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These notes are my rendition of the lectures given by Prof. Kammeyer to the
doctoral students of GRK 2240 in Düsseldorf during winter term 24/25. Some-
times I’ve expanded and rewritten them sufficiently or added proofs for the-
orems I didn’t know. As of now, I’ve only taken some algebraic topology and
commutative algebra, so these notes may reflect my currently rather limited
knowledge.
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1 Introduction

1.1 Galois group actions
Lecture 1, 10.10.2024

Let L/K be a Galois extension and G = Gal(L/K) its Galois group. The Galois
group G acts on L via field automorphisms:

• Action on the field extension L: For Q(
√

2) its Galois group Gal(Q(
√

2)/Q)

acts either by identity or by sending
√

2 to −
√

2.

• Action on the dual of the field extension L∗: For Q(
√

2)∗ its Galois group
acts on f (x1, x2) = x1 · 1 + x2 ·

√
2 either by identity or by sending f to

f ′ = x1 · 1 − x2 ·
√

2.

• Action on the group of nth roots of unity µn(L):

– In Q(
√

2), the nth roots of unity consist of {−1, 1} if n is even and {1} if n
is odd. Both automorphisms in Gal(Q(

√
2)/Q) leave µn(Q) fixed, so this

tells us that they all belong to the base field (are rational, in this case).

– A more interesting example is the nth cyclotomic field Q(ζn).In this field
µn(Q(ζn)) = ⟨ζn⟩, the cyclic group generated by ζn. The Galois group
Gal(Q(ζn)/Q) is isomorphic to (Z/nZ)∗. For n = 5 (prime), the Galois
group is cyclic and consists of {1, ζ5, ζ2

5, ζ3
5, ζ4

5}. The action of the Galois
group then permutes the 5th roots of unity. For n = 8, the Galois group
Gal(Q(ζ8)/Q) is isomorphic to (Z/8Z)∗ = {1, 3, 5, 7} and is cyclic of
order 4. The basis of Q(ζ8) over Q is given by {1, ζ8, ζ2

8, ζ3
8}. The actions is

given as: σ1 acts trivially, σ3 maps ζ8 to ζ3
8, σ5 acts by multiplication by −1

and σ7 maps ζ8 to ζ7
8.

• Action on the cyclic group (Z/nZ)∗: same as above.

• Action on a finite abelian group M: trivial action.

• Action on the general linear group GLn(L) over a field L of characteristic
0: GLn(L) consists of n × n invertible matrices over L. We have a Galois
extension L/K. The Galois group acts by applying the field automorphisms
to the entries of the matrices, so σ(A) = σ(aij)∀1 ≤ ij ≤ n. The fixed points
contain GLn(K).

– Backstory: The determinant of a n × n matrix A is defined as sgn(π) is either even or odd. +1 if
even and −1 if odd.

det(A) = ∑
π∈Sn

(
sgn(π)

n

∏
i=1

ai,π(i)

)

Consider σ(det(A)), where σ ∈ Gal(L/K) is a field automorphism. It
distributes over addition and multiplication:

σ(det(A)) = ∑
π∈Sn

(
sgn(π)

n

∏
i=1

σ(ai,π(i))

)
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The signum is either +1 or −1, so it is always in the base field K and is
fixed by σ. Thus σ(det(A)) = det(σ(A)). So the action of the Galois group
preserves determinants.

1.2 The fixed point functor and exact sequences

All of these examples are special cases of a more general concept: a group G
acting on an algebraic group G ⊆ GLn. An algebraic group is a matrix group

defined by polynomial conditions,
at least this is what “The theory of
group schemes of finite type over a
field.” by Milne says. I guess this is the
consequence of Chevalley theorem?

When studying group actions, we’re often interested in fixed points

AG = {a ∈ A | ∀σ ∈ G : σa = a}

Here, AG represents the set of all elements in A that are fixed by every ele-
ment of G. To study fixed points more systematically, we introduce the fixed
point functor −G. This functor takes a ZG-module and returns its fixed points.
We’re particularly interested in how this functor behaves with respect to exact
sequences.

