
The AZTEC Protocol

Dr Zachary J. Williamson

AZTEC
Version 1.0.1

December 4, 2018

Abstract

The Anonymous Zero-knowledge Transactions with Efficient Communication
(AZTEC) protocol describes a set of zero-knowledge proofs that define a confiden-
tial transaction protocol, designed for use within blockchain protocols that support
Turing-complete general-purpose computation.

The protocol is utilizes a commitment scheme that enables the efficient verifica-
tion of range proofs. This is combined with a set of zero-knowledge Sigma protocols
to enable efficiently verifiable confidential transactions.

The reference implementation of the AZTEC protocol is implemented on the Ethereum
public blockchain. It can be used to create confidential representations of existing
digital assets. At the time of publication, AZTEC zero-knowledge proofs cost ap-
proximately 840,000 ‘gas’ to verify on the Ethereum main-net.

Acknowledgements

I would like to thank Professor Jens Groth, UCL, for his invaluable advice, guidance
and contributions over the last few months. Without his assistance this paper would
not have been possible.

1

1 Motivations behind the AZTEC protocol

Blockchain technologies enable transactions to an immutable ledger that can be
composed to define a system of digital value transfer. For example, the Bitcoin [1]
blockchain defines an ownership registry of the Bitcoin cryptocurrency, where owners
of the currency can collectively reach a consensus on how much Bitcoin individuals
hold without a centralized entity acting as a source of trust.

This trustless attestation has come at the cost of confidentiality - in order for a
transaction to be validated both the inputs, outputs and the transaction validation
algorithm must be public. There is no concept of a ‘privileged actor’ that has access
to private information.

A confidential transaction describes a transaction on a public blockchain net-
work, where the value of the transaction is hidden. Existing blockchains have im-
plemented confidential transactions, such as Monero [2] or ZCash [3]. However
confidential transactions have not yet been implemented on a blockchain platform
which also supports general-purpose computation through a Turing-complete virtual
machine [4]. This limits existing confidential transactions to transactions where the
value being transferred is the native cryptocurrency of the blockchain in question.

The AZTEC protocol enables confidential transactions in a generic form that can
be implemented on blockchains that support general-purpose computation, such as
the Ethereum blockchain [4]. The AZTEC protocol can be attached to existing dig-
ital assets defined on these platforms (for example, digital assets that conform to
the ERC20 token standard [5]). The protocol also enables confidential cross-asset
trades for digital assets defined on the same blockchain platform via confidential,
zero-knowledge decentralized exchanges.

An implementation of the AZTEC protocol has been instantiated on the Ethereum
blockchain via a set of op-codes that are defined by the protocol’s Turing-complete
virtual machine (a ‘smart contract’). Gas costs for transactions that verify AZTEC
proofs are approximately 840,000 gas for a simple ‘join-split’ transaction with two
inputs and two outputs, although there are efficiency savings when batching multiple
proofs together.

1.1 The AZTEC ‘note’

An AZTEC note is an encrypted representation of abstract value. How this abstract
representation maps to real quantities is a higher-level detail of digital assets that
utilize the protocol. The ‘note’ is an output of the AZTEC commitment function
from section 3. It is comprised of a tuple of elliptic curve commitments and three
scalars: a viewing key, a spending key and a message. Knowledge of the
viewing key allows the note to be decrypted, revealing the message. Knowledge of
the viewing key can be used to create valid join-split zero-knowledge proofs. These
proofs are then signed by the spending key.

2

Figure 1: Join-split transactions describe the creation and destruction of notes. By
defining different note ‘owners’ value can be transferred.

1.2 The Join-Split confidential transaction

The join-split transaction type is used by the AZTEC protocol to implement confi-
dential transactions. Traditional digital assets are described by an balance registry
- identities are linked to a single balance.

In the AZTEC protocol, this is replaced with a note registry. A note contains
an encrypted balance, ownership of the note is defined as possessing knowledge of
both the note’s viewing key and spending key. In a join-split transaction, at least
one note is taken from the note registry (join). These notes are combined and then
split into at least one output note (split). The input notes are removed from the
note registry and replaced with the output notes. An AZTEC verifier must be able
to validate the existence of unspent AZTEC notes (and therefore have access to
some form of persistent state), but the manner in which this is achieved is beyond
the scope of this paper.

The AZTEC protocol describes how join-split transactions can be constructed and
validated in zero-knowledge. The witnesses required to decrypt note balances is not
exposed. The witnesses required to prove ‘ownership’ over a note are not exposed.

The AZTEC protocol validates the legitimacy of a join-split transaction using a
combination of homomorphic arithmetic and range proofs. The range proof em-
ployed by the AZTEC protocol is efficient to both construct and verify (section 4).
The complexity of constructing and verifying a range proof does not scale with the
cardinality of the range being proven against. The range proof requires 3 elliptic
curve point scalar multiplications and 1 bilinear pairing comparison to verify.

Multiple range proofs can be combined, in which case verifying the set of proofs
requires 4 elliptic curve point scalar multiplications per proof and 1 bilinear pairing
comparison for the complete set of proofs. Section 8 describes the efficiency of the
protocol in the context of implementing a smart-contract verifier described by the
Ethereum protocol’s Ethereum Virtual Machine [4].

This efficiency comes at the cost of a trusted setup phase that generates a com-

3

mon reference string that contains a set of elliptic curve points. This set scales
linearly with the cardinality of the range used by the range proof. This point set in
the common reference string is required by a prover to construct proofs, but is not
required by the verifier. This makes the protocol ideal for verifiers that are both
computationally constrained and storage constrained, such as algorithms embedded
into blockchain protocols.

1.3 Who ‘owns’ an AZTEC note?

When an AZTEC note is issued, a public key, Q, is defined by the transaction issuer.
The witness to Q is referred to as the ‘spending key’. If this note is used as an input
to a future join-split transaction, the prover must provide a signature signed by the
spending key. The message of this signature is a hash of the input string of the
join-split transaction involving the note.

Ownership of a note is defined as possessing knowledge of the witness to Q.

The spending key is divorced from the commitment function for the AZTEC pro-
tocol. The basic protocol enables confidential transactions to be validated; defining
ownership of AZTEC notes is a higher-level implementation detail that will vary
depending on the capabilities of the blockchain used to implement the AZTEC pro-
tocol. This typically will involve validating a signature signed by the witness to Q,
however the exact form of the signature will vary depending on the most efficient
signature scheme for the platform in question.

Appendix A describes how spending keys are defined and validated for one existing
implementation of the AZTEC protocol on the Ethereum blockchain.

1.3.1 How do AZTEC notes interact with traditional public digital assets?

In the context of this paper, a ‘traditional’ digital asset refers to a program em-
bedded into a blockchain protocol that defines the ownership record and transfer
logic for a digital representation of value. One example is an implementation of
the ERC20 [5] token standard that builds on top of the Ethereum blockchain [4].
Another example of a digital asset is ethereum itself; the cryptocurrency associated
with the consensus mechanism of the protocol. The AZTEC protocol can be used to
interact with traditional digital assets that utilize the same underlying blockchain
as the AZTEC protocol.

