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0 Humble beginnings

• simply connected = no "handle-shaped" holes

• contractible = no holes at all

Lemma 0.1 (Splitting lemma). Given SES

0→ X r→ Y
q→ Z → 0

the following are equivalent:

• SES splits on the left

• SES splits on the right

• Y ∼= X
⊕

Z

• let Y be a Hausdorff space, and let X be a compact space, and ∼
equivalence relation on X. Let f : X → Y be a surjective continuous
mapping that is constant on the equivalence classes.

– then f induces a surjective map f : X/ ∼→ Y

– if f is bijective, then it is a homeomorphism

• classification of 2-surfaces

with boundary w/o boundary

orientable
sphere, torus,
etc

non-orientable Moebius strip
Klein bottle, real projective
space

Notes from "Homology theory, lecture 10, Panov T. E."

• tensor product
⊗

– quotient of a free abelian group

• set of homomorphisms hom(G, H)

– H abelian ⇐⇒ hom(G, H) has a natural AbGrp structure

• covariant functor ⊗G : H 7→ H ⊗ G, (H1 → H2) 7→ (H1 ⊗ G →
H2 ⊗ G)

– Hn(X)⊗Z = Hn(X)

• contravariant functor hom(−, G) : H 7→ hom(H, G), (H1 → H2) 7→
(hom(H2, G)→ hom(H1, G))

• topological space X, singular n-chain complex Csing
n (X) = Z⟨σ :

∆n → X⟩
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• Csing
n (X; G) = Csing

n (X)⊗ G

– this is functor from TOP to Grp

– singular n-chains with coefficients in G

• Cn
sing(X) = hom(Csing

n (X), G)

– singular n-cochains with coefficients in G

– cochain = function on singular n-chains with values in G

– 0-dim cochain is a function on 0-dim chains in X with values in G
(function)

• boundary homomorphism ∂ : Cn(X)→ Cn−1(X)

• boundary homomorphism ∂ : Cn(X; G)→ Cn−1(X; G)

– same formulas

• coboundary homomorphism δ : Cn−1(X; G)→ Cn(X; G)

– ⟨δn−1c, σ⟩ = ⟨c, ∂nσ⟩

– δ is dual to ∂; the value of δn−1c on n-simplex σ is determined by
the value of c on n− 1 simplex ∂σ.

– (δn−1c)(σ) = ∑i(−1)ic(σ |[v0 ...v̂i ...vn ])

• {chain complex, homology}
hom(−,G)−−−−−→ {cochain complex, cohomology}

• Rechenregeln

– Hn(
∨

i Xi) =
⊕

i Hn(Xi)

– Hn(
∨

i Xi) = ∏i Hn(Xi)

• homological algebra

– given 0 → F → G → H → 0 apply Cn(X)
⊗− and consider

0→ Cn(X, F)→ Cn(X, G)→ Cn(X, H)→ 0

Notes from "Homology theory, lecture 12, Panov T. E."

• cup product ⌣: Hp(X; R)× Hq(X; R)→ Hp+q(X; R)

• associative graded-commutative ring with 1 denoted by H∗(X; R) =⊕
p≥0 Hp(X; R)

• graded-commutative ⇐⇒ ab = (−1)ijba

• a ∈ Cp(X; R), b ∈ Cq(X; R), define a ⌣ b ∈ Cp+q(X; R)

– given p + q-simplex σ : ∆p+q = [v0 . . . vp+q+1]→ X
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– define (a ⌣ b)(σ) = a(σ |0,p)b(σ |p,p+q) where a and b share one
vertex p

• Rechenregeln:

– identity element is 1 ∈ H0(X; R), cochain with values 1 on each
point of X

– δ(a ⌣ b) = δ(a ⌣ b) + (−1)p(a ⌣ δb) (Leibniz property)

* ausklammern + p transpositions to change δ with a

* σ : ∆p+q+1 → X

· (δa ⌣ b)(σ) = ∑i(−1)ia(σ |0,p+1)b(σ |p+1,p+q+1)

· (−1)p(a ⌣ δb)(σ) = ∑i(−1)ia(σ |0,p)b(σ |p,p+q+1)

• cohomology ring H∗(X; R) =
⊕

p≥0 Hp(X; R) is a graded-commutative
ring with 1

1 Axiomatic homology

1.1 Eilenberg-Steenrod axioms
Vorlesung 1, 09.10.23

• homology theory (H∗, ∂∗)

– functor H∗ : TOP2 −→ Z-graded R-modules

– boundary operator ∂∗ : H∗ → H∗−1 ◦ I

* I : (X, A)→ (A, ∅)

• five axioms

– homotopy invariance

* homotopic maps induce the same map in homology

* caution! the converse doesn’t hold

– long exact sequence of pairs
. . .→ Hn(A)→ Hn(X)→ Hn(X, A)→ . . .

