods use learners of different types 

called heterogeneous learners. Bagging, Boosting and 

Stacking are some of the commonly used ensemble-learning 

techniques.  Overall, the paper showcases how these methods 

weigh several individual models and finally combine them to 

improve the predictive performance. 

Abrar et al. [4] proposed a comprehensive approach to prevent 

unauthorized access to network resources and detect 

anomalies in the network. Several machine learning (ML) 

classifiers, namely Support Vector Machine (SVM), K-

nearest neighbour (KNN), Logistic Regression (LR), Naïve 

Bayes (NB), Multi-layer Perceptron (MLP), Random Forest 

(RF), Extra-tree Classifier (ETC) and Decision Tree were used 

for the classification of data as normal or intrusive. Four 

feature subsets extracted from the NSL-KDD dataset are used 

as the train and target data. The performance of RF, ETC and 

DT was observed to be 99% for all the classes using different 

subsets of features. They did not use any optimization 

technique to improve the performance. An ensemble-based 

approach, which combines the output of various algorithms to 

predict the final results, could be the possible improvements 

in the paper. 

On the other hand, Seth et al. [5] proposed a new approach for 

multiclass attack detection using the ensemble algorithms. 

Their approach ranked the detection ability of different base 

classifiers for identifying different types of attacks. The 

rankings are based on the final F1 score of each classifier for 

their predictions. The proposed approach is different from the 

voting approach because in the voting, the final predictions are 

based on the results of the majority vote among the selected 

models, and there is no control on whether the majority vote 

algorithm is efficient enough to detect the attack or not. 

CICIDS 2018 is their selected dataset, because it is the most 

recent dataset for the intrusion detection. This dataset is 

imbalanced and Seth et al. used a hybrid approach which used 

SMOTE for solving the imbalance issues. In addition to 

balancing the dataset, they detected the outliers in the dataset 

by using the Isolation Forest method which is an unsupervised 

machine learning algorithm based on Random Forest and 

Decision Tree.  For the feature selection part, first, random 

forest is applied, then Principal Component Analysis (PCA) is 

used to eliminate the redundant features. Finally, they used 24 

most significant features for the next steps. They used the 

seven most popular algorithms for the training phase which 

are: KNN, Decision Tree, Random Forest, Extra trees, 

XGBoost, Histogram-based Gradient Boosting, and Light 

GBM. Based on the performance of each classifier, a rank 

matrix was calculated and based on this matrix the results of 

the best classifier were used for the final prediction. The 

experiments showed that some of the classifiers have high 

recall but low precision, like RF, that is why Seth et al. used 

F1-score as the main metric. The results of the proposed 

method outperforms the single base classifiers’ results. For 

example, the proposed method obtained 100% for detecting 

Bots and DDoS attacks. 

  

Classification performance is improved with ensembles by the 

combined use of two effects .i.e., reduction of errors due to 

bias and variance. In his study, Govindarajan [6] proposed 

new ensemble classification methods with homogeneous 

ensemble classifiers using bagging and heterogeneous 

ensemble classifiers using arcing. Moreover, Radial Basis 

Function (RBF) and Support Vector Machine (SVM) are used 

as base classifiers in designing an ensemble classifier. The 

researcher’s proposed approach is based on three main parts: 

pre-processing phase, classification phase, and combining 

phase, and performances are analysed in terms of accuracy. 

To know the performance of proposed homogeneous and 

heterogeneous classifiers, these are compared to the 

performance of other standard homogeneous classifiers such 

as Error-correcting output codes (ECOC), Bagging, and 

heterogeneous ensembles such as majority voting and 

stacking. Experimental results show proposed ensemble 

methods show better accuracy than individual classifiers. 

Furthermore, ECOC and Bagging are outperformed by the 

proposed RBF and SVM. Also, the proposed hybrid Radial 

Basis Function -Support Vector Machine performs 

significantly better than voting and stacking. 

Another research work in this field by Bhati and Rai [7] 

proposed an ensemble-based approach for intrusion detection 

using extra tree classifiers. They combined the decision of 

different classifiers to increase the decisional power of the 

classifier. KDDcup99 and NSL-KDD datasets were used for 

the comparison as they are the benchmarks for intrusion 

detection. The proposed algorithm achieved 99.97% accuracy 

on the KDDcup99 dataset and 99.32 % on the NSL-KDD 

dataset. They did not implement any optimization approach to 

improve the performance of the model. 

The aim of  Pham et al. [8]work is to improve the performance 

of an IDS using the hybrid methods and feature selection. 



