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But, well, over time I found that the best way for me personally to
learn was to write everything down and explain it to myself. Maybe
one day someone else will find it useful.

Contents

1 Intro to Commutative Algebra 3

1.1 Rings and Ideals 3

1.2 Fields 5

1.3 Principal ideal domains 5

1.4 Power series 5

2 Intro to Homological Algebra 9

2.1 Preliminaries & Motivation 9

2.2 Tensor Product 10

2.3 Modules 10

2.4 Exactness properties 11

2.5 Universal properties 11

2.6 Flat modules 12

2.7 Finitely generated modules 12

3 Commutative Algebra I 13

3.1 Integral Dependence and Going-Up Theorem 13

3.2 The Spectrum, Again 13

4 Intro to Algebraic Geometry 13

4.1 Noether Normalization and Hilbert’s Nullstellensatz 13

4.2 Algebraic Sets and Ideals 14

4.3 Krull dimension 15

4.4 Transcendence Degree 15

4.5 Irreducible components, Minimal Prime Ideals 15

4.6 Krull’s Principal Ideal Theorem 15



lecture notes algebra i - commutative algebra 2

5 Intro to Algebraic Number Theory 15

5.1 Integral closure 15

5.2 Localization and Discrete Valuation Rings 15

5.3 Dedekind Rings 15

5.4 Fractional Ideals 15

5.5 Ideal Class Group 15

5.6 The Splitting of Primes 15

5.7 Quadratic Norm Equations 15

5.8 Hilbert Class Fields and a Theorem of Gauss 15



lecture notes algebra i - commutative algebra 3

1 Intro to Commutative Algebra

1.1 Rings and Ideals

In these lecture notes, a ring is always commutative and unitary (has
element 1).

Definition 1.1. Ideal a = abelian subgroup, such that ∀r ∈ R, a ∈
a : ra ∈ a.

Definition 1.2. Let S ⊆ A be a subset of A. Then the ideal, gener-
ated by S is defined as

(S) :=
⋂

S⊆a⊆A
a is an ideal

a Could it be a closure operator on sets?

Lemma 1.3 (Equivalent to definition 1.2). Let A be a ring, and let
S ⊆ A be a subset. Then we have

(S) = ∑
s∈S

As = {∑ ass | as ∈ A and finitely many as ̸= 0}

Proof: Let b be the right-hand side. It is an additive subgroup, since

(∑
s∈S

ass)−1 = ∑
s∈S

a−1
s s ∈ b

and

∑
s∈S

ass + ∑
s∈S

bss = ∑
s∈S

(as + bs)s ∈ b.

It is also closed under multiplication, thus b is an ideal. Since 1s ∈ b

it follows S ⊆ b and hence by definition (S) ⊆ b.
Conversely, let a ⊆ A be an ideal such that S ⊆ a. Then from the

ideal properties we get as ∈ a for all s ∈ S and thus ∑s∈S ass ∈ a for
lal finite sums. Therefore b ⊆ a and finally b ⊆ S.

Definition 1.4. Given any ring A, we can construct polynomial
rings A[T] as formal sums over A in a single variable T:

A[T] := ⊕∞
i=0 ATi = {

n

∑
i=0

aiTi | n ≥ 0, ai ∈ A, an ̸= 0}.

Definition 1.5. Given a ring A and an ideal a ⊆ A, the additive
abelian quotient group A/a endowed with the multiplication

(a + a)(b + a) := ab + a

forms a ring which we call a quotient ring of A.
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Math consists of learning vocabularies.Definition 1.6. Let A be a ring, then

1. x ∈ A is nilpotent, if xn = 0 for some n ∈ N. A is reduced if 0 is
the only nilpotent element.

2. x ∈ A is a zero divisor, if there exists y ∈ A such that xy = 0. A is
an integral domain if 0 is the only zero divisor and A ̸= 0.

3. x ∈ A is a unit, if there exists y ∈ A such that xy = 1. The set of all
units in A is denoted by A× and forms a multiplicative group.

Integral domains are always reduced. On the
other hand, Z[X, Y]/(XY) is reduced but not
integral.