The protocol can be used to define two different types of digital assets: fully anony-
mous assets and public/private assets.

Fully anonymous assets are represented exclusively via optimized AZTEC notes and
do not have a traditional digital asset representation. The only methods of trading a
fully anonymous asset is via join-split transactions or via the AZTEC decentralized
exchange protocol.

4

1.3.2 The AZTEC protocol and anonymity

The AZTEC protocol enables confidential transactions where the messages of indi-
vidual notes are encrypted. Full anonymity is then provided by combining confi-
dential zero-knowledge transactions with stealth addresses [2]. A description of how
stealth addresses are incorporated into the existing Ethereum implementation of the
AZTEC protocol is described in appendix A.

5

2 Setup

2.1 Notation and assumptions about sampling

For a set S we denote by s← S the sampling of a uniformly random element from
S. When describing protocols, we often assume the abbility to sample uniformly
at random from different sets, e.g., Zp. In reality, randomness sampling may be
statistically biased or pseudorandom, in which case security is preserved up to this
statistical bias or dependent on the security of the pseudorandomness. Moreover, we
assume the sampling process does not reveal intermediate values so the only output
is the sampled value s.

For an algorithm A, we write y ← A(x) to refer to the process of running A on
an input string x and obtaining output string y. For probabilistic algorithms that
consume randomness r, we write y := A(x, r) when we want to explicitly refer to it.
If a is deterministic then y ← A(x) and y := A(x) represent the same process. The
notation y ← AB(x) refers to running an algorithm A that has access to another
algorithm (also called an oracle) B, i.e., A gives B an input and waits until an
output from B has been received.

2.2 Common choice of groups with pairing and hash function

We assume that all parties that use the AZTEC protocol share a common choice of
p,G,G2,GT , g, g2, gT , e,H, where

• p is a prime and we let Zp denote the set of integers modulo p represented by
0, . . . , p− 1

• G,G2,GT are groups of prime order p, written multiplicatively with neutral
element 1, where the group operation and deciding group membership can be
computed efficiently

• g, g2, gT are the group elements generating G,G2 and GT respectively

• e : G×G2 → GT is an efficiently computable bilinear map (pairing) such that
for all a, b ∈ Z : e(ga, gb2) = gabT

• H : {0, 1}∗ → {0, 1}` is an efficienly computable hash function that takes
arbitrary length inputs and returns `-bit outputs

The Ethereum blockchain has native support for elliptic curve arithmetic operations
of the type required by the AZTEC protocol for one specific curve, the 254-bit pair-
ing friendly Barreto-Naehrig curve [6]. The curve was formerly used by the ZCash
blockchain to implement the zerocoin protocol [3]. The curve is colloquially called
bn128 [6] in reference to the nominal security of the curve, or bn254 in reference
to the bit-length of the relevant prime field. The reference implementation of the
AZTEC protocol uses this curve to define p,G,G2,GT , e as above.

In the reference implementation of the AZTEC protocol, H is the SHA-3 (keccak)
hashing algorithm with a 256-bit output [7].

2.3 Common setup over groups with pairing

We also assume all parties share a common choice of kmax, h, µ1, . . . , µkmax , t2, where

6

• kmax is a positive integer much smaller than p

• h, µ1, . . . , µkmax ∈ G and t2 ∈ G2

• h 6= 1

• There exists a y ∈ Zp\{0, . . . , kmax} such that µk = h
1

y−k for all k = 0, . . . , kmax

and t2 = gy2

The AZTEC protocol utilizes range proofs defined over a fixed range [0; kmax], where
in the reference implementation, kmax = 225 − 1. Section 3.1 describes the choices
considered when setting kmax. In the reference implementation h is chosen uni-
formly at random from G \ {1} and y uniformly at random from Zp \ {0, . . . , kmax}.
After computation of µ0, . . . , µkmax and t2 the choice of y and other internal data
used in the computation is deleted.

We make the assumption that the group elements have been honestly and securely
computed in this way. Specifically, we assume by some trusted procedure h has
been sampled uniformly at random. For our choice of G this can be done using
public randomness so no party needs to store any secrets associated with h. We also
assume µ1, . . . , µkmax , t2 have been sampled so they are valid with respect to y. Here
we trust y is generated uniformly at random and it is securely erased together with
all intermediate data after the group elements have been computed. We note that
the pairing can be used to check the group elements are of the right form, i.e., for
k = 1, . . . , kmax : e(µk, t2g

−k
2) = e(h, g2).

It should be noted that the AZTEC protocol’s range proof relies on y being de-
stroyed. If an attacker can recover y, they can create a commitment for an integer
k that satisfy the AZTEC protocol’s verifier algorithm, where k /∈ [0, kmax]. For any
confidential currency using the AZTEC protocol, it follows that the attacker will be
able to issue double-spend transactions.

2.4 The q-strong Diffie-Hellman assumption (SDH)

The strong Diffie-Hellman (q-SDH) problem was first defined by Boneh and Boyen [8].
Adapted to our type of groups with pairings it says given g, gx, . . . , gx

q

, g2, g
x
2 for

uniformly random x ← Zp it should be hard to find c, z such that z = g
1

x+c . More
precisely, let A be an attacker, then we define its advantage against the SDH as-
sumption over our setup to be

AdvSDH
q,A = Pr[x← Zp; (c, z)← A(g, gx, . . . , gx

q

, g2, g
x
2) : (c, z) ∈ Zp×G and zx+c = g].

We will assume that all realistic adversaries A humanity may construct in the im-
mediate future will have miniscule advantage when using our choice of groups and
pairing and q = kmax.

Please note that the q-SDH assumption implies the hardness of other computational
tasks such as the discrete logarithm problem for instance.

2.5 Random oracle model

We will model our choice of hash function as a random oracle [9]. Intuitively this
means we believe the hash function mangles the input so much that the output looks

7

random. Our protocols will use the hash function as a subroutine, i.e., algorithms
are of the form AO(·). In our security modelling, we replace the hash function with
a random oracle, i.e., instead of using O(x) = H(x) we define O(x) to return a
random y ← {0, 1}` when x has not been input before, and otherwise return the
same y as was used on the previous oracle call on x. Strengthening the random
oracle model, we may also consider the programmable random oracle model, where
an additional oracle O′ is provided that on input x ...

2.6 Sigma-protocols

2.7 Non-interactive zero-knowledge proofs

R = {(w, x, crs)} ⊆ {0, 1}?×{0, 1}?×{0, 1}?} is a binary relation between a witness
string w an input string x and a common reference string crs. An interactive zero
knowledge protocol describes a system where a prover, P , must convince a verifier
V that, for a given input string x, there exists a witness w such that (w, x, crs) ∈ R.
If the zero knowledge protocol is complete, V will always validate an input string
x, created by P interacting with w, where (w, x, crs) ∈ R. The following uses defi-
nitions from [10].