They used the Bagging and Boosting which are the most 

popular ensemble techniques with a tree-based classifier as the 

base classifier. The performance of their model was evaluated 

on the NSL-KDD dataset and compared with the existing 

papers. Decision trees are their selected based classifier 

because it is sensitive enough to data resampling and feature 

resampling, and this is required for diversity in the ensemble 

model. Moreover, this classifier can apply on both nominal 

and numeric features with both continuous and discrete 

values. Finally, the tree-based algorithms can eliminate the 

irrelevant features as well as feature selection because of the 

use of the best variable in each split of the tree. Their selected 

tree-based algorithms are J48, Random Tree, REP Tree , 

Random Forest. As the feature selection techniques, they used 

Leave-One-Out for extracting 25 features and Gain Ration for 

extracting 35 features. The experiments showed that in 25 

features set, although Bagging with REP Tree increased the 

accuracy, it didn’t reduce the FAR. In this subset, the J48 had 

the lowest FAR. But in the 35 features subset, they achieved 

the goal of having more accuracy with less FAR by using 

Bagging with J48. 

  

While Pham et al. [8]focused on ensemble and tree-based 

classifiers, Yousef Nezhad et al. [9]use deep learning in the 

feature selection phase in addition to using ensemble 

classification. Their main classifiers are SVM and KNN with 

different hyperparameters in eight versions. The SVM 

experimented with two different kernels which are RBF kernel 

valued 1 and 3 and Hermit Kernel with the degree of 8 and 10 

for increasing the classification speed. They selected the RBF 

based on the experimental results which showed it has better 

performance. The KNN with 3, 5, 8, and 10 nearest 

neighbours is used for considering the diversity and better 

performance of the classifier. The output of SVM and KNN 

are converted to probable values using sigmoid function and 

heuristic algorithms respectively. Then, for integrating the 

data, they used Dempster-Shafer combining ensemble 

classification. This method can integrate the numerical, 

signals, and multidimensional data. Using the Dempster-

Shafer is the final step in their procedure. They used an 

ensemble margin which is an important concept in ensemble 

learning, for selecting the samples from the KDD99 dataset. 

Then they used the new dataset in their proposed algorithm 

using the feature selection based on ensemble margin. Based 

on their results, using the Dempster-Shafer as an integrating 

module helped them in increasing the performance. 

  

Another way of improving performance is to use the feature 

selection optimizers. In [10] Zhou et al. proposed a new 

ensemble approach on the basis of the modified adaptive 

boosting with the area under the curve (M-AdaBoost-A) 

algorithm so that network intrusions will be identified. In this 

work authors combined many M-AdaBoost-A-based 

classifiers to provide an ensemble classifier by employing 

various strategies such as simple majority voting (SMV) and 

Particle Swarm Optimization (PSO). In fact, the proposed 

approach, M-AdaBoost-A algorithm, takes into account the 

area under the curve into the boosting process to be able to 

address class imbalance issue in network intrusion detection. 

It utilized both the PSO algorithm and SMV to combine 

multiple M-AdaBoost-A-based classifiers into an ensemble 

with the aim of achieving improvements in network intrusion 

detection; thus, this system can be considered as a multiple-

boosting- fused ensemble. In general, the M-AdaBoost-A-

SMV ensemble is described as a set of multilevel nested 

models. 

In addition to previous work, with irrelevant and redundant 

features, the problem of huge network traffic data size and the 

invisibility patterns have posed a great challenge in the 

domain of intrusion detection. Zainal et al. [11]proposed a 

way to address these challenges. In their paper, they employed 

two means; one is selecting the appropriate important features 

which represent the patterns of traffic and the second is 

forming an ensemble classifier model by engineering multiple 

classifiers with different learning paradigms.  In their study, 

researchers formed a 2-tier selection process, by utilizing a 

hybrid approach where Rough Set Technique and Binary 

Particle Swarm (BPSO) were structured in a hierarchical 

manner. Here each class had one specific feature set since 

features were obtained based on class-specific characteristics. 

Moreover, Rough Set techniques were used to remove the 

redundant features and rank the top 15 features for each class 

of traffic since BPSO uses the heuristic technique. These 

significant features are termed as reducts. In their study, 

researchers considered the decision function by taking the 

degree of diversity among the classifiers into account. To 

classify the network connection, ensemble machine learning 

techniques with different learning paradigms .i.e. Linear 

Genetic Programming(LGP), Adaptive Neural Fuzzy 

Inference System(ANFIS) and Random Forest(RF) were used 

and decision function was determined based on the individual 

performances on overall accuracy and true positive rates. 

