
APTs <3 PowerShell and 
Why You Should Too
ANTHONY ROSE

JAKE KRASNOV

1

@bcsecurity1



ANTHONY ROSE

@CX01N_

•MS in Electrical Engineering

• Lockpicking Hobbyist

•Bluetooth & Wireless Security 
Enthusiast

•Empire/Starkiller developer

JAKE KRASNOV

@_HUBBL3

• BS in Astronautical Engineering, 
MBA

• Red Team Lead

• Currently focused on embedded 
system security

• PowerShell Obfuscation Guru

2

WHOAMI



3

Aren’t PowerShell Attacks Dead?
•“Offensive PowerShell is Dead”
•“Why don’t you just use C#”
•“Script Block Logging makes 
PowerShell Attacks impossible”
•“AMSI is going to catch 
offensive scripts”



4

…obviously dead



•Gives Full .NET Access

•Direct access to Win32 API

•Operates in Memory

• Installed by default in Windows

•Admins typically leave it 
enabled

5

What is PowerShell?



•PowerShell v1 – 2006
▪Released for XP SP2, Server 2003 SP1 & Vista

•PowerShell v2 – 2008
▪Integrated into Windows 7 & Server 2008

▪Introduced a bunch of new features such as PS remoting and background 
jobs

▪Essentially no protections

•TrustedSec (David Kennedy & Josh Kelley) give their PowerShell: 
It’s time to own… talk – 2010

6

Timeline of PowerShell



•PowerShell v3 – 2012 
▪Introduction of module logging 

▪PowerSploit first published 

▪Metasploit exec_powershell published 

•PowerShell v4 – 2013
▪Rudimentary Script Block Logging 

introduced 

▪PowerView – 2014

▪PowerUp – 2014

▪Cobalt Strike PowerShell execution 

7

Timeline of PowerShell 



•PowerShell v5 – 2015/2016
▪PowerShell <3 the Blue Team – 2015
• Introduction of modern PowerShell Defenses

• AMSI!

▪PowerShell Empire – 2015

▪PowerPick – 2015

8

Timeline of PowerShell 



•APT3
•APT19
•APT28
•APT29
•APT32
•APT33
•APT41
•FIN6
•FIN7
•OilRig
•Thrip
•WIRTE
•Temp.Veles

9

Who is Using Offensive PowerShell Still?
•FIN8
•FIN10
•TA459
•TA505
•TG-3390
•Turla
•CopyKittens
•Bronze Butler
•menuPass
•Patchwork
• Lazarus Group
•Stealth Falcon
•Soft Cell

•Cobalt Group
•DarkHydrus
•Deep Panda
•Dragonfly 2.0
•Gallmaker
•Gorgon Group
•Kimsuky
• Leviathan
•Magic Hound
•MuddyWater
•Poseidon Group



•Database of adversary TTPs
▪Adversary Behaviors

▪Cyber Threat Intelligence

•Used by:
▪Private Industry

▪Governments

▪Open-source Community

•Attack.MITRE.org

10

Researching the Threat



•Command and Control (C2)

•DLL Hijacking

•Keylogging

•Lateral Movement

•Privilege Escalation

•Credential Harvesting

•Active Directory Exploitation

11

What are APTs using PowerShell For?



•90% of targeted attacks used 
PowerShell – Carbon Black

•689% increase in targeted 
PowerShell Attacks – McAfee

•50-70% targeted attacks 
observed PowerShell –
CrowdStrike

12

Offensive PowerShell

https://www.carbonblack.com/blog/carbon-black-global-threat-report-the-year-of-the-next-gen-cyberattack/
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-july-2020.pdf
https://go.crowdstrike.com/rs/281-OBQ-266/images/Report2020CrowdStrikeGlobalThreatReport.pdf


•Suspected Iranian threat group

•Target Aerospace and Energy 
industries

•Typically employ:
▪Empire

▪PowerSploit

▪Mimikatz

▪PoshC2

13

APT33



•Excerpt of APT 33 malicious .hta file from Fireeye

14

APT33

https://www.fireeye.com/blog/threat-research/2017/09/apt33-insights-into-iranian-cyber-espionage.html


•Evil Corp Group / Dridex

•Leverages Cobalt Strike & 
PowerView
▪Also contains PowerShell, JavaScript, 

and .Net

•PSExec is used to launch 
PowerShell and the 
WastedLocker Ransomware

•Resulted in the theft of 
>$100 million

15

WastedLocker Ransomware



•Nippon Telegraph & 
Telephone (NTT)
▪May 7, 2020 – Intrusion 

Occurred

▪May 11, 2020 – Intrusion 
Detected

•Attackers targeted both 
on-premise machines and 
cloud environments

16

Active Directory Server Breach



•Used phishing to get an initial foothold
▪Domain information

▪Social Media

•Password spray attack to get access to the cloud server

17

Active Directory Server Breach



•Brute-force attack on user 
accounts on Server A 
▪Server A is a privileged production 

server

•Extracted passwords from 
LSASS and remote session to 
get remote access to AD server

•Added backdoor into AD server

18

Active Directory Server Breach



•Detected malicious activity on 
their network

•Used GitHub to download 
payload 
▪CrowdStrike reported other APTs 

using this method in 2020

•Key traits
▪Completely un-obfuscated

▪Basic evasion techniques

•Activity was almost waived off 
as internal Red Team practicing 

19

Hotel Chain Attack

https://go.crowdstrike.com/rs/281-OBQ-266/images/Report2020CrowdStrikeGlobalThreatReport.pdf


•PowerShell protections are eliminating many of the 
advantages of the tradecraft
▪AMSI
▪Script Block Logging
▪Module Logging
▪EDR
•These are also starting to be 
incorporated into .Net

20

How do I mitigate the Threats?