Lemma 1.7. Consider a map ϕ : A → A, a 7→ xa for a fixed x ∈ A.
It follows that ϕ bijective ⇐⇒ ϕ surjective ⇐⇒ x ∈ A×.

Proof: ϕ bijective implies ϕ surjective. ϕ surjective implies ∃a ∈ A :
xa = 1 =⇒ x is a unit =⇒ x ∈ A×. Conversely, x ∈ A× =⇒ ∃a ∈
A : xa = 1 =⇒ ∀b ∈ A : xab = 1b = b =⇒ xa = 1 = xa′ ⇐⇒ a =

a′ =⇒ ker φ is trivial.

Lemma 1.8. If A is reduced then A[Ti, i ∈ I] is reduced as well for
any index set I.

Definition 1.9. Let A be a ring. Define nilradical of A

nil(A) = {a ∈ A | a nilpotent}.

Proposition 1.10 (Properties of nilradical).

1. nil(A) is an ideal,

2. A/ nil(A) is reduced,

3. Universal property of nilradicals: For any reduced ring B, any
ring map ϕ : A→ B factors through A/ nil(A).

Kernels are ideals; nilradicals are ideals too. If
the codomain ring is reduced then nil(A) ⊆
ker(φ). So dimension has to do with certain
properties of “flatness”.

Proof:

1. Let a, b ∈ nil(A) =⇒ an = 0. Then ∀x ∈ A : (xa)n = xnan = 0.
Furthermore, (a + b)n+m−1 = ∑n+m−1

i=0 (n+m−1
i )xn+m−1yi = 0, since

either (n + m− 1− i) ≥ n or i ≥ m.

2. Let x = x + nil(A). Then x is nilpotent iff x ∈ nil(A) =⇒ x = 0.

3. Let B be reduced and let φ : A → B be a ring map. If xn = 0
for x ∈ nil(A), then φ(x)n = 0, so φ(x) = 0 since B is reduced.
In other words, nil(A) ⊆ ker(φ), hence ker(φ) factors through
A/ nil(A) according to the universal property of the quotients.
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1.2 Fields

This chapter was very light on content.

Definition 1.11. A ring A is a field if A ̸= 0 and A× = A \ {0}. Non-zero and all elements are invertible.

Lemma 1.12. A is a field ⇐⇒ the only ideals are {0} and A.

Definition 1.13. An ideal m is maximal if m ̸= A and there is no
ideal a such that {0} ⊂ a ⊂ m.

Corollary 1.14. Let A be a ring. An ideal m is maximal ⇐⇒ A/m
is a field.

1.3 Principal ideal domains

Definition 1.15. An integral domain A is a principal ideal do-
main (PID) if every ideal a ⊂ A is principal, i. e. of the form a = ( f )
for some f ∈ A.

C[ε]/(ε2) is not an integral domain, but every
ideal is principal (there are only three).

Definition 1.16. A ring is a principal ideal ring if every ideal is
principal.

Definition 1.17. Let A be an integral domain. Then p ∈ A is prime
if p is not the zero element or not a unit and p | ab implies p | a or p |
b.

Theorem 1.18. In PIDs, prime factorization theorem holds. In unique factorization domains factorization
in irreducible elements holds. The condition of
being a prime element is stronger then being
irreducible. For example, 3 is irreducible but
not prime in Z[

√
−5].1.4 Power series

Definition 1.19. Let A be a ring. Then

AJTK := {infinite series
∞

∑
i=0

aiTi | ai ∈ A} ∼= AZ≥0} .

Proposition 1.20. Let A be a ring. Then f ∈ AJTK× if and only if
a0 ∈ A×.
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Exercise 1.21. Show that a prime p ̸= 3 is of the form p = x2 −
xy + y2 iff p ≡ 1 (mod 3).

Proof: Observe that p ≡ x2 − xy + y2 ≡ x2 + 2xy + y2 mod 3. This
implies p ≡ (x + y)2 mod 3. The quadratic residue classes mod 3
are 02 = 0, 12 = 1, 22 = 1, which implies either p = 3 or p ≡ 1 mod 3.

