
Alius 6502
User Guide

Derek Robson

Contents

1 Introduction 4
1.1 History . 5

2 System Overview 6
2.1 Hardware . 6
2.2 Software . 6

3 Programming 7
3.1 Number Bases . 8
3.2 Hexadecimal Notation . 9
3.3 Use of the Monitor ROM . 10
3.4 CPU Registers . 11
3.5 Your First Program . 12
3.6 Memory Map . 13
3.7 Memory Addressing . 17
3.8 The Stack . 19
3.9 Flow Control . 20
3.10 I/O (Input / Output) . 22
3.11 IRQ (Interrupt Request) . 24
3.12 Math . 27
3.13 Debugging Code . 30
3.14 Compiling Code . 31
3.15 Running Code from SD Card . 33
3.16 Experiments . 34
3.17 Coding Challenges . 36
3.18 Advanced Programming Tricks . 37

4 Programming References 38
4.1 Assembler Op Codes . 38
4.2 ROM functions . 55

5 Detailed Design and Schematic 66
5.1 Catch the BUS . 66
5.2 6502 - CPU . 66
5.3 RAM . 66
5.4 ROM . 67
5.5 I/O - 65C22 . 68
5.6 Memory Address Decoding . 69
5.7 SPI bus . 70
5.8 Display . 72

2

5.9 SD Card . 72
5.10 Keypad . 72
5.11 Schematic . 73

6 Building The System 76
6.1 Parts List . 78
6.2 Tools . 79
6.3 Soldering iron . 79
6.4 Solder Remover . 79
6.5 Side cutters . 79
6.6 Screw Driver . 79
6.7 Isopropyl Alcohol . 79
6.8 Helping Hands . 79
6.9 Multimeter . 79
6.10 Magnifying Glass . 79
6.11 Variable Power Supply . 79
6.12 Oscilloscope . 79
6.13 Construction . 80
6.14 Flashing the ROM . 86
6.15 Fault Finding . 87

7 Glossary 89

3

1 Introduction

This book is a guide to the design, construction, and use of the Alius 6502
kit-set computer.

This project is aimed at anyone who wants to get a better understanding
of basic digital electronics and computers. Throughout this project you will
learn what all the chips are used for, how they interconnect and how you can
program and expand the Alius 6502.

Many people who design a simple computer start with either a Z80 CPU or a
6502 CPU. Both CPUs are from the mid 1970’s and both are very common in
early home computers. I selected the 6502 due to my background with the
Commodore 64 system in the late 80’s.

There are many dozens of 6502 based kit-set computers and this is just
another such system. In Latin the word alius means another or different, and
so the Alius 6502 is another 6502 based system.

The Alius 6502 computer is a simple demonstration computer in the style
of a Homebrew Computer and can be used by students to learn the basics
of how computers work. You should find that only a basic understanding of
math and electronics will be required to follow along.

4

1.1 History

The home computer revolution started in California around 1975 when a
number of like-minded electronics enthusiasts started a group called The
Homebrew Computer Club.

The Bay Area, which would later become Silicon Valley, was already well
known for innovation and home to a growing community of electronics en-
thusiasts. The formation of the club coincided with the release of the Altair
8800, one of the first commercially successful personal computers, which
sparked widespread interest among hobbyists.

One of the club’s most famous members was Steve Wozniak, who attended
his first meeting in 1975. Inspired by the discussions and the exchange of
ideas at the club, Wozniak went on to design and build the Apple I computer.

During the mid 1970s people could build a whole computer from a bunch of
chips and write all their own software. With a choice of three or four CPUs
many of the designs had a lot in common. At The Homebrew Computer Club
ideas and software were shared freely.

The original 6502 CPU was designed by MOS Technologies in 1975 and sold
for a fraction of the cost of comparable CPUs. From 1975 through to about
1989 the 6502 was a good choice for home computers and gaming consoles,
for example the Apple II and the original Nintendo Entertainment System
(NES) used a 6502 and the Commodore 64 used a custom version of the
6502.

In 1981 Western Design Center created a version of the 6502 which has a
lower power usage and resolved several bugs from the original design.
The Western Design Center still make and sell the WDC65C02 CPU.

Western Design Center also sell I/O support chips that are compatible with
the 6502.

5

2 System Overview

2.1 Hardware

The Alius 6502 is based around the 65xx family of chips from WDC (Western
Design Center).

The WDC65C02 is the CPU for the Alius 6502 computer, and the WDC65C22
is used for input and output.

Alius 6502 Specifications:

• 65C02 CPU running at 1MHz (Design proven at 4MHz)

• 32KB of RAM

• 16KB of ROM

• 2 x 65C22 I/O chips (one for the system and one for experiments)

• SD Card interface

2.2 Software

The Alius 6502 comes with an open source ROM that handles the keypad,
seven segment display, and the SD Card functions. Software can be entered
directly via the keypad or loaded via the SD Card.

The project GitHub includes a few demo programs. This is an open source
project so new software is being added and changed by members of the
community.

" Open source code for this project can be found online at
https://github.com/robsonde/Alius6502_ROM

6

3 Programming

A large part of this project is learning to program the 6502 CPU. In this section
we will cover the basics of how to enter programs on the keypad and how to
write your own programs.

Programming sits between and art and a science, programming is the pro-
cess of creating instructions that a computer can follow to perform specific
tasks. The computer will always do what it is told even if that thing is wrong
or bad, the errors come from the programmer telling the computer to do the
wrong thing or making an assumption about how the computer works.

Most modern programming is done in a high level language like python or
PHP, but working in assembly will get you to understand what is really going
on in the computer.

Before we can look at programming the computer we will need to understand
a bit of math and some of how the CPU works.

7

3.1 Number Bases

A number base is the number of unique symbols used in the counting system.
Most of us are familiar with base 10 in which we have ten symbols (0-9)
In computers we often use base 2 (binary) or base 16 (hexadecimal).

3.1.1 Base 10

Lets start with a base 10 number.
Each digit is 10 times bigger than the digit to the right of it.

103 102 101 100

1000 100 10 1

The number 4632 is four thousand six hundred and thirty two.
4632 (base 10) = (4*1000)+(6*100)+(3*10)+(2*1)

3.1.2 Base 2

23 22 21 20

8 4 2 1

1011 (base 2) = (1*8)+(0*4)+(1*2)+(1*1) = 11 (base 10)

3.1.3 Base 16

163 162 161 160

4096 256 16 1

$2831 (base 16) = (2*4096)+(8*256)+(3*16)+(1*1) = 10289 (base 10)
$FA10 (base 16) = (15*4096)+(10*256)+(1*16)+(0*1) = 64016 (base 10)

8

3.2 Hexadecimal Notation

Internally the CPU uses binary on and off, or 1 and 0, but for programming it
is more common to use hexadecimal notation.

The decimal system uses 10 symbols of 0 -> 9.
The binary system uses 2 symbols of 0 and 1.
The hexadecimal system uses 16 symbols which are 0 -> 9 and A -> F.

A number in hexadecimal notation is often prefixed with "0x" or "$". For ex-
ample, "0x6E" or "$6E".

In hexadecimal notation, each digit represents a power of 16. For example,
the right most digit in a hexadecimal number represents 160 (which is equal
to 1), the next digit to the left represents 161, the next digit represents 162, and
so on.

Decimal Hexadecimal Binary
0 $0 0000 0000
1 $1 0000 0001
2 $2 0000 0010
3 $3 0000 0011
4 $4 0000 0100
5 $5 0000 0101
6 $6 0000 0110
7 $7 0000 0111
8 $8 0000 1000
9 $9 0000 1001
10 $A 0000 1010
11 $B 0000 1011
12 $C 0000 1100
13 $D 0000 1101
14 $E 0000 1110
15 $F 0000 1111
16 $10 0001 0000

9

3.3 Use of the Monitor ROM

When the computer starts up it will try and run code from the SD Card, if there
is nothing to run then it will default to running the Monitor ROM which allows
you to edit memory directly from the keypad.

The seven segment display is split into the left four digits showing a memory
address, the right two digits showing the contents of that memory address.

The main keypad is hexadecimal and the bottom row of four keys are control
keys.

R - This key puts the system into memory read mode.
Any memory address entered on the keypad will display memory at that loca-
tion. The ENT key will move the address up by one and allow you to view the
next memory location.

W - This key puts the system into memory write mode.
Once an address is entered the memory is displayed, the ENT key allows you
to change the contents of that memory location. Repeated use of the ENT
key allows you to enter data at the next memory location. This can be used
to type in small programs.

X - This key puts the system into execute mode.
Any memory address can be entered and the ENT key will trigger execution
to start from that address.

ENT - This is the enter key for the system.

Example Read:
To view memory at $0200 you would type R, 0, 2, 0, 0.
Then if you push ENT it will show memory at $0201.

Example Write:
To write $FA to memory at $1000 you would type W, 1, 0, 0, 0, ENT, F, A, ENT.
Then it will move the address up to $1001 and you can enter more data by
just typing the data and ENT.

10

3.4 CPU Registers

Within any CPU there are a number of registers. A register can be thought of
as RAM inside the CPU that can be accessed very quickly.

Within the 6502 CPU there are three general purpose registers and three
special registers.

The Accumulator - 8 bits
The Accumulator is often just called the A register. The Accumulator is an 8
bit register and this is why the 6502 is referred to as an 8 bit CPU. It is the
only register that can be used for math and logic operations.

The X register - 8 bits
The X register is often used as part of memory addressing modes in which
the value of X is added to the base address of a load or store instruction. The
X register is also often used as a counter for a loop or other temporary storage.

The Y register - 8 bits
The Y register is often used as part of memory addressing modes in which
the value of Y is added to the base address of a load or store instruction. The
Y register is also often used as a counter for a loop or other temporary storage.

The Stack Pointer (SP) - 8 bits
The Stack Pointer is a special register that you can’t interact with directly. It
is used to point to the next memory address on the stack. The stack pointer
can be moved to or from the X register which can allow for advanced memory
access.