Furthermore, the experimental results show an improvement 

in detection accuracy for all classes of network traffic. 

Nenekazi et al. [12]proposed a performance bound of a 

network intrusion detection that uses an ensemble of 

classifiers. Till now, all the research focussed on 

implementing the network intrusion detection that leverages 

ensemble-based classifiers without knowing the performance 

of their intrusion detection systems. With the proposed model, 

researchers will come to know the performance of their 

ensemble-based NIDS even without implementing it. For this 

study, researchers used the NSL-KDD dataset that was filtered 

for normal and Neptune connections. In this study, researchers 

have used classification accuracy as a performance measure 

for this ensemble and average information gain associated 

with features to define the bound. In addition, the Adaboost 

algorithm was used to obtain performance bound in order to 

boost the ensemble performance to converge to its optimality. 

Moreover, the performance of an Adaboost based network 

intrusion detection system that uses a decision stump as a 

weak learner to classify Neptune and normal connections can 

be estimated by the bound. From the experimental results, 



researchers concluded that the accuracy of the ensemble will 

be at most 0.9 if the information gain value amongst features 

used in the ensemble lies between 0.04561 and 0.25615. 

 

3. DATASET 

NSL – KDD is a dataset suggested to solve some of the 

inherent problems of the KDD’99 data set and contains the 

records of the internet traffic seen by a simple intrusion 

detection work. This dataset comprised of two general sub 

datasets: KDD_Train+ and KDD_Test+. In this project we 

used KDD_Train+ because it prevents the overfitting of the 

model. The dataset consists of 42 features and out of which 41 

corresponds to the traffic input and the last one corresponds to 

the class label. Again, these features can be categorized into 

four categories such as Intrinsic, Content, Host-based, and 

Time-based. 

Intrinsic Features: These features contain the packet 

information and can be derived from the header of the packet. 

This category contains features 1-9. 

Content Features: These features contain original packets 

information which can be used by the system to access the 

payload. This category contains features 10-22. 

Time-based features: These features contain the information 

about how many connections it attempted to make to the same 

host over 2 two-second windows. This category contains 

features 23-31. 

Host-based features: These features contain information 

about how many requests are made to the same host over x- 

number of connections. This category contains features 32-41. 

Also, the feature types in this data set can be broken down into 

4 types which are categorical, binary, discrete, and 

continuous. The distribution of the data types is as follow: 4 

Categorical, 6 Binary, 23 Discrete, and 10 Continuous. The 

categorical features are Protocol Type, Service, Flag. Among 

these columns, Flag values is not easy to understand. This 

feature describes the status of the connection showing whether 

there is a flag raised or not. Since machine learning algorithms 

cannot operate on label data directly, we will convert the 

categorical values into numerical values. 

The reasons behind using this dataset in this project are first 

during the literature review, most of the researchers mentioned 

that they used NSL-KDD as it contains complete information 

about intrusions inside the internet traffic. Moreover, this 

dataset does not have redundant records in the train data, so 

the classifier will not provide any biased results during 

prediction.  

4. METHODOLOGY 

 

In the current project, after data preprocessing step and 

extracting the features of the data, 5 different machine learning 

algorithms are chosen and trained on the dataset. After 

training, they classified in to weak and strong learners based 

on their performance. Then by using Particle Swarm 

Optimization (PSO), average weights for the base learners 

calculated. The next step is to take advantage of two ensemble 

models namely, Stacking and Majority Voting. In this section, 

the base learners and the ensemble models will be described 

briefly. Then procedure of using PSO will be explained in 

detail. An overview of our methodology is shown in Figure 2. 

 

Figure 2. Methodology 
 

4.1   Data Pre-Processing 

 

As a very first step of each machine learning process, data 

preprocessing should be done in an effective way. Normally 

in this step, the categorical data is converted into the numerical 

type of data in order to have better results in the predictions. 

For this aim, we use one hot encoding as a method. We applied 

this method on 3 categorical columns which exist in the 

dataset namely, Protocol Type, Service and Flag. Besides, we 

encoded the ‘Label’ column to 0 and 1 by putting 1 instead of 

the anomaly and 0 instead of the normal. In addition to 

encoding the categorical data, since there are different values 

in the dataset, we applied data normalization for increasing the 

cohesion of the dataset. Basically, the data normalization 

means the reorganization of data to appear similar in whole 

dataset. This sub step is important because data normalization 

gets rid of the anomalies across the records and fields that can 

make the process of prediction complicated. Moreover, this 

process can make the dataset keep less space. For the data 

normalization, we used “StandardScalar” package from 

“sklearn.preprocessing” library. The final sub step is 

splitting the dataset into 70% train and 30% test because we 

want to see how the model works on the seen samples.  



