
February 10th 2021 — Quantstamp Verified

Barn Bridge

This security assessment was prepared by Quantstamp, the leader in blockchain security

Executive Summary

Type Staking and Governance Contracts

Auditors Ed Zulkoski, Senior Security Engineer

Leonardo Passos, Senior Research Engineer

Poming Lee, Research Engineer

Timeline 2021-01-11 through 2021-02-09

EVM Muir Glacier

Languages Solidity

Methods Architecture Review, Unit Testing, Functional

Testing, Computer-Aided Verification, Manual

Review

Specification Online Documentation

Documentation Quality Medium

Test Quality High

Source Code
Repository Commit

BarnBridge-DAO 3238002

BarnBridge-Barn 3a0f8de

Goals Can funds be locked or stolen?•

Is the diamond pattern used correctly?•

Total Issues 13 (4 Resolved)

High Risk Issues 0 (0 Resolved)

Medium Risk Issues 0 (0 Resolved)

Low Risk Issues 5 (1 Resolved)

Informational Risk Issues 6 (3 Resolved)

Undetermined Risk Issues 2 (0 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to catastrophic
impact for client’s reputation or serious
financial implications for client and
users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice (e.g.,
gas analysis, deployment settings).

Resolved Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://barnbridge.gitbook.io/docs/
https://github.com/BarnBridge/BarnBridge-DAO
https://github.com/BarnBridge/BarnBridge-DAO/commit/32380026a949224a4c20756fadf2198d74838a6a
https://github.com/BarnBridge/BarnBridge-Barn
https://github.com/BarnBridge/BarnBridge-Barn/commit/3a0f8de8750d1642cfc5bd4cb319c50cb35f0bb5

Summary of Findings

During the audit, a number of issues were uncovered of varying severity. No high severity issues were found, however certain functions require further documentation in order to assess

their correctness, as noted in several issues below. We recommend improving the inline documentation as well as expanding the specification document, as well as addressing all findings

before using the code in production.

All issues have been either resolved or acknowledged by the Barn Bridge team based on recent commits for DAO () and Barn ().Update: 47b14a6 0166325

ID Description Severity Status

QSP-1 Multiple copies of a transaction can be queued at the same time Low Acknowledged

QSP-2 does not use the_proposalCancelledViaCounterProposal
bondStakedAtTs

Low Fixed

QSP-3 Ownership can be renounced Low Acknowledged

QSP-4 Unchecked return valuetransferFrom Low Acknowledged

QSP-5 Functions do not check if contract is initialized Low Acknowledged

QSP-6 Privileged roles and ownership Informational Acknowledged

QSP-7 Unlocked Pragma Informational Fixed

QSP-8 Unchecked function arguments Informational Fixed

QSP-9 Unchecked return value from executeTransaction Informational Acknowledged

QSP-10 should not be invoked multiple timessetupPullToken Informational Acknowledged

QSP-11 Users without voting power are still flagged as having voted Informational Fixed

QSP-12 Unclear use-case for function inreceive Barn.sol Undetermined Acknowledged

QSP-13 Unclear timestamp setup logic in propose Undetermined Acknowledged

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v0.7.0• Slither

https://github.com/crytic/slither

v0.22.16• Mythril

Steps taken to run the tools:

1. Installed the Slither tool: pip install slither-analyzer

2. Run Slither from the project directory: slither .

3. Installed the Mythril tool from Pypi: pip3 install mythril

4. Ran the Mythril tool on each contract: myth -x path/to/contract

Findings

QSP-1 Multiple copies of a transaction can be queued at the same time

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: Governance.sol

There is an implicit requirement that a transaction cannot be duplicated in the queue as per L174-177:

. This

can be circumvented in the following way.

Description:

require(!queuedTransactions[_getTxHash(proposal.targets[i], proposal.values[i], proposal.signatures[i], proposal.calldatas[i], eta)], ...)

1. Create two proposals and that contain the same transaction . (This must be done with multiple accounts to avoid the "One live proposal per proposer" check
on L143.) Assume both proposals have been accepted, but not yet queued.