The Windows Antimalware Scan Interface (AMSI) is a versatile 
interface standard that allows your applications and services to 
integrate with any antimalware product that's present on a 
machine. AMSI provides enhanced malware protection for your 
end-users and their data, applications, and workloads.

21

What Is AMSI?

https://docs.microsoft.com/en-us/windows/desktop/amsi/antimalware-scan-interface-portal


22

AMSI Data Flow 



•Evaluates commands at run time

•Handles multiple scripting 
languages (PowerShell, JavaScript, 
VBA)

•As of .NET 4.8, integrated into CLR 
and will inspect assemblies when 
the load function is called

•Provides an API that is AV agnostic 

• Identify fileless threats

23

That’s Great But What Does that Mean?



24

Fragility of AMSI Detections



25

Fragility of AMSI Detections



•First introduced in PowerShell v4 but was rudimentary 

•v5 introduced “Deep Script Block Logging”
▪Follows execution down through multiple levels

•Event ID – 4104

26

Script Block Logging



• Introduced in PowerShell v3

•Nearly impossible to not hit 
completely un-obfuscated
▪Can be disabled with an 

Event Tracing Bypass

•Event ID – 4103

•Produces A LOT of alerts 
▪FireEye: Invoke-Mimikatz produces 

2,285 events generating 7MB of logs 

27

Module Logging

https://www.fireeye.com/blog/threat-research/2016/02/greater_visibilityt.html


•Would make a bad day for red teams…if organizations actually used 
it properly.
▪Alert fatigue
• Administrators using “sketchy” scripts

• Deep script block logging can result in multiple alerts for a single script execution
▪ FireEye: Invoke-Mimikatz produces 116 events totaling 5MB. 

▪ If start/stop event logging is enabled that jumps to 96K+ events totaling 50MB   

▪Bypasses are still effective  

28

Powershell Logging



•Where possible, Mandiant recommends 
enabling all three log sources: 
▪Module Logging

▪Script Block Logging

▪Transcription

•Unique data recorded by each source

•“In environments where log sizes cannot be significantly 
increased, enabling script block logging and transcription will 
record most activity, while minimizing the amount of log data 
generated. At a minimum, script block logging should be enabled, 
in order to identify attacker commands and code execution.”

29

Recommended Settings

https://www.fireeye.com/blog/threat-research/2016/02/greater_visibilityt.html


•AMSI Bypasses

•Obfuscation

•Keyword Obfuscation

•Script Block Logging Bypasses

•Event tracing Bypasses

30

Mitigating the Mitigations



Simplest Bypass that currently works
• $Ref=[REF].Assembly.GetType('System.Management.Automation.AmsiUtils');

• $Ref.GetField('amsiInitFailed', 'NonPublic, Static').SetValue($NULL, $TRUE);

31

Reflective Bypass



•More complicated bypass, but still allows AMSI to load

32

Patching AMSI.dll in Memory



•AMSI.dll is loaded into the 
same memory space as 
PowerShell. 
▪Unrestricted access to the memory 

space where AMSI runs

▪Can modify it however we please

•Tells the function to return a 
clean result prior to scanning

33

Why does this work?



•Still extremely effective

•Comes at a cost:
▪Complexity of the payload

▪Can add a significant amount of size

▪Takes time to encode every command

▪Can be defeated if analyzed at the end

34

Obfuscation



UN-OBFUSCATED OBFUSCATED

35

Obfuscation



•Obfuscation on its own can get most payloads 90% of the way to 
not being detected

•The key piece is you still need to remove the common signatures 
that give things away (Structure or Keywords)

36

Obfuscation



•AMSI searches for common terms in memory which raises your 
threat level

•These can be triggered even when not ran directly

•For example:
▪Mimikatz

▪Empire

▪PowerSploit

▪Etc

37

Keyword Aliasing



•Changing commonly flagged 
terms to random strings makes 
detection REALLY hard

•Why don’t you do this with 
everything?
▪You can, but it is time consuming 

to pick which values to alias

▪Requires a lot of entries into the 
database (every alias needs to be 
tracked)

38

Keyword Obfuscation

Invoke-Mimikatz -> Q8D45

Invoke-Empire -> DLXZN



• Import-Alias can avoid obfuscated script 
block logs
▪Importing the aliasing never hits the log

▪Supports WebDAV allowing for remote file 
locations 

•Can use other functions like 
Import-clixml

• If Module Logging is enabled:
▪Import-Alias still hits the log

▪Module Logging is basically impossible to 
avoid initially

39

Importing to Avoid Script Logs



•All that hits the log is our 
imported aliasing name

•Can embed commands 
in the alias description 

40

Import Alias Log



Demo Time

41



•Red Teaming is about representing the 
threat not “winning”
▪Getting caught is not necessarily bad!

•The newest exploits and techniques might 
not teach the customer much
▪0-days are cool, but don’t provide useful 

takeaways

•Red Teams are there to represent threats 
and APTs still <3 PowerShell 

42

Good Red Team Practices



Questions?
INFO@BC-SECURITY.ORG

@BCSECURITY1

HTTPS://WWW.BC-SECURITY.ORG/

43


