
Linked Data Templates
Ontology-driven approach to read-write Linked Data

Martynas Jusevičius

AtomGraph
<martynas@atomgraph.com>

Abstract

In this paper we summarize the architecture of Linked Data
Templates, a uniform protocol for read-write Linked Data.

We start by overviewing existing approaches as well as
protocol constraints, and propose a declarative approach
based on URI-representation mapping, defined as templates.
We then introduce an abstract model for RDF CRUD
interactions based on template matching, outline the
processing model, and provide an example.

We conclude that LDT provides a new way to build
applications and can be used to implement the ontology-
driven Semantic Web vision.

Keywords: HTTP, REST, RDF, Linked Data, SPARQL,
XSLT, SPIN, declarative, data-driven

1. Introduction

Linked Data is a vast source of information available in
RDF data model. In this paper we describe Linked Data
Templates: a generic method for software agents to
publish and consume read-write Linked Data. By doing
so, we facilitate a distributed web as well as redefine the
software development process in a declarative manner.

Web applications duplicate a lot of domain-specific
code across imperative programming language
implementations. We abstract application logic away
from source code and capture it in a machine-processable
representation that enables reuse, composition, and
reasoning. Our goal is to permit software to operate on
itself through metaprogramming to generate higher-level
applications — a feature not available in imperative
languages. Having a uniform homoiconic representation,
we reduce application state changes to uniform Create,
Read, Update, Delete (CRUD) interactions on Linked
Data representations [1].

Linked Data representations describe application
resource properties. A consuming process can query and
change resource state by issuing requests to resource
URIs. On the producing end, representations are

generated from an RDF dataset, either stored natively in
a triplestore or mapped from another data model. The
exact logic of how representations are generated and
stored is application-specific.

By establishing a mapping between URI address
space and the RDF representation space, we can model
application structure in terms of RDF classes that map
URIs to RDF queries and updates. We choose RDF-
based ontologies as the LDT representation, as it is the
standard way to define classes and satisfies both the
machine-processability and the homoiconicity
requirements. Ontology as a component for application
structure is what distinguishes LDT from other Linked
Data specifications such as Linked Data Platform.

In the following sections, we explain the motivation
behind LDT and describe the LDT architecture in more
detail. First we establish that applications can be driven
by ontologies that can be composed. We then introduce
templates, special ontology classes that map URI
identifiers to request-specific SPARQL strings. We
proceed to describe how a process matching templates
against request URI is used by RDF CRUD interactions
that generate Linked Data descriptions from an RDF
dataset and change the dataset state. Lastly, we map the
interactions to the HTTP protocol and show how the
client can use HTTP to interact with LDT applications.

2. Distributed web as read-write
Linked Data

2.1. A protocol for the web of data

Smart software agents should navigate the web of data
and perform tasks for their users — that has been an
early optimistic vision of the Semantic Web [2].
Ontologies and ontology-driven agents were central to
this vision, to provide the means to capture domain logic
in a way that sustains reason. It was largely forgotten
when the high expectations were not met, and the
community focus shifted to the more pragmatic Linked
Data.

Page 1 of 7

mailto:martynas@atomgraph.com

In order to enable smart agents, we need to provide a
uniform protocol for them to communicate. Such a
protocol, understood by all agents in the ecosystem,
decouples software from domain- or application-specific
logic and enables generic implementations. The web has
thrived because HTTP is such protocol for HTML
documents, and web browsers are generic agents.

REST readily provides uniform interface for a
protocol, which has been successfully implemented in
HTTP. The interface is defined using 4 constraints [3]:

• identification of resources
• manipulation of resources through representations
• self-descriptive messages
• hypermedia as the engine of application state

Since the Linked Data resource space is a subset of REST
resource space, we can look at how these constraints
apply to standard Linked Data technologies:

• URIs identify resources
• RDF is used as resource representation. Resource state

can be changed using RDF CRUD interactions.
• RDF formats are used for self-describing Linked Data

requests and responses

2.2. Ontology-driven Linked Data

The main point of interest for this paper is RDF CRUD
interactions, the central yet underspecified component of
read-write Linked Data. The only standard in this area is
W3C Linked Data Platform 1.0 specification, which
defines a set of rules for HTTP interactions on web
resources, some based on RDF, to provide an architecture
for read-write Linked Data on the web [4]. It has several
shortcomings:

• It is coupled with HTTP and provides no abstract
model for RDF CRUD

• In order to accommodate legacy systems, it does not
mandate the use of SPARQL. SPARQL is the
standard RDF query language and does provide an
abstract model [5].