Goal: Now the hard part. We want to look at fibers of map

Spec(φ) : Spec(Z[ζ]) −→ Spec(Z)

a 7−→ φ−1(a)

We know that for any m ∈ Spec(Z[ζ]), the intersection m ∩Z = (p).

I’m not sure what exactly this map is. I think
it’s the inclusion map, e. g. it maps m to (p)
such that (p) ⊆ m. In a sense Z[ζ] has a certain
“torsion” which allows for bigger, stronger
maximal ideals than in Z.

Specifically for Z[ζ], we know Z[ζ3] ∼= Z[T]/(T2 + T + 1) because
minimal polynomial of ζ is mζ = T2 + T + 1.

Prime Ideals: Given Z[T]/(T2 + T + 1), what prime ideals can exist
there? The answer is partially known. It’s either (p) for p prime, or
(p, hi) for hi lift of an irreducible factor of T2 + T + 1. So we should
think hard about the question of irreducibility of mζ .

Irreducibility of mζ : If p = 3, then

{m ⊂ Z[T]/(mζ) | m∩Z = (3)} = {m ⊂ A | (3) ⊆ m}
= Spec(Z[T]/(mζ))

/
(3) )

= Spec(Z[T]/(mζ , 3)

= Spec(F3[T]
/
(mζ mod (3)) )

= {(hi) | irreducible factors hi ∈ F3[T] of mζ}

= {(p, h̃i) | h̃i = lift of hi to Z[T]}.

This schema works for any p, so essentially we are interested in fac-

What kind of lift? Basically we remember
something along the lines of the 3rd isomor-
phism theorem, stating

A/m
m/(p)

=
A
(p)

,

but in this case it’s more of

A/m
(p)

=
A/(p)
m/(p)

.

torizations of mζ over any Fp[T]. By a straight-forward calculation,

If mζ is irreducible, then the fiber is given by
(p) only, since Fp[T]/(mζ ) is a field.

have mζ = (T + 2)2.
If p ≡ 1 mod (3) then F×p has order p − 1 and as such has a non-
trivial third root of unity if and only if 3 | (p − 1). This obviously
holds, which means mζ = (T − α)(T − α2).
This property doesn’t hold if p ≡ 2 mod 3, implying mζ irreducible,
otherwise it wouldn’t be minimal.
Summarizing the above, have

Spec(Z[ζ]) = ⨿
0 or p prime


(0)

(3, ζ + 2) p=3

(p, ζ − α), (p, ζ − α2) p ≡ 1 mod (3)

(p) p ≡ 2 mod (3)

Now observe that Z[ζ] is a PID. Let (π) ∈ Spec(Z[ζ]) with π prime.

Is 0 even prime?

Now skipping some computations we claim π = p by norm function
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and unique decomposition theorem, which implies π = x + iy ∈ Z[ζ]

such that N(π) = x2 − xy + y2 = p.
Basically the whole trick is: observe that norm N(x) defined on

Z[ζ] has some nice formula such as x2 + ny. Since maximal ideals in
Z correspond to prime numbers, we can try to extend Z such that
these prime ideals are generated by some “smaller” elements, such
that its norm equals precisely to p. By the virtue of our coordinates
being integer we prove the claim.

Exercise 1.22. Let A be a principal ideal domain that is not a
field, let m ⊂ A be a maximal idea. Prove that mn/mn+1 is a one-
dimensional vector space over A/m for any n ≥ 0.

Proof: That’s a lot to unpack. Start with definition for mn/mn+1.

mn/mn+1 = (a)n/(a)n+1

where a is generator of m. As such, any element in (a)n is of the
form can, c ∈ A. Now if we look at the quotient as if it were a graded
ring, “going up” one degree to an+1 annihilates element to 0, which
happens precisely if you multiply by some element x ∈ (a) =⇒
(a) · (a)n = 0 ∈ (a)n /

(a)n+1 . So it’s natural to describe (a)n as a one-
dimensional vector space over A/(a). If A is a field then m = (0)

This is what associated graded ring does. Essen-
tially it’s a direct sum

⊕∞
n=0(a)n/(a)n+1.

and as such it is 0-dimensional over A.

Exercise 1.23. Compute all fibres of Spec(Z[T])→ Spec(Z).