A zero-knowledge protocol is sound if there exists a probabilistic polynomial time
algorithm E that can extract the witness string w from a cheating prover P ? if given
oracle access to P ? (i.e. if P ? can convince V with a common input, E can obtain
proofs from P ? for any random challenge). If P ? can satisfy V (x) with probabil-
ity ε, E is able to extract a witness statement w that satisfies R with in poly(ε).
i.e. whenever P ? can satisfy V (x), E can extract a valid witness string such that
(w, x, crs) ∈ R with overwhelming probability. Therefore ε is negligible for a ‘fake’
proof where (w, x, crs) /∈ R.

A proof system is honest-verifier zero-knowledge if there exists a probabilis-
tic polynomial-time algorithm S that, for any (w, x, crs) ∈ R, identically recreates
the outputs of V .

In the AZTEC protocol, the common reference string is generated through the
AZTEC commitment scheme’s commitment key generation phase (see section 2.3).

2.8 Sigma Protocols

For a proof relation R = {w, x, crs)} ⊆ {0, 1}? × {0, 1}? × {0, 1}?, a protocol, P is
considered to be a Σ protocol [11] if the following are true:

P is a three-step protocol between two polynomial-algorithms P, V . Both algo-
rithms have input string x as a common input. The witness to R, w, is a private
input to P . P must conform to the following three-step process:

• P sends V a message a

• V sends P a random challenge c
$← Zp

• P sends V a response z. V accepts or rejects depending on the variables
x, a, c, z

8

P must be complete. If P, V follow P with inputs that satisfy the proof relation, V
must always accept.

P must have the special soundness property. If, for any input string x, com-
mon reference string crs and a pair of valid protocol parameters (a, c, z), (a′, c′, z′),
P has special soundness if there exists an efficiently-computable algorithm to extract
w such that (w, x, crs) ∈ R.

P is special honest-verifier zero knowledge. There exist a polynomial-time algo-
rithm M that, for input string x and random value e← Zp, outputs valid protocol
parameters (a, e, z) with the same probability distribution as honest algorithms P, V
acting on input string x.

2.9 The Fiat-Shamir Transform

The protocols in this paper utilize the Fiat-Shamir transform [12], which makes an
interactive protocol non-interactive through the use of a hash function H. Instead
of c being provided by the verifier, c is the output of a hash function, whose input is
the set of the Σ protocol’s commitments. The challenge, c, is treated as a pseudo-
random number whose entropy source is the input string of proof. The Fiat-Shamir
transform is secure in the random oracle model [9].

3 The AZTEC Commitment Scheme

The AZTEC system specifies a non-interactive commitment scheme. This enables
a sender to commit to a secret value k ∈ {0, . . . , kmax} and send the commitment to
a receiver. Later, the sender may open the commitment by revealing the value and
randomness used in creating the commitment, which the receiver can then check.
The commitment scheme is hiding such that the commitment itself reveals nothing
about the committed value, and binding such that once a commitment has been made
the prover cannot open it to different values. The commitment scheme utilizes a set
membership proof similar to that described by Camenisch et al [13] and Arfaoui et
al [14].

The AZTEC commitment function com : [1; kmax]×Z∗p → G×G is defined from
the setup as

com(k; a) := (µa
k, µ

ka
k ha).

When a sender desires to commit to a value k ∈ [1; kmax] she picks at random a← Zp

and computes a commitment (γ, σ) = com(k; a).

Lemma 1 The commitment scheme com is perfectly hiding.

Proof. Consider a commitment to a value k ∈ [1; kmax]. It is of the form

(γ, σ) = (µa
k, µ

ka
k ha) = (h

a
y−k , h

ka
y−k ha) = (h

a
y−k , h

ka+ya−ka
y−k) = (h

a
y−k , (h

a
y−k)y).

Since a is chosen uniformly at random from Z∗p we have h
a

y−k is uniformly random
in G \ {1} and hence reveals nothing about k. �

9

Lemma 2 The commitment scheme com is binding if the kmax-SDH problem is
hard.

Proof. Suppose an attacker finds two distinct openings to the same commitment,
i.e., (γ, σ) = (µa

k, µ
ka
k ha) = (µa′

k′ , µ
k′a′

k′ ha
′
) with k, k′ ∈ [1; kmax] and a, a′ ∈ Z∗p. Since

k 6= k′ and a, a′ 6= 0 we see from γ that a 6= a′. Looking closer at the first component
of the commitment we then have

µa
k = µa′

k′ ⇒ h
a

y−k = h
a′

y−k′ ⇒ a

y − k
=

a′

y − k′
⇒ y =

ak′ − a′k
a− a′

mod p.

The ability to compute y means such an attacker can break the q-SDH assumption
with q = kmax. �

The AZTEC commitment scheme is efficient to integrate into our protocols be-
cause it has an integrated range proof with constant verification time. To explain
this, we first observe that for a correctly computed commitment

e(γ, t2) = e(σ, g2).

This follows from

e(µa
k, t2) = e(h

a
y−k , gy2) = e(h

ay
y−k , g2) = e(h

ak
y−k ha, g2) = e(µka

k ha, g2).

Second, we observe that in a valid commitment

σ = γkha.

From these two properties we get a guarantee that k ∈ [0; kmax]. Namely, suppose
an attacker produces k ∈ Zp and a ∈ Zp such that γ 6= 1 and σ = γkha then we are
guaranteed the restriction k ∈ [1; kmax].

Lemma 3 An attacker that can produce γ ∈ G\1 and a, k ∈ Zp such that e(γ, t2) =
e(γkha, g2) with k /∈ [0; kmax] could be used to break the kmax-SDH assumption.

Proof. The pairing equation e(γ, t2) = e(γkha, g2) shows us e(γy−kha, g2) = 1 and
therefore γ = h

a
y−k . Since γ 6= 1 we know a 6= 1 so this allows the computation

of γ
1
a = h

1
y−k . If k ∈ [0; kmax] this just means γ

1
y−k = µk, however, if k /∈ [0; kmax]

we now have a weak Boneh-Boyen signature on −k not previously seen. The weak
Boneh-Boyen signature scheme is existentially unforgeable under selective chosen
message attack assuming the kmax-SDH assumption holds though, so such an attacker
is unlikely to succeed. �

3.1 Choice of kmax for the AZTEC commitment function

Given (γ, σ, a) it should be possible to recover the message k of a commitment.
Three factors influence the choice of kmax

• The time taken to recover gk through a brute-force algorithm

• The security of the kmax − sdh problem

• The size of commitment key ck

Qualitative tests indicate that a value of kmax ≈ 232 is an approximate upper
threshold given these constraints. The reference implementation of the AZTEC
protocol defines kmax = 225 − 1 to enable the fast recovery of k given gk.