The Status register - 8 bits
Often called Flags, the Status register is a special register that has 8 bits to
show the result of the last instruction.

The Program Counter (PC) - 16 bits
This special register holds the memory address of the current instruction
being executed. The Program Counter can be changed by a branch or jump
instruction.

11

3.5 Your First Program

Programming of the Alius 6502 is done via either assembly language or ma-
chine code.

Example of assembly language:

.org $1000
LDA #$2E
ADC #$AB
STA $10FF
BRK

Example of machine code:

1000: A9 2E 69 AB 8D FF 10 00

The two examples above are the exact same program but displayed in differ-
ent ways, the assembly language version is what you would write, and the
machine code is what the compiler will create for loading into the memory of
the computer.

Looking at the assembly language line by line:

.org $1000

We set the start location to $1000 using the statement .org $1000

LDA #$2E

Next we Load the Accumulator with $2E

ADC #$AB

Then we have ADC $AB which will add $AB to the Accumulator

STA $10FF

We then store the Accumulator to memory address $10FF

BRK

Last we run the Brake instruction, which will return control to the monitor
ROM.

12

3.6 Memory Map

The memory of the 6502 system is split up into areas for different uses.

The upper byte of a memory address is often called the page number. Mem-
ory is split up into 256 pages of 256 bytes per page.

Hex Address Page Description
$0000 - $00FF Page 0 Zero Page Addressing
$0100 - $01FF Page 1 Stack
$0200 - $02FF Page 2 System variables and pointers
$0300 - $04FF Page 3-4 File System buffer
$0500 - $7FFF Page 5-127 User Space RAM
$8000 - $80FF Page 128 I/O (65C22)
$8100 - $9FFF Page 129-159 DO NOT USE
$A000 - $FEFF Page 160-254 ROM Code
$FF00 - $FFFF Page 255 ROM Jump tables

" The space from $8100 - $9FFF is not mapped to real RAM and
so use of that space will incorrectly trigger I/O functions in
unpredictable ways and so should not be used.

Zero Page (ZP) is special as it can be accessed faster than other memory in
the system. Some of Zero Page is already used by the system and so you
should avoid overwriting these memory locations.

Zero Page (ZP) Memory
Hex Address Description
$0000-$00CF Free for use.
$00D0-$00D2 Digits to display on seven segment display.
$00D3-$00D8 Bit-mask for the display.
$00F6-$00F7 A 16 bit variable, used by FAT32 code.
$00F8-$00F9 A 16 bit pointer, use by FAT32 code.
$00FA-$00FB A 16 bit pointer, points to FAT32 buffer.
$00FC-$00FD A 16 bit counter byte by assorted ROM code.
$00FE A counter byte by assorted ROM code.
$00FF A temporary byte used by assorted ROM code.

13

Memory at Page 2 is mostly used for the system to hold data related to
reading files from the SD Card and FAT32 support.

Memory Page 2 - System variables and pointers
Hex Address Description
$0200 Random number generator byte.
$0201 - $0202 Random number generator seed.
$0203 - $0205 Temporary bytes used during reading keypad.
$0206 Error return code from ROM functions.
$0207 - $0208 Monitor ROM state.
$0209 - $0224 Assorted storage for FAT32 support.
$0250 File number for loading a file by number.
$0251 - $025C Filename padded to 11 bytes.
$025D - $025E 16 bit variable, file size.
$025F Number of sectors to load with FAT32.
$0260 - $0261 16 bit pointer to load address, $0260(LSB),$0261(MSB).
$0270 Debug Accumulator.
$0271 Debug X Register.
$0272 Debug Y Register.
$0273 Debug CPU Status Register.
$0274 Debug Program Counter Low byte.
$0275 Debug Program Counter High byte.
$0276 - $02FD Future expansion use.
$02FE - $02FF 16 bit pointer to IRQ handler, $02FE(LSB),$02FF(MSB).

The space from $0276 - $02FD is currently not used by the system but future
versions of the ROM may use this space and so user programs should avoid
using this space.

14

Memory Page 128 - I/O (65C22)
Hex Address Name Description
$8000 - $800F – DO NOT USE
$8010 ORB/IRB Input / Output B
$8011 ORA/IRA Input / Output A
$8012 DDRB Data Direction Register B
$8013 DDRA Data Direction Register A
$8014 T1C-L Timer T1 LSB counter
$8015 T1C-H Timer T1 MSB counter
$8016 T1L-L Timer T1 LSB latches
$8017 T1L-H Timer T1 MSB latches
$8018 T2C-L Timer T2 LSB counter
$8019 T2C-H Timer T2 MSB counter
$801A SR Shift Register
$801B ACR Auxiliary Control Register
$801C PCR Peripheral Control Register
$801D IFR Interrupt Flag Register
$801E IER Interrupt Enable Register
$801F ORA/IRA Same as $8011 except no "Handshake"

" The I/O from $8010 - $801F is for system use. Do not use for
experiments as any mistakes could damage hardware.

15

Memory Page 128 - I/O (65C22)
Hex Address Name Description
$8020 ORB/IRB Input / Output B
$8021 ORA/IRA Input / Output A
$8022 DDRB Data Direction Register B
$8023 DDRA Data Direction Register A
$8024 T1C-L Timer T1 LSB counter
$8025 T1C-H Timer T1 MSB counter
$8026 T1L-L Timer T1 LSB latches
$8027 T1L-H Timer T1 MSB latches
$8028 T2C-L Timer T2 LSB counter
$8029 T2C-H Timer T2 MSB counter
$802A SR Shift Register
$802B ACR Auxiliary Control Register
$802C PCR Peripheral Control Register
$802D IFR Interrupt Flag Register
$802E IER Interrupt Enable Register
$802F ORA/IRA Same as $8021 except no "Handshake"
$8030 - $80FF – DO NOT USE

16

3.7 Memory Addressing

The 6502 has several ways to access memory. The three most basic address-
ing modes are Immediate, Absolute and Zero Page.

Immediate: In this mode the data is directly after the instruction. This is
indicated by a hash symbol # before the data.
Example: LDA #$FE
The Accumulator will be set to $FE

Absolute: In this mode the address of the data is directly after the instruction.
Example: LDA $AF3F
The Accumulator will be set to the data stored at memory location $AF3F

Zero Page: In this mode the first byte of the address is assumed to be $00
and so the data can be accessed faster and with less code.
Example: LDA $AF
The Accumulator will be set to the data at address $00AF

More advanced addressing modes allow for access to arrays and tables
of data with pointers.

Absolute Indexed: In this mode the X or Y register is added to an abso-
lute address.
Example: LDA $1000,X
If X was set to $0F then the Accumulator will be set to the data at the final
address of $100F

Zero-Page Indexed: This is just Absolute Indexed mode as above but using
Zero Page as the base.
Example: LDA $A3,X
If X was set to $01 then the Accumulator will be set to the data at the memory
location of $00A4

17

Indexed Indirect: This allows for use of pointers. A pointer is where two bytes
of memory hold a final address.
Example: LDA ($E0,X)
In this example we will assume that X register is $07, memory at $00E7 is
set to $23 and memory at $00E8 is set to $5E
The CPU will add X to $E0 to get $E7 and the bytes at $E7 and $E8 are used
as a pointer to a final address of $5E23

Indirect Indexed: This mode is similar to the above mode but the Y reg-
ister is added to the pointer at the end.
Example: LDA ($E0),Y
In this example we will assume that Y register is $07, memory at $00E0 is
set to $23 and memory at $00E1 is set to $5E
The CPU will load the address of $5E23 from $00E0 and $00E1 and then add
$07 to get a final address of $5E2A

18

3.8 The Stack

The Stack is a special section of memory found from $0100 to $01FF.

If you think of the stack like a stack of plates, you can add one to the top
of the stack or take one from the top of the stack. Pulling a plate from the
middle of the stack will make a mess.

To push a byte onto the stack you can use the PHA instruction and to pop a
byte off the stack you can use PLA.

If you need to store other registers to the stack then you can move them to
the A register first.

PHA ; Push A to stack
TXA ; Transfer X to A
PHA ; Push A to stack.
TYA ; Transfer Y to A
PHA ; Push A to stack.

" On the 6502 the stack is limited to only 256 bytes, if you push
too many things the stack will wrap around and overwrite data
on the stack.

19

3.9 Flow Control

Any non trivial program will have the need for flow control. Flow control is
only running a section of code if a condition is met and means that a block
of code will only be run sometimes.

In a high level language like Python you will have IF/THEN blocks. In as-
sembly we use a compare and conditional branch.

.org $1000
LDA #$03
LDX #$00

LOOP:
ADC #$03
INX
CPX #$07
BNE LOOP

In this example it is the last two instructions that we are discussing. CPX is a
"Compare X with" instruction and we are comparing X with $07
then we have BNE which is "Branch if Not Equal".

The whole example will run around the loop adding $03 to the Accumulator
and then incrementing X until X = $07.

" A branch instruction can only branch to an address of +127
or -128 bytes from the current location. This is called relative
addressing.

20

3.9.1 CPU Flags

The CPU status register (often called flags) is really just 7 one bit registers.
Many instructions will change one or more of the bits in the status register.

Bit 0 - C - Carry flag - This is the arithmetic carry out of an ADC instruc-
tion and the carry into an ADC.
Bit 1 - Z - Zero flag - This flag is set if the last instruction caused any register
to contain zero. Also set or unset by doing a compare.
Bit 2 - I - Interrupt flag - This enables or disables interrupts, when this is set
then interrupts are disabled.
Bit 3 - D - Decimal flag - Controls if ADC and SBC use normal binary mode or
special decimal mode.
Bit 4 - B - Break flag - Only set if the BRK instruction has caused an interrupt.
Bit 5 - - not used.
Bit 6 - V - Overflow flag - Only relevant to signed arithmetic and shows if there
is a twos complement overflow.
Bit 7 - N - Negative flag - This means that Bit 7 of the accumulator is set.