Proof: Assume that p ∩ Z = (p) for some prime p ∈ Z. Then This part we’ve already seen.

p := p/pZ[T] is a prime ideal in Fp[T]. Since Fp[T] is a PID, p =

( f ) ∈ Fp[T]. Hence we have

• p = (p) if p = 0,

• p = (p, f ) if p = ( f ), where f is any lift of f = f mod p.

Assume p ∩Z = (0). Consider q = pQ[T], i. e. the ideal in Q[T] This part we haven’t seen. It uses localization.

generated by elements in p. We claim that q is a prime ideal in Q[T].
If q isn’t prime and 1 ∈ q, then we can write 1 = ∑ fiai with The q ̸= Q[T] part.

fi ∈ Q[T], ai ∈ p. Let 0 ̸= m ∈ Z be the common denominator of
all coefficients of all fi ∈ Q[T]. Then m fi ∈ Z[T] for all i = 1, . . . , n,
hence m1 = ∑(m fi)ai ∈ p which yields the contradiction with
p∩Z = (0). This means 1 /∈ q and thus q ̸= Q[T].

Let gh ∈ q for some g, h ∈ Q[T]. Then we can write gh = ∑ fiai
The q is prime part.

with fi ∈ Q[T] and ai ∈ p. Now choose common denominator
0 ̸= m ∈ Z such that mg, mh, m fi ∈ Z[T]. Then we lift g and h to Z

and observe
mg ·mh = m ∑ (m fi)︸ ︷︷ ︸

∈Z[T]

ai︸︷︷︸
∈p⊆Z[T]

∈ p
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and by the prime ideal property either m f ∈ p or mg ∈ p. Multiplying
by m−1 ∈ Q, we get either g ∈ q or h ∈ q, implying that q is prime.

Since Q[T] is a PID, we can write q = (h) for some irreducible
h ∈ Q[T]. We can lift it to some mh ∈ Z[T]. Further factoring out
the gcd of all coefficients, we can assume that mh is primitive. From
Gauss’s lemma it follows: if mh ∈ Z[T] is primitive and f ∈ Z[T], then
mh | f in Z[T] iff mh | f in Q[T].

In other words: if a primitive polynomial mh
divides polynomial f in Z[T], it does so in
Q[T].As a consequence, we have q ∩Z[T] = (h) ∈ Z[T] with irreducible

and primitive h. Later we show q∩Z[T] = p.

Note 1.24. What do we actually do here? At first, we look at
the intersection between Z[T] and the smaller ring Z. We find out
it’s empty (zero). What do we do know? We investigate the bigger
fraction field of Z[T], its localization at 0 and look at what kind of
ideal does Q[T]p generate. In some sense since our first, superficial
method didn’t work we localize around 0 and dig deeper at what
does p actually generate there. From there on we find out that Q[T]p
generates another prime ideal q, which is generated by a single ele-
ment h ∈ Q[T]. By Gauss’s lemma (sheer luck) this element also is
in Z[T], implying p = (h). Insane, right? At first, we know nothing
about prime ideals. But we know about their images in Z. And this
information is enough to hunt them down in two different realms.

Exercise 1.25. Assume A is Noetherian. Prove A[[T]] is Noetherian
(Hilbert’s Basis Theorem).

Noetherian property is stable by passage to
finite type extensions and localization.

Proof: As a reminder, Noetherian ⇐⇒ every ideal is finitely gener-
ated. Let a ∈ A[[T]] be a ideal. We show a is finitely generated. For
each integer n, denote

In = {a ∈ A | f = axn + higher order terms ∈ a} ∈ A

Then we see that I0 ⊂ I1 ⊂ . . . stabilizes, as A is Noetherian. Choose
d0 such that Id0 = Id0+1 = . . . For each d ≤ d0 choose elements

fd,j ∈ I ∩ (Td) j = 1 . . . nd

such that if we write fd,j = ad,jTd + higher order terms then Id =

(ad,1 . . . ad,nd
).

Example: Let d0 = 10. Then we have

I0 ⊂ I1 ⊂ . . . ⊂ I10 = I11 = I12 = . . .