 

4.2   Feature Selection 

The second step of the methodology is feature selection. The 

feature selection refers to techniques that make a subset of 

most relevant and important features of a dataset. Having 

fewer features allows the machine learning algorithm 

occupies less space and runs without time complexity. We 

used Random Forest as a method for extracting the important 

features. This method is one of the embedded methods. The 

embedded methods are implemented by algorithms that have 

their own built-in feature selection methods. We used one of 

the embedded methods, Random Forest, because these 

methods are highly accurate and interpretable. In the random 

forest, each tree of the random forest is a decision tree and can 

calculate the importance of feature based on the feature’s 

ability in increasing the pureness of the leaves. With this 

method we collected the importance of features. Then we used 

Recursive Feature Elimination (RFE) as a wrapper-based 

feature selection. It means that a machine learning algorithm 

is used as a core and the RFE acts as a wrapper. The idea of 

the RFE is to select features by recursively considering the 

smaller and smaller sets of features. This method has two main 

steps which are: first, an estimator will be trained on a set of 

features and calculate the importance of each feature, and 

second step is to prune the least important features from the 

current set of features. This method is easy to configure and 

use. In this project the core machine learning algorithm is 

Random Forest as mentioned before. We first plot the feature 

importance which obtained by the Random Forest as shown in 

Figure 3. And then the total number of features which selected 

by RFE is 65.  

Figure 3. The Features Importance 

4.3.    Base Learners 

 

The third step in our proposed method is to select and train 5 

base learners. We used Support Vector Machine, Naïve 

Bayes, K-nearest Neighbor, Decision Tree, and Logistic 

Regression as our base learners.  The base learners are selected 

based on the literature study and discovering the strengths and 

weaknesses of each classifier. In the following a brief 

description of each of the base learners is explained. The 

results of each base learner are explained in the Section 7 in 

detail. 

 

4.3.1    Support Vector Machine 

 

Support Vector Machine (SVM) each data is plotted as a point 

in n-dimensional space where n is the number of features. The 

classification is done by finding a hyper plane that distinguish 

the two classes in a good way. This classifier can address 

space complexity and it further creates non-linearity and least 

impacted by outliers. The performance of SVM is related to 

the hyperparameter tuning. In this project we use SVC with 

enabling the probability estimates.  

 

 

4.3.2   Naïve Bayes 

 

Naïve Bayes Classifier is one of the simple and most operative 

Classification algorithms. It is easy and fast to predict class of 

test data set. This classifier is a probabilistic one, which means 

it predicts based on the probability of an object. Naïve Bayes 

classifier performs better compared to other models like 

logistic regression when the problem has independence.  

Naïve Bayes classifiers are based on Bayes theorem and has 

the potential to achieve high accuracy and data 

interpretability. We used the GaussianNB among the different 

kinds of the Naïve Bayes because it can be used in the online 

learning in future.  

 

4.3.3   K-nearest Neighbor 

 

K-Nearest Neighbor is a supervised classifier. Initially, the 

value of K is selected, and then Euclidean distance is 

computed among the various data points based on which the 

data is separated into K-number of clusters. KNN is easy to 

interpret outputs and has low computation time. In this work, 

we use a KNeighborclassifier from sckit learn package with 

default parameters. The number of neighbors we used 

1,3,5,7,9, and 11.  

 

4.3.4   Decision Tree 

 

The goal of using Decision Tree is to create a training model 

that can use to predict the class or value of the label by learning 

simple decision rules inferred from previous data (training 

data). Decision tree used tree like models to make decisions 

and entirely based on control if statements. This classifier can 

observe information and identify critical qualities in the 

system that demonstrate the malicious activities like the 

intrusions. In this project we used the sckit learn decision tree 

as one of the best algorithms for intrusion detection task. The 

max depths used in the ensemble part are 2, 4, 6, 8, 10, and 12.  

The result of this base learner is reported in Results section 

along with other learners.  