3.9.2 More Flow Control

You can branch on several conditions other than just the outcome of a com-
pare:

Instruction Description
BCC Branch on Carry Clear
BCS Branch on Carry Set
BEQ Branch on result Zero or Equal
BMI Branch on result Minus
BNE Branch on result Not Zero or Not Equal
BPL Branch on result Positive
BVC Branch on Overflow Clear
BVS Branch on Overflow Set

21

3.10 I/O (Input / Output)

The Alius 6502 system has two 65C22 Input and Output chips that can be
used to connect to devices outside the basic RAM/ROM. One of the two chips
is used for interfacing with the Keypad, Display and the SD Card, the other
chip is free for student experiments.

The 65C22 has two 8-bit bi-directional I/O ports, and two 16-bit programmable
Timers/Counters.
The first data port is called A and is located at $8021, the second port called
B is located at $8020.

" The order of the two ports is the reverse of what you might
expect, with port B the lower address in memory.

Any bit of either port can be used for Input or Output. This is selected via the
Data Direction Register (DDR). DDRB is at $8022 and DDRA is at $8023.

Example code to turn on all bits of port B

PORTB = $8020
PORTA = $8021
DDRB = $8022
DDRA = $8023

.org $1000
LDA #$FF
STA DDRB ; Setting a bit high marks that bit as output.
STA PORTB ; Set all the bits high / on for port B
BRK ; Return to monitor ROM

22

Example code to blink a LED on bit 0 of port B

PORTB = $8020
PORTA = $8021
DDRB = $8022
DDRA = $8023

.org $1000
LDA #$FF
STA DDRB ; Setting a bit high marks that bit as output.
LOOP:
LDA #$01 ; This is only bit 0 high / on
STA PORTB ; Sets port B as per Accumulator
JSR $FF30 ; Calls a ROM function to sleep for 0.5 seconds
LDA #$00 ; Whole byte is low / off
STA PORTB ; Sets port B as per Accumulator
JSR $FF30 ; Calls a ROM function to sleep for 0.5 seconds
JMP LOOP ; Jumps back to LOOP

Example code to wait for an input on port A

PORTB = $8020
PORTA = $8021
DDRB = $8022
DDRA = $8023

.org $1000
LDA #$00
STA DDRA ; Setting a bit low marks that bit as input.
LOOP:
LDA PORTA ; Read in all the bits for port A
CMP #$00
BEQ LOOP

" There is another 65C22 chip at $8010 -> $801F and this runs
the keypad, screen and SD Card. Do NOT use this unless
you are working to improve the ROM as any mistakes could
damage hardware.

23

3.11 IRQ (Interrupt Request)

An IRQ is a way that devices can request attention from the operating system.
When a device wants to send data to the CPU or perform some other action,
it sends an IRQ to the CPU. The CPU stops what it is currently doing and
services the request from the device. Once the request has been serviced,
the CPU returns to its previous task. IRQs are used to ensure that the CPU
can efficiently manage the various devices that are connected to the system.

When an IRQ is triggered the CPU will push the current Program Counter
and the CPU status flags to the stack and then jump to a special address
to run code called an interrupt handler. The last instruction in an interrupt
handler is RTI and that will cause the CPU to pop the CPU status flags and
the Program Counter from the stack and resume from exactly where it left off.
It should be noted that no other CPU registers are saved by default, so many
interrupt handlers will push the A,X,Y registers at the start and pop them at
the end.

You can use the 65C22 chip to create interrupts based on a timer.

In the Alius 6502 design there is a pointer at $02FE/$02FF which points
to the interrupt handler code. On power up this pointer is set to a "do nothing"
function in the ROM.

" Within IRQ code be sure to save and restore any registers you
use so as not to interfere with code running outside the IRQ.

24

3.11.1 IRQ - Timers

One way we can cause an interrupt is to use the timer from the 65C22.

With a CPU clock of 1MHz it seems logical to setup a counter at 1 million and
get an IRQ once a second. The timers on the 65C22 only go as high as 65,535
and so we can’t setup to get an interrupt once a second. With a clock running
at 1MHz we can setup the counter for 50,000 ticks of the timer and trigger an
IRQ 20 times a second.

In this example we will setup a timer to trigger an IRQ 20 times a second, and
then by use of incrementing counters we can create a basic digital clock.

We start by setting up the IRQ vector to point to our interrupt handler code.

IRQ_Vec = $02FE ; IRQ vector in ram.
LDA #<IRQ ; Get the low byte of address of IRQ code
STA IRQ_Vec ; Store to IRQ Vector
LDA #>IRQ ; Get the high byte of address of IRQ code
STA IRQ_Vec+1 ; Store to IRQ Vector

We then setup the T1 counter to 50,000 or $C350. the counter will count
down to zero and then trigger an interrupt.

LDA #$50 ; Put $C350 (50,000) in the timer 1 counter.
STA T1CL ; Write counter low byte.
LDA #$C3 ; $C3 is the high byte of $C350
STA T1CH ; Write high byte.

Last step is to setup the 65C22 to trigger an interrupt.

LDA #01000000B ; Set the bit that tells T1 to
automatically

STA ACR ; Produce an interrupt at every time-out

LDA #11000000B
STA IER ; Enable the T1 interrupt in the VIA.
CLI ; Enable interrupts

25

This next section is the interrupt handler and is called when an IRQ happens.
The first thing we do is push the Accumulator to the stack so that we don’t
impact that register being used in the main code.

Next we increment "Tick" which is our counter of 20ths of a second. If that is
not 20 ($14) then we are done, else we increment the Seconds counter and
reset the Tick counter.

IRQ:
PHA ; Push A to stack
BIT T1CL ; Clear the IRQ state by reading from T1

counter low byte
INC Tick ; Increment the sub second counter in Zero page
LDA #$14 ; Check if we have counted 20 sub seconds
CMP Tick ; Check sub seconds counter in Zero page
BNE ExitIRQ ; If we have not made 20 sub seconds then

exit IRQ code
INC Seconds
LDA #$00
STA Tick

The last section is to pop the Accumulator and the RTI instruction returns
from the IRQ.

ExitIRQ:
PLA ; Pop A from stack before exiting from IRQ
RTI ; Exit from IRQ

26

3.12 Math

3.12.1 8 bit add

As the 6502 is an 8-bit CPU, so an 8-bit add is simple.

Add:
CLC ; We clear the Carry flag before the add.
LDA #$47 ; Load Accumulator with $47 (71 decimal)
ADC #$1A ; Add with Carry - add $1A (26 decimal)
STA $01 ; Store result in Zero page at $0001

Should the add go over $ff (255 decimal) then the Carry flag will be set.

3.12.2 8 bit subtract

Sub:
SEC ; We set the carry flag before a subtract.
LDA #$53 ; Load A with $53 (83 decimal)
SBC #$10 ; Subtract with carry $10 (10 decimal)
STA $01 ; Store result in Zero page at $0001

3.12.3 16 bit add

Add16:
CLC
LDA num1_low
ADC num2_low
STA result_low
LDA num1_high
ADC num2_high
STA result_high

3.12.4 16 bit subtract

Sub16:
SEC
LDA num1_low
SBC num2_low
STA result_low
LDA num1_high
SBC num2_high
STA result_high

27

3.12.5 Multiply

Lets look at how you would multiply 423 and 25 in decimal.
As discussed earlier in number bases we can break down each number.
So we can add (3 * 25) + (2 * 250) + (4 * 2500).
The lowest digit in 423 is 3 and we multiply it by 25, then we move to the next
digit in 423 and multiply 25 by 10 (the base)

If we do this in binary the multiply by the base becomes a shift and then we
either add or not, as each binary digit is 1 or 0.

; The starting factors in FactorA and FactorB
LDA #0 ; set A to Zero.
LDX #$8 ; We need to go around 8 times
LSR FactorA ; The shift will leave one bit in the carry

flag.
loop:
BCC no_add ; If no carry flag then no add.
CLC ; clear carry before add.
ADC FactorB ; add factorB if carry was set from factorA.

no_add:
ROR ; multply result by 2
ROR FactorA ; rotate and get another bit into carry
DEX ; decrement our counter
BNE loop ; if we have not done 8 bits then go around

again.
STA FactorB ; Store the answer

; The high byte of the result is in FactorB, low byte is
in FactorA

28

3.12.6 Negative numbers

Memory just holds bits, if they are positive or negative is up to how you want
to interpret the bits.

Basic math logic says that -1 + 1 = 0.
11111111 can be -1 or 255.

00000000 = 0
00000001 = +1
...
01111101 = +125
01111110 = +126
01111111 = +127
...
10000000 = -128
10000001 = -127
10000010 = -126
...
11111111 = -1
00000000 = 0

29

3.13 Debugging Code

Every programmer makes mistakes, this creates bugs in the code.

Finding and fixing such mistakes is called debugging and the Alius 6502
has a trick or two to help you find and fix the bugs in your code.

The BRK instruction will cause the system to stop running your code and
return to the Monitor ROM.

Once back in the Monitor ROM you can use a few memory locations to
examine the CPU registers. You can also restart the program from just after
the BRK.

Debug memory locations:
$0270 - Accumulator
$0271 - X Register
$0272 - Y Register
$0273 - CPU Status Register
$0274 - Program Counter Low byte
$0275 - Program Counter High byte.

To return to execution you can just execute $FFAA by typing "X, F, F, A, A,
ENT"

" The CPU will ignore the byte directly after the BRK instruction,
so it is required to have a padding byte after the BRK. Typically
this is done with a NOP instruction.

30

3.14 Compiling Code

There are many 6502 compilers and if you have a small program you can
even compile it by hand to create the machine code.

3.14.1 Compiling Code by hand

Lets look at a single line of code:

LDA $05FF
$

This is a Load Accumulator from an absolute address, so the opcode is "$AD",
this is followed by the address low byte of "$FF" and then the address high
byte of "$05"

The assembled code is:

$AD $FF $05
$

" The 6502 CPU is a Little-endian design meaning that for a 16
bit address it is written with the "little end" or low byte first.