Note 1.1.
Group action perspective: A ZG-module is an abelian group A endowed with a
(left) action (σ, a) 7→ σa of G on A such that for all σ ∈ G the map φσ : a 7→ σa
from A to A is a morphism of abelian groups. This implies that the action of G
is distributive, φσ(ab) = φσ(a) + φσ(b).
Ring module perspective: Equivalently, a ZG-module is a module over
the group ring Z[G], where elements consist of formal linear combina-
tions of elements from group G with integer coefficients, so something like
3g1 + 4g2 + 10g3 ∈ Z[G]. It contains both Z and G as subrings.
The Z[G]-module structure encapsulates both the abelian group structure of A
and the G-action on A, which leads to the key insight:

{module over Z[G]} ↔ {abelian group A with G-action}

Lemma 1.2. Consider an exact sequence of ZG-modules:

0 A B C 0
f g h

Applying the fixed point functor −G to this sequence yields:

0 AG BG CGf G gG

This new sequence is exact in Ab (the category of abelian groups). Thus the
functor −G is left-exact, meaning it preserves exactness at the left end of the
sequence.

• A natural question arises: Is the fixed point functor also right-exact? If such
a lifting always exists, then the fixed point functor preserves exactness at C,
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making it right-exact. If not, we’ve discovered an obstruction that tells us
something about the Galois action and the structure of our groups.

• To investigate this, we need to check if ker hG = im gG, or equivalently, if
im gG = CG. Breaking this down:

– Take any c ∈ CG.

– Since CG ⊆ C, there exists a b ∈ B such that g(b) = c.

– If b were fixed by G, we’d be done. But it might not be. Why σb = b?

* Consider σb − b for any σ ∈ G. We have g(σb − b) = g(σb)− g(b) =

σg(b)− g(b) = σc − c.

* Since c ∈ CG, σc − c = 0 and (σb − b) ∈ ker g.

* By exactness, ker g = im f , so σb − b ∈ im f .

* We can view this as an element of A (considering f as an inclusion
A ⊆ B). Also, C ∼= B/ im f . Or consider

presentations of groups.
So the question of right-exactness boils down to whether or not every G-
invariant element of C can be lifted to a G-invariant element of B and the
obstruction to it lives inside of A. And if b were indeed in BG then

(σb − b) = 0 ∈ A.
• This analysis leads us to define a map (for a given c ∈ CG):

φ : G → A, σ 7→ σb − b =: aσ

This map is called a crossed homomorphism (also known as a derivation
or 1-cocycle). It measures how far b is from being G-invariant. If b were G-
invariant, this map would be identically 0! Note that this is independent of
any b taken such that g(b) = c. Such cocycles are cohomologous.

Proposition 1.3. The map σ 7→ aσ satisfies:

aστ = aσ + σaτ

This property is what defines a crossed homomorphism.

• In the abelian case, we define

– Z1(G, A) = {a′ : G → A | a′στ = a′σ + σa′τ}, the set of all crossed
homomorphisms from G to A.

– B1(G, A) = {a : σ ∈ Z1(G, A) | ∃a′ ∈ A : aσ = σa′ − a′}.

– The quotient H1(G, A) = Z1(G, A)/B1(G, A) is called the first cohomol-
ogy group of G with coefficients in A. It measures the obstruction to the
right-exactness of the fixed point functor. The functor A 7→ H1(G, A) is a derived

functor of the A 7→ AG functor.
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The obstructions for right-exactness: find σb − b ∈ A such that it is 0 under
projection in Z1(G, A)/B1(G, A). It is given by δ(c) = [aσ] ∈ H1(G, A) =

Z1(G, A)/B1(G, A). We can extend our original sequence to a longer exact
sequence:

0 AG BG CG H1(G, A) H1(G, B) H1(G, C) 0δ

This sequence is exact in Ab, and the map δ (called the connecting homomor-
phism) measures the failure of right-exactness of the fixed point functor, since
ker δ represents all elements of CG which can be lifted to elements of BG. In field theory, H1(G, A) can represent

the obstruction to an element being
a norm. In the theory of algebraic
groups, H1(G, A) can represent the
obstruction to a torsor having a rational
point.

• The key idea of the 1-cocycle is to encode the failure of G-invariance in a way
that’s compatible with the group structures involved. It allows us to move
from concrete elements (b and c) to cohomological objects ([φ]) that capture
essential information about the Galois action and the relationship between
our groups A, B, and C. This approach transforms specific lifting problems
into more general cohomological questions, allowing us to apply powerful
theoretical tools and gain deeper insights into the structures we’re studying.