• It does not offer a standard way for agents to
customize how CRUD interactions change resource
state

The Linked Data API specification defines a vocabulary
and processing model for a configurable, yet read-only

API layer intended to support the creation of simple
RESTful APIs over RDF triple stores [6]. Hydra Core
Vocabulary is a lightweight vocabulary to create
hypermedia-driven Web APIs and has similar goals to
combine REST with Linked Data principles, but does
not employ SPARQL and focuses on JSON-LD [7].

As we can see, currently popular Linked Data access
methods are either read-only or do not use SPARQL.
They use lightweight RDF vocabularies, but not formal
ontologies that enable reasoning, as does the original
ontology-driven Semantic Web vision. Although there
has been a fair share of research and development in the
area of ontology-driven applications [8] [9], it focuses
mostly on domain and user interface modeling, and not
representation manipulation modeling.

2.3. LDT design

We propose Linked Data Templates, an ontology-driven
approach to read-write Linked Data. It builds on the
following constraints:

• there is a mapping between URI address space and
the RDF representation space. It is used to determine
resource’s representation from its URI identifier.

• applications are read-write and backed by SPARQL
1.1 compatible services to decouple them from
database implementations

• application structure is defined in an ontology to
enable reasoning and composition

• application state is driven by hypermedia
(HATEOAS) to satisfy REST constraints

XSLT is a homoiconic high-level language for the XML
data model [10]. We wanted to follow this approach with
a Linked Data specification, and as a result, XSLT heavily
influenced the template-based design of LDT. We draw
multiple parallels between XSLT stylesheets and LDT
ontologies, XML source documents and RDF datasets,
XPath patterns and URI templates etc.

AtomGraph Processor2 is an open-source
implementation of LDT. The commercial AtomGraph
Platform3 provides a multi-tenant environment and has
been successfully used to build rich LDT applications for
product information management and library data.

Page 2 of 7

Linked Data Templates

1 Icons used in the diagram made by Freepik http://www.flaticon.com
2 AtomGraph Processor - https://github.com/AtomGraph/Processor
3 AtomGraph Platform - http://atomgraph.com
1 LDT vocabulary is planned to have http://www.w3.org/ns/ldt# namespace in the final specification

Figure 1. Main components of LDT architecture1

Linked Data
response

URI SPARQL

Linked Data
request

SPARQL request

Ontology

SPARQL responseRDF

RDF
dataset

LDT applicationSoftware agent

Software
agent

RDF

RDF

Transformation
Parser

(X)HTML

RDF/POST

3. Application ontologies

[Definition: An LDT application represents a data space
identified by its base URI, in which application resource
URIs are relative to the base URI.] The only external
interface an application provides is RESTful Linked
Data: application produces RDF representations when
resource URIs are dereferenced, and consumes RDF
representations when requested to change resource state.

Application structure, the relationships between its
resources, is communicated through representations.
Representations are generated from, and stored in, an
RDF dataset. Two different applications should be able
to use the same dataset yet expose different structures
because they produce representations and change state
differently. It follows that application structure can be
defined as instructions for representation processing.

An ontology is an efficient way to define such
structure declaratively. We use OWL to define LDT
application ontologies with RDF query and state change
instructions specific to that application. We use SPARQL
to encode these instructions, because it is the standard
RDF query and update language and can be
conveniently embedded in ontologies using SPIN RDF
syntax. Using SPARQL service as the interface for the
dataset, applications are independent from its
implementation details.

An LDT application ontology may comprise several
ontologies, contained in different RDF graphs. For a
given application, one of these serves as the principal
ontology. Ontologies are composed through the standard
owl:imports mechanism, with the additional concept of

import precedence, which makes ontologies override
each other depending on the import order.

LDT does not make any assumptions about the
application structure. There is however a useful one: a
resource hierarchy consisting of a container/item tree. It
is similar to the container/resource design in LDP, but
based on the SIOC ontology instead [11]. The vast
majority of Web applications can be modeled using this
structure.

4. Templates

[Definition: A template is a declarative instruction
contained in an ontology, defined using LDT
vocabulary1, and driving RDF CRUD processing.] It is a
special ontology class that maps a certain part of the
application URI space to a certain SPARQL string. A
template can be viewed as a function with URI as the
domain and SPARQL as the range, which are the two
mandatory parts of the template, detailed below.

A template domain is defined using ldt:path

property and a regex-based JAX-RS URI template syntax
[12]. It is a generic way to define a class of resources
based on their URI syntax: if an URI matches the
template, its resource is a member of the class. Starting
with a catch-all template that matches all resources in an
application, we can specialize the URI pattern (e.g. by
adding fixed paths) to narrow down the class of matching
resources.