A larger example:

LDA #$42 ; Load A with $42
CLC ; Clear carry before add.
ADC $0900 ; Add value at $0900
STA $09FF ; Store result at $09FF
$

Load Accumulator from Immediate which is "$A9" and the data to load is
"$42"
Clear Carry flag is "$18"
Add with Carry from absolute address is "$6D" then the address in Little-
endian byte order.
Store Accumulator at absolute address is "$8D" and then the address in Little-
endian byte order.

31

$A9 $42
$18
$6D $00 $09
$8D $FF $09
$

3.14.2 Compiling Code with a compiler

For any program larger than a few instructions it is easier to use a compiler.

It is typical to make your source file have a ".s" extension to show that it is a
source file.

vasm6502_oldstyle -Fbin -dotdir example.s

This will create a file called a.out which is the final machine code file that you
can write to an SD Card or flash to the ROM chip.

" The VASM compiler used in this book can be found at
http://sun.hasenbraten.de/vasm/ and has versions for both
Windows and Linux.

32

3.15 Running Code from SD Card

The Alius 6502 can load files from an SD Card. This can make it easier to
write larger programs and not have to type them into the keypad.

By default on boot up the Alius 6502 will check for an SD Card and then
try to load a file called "00.BIN". If the 00.BIN is not found then the system
will jump to the Monitor ROM and allow keypad entry.

When in the Monitor ROM you can load a different file by setting a file number
in to memory location $0250 and then executing code at $FF90.

For example to load and run a file called F7.BIN from the monitor ROM: W, 0,
2, 5, 0, ENT, F ,7 ,ENT, X, F, F, 9, 0, ENT

" The format of the SD Card is important. Files must be in the
root directory, and the card must be formatted as a FAT32 file
system.

33

3.16 Experiments

Here you will find a few simple programs that you can enter directly on the
keypad.

3.16.1 Adding two numbers

In this simple example we will add two numbers together.

.org $1000 ; Set program start to memory location $1000
LDA #$2F ; Load the Accumulator with $2F
CLC ; Clear the Carry Flag to get to known state
ADC #$42 ; Add $42 to the Accumulator
STA $2000 ; Store the Accumulator at $2000
BRK ; Return control to the Monitor ROM

Once compiled this becomes:

1000: A9 2F 18 69 42 8D 00 20
1008: 00

This can be typed into the keypad with the following key strokes.

W, 1, 0, 0, 0, ENT
A, 9, ENT
2, F, ENT
1, 8, ENT
6, 9, ENT
4, 2, ENT
8, D, ENT
0, 0, ENT
2, 0, ENT
0, 0, ENT

Then it can be run via X, 1, 0, 0, 0, ENT.

If all has gone well you can examine memory at $2000 and see if it holds $71.

34

3.16.2 Counting

.org $1000

start:
LDA #$00 ; Load A with zero.
STA $D0 ; Store A into first Display buffer byte.
STA $D1 ; Store A into next Display buffer byte.
STA $D2 ; Store A into last Display buffer byte.

Count:
JSR $ff10 ; Jump to ROM to update the 7 segment display.
INC $D0 ; Increment the Display buffer.
BNE Count ; If not 00 then jump back to top of loop.
INC $D1 ; Increment the Display buffer.
BNE Count ; If not 00 then jump back to top of loop.
INC $D2 ; Increment the Display buffer.
JMP Count ; jump back to top of loop.

Once complied this becomes:

1000: A9 00 85 D0 85 D1 85 D2
1008: 20 10 FF E6 D0 D0 F9 E6
1010: D1 D0 F5 E6 D2 4C 08 10
\

35

3.17 Coding Challenges

Here are a few small programming challenges to test your skills.

3.17.1 Store the number 100 in memory location $2000

Hint: It’s just a load and a store, but check addressing mode.

3.17.2 Move data from memory location $2005 to location $2006

Hint: It’s just a load and a store, but a different addressing mode.

3.17.3 Swap data from memory location $2008 to location $2009

Hint: Where do you stack it while you move it around?

3.17.4 Fill the memory from $2010 to location $2020 with $00

Hint: A loop and another addressing mode.

36

3.18 Advanced Programming Tricks

Here are a few ideas for how to make smaller or faster code by small tricks.

3.18.1 Loops

This example will loop around for $20 times.

LDX #$00 ; set counter to zero
LOOP:

NOP ; do nothing for example
INX ; increment counter
CPX #$20 ; compare X with $20
BNE LOOP ; branch if not equal

However if you set the loop size at the top and count down then you get the
compare for free as the decrement will leave a Status of Zero.

LDX #$20 ; set counter to zero
LOOP:

NOP ; do nothing for example
DEX ; Decrement counter
BNE LOOP ; branch if not equal

37

4 Programming References

4.1 Assembler Op Codes

ADC
Add to Accumulator with Carry
Mode Syntax HEX Length Time
Immediate ADC #$44 $69 2 2
Zero Page ADC $44 $65 2 3
Zero Page, X ADC $44,X $75 2 4
Absolute ADC $4400 $6d 3 4
Absolute, X ADC $4400,X $7d 3 4 (+1 if page crossed)
Absolute, Y ADC $4400,Y $79 3 4 (+1 if page crossed)
(Indirect) ADC ($4400) $72 2 5
(Indirect, X) ADC ($4400,X) $61 2 6
(Indirect), Y ADC ($4400),Y $71 2 5 (+1 if page crossed)
FLAGS - N V - B D I Z C

AND
AND with Accumulator
Mode Syntax HEX Length Time
Immediate AND #$44 $29 2 2
Zero Page AND $44 $25 2 3
Zero Page, X AND $44,X $35 2 4
Absolute AND $4400 $2d 3 4
Absolute, X AND $4400,X $3d 3 4 (+1 if page crossed)
Absolute, Y AND $4400,Y $39 3 4 (+1 if page crossed)
(Indirect) AND ($4400) $32 2 5
(Indirect, X) AND ($4400,X) $21 2 6
(Indirect), Y AND ($4400),Y $31 2 5 (+1 if page crossed)
FLAGS - N V - B D I Z C

38

ASL
Arithmetic Shift Left
Mode Syntax HEX Length Time
Implied ASL $0a 1 2
Zero Page ASL $44 $06 2 5
Zero Page, X ASL $44,X $16 2 6
Absolute ASL $4400 $0e 3 6
Absolute, X ASL $4400,X $1e 3 6 (+1 if page crossed)
FLAGS - N V - B D I Z C

BBR
Branch On Bit Reset
Mode Syntax HEX Length Time
Bit 0 - Zero Page BBR0, $44 $0f 3 4
Bit 1 - Zero Page BBR1, $44 $1f 3 4
Bit 2 - Zero Page BBR2, $44 $2f 3 4
Bit 3 - Zero Page BBR3, $44 $3f 3 4
Bit 4 - Zero Page BBR4, $44 $4f 3 4
Bit 5 - Zero Page BBR5, $44 $5f 3 4
Bit 6 - Zero Page BBR6, $44 $6f 3 4
Bit 7 - Zero Page BBR7, $44 $7f 3 4
FLAGS - N V - B D I Z C

BBS
Branch On Bit Set
Mode Syntax HEX Length Time
Bit 0 - Zero Page BBS0, $44 $8f 3 4
Bit 1 - Zero Page BBS1, $44 $9f 3 4
Bit 2 - Zero Page BBS2, $44 $af 3 4
Bit 3 - Zero Page BBS3, $44 $bf 3 4
Bit 4 - Zero Page BBS4, $44 $cf 3 4
Bit 5 - Zero Page BBS5, $44 $df 3 4
Bit 6 - Zero Page BBS6, $44 $ef 3 4
Bit 7 - Zero Page BBS7, $44 $ff 3 4
FLAGS - N V - B D I Z C

39

BCC
Branch if Carry Clear
Mode Syntax HEX Length Time
Immediate BCC #$44 $90 2 2 (+1 if branch taken, +2 if to a

new page)
FLAGS - N V - B D I Z C

BCS
Branch if Carry Set
Mode Syntax HEX Length Time
Immediate BCS #$44 $b0 2 2 (+1 if branch taken, +2 if to a

new page)
FLAGS - N V - B D I Z C

BEQ
Branch if Result Zero
Mode Syntax HEX Length Time
Immediate BEQ #$44 $f0 2 2 (+1 if branch taken, +2 if to a

new page)
FLAGS - N V - B D I Z C

BIT
Bit Test with Accumulator
Mode Syntax HEX Length Time
Immediate BIT #$44 $89 2 2
Zero Page BIT $44 $24 2 3
Zero Page, X BIT $44,X $34 2 4
Absolute BIT $4400 $2c 3 4
Absolute, X BIT $4400,X $3c 3 4 (+1 if page crossed)
FLAGS - N V - B D I Z C

40

BMI
Branch if Result Negative
Mode Syntax HEX Length Time
Immediate BMI #$44 $30 2 2 (+1 if branch taken, +2 if to a

new page)
FLAGS - N V - B D I Z C

BNE
Branch if Result Not Zero
Mode Syntax HEX Length Time
Immediate BNE #$44 $d0 2 2 (+1 if branch taken, +2 if to a

new page)
FLAGS - N V - B D I Z C

BPL
Branch if Result Positive
Mode Syntax HEX Length Time
Immediate BPL #$44 $10 2 2 (+1 if branch taken, +2 if to a

new page)
FLAGS - N V - B D I Z C

BRA
Branch Always
Mode Syntax HEX Length Time
Immediate BRA #$44 $80 2 3 (+1 if page crossed)
FLAGS - N V - B D I Z C

BRK
Break / Interrupt
Mode Syntax HEX Length Time
Implied BRK $00 1 7
FLAGS - N V - B D I Z C

41

BVC
Branch if Overflow Clear
Mode Syntax HEX Length Time
Immediate BVC #$44 $50 2 2 (+1 if branch taken, +2 if to a

new page)
FLAGS - N V - B D I Z C

BVS
Branch if Overflow Set
Mode Syntax HEX Length Time
Immediate BVS #$44 $70 2 2 (+1 if branch taken, +2 if to a

new page)
FLAGS - N V - B D I Z C

CLC
Clear Carry
Mode Syntax HEX Length Time
Implied CLC $18 1 2
FLAGS - N V - B D I Z C