Exercise 1.4. Show that H1(G,−) is functorial and

0 AG BG CG H1(G, A) H1(G, B) H1(G, C) 0

is exact. Find example with δ ̸= 0.

• In the non-abelian case, we define

– H0(G, A) = AG, the fixed points as before.

– H1(G, A) = Z1(F, A)/ ∼, where ∼ is an equivalence relation defined by:
aσ ∼ bσ ⇐⇒ ∃a′ ∈ A : bσ = (a′)−1 · aσ · σa′. We cannot expect B1(G, A) to be a

subgroup. Why?
σa denotes the action of σ on a.In this case, H1(G, A) doesn’t have a group structure, but is a pointed set (a

set with a distinguished element). We can still define a notion of exactness for
sequences of pointed sets. Exactness in pointed sets (A, ∗) is

defined as im f = ker g = g−1(∗)
A ≤G B is G-equivariant inclusion.

Proposition 1.5. For A ≤G B, we obtain G ↷ B/A and

1 H0(G, A) H0(G, B) H0(G, C) H1(G, A) H1(G, B)

is exact.

This is the Galois cohomology. Why do we care? In the non-commutative
case H1(G, A) classifies “K-objects”. In our lecture we will use this to classify
simple and simply connected linear algebraic k-groups G.
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2 Preliminaries from algebraic number theory.
Lecture 2, 17.10.24

User: GRK, password: 2240.2.1 Number fields

Definition 2.1. An algebraic number field is a finite field extension k/Q.

“The concept of algebraic integer was
one of the most important discover-
ies of number theory. It is not easy
to explain quickly why it is the right
definition to use, but roughly speaking,
we can think of the leading coefficient
of the primitive irreducible polyno-
mials f (x) as a ‘denominator’.If α
is the root of an integer polynomial
f (x)=dxn + an−1xn−1 + . . ., then dα
is an algebraic integer, because it is a
root of the monic integer polynomial
xn + an−1xn−1 + . . . + dn−1a0.
Thus we can ‘clear the denominator’ in
any algebraic number by multiplying
it with a suitable integer to get an
algebraic integer.” — Artin, Algebra.

• This definition implies the following properties:

– The field k has characteristic 0.

– By the Primitive Element Theorem, k = Q(a) for some a ∈ K.

– There exists a unique minimal polynomial f ∈ Q[X] for a, with deg( f ) =
d = [k : Q].

• Let (a1, . . . , ad) be the roots of f in the algebraic closure of Q within C. These
roots are called the Galois conjugates of a. Note that these roots do not lie in
Q.

• Properties of embeddings:

– For each i, the map a 7→ ai defines an isomorphism Q(a) ∼= Q(ai).

– Any embedding k → C must send a to some ai.

– There are exactly d embeddings k → C, denoted σ1, . . . , σd.

• Classification of embeddings:

– Note that (a1, . . . , ad) = (a1, . . . , ad), so σi(k) ⊆ R if and only if ai = ai.

– We can thus classify the embeddings as:

* Real embeddings (real places of K): r1

* Complex embeddings (complex places of K): 2r2 (counted in pairs due
to complex conjugation)

– This classification implies d = r1 + 2r2

• Examples:

– For k = Q( 3
√

2): r1 = 1, r2 = 1

– For k = Q(exp(2πi/n)), n ≥ 3: r1 = 0, r2 = φ(n)/2 (odd n)

Definition 2.2. For any α ∈ K, we define two rational numbers:
1. The norm: NK/Q(α) = ∏d

i=1 σi(α)

2. The trace: TrK/Q(α) = ∑d
i=1 σi(α)

Note: NK/Q(α) = det(α : K → K), and
similarly for the trace.

• Basis criterion: Let (α1, . . . , αd) ∈ k and λ1, . . . , λd ∈ Q. Then ∑d
i=1 λiαi =

0 ⇐⇒ ∑d
i=1 λiσj(αi) = 0 for all j. Moreover, {αi}d

i=1 is a basis of k if and only
if det(σi(αj)) ̸= 0.
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Definition 2.3. The discriminant of a basis {α1, . . . , αd} of a number field k
of degree d over Q is defined as: discr({α1, . . . , αd}) = det2(σi(αj)) ∈ Q, where
σ1, . . . , σd are the d distinct embeddings of k into C.

Exercise 2.4. Prove that discr(αi) = det(Trk/Q(αiαj))1≤i,j≤d. Show that if k =

Q(a) for some a ∈ k, then discr({1, a, a2, . . . , ad−1}) = ∏1≤i<j≤d(σi(a)− σj(a))2.