10

4 The AZTEC protocol zero-knowledge proofs

In the AZTEC protocol, users will have commitments to input values and commit-
ments to output values that need to balance against each other. Since the com-
mitments are perfectly hiding this cannot be directly guaranteed, however, instead
users may produce proofs of knowledge of openings of the commitments that bal-
ance out. The AZTEC protocol therefore includes non-interactive zero-knowledge
(NIZK) proofs that can be used to demonstrate two sets of commitments have known
openings that sum to the same total. We describe these proofs after giving a quick
background on zero-knowledge proofs.

4.1 Sigma-protocols and the Fiat-Shamir heuristic

Proof systems allow two parties, called the prover and the verifier, to interact in a
way that convinces the verifier a particular statement is true. Let R be a binary
relation with an efficient algorithm that can determine whether (x,w) ∈ R. We will
call x an instance and when (x,w) ∈ R we call w a witness to x. In our proof sys-
tem, statements will be defined by the relation R, which is defined by our setup, and
instances x, and be the claim that the prover knows a witness w such that (x,w) ∈ R.

A Sigma-protocol is a particular type of proof system where the prover sends an
initial commitment message to the verifier, gets back a random challenge from the
verifier, and then sends a final response. Afterwards the verifier checks the instance
x and the transcript of commitment, challenge and response and decides whether
to accept or reject. We are going to use a special type of Sigma-protocols that can
be described by four efficient algorithms P,U , E ,S and where the verifier chooses
challenges from {0, 1}`.
P(x,w): The prover algorithm is stateful and works in two phases. Assuming the

input satisfies (x,w) ∈ R it first generates an initial commitment message B.
Then after receiving a challenge c ∈ {0, 1}` it computes a response z.

U(x, c, z)→ B: The deterministic unique commitment reconstruction algorithm on
instance x, challenge c and answer z, returns an initial commitment B. If the
input is malformed, it may instead return an error symbol ⊥.

The algorithm implicitly defines a verification procedure of a transcript (B, c, z)
that accepts if and only if B = U(x, c, z) 6= ⊥. We require (perfect) complete-
ness, which means for all (x,w) ∈ R and all c ∈ {0, 1}` the outputs B and z
of P(x,w) will satisfy B = U(x, c, z) 6= ⊥.

E(x, c, z, c′, z′)→ w: The deterministic extraction algorithm returns a string w.
We require (perfect) special soundness, which means whenever U(x, c, z) =
U(z, c′, z′) 6= ⊥ then the output w will be a witness such that (x,w) ∈ R.

S(x, c)→ z: The simulation algorithm returns a simulated answer z. We require
(perfect) special honest verifier zero-knowledge, which means for all (x,w) ∈ R
and c ∈ {0, 1}` the output has the same probability distribution as a response
z obtained from running P(x,w) on challenge c.

In order to evaluate homomorphic sums of input and output commitment messages,
it is necessary to prove the existence of witnesses that open each commitment.
Specifically, for each commitment tuple (γini

, σini
)∀i ∈ [1, nin] there must exist wit-

nesses ki, ai ∈ Zp such that γki
ini
hai = σini .

11

Similarly, for each commitment tuple (γoutj , σoutj)∀j ∈ [1, nout] there must exist

witnesses kj , aj ∈ Zp such that γ
kj

outjh
aj = σoutj .

Once the existence of these witnesses has been proven, the following relationship
must hold:

∑nin

i=1 ki −
∑nout

j=1 kj = 0.

Finally, it is necessary to validate that the witness k for every output commit-
ments is within the range [1, kmax]. As long as kmax << p this prevents the creation
of commitments where k > p

2 . This is necessary to prevent a malicious prover from
using modular arithmetic to construct commitments of arbitrary value.

It is only necessary to prove this for output commitments; it is assumed that input
commitments must themselves have been output commitments of a previous join-
split transaction. We can inductively assume that every input note is within the
range [1, kmax]. Specifically, the following relationship must be valid:

∀j ∈ [1, nout]e(γj , t2) = e(σj , g2)

5 The Joinsplit Protocol

We assume that the trusted setup algorithm T has been executed correctly, pro-
ducing a commitment key ck defined over groups G,G2 with pairing function e and
hash function H : {0, 1}∗ → {0, 1}`, where ` < |p|. The commitment key ck contains
group elements g, h, µ1, . . . , µkmax ∈ G and g2, t2 ∈ G2 that satisfy the relationship
k = 1, . . . , kmax : e(µk, t2) = e(µk

kh, g2).

We define the relationship Rbalance where

Rbalance =


(x,w) = (((γi, σi)

n
i=1,m, kpublic), (ki, ai)

n
i=1) |

For all i ∈ {1, . . . , n} : γi, σi ∈ G, ki, ai ∈ Zp, σi = γki
i h

ai

and 0 ≤ m ≤ n and n > 0 and
∑m

i=1 ki =
∑n

i=m+1 ki + kpublic (mod p)


The scalar kpublic ∈ Zp represents a public representation of ‘value’, for situations
where a public value is converted into a confidential AZTEC commitment. We
describe a proof system for Rbalance through a Sigma-protocol defined by four algo-
rithms (P,U , E ,S) for respectively proofs, reconstruction of unique initial message,
extraction of witness and simulation 1. We use these algorithms to prove that the
protocol has both special soundness and special honest-verifier zero knowledge.

5.0.1 Pbalance and Vbalance
Figure 2 describes the protocols used to construct and verify proofs for Rbalance.

1See Matilda Backendal, Mihir Bellare, Jessica Sorrell, Jiahao Sun: The Fiat-Shamir Zoo: Relating
the Security of Different Signature Variants. IACR Cryptology ePrint Archive 2018: 775 (2018) for
related ideas.

12

Pbalance(((γi, σi)ni=1,m, kpublic), (ki, ai)
n
i=1):

Validate (((γi, σi)
n
i=1,m), (ki, ai)

n
i=1) ∈ Rbalance

Pick ba1 , bk2 , ba2 , . . . , bkn , ban ← Zp

Set bk1 =
∑n

i=m+1 bki −
∑m

i=2 bki
First output of P is

B1 = γ
bk1
1 hba1 , . . . , Bn = γ

bkn
n hban

Compute the challenge c = H(((γi, σi)
n
i=1,m), (Bi)

n
i=1)

Second output of P is

k̄1 = ck1 + bk1 , ā1 = ca1 + ba1 , . . . , k̄n = ckn + bkn , ān = can + ban (mod p)

Return π = (c, ā1, ā2, k̄2, . . . , ān, k̄n)

Vbalance(((γi, σi)ni=1,m, kpublic), π):
Validate 0 ≤ m ≤ n and for i ∈ {1, . . . , n} : γi, Bi ∈ G
Parse π = (ā1, ā2, k̄2, . . . , ān, k̄n) ∈ Z2n

p

If m = 0 Set k̄1 = −
∑n

i=2 k̄i − kpublicc
If m > 0 Set k̄1 =

∑n
i=m+1 k̄i −

∑m
i=2 k̄i + kpublicc

If all checks pass the output of U is

B1 = γk̄11 hā1σ−c
1 , . . . , Bn = γk̄n1 hānσ−c

n

Return 1 if c = H(((γi, σi)
n
i=1,m), (Bi)

n
i=1) else return 0

Figure 2: Algorithms Pbalance, Vbalance

We define E(((γi, σi)
n
i=1,m, kpublic), c, (k̄i, āi)

n
i=1, c

′, (k̄′i, ā
′
i)

n
i=1) = (ki, ai)

n
i=1, where

ki =
k̄′i − k̄i
c′ − c

and ai =
ā′i − āi
c′ − c

(mod p).