CLD
Clear Decimal Mode
Mode Syntax HEX Length Time
Implied CLD $d8 1 2
FLAGS - N V - B D I Z C

CLI
Clear Interrupt Disable
Mode Syntax HEX Length Time
Implied CLI $58 1 2
FLAGS - N V - B D I Z C

42

CLV
Clear Overflow
Mode Syntax HEX Length Time
Implied CLV $b8 1 2
FLAGS - N V - B D I Z C

CMP
Compare with Accumulator
Mode Syntax HEX Length Time
Immediate CMP #$44 $c9 2 2
Zero Page CMP $44 $c5 2 3
Zero Page, X CMP $44,X $d5 2 4
Absolute CMP $4400 $cd 3 4
Absolute, X CMP $4400,X $dd 3 4 (+1 if page crossed)
Absolute, Y CMP $4400,Y $d9 3 4 (+1 if page crossed)
(Indirect) CMP ($4400) $d2 2 5
(Indirect, X) CMP ($4400,X) $c1 2 6
(Indirect), Y CMP ($4400),Y $d1 2 5 (+1 if page crossed)
FLAGS - N V - B D I Z C

CPX
Compare with X
Mode Syntax HEX Length Time
Immediate CPX #$44 $e0 2 2
Zero Page CPX $44 $e4 2 3
Absolute CPX $4400 $ec 3 4
FLAGS - N V - B D I Z C

CPY
Compare with Y
Mode Syntax HEX Length Time
Immediate CPY #$44 $c0 2 2
Zero Page CPY $44 $c4 2 3
Absolute CPY $4400 $cc 3 4
FLAGS - N V - B D I Z C

43

DEC
Decrement by one
Mode Syntax HEX Length Time
Implied DEC $3a 1 2
Zero Page DEC $44 $c6 2 5
Zero Page, X DEC $44,X $d6 2 6
Absolute DEC $4400 $ce 3 6
Absolute, X DEC $4400,X $de 3 7
FLAGS - N V - B D I Z C

DEX
Decrement X by one
Mode Syntax HEX Length Time
Implied DEX $ca 1 2
FLAGS - N V - B D I Z C

DEY
Decrement Y by one
Mode Syntax HEX Length Time
Implied DEY $88 1 2
FLAGS - N V - B D I Z C

EOR
Exclusive OR with Accumulator
Mode Syntax HEX Length Time
Immediate EOR #$44 $49 2 2
Zero Page EOR $44 $45 2 3
Zero Page, X EOR $44,X $55 2 4
Absolute EOR $4400 $4d 3 4
Absolute, X EOR $4400,X $5d 3 4 (+1 if page crossed)
Absolute, Y EOR $4400,Y $59 3 4 (+1 if page crossed)
(Indirect) EOR ($4400) $52 2 5
(Indirect, X) EOR ($4400,X) $41 2 6
(Indirect), Y EOR ($4400),Y $51 2 5 (+1 if page crossed)
FLAGS - N V - B D I Z C

44

INC
Increment by one
Mode Syntax HEX Length Time
Implied INC $1a 1 2
Zero Page INC $44 $e6 2 5
Zero Page, X INC $44,X $f6 2 6
Absolute INC $4400 $ee 3 6
Absolute, X INC $4400,X $fe 3 7
FLAGS - N V - B D I Z C

INX
Increment X by one
Mode Syntax HEX Length Time
Implied INX $e8 1 2
FLAGS - N V - B D I Z C

INY
Increment Y by one
Mode Syntax HEX Length Time
Implied INY $c8 1 2
FLAGS - N V - B D I Z C

JMP
Jump
Mode Syntax HEX Length Time
Absolute JMP $4400 $4c 3 3
(Indirect) JMP ($4400) $6c 3 6
Absolute, X JMP $4400,X $7c 3 6
FLAGS - N V - B D I Z C

JSR
Jump to Subroutine
Mode Syntax HEX Length Time
Absolute JSR $4400 $20 3 6
FLAGS - N V - B D I Z C

45

LDA
Load Accumulator
Mode Syntax HEX Length Time
Immediate LDA #$44 $a9 2 2
Zero Page LDA $44 $a5 2 3
Zero Page, X LDA $44,X $b5 2 4
Absolute LDA $4400 $ad 3 4
Absolute, X LDA $4400,X $bd 3 4 (+1 if page crossed)
Absolute, Y LDA $4400,Y $b9 3 4 (+1 if page crossed)
(Indirect) LDA ($4400) $b2 2 5
(Indirect, X) LDA ($4400,X) $a1 2 6
(Indirect), Y LDA ($4400),Y $b1 2 5 (+1 if page crossed)
FLAGS - N V - B D I Z C

LDX
Load X
Mode Syntax HEX Length Time
Immediate LDX #$44 $a2 2 2
Zero Page LDX $44 $a6 2 3
Zero Page, Y LDX $44,Y $b6 2 4
Absolute LDX $4400 $ae 3 4
Absolute, Y LDX $4400,Y $be 3 4 (+1 if page crossed)
FLAGS - N V - B D I Z C

LDY
Load Y
Mode Syntax HEX Length Time
Immediate LDY #$44 $a0 2 2
Zero Page LDY $44 $a4 2 3
Zero Page, X LDY $44,X $b4 2 4
Absolute LDY $4400 $ac 3 4
Absolute, X LDY $4400,X $bc 3 4 (+1 if page crossed)
FLAGS - N V - B D I Z C

46

LSR
Logical Shift Right
Mode Syntax HEX Length Time
Implied LSR $4a 1 2
Zero Page LSR $44 $46 2 5
Zero Page, X LSR $44,X $56 2 6
Absolute LSR $4400 $4e 3 6
Absolute, X LSR $4400,X $5e 3 6 (+1 if page crossed)
FLAGS - N V - B D I Z C

NOP
No Operation
Mode Syntax HEX Length Time
Implied NOP $ea 1 2
FLAGS - N V - B D I Z C

ORA
OR with Accumulator
Mode Syntax HEX Length Time
Immediate ORA #$44 $09 2 2
Zero Page ORA $44 $05 2 3
Zero Page, X ORA $44,X $15 2 4
Absolute ORA $4400 $0d 3 4
Absolute, X ORA $4400,X $1d 3 4 (+1 if page crossed)
Absolute, Y ORA $4400,Y $19 3 4 (+1 if page crossed)
(Indirect) ORA ($4400) $12 2 5
(Indirect, X) ORA ($4400,X) $01 2 6
(Indirect), Y ORA ($4400),Y $11 2 5 (+1 if page crossed)
FLAGS - N V - B D I Z C

PHA
Push Accumulator to Stack
Mode Syntax HEX Length Time
Implied PHA $48 1 3
FLAGS - N V - B D I Z C

47

PHP
Push Status Register to stack
Mode Syntax HEX Length Time
Implied PHP $08 1 3
FLAGS - N V - B D I Z C

PHX
Push X to Stack
Mode Syntax HEX Length Time
Implied PHX $da 1 3
FLAGS - N V - B D I Z C

PHY
Push Y to Stack
Mode Syntax HEX Length Time
Implied PHY $5a 1 3
FLAGS - N V - B D I Z C

PLA
Pull Accumulator from Stack
Mode Syntax HEX Length Time
Implied PLA $68 1 4
FLAGS - N V - B D I Z C

PLP
Pull Status Register from stack
Mode Syntax HEX Length Time
Implied PLP $28 1 4
FLAGS - N V - B D I Z C

PLX
Pull X from Stack
Mode Syntax HEX Length Time
Implied PLX $fa 1 4
FLAGS - N V - B D I Z C

48

PLY
Pull Y from Stack
Mode Syntax HEX Length Time
Implied PLY $7a 1 4
FLAGS - N V - B D I Z C

RMB
Reset Memory Bit
Mode Syntax HEX Length Time
Bit 0 - Zero Page RMB0, $44 $07 2 5
Bit 1 - Zero Page RMB1, $44 $17 2 5
Bit 2 - Zero Page RMB2, $44 $27 2 5
Bit 3 - Zero Page RMB3, $44 $37 2 5
Bit 4 - Zero Page RMB4, $44 $47 2 5
Bit 5 - Zero Page RMB5, $44 $57 2 5
Bit 6 - Zero Page RMB6, $44 $67 2 5
Bit 7 - Zero Page RMB7, $44 $77 2 5
FLAGS - N V - B D I Z C

ROL
Rotate Left
Mode Syntax HEX Length Time
Implied ROL $2a 1 2
Zero Page ROL $44 $26 2 5
Zero Page, X ROL $44,X $36 2 6
Absolute ROL $4400 $2e 3 6
Absolute, X ROL $4400,X $3e 3 6 (+1 if page crossed)
FLAGS - N V - B D I Z C

49

ROR
Rotate Right
Mode Syntax HEX Length Time
Implied ROR $6a 1 2
Zero Page ROR $44 $66 2 5
Zero Page, X ROR $44,X $76 2 6
Absolute ROR $4400 $6e 3 6
Absolute, X ROR $4400,X $7e 3 6 (+1 if page crossed)
FLAGS - N V - B D I Z C

RTI
Return from Interrupt
Mode Syntax HEX Length Time
Implied RTI $40 1 6
FLAGS - N V - B D I Z C

RTS
Return from Subroutine
Mode Syntax HEX Length Time
Implied RTS $60 1 6
FLAGS - N V - B D I Z C

SBC
Subtract from Accumulator with Borrow
Mode Syntax HEX Length Time
Immediate SBC #$44 $e9 2 2
Zero Page SBC $44 $e5 2 3
Zero Page, X SBC $44,X $f5 2 4
Absolute SBC $4400 $ed 3 4
Absolute, X SBC $4400,X $fd 3 4 (+1 if page crossed)
Absolute, Y SBC $4400,Y $f9 3 4 (+1 if page crossed)
(Indirect) SBC ($4400) $f2 2 5
(Indirect, X) SBC ($4400,X) $e1 2 6
(Indirect), Y SBC ($4400),Y $f1 2 5 (+1 if page crossed)
FLAGS - N V - B D I Z C