Now choose
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j = 1 2 3 4 5 6 7 8 9 10
f0,j 1 2 3 4 5 6 7 8 9 10
f1,j 1 2 3 4 5 6 7 8 9 10
f2,j 1 2 3 4 5 6 7 8 9 10
f3,j 1 2 3 4 5 6 7 8 9 10
f4,j 1 2 3 4 5 6 7 8 9 10
f5,j 1 2 3 4 5 6 7 8 9 10
f6,j 1 2 3 4 5 6 7 8 9 10
f7,j 1 2 3 4 5 6 7 8 9 10
f8,j 1 2 3 4 5 6 7 8 9 10
f9,j 1 2 3 4 5 6 7 8 9 10
f10,j 1 2 3 4 5 6 7 8 9 10

2 Intro to Homological Algebra

In this chapter, M, N, P are A-modules.

2.1 Preliminaries & Motivation

Definition 2.1. A map f : M × N → P is bilinear, if it is linear in
each variable separately. ∀a ∈ A, m, m′ ∈ M, n, n′ ∈ N :

• f (m, n + n′) = f (m, n) + f (m, n′)

• f (m, an) = a f (m, n)

• f (m + m′, n) = f (m, n) + f (m′, n)

• f (am, n) = a f (m, n)

Linear maps are completely determined by their action on bases.
How can we determine bilinear maps? For free modules it is enough
to know their action on all pairs (vi, wj), where vi and wj are basis
vectors for M and N. We would gladly extend this case to the bilin-
ear case.

If we were to take the basis of V ×W, for example R×R, then
knowing the action of f on (1, 0) and (0, 1) is not enough, since
f (1, 0) = f (1, 0 + 0) = f (1, 0) + f (1, 0) =⇒ f (1, 0) = 0. Turns
out the most general way to map linear maps to bilinear maps is by
mapping (v, w) to v⊗ w.
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2.2 Tensor Product

Definition 2.2. For any two M, N define a pair

(A-module T, bilinear map g : M× N → T)

as the tensor product of M and N over A, if it has the following
property:

Given any P and any A-bilinear mapping f : M× N → P, there ex-
ists a unique A-linear mapping f ′ : T → P such that f = f ′ ◦ g. It al-
ways exists and is unique.

In other words, we have a bijection
{bilinear maps M × N → P} ←→
{linear maps M⊗ N → P}.

Exercise 2.3. Show (M⊗ N)⊗ P ∼= M⊗ (N ⊗ P)

Proof:
Step 1: Fix p ∈ P, define ϕp : M× N −→ M⊗ (N ⊗ P), (m, n) −→

m⊗ (n⊗ p). This map is bilinear. It induces a linear map ϕp : M ⊗
N → M⊗ (N ⊗ P).

Step 2: Consider the induced map ϕp. It is linear in p, meaning
ϕp+p′ = ϕp + ϕp′ , ϕap = aϕp.

Step 3: Since the above is true for all p ∈ P, consider bilinear maps

(M⊗ N)× P→ M⊗ (N ⊗ P)

which sends [(
∑

i
mi ⊗ ni

)
, p

]
−→ φp(∑

i
mi ⊗ ni)p

It induces a linear map

(M⊗ N)⊗ P→ M⊗ (N ⊗ P)

And we’re done?

Theorem 2.4. Important equivalences for modules over A

• A⊗A M ∼= M,

• M⊗ N ∼= N ⊗M,

• (M⊗ N)⊗ P ∼= M⊗ (N ⊗ P),

• (
⊕

i∈I Mi)⊗ N ∼=
⊕

i∈I(Mi ⊗ N),

• A/a⊗M ∼= M/aM

2.3 Modules

In this section we discuss module properties.
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Definition 2.5. Classification of finiteness properties I.
0. M is free iff M has basis.
1. M is finitely generated iff A⊕m −→ M −→ 0 is exact.
2. M is finitely presented iff A⊕n −→ A⊕m −→ M −↠ 0 is exact.

0. implies that f : A⊕m −→ M is an isomorphism. 1. implies that
f : A⊕m −→ M is surjective., which implies that M is generated by
some finite (m1 . . . mm) but the kernel of f has some non-trivial part.
The caveat is that the basis may not exist, e.g. Z = (2, 3) but minimal
generating set is ∅.