A template range is defined using ldt:query property
and SPIN RDF syntax, while updates use ldt:update

Page 3 of 7

Linked Data Templates

http://www.freepik.com/
http://www.flaticon.com
https://github.com/AtomGraph/Processor
http://atomgraph.com
http://www.w3.org/ns/ldt#

 property [13]. URI that matches URI template is passed
to SPARQL using a special variable binding ?this (path
variables from the URI template match, if any, are not
used since URIs are opaque). Starting with the default
query DESCRIBE ?this, we can specialize it with a graph
pattern, for example to include descriptions of resources
connected to ?this resource. The query forms are limited
to DESCRIBE and CONSTRUCT, as the required result is RDF
graph.

An important feature of LDT templates is annotation
inheritance, which enables code reuse but requires
reasoning. It mimics object-oriented multiple
inheritance: a class inherits annotation properties from its
superclasses via the rdfs:subClassOf relation, unless it
defines one or more properties of its own which override
the inherited ones. SPIN takes a similar object-oriented
world-view and uses subclass-based inheritance.

5. Processing model

We have established that application state is queried and
changed using Linked Data requests that trigger RDF
CRUD in the form of SPARQL. We can constrain the
requests to 4 types of CRUD interactions that map to
either SPARQL query or update. An interaction is
triggered by a Linked Data request and results in query
or change of application state by means of SPARQL
execution [14].

Table 1. LDT interaction types

Interaction
type

SPARQL form Generated from

Create INSERT DATA request RDF entity

Read DESCRIBE/
CONSTRUCT

ldt:query

Update DELETE; INSERT

DATA

ldt:update; request
RDF entity

Delete DELETE ldt:update

DESCRIBE and CONSTRUCT forms are generated from
ldt:query SPARQL templates; DELETE is generated from
ldt:update SPARQL template. INSERT DATA is generated
from the RDF in the request entity, either as triples or as
quads. Update interaction combines two updates into
one SPARQL request.

[Definition: We refer to the software that uses
application templates to support the interaction as an

LDT processor.] A processor consists of several sub-
processes that are triggered by a Linked Data request and
executed in the following order:

1. A validation process validates incoming RDF
representations against SPIN constraints in the
ontology. Invalid data is rejected as bad request. Only
applies to Create and Update.

2. A skolemization process matches request RDF types
against ontology classes and relabels blank nodes as
URIs. Only applies to Create.

3. A matching process matches the base-relative request
URI against all URI templates in the application
ontology, taking import precedence and JAX-RS
priority algorithm into account. If there is no match,
the resource is considered not found and the process
aborts.

4. A SPARQL generation process takes the SPARQL
string from the matching template and applies ?this
variable binding with request URI value to produce a
query or an update, depending on the interaction
type. BASE is set to application base URI.

5. A SPARQL execution process executes the query/
update on the application’s SPARQL service. If there
is a query result, it becomes the response entity.

6. A response generation process serializes the response
entity, if any. It uses content negotiation to select the
most appropriate RDF format, sets response status
code, adds ontology URI, matched template URI and
inheritance rules as header metadata.

For the container/item application structure it is
convenient to extend this basic model with pagination,
which allows page-based access to children of a container.
It requires SELECT subqueries and extensions to query
generation and response generation processes.

Having access to application ontologies, LDT clients
can infer additional metadata that helps them formulate
successful requests. For example, SPIN constructors can
be used to compose new resource representations from
class instances, while SPIN constraints can be used to
identify required resource properties. Applications with
embedded clients become nodes of a distributed web, in
which data flows freely between peers in either direction.

5.1. HTTP bindings

The mapping to HTTP is straightforward — each
interaction has a corresponding HTTP method:

Page 4 of 7

Linked Data Templates

Table 2. LDT interaction mapping to HTTP

Interaction
type

Request
method

Success
statuses

Failure
statuses

Create POST 201 Created

400 Bad

Request

404 Not Found

Read GET 200 OK 404 Not Found

Update PUT
200 OK

400 Bad

Request

201 Created 404 Not Found

Delete DELETE
204 No

Content
404 Not Found

It should be possible to use the PATCH method for
partial modifications instead of replacing full
representation with PUT, but that is currently unspecified.

5.1.1. Example

In the following example, an HTTP client performs an
Update-Read request flow on linkeddatahub.com
application, which supports LDT. Only relevant HTTP
headers are included.