50

SEC
Set Carry
Mode Syntax HEX Length Time
Implied SEC $38 1 2
FLAGS - N V - B D I Z C

SED
Set Decimal Mode
Mode Syntax HEX Length Time
Implied SED $f8 1 2
FLAGS - N V - B D I Z C

SEI
Set Interrupt Disable
Mode Syntax HEX Length Time
Implied SEI $78 1 2
FLAGS - N V - B D I Z C

SMB
Set Memory Bit
Mode Syntax HEX Length Time
Bit 0 - Zero Page SMB0, $44 $87 2 5
Bit 1 - Zero Page SMB1, $44 $97 2 5
Bit 2 - Zero Page SMB2, $44 $a7 2 5
Bit 3 - Zero Page SMB3, $44 $b7 2 5
Bit 4 - Zero Page SMB4, $44 $c7 2 5
Bit 5 - Zero Page SMB5, $44 $d7 2 5
Bit 6 - Zero Page SMB6, $44 $e7 2 5
Bit 7 - Zero Page SMB7, $44 $f7 2 5
FLAGS - N V - B D I Z C

51

STA
Store Accumulator
Mode Syntax HEX Length Time
Zero Page STA $44 $85 2 4
Zero Page, X STA $44,X $95 2 5
Absolute STA $4400 $8d 3 5
Absolute, X STA $4400,X $9d 3 6
Absolute, Y STA $4400,Y $99 3 6
(Indirect) STA ($4400) $92 2 6
(Indirect, X) STA ($4400,X) $81 2 7
(Indirect), Y STA ($4400),Y $91 2 7
FLAGS - N V - B D I Z C

STP
Stop
Mode Syntax HEX Length Time
Implied STP $db 1 2
FLAGS - N V - B D I Z C

STX
Store X
Mode Syntax HEX Length Time
Zero Page STX $44 $86 2 4
Zero Page, Y STX $44,Y $96 2 5
Absolute STX $4400 $8e 3 5
FLAGS - N V - B D I Z C

STY
Store Y
Mode Syntax HEX Length Time
Zero Page STY $44 $84 2 4
Zero Page, X STY $44,X $94 2 5
Absolute STY $4400 $8c 3 5
FLAGS - N V - B D I Z C

52

STZ
Store Zero
Mode Syntax HEX Length Time
Zero Page STZ $44 $64 2 4
Zero Page, X STZ $44,X $74 2 5
Absolute STZ $4400 $9c 3 5
Absolute, X STZ $4400,X $9e 3 6
FLAGS - N V - B D I Z C

TAX
Transfer Accumulator to X
Mode Syntax HEX Length Time
Implied TAX $aa 1 2
FLAGS - N V - B D I Z C

TAY
Transfer Accumulator to Y
Mode Syntax HEX Length Time
Implied TAY $a8 1 2
FLAGS - N V - B D I Z C

TRB
Test and Reset Bits
Mode Syntax HEX Length Time
Zero Page TRB $44 $14 2 5
Absolute TRB $4400 $1c 3 6
FLAGS - N V - B D I Z C

TSB
Test and Set Bits
Mode Syntax HEX Length Time
Zero Page TSB $44 $04 2 5
Absolute TSB $4400 $0c 3 6
FLAGS - N V - B D I Z C

53

TSX
Transfer Stack Pointer to X
Mode Syntax HEX Length Time
Implied TSX $ba 1 2
FLAGS - N V - B D I Z C

TXA
Transfer X to Accumulator
Mode Syntax HEX Length Time
Implied TXA $8a 1 2
FLAGS - N V - B D I Z C

TXS
Transfer X to Stack Pointer
Mode Syntax HEX Length Time
Implied TXS $9a 1 2
FLAGS - N V - B D I Z C

TYA
Transfer Y to Accumulator
Mode Syntax HEX Length Time
Implied TYA $98 1 2
FLAGS - N V - B D I Z C

WAI
Wait for Interrupt
Mode Syntax HEX Length Time
Implied WAI $cb 1 5
FLAGS - N V - B D I Z C

54

4.2 ROM functions

The ROM file found on GitHub has many standard functions that may be of
use when creating your own programs.

ROM functions are called via JSR $XXXX.

4.2.1 Read_Chunk

Purpose: Reads a 512 byte chunk of a large file
Call address: $FEF4
Communication via: Memory addresses
Error return: None
Stack requirements:
Registers affected: A, X, Y
Description: This reads a 512 byte chunk of memory to $0800
Example:

JSR $FEF4 ; Call Write_Chunk

4.2.2 Write_Chunk

Purpose: Writes a 512 byte chunk of a large file
Call address: $FEF8
Communication via: Memory addresses
Error return: None
Stack requirements:
Registers affected: A, X, Y
Description: This writes a 512 byte chunk of memory from $0800
Example:

JSR $FEF8 ; Call Write_Chunk

55

4.2.3 InitBlob

Purpose: Creates a large file
Call address: $FEFC
Communication via: Memory addresses
Error return: None
Stack requirements:
Registers affected: A, X, Y
Description: This creates a file on the SDcard based on the Filename and
Filesize set in memory
Example: Creates a example.bin of 1MB

JSR $FEFC ; Call InitBlob

4.2.4 UpdateDisplay

Purpose: Updates the Seven Segment Display
Call address: $FF10
Communication via: Memory addresses
Error return: None
Stack requirements: 4 bytes
Registers affected: A, X, Y
Description: This routine takes the three bytes at $D0, $D1, $D2 and displays
them on the Seven Segment Display
Example: Update the display to read "010203"

LDA #$01
STA $D0
LDA #$02
STA $D1
LDA #$03
STA $D2
JSR $FF10 ; Call UpdateDisplay

56

4.2.5 ReadKeypad

Purpose: Reads the keypad, with debounce
Call address: $FF14
Communication via: A Register
Error return: None
Stack requirements: Unknown
Registers affected: A, X, Y
Description: Returns the keycode of any key pressed. Keycode is returned in
A register. This will hold execution until key is released
Example: Loop until the "5" key is pressed and released

Loop:
JSR $FF14 ; Call ReadKeypad
CMP #$05 ; Compare A with 05
BNE Loop ; Branch if not equal

4.2.6 ScanKeypad

Purpose: Returns current key pressed
Call address: $FF18
Communication via: A Register
Error return: None
Stack requirements: Unknown
Registers affected: A, X, Y
Description: Returns the keycode on any key pressed, will return immediately
and so can miss a short key press.
Example: Loop until the "5" key is pressed

Loop:
JSR $FF18 ; Call ScanKeypad
CMP #$05 ; Compare A with 05
BNE Loop ; Branch if not equal

57

4.2.7 GetRandomByte

Purpose: Generates a random byte
Call address: $FF20
Communication via: A Register
Error return: None
Stack requirements: Unknown
Registers affected: A, X, Y
Description: This routine uses a linear congruential generator system to cre-
ate a mostly random byte.
Example: Get random byte and display it

Loop:
JSR $FF20 ; Call GetRandomByte
STA $D0 ; Store in display buffer
JSR $FF10 ; Call UpdateDisplay

4.2.8 Sleep_Long

Purpose: Sleeps for about 0.5 seconds
Call address: $FF30
Communication via: None
Error return: None
Stack requirements: None
Registers affected: X, Y
Description: This returns after about 0.5 seconds

4.2.9 Sleep_Short

Purpose: Sleeps for about 50 milliseconds
Call address: $FF34
Communication via: None
Error return: None
Stack requirements: None
Registers affected: X
Description: This returns after about 50 milliseconds

58

4.2.10 SPI_Write_Byte

Purpose: Writes one byte to the SPI bus
Call address: $FF40
Communication via: A Register
Error return: None
Stack requirements: None
Registers affected: A
Description: This routine writes the byte in the A register to the SPI bus
Example: Send $FF to the display.
Note: This will light all segments of the left most digit and NOT display $FF

Loop:
JSR $FF58 ; Call SPI_Select_7seg
LDA #$FF ; Setup to send $FF
JSR $FF40 ; Call SPI_Write_Byte
JSR $FF5C ; Call SPI_Unselect_7seg

4.2.11 SPI_Read_Byte

Purpose: Reads one byte from the SPI bus
Call address: $FF44
Communication via: A Register
Error return: None
Stack requirements: None
Registers affected: A, X, Y
Description: This routine reads a byte from the SPI bus to the A register. It
also writes a null byte to the SPI bus at the same time.

59

4.2.12 SPI_Select_SDcard

Purpose: Selects the SD Card as the active device on the SPI bus
Call address: $FF50
Communication via: None
Error return: None
Stack requirements: None
Registers affected: A
Description: Sets the Chip Select line low for the SD Card
Note: The Chip Select line is Active low

4.2.13 SPI_Unselect_SDcard

Purpose: Unselects the SD Card as the active device on the SPI bus
Call address: $FF54
Communication via: None
Error return: None
Stack requirements: None
Registers affected: A
Description: Sets the Chip Select line high for the SD Card
Note: The Chip Select line is Active low

4.2.14 SPI_Select_7seg

Purpose: Selects the Seven Segment Display as the active device on the SPI
bus
Call address: $FF58
Communication via: None
Error return: None
Stack requirements: None
Registers affected: A
Description: Sets the Chip Select line low for the Seven Segment Display
Note: The Chip Select line is Active low

60

4.2.15 SPI_Unselect_7seg

Purpose: Unselects the Seven Segment Display as the active device on the
SPI bus
Call address: $FF5C
Communication via: None
Error return: None
Stack requirements: None
Registers affected: A
Description: Sets the Chip Select line high for the Seven Segment Display
Note: The Chip Select line is Active low

4.2.16 Init_SD_card

Purpose: Initialises the SD Card for use on SPI bus
Call address: $FF60
Communication via: None
Error return: Errors returned at "ErrorCode" ($0206)
Stack requirements: Unknown
Registers affected: A, X, Y
Description: This routine initialises the SD Card to work in SPI mode

4.2.17 SD_Card_Mount

Purpose: Gathers information about the file system ready for other file opera-
tions
Call address: $FF64
Communication via: None
Error return: Errors returned at "ErrorCode" ($0206)
Stack requirements: Unknown
Registers affected: A, X, Y
Description: This routine takes file system information from the SD Card and
sets up the card for further file system operations

61

4.2.18 SD_Card_Read_Sector

Purpose: Reads a single sector from the SD Card.
Call address: $FF68
Communication via: Memory addresses.
Error return: Errors returned at "ErrorCode" ($0206)
Stack requirements: Unknown
Registers affected: A, X, Y
Description: This routine reads the sector of "CurrentSector" into memory
pointed to by "ZP_SectorBufPTR". "ZP_SectorReadSize" is the number of
bytes to read, 512 bytes is a full sector.
Example: Read sector $00000042 to location of $2000.