To introduce relative versions for an extension l/k, we define the relative dis-
criminant discr()l/k using only those embeddings σi : l ↪→ C which restrict to
the identity on k.

2.2 Integrality in number fields
Algebraic number theory is not (al-
gebraic) number theory but rather
(algebraic number) theory.

Let k be an algebraic number field for the following discussion.

Definition 2.5. The ring of integers in k is defined as:

Ok = {α ∈ k : f (α) = 0 for some monic f ∈ Z[X]} = Zk.

• Example: OQ = Z. It is often referred to as the ring of “rational integers”.

Proposition 2.6. For (α1, . . . , αr) ∈ k, the following are equivalent:
1. (α1, . . . , αr) ∈ Ok

2. Z[α1, . . . , αr] is finitely generated as a Z-module.

Proof: =⇒ If each αi ∈ Ok, then it satisfies a monic polynomial with integer
coefficients. Let the minimal polynomial of αi be: fi(x) = xni + a(i)ni−1xni−1 +

. . . + a(i)1 x + a(i)0 where each a(i)j ∈ Z. From the minimal polynomial, we can
express any higher power of αi as a Z-linear combination of lower powers:

α
ni
i = −

ni

∑
j=1

a(i)ni−jα
ni−j
i

This means that the set {1, αi, α2
i , . . . , α

ni−1
i } spans Z[αi] as a Z-module. (As

any higher power is a Z-linear combination of elements from the set and any
lower power is already in the set). Now consider all monomials of the form
αe1

1 αe2
2 . . . αer

r , where 0 ≤ ei < ni. They cover all possible combination of the αi’s
up to the power ni − 1 for each αi. Any higher powers can be reduced to linear
combinations of these monomials using the minimal polynomials. As such,
Z[α1, . . . , αr] is spanned by N = n1n2 . . . nr such monomials and therefore is
finitely generated over Z. ⇐= This part is trickier, so we will skip it (keyword
transformations, Cayley-Hamilton, characteristic polynomial).

• Since for α, β ∈ Ok their sum Z[α + β] and multiplication Z[α · β] are also
finitely generated, Ok is a ring.

Lemma 2.7. For α ∈ k, there exist β ∈ Ok, n ∈ Z such that α = β
n .
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From now on we can assume that our algebraic number field is generated by
a primitive element which is an algebraic integer.

Proposition 2.8. Let k be of degree d over Q, and let a be a primitive element
of k. Then

Z[a] ⊆ Ok ⊆
1

discr(1, a, . . . , ad−1)
Z[a]

Because Ok lies between two free abelian groups of the same rank, it must be a
free abelian group of the same rank.

(Note: 1
discr(1,a,...,ad−1)

is in Z because
it is in the intersection of algebraic
integers in k and Q.)Corollary 2.9. Ok has a Z-basis of rank d. Any such basis is called an inte-

gral basis.

(Note: This relates to the theory of lattices in Q-vector spaces and Minkowski’s
geometry of numbers. The covolumes of these lattices play a crucial role in
understanding the structure of Ok.)

Corollary 2.10. Ok is noetherian.

Definition 2.11. The discriminant of k, denoted by discr()k or dk is given by
discr(α1, . . . , αd) for any integral basis {α1, . . . , αd}. This is well-defined because
the change of basis matrix has determinant det(T...) = ±1.

More generally, we can also define relative discriminants dL/K for a field
extension L/K as dL/K = discr(βi) where βi is a relative integral basis. This
dL/K is an ideal in OK, as we might not be in a principal ideal domain anymore.

Exercise 2.12. Let k = Q(
√

D), where D is a square-free integer. Show that:
a) If D ≡ 1 (mod 4), then an integral basis is 1, 1+

√
D

2 and dk = D.
b) If D ≡ 2, 3 (mod 4), then an integral basis is 1,

√
D and dk = 4D.

Solution: Fun fact: for any x in a number field,
TFAE:
a) The norm N(x),
b) The determinant of x in matrix
representation A,
c) The constant term of the characteris-
tic polynomial of A.
Fun fact 2: for any x in a number field,
a) The trace of A is the coefficient of
second highest degree in the character-
istic polynomial of A.
Thus trace trk(x) and detk(x) com-
pletely determine chark(x, T) of degree
2.

