using System;
using System.Collections.Generic;
using System.Text;
using System.IO;
namespace DSDecmp.Formats.Nitro
{
///
/// Compressor and decompressor for the Huffman format used in many of the games for the
/// newer Nintendo consoles and handhelds.
///
public abstract class Huffman : NitroCFormat
{
#region Enum: BlockSize
///
/// The possible data sizes used in Huffman compression formats on the GBA/NDS.
///
public enum BlockSize : byte
{
///
/// Each data block is four bits long.
///
FOURBIT = 0x24,
///
/// Each data block is eight bits long.
///
EIGHTBIT = 0x28
}
#endregion
///
/// Sets the block size used when using the Huffman format to compress.
///
public BlockSize CompressBlockSize { get; set; }
///
/// Gets if this format supports compression. Always returns true.
///
public override bool SupportsCompression
{
get { return true; }
}
#region Internal Constructor(BlockSize)
///
/// Creates a new generic instance of the Huffman compression format.
///
/// The block size used.
internal Huffman(BlockSize blockSize)
: base((byte)blockSize)
{
this.CompressBlockSize = blockSize;
}
#endregion
#region Decompression method
///
/// Decompresses the given stream, writing the decompressed data to the given output stream.
/// Assumes Supports(instream)
returns true
.
/// After this call, the input stream will be positioned at the end of the compressed stream,
/// or at the initial position + inLength
, whichever comes first.
///
/// The stream to decompress. At the end of this method, the position
/// of this stream is directly after the compressed data.
/// The length of the input data. Not necessarily all of the
/// input data may be read (if there is padding, for example), however never more than
/// this number of bytes is read from the input stream.
/// The stream to write the decompressed data to.
/// The length of the output data.
/// When the given length of the input data
/// is not enough to properly decompress the input.
public override long Decompress(Stream instream, long inLength, Stream outstream)
{
#region GBATEK format specification
/*
Data Header (32bit)
Bit0-3 Data size in bit units (normally 4 or 8)
Bit4-7 Compressed type (must be 2 for Huffman)
Bit8-31 24bit size of decompressed data in bytes
Tree Size (8bit)
Bit0-7 Size of Tree Table/2-1 (ie. Offset to Compressed Bitstream)
Tree Table (list of 8bit nodes, starting with the root node)
Root Node and Non-Data-Child Nodes are:
Bit0-5 Offset to next child node,
Next child node0 is at (CurrentAddr AND NOT 1)+Offset*2+2
Next child node1 is at (CurrentAddr AND NOT 1)+Offset*2+2+1
Bit6 Node1 End Flag (1=Next child node is data)
Bit7 Node0 End Flag (1=Next child node is data)
Data nodes are (when End Flag was set in parent node):
Bit0-7 Data (upper bits should be zero if Data Size is less than 8)
Compressed Bitstream (stored in units of 32bits)
Bit0-31 Node Bits (Bit31=First Bit) (0=Node0, 1=Node1)
*/
#endregion
long readBytes = 0;
byte type = (byte)instream.ReadByte();
if (type != (byte)this.CompressBlockSize)
throw new InvalidDataException("The provided stream is not a valid Huffman "
+ "compressed stream (invalid type 0x" + type.ToString("X") + "); unknown block size.");
byte[] sizeBytes = new byte[3];
instream.Read(sizeBytes, 0, 3);
int decompressedSize = IOUtils.ToNDSu24(sizeBytes, 0);
readBytes += 4;
if (decompressedSize == 0)
{
sizeBytes = new byte[4];
instream.Read(sizeBytes, 0, 4);
decompressedSize = IOUtils.ToNDSs32(sizeBytes, 0);
readBytes += 4;
}
#region Read the Huff-tree
if (readBytes >= inLength)
throw new NotEnoughDataException(0, decompressedSize);
int treeSize = instream.ReadByte(); readBytes++;
if (treeSize < 0)
throw new InvalidDataException("The stream is too short to contain a Huffman tree.");
treeSize = (treeSize + 1) * 2;
if (readBytes + treeSize >= inLength)
throw new InvalidDataException("The Huffman tree is too large for the given input stream.");
long treeEnd = (instream.Position - 1) + treeSize;
// the relative offset may be 4 more (when the initial decompressed size is 0), but
// since it's relative that doesn't matter, especially when it only matters if
// the given value is odd or even.