LDA #$00 ; Setup to read sector $00000042
STA CurrentSector ; MSB of sector
STA CurrentSector+1
STA CurrentSector+2
LDA #$42
STA CurrentSector+3 ; LSB of Sector
LDA #$00 ; Setup to read sector to $2000
STA ZP_SectorBufPTR ; Set buffer start pointer Low byte
LDA #$20 ; Setup to read sector to $2000
STA ZP_SectorBufPTR+1 ; Set buffer start pointer High byte
LDA #$00 ; Setup to read $200 bytes
STA ZP_SectorReadSize ; Set buffer end pointer Low byte
LDA #$02 ; Setup to read $200 bytes
STA ZP_SectorReadSize+1 ; Set buffer end pointer High byte
JSR $FF68 ; Read sector

4.2.19 SD_Card_Write_Sector

Purpose: Writes a sector to the SD Card
Call address: $FF6C
Communication via:
Error return: None
Stack requirements:
Registers affected:
Description: This routine writes a sector to the SD Card.
Example: TBA
Note: This function has not been written yet.

62

4.2.20 CreateFileName

Purpose: Creates a file name from a number
Call address: $FF70
Communication via: Memory addresses
Error return: None
Stack requirements:
Registers affected: A, X, Y
Description: This routine converts a single byte number into a ASCII string
file name
Example: Converts $01 to "01.BIN", filename is stored at $0251

LDA #$01 ; Setup for file 01.BIN
STA $0250 ; Store 01 at FileNumber
JSR $FF70 ; Call CreateFileName

4.2.21 FindFile

Purpose: Finds the first cluster of a file for a file load operation
Call address: $FF74
Communication via: Memory addresses
Error return: Errors returned at "ErrorCode" ($0206)
Stack requirements:
Registers affected: A, X, Y
Description: This routine will search the directory of the SD Card for the file-
name and return the first cluster number of the file. Returns cluster number
via 4 bytes at $021B

63

4.2.22 LoadFile

Purpose: Loads a file into memory
Call address: $FF78
Communication via: Memory addresses
Error return: Errors returned at "ErrorCode" ($0206)
Stack requirements:
Registers affected: A, X, Y
Description: This routine loads "FileName" into memory pointed to by "Load-
AddrPTR"
Example: Loads "01.BIN"

LDA #$01 ; Setup file number $01
STA $0250 ; FileNumber is stored at $0250
JSR $FF70 ; Convert FileNumber to FileName
JSR $FF60 ; Init the SD Card to SPI mode.
JSR $FF64 ; Mount SD Card to setup file system.
LDA #$00 ; Setup Load Address to $1000
STA $0260 ; Load address pointer (LSB) is stored at

$0260
LDA #$10 ; Setup Load Address to $1000
STA $0261 ; Load Address pointer (MSB) is stored at

$0261
JSR $FF78 ; Call LoadFile

4.2.23 LBA_Addr

Purpose: Calculates LBA sector from cluster number
Call address: $FF7C
Communication via: A, X, Y
Error return: None
Stack requirements:
Registers affected: A, X, Y
Description: This routine converts a cluster number to an LBA sector address
as part of loading a file.
Note: Not typically used by end user

64

4.2.24 GetNextSector

Purpose: Finds the next sector in a file
Call address: $FF80
Communication via:
Error return: None
Stack requirements:
Registers affected: A, X, Y
Description: This routine finds the next sector in a file and is used as part of
loading a file
Note: Not typically used by end user

4.2.25 FindNextCluster

Purpose: Finds the next cluster in a file
Call address: $FF84
Communication via:
Error return: None
Stack requirements:
Registers affected: A, X, Y
Description: This routine finds the next cluster in a file and is used as part of
loading a file
Note: Not typically used by end user

4.2.26 BootStrap

Purpose: Checks the SD Card for a file and runs it or returns to the monitor
ROM
Call address: $FF90
Communication via: Memory addresses
Error return: None
Stack requirements:
Registers affected: A, X, Y
Description: This routine is used as part of power up, it will check the SD Card
for "FileNumber" and if it finds the file it will load it to $1000 and jump to $1000.

65

5 Detailed Design and Schematic

5.1 Catch the BUS

Theword "Bus" is used to describe a number of wires used for a given purpose.
In the Aluis 6502 we have 16 wires that make up the 16 bits of the Address
Bus, we have 8 bits for the Data Bus, and we have 4 wires for the SPI Bus.

5.2 6502 - CPU

The heart of the Alius is the WDC65C02 CPU, which is the Western Design
Center version of the classic MOS6502.
The CPU connects to the Address Bus and Data Bus, it has a Read/Write line
and and IRQ line. The 1MHz Clock feeds into the CPU on pin 37.

5.3 RAM

RAM is the working memory of the computer. Software can change data in
RAM at any time.
The two main types of RAM we could use are Dynamic RAM (DRAM) or Static
RAM (SRAM).
DRAM requires a process to refresh the data many times per second, but it is
cheap and high density.
SRAM holds the data as long as power is connected, but SRAM is more ex-
pensive.

The Alius 6502 system uses 32K of Static RAM in a single chip "62256". The
choice of using SRAM was to keep the whole design simple.
The RAM connects to the Address and Data bus, but also has connections
via the address decode logic chips. The address decoder chips feed to CS
and OE lines which control if the RAM is active. last of all the RAM has a R/W
line which controls if you are reading or writing RAM data.

66

5.4 ROM

The ROM is permanent storage for system software.
There are a few types of ROM but ROM that can be erased and re-written is
the most useful.
In the early days of computers RAM was often "Mask ROM" in which the Data
is part of the chip design and can never be changed.
UV Erasable ROM became common by the 1980’s, with UV erasable ROM the
chip can be made blank by exposure to UV light. You can tell that it’s a UV
erasable chip as they have a little windows on top (often covered by a sticker
to stop accident erasure).
More modern ROM can be electrically erased and so lets you update the ROM
software quickly and easily.
The Alius system uses a 32K of EEPROM in a AT28C256 chip.
Much like the RAM the ROM chip connects to the Address and Data bus
and has connections via the address decode logic chips. Unlike the RAM
the Read/Write line is tied to 5V as you can never write the the ROM during
normal use.

" The Alius 6502 is compatible with UV erasable ROM, but it is
not as easy to use.

67

5.5 I/O - 65C22

68

5.6 Memory Address Decoding

An address decoding circuit is used by the system to “select” whether RAM,
ROMor an I/O device is enabled when the processor is addressing a particular
memory address, as specified by the system’s memory map.

All the chips connected to a Bus will have a Chip Select line to signal if
that chip should be using the Bus at any given time.

A small logic circuit can use the Address Bus and create sevral Chip Se-
lect singals.
In the Alius 6502 design we have the 74HC00 and the 74HC02 chips which
have four individual logic gates in each chip, which allows us to build the
circuit shown below.

CLK

A15

A13
A14

RAM-OE

ROM-OE

IO-CS

ROM-CE

A15 A14 A13
0 X X RAM
1 0 0 I/O
1 0 1 ROM
1 1 0 ROM
1 1 1 ROM

69

5.7 SPI bus

Serial Peripheral Interface (SPI) is a common way for low speed serial con-
nections between devices.

5.7.1 SPI bus connections

The typical SPI bus needs 4 wires, 2 for data, one for clock and one for chip
select. The lack of an official standard means that the names for the lines
can be one of many ‘standards’

In most documentation you will see once device called ‘Master’ and the other
as ‘Slave’. You will also see it documented as ‘Controller’ and ‘Peripheral’

The data from the Controller to the Peripheral can be marked as any one of:

* MOSI - Master Out Slave In.
* SIMO - Slave in Master out.
* SDI - Serial Data In.

The data from the Peripheral to the Controller can be marked as any one of:

* MISO - Master In Salve Out.
* SOMI - Slave Out Master In.
* SDO - Serial Data Out.

The clock line is mark as any of:

* CLK
* SCK
* SCLK
* SCL
* CLOCK

70

The Chip Select can be marked as any one of:

* SS
* CS
* CSN
* CE

" The Chip Select line is active low, often written with a bar over
the name.

5.7.2 SPI Modes

SPI can be used in one of four modes, each mode is just a difference in the
clock phase and when data is latched by the SPI device.

Mode 0 the clock is idle low, and the data is latched on the rising edge of the
clock.
Mode 1 the clock is idle low, and the data is latched on the falling edge of the
clock.
Mode 2 the clock is idle high, and the data is latched on the falling edge of
the clock.
Mode 3 the clock is idle high, and the data is latched on the rising edge of
the clock.

71

5.8 Display

The Display is made up of six seven segment display modules, each module
is driven by a 74HC595 shift register chip.

Each shift register chip will pass data along to the next shift register one bit
at a time when the clock changes.

By selecting the display we can just sending 6 bytes on the SPI bus the display
will be updated.

The ROM function will take a byte and "decode" it to turn on/off the right
segments to display the byte.