We define S(((γi, σi)
n
i=1,m, kpublic), c) = (k̄i, āi)

n
i=1 using uniformly random k̄i, āi ←

Zp under the condition
∑m

i=1 k̄i =
∑n

i=m+1 k̄i + kpublic.

Lemma 4 The core protocols (P,U , E ,S) describe the core of a proof system for
Rbalance with perfect completeness, perfect special soundness and perfect honest ver-
ifier zero-knowledge.

5.0.2 Proof of perfect completeness

By definition, if the proof system has perfect completeness then for an input (x,w) =
(((γi, σi)

n
i=1,m), (ki, ai)

n
i=1) ∈ Rbalance and c ∈ {0, 1}` the protocol Pbalance will re-

turn 1.

13

Algorithm P always produces initial message (B1, . . . , Bn), challenge c and challenge
response ā1, ā2, k̄2, . . . , ān, k̄n, such that (B1, . . . , Bn) = U(((γi, σi)

n
i=1,m), c, (ā1, ā2, k̄2, . . . , ān, k̄n)).

This follows from the fact for a valid statement and challenge, all checks by P and
U pass. From this, for all i we have

Bi = γk̄i
i h

āiσ−ci = γ
cki+bki
i hcai+bai (γki

i h
ai)−c = γ

bki
i hbai .

5.0.3 Proof of special soundness

By definition, perfect special soundness means that for two proof transcripts (ā1, ā2, k̄2, . . . , ān, k̄n)
and (ā′1, ā

′
2, k̄
′
2, . . . , ā

′
n, k̄
′
n) with distinct challenges c 6= c′ ∈ {0, 1}` where U returns

the same initial message (Bi)
n
i=1 it is possible to extract a valid witness. From the

verification equations we have for each i that

Bi = γk̄i
i h

āiσ−ci = γ
k̄′i
i h

ā′iσ−c
′

i .

Where k̄1 =
∑n

i=m+1 k̄i−
∑m

i=2 k̄i and k̄′1 =
∑n

i=m+1 k̄
′
i−

∑m
i=2 k̄

′
i. This implies that

σc′−c
i = γ

k̄′i−k̄i

i h
ā′i−āi

i =⇒ σi = γ
k̄′i−k̄i
c′−c

i h
ā′i−āi
c′−c

i

From this, we have σi = γ
k̄′i−k̄i
c′−c

i h
ā′i−āi
c′−c

i = γki
i h

ai where ki, ai match the output of
extractor E .

Finally, from k̄1 =
∑n

i=m+1 k̄i−
∑m

j=1 k̄j +kpublicc and k̄′1 =
∑n

i=m+1 k̄
′
i−

∑m
j=1 k̄

′
j +

kpublicc
′ we obtain the following relationship

k̄′1 − k̄1

c′ − c
=

n∑
i=m+1

k̄′i − k̄i
c′ − c

−
m∑
i=2

k̄′i − k̄i
c′ − c

+ kpublic =

n∑
i=m+1

ki −
m∑
i=2

ki + kpublic = k1

5.0.4 Proof of special honest verifier zero-knowledge

By definition, perfect honest verifier zero-knowledge means that for a valid statement
(x,w) ∈ Rbalance and challenge c ∈ {0, 1}` a valid proof transcript can be perfectly
simulated. This can be achieved by sampling (āi, k̄i)

n
i=1 from Zp at random, con-

ditional on
∑m

i=1 k̄i =
∑n

i=m+1 k̄i. A valid proof transcript can be constructed by
sampling (bki

, bai
)ni=1 from Zp at random, conditional on

∑m
i=1 bki

=
∑n

i=m+1 bki
,

and calculating values (ki, ai)
n
i=1 where

ki =
k̄i − bki

c
ai =

āi − bai

c
.

Input string (γi, σi)
n
i=1 is then constructed, where γi = µai

ki
σi = (µkih)ai . Finally,

a valid proof transcript can be constructed by calculating initial message (Bi)
n
i=1,

where Bi = γk̄i
i h

āiσ−ci .

14

6 The AZTEC joinsplit transactions

The motivation for the AZTEC proofs is to enable a system of ‘join-split’ confidential
transactions, involving AZTEC ‘notes’. A note is defined by the following:

• An AZTEC commitment tuple γ, σ, where witness k defines the ‘value’ of note
and witness a defines the note’s ‘viewing key’

• A public key that defines the note ‘owner’. The corresponding private key is
defined as the note’s ‘spending key’

In the reference implementation of the AZTEC protocol, a note ‘owner’ is defined
via an Ethereum address. For the remainder of this section, the reference implemen-
tation of the AZTEC protocol is used to describe ‘join-split’ transactions, however
it should be noted that some of these methods are implementation specific, for ex-
ample the specific signature scheme used to define note ‘ownership’.

‘Join-split’ transactions require a note registry - persistent state that records the
existence of all un-spent AZTEC notes. Different digital assets utilizing the AZTEC
protocol each posess a unique note registry.

A ‘join-split’ transaction maps to taking an input ((γi, σi, Pi)
n
i=1,m, kpublic, (Sigi)

m
i=1, (Pi)

n
i=1),

where (γ, σ)mi=1 describe a vector of input commitments and (γ, σ)ni=m+1 describe
a vector of output commitments. (Pi)

n
i=1 describes the set of ‘owner’ public keys

that map to each commtiment. (Sigi)
m+1
i=1 describes the set of signatures that map

to each input commitment.

The reference implementation of the AZTEC protocol uses the Ethereum proto-
col’s native signature scheme; ECDSA signatures [15] defined over the secp256k1
curve [16]. This enables normal Ethereum private keys to function as AZTEC note
spending keys. The message being signed by each note owner contains the following:

• The note’s commitment γ, σ

• The challenge variable c generated by Pbalance for this join-split transaction

The challenge variable is unique to a single zero-knowledge proof, and a signature
against this challenge is considered an explicit approval by a note owner of the out-
come of the ‘join-split’ transaction.

A valid ‘join-split’ transaction proves the following properties about these com-
mitments:

• ((γ, σ)ni=1,m, kpublic) is a valid input string to the proof system Rbalance

• (γ, σ)ni=m+1 are valid outputs of the AZTEC commitment function

• Commitments (γ, σ)mi=1 exist as entries in the note registry, whose owners
are described by (Pi)

m
i=1

• Commitments (γ, σ)ni=m+1 do not exist as entries in the note registry

• Every (Sigi)
m
i=1 is a valid ECDSA signature signed by public key (Pi)

m
i=1

• Every (Pi)
m
i=1 maps to a valid ethereum address

15

• The value that maps to kpublic is authorized as a legitimate input to the join-
split transaction

Defining the nature of kpublic

The variable kpublic in Rbalance enables a public ‘value’ to be either converted into
or out of AZTEC note form. This is to support value either being added or re-
moved from the confidential AZTEC note form and converted from/to a public
analogue. The reference implementation of the AZTEC protocol enables AZTEC
note registries to be attached to existing ERC-20 tokens. Here, kpublic maps to token
balances controlled by the ethereum account that issues the ‘join-split transaction’.