4.3.5   Logistic Regression 

 

Logistic Regression is used to model the probability of certain 

class or event. It is used for the independence and 

interpretability of data. This statistical model is easy to 

implement and very efficient to train. By the way, if the 

number of observed features is less than the number of 

features this classifier is not appropriate for classification. We 

used the Logistic regression with the maximum iteration of 

100 for the solvers to converge. As the maximum iterations 

for the ensemble part we used 100,10,1,0.1,0.01, and 0.001.  

 

4.4   Ensemble Models 

An ensemble classifier is a method which uses or combines 

several classifiers to develop robustness of a system as well as 

improving the performance from any of the basic classifiers. 

Based on Schapire [13]and Dong et al. [14], Ensemble 

methods have the improvement on what they can be made to 

adapt to any changes in the monitored data stream more 

accurately than single model techniques. As an important 

parameter for the success of an ensemble approach, diversity 

in the individual classifiers with respect to misclassified 

instances can be mentioned. Dietterich [15] reported that there 

are three main reasons why an ensemble classifier is usually 

significantly better than a single classifier. First of all, the 

training data does not always deliver enough information for 

selecting a single accurate hypothesis. Moreover, the learning 

processes of the weak classifier could be imperfect. In 

addition, the hypothesis space being searched might not 

contain the true target function while an ensemble classifier 

can provide a good estimate. Ensemble learning has three 

types which are bagging, boosting, and stacking. Bagging and 

boosting are the alternatives of the voting methods. In this 

project, after training the base learners, we used two different 

Ensemble Learners, Majority Voting and Stacking. In the 

following,  a description and the way of using these classifiers 

are explained in detail. 

Figure 4. Ensemble Classification Techniques 

 

 

4.4.1    Particle Swarm Optimization 

 

Particle swarm optimization is a population-based iterative 

optimization algorithm, formulated by Kennedy and Eberhart. 

PSO is derivative-free, zero-order method. That means it does 

not need gradients, so it can be applied to a variety of 

problems, including those with discontinuous or non-convex 

and multimodal problems. The algorithm starts out with a set 

of agents, called particles, in random positions in the problem 

space. Each is also assigned random velocity at the outset. A 

fitness function is defined on a particle’s location. The 

optimization problem to be solved is to find the best position, 

i.e. the one that minimizes the fitness function. Through each 

iteration, the algorithm evaluates each particle’s fitness, 

updates its velocity, and computes its new position. A 

particle’s new velocity depends on its current velocity, its 

distance from its own best position so far and its distance from 

the populations best position yet. Compared to genetic 

algorithms (GA), PSO has no evolution operators such as 

crossover and mutation which makes it easy to implement 

with great success to several problems wherever GA can be 

applied.  

 

Figure 5. The Flow Chart for PSO 

 

The weights obtained from PSO are chosen as the weights for 

the learners w [0:12]. 

 

4.4.2   Majority Voting 

 

A very big drawback of Voting Classifier is that it assumes 

that all models in the ensemble are equally effective. This may 

not be the case as some models may be better than others 

especially if different machine learning algorithms are used to 

train each model ensemble member. An alternative to voting 

Ensemble 
Learning 

Voting

Bagging Boosting

Stacking



is to assume that ensemble members are not all equally 

capable and instead some models are better than others and 

should be given more votes when making a prediction. This 

provides the motivation for the weighted average ensemble 

method. 

Weighted average ensembles allow the contribution of each 

ensemble member to a prediction to be weighted 

proportionally to the trust or performance of the member on a 

holdout dataset. Model averaging is an approach to ensemble 

learning where each ensemble member contributes an equal 

amount to the final prediction. In the case of predicting a class 

label, the prediction is calculated as the mode of the member 

predictions. In the case of predicting a class probability, the 

prediction can be calculated as the argmax of the summed 

probabilities for each class label. 

To ensure greater diversity in the classifiers and to potentially 

maximize the use of them, each classifier is trained with 6 

different parameter and then combined with another classifier 

with 6 different parameters to utilize the full potential of these 

classifiers. For example, in case of KNN-Logistic Regression 

ensemble model, 6 KNN models with value of K tuned for 

each model are combined with 6 logistic regression model 

with value of C tuned for each model. 

  

Figure 6. The Flow Chart for Ensemble Models 

Similarly, all models are trained and tested with this novel 

ensemble method. 