– excision

* if A ⊂ B◦ then Hn(X− A, B− A) ∼= Hn(X, B)

– dimension

* H0(•) = R

* H ̸=0(•) = 0

– additivity

* X = ⨿α Xα =⇒ Hn(X) =
⊕

Hn(Xα)

* caution! this implies that each Xα is open in X, otherwise you
can get pathological examples (taking disjoint union of all
points in the space implying homology of any space equal to
homology of a point)
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Natürlich fragt man sich – what the fuck? Jedem topologischen
Raum X wird eine unendliche Kette an R-Moduln zugeordnet. Jede
stetige Abbildung zwischen X, Y induziert ein Homomorphismus zwis-
chen Homologien von solchen Ketten. Aus Exaktheit versuchen wir,
neue Informationen über die Moduln in der Kette abzuleiten. Das ist
die Grundidee.

1.2 Mayer-Vietoris sequence

• Mayer-Vietoris sequence

– if X = A◦ ∪ B◦, then exists the following Mayer-Vietoris sequence
Hn(A ∩ B)→ Hn(A)⊕Hn(B)→ Hn(X)→ Hn−1(A ∩ B)→ · · · →
H0(X)→ 0.

• inclusion classification for pairs (X, A)

– given r : X → A and ι : A ↪→ X

– r retraction ⇐⇒ r ◦ ι = idA

– r deformation retraction ⇐⇒ r ◦ ι ≃ idrel A

* in other words, a homotopy between a retraction and the iden-
tity map on X.

* in other words, A and X are homotopy equivalent

– r neighborhood deformation retraction ⇐⇒ exists U◦ ⊇ A such
that A is a deformation retract of U

* in other words, A ⊆ U◦ ⊆ X and exists r′ : U◦ → A with
r′ ◦ i = idA

* tutor mentioned that HEP is equivalent to cofibration and NDR
is similar to that too.

– cofibration Vorlesung 2, 11.10.23

• Mayer-Vietoris sequence for pushouts

–
X0 X2

X1 X

i1

i2

j1

j2

– if i1 closed inclusion and (X1, X0) NDR

– then j2 is a closed inclusion and (X, X2) NDR

– Hn(X1, X0) ∼= Hn(X, X2)

– and the usual Mayer-Vietoris sequence from above works too
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1.3 Category-theoretical constructions
Vorlesung 3, 16.10.23

• five lemma

• cone

• suspension

• suspension isomorphism

• mapping cone

• pushout

• wedge X ∨Y = X ⨿ Y⧸(x0 ∼ y0)

1.4 Chain complexes, homology, chain homotopy
Vorlesung 4, 18.10.23

• chain complex C∗ = (C∗, c∗)

– family of Z-graded R-modules Cn

– n-th differentials cn : Cn → Cn−1

* cn ◦ cn+1 = 0 =⇒ im cn+1 ⊆ ker cn

* caution! not the other way around

– finitely generated, projective, free, finitely generated projective,
finitely generated free, . . .

– dim C∗ = d ⇐⇒ Cn = 0 für n > d

– finite = finitely generated and finite dimension

– positiv ⇐⇒ Cn = 0 für n < 0

– · · · −→ Cn+1 −→ Cn −→ Cn−1 −→ · · ·

• homology Hn(C∗)

– Hn(C∗) = ker cn/ im cn+1

* im cn+1 ⊂ ker cn because cn ◦ cn+1 = 0

* measures how far away from being exact C∗ is

– cycle u ∈ Cn ⇐⇒ cn(u) = 0 ⇐⇒ u ∈ ker cn

* cycles a, b homologous if a− b boundary

* abelianization of loops

· cycles are loops without basepoint, since changing basepoint
cyclically permutes its letters (Hatcher, p. 99)