P_1 P_2 T

2. Queue .P_1

3. Create a third proposal that contains and, as the proposal creator, immediately cancel it. This sets via
.

P_3 T queuedTransactions[T] = false
Bridge.cancelTransaction

4. Queue , which is now allowed since the check on L174-177 passes.P_2

Clarify if this scenario is allowable. Revise the queued transaction logic if necessary.Recommendation:

This has been acknowledged by the Barn Bridge team, and can only happen if and are in the same block.Update: P_1 P_2

QSP-2 does not use the_proposalCancelledViaCounterProposal bondStakedAtTs

Severity: Low Risk

FixedStatus:

File(s) affected: Governance.sol

When voting on a cancellation, vote weights are determined by . The function should analogously use

to determine the ratio of affirmative cancellation votes.

Description: votingPowerAtTs _proposalCancelledViaCounterProposal
bondStakedAtTs

Change the function to use .Recommendation: bondStakedAtTs

QSP-3 Ownership can be renounced

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: LibOwnership.sol

In , a target owner can currently be set to , which effectively allows an owner to renounce his ownership. In the latter case, any privileged

operation shall never be executed upon renouncing one’s ownership.

Description: setContractOwner address(0)

Confirm if an owner could renounce his ownership; if not, make sure the new owner is not .Recommendation: address(0)
This has been confirmed as intended behavior.Update:

QSP-4 Unchecked return valuetransferFrom

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: BarnFacet.sol

In the and functions, the return value is not checked, which is unadvisable. If returns false, it would flag an error that

currently would be missed by the platform, leaving users uninformed.

Description: deposit withdraw transferFrom transferFrom

Wrap the function in a require statement, adding a corresponding error message in case the transfer returns false.Recommendation: transferFrom
Barn only interacts with our BOND token which is implemented using the OZ ERC20 which always return true for and .Update from the Barn Bridge team: transfer transferFrom

QSP-5 Functions do not check if contract is initialized

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: BarnFacet.sol, Governance.sol

Except for the respective initialization functions, all functions in both and should require proper initialization, i.e., inDescription: BarnFacet Governance require(ds.initialized)

https://github.com/ConsenSys/mythril

, and in). Currently, that is not the case. Hence, users who call functions by means of the proxies will essentially waste gas; additionally,

unforeseen side effects could occur.
BarnFacet require(isInitialized) Governance

For each function in , except for , add the following pre-condition:Recommendation: BarnFacet.sol initBarn

LibBarnStorage.Storage storage ds = LibBarnStorage.barnStorage();
require(ds.initialized, “BarnFacet has not been initialized”);

For each function in , except for , add the following pre-condition:Governance.sol initialize

require(isInitialized, “Governance has not been initialized”);

We will initialize the contracts immediately after deploy so it should not be a problem.Update from the Barn Bridge team:

QSP-6 Privileged roles and ownership

Severity: Informational

AcknowledgedStatus:

File(s) affected: DiamondCutFacet.sol

Smart contracts will often have variables to designate the person with special privileges to make modifications to the smart contract.Description: owner
The function in allows owner of the contract to delegate call any external arbitrary code, which includes but is not limited to: 1) transferring all the assets

stored in the contract; 2) draining every user wallets and contracts that set unlimited allowance of any ERC20 contract to this contract.
diamondCut DiamondCutFacet.sol
Barn Barn

This centralization of power needs to be made clear to the users, especially depending on the level of privilege the contract allows to the owner.Recommendation:

The DAO will be the owner of the BARN contract. Any changes will have to go through the DAO.Update from the Barn Bridge team:

QSP-7 Unlocked Pragma

Severity: Informational

FixedStatus:

File(s) affected: Many Contracts

Every Solidity file specifies in the header a version number of the format . The caret () before the version number implies an unlocked pragma,

meaning that the compiler will use the specified version , hence the term "unlocked".