4.4.3   Stacking 

 

Stacking, stacked generalization, is a different technique of 

combining multiple classifiers. Unlike bagging and boosting, 

stacking is usually used to combine various classifiers, e.g. 

decision tree, neural network, naïve bayes, logistic regression, 

and etc. This method is an effective approach as it is a general 

framework, which combines many ensemble methods. The 

learning process in this method consists of two levels, base 

learning and meta-learning. In base learning, the initial (base) 

learners are trained with training data set in order to create a 

new dataset for the next step which is the meta-learning. The 

meta-learner is trained with new training data set. The trained 

meta-learner is used to classify the test set. A crucial part in 

stacking is the selection of a best base learner. In this project 

we choose the base algorithms which are frequently used in 

the literature review for intrusion detection and then classified 

them into weak and strong based on their performance. The 

final estimator in all stacking models is Logistic Regression. 

 

5.  EVALUATION 

Model evaluation is the subsidiary part of the model 

development process. In this phase, whether the model 

performs better or not is investigated. Following the different 

evaluation metrics that used in this project are described. 

Precision, Recall, Accuracy, F1 score, Specificity, and 

Sensitivity are the metrics calculated in this project, but based 

on F1 score final decisions are made. All the metrics are based 

on a confusion matrix which made of the ratio of true or false 

predictions to observed samples. A confusion matrix helps us 

gain an insight into how correct our predictions were and how 

they hold up against the actual values.  

5.1   Precision 

Precision quantifies the number of positive class predictions 

that belong to the positive class. In other words, it is the ratio 

of the True Positives to all the observed Positives predictions. 

Therefore, higher precision means the model predicted attacks 

more accurately and if it had doubts about an instance, only 

with a low probability did it consider as an attack (low False 

Positive leads to high Precision) 

Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

5.2    Recall 

Recall quantifies the number of positive class predictions 

made out of all positive examples in the dataset. Higher recall 

means the model tried well in assigning the label attack to 

those instances that were actually an attack; therefore, the 

system with a high value of recall metric, will be more secure 

since it detects attacks with higher chances.  

Recall=
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

5.3   F1 Score 

F1-score considers both precision and recall metrics; so it is a 

good indicator of how the model performs. In fact, The F1 



score can be interpreted as a harmonic mean of the precision 

and recall metrics, where an F1 score reaches its best value at 

1 and worst score at 0. The relative contribution of precision 

and recall to the F1 score are equal. 

F1-Score=
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

5.4   Accuracy 

Accuracy is the fraction of predictions that the model got right 

since it is calculated as the ratio of all true predictions to all 

the possible predictions. 

Accuracy=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

5.5   Specificity 

Specificity is the metric that evaluates a model’s ability to 

predict true negatives of each available category. Specificity 

is defined as the proportion of actual negatives, which got 

predicted as the negative (or true negative). This implies that 

there will be another proportion of actual negative, which got 

predicted as positive and could be termed as false positives. 

This proportion could also be called a false positive rate. It is 

worth. Mentioning that while sensitivity measure is used to 

determine the proportion of actual positive cases, which got 

predicted correctly, Specificity measure is used to determine 

the proportion of actual negative cases, which got predicted 

correctly. 

Specificity=
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

5.6   Receiver Operator Characteristic (ROC) 

The Receiver Operator Characteristic (ROC) curve is an 

evaluation metric for binary classification problems. It is a 

probability curve that plots the TPR against FPR at various 

threshold values and essentially separates the ‘signal’ from the 

‘noise’. Also, the Area Under the Curve (AUC) is the measure 

of the ability of a classifier to distinguish between classes and 

is used as a summary of the ROC curve. The higher the AUC, 

the better the performance of the model at distinguishing 

between the positive and negative classes. 

5.7   Geometric Mean 

The geometric mean is calculated as the N-th root of the 

product of all values, where N is the number of values. The 

geometric mean accepts positive inputs and not the zero. 

Geometric mean in machine learning is in the calculation of 

the so-called G-Mean (geometric mean) metric that is a model 

evaluation metric that is calculated as the geometric mean of 

the recall and specificity metrics. This metric can be calculated 

using the Scipy package and gmean function.  

6. RESULTS 

 

As discussed before, various metrics have been calculated to 

assess the performance of our models. Generally, if the data 

set is balanced, we can use accuracy metric to assess the 

model’s performance. If the dataset is not balanced, then 

choosing accuracy as a metric is not ideal because it does not 

distinguish between the numbers of correctly classified 

examples of different classes. So, in future even though 

different dataset is used, to compare our model’s performance 

we are choosing F1 score metric as base metric to evaluate 

the performance of the models. 