Important disclaimer: This classification
doesn’t apply to rings. Apparently, it’s be-
cause the category of rings is not abelian.

Some examples:

• Finitely generated free module — Z = 1Z, R2 = {(1, 0), (0, 1)}R.

• Finitely generated non-free module — Z/nZ = (1)Z, but 1 · n = 0.

• Non-finitely generated free module —
⊕∞

i=1 Z.

• Non-finitely generated non-free module — Q over Z.

Definition 2.6. Classification of finiteness properties II.
Every module has a presentation M = N/K.
0. M is free iff N is finitely generated and K = 0.
1. M is finitely generated iff N is finitely generated.
2. M is finitely presented iff N, K are finitely generated.
The N/K quotient is a hidden way to express coker(A⊕n → A⊕m),

so modules can be also thought of in terms of the A⊕n → A⊕m map.

There is no simple way to describe rings as
cokernels in exact sequences, see margin note
above.

2.4 Exactness properties

• Tensoring is right-exact

• Localization of rings is exact

• Localization of modules is exact

2.5 Universal properties

• Universal property of quotients

• Universal property of direct products

• Universal property of direct sums

• Universal property of polynomial rings

• Universal property of tensor products
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2.6 Flat modules

Definition 2.7. An A-module M is flat, if TN : M 7→ M⊗A N is ex-
act.

Theorem 2.8. The following are equivalent:

• N is flat

• TN is exact

• If f : M→ M′ is injective, then TN( f ) is injective

• If f : M → M′ is injective and M, M′ finitely generated, then TN( f )
is injective

Proof: (i) ⇐⇒ (ii) by definition, (ii) ⇐⇒ (iii) by right-exactness,
(iii) =⇒ (iv) clear, (iv) =⇒ (iii) : Let f : M′ → M be injective
and let u = ∑ xi ⊗ yi ∈ ker( f ⊗ 1), so that 0 = ∑ f (x′i) ⊗ yi ∈
M ⊗ N. Let M′0 be the submodule generated by the x′i and let u0

denote ∑ x′i ⊗ yi as an element of M′0 ⊗ N. By some lemma there exists
a finitely generated submodule M0 of M containing f (M′0) and such
that ∑ f (x′i)⊗ yi = 0 as an element of M0 ⊗ N.

2.7 Finitely generated modules

Theorem 2.9 (Nakayama’s Lemma). Let M be a finitely generated
A-module and a an ideal of A contained in the Jacobson radical R of
A. Then aM = M implies M = 0.

Jacobson radical — intersection of all the
maximal ideals of A.

Lemma 2.10. Let M be a finitely generated A-module and let a be
an ideal of A such that aM = M. Then there exists x ≡ 1 mod a such
that xM = 0.

Lemma 2.11. Let M be a finitely generated A-module, let a be an
ideal of A, and let ϕ be an A-module endomorphism of M such that
ϕ(M) ⊆ aM. Then ϕ satisfies and equation of the form

ϕn + a1ϕn−1 + . . . + an = 0

where the ai are in a.

Proof: Let M = (x1 . . . xn). Then ϕ(xi) ∈ aM, so that we have say
ϕ(xi) = ∑n

j=1 aijxj for 1 ≤ i ≤ n, aij ∈ a because ϕ(xi) is still a linear
combination of generators of M. By Cayley-Hamilton, ϕ satisfies its
own characteristic equation, hence the statement.
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3 Commutative Algebra I

3.1 Integral Dependence and Going-Up Theorem

The general setting is that we have commutative unital ring A and its
extension ring B. We want to understand the map

Spec(B)→ Spec(A), q 7→ q∩ A

In field theory, the main objects were finite and algebraic field exten-
sions. Integral ring extensions are their ring theory counterpart.

Theorem 3.1 (Going-Up Theorem). Let A ⊆ B be an integral ex-
tension. Suppose

q1 ⊆ . . . ⊆ qn

is a prime ideal chain in B. Suppose

p1 ⊆ . . . ⊆ pm

is a (longer) prime ideal chain in A such that ∀i ≤ n : pi = qi ∩ A.
Then there exists a continuation qn+1 ⊆ . . . ⊆ qm of prime ideals in B.