Description: pragma solidity (^)0.4.* ^
and above

For consistency and to prevent unexpected behavior in the future, it is recommended to remove the caret to lock the file onto a specific Solidity version.Recommendation:

QSP-8 Unchecked function arguments

Severity: Informational

FixedStatus:

File(s) affected: Parameters.sol, Governance.sol, Rewards.sol, BarnFacet.sol, Barn.sol

The following functions do not ensure that certain arguments have non-zero values, which may lead to either incorrect contract initialization, or accidental misuse of functions.Description:

1. In , can be set to zero.Parameters.setMinQuorum quorum

2. In , should be checked to be non-zero.Governance.initialize barnAddr

3. In , all address arguments should be checked to be non-zero.Rewards.constructor

4. does not validate that address arguments are non-zero and the amount is non-zero.Rewards.setupPullToken

5. does not check that address is non-zero.BarnFacet.initBarn _bond

6. Barn.constructor address _owner` is non-zero.should check if

Ensure all mentioned function arguments are sanitized accordingly.Recommendation:

QSP-9 Unchecked return value from executeTransaction

Severity: Informational

AcknowledgedStatus:

File(s) affected: Governance.sol

In the function , the (nor the boolean) associated with each call to . It is not clear if this is intentional.Description: execute returnData success executeTransaction

Clarify if the return values or status of each call should be checked.Recommendation: success executeTransaction
The success is checked inside and reverts if value returned is false.Update from the Barn Bridge team: executeTransaction

QSP-10 should not be invoked multiple timessetupPullToken

Severity: Informational

AcknowledgedStatus:

File(s) affected: Rewards.sol

If is invoked multiple times with different non-zero arguments, existing multipliers will still exist. This may cause erroneous calculations when distributing

rewards or updating any of the user-related state variables.

Description: setupPullToken source

Disable multiple calls to the function, possibly only allowing subsequent calls to set to disable the feature.Recommendation: source = address(0)
This is intended behavior (e.g. we may want to do some changes to the rewards amount mid flight). User multipliers are not a problem because the contract

should distribute any BOND tokens that are reaching its balance so they should never be reset.

Update from the Barn Bridge team:

QSP-11 Users without voting power are still flagged as having voted

Severity: Informational

FixedStatus:

File(s) affected: Governance.sol

If a user has no voting power, he will not add any votes to a proposal; nonetheless, the function will still flag such that such a user has voted, which seems inconsistent.Description: castVote

Require that users to cast a vote, they must have a voting power greater than zero.Recommendation:

QSP-12 Unclear use-case for function inreceive Barn.sol

Severity: Undetermined

AcknowledgedStatus:

File(s) affected: Barn.sol

Given that most functionality is handled through the function, it is not clear why the function is needed.Description: fallback receive

Clarify the intended use-case of the function.Recommendation: receive
The fallback function requires a that is defined on one of the facets; it reverts if not found. The function is used to avoid running the

fallback function on simple ETH transfers.

Update from the Barn Bridge team: msg.sig receive

QSP-13 Unclear timestamp setup logic in propose

Severity: Undetermined

AcknowledgedStatus:

File(s) affected: Governance.sol

The function uses as the reference timestamp, instead of . It is unclear why this is, as the code does not provide proper

documentation. Hence, this could have undetermined side effects for which we cannot assess at this point.

Description: propose() block.timestamp - 1 block.timestamp

We recommend verifying whether the timestamp is properly set; if it is, we advise clarifying developers’ rationale by adding documentation to the code.Recommendation:

is used to avoid any flash loan attacks.Update from the Barn Bridge team: block.timestamp - 1

Automated Analyses

Slither

Slither does not appear to handle the assembly code used in the Diamond logic, and therefore could not be run at this time.ds.slot

Mythril

Mythril warns of several uses of when computing past balance and stake values (e.g., in), however we classified these as false positives.block.timestamp stakeAtTs

Adherence to Specification

The code generally adheres to the provided specifications. However, we recommend further developing the inline documentation and specification.