– boundary u ∈ Cn ⇐⇒ u ∈ im cn+1

• chain map f∗ : C∗ → D∗

– family of maps fn : Cn → Dn such that everything commutes
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– induces a homomorphism on homology H( f∗) : H(C∗)→ H(D∗)

• chain homotopy h∗ from f∗ to g∗

– given chain maps f∗, g∗ : C∗ → D∗

– h∗ is family of homomorphisms hn : Cn → Dn+1

– dn+1 ◦ hn + hn−1 ◦ cn = fn − gn

– if f∗ ≃ g∗ then they induce the same homomorphisms on homol-
ogy Hn( f∗) = Hn(g∗)

C3 C2 C1 C0

D3 D2 D1 D0

d3 ◦ h2 + h1 ◦ c2 = f2 − g2

c3 c2 c1

d3 d2 d1

h2 h1 h0

Vorlesung 5, 23.10.23

• long homology sequence

– SES of chain complexes C∗, D∗, E∗ induces LES on their homolo-
gies in each dimension + induces a natural boundary operator

– zig-zag lemma

• universal property of direct sum

– direct sum of chain complexes induces direct sum on their ho-
mologies

2 Simplicial complexes and simplicial homology

• abstract simplicial complex Σ = (V, Σ)

– V vertices, Σ simplices

* the vertex condition: v ∈ V are always contained in Σ

* the subset condition: subsets S ⊆ Σ are elements of Σ

0-simplex is a point
1-simplex is a line
2-simplex is a triangle
3-simplex is a solid tetrahedron

• ordering of Σ

– let Σp be the set of p-simplices (= consist of p + 1 elements)

– for each simplex S ∈ Σ, choose bijection u(S) : [0, 1, . . . , p + 1]→ S

– switching two indices in the ordering introduces a minus sign,
[1, 2] = −[2, 1]

We now define a covariant functor from the category of simplicial com-
plexes and simplicial maps to the category of topological spaces and
continuous maps.
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• geometric simplicial complex |Σ| |Σ| is a topological space.

– the underlying set of |Σ| is the set of all functions α : V → [0, 1]
such that α(v) is positive for all v and the sum ∑v∈V α(v) is always
equal to 1

* basically all possible "weights" in barycentric coordinates

– for subset S ∈ Σ, the underlying set is the subset of Σ given by
|S| = {α | s ̸∈ S =⇒ α(s) = 0}

* basically only uses the weights from S =⇒ points lay in the
convex hull

• incidence number inzp
s,t

– let s be a p-simplex and t a (p− 1)-simplex

* if t ̸⊆ s then inzp
s,t = 0

* else inzp
s,t is sgn of the permutation of the ordering

• simplicial chain complex Csimp
∗ (Σ; R)

– Csimp
n (Σ) = free abelian on the set of n-simplices 6. Vorlesung, 25.10.23

• simplicial boundary operator cn

– cn : Csimp
n (Σ)→ Csimp

n−1 (Σ)

– takes simplex to alternating sum of its boundary (1, . . . , n) to
∑1≤i≤n(−1)i(1, . . . , î, . . . , n)

Example: c2 : (1, 2, 3) 7→ (2, 3)− (1, 3) + (1, 2)

1

2 3
• simplicial homology Hsimp

∗ (Σ; R)

7. Vorlesung, 30.10.23– measures n-dimensional holes in X

– abstract homology on Csimp
∗ (Σ; R)

– verifying Eilenberg-Steenrod axioms

Remark: simplicial complices are very combinatorial in nature. Not very
good for explicit computations by hand but good for computers.

3 Singular chain complexes and singular homology

Sometimes a triangulation might not exist, so we could do the next best
thing available – consider maps from ∆n to X instead.