As I understand it, this means
{prime ideal chains in A} ←→
{prime ideal chains in B}. Equivalently, A
and B have the same Krull dimension.

3.2 The Spectrum, Again

4 Intro to Algebraic Geometry

4.1 Noether Normalization and Hilbert’s Nullstellensatz

Theorem 4.1 (Noether normalization theorem). Let k be a field.
Let A be a finitely generated k-algebra. Then there exist algebraically
independent {x1 . . . xn} ∈ A such that A is finite over k[x1 . . . xn].

Theorem 4.2 (Hilbert’s Nullstellensatz). Let k be a field. Let A be a
finitely generated k-algebra, and let m ⊆ A be a maximal ideal. Then
A/m is a finite field extension of k.

Theorem 4.3 (Weak Nullstellensatz). Let

• k be an algebraically closed field,

• f1 . . . fm ∈ k[X1 . . . Xn] arbitrary,

• A := k[X1 . . . Xn]/( f1 . . . fm).

Then there exists a solution x ∈ kn ⇐⇒ ( f1 . . . fm) ̸= k[X1 . . . Xn].
Moreover, there exist infinitely many solutions iff dimk(A) = ∞.
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Theorem 4.4 (Bezout’s theorem). Let

• k be an algebraically closed field,

• f , g ∈ k[X, Y] be of degrees n, m,

• S := {(x, y) ∈ k2 | f (x, y) = g(x, y) = 0} be their solution set,

• A := k[X, Y]/( f , g).

Then the following holds:
S is infinite ⇐⇒ f , g have a common non-trivial factor
S finite =⇒ |S| ≤ dimk(A) ≤ nm.

4.2 Algebraic Sets and Ideals

Definition 4.5. • Algebraic set Z ⊆ kn

⇐⇒ exists some subset S of k[X1 . . . Xn], such that ∀z ∈ Z : ∀ f ∈
S f (z) = 0

⇐⇒ definable by some polynomial formula.

Der Unterschied zu semi-algebraischen Mengen ist, dass semi-
algebraische Mengen durch Ungleichungen definierbar sind.

• Vanishing set Z(S)

⇐⇒ Menge der Nullstellen von S.

• Zariski topology

⇐⇒ Algebraic sets form closed sets on kn.

• Vanishing ideal

⇐⇒ Given (any) set Y ⊂ kn, we define the vanishing ideal I(Y)
as the set of functions equal to zero for all y ∈ Y.

• Radical

⇐⇒ Any power xn ∈ a =⇒ x ∈ a for all x ∈ A.

Theorem 4.6 (Hilbert’s Nullstellensatz, Algebraic Geometry). Let
k be an algebraically closed field. Then Z and I define mutually in-
verse bijections between algebraic subsets of kn and radical ideals in
k[X1 . . . Xn] via Z 7→ I(Z) and Z(a)← [ a.

More generally, we have Z(I(Z)) = Z for all algebraic subsets Z ⊆
kn and I(Z(a)) =

√
a for all ideals a ⊆ k[X1 . . . Xn].

Definition 4.7. Jacobson ring
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4.3 Krull dimension

Theorem 4.8 (Krull’s principal ideal theorem). f

Theorem 4.9. Let k be a field. Then dim(k[X1 . . . Xn]) = n.

4.4 Transcendence Degree

Definition 4.10. Transcendence basis, transcendence degree

4.5 Irreducible components, Minimal Prime Ideals

Definition 4.11. Irreducible algebraic set, irreducible component

4.6 Krull’s Principal Ideal Theorem

5 Intro to Algebraic Number Theory

5.1 Integral closure

Definition 5.1. Algebraic number field, ring of algebraic integers
Norm, trace, characteristic polynomial

5.2 Localization and Discrete Valuation Rings

5.3 Dedekind Rings

5.4 Fractional Ideals

5.5 Ideal Class Group

5.6 The Splitting of Primes

5.7 Quadratic Norm Equations

5.8 Hilbert Class Fields and a Theorem of Gauss

Not important.
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