5.9 SD Card

The SPI bus give access to the SD Card.
An SD Card runs in Mode 0.
An SD card runs at 3.3V and so the SD card board has a 5V to 3.3V level
shiftier chip.

5.10 Keypad

The keypad is setup as a row and column of wires, a push button at the
intersection of each row and column.

By setting a voltage on a given row we can then check if any assorted column
is being pressed.

The Scan keypad function in the ROM will check every button in a fraction of
a second.

72

5.11 Schematic

73

74

75

6 Building The System

The Alius 6502 has two different form factors. The "Wide Board" is best for ex-
periments and the "Stacked Board"makes a good base for a handheld system.

NOTE: The two form factors are fully software compatible.

Wide Board

76

Stacked Board

77

6.1 Parts List

Alius Parts List
QTY Part Description
1 or 2 Printed Circuit Board(s) Two boards for the stacked design
1 1MHz Crystal
1 74HC02N Quad NOR Gate
1 74HC00N Quad NAND Gate
1 74HC21N Dual 4-Input AND Gate
1 W65C02S Main 6502 CPU
2 WDC65C22 6522 - VIA I/O
6 74HC595N Shift register
6 SC56-11/5011AS Seven segment red LED
1 AT28C256 32KB EEPROM
1 62256P 32KB static RAM
57 1KΩ resistor
1 10µf capacitor
14 0.1µf capacitor
3 2 pin header Used for jumpers and for power
1 8 pin header for SD Card
1 SD Card module Adafruit board
1 Reset switch
1 28 pin ZIF socket ZIF for ROM chip
20 Kailh Choc switch
20 Kailh Choc key cap

Extra parts for Stacked design
2 8 pin header male
2 8 pin header female
6 M3 standoff
12 M3 bolt

" Part numbers on chips will normally have letters or numbers
before or after the listed part number. For example the "62256"
might be marked as "MH62256LP-15"

78

6.2 Tools

some tools are nice to have and other tools are a hard requirement, this list
is in order of importance.

6.3 Soldering iron

6.4 Solder Remover

6.5 Side cutters

6.6 Screw Driver

6.7 Isopropyl Alcohol

6.8 Helping Hands

6.9 Multimeter

6.10 Magnifying Glass

6.11 Variable Power Supply

6.12 Oscilloscope

79

6.13 Construction

It is recommended that you start by checking you have all the parts listed
above and ensure you can identify each part. Use of chip sockets will make
any repair and changes easier.

The order of steps below has been tested as the best work flow, it also
allows for testing during the construction.

For components with a large number of pins a good method of soldering
them is to solder one pin at each corner to ensure correct fit before soldering
all the pins.

Depending on your soldering skills and pace of work, the full construction
will take 3 to 5 hours.

The project build is split into three sections and you can use this as a sensible
way to break the project up over a few days.

80

Core Compute

In this section we will build and test the core of the computer.

Step 1
Install in 3 x 1KΩ resistors, marked on the board as R1, R2 and R3.

Step 2
Install reset switch S1.

Step 3
Install chip sockets for 65C02 CPU, 62256 RAM, 2 x 65C22 I/O chips, 74HC00,
74HC02, 74HC21

Step 4
Install the ZIF socket for the ROM. This should be mounted to have the lever
on the left hand side of the socket.

Step 5
Install capacitor C1

" This is a 10µf tantalum capacitor, the polarity is marked on
the board and on the part.

Step 6
Install 8 x 0.1µf capacitors, C2, C3, C4, C5, C6, C7, C8, C9.

Step 7
Install 1MHz crystal - marked as X1.
The polarity is marked by a dot on the board and one corner of the crystal
can is not as rounded as the others.

Step 8
Install the 2 pin jumper for the clock.

81

Step 9
Install the 8 pin header for the SD Card.

" Do not install the whole SD Card board at this point.

Step 10
Install a two pin header as power connector.

Step 11
Insert chips.
65C02 CPU, 62256 RAM, 2 x 65C22 I/O chips, 74HC02, 74HC00, 74HC21.

Step 12
Setup a test LED across SD Card I/O pins marked "Test" and "GND".

Step 13
Flash the ROM chip with test ROM.

Step 14
Power up, press reset button, and test.

If this stage has all worked correctly you should have the LED blinking about
once per second.

" If you do not have a blinking LED then read up on fault finding
before proceeding.

82

The Display

In this section we will build and test the seven segment display.

Step 15
Install the 48 x 1KΩ resistors, R4 -> R51

Step 16
Install 6 x seven segment modules LED1 - > LED6.
Be careful to get the polarity correct, the decimal point on the display module
is at the bottom right corner.

Step 17
Install sockets for chips U1 -> U6.

Step 18
Install 6 x 0.1µf capacitors C10 -> C15

Step 19
Install the 2 pin jumper for Display_Blank.

" If you have the "Wide" design then skip to step 23

Step 20 - "Stacked" design only
Install the 8 pin male headers on the lower board.

Step 21 - "Stacked" design only
Screw on the 6 x stand offs to the lower board.

Step 22 - "Stacked" design only
Stack the two boards and screw together to correctly position the female
headers before soldering.

83

Step 23
Power on and test that all segments of the display light up one by one.

" If you do not have each segment light up then read up on fault
finding before proceeding.

84

The Keypad

In this section we will build the keypad and install the SDcard module.

Step 24
Install 5 x 1KΩ resistors, R52, R53, R54, R55, R56

Step 25
Install the 20 x key switches.

Step 26
Label the 20 x key caps.

Step 27
Install the 20 x key caps.

The SD Card

Step 28
Install 2 x 1kΩ resisters R57, R58

Step 29
Install SD Card board.

Step 30
Flash the ROM chip with Monitor ROM.

Step 31
Power up and test.

85

6.14 Flashing the ROM

TL866 II Plus EEPROM Programmer

86

6.15 Fault Finding

Any electronics project comes with the need for some fault finding. Having
everything work first time is not guaranteed. In this section we will look at
the most common things to check for issues.

6.15.1 Check Power

One of the more frustrating faults is when nothing at all happens.
Check for 5V of power on the board. A good test point is the right end of the
expansion header. (VCC/GND)

If you don’t detect 5V then check the power is working. Also check what
amperage is being drawn by the board, under 200mA is expected.

A high power draw is a sign of a short circuit.

6.15.2 Check Soldering

The system has in the range of 500 solder joints and most of them are critical
to having the system work. A visual inspection under good lighting will find
many issues.

Look for joints that are missing, joints that have bridged to a next door con-
nections.

Removing excessive solder is best done with solder wick, which lets you draw
off some solder from the joint.

6.15.3 Check chips

It is important that you have the correct chips in the right places, but also
inserted in the correct orientation.

Bent pins can also happen, you can often straighten pins with tweezers. Just
be aware that the pin will never be as strong and might bend again.

87

6.15.4 Check jumpers

The clock jumper is essential to correct operation, and the Display_Blank
jumper is needed to have the display work correctly.

88

7 Glossary

CMOS - Complementary Metal–Oxide–Semiconductor. This is a type of mi-
crochip construction.

CPU - Central Processing Unit. This is the main chip in a computer and
it is where all the math and logic is processed.

EEPROM - Electrically Erasable Programmable Read-Only Memory. This is a
chip that can hold data that is not lost when power is removed (non-volatile)
but can be reprogrammed as required.

FAT32 - FAT stands for File Allocation Table, FAT32 is a version of the FAT
file system created by Microsoft in 1995 and has become a standard for use
with SD Cards.

I/O - Input/Output. This is the way to get data into and out of a computer.

IRQ - Interrupt Request. This is a system in which external hardware can
request that the CPU stops running the current code and runs special inter-
rupt handling code.

LBA - Logical Block Addressing. This is a common way of addressing which
sector or block of data to access on a file system.

LED - Light Emitting Diode. A semiconductor device that emits light.

LSB - Least Significant Bit or Least Significant Byte. The LSB is sometimes
referred to as the low-order bit or right-most bit.

MHz - Megahertz. Hertz is a measure of cycles per second, 1 Megahertz is
one million cycles per second.

MOS - MOS is short for Metal Oxide Semiconductor, but also can relate
to MOS Technology, Inc. who are most well known for designing the 6502
CPU.

MSB - Most Significant Bit or Most Significant Byte. The MSB is sometimes
referred to as the high-order bit or left-most bit.

89

RAM - Random Access Memory. This is a type of memory that allows data to
be accessed in any order and allows for the change of a single byte.

ROM - Read Only Memory. A type of memory that can’t be changed and
keeps the data if power is removed.

SD Card - Secure Digital Card. A removable card of memory storage that can
be electrically erased and reprogrammed. Often used in place of a hard drive
in portable electronics.

SPI - Serial Peripheral Interface. A communication interface specification
used for simple data interfaces.

ZIF - Zero Insertion Force. A special type of chip socket that allows easy
insertion and removal of a computer chip. Often used for a ROM chip to allow
for easy upgrades.

90

	Introduction
	History

	System Overview
	Hardware
	Software

	Programming
	Number Bases
	Hexadecimal Notation
	Use of the Monitor ROM
	CPU Registers
	Your First Program
	Memory Map
	Memory Addressing
	The Stack
	Flow Control
	I/O (Input / Output)
	IRQ (Interrupt Request)
	Math
	Debugging Code
	Compiling Code
	Running Code from SD Card
	Experiments
	Coding Challenges
	Advanced Programming Tricks

	Programming References
	Assembler Op Codes
	ROM functions

	Detailed Design and Schematic
	Catch the BUS
	6502 - CPU
	RAM
	ROM
	I/O - 65C22
	Memory Address Decoding
	SPI bus
	Display
	SD Card
	Keypad
	Schematic

	Building The System
	Parts List
	Tools
	Soldering iron
	Solder Remover
	Side cutters
	Screw Driver
	Isopropyl Alcohol
	Helping Hands
	Multimeter
	Magnifying Glass
	Variable Power Supply
	Oscilloscope
	Construction
	Flashing the ROM
	Fault Finding

	Glossary