Code Documentation

1. In (L294), comment mentions “userDidDelegate”. No such function exists. It should be “userDelegatedTo”. fixed.BarnFacet.sol Update:

2. The diagram in mentions that a proposal has the following seven states: , , , , , , and
. However, the corresponding in lists nine states, including two that lack any documentation in the spec and . It seems

maps to . If that is the case, make names consistent across the board.

SPEC.md Warm-up Voting Accepted Failed Queued for execution Executed
Expired struct Governace.sol Active Grace
Active Voting

3. In : : "LibDiamondCut: _init is address(0) but_calldata is not empty" -- should add a space right after "but". fixed.LibDiamond.sol L141 Update:

Adherence to Best Practices

1. In , if the address is set to , the rewards functionality is intended to be disabled. However, every call to will still
invoke the logic in (including the call to). It is not clear if/why this is necessary. It would be more efficient to return immediately in

if . fixed.

Rewards.sol source address(0) registerUserAction
_calculateOwed ackFunds

registerUserAction source == address(0) Update:

2. In the function in , make sure that is different from the existing one; if so, revert.setContractOwner LibOwnership.sol _newOwner

3. In , the binary search logic is cloned in three locations; we suggest factoring out that logic into a reusable internal function. fixed.BarnFacet.sol Update:

4. In (L350), naming the array as seem incorrect. Consider renaming that to . fixed.BarnFacet.sol Stake[] checkpoints userStakingHistory Update:

5. Some functions in are redundant - for instance, and . Consider removing all redundant functions. fixed.BarnFacet.sol lock _lock Update:

6. In , use double quotes for string literals. fixed.Parameters.sol Update:

7. In , the function should make sure that the title and description parameters are not empty strings. fixed.Governance.sol propose() Update:

8. In : , , , the conditionals do not accept "equal to" conditions; either the revert message or the code should be modified. fixed except
for .
Parameters.sol L38 L39 L45 Update:

threshold > 50, "Minimum is 50."

Test Results

Test Suite Results

We recommend adding instructions to the on how to run tests and coverage.README.md

Governance
General tests

✓ should be deployed
activate

✓ reverts if threshold not yet met (47ms)
✓ activates if threshold is met (63ms)
✓ reverts if already activated (56ms)

propose
✓ create new proposal revert reasons (397ms)
✓ create new proposal (283ms)
✓ start vote && quorum (169ms)
✓ cast, cancel and change vote (436ms)
✓ castVote fails if user does not have voting power (132ms)
✓ cannot vote when vote is closed (226ms)
✓ verify proposal state (518ms)
✓ cannot execute proposals that are not queued (127ms)
✓ test proposal execution in queued mode (332ms)
✓ cannot cancel expired, failed or executed proposals (490ms)
✓ fail for invalid quorum (197ms)
✓ fail for invalid minimum threshold (380ms)
✓ test change periods (468ms)
✓ proposer cancel proposal (113ms)
✓ allows anyone to cancel a proposal if creator balance fell below threshold (148ms)
✓ allows cancellation only when proposal is in warmup or active state (374ms)

abrogation proposal
✓ reverts if proposal id is not valid
✓ works only if proposal is in queued state (605ms)
✓ fails if user does not voting power above threshold (268ms)
voting

✓ reverts for invalid proposal id
✓ reverts if abrogation proposal is not created (97ms)
✓ reverts if abrogation proposal expired (287ms)
✓ reverts if user does not have voting power (272ms)
✓ reverts if user tries to double vote (280ms)
✓ updates the amount of votes (315ms)
✓ allows user to change vote (339ms)
✓ changes initial proposal state to cancelled if accepted (438ms)
✓ does not change initial proposal state if not accepted (362ms)

cancel vote
✓ reverts if abrogation proposal is not created (96ms)
✓ reverts if abrogation proposal expired (268ms)
✓ reverts if user tries to cancel vote if not voted (258ms)
✓ allows users to cancel their votes (329ms)

abrogateProposal
✓ reverts if proposal state is not canceled (91ms)
✓ reverts if abrogate proposal failed (351ms)
✓ works if abrogation proposal was accepted (421ms)

stored parameters
✓ stores parameters on proposal on creation (124ms)
✓ parameters changed mid-flight do not affect running proposals (810ms)