The AZTEC protocol can be used to define a digital asset that has no public rep-
resentation. For a fully confidential asset, the first ‘join-split’ transaction is the
origination transaction, which in turn defines the initial note registry. In this situ-
ation, kpublic is equal to the total size of the note registry. For all future ‘join-split’
transactions for a fully confidential asset, kpublic = 0.

6.1 Join-split transactions

Figure 3 describes the full protocol to construct and validate join-split transactions,
using the proof system for Rbalance. The final addition is the validate the commit-
ments (γi, σi)

n
i=m+1 are valid outputs of the AZTEC commitment function. It is

not neccessary to validate commitments (γi, σi)
m
i=1 are valid outputs of the AZTEC

commitment function as it is assumed that all inputs to join-split transactions were
outputs of a previous join-split transaction.

One other modification is that the ethereum address of the transaction sender is
included in the input string of Pbalance, and is added as a input when generating the
challenge variable c, for Rbalance,Pbalance. This is done to prevent ‘front-running’,
where an attacker takes a valid proof from a yet-to-be-mined transaction, and in-
tegrates it into a transaction issued by the attacker. This addition makes zero-
knowledge proofs specific to a given transaction sender.

The validation logic for a ‘join-split’ transaction is represented by a deterministic
algorithm embedded into a blockchain protocol. At the conclusion of a valid ‘join-
split’ transaction, all input notes are removed from the note registry. Similarly, all
output notes are added into the note registry.

16

Pjoinsplit (((γi, σi, ki, ai)
m
i=1,m, kpublic), (ki)

n
i=m+1):

Validate for i = 1 to m that γi ∈ G, ki, ai ∈ Zp and σi = γkii h
ai and kpublic ∈ Zp

Validate for i = m+ 1 to n that ki ∈ {1, . . . , kmax}
For i = m+1 to n pick ai ← Zp and compute commitments (γi, σi) = (µaiki , (µ

ki
ki
h)ai)

Compute π ← Pbalance(((γi, σi)ni=1,m, kpublic), (ki, ai)
n
i=1)

Return (γm+1, σm+1, . . . , γn, σn, π)

Vjoinsplit ((γi, σi)
n
i=1,m, kpublic, π):

Validate 1 ≤ m < n and for i = 1 to n that γi, σi ∈ G
For i = m+ 1 to n verify e(γi, t2) = e(σi, g2) and reject if either fails
Accept if Vbalance(((γi, σi)ni=1,m), π) = 1 and else reject

Figure 3: Join-split protocol

17

7 Optimizing batched AZTEC commitments

The AZTEC protocol enables transactions that involve multiple AZTEC commit-
ments. In the naive protocol, a bilinear pairing comparison must be performed for
each output commitment. It is possible to validate multiple AZTEC commitments
using a single bilinear pairing comparison with a small modification to the verifi-
cation equations, at the expense of one additional scalar multiplication per output
note. This modification is introduced as a result of the way elliptic curve arithmetic
is implemented in the Ethereum protocol [4]. The protocol introduces fixed costs for
scalar multiplications and bilinear pairings, which do not take into account efficien-
cies in calculating multi-exponentiations via Shamir’s trick [17]. Bilinear pairing
comparisons are also significantly more expensive than scalar multiplications. A
more detailed analysis of the Ethereum protocol’s capabilities and costs is described
in section 8.

We want to be able to validate that, for every tuple (γ, σ), γy = σ. Instead of validat-

ing e(γi, t2)
?
= e(σi, g2)∀i ∈ [1, nout], we can condense the validation into a single bi-

linear pairing comparison of the form e(γx1
1 ·...·gammaxn

nout
, t2)

?
= e(σx1

1 ·...·σxn
nout

, g2),
where x1, ..., xn are random variables.

i.e. if every term were exponentiated by an independent random variable, it would
be possible to sum together these exponentiated terms and perform a single bilinear
pairing comparison whilst treating every term as an isolated pairing comparison.
We can further reduce the amount of work required by setting x1 = 1 and reducing
the number of scalar multiplications required.

We introduce an intermediate challenge x, where x = h(γin,σin,γout,σout).

The intermediate challenge is used to create a linear combination of γ and σ terms.
The modified protocols Pbalance′ ,Vbalance′ ,Pjoinsplit′ ,Vjoinsplit′ are described in fig-
ures 4 and 5 respectively.

To summarise, the pairing optimization removes a pairing calculation per output
commitment (excluding the first output commitment), at the expense of one extra
scalar multiplication.

7.0.1 Security of the pairing optimization

Every term in γm+1Πn
i=m+2γ

cxi

i can be treated as an independent variable. If the
pairing comparison is satisfied then it must also be satisfied for each individual term.

Consider the point γm+1Πn
i=m+2γ

cxi

i . Because every element of G is a generator
of the group, each term can be represented as a linear combination of the remaining
terms and a set of transformation scalars {qi∀i ∈ [1, n]}:

γcx
i−1

i =

n∑
j=1|j 6=i

γ
cxj−1qj
j (1)

This can be rearranged to:

18

Pbalance(((γi, σi)ni=1,m, kpublic), (ki, ai)
n
i=1):

Validate (((γi, σi)
n
i=1,m), (ki, ai)

n
i=1) ∈ Rbalance

Set x = H(γi, σi)
n
i=m+1 Pick ba1 , bk2 , ba2 , . . . , bkn , ban ← Zp

Set bk1 =
∑n

i=m+1 bki −
∑m

i=2 bki
Set (bk′i , ba′i)

n
i=1 = (xibki , x

ibai)
n
i=m+1

First output of P is

B1 = γ
bk′1
1 h

ba′1 , . . . , Bn = γ
bk′n
n h

ba′n

Compute the challenge c = H(((γi, σi)
n
i=1,m), (Bi)

n
i=1)

Second output of P is

k̄1 = ck1 + bk1 , ā1 = ca1 + ba1 , . . . , k̄n = ckn + bkn , ān = can + ban (mod p)

Return π = (c, ā1, ā2, k̄2 . . . , ān, k̄n)

Vbalance(((γi, σi)ni=1,m), π):
Validate 0 ≤ m ≤ n and for i ∈ {1, . . . , n} : γi, Bi ∈ G
Set x = H(γi, σi)

n
i=m+1 Parse π = (ā1, ā2, k̄2, . . . , ān, k̄n) ∈ Z2n

p

If m = 0 Set k̄1 = −
∑n

i=2 k̄i − kpublicc
If m > 0 Set k̄1 =

∑n
i=m+1 k̄i −

∑m
i=2 k̄i + kpublicc

If all checks pass the output of U is

B1 = γk̄1x
i

1 hā1x
i
σ−cxi

1 , . . . , Bn = γk̄n1 hānσ−c
n

Return 1 if c = H(((γi, σi)
n
i=1,m), (Bi)

n
i=1) else return 0

Figure 4: Algorithms Pbalance′ , Vbalance′ with pairing optimization

γi =

n−1∑
j=1

γ
xj−1qj
j

 1

xi−1

(2)

Assume a prover, P , can construct the input string to valid zero-knowledge proof by
using equation 2. If this is the case, then the terms in equation 2 are not independent
and the proof statement for Πcommit is not proven. However the rhs of equation 2
contains a factor of x for every element in the sum. As x is a hash of the commitment
set, it is not possible to construct the commitment set by using equation 2 and every
term can be treated as an independent variable.