• standard n-simplex ∆n ⊆ Rn+1

– closed convex hull of {e0, . . . , en} ⊆ Rn+1

• k-th face is the image of in
k

– in
k maps everything except the k-th element to ∆n
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• singular n-simplex σ : ∆n → X

– simplices are allowed to be "singular" e. g. constant map

• singular chain complex Csing
∗ (X) = (Csing

∗ (X), ∂)

· · · −→ S2(X) −→ S1(X) −→ S0(X) −→ 0

– each Sn(X) is a free R-module generated by the set of all singular
n-simplexes in X

* elements of Sn(X) are called singular n-chains

* finite linear combinations of σ ∈ Sn(x) with coefficients from R

– singular boundary operator ∂ : Sn(X)→ Sn−1(X)

* sends σ : ∆n → X to ∑i(−1)i(σ ◦ in
i )

• induced chain map Csing
∗ ( f ) : Csing

∗ (X)→ Csing
∗ (Y)

• singular homology Hsing
∗ (X, R)

– free abelian of uncountable rank, unless X is a finite collection of
points

• Hsing
1 (X) = π1(X, x0)/[π1(X, x0), π1(X, x0)]

4 CW-complexes and cellular homology
8. Vorlesung, 06.11.23

4.1 CW-complexes

• relative CW-complex (X, A)

– topological pair (X, A)

– relative CW-structure on (X, A) is a filtering (ascending chain)

A = X−1 ⊆ X0 ⊆ X1 ⊆ X2 ⊆ . . .

* such that for each n ≥ 0 exists a pushout that glues n-cells
together

⨿
i∈In

Sn−1 Xn−1

⨿
i∈In

Dn Xn

⨿
i∈In

qn
i

⨿
i∈In

ji kn

⨿
i∈In

Qn
i

* X = ∪n≥0Xn and has direct limit topology

· A ⊂ X closed ⇐⇒ A ∩ Xn closed in Xn for all n

The pushouts in the definition of Wolfgang
are not unique, e. g. there are many different
pushouts for the same filtering giving the
same spaces. Could be done differently, but
the category behaves much better if you only
request the existence of pushouts.

Example for n=0: X1 is a discrete set of points
(perhaps uncountably many points)

⨿ S−1 = ∅ ∅ = X−1

⨿ D0 = {pt} X1
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• Remarks:

– ⨿
i∈In

Dn \ ⨿
i∈In

Sn−1 is homeomorphic to Xn \ Xn−1

* each of In describes one path component of Xn \ Xn−1

* |In| = number of path components in Xn \ Xn−1

– main ingredients:

* n-skeleton Xn

* open n-cell en
i := Qn

i (Dn \ Sn−1) ⊂ Xn

* closed n-cell en
i

* boundary en
i \ en

i or ∂en
i

* characteristic map Qn
i

* gluing map qn
i

• cellular map f : (X, A)→ (Y, B)

– f (Xn) ⊆ Yn for all n ≥ −1

• isomorphism of CW complexes

– cellular maps f : X → Y and g : Y → X

• CW pair (X, A)

– if e ∩ A ̸= ∅ then e ⊆ A

– closed subspace A ⊂ X + union of cells

– A is a CW subcomplex of X with CW structure given by An =

Xn ∩ A

– any CW pair is a relative CW complex but not vice versa Example: X = [−1, 1] has the following CW-
structure X−1 = ∅, X0 = {−1, 1}, Xi = [−1, 1]
for i ≥ 1. I could also use − id as the gluing
map.

S0 {−1, 1}

D1 X1 = X

id

id

• compactness lemmas about CW complexes

– subset C ⊆ X is closed ⇐⇒ for all e : C ∩ e compact

– subset C ⊆ X is compact ⇐⇒ C closed and meets finitely many
cells

– subset C ⊆ X is compact ⇐⇒ C closed and contained in a finite
CW subcomplex

– CW complex X is compact ⇐⇒ CW complex X is finite

• relative CW complex (X, A) =⇒ (X, A) is a NDR

• cellular pushout 9. Vorlesung, 08.11.23

• Mayer-Vietoris for CW-complexes

• covering space has CW-structure ⇐⇒ base space has CW-structure
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• X, Y CW-complexes and X or Y locally compact =⇒ X × Y inherits
CW-structure

• examples of CW-complexes

– Sn

– RPn

– CPn

– T2

• cellular approximation theorem

– there is no difference between cellular maps and just normal maps
between CW complexes

4.2 Maps between spheres

What do we know about spheres?