41 passing (12s)

Barn
General tests

✓ should be deployed
deposit

✓ reverts if called with 0
✓ reverts if user did not approve token
✓ calls registerUserAction on rewards contract (131ms)
✓ stores the user balance in storage (117ms)
✓ transfers the user balance to itself (85ms)
✓ updates the total of bond locked (68ms)
✓ updates the delegated user's voting power if user delegated his balance (148ms)
✓ works with multiple deposit in same block (150ms)
✓ does not fail if rewards contract is set to address(0) (80ms)

depositAndLock
✓ calls deposit and then lock (90ms)

balanceAtTs
✓ returns 0 if no checkpoint
✓ returns 0 if timestamp older than first checkpoint (65ms)
✓ return correct balance if timestamp newer than latest checkpoint (67ms)
✓ returns correct balance if timestamp between checkpoints (158ms)

bondStakedAtTs
✓ returns 0 if no checkpoint
✓ returns 0 if timestamp older than first checkpoint (64ms)
✓ returns correct balance if timestamp newer than latest checkpoint (61ms)
✓ returns correct balance if timestamp between checkpoints (173ms)

withdraw
✓ reverts if called with 0
✓ reverts if user does not have enough balance
✓ calls registerUserAction on rewards contract (146ms)
✓ sets user balance to 0 (147ms)
✓ does not affect old checkpoints (105ms)
✓ transfers balance to the user (114ms)
✓ updates the total of bond locked (105ms)
✓ updates the delegated user's voting power if user delegated his balance (129ms)

lock
✓ reverts if timestamp is more than MAX_LOCK (78ms)
✓ reverts if user does not have balance
✓ reverts if user already has a lock and timestamp is lower (80ms)
✓ sets lock correctly (71ms)
✓ allows user to increase lock (94ms)
✓ does not block deposits for user (100ms)
✓ blocks withdrawals for user during lock (131ms)

multiplierAtTs
✓ returns expected multiplier (80ms)

votingPower
✓ returns raw balance if user did not lock (67ms)
✓ returns adjusted balance if user locked bond (74ms)

votingPowerAtTs
✓ returns correct balance with no lock (131ms)
✓ returns correct balance with lock (148ms)
✓ returns voting power with decaying bonus (185ms)

delegate
✓ reverts if user delegates to self
✓ reverts if user does not have balance (85ms)
✓ sets the correct voting powers for delegate and delegatee (93ms)
✓ sets the correct voting power if delegatee has own balance (146ms)
✓ sets the correct voting power if delegatee receives from multiple users (212ms)
✓ records history of delegated power (283ms)
✓ does not modify user balance (80ms)
✓ works with multiple calls in the same block (144ms)

stopDelegate
✓ removes delegated voting power from delegatee and returns it to user (162ms)
✓ preserves delegate history (123ms)
✓ does not change any other delegated balances for the delegatee (187ms)

events
✓ emits Deposit on call to deposit() (55ms)
✓ emits Deposit & DelegatedPowerIncreased on call to deposit() with delegated power (118ms)
✓ emits Withdraw on call to withdraw() (84ms)
✓ emits Withdraw & DelegatedPowerDecreased on call to withdraw() with delegated power (113ms)
✓ emits correct events on delegate (132ms)

✓ emits Lock event on call to lock() (70ms)
multiplierOf

✓ returns the current multiplier of the user (89ms)

Diamond
General tests

✓ should be deployed
DiamondLoupe

✓ has correct facets
✓ has correct function selectors linked to facet (42ms)
✓ associates selectors correctly to facets (60ms)
✓ returns correct response when facets() is called (38ms)

DiamondCut
✓ fails if not called by contract owner
✓ allows adding new functions (172ms)
✓ allows replacing functions (125ms)
✓ allows removing functions (104ms)

ownership
✓ returns owner
✓ reverts if transferOwnership not called by owner
✓ reverts if transferOwnership called with same address
✓ allows transferOwnership if called by owner