HuffTreeNode rootNode = new HuffTreeNode(instream, false, 5, treeEnd);
readBytes += treeSize;
// re-position the stream after the tree (the stream is currently positioned after the root
// node, which is located at the start of the tree definition)
instream.Position = treeEnd;
#endregion
// the current u32 we are reading bits from.
uint data = 0;
// the amount of bits left to read from
byte bitsLeft = 0;
// a cache used for writing when the block size is four bits
int cachedByte = -1;
// the current output size
int currentSize = 0;
HuffTreeNode currentNode = rootNode;
byte[] buffer = new byte[4];
while (currentSize < decompressedSize)
{
#region find the next reference to a data node
while (!currentNode.IsData)
{
// if there are no bits left to read in the data, get a new byte from the input
if (bitsLeft == 0)
{
if (readBytes >= inLength)
throw new NotEnoughDataException(currentSize, decompressedSize);
int nRead = instream.Read(buffer, 0, 4);
if (nRead < 4)
throw new StreamTooShortException();
readBytes += nRead;
data = IOUtils.ToNDSu32(buffer, 0);
bitsLeft = 32;
}
// get the next bit
bitsLeft--;
bool nextIsOne = (data & (1 << bitsLeft)) != 0;
// go to the next node, the direction of the child depending on the value of the current/next bit
currentNode = nextIsOne ? currentNode.Child1 : currentNode.Child0;
}
#endregion
#region write the data in the current node (when possible)
switch (this.CompressBlockSize)
{
case BlockSize.EIGHTBIT:
{
// just copy the data if the block size is a full byte
outstream.WriteByte(currentNode.Data);
currentSize++;
break;
}
case BlockSize.FOURBIT:
{
// cache the first half of the data if the block size is a half byte
if (cachedByte < 0)
{
cachedByte = currentNode.Data << 4;
}
else
{
// if we already cached a half-byte, combine the two halves and write the full byte.
cachedByte |= currentNode.Data;
outstream.WriteByte((byte)cachedByte);
currentSize++;
// be sure to forget the two written half-bytes
cachedByte = -1;
}
break;
}
default:
throw new Exception("Unknown block size " + this.CompressBlockSize.ToString());
}
#endregion
outstream.Flush();
// make sure to start over next round
currentNode = rootNode;
}
// the data is 4-byte aligned. Although very unlikely in this case (compressed bit blocks
// are always 4 bytes long, and the tree size is generally 4-byte aligned as well),
// skip any padding due to alignment.
if (readBytes % 4 != 0)
readBytes += 4 - (readBytes % 4);
if (readBytes < inLength)
{
throw new TooMuchInputException(readBytes, inLength);
}
return decompressedSize;
}
#endregion
#region Utility method: GetLowest(leafQueue, nodeQueue, out prio)
///
/// Gets the tree node with the lowest priority (frequency) from the leaf and node queues.
/// If the priority is the same for both head items in the queues, the node from the leaf queue is picked.
///
protected HuffTreeNode GetLowest(SimpleReversedPrioQueue leafQueue, SimpleReversedPrioQueue nodeQueue, out int prio)
{
if (leafQueue.Count == 0)
return nodeQueue.Dequeue(out prio);
else if (nodeQueue.Count == 0)
return leafQueue.Dequeue(out prio);
else
{
int leafPrio, nodePrio;
leafQueue.Peek(out leafPrio);
nodeQueue.Peek(out nodePrio);
// pick a node from the leaf queue when the priorities are equal.
if (leafPrio <= nodePrio)
return leafQueue.Dequeue(out prio);
else
return nodeQueue.Dequeue(out prio);
}
}
#endregion
#region Utility class: HuffTreeNode
///
/// A single node in a Huffman tree.
///
public class HuffTreeNode
{
#region Fields & Properties: Data & IsData
///
/// The data contained in this node. May not mean anything when isData == false
///
private byte data;
///
/// A flag indicating if this node has been filled.
///
private bool isFilled;
///
/// The data contained in this node. May not mean anything when isData == false
.
/// Throws a NullReferenceException when this node has not been defined (ie: reference was outside the
/// bounds of the tree definition)
///
public byte Data
{
get
{
if (!this.isFilled) throw new NullReferenceException("Reference to an undefined node in the huffman tree.");
return this.data;
}
}
///
/// A flag indicating if this node contains data. If not, this is not a leaf node.
///
private bool isData;
///
/// Returns true if this node represents data.
///
public bool IsData { get { return this.isData; } }
#endregion
#region Field & Properties: Children & Parent
///
/// The child of this node at side 0
///
private HuffTreeNode child0;
///
/// The child of this node at side 0
///
public HuffTreeNode Child0 { get { return this.child0; } }
///
/// The child of this node at side 1
///
private HuffTreeNode child1;
///
/// The child of this node at side 1
///
public HuffTreeNode Child1 { get { return this.child1; } }
///
/// The parent node of this node.