• built inductively

– vn : ΣSn−1 → Sn is a homeomorphism

• exists suspension isomorphism

– σn(X) : Hn−1(Sn−1)→ Hn(ΣSn−1) = Hn(Sn)

• if [Sd, Sd] set of homotopy classes of selfmaps in Sd then suspension
induces isomorphism between [Sd, Sd] and [Sd+1, Sd+1] (Freudenthal)

4.3 Cellular chain complex associated with (any) homology
10. Vorlesung, 13.11.23

Given CW-complex (X, A) and a homology theory (any) H∗ define

• cellular chain complex C∗(X, A) = (∪∞
n=0Hn(Xn, Xn−1), ∂)

· · · −→ H3(X3, X2) −→ H2(X2, X1) −→ H1(X1, X0) −→ H0(X0, A)

– each Hn(Xn, Xn−1) is R-module of pairs in theory H∗
– cellular boundary operator ∂ : Hn(Xn, Xn−1) → Hn−1(Xn−1, Xn−2)

from the triple (Xn, Xn−1, Xn−2) Yes, cellular chain complex really is defined in
terms of homology groups...

• cellular homology Hcell(X, A) = Z[{number of n-cells}]

• Hauptsatz:

– if (X, A) a finite CW-complex or H∗ satisfies disjoint union + di-
mension axiom then HH∗n (X, A) ∼= Hn(X, A)
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4.4 Computing cellular chain complexes
11. Vorlesung, 15.11.23

• choose pushouts for CW complex

• Hk(Xn, Xn−1)
∼←− Hk(⨿In Dn, ⨿In Sn−1)

∼←− ⊕
In Hk(Dn, Sn−1)

∼−→⊕
In Hk(Sn, •) ∼−→ ⊕

In Hk−n(S0, •) ∼−→ ⊕
In Hk−n(•) =

⊕
In H0(•) if

k = n and 0 otherwise.

– I should probably elaborate on this some time later...

• cellular boundary formula

4.5 Uniqueness of homology theory for CW complexes
12. Vorlesung, 20.11.23

• if X is a finite CW complex then there exist only one unique homol-
ogy theory satisfying the dimension axiom

• if X is an infinite CW complex then there exists only one unique
homology theory satisfying the dimension axiom and the disjoint
union axiom

• cell orientation

5 Euler characteristic
13. Vorlesung, 22.11.23

Let R be any PID, e. g. Z, Q, Fp.

• preliminaries:

– structure theorem for finitely generated modules over PID

* M ∼= Rr ⊕ R/pα1
1 R⊕ . . .⊕ R/pαn

n R

* tors(M) = R/pα1
1 R⊕ . . .⊕ R/pαn

n R

* define rank of M as rkR(M) := r

– short exact sequence of finitely generated modules,

* 0→ M0 → M1 → M2 → 0

* rk(M1) = rk(M0) + rk(M2)

* if either M1 or M0, M2 are finitely generated, then all of them
are finitely generated

• Euler characteristic χ(C•) for finite chain complexes

– finite chain complex C• = finite dimension d + Cn’s are finitely
generated

– χ(C•) = ∑dim C•
n=0 (−1)n · rk(Cn) = rk(C0)− rk(C1) + rk(C2) + . . .

– equivalent with homology groups, χ(C•) = ∑(−1)n · rk(Hn(C•))

• Euler characteristic χ(X) for finite CW complexes
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– χ(X) = ∑(−1)n|In|
– compatible with cellular pushouts and direct products; “additive”

and “multiplicative”.

• universal additive invariant for finite CW complexes

• Euler characteristic for standard n-simplices (Exercise)

– χ(∆n) = ∑n
k=1(−1)k−1(n

k) 14. Vorlesung, 27.11.23

• classification of platonic solids (there are only five of them)

6 Lefschetz numbers

• Lefschetz numbers for chain complexes Λ( f∗)

– chain endomorphism f : C∗ → C∗ induces a map f∗ on H∗(C∗)

– this is a map from R-modules, so you can calculate tr(An) in each
dimension n

– Λ( f∗) = ∑k(−1)k tr(Ak) 15. Vorlesung, 29.11.23

• Lefschetz numbers for CW complexes Λ( f∗)

– Λ( f∗) = ∑k(−1)k tr( fk) where fk is a cellular map Ck(X)→ Ck(X)

• both can be calculated directly from f or from induced map on ho-
mology f∗

• Lefschetz fixed-point theorem

– if f endomorphism of a finite CW complex, then Λ( f ) = 0 ⇐⇒ f
has no fixed-point (cell mapped to itself)