Rewards
General

✓ should be deployed
✓ sets correct owner
✓ can set pullTokenFrom if called by owner
✓ sanitizes the parameters on call to setPullToken
✓ can set barn address if called by owner
✓ reverts if setBarn called with 0x0

ackFunds
✓ calculates the new multiplier when funds are added (93ms)
✓ does not change multiplier on funds balance decrease but changes balance (119ms)

registerUserAction
✓ can only be called by barn (46ms)
✓ does not pull bond if function is disabled (125ms)
✓ does not pull bond if already pulled everything (83ms)
✓ updates the amount owed to user but does not send funds (52ms)

claim
✓ reverts if user has nothing to claim
✓ transfers the amount to user (122ms)
✓ works with multiple users (186ms)
✓ works fine after claim (305ms)

87 passing (11s)

Code Coverage

The code is generally well-covered by the test suite.

As of the latest changes, we could not run coverage for the Barn repository due to the following issue (was unaffected):Update: npm run test

Istanbul reports written to ./coverage/ and ./coverage.json
Error in plugin solidity-coverage: TSError: ⨯ Unable to compile TypeScript:
test/Barn.test.ts:5:60 - error TS2305: Module '"../typechain"' has no exported member 'ChangeRewardsFacet'.

5 import { BarnFacet, Erc20Mock, RewardsMock, MulticallMock, ChangeRewardsFacet } from '../typechain';

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/ 94.84 83.33 92.11 94.86

Bridge.sol 94.12 62.5 100 94.12 33

Governance.sol 94.54 85.34 88.89 94.54 … 461,470,471

Parameters.sol 100 78.57 100 100

contracts/interfaces/ 100 100 100 100

IBarn.sol 100 100 100 100

IBridge.sol 100 100 100 100

All files 94.84 83.33 92.11 94.86

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

46cb7a7e3f6b1bf863973a858515ee44ccb29a1a67e890166b3c501fae1a61d3 ./Bridge.sol

9c6b4644461a0353e6642c0e740797fec4156ef8cc50cfafc1576d9780eb7d16 ./Governance.sol

93822dc5b49672f8b8d14540783a3aaee6caca603a0cab13b1867a147a016180 ./Parameters.sol

09e5c2b5dec1120a4b6f967f2f463d72def2c798fa80a94344d7e6c75166440b ./IBridge.sol

90c942c485f3b6615f5ef4c1c67ede8de420052c34ab1df8e128165bd5a93dad ./IBarn.sol

9fa14dfbb3998693faacfbe7076ea4c566f3cb035dbdac61b6c4f2b2d65ee05b ./BarnMock.sol

73b9ba75e7fdb9111a9777eea08208de33beeb9e64651aa613dc81f520a29a19 ./ERC20Mock.sol

bfdd100c998788538a41d78ac36823407482b4af89c434965ff8576f3a292493 ./contracts/Rewards.sol

9d0e28ed66d8556361590647545f5b9d8057cf9317ba5d74fc9e50cc6a0f96ef ./contracts/Barn.sol

46b3c78b244f0b029a58ea1a75b243cc133a6856e0ad4723e7f06d4cb5c8bf4f ./contracts/interfaces/IRewards.sol

b7c545ccba910ef35ded1168f0fc8ab47146f293c48d3b1ff3de979230e2e748 ./contracts/interfaces/IDiamondCut.sol

aefd498e68f56f77297eddfed4e40661b66d3946803a7f945ddd99805a30d5d3 ./contracts/interfaces/IBarn.sol

fc52ed8e2e567731cfb563110f28baa40ae87ebe60fdd6979e1691b668caed4f ./contracts/interfaces/IDiamondLoupe.sol

55ea35d5bf029e0997615e4f6c80a72706a5649c0cbb34b6e57a717703d53f8a ./contracts/interfaces/IERC165.sol

81f76fa7eb96ecf24afef5b3e0226fd15c9d09ecb8b392358b46a10bd2326b25 ./contracts/interfaces/IERC173.sol