First, the client creates a resource representing Tim
Berners-Lee by submitting its representation:

PUT /people/Berners-Lee HTTP/1.1

Host: linkeddatahub.com

Accept: text/turtle

Content-Type: text/turtle

@base <http://linkeddatahub.com/people/Berners-Lee> .

@prefix ldt: <http://www.w3.org/ns/ldt#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

<> a ldt:Document ;

 foaf:primaryTopic <#this> .

<#this> a foaf:Person ;

 foaf:isPrimaryTopicOf <> ;

 owl:sameAs

 <https://www.w3.org/People/Berners-Lee/card#i> .

Let's assume the match for /people/Berners-Lee request
URI is the :PersonDocument template in the application
ontology:

@base <http://linkeddatahub.com/ontology> .

@prefix : <#> .

@prefix ldt: <http://www.w3.org/ns/ldt#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix sp: <http://spinrdf.org/sp#> .

ontology

: a ldt:Ontology ;

 owl:imports ldt: .

template

:PersonDocument a rdfs:Class, ldt:Template ;

 ldt:path "/people/{familyName}" ;

 ldt:query :DescribeWithPrimaryTopic ;

 ldt:update :DeleteWithPrimaryTopic ;

 rdfs:isDefinedBy : .

query

:DescribeWithPrimaryTopic a sp:Describe, ldt:Query ;

 sp:text

 """PREFIX foaf: <http://xmlns.com/foaf/0.1/>

DESCRIBE ?this ?primaryTopic

WHERE

 { ?this ?p ?o

 OPTIONAL

 { ?this foaf:primaryTopic ?primaryTopic }

 }""" .

update

:DeleteWithPrimaryTopic a sp:DeleteWhere, ldt:Update ;

 sp:text

 """PREFIX foaf: <http://xmlns.com/foaf/0.1/>

DELETE {

 ?this ?p ?o .

 ?primaryTopic ?primaryTopicP ?primaryTopicO .

}

WHERE

 { ?this ?p ?o

 OPTIONAL

 { ?this foaf:primaryTopic ?primaryTopic .

 ?primaryTopic ?primaryTopicP ?primaryTopicO

 }

 }""" .

The variable binding (?this, <http://

linkeddatahub.com/people/Berners-Lee>) is applied on
the DELETE associated with the template. It is combined
with INSERT DATA generated from the request RDF entity

Page 5 of 7

Linked Data Templates

1 AtomGraph - http://atomgraph.com

into a single update request. Application base URI is set
on the final SPARQL string which is then executed on
the SPARQL service behind the application:

BASE <http://linkeddatahub.com/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX ldt: <http://www.w3.org/ns/ldt#>

DELETE {

 <people/Berners-Lee> ?p ?o .

 ?primaryTopic ?primaryTopicP ?primaryTopicO .

}

WHERE

 { <people/Berners-Lee> ?p ?o

 OPTIONAL

 {

 <people/Berners-Lee>

 foaf:primaryTopic ?primaryTopic .

 ?primaryTopic ?primaryTopicP ?primaryTopicO

 }

 } ;

INSERT DATA {

 <people/Berners-Lee>

 a ldt:Document .

 <people/Berners-Lee>

 foaf:primaryTopic <people/Berners-Lee#this> .

 <people/Berners-Lee#this>

 a foaf:Person .

 <people/Berners-Lee#this>

 foaf:isPrimaryTopicOf <people/Berners-Lee> .

 <people/Berners-Lee#this>

 owl:sameAs

 <https://www.w3.org/People/Berners-Lee/card#i> .

}

We assume the representation did not exist beforehand,
so it is created instead of being updated (an optimized
implementation might have skipped the DELETE part in
this case). The application responds with:

HTTP/1.1 201 Created

Location: http://linkeddatahub.com/people/Berners-Lee

The client can choose to follow the link to the newly
created resource URI, and retrieve the same
representation that was included with the initial PUT
request:

GET /people/Berners-Lee HTTP/1.1

Host: linkeddatahub.com

Accept: text/turtle

We omit the response, but note that the application
would use the DESCRIBE query associated with the
matching template to generate the representation.

6. Future work

The use of OWL and SPARQL is probably the biggest
advantage and limitation of LDT at the same time. RDF
ontology and query tools as well as developers are scarce
for mainstream programming languages with the possible
exception of Java, making implementations expensive
and adoption slow. Query performance is a potential
issue, albeit constantly improving and alleviated using
proxy caching. On the other hand, OWL and SPARQL
provide future-proof abstract models on which LDT
builds.

We are working around slow adoption of Linked
Data by providing a hosted LDT application platform1.
It uses metaprogramming to implement complex data
management features such as application and resource
creation, autocompletion, access control, provenance
tracking, faceted search — all done through a user
interface, exposing as little technical RDF details as
possible.