 
       Model    

Measure  
Decision 

Tree SVM LR Naive 

Bayes 
KNN 

Accuracy 0.98255 0.96792 0.95801 0.90686 0.973536369 

Precision 0.9835 0.95983 0.94544 0.96384 0.974895 

Recall 0.98557 0.98426 0.98216 0.86723 0.978221 

F1 score 0.98454 0.97189 0.96345 0.91298 0.976555 

Specificity 0.9835 0.95983 0.94544 0.96384 0.974895397 

- 

Predictive 

val 

0.98557 0.98426 0.98216 0.86723 0.978220939 

+ 

Predictive 

val 

0.97867 0.94683 0.92685 0.95801 0.967490687 

Geometric 

Mean 
0.98241 0.96936 0.96048 0.90421 0.973330797 

AUCROC 

Value 
0.98262 0.99536 0.98207 0.94987 0.993251 

Table 1. The results of Base learners 

 

Above Table represents the results of our baseline models. 

From the results we can infer that Decision Tree is the best 

performing model with the F1-score of 0.98. It closely 

followed by SVM, K-Nearest Neighbor, Logistic Regression 

and Naïve Bayes. Among all these models, Naïve Bayes is 

the worst performing model with the F1-score of 0.91. Below 

figure represents the ROC plots of our baseline models. 

 

Figure 6. ROC plots for Base Learners; (a) Decision Tree (b) SVM (c) 

Naïve Bayes (d) KNN (e) Logistic regression 
 

 



After assessing the performance of base classifiers and 

categorizing them into strong and weak classifiers, we 

proceeded with building ensemble models by voting and 

stacking.  

Table 2. represents the performance metrics of various 

ensembles models that are built by using voting method. 

 

 
               Model  

 

 

Measure 

 (LR, 

DT) 

 (LR, 

KNN) 

 (DT, 

KNN) 

 (SVM, 

KNN) 

 (SVM, 

DT) 

 (SVM, 

LR) 

Accuracy 0.965 0.944 0.960 0.946 0.961 0.962 

Precision 0.961 0.941 0.957 0.957 0.954 0.956 

Recall 0.978 0.961 0.972 0.981 0.979 0.979 

F1 score 0.969 0.951 0.954 0.969 0.966 0.967 

Specificity 0.962 0.941 0.957 0.957 0.954 0.956 

- Predictive 

val 

0.978 0.961 0.972 0.981 0.979 0.979 

+ Predictive 

val 

0.949 0.922 0.944 0.942 0.932 0.941 

Geometric 

Mean 

0.966 0.945 0.960 0.966 0.963 0.963 

AUCROC 

Value 

0.991 0.966 0.983 0.99 0.981 0.983 

 

Table 2. The results of Ensemble Learners (Majority Voting) 
 

From the above Table, we can infer that (SVM, KNN) is the 

best performing ensemble model followed by (Logistic 

Regression, Decision Tree), (SVM, Logistic Regression), 

(SVM, Decision Tree), (Logistic Regression, KNN) and 

(Decision Tree, KNN).  Also, F1-score metric is used to 

assess the performance of the models. Furthermore, the 

performance of ensemble models (Voting) is lesser than the 

baseline models. 

 

 
Figure 7. ROC plots for Majority Voting; (a) SVM&LR (b) 

SVM&DT (c) DT&KNN (d) KNN&LR (e) SVM&KNN (f) 

DT&LR 

                                                                                                         

Furthermore, we built ensembles using stacking and assessed 

the performance of the models. To assess the performance, 

we considered F1-score as base metric.  

 
                

            Model  

 

 

Measure 

(LR, 

DT) 

 (LR, 

KNN) 

 (DT, 

KNN) 

 (SVM, 

KNN) 

 

(SVM, 

DT) 

 

(SVM, 

LR) 

Accuracy 0.973 0.984 0.972 0.983 0.973 0.984 

Precision 0.977 0.983 0.971 0.979 0.975 0.985 

Recall 0.976 0.989 0.979 0.992 0.977 0.986 

F1 score 0.976 0.986 0.975 0.985 0.976 0.986 

Specificity 0.977 0.983 0.971 0.978 0.975 0.985 

- 

Predictive 

val 

0.976 0.989 0.070 0.992 0.977 0.986 

+ 

Predictive 

val 

0.970 0.978 0.962 0.972 0.967 0.981 

Geometric 

Mean 

0.973 0.984 0.972 0.984 0.972 0.984 

AUCROC 

Value 

0.997 0.998 0.995 0.997 0.997 0.999 

 
Table 3. The results of Stacking Learners 

 

From the above results, we can observe that (SVM, Decision 

Tree) and (Decision Tree, K-Nearest Neighbour) has same 

F1-scores followed by (Decision Tree, Logistic Regression), 

(SVM, K-Nearest Neighbour), (Logistic Regression, K-

Nearest Neighbour) and (SVM, Logistic Regression). Even 

though (SVM, DT) and (DT, KNN) have same F1-score, we 

will choose (DT, KNN) is the best performing model because 

of the complexities involved with (SVM, DT) model. 