19

Pjoinsplit′ (((γi, σi, ki, ai)
m
i=1,m, kpublic), (ki)

n
i=m+1):

Validate for i = 1 to m that γi ∈ G, ki, ai ∈ Zp and σi = γkii h
ai and kpublic ∈ Zp

Validate for i = m+ 1 to n that ki ∈ {1, . . . , kmax}
For i = m+1 to n pick ai ← Zp and compute commitments (γi, σi) = (µaiki , (µ

ki
ki
h)ai)

Compute π ← Pbalance(((γi, σi)ni=1,m, kpublic), (ki, ai)
n
i=1)

Return (γm+1, σm+1, . . . , γn, σn, π)

Vjoinsplit′ ((γi, σi)
n
i=1,m, kpublic, π):

Validate 1 ≤ m < n and for i = 1 to n that γi, σi ∈ G
Set x = H(γi, σi)

n
i=1

Verify e(γm+1Πn
i=m+2γ

cxi

i , t2) = e(σm+1Πn
i=m+2σ

cxi

i , g2) and reject if either fails
Accept if Vbalance(((γi, σi)ni=1,m, kpublic), π) = 1 and else reject

Figure 5: Join-split protocol with pairing optimization

20

8 Efficiency analysis of the AZTEC protocol

The efficiency of the AZTEC protocol is examined in the context of minimizing gas
costs required to validate confidential transactions via a smart contract described
by the Ethereum protocol.

8.1 Ethereum and Smart Contracts

The Ethereum protocol provides for the ability to embed hexadecimal byte-code into
a transaction. The byte-code represents operations performed on a Turing-complete
virtual machine, whose parameters are strictly defined [4]. This enables determinis-
tic algorithms to be executed with code, inputs and outputs defined in transactions
embedded into blockchain blocks. The outputs of such transactions can be verified
and validated by any observer.

Blocks of byte-code, termed smart contracts, can be embedded into one of Etherem’s
Patricia-Merkle trees. Future Ethereum transactions can then execute the byte-code
associated with the smart contract, with input parameters defined by the transac-
tion sender. Smart contracts also contain persistent state; data embedded into a
separate Patricia-Merkle tree that can be deterministically modified by the smart
contract.

The Ethereum Virtual Machine (EVM) provides for limited set of elliptic curve
operations and only for the pairing-friendly Barreto-Naehrig curve bn128. The
implicit cost of an Ethereum transaction (denoted in gas) is a function of the com-
putational complexity of the transaction.

Each EVM opcode has an associated gas cost that reflects the amount of computa-
tion required to execute the opcode. These are described in the Ethereum Yellow
Paper’s gas schedule [4]. Because of the computational overheads of simulating a
virtual machine when executing smart contracts, the gas cost of elliptic curve com-
putations through EVM opcodes is unfeasibly high. To compensate for this, the
Ethereum protocol specifies a set of precompile smart contracts. These precompiles
are not described by EVM opcodes, but instead will execute a specific algorithm
that is implemented in native machine-code. This machine-code implementation is
defined by individual clients that implement the Ethereum protocol. The gas cost
of these ‘precompile’ smart contracts is set to reflect the computational cost of exe-
cuting the native algorithm.

Several precompile contracts exist to perform elliptic curve cryptographic opera-
tions on the bn128 curve. Figure 6 shows the relative gas costs of elliptic curve
operations at the time of publication, relative to other EVM operations and the na-
tive cost of a transaction. All figures are taken from the Ethereum Yellow Paper [4].
Recent developments have lead to the clients that implement the Ethereum proto-
col to upgrade the implementations of their precompile smart contracts. This has
significantly reduced the computational cost of elliptic curve cryptography executed
by these clients and has triggered a planned reduction of the associated gas costs
in the near future. These reduced gas costs are described by bracketed terms in
figure 6. The updated gas schedule is taken from EIP-1108 [18]

21

• Addition of two elliptic curve points in G: 500 (100) gas

• Multiplication of an elliptic curve point by a scalar: 40,000 (6,000) gas

• Validating the bilinear pairing Πn
i=0e(pi, qi)

?
= 1, where pi ∈ G, qi ∈ G2:

100, 000(35, 430) + 80, 000n(28, 300n) gas

• Calculating the sum of two integers: 3 gas

• Base cost of an Ethereum transaction: 21, 000 gas

• Writing 32 bytes of data to persistent storage: 20, 000 gas

• Adding 32 bytes of non-zero data to a transaction as input data: 2, 176 gas

• Validating an ECDSA signature using the secp256k1 [16] curve: 3, 000 gas

Figure 6: Gas cost of elliptic curve operations compared with some other Ethereum
opcodes [4]

The current implementation does not provide an interface to use Shamir’s trick [17]
to perform multiple scalar multiplications. Multiple scalar multiplications must be
performed individually and then summed together.

The total number of scalar multiplications required in Vjoinsplit is 3n + m− 1, with
2n+ 2m− 2 additions, with 1 bilinear pairing comparison.

With the current gas schedule, this translates to approximately 121, 000n+41, 000m+
219, 000 gas to verify a proof. With the updated gas schedule, the gas costs drop to
12, 200n+ 6, 200m+ 85, 930 gas.

For an example join-split transaction with two input notes and two output notes,
the gas cost of the elliptic curve operations required to verify the transaction is equal
to 795, 000 gas, dropping to 147, 130 gas with the updated gas schedule.

Group elements in G on the bn128 curve are represented in 64 bytes if using uncom-
pressed coordinates, or 32 bytes using compressed coordinates. Scalars in Zp are rep-
resented in 32 bytes. The size of a proof transcript ((γ1, σ1, ā1, γ2, σ2, ā2, k̄2, . . . , γn, σn, ān, k̄n), c)
is 128n bytes using compressed coordinates, or 192n bytes using compressed coor-
dinates. For a 2-input-2-output join-split transaction this translates to a proof
transcript size of 512 bytes compressed, 768 bytes uncompressed. The reference
implementation utilises uncompressed coordinates, as the gas costs for elliptic curve
point decompression are greater than the gas saved by reducing the proof size.