• Suppose a + b
√

D ∈ Ok with a, b ∈ Q. Then

a + b
√

D =

(
a bD
b a

)
=: A ∈ M2(Q),

since (a + b
√

D)(x + y
√

D) = ax + (ay + bx)
√

D + byD. This is the product
of multiplation with the “real” part ax + byD and the “imaginary” part (ay +

bx)
√

D.

• Since multiplication by a + b
√

D acts like multiplication by the matrix repre-
sentation, consider its characteristic polynomial char(x, T) = T2 − 2aT + a2 −
b2D.

– The constant term is Nk(x).
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– The coefficient of T is − trk(x).

• For x to be an algebraic integer, we need

– Nk(a + b
√

D) = a2 − b2D ∈ Z

– trk(x) = 2a ∈ Z.

• Case-by-case: assume the above is true.

– If a ∈ Z, then b2D ∈ Z. Since D is square-free and b2 = q2

p2 , it cannot

cancel out the denominator p2 completely. So b2 ∈ Z, thus b ∈ Z since
we are working in Q. This implies that {1,

√
D} is the integral basis and

Z + Z
√

D = Ok

– If a ̸∈ Z, then from trace condition it is a completely reduced proper
fraction of the form 2k+1

2 ∈ Q. By the norm equation, ( 2k+1
2 )2 − b2D ∈ Z.

* Let’s look at (2a)2 − (2b)2D ∈ Z. We have 2(a)2 = (2k + 1)2 ∈ Z, so
(2b)2D ∈ Z. Since D is square-free, (2b)2 ∈ Z, therefore 2b ∈ Z.

* Say, 2b = m ∈ Z, then b = m
2 . Plug this back into the original norm

equation:

N(a + b
√

D) = a2 − b2D = (
2k + 1

2
)2 − (

m
2
)2D =

4k2 + 4k + 1
4

− m2D
4

∈ Z

– This fraction is integer if the numerator is 0 mod (4).

* If m is odd, then m = 2l + 1 and m2 = 4l2 + 4l + 1, so we have 4(k2 −
l2D + k − lD) + (1 − D), which is divisible by 4 when 1 − D = 4 or
D = 1 mod (4).

* If m is even, then we have 1
4 ̸∈ Z. This implies that if D = 2, 3 mod (4),

then half-integers don’t work and a, b ∈ Z.

* Normalizing a and b for D = 1 mod (4) gives: (2k+1
2 + (2l+1)

2

√
D =

k + l
√

D + 1+
√

D
2 , so Ok = Z + Z( 1+

√
D

2 ).

2.3 The arithmetic of algebraic integers

• Example: Consider the number field k = Q(
√
−5). In this field:

– The ring of integers is Ok = Z[
√
−5].

– We have the factorization: 21 = 3 · 7 = (1 + 2
√
−5) · (1 − 2

√
−5). All

factors in this factorization are irreducible. This demonstrates that Ok is
not a Unique Factorization Domain (UFD). (Consider norm of an algebraic
number. . .)

– Kummer’s idea of ideal numbers was to address this lack of unique fac-
torization. He proposed the concept of “ideal numbers” p1, p2, p3, p4 such
that: p1 · p2 = 3, p3 · p4 = 7, p1 · p3 = 1 + 2

√
−5, p2 · p4 = 1 − 2

√
−5. This

would lead to: 21 = p1 p2 p3 p4 = p1 p3 p2 p4, differing only by permutation.
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– Properties of these ideal numbers:

* p1|3 and p1|(1 + 2
√
−5)

* p1|(λ · 3 + µ · (1 + 2
√
−5)) for any λ, µ ∈ Ok

– This suggests defining p1 as the set of all α ∈ Ok that it divides. We can
thus represent these "ideal numbers" as ideals: p1 = (3, 1 + 2

√
−5), p2 =

(3, 1 − 2
√
−5) . . .

This approach leads to the idea of achieving unique factorization in terms of
ideals rather than elements.

Theorem 2.13. The ring Ok is noetherian, integrally closed and of dimension 1.

These three properties characterize a fundamental class of rings in algebraic
number theory:

Definition 2.14. An integral domain satisfying these three properties is called
a Dedekind domain.

The significance of Dedekind domains lies in their unique factorization prop-
erty for ideals, which generalizes the unique factorization of elements in UFDs. Lecture 3, ...
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