We envision an ecosystem in which applications by
different developers interact with each other: ask for
permissions to access or create data, send notifications to
users, automate interactions etc.

7. Conclusions

In this paper we have described how read-write Linked
Data applications can be modeled using standard
RDF/OWL and SPARQL concepts. Linked Data
Templates enable a new way to build declarative software
components that can run on different processors and
platforms, be imported, merged, forked, managed
collaboratively, transformed, queried etc. Experience with
AtomGraph software has shown that such design is also
very scalable, as the implementation is stateless and
functional. We expect that substantial long-term savings
in software engineering and development processes can
be achieved using this approach.

We have shown that SPARQL is the crucial link that
reconciles ontology-driven Semantic Web and read-write
Linked Data. Using SPARQL, Linked Data Templates
define a protocol for distributed web of data as uniform
RDF CRUD interactions. LDT already provide features

Page 6 of 7

Linked Data Templates

http://atomgraph.com

from the original Semantic Web vision, such as ontology
exchange between agents, and we are confident it has the
potential to implement it in full.

Bibliography

[1] Create, read, update and delete. Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

[2] The Semantic Web. Tim Berners-Lee, James Hendler, and Ora Lassila. Scientific American. 1 May 2001.
http://www.scientificamerican.com/article/the-semantic-web/

[3] Representational State Transfer (REST). Roy Thomas Fielding. 2000.
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_5

[4] Linked Data Platform 1.0. Steve Speicher, John Arwe, and Ashok Malhotra. World Wide Web Consortium
(W3C). 26 February 2015.
https://www.w3.org/TR/ldp/

[5] SPARQL 1.1 Query Language. Steve Harris and Andy Seaborne. World Wide Web Consortium (W3C). 21
March 2013.
https://www.w3.org/TR/sparql11-query/

[6] Linked Data API Specification.
https://github.com/UKGovLD/linked-data-api/blob/wiki/Specification.md

[7] Hydra Core Vocabulary. Markus Lanthaler. 20 March 2016.
http://www.hydra-cg.com/spec/latest/core/

[8] Agents and the Semantic Web. James Hendler. 2001.
http://www.cs.rpi.edu/~hendler/AgentWeb.html

[9] Ontology-Driven Apps Using Generic Applications. Michael K. Bergman. 7 March 2011.
http://www.mkbergman.com/948/ontology-driven-apps-using-generic-applications/

[10] XSL Transformations (XSLT) Version 2.0. Michael Kay. World Wide Web Consortium (W3C). 23 January
2007.
https://www.w3.org/TR/xslt20/

[11] SIOC Core Ontology Specification. Uldis Bojārs and John G. Breslin. DERI, NUI Galway. 25 March 2010.
http://rdfs.org/sioc/spec/

[12] JAX-RS: Java™ API for RESTful Web Services. Marc Hadley and Paul Sandoz. Sun Microsystems, Inc.. 17
September 2009.
https://jsr311.java.net/nonav/releases/1.1/spec/spec3.html#x3-300003.4

[13] SPIN - Modeling Vocabulary. Holger Knublauch. 7 November 2014.
http://spinrdf.org/spin.html

[14] Architecture of the World Wide Web, Volume One. Ian Jacobs and Norman Walsh. World Wide Web Consortium
(W3C). 15 December 2004.
https://www.w3.org/TR/webarch/#interaction

Page 7 of 7

Linked Data Templates

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
http://www.scientificamerican.com/article/the-semantic-web/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_5
https://www.w3.org/TR/ldp/
https://www.w3.org/TR/sparql11-query/
https://github.com/UKGovLD/linked-data-api/blob/wiki/Specification.md
http://www.hydra-cg.com/spec/latest/core/
http://www.cs.rpi.edu/~hendler/AgentWeb.html
http://www.mkbergman.com/948/ontology-driven-apps-using-generic-applications/
https://www.w3.org/TR/xslt20/
http://rdfs.org/sioc/spec/
https://jsr311.java.net/nonav/releases/1.1/spec/spec3.html#x3-300003.4
http://spinrdf.org/spin.html
https://www.w3.org/TR/webarch/#interaction

	Linked Data Templates
	1. Introduction
	2. Distributed web as read-write Linked Data
	2.1. A protocol for the web of data
	2.2. Ontology-driven Linked Data
	2.3. LDT design

	3. Application ontologies
	4. Templates
	5. Processing model
	5.1. HTTP bindings
	5.1.1. Example

	6. Future work
	7. Conclusions
	Bibliography