7ef5228e237fc1c2bcbca0e7fb52d127c1b5f5646224ed591f20b41b6fe105c1 ./contracts/libraries/LibBarnStorage.sol

2d3ec0d75f7e94659bba1354d4a0e8c69b5aa5761bd61ead3a993ca25752bdd5 ./contracts/libraries/LibDiamond.sol

6398965a2c62222271528262ea4f0633e6ce6727f1e9a442825188f6d819b0af ./contracts/libraries/LibOwnership.sol

8a2b91b55b3785f57e58e1fbda70372e776443cc792b22e54c3a40fb765a90bb ./contracts/libraries/LibDiamondStorage.sol

4741a61b374f1cf16cc91227337ff71c4cfa7b217340c6ac35cf399523530396 ./contracts/facets/DiamondCutFacet.sol

9c9438be8b593907a098bb71dfe0a97afca9db7be4d88c2bfb47d42e351cfb78 ./contracts/facets/OwnershipFacet.sol

7145e4ce8784d1a228c6469b954d732e26ef200f37ab905175cf618a7606486c ./contracts/facets/BarnFacet.sol

2018bc050dbd85de99d24b8325fe3171fd2ed55cc0d8c492991343d04d3c7f05 ./contracts/facets/ChangeRewardsFacet.sol

208ae289d5441e8e8cdf32abb550e43f784f8778572287eb90f1a57e77ce33c1 ./contracts/facets/DiamondLoupeFacet.sol

ad1c831bcf3d99e7c2870e4bc3282f310241ee73887c3fb1643c9723c54525ac ./contracts/mocks/Test2Facet.sol

080ce8e810e2d1ba5b96ef4e79cad66083ad88c2e03dde11c226335936ecd731 ./contracts/mocks/BarnMock.sol

281aa98137521944cbf3366eafc1893826d902795ec356ce830cb5b866e370d8 ./contracts/mocks/ERC20Mock.sol

ede800fc20d4d25eccc6a2edc3d9753b87484df214614da77f1677a4275d4659 ./contracts/mocks/Test1Facet.sol

95a13b08b1ab93010160eea941ca1b0ae4d5434a8e4fe8e5e3a4939dbeb4db79 ./contracts/mocks/RewardsMock.sol

ce2d8a18105bf6d2348ac62dd017ee8e5a2512a102d1e79717772eddb424a2cf ./contracts/mocks/MulticallMock.sol

Tests

81e4ec029b7d9a8af29a0567dfb3f9218b3f087de8be912a887166d277f67043 ./helpers.ts

5d863c3bb3c02bd6d250813711e7df6bf34bff87d147b1a4cadf8f3e3f543a2a ./Governance.test.ts

777960ebaf5aa06dc018a8aa3e3f3bbdec4c30d16fc5cc905368a4c808ea6368 ./test/Barn.test.ts

0d0cb5a6d67675532de7117cb78a496791f5c0a884544bd193a484ab014e91c6 ./test/diamond.test.ts

342ea9a9ae5f3d20d324f17ba64ef3f5f191ca5b3986a474fdceb8e6ac5be60e ./test/Rewards.test.ts

83532c3df1167b2328b1a175619ce609f5bd0784a69239fe0995fed790f01f0d ./test/helpers/helpers.ts

c782ffec1253aa2bac09551df2cd711fe028ffbc230b9afd3b9381e000288134 ./test/helpers/diamond.ts

c567be775fbaa37b38f42e601792f53f0e7e58360d2ded874125b1173b1aafa3 ./test/helpers/deploy.ts

83bb7c36e31071a9d3638e7c72684129da9f1ba94260f55dd8c43aee57597a38 ./test/helpers/time.ts

Changelog

2021-01-21 - Initial report•

2021-02-09 - Updated report based on commit for DAO () and Barn ()• 47b14a6 0166325

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,

and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment

services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the

content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as

described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or

operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all

vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any

associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to

unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that

could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the

reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim

all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the

implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,

called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications

appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of

products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise

caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Barn Bridge Audit