7 Cohomology
15. Vorlesung, 04.12.23

• cohomology theory H∗ homology, H∗ cohomology

– functor H∗ : (TOP2)op −→ Z-graded R-modules

– boundary operator δ∗ : H∗ ◦ I → H∗+1

* I : (X, A)→ (A, ∅)

– and five axioms

• cochain complex C∗ = (C∗, δ∗)

– n-th differentials δn : Cn → Cn+1

• cohomology of a cochain complex Hn(C∗) = ker δn/ im δn−1

• dual cochain complex C∗ C∗ cochain complex, C∗ dual cochain complex

– Cn = hom(Cn, R)
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7.1 Singular cohomology

• singular cochain complex C∗sing = hom(Csing
∗ , R)

• singular cohomology H∗sing = Hn(C∗sing)

7.2 Cellular cohomology
16. Vorlesung, 04.12.23

• cellular cochain complex C∗cell = hom(Ccell, R)

• cellular cohomology H∗cell = Hn(C∗cell)

• sadly LES in homology does not induce LES in cohomology. some-
times it does, sometimes it doesn’t =⇒ universal coefficient theorem

7.3 Multiplicative structure

• Eilenberg MacLane space K(A, n)

– CW complex with πn(X) = A and 0 otherwise

• n-th homotopy group πn(X) = [(Sn, ∗), (X, x)]

• multiplicative structure (cup product)

– assigns to X with A, B ⊆ X family of bilinear maps

⌣: Hp(X, A)× Hq(X, B)→ Hp+q(X, A ∪ B)

• cross product
17. Vorlesung, 06.12.23

7.4 Cohomology ring of projective spaces

7.5 Cup product for CW complexes

8 Homological algebra

8.1 Tor and Ext functor
20.Vorlesung, 08.01.2023

• fundamental theorem of homological algebra = lifting R-module
homomorphisms to R chain maps

• [P∗, Q∗]→ homR(M, N)

• given M1 → M2, N1 → N2 have four functors

– M1 ⊗R N → M2 ⊗R N,

– N ⊗R M1 → N ⊗M2,
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– homR(M1, N)← homR(M2, N),

– homR(N, M1)→ homR(N, M2)

• free resolution of R-module M = exact sequence . . . → F2 → F1 →
F0 → M→ 0 with free Fi

– because of fundamental theorem of finitely generated abelian
groups any fin. gen. abelian M has free resolution 0 → F1 → F0 →
M where F0 are generators and F1 relations

– has same homologies with trivial resolution 0→ M→ 0

• apply ⊗RN to free resolution and omit M⊗R N

– extends category of modules to category of chain complexes

– n-th homology group = TorR
n (M, N) = ker(Fn ⊗ N → Fn−1 ⊗

N)/ im(Fn+1 ⊗ N → Fn ⊗ N}

→ F2 ⊗ N → F1 ⊗ N → F0 ⊗ N → 0

• apply homr(−, N) and omit homR(M, N)

– n-th cohomology group = Extn
R(M, N) = ker(hom(Fn, N) →

hom(Fn+1, N))/ im(homR(Fn−1, N)→ homR(Fn, N))

0→ hom(F0, N)→ hom(F1, N)→ hom(F2, N)→

• properties

– Tor, Ext independent of resolution

– TorR
0 (M, N)) = M⊗R N, Ext0

R(M, N) = homR(M, N)

– TorR
n (M, N) ∼= TorR

n (N, M) for commutative R

– Tor commutes with ⊕

• universal coefficient theorem

– 0→ Hn(X)⊗ G → Hn(X, G)→ Tor(Hn−1(X), G)→ 0

– 0→ Hn(X)⊗ G → Hn(X, G)→ Tor(Hn+1(X), G)→ 0

– 0→ Ext(Hn−1, G)→ Hn(X, G)→ hom(Hn(X), G)→ 0

• computing tips for TorR
i (M, N)

– find projective resolution . . . P2 → P1 → P0 → M → 0 of M and
apply functor ⊗RN to it omitting→ M⊗R N, calculate hojmology
of this chain comploex

– find SES of R-modules 0 → K → M → I → 0 and apply functor
⊗RN, obtain a LES→ TorR