Furthermore, ensembles by stacking performed better than 

baseline models and ensembles by voting. One possible 

reason for this would be stacking allows to use the strength 

of each individual estimator by using their output as input of 

final estimator whereas voting classifier takes the most 

common output to be the output of final estimator. 

 

     
                                                                                                               

Figure 8. ROC plots for Stacking Ensembles; (a) SVM&LR (b) SVM&DT 
(c) LR&DT(d) SVM&KNN (e) LR&KNN (f) DT&KNN 

 

7.  COMPETITOR MODELS 

 
We have critically compared and analyzed the results from 

literature survey with our proposed methodology. The 

comparison table is as follows, 



 
Table 4. Comparison of Competitor Models 

 
Compared to all the baselines, the proposed method using 

majority voting with PSO and stacking method performed 

better in terms of F1-score, Accuracy and Precision. Primarily, 

our models were trained and tested using the best hyper-

parameters for each ensemble learning. So, a greater diversity 

is obtained and the use of each classifier in the ensemble 

model is maximized by using the approach of combining 6 

LRs and 6 KNNs in our approach.  

 

The main drawback of using m-AdaBoost method [10], which 

is similar to our approach, did not perform better because of 

the problems related to overfitting the training data and failed 

to address the outliers. 

 

8. LIMITATIONS AND ADVANTAGES 

 

Generally, IDS has its own limitations. For example, most IDS 

do not process encrypted packets which results in the intrusion 

of network. In case of real-world intrusions, the number of 

false alarms is more compared to the number of real attacks 

which may lead to misclassification of real attacks. 

 

Although we used a clean dataset, as a limitation in the 

intrusion detection system, we can mention the noises in a 

dataset. The bad packet generated from different sources like 

software bugs can severely limits the effectiveness of systems. 

The hyper parameter tuning of SVM model was time-

consuming and more powerful hardware setup was required 

especially while training large datasets.  

 

As a learning lesson from the project, not always a 

combination of strong base learners would perform better than 

the others (combination of weak learners). Also, it is not 

necessary for ensembles to perform better than the base 

learners all the time. It will be affected by the way, how this 

vase learners are combined to form the ensembles. For 

instance, in our case stacking performed better than voting 

classifiers because stacking allows us to use the strength of 

each individual estimator by using their output as the input of 

final estimator. Contrastingly, voting classifiers takes the most 

common output to the output of the final estimator which will 

work better only if we have multiple good models. 

 

 

9. CONCLUSION AND FUTURE WORK 

 
In this project we used 5 different base learners to have pairs 

of weak and string classifiers and then by using these pairs we 

performed classification with two ensemble learning models 

which are Majority Voting and Stacking. Moreover, we used 

Particle Swarm Optimization (PSO) as a mean for optimizing 

the weights of the ensemble models. Based on the results, 

stacking based ensembles outperformed voting based 

ensembles and the baseline models. Furthermore, out of all 

models, stacking based Decision Tree and K-nearest Neighbor 

ensemble model performed better with an F1 score of 98.6%.  

For the future works, using online ensemble learning can be 

used to cover more data. Despite using the static data, we want 

to adapt the model with data streams while considering the 

concept drift.  Moreover, there are always open problems in 

the feature selection step to make the predictions better. 

Furthermore, using PSO with LUS optimization will obtain 

better weights.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Research 

Papers 

Dataset 

used 

Model 

used 

F1-

Score 

(%) 

Accura

cy (%) 

Precision 

(%) 

 

[10] NSL-

KDD 

M-

AdaBoost 
using PSO 

91.64 99.89 88.34 

[7] NSL-

KDD 

Ensemble 

Trees 
Classifier 

97.8% - 99% 

[16] NSL-

KDD 

Majority 

Voting – 

(SVM, 
ETC, 

KNN, 
MLP, RF) 

87% 92% - 

Proposed 

model 

NSL-

KDD 

Majority 

Voting 

with PSO 

96.9% 96.5% 96.1% 

Proposed 

Model 

NSL-

KDD 

Stacking 

method 

98.6% 98.4% 98.3% 
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