The protocol Pjoinsplit requires 3n scalar multiplications. This is well within the
capabilities of the embedded processors utilized by hardware wallets, however val-
ues from the Boneh-Boyen signature set from the commitment key ck, M , will need
to be supplied externally due to the large size of M .

22

A AZTEC notes and spending keys

The reference implementation of the AZTEC protocol is tailored to minimize the gas
costs required to validate an AZTEC join-split transaction through a smart contract
defined by the Ethereum protocol’s Ethereum Virtual Machine.

Because of this, the note’s spending key Q is defined over the secp256k1 [16] curve,
as opposed to the bn128 curve that is used for the AZTEC zero-knowledge proto-
cols. The gas cost to validate an ecdsa signature on the secp256k1 curve is 3,000
gas. This contrasts with the 40,000 gas cost of performing a scalar multiplication
on the bn128 curve, leading to an 80,000 gas cost to validate an equivalent ecdsa
signature. 2

Using the secp256k1 curve enables the protocol to define ‘ownership’ using the same
elliptic curve that the base Ethereum protocol uses, allowing for the potential re-use
of Ethereum addresses. We use g′ to describe the generator of this curve.

In the reference implementation of the AZTEC protocol, Q is a stealth address
that is generated via a modified form of the dual-key stealth address protocol. This
protocol is used by several existing blockchains and a summary of the protocol is
presented below.

A stealth address ‘wallet’ contains two public/private key pairs, a scan key (V, v), V =
g′v, and an issue key (S, s), s = g′s.

When constructing an AZTEC note, the transaction sender generates an ephemeral
key pair (B, b), B = g′b. The sender then constructs a Diffie-Hellman shared secret
between B and V , x = H(g′vb) = H(V b).

The note’s spending key, Q, is defined as Q = S · g′x. In addition, for every note
the ephemeral key B is also published.

The advantage of the dksap protocol is twofold: Q is not directly linkable to S
or V . It also enables a third party, such as an auditor, to be given enough informa-
tion to view transactions from an address without revealing information required to
issue transactions. By revealing a wallet’s scan key, an entity can view all AZTEC
notes that were issued to the wallet, as well as notes that were used by the wallet
as inputs to join-split transactions.

The viewing key a, required to decrypt an AZTEC note, is generated by tak-
ing x mod p, where p is the order of the bn128 group g.

2the algorithm used to implement secp256k1 elliptic curve operations is significantly more optimized
than the bn128 curve. If the costs of using the bn128 curve approaches parity with secp256k1 then the
signature scheme will be adapted to use the bn128 curve

23

References

[1] S. Nakamoto. Bitcoin, a Peer-to-Peer Electronic Cash System. "https://

bitcoin.org/bitcoin.pdf", 2008.

[2] A. Mackenzie et al S. Noether. Ring Confidential Transactions. Cryptology
ePrint Archive Report, 2017:1098, 2015.

[3] E. Ben-Sasson et al. Zerocash: Decentralized Anonymous Payments from Bit-
coin. Proceedings of the IEEE Symposium on Security & Privacy Oakland,
pages 459–474, 2014.

[4] G. Wood. A Secure Decentralised Generalised Transaction Ledger. "https:

//github.com/ethereum/yellowpaper", 2015.

[5] ERC-20 Token Standard. "https://github.com/ethereum/EIPs/blob/

master/EIPS/eip-20.md", 2015.

[6] M. Naehrig P. Barreto. Pairing-Friendly Elliptic Curves of Prime Order. Se-
lected Areas in Cryptography, pages 319–331, 2006.

[7] G. Bertoni et al. KECCAK. "https://keccak.team/keccak.html", 2017.

[8] X. Boyen D. Boneh. Short Signatures Without Random Oracles. Advances in
Cryptology, EUROCRYPT, pages 56–73, 2004.

[9] Philip Rogaway M. Bellare. Random Oracles are pratical: A paradigm for de-
signing efficient protocols. ACM conference on Computer and Communications
Security, pages 62–73, 1993.

[10] O. Goldreich M. Bellare. On Defining Proofs of Knowledge. Advances in Cryp-
tology — CRYPTO ’92, pages 390–420, 1992.

[11] I. Damg̊ard. On the Existence of Bit Commitment Schemes and Zero-
Knowledge Proofs. Proc. of Crypto[5], 1989.

[12] A. Shamir A. F. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. Conference on the Theory and Application of Cryp-
tographic Techniques, pages 189–194, 1986.

[13] A. Shelat J. Camenisch, R. Chaabouni. Efficient Protocols for Set Membership
and Range Proofs. Proceedings of the 14th International Conference on the
Theory and Application of Cryptology and Information Security, pages 234–
252, 2008.

[14] G. Arfaoui et al. A Practical Set-Membership Proof for Privacy-Preserving
NFC Mobile Ticketing. Proceedings on Privacy Enhancing Technologies, 2:25–
45, 2015.

[15] D. Johnson et al. The elliptic curve digital signature algorithm (ECDSA).
International Journal of Information Security, 1(1):36–63, 2001.

[16] secp256k1 curve parameters. "https://en.bitcoin.it/wiki/Secp256k1",
2015.

[17] A. Menezes D. Hankerson. Guide to Elliptic Curve Cryptography. Springer,
2004.

[18] EIP 1108 Reduce altbn128 precompile gas costs. "https://github.com/

ethereum/EIPs/blob/master/EIPS/eip-1108.md", 2018.

24

"https://bitcoin.org/bitcoin.pdf"
"https://bitcoin.org/bitcoin.pdf"
"https://github.com/ethereum/yellowpaper"
"https://github.com/ethereum/yellowpaper"
"https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md"
"https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md"
"https://keccak.team/keccak.html"
"https://en.bitcoin.it/wiki/Secp256k1"
"https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1108.md"
"https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1108.md"

	Motivations behind the AZTEC protocol
	The AZTEC `note'
	The Join-Split confidential transaction
	Who `owns' an AZTEC note?
	How do AZTEC notes interact with traditional public digital assets?
	The AZTEC protocol and anonymity

	Setup
	Notation and assumptions about sampling
	Common choice of groups with pairing and hash function
	Common setup over groups with pairing
	The q-strong Diffie-Hellman assumption (SDH)
	Random oracle model
	Sigma-protocols
	Non-interactive zero-knowledge proofs
	Sigma Protocols
	The Fiat-Shamir Transform

	The AZTEC Commitment Scheme
	Choice of kmax for the AZTEC commitment function

	The AZTEC protocol zero-knowledge proofs
	Sigma-protocols and the Fiat-Shamir heuristic

	The Joinsplit Protocol
	Pbalance and Vbalance
	Proof of perfect completeness
	Proof of special soundness
	Proof of special honest verifier zero-knowledge

	The AZTEC joinsplit transactions
	Join-split transactions

	Optimizing batched AZTEC commitments
	Security of the pairing optimization

	Efficiency analysis of the AZTEC protocol
	Ethereum and Smart Contracts

	AZTEC notes and spending keys
	References