1 (K, N) → TorR
1 (M, N) → TorR

1 (I, N) →
K⊗R N → M⊗R N → I ⊗R N → 0

– TorR
1 (R/I, R/J) ∼= (I ∩ J)/I J.
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8.2 Universal coefficient theorem

1. True or false?

• The homology groups of a free chain complex are free

• A bounded chain complex has only finitely many non-trivial homol-
ogy groups

• The degree of a homeomorphism f : Sn → Sn is always +1

• Homology groups Hn(RPn; Z) ∼= Z/2 for all n > 0

• For path-connected X trivial first fundamental group implies trivial
first homology group

• Homology of X×Y is equal to Hn(X)⊗ Hn(Y)

• If X = X1 ∪ X2 and X1, X2 and X1 ∩ X2 acyclic, then X is acyclic

• If ι : X → Y is an embedding, then ι∗ : Hn(X) → Hn(Y) is a
monomorphism

• By Borsuk-Ulam, each map f : Sn → Rn has a point X ∈ Sn :
f (−X) = − f (X)

• There are no vector fields on S2n without zeroes, n > 0
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2. Chain complexes

• What is a chain complex over a commutative ring R?

• Give two non-trivial examples of chain complexes

• How are the homology groups Hn(C∗) over a chain complex C∗
defined?

• Compute the homology groups over Z:

0→ C2 → C1 → C0 → 0

where C0 ∼= Z generated by a, C1
∼= Z⊗Z/2 generated by b of infi-

nite order and by c of order 2, C2 ∼= Z/4 generated by d. Differentials
are given by ∂(b) = 3a, ∂(c) = 0, ∂(d) = c

3. Connecting homomorphisms
Let ϵ : 0 → A∗ → B∗ → C∗ → 0 a SES of chain complexes over some

commutative ring R

• Define the connecting homomorphisms ∂ : Hn(C∗)→ Hn−1(A∗)

• Point out two choices on which the definition depends

• Write down the LES of homology groups induced by ϵ

• How is the LES of a pair (X, X0) for X0 a subspace of X defined?

4. Eilenberg-Steenrod axioms

• Name all axioms for a homology theory h∗(X, A)

• Why does singular homology theory satisfy the dimension theorem?

• If ha
∗, hb
∗ are two homology theories, is h∗ = ha

∗ ⊕ hb
∗ a homology

theory?

5. Relative homology groups

• Definte the relative homology groups of a pair of spaces (X; A)

• Write down the LES of a pair (X, A) including the homomorphisms
in this sequence

• Use this sequence to compute the homology of X = F2, the surface of
genus 2, where A is the right half of X
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6. Hurewicz isomorphism

• Define the Hurewicz homomorpism in degree 1

• Verify that it’s well-defined and state which choices your definition
depends on

• Formulate the Hurewicz theorem in degree 1

• Prove: if map f : (X, x) → (Y, y) induces an epimorphism f∗ between
the fundamental groups π1, then it also induces and epimorphism
between the first homology groups.

7. Chain maps

• What is a chain map of degree k between two chain complexes

• Prove: A chain map of degree k induces homomorphism between
homology groups

• What is a chain hojmotopy between two chain maps of degree k

• Prove: Chain homotopic chain maps induce the same homomor-
phism

8. Simplicial approximation theorem

• Formulate the simplicial approximation theorem

• Prove: if X is a finite polyhedron of dimension m < n then any map
f : X → Sn is null-homotopic

9. Jordan-Brouwer

• Formulate the Jordan-Brouwer theorem giving the homology of the
complement of a k-sphere S embedded in Rn

• Define the linking number Link(S, T) of a p-sphere S and a q-sphere
T disjointly embedded in Rn where n− 1 = p + q

• Prove: if T is isotoped inside the complement of S to T′ then Link(S, T) =
Link(S, T′)

10. Transfer

• Define the transfer homomorphism for a 2-fold covering π : X′ → X
in modulo 2 homology H∗(−; F2)

• Investigate the LES of coverings shown in the drawing below. Calcu-
late all relvant homology groups, calculate the connecting homomor-
phism for coefficients in F2

11. Bonus questions

• When did Poincare develop the concept of homology groups?

• When did Eilenber and Steenrod formulate their axioms?
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