///
public HuffTreeNode Parent { get; private set; }
///
/// Determines if this is the Child0 of the parent node. Assumes there is a parent.
///
public bool IsChild0 { get { return this.Parent.child0 == this; } }
///
/// Determines if this is the Child1 of the parent node. Assumes there is a parent.
///
public bool IsChild1 { get { return this.Parent.child1 == this; } }
#endregion
#region Field & Property: Depth
private int depth;
///
/// Get or set the depth of this node. Will not be set automatically, but
/// will be set recursively (the depth of all child nodes will be updated when this is set).
///
public int Depth
{
get { return this.depth; }
set
{
this.depth = value;
// recursively set the depth of the child nodes.
if (!this.isData)
{
this.child0.Depth = this.depth + 1;
this.child1.Depth = this.depth + 1;
}
}
}
#endregion
#region Property: Size
///
/// Calculates the size of the sub-tree with this node as root.
///
public int Size
{
get
{
if (this.IsData)
return 1;
return 1 + this.child0.Size + this.child1.Size;
}
}
#endregion
///
/// The index of this node in the array for building the proper ordering.
/// If -1, this node has not yet been placed in the array.
///
internal int index = -1;
#region Constructor(data, isData, child0, child1)
///
/// Manually creates a new node for a huffman tree.
///
/// The data for this node.
/// If this node represents data.
/// The child of this node on the 0 side.
/// The child of this node on the 1 side.
public HuffTreeNode(byte data, bool isData, HuffTreeNode child0, HuffTreeNode child1)
{
this.data = data;
this.isData = isData;
this.child0 = child0;
this.child1 = child1;
this.isFilled = true;
if (!isData)
{
this.child0.Parent = this;
this.child1.Parent = this;
}
}
#endregion
#region Constructor(Stream, isData, relOffset, maxStreamPos)
///
/// Creates a new node in the Huffman tree.
///
/// The stream to read from. It is assumed that there is (at least)
/// one more byte available to read.
/// If this node is a data-node.
/// The offset of this node in the source data, relative to the start
/// of the compressed file.
/// The indicated end of the huffman tree. If the stream is past
/// this position, the tree is invalid.
public HuffTreeNode(Stream stream, bool isData, long relOffset, long maxStreamPos)
{
/*
Tree Table (list of 8bit nodes, starting with the root node)
Root Node and Non-Data-Child Nodes are:
Bit0-5 Offset to next child node,
Next child node0 is at (CurrentAddr AND NOT 1)+Offset*2+2
Next child node1 is at (CurrentAddr AND NOT 1)+Offset*2+2+1
Bit6 Node1 End Flag (1=Next child node is data)
Bit7 Node0 End Flag (1=Next child node is data)
Data nodes are (when End Flag was set in parent node):
Bit0-7 Data (upper bits should be zero if Data Size is less than 8)
*/
if (stream.Position >= maxStreamPos)
{
// this happens when part of the tree is unused.
this.isFilled = false;
return;
}
this.isFilled = true;
int readData = stream.ReadByte();
if (readData < 0)
throw new StreamTooShortException();
this.data = (byte)readData;
this.isData = isData;
if (!this.isData)
{
int offset = this.data & 0x3F;
bool zeroIsData = (this.data & 0x80) > 0;
bool oneIsData = (this.data & 0x40) > 0;
// off AND NOT 1 == off XOR (off AND 1)
long zeroRelOffset = (relOffset ^ (relOffset & 1)) + offset * 2 + 2;
long currStreamPos = stream.Position;
// position the stream right before the 0-node
stream.Position += (zeroRelOffset - relOffset) - 1;
// read the 0-node
this.child0 = new HuffTreeNode(stream, zeroIsData, zeroRelOffset, maxStreamPos);
this.child0.Parent = this;
// the 1-node is directly behind the 0-node
this.child1 = new HuffTreeNode(stream, oneIsData, zeroRelOffset + 1, maxStreamPos);
this.child1.Parent = this;
// reset the stream position to right behind this node's data
stream.Position = currStreamPos;
}
}
#endregion
///
/// Generates and returns a string-representation of the huffman tree starting at this node.
///
public override string ToString()
{
if (this.isData)
{
return "<" + this.data.ToString("X2") + ">";
}
else
{
return "[" + this.child0.ToString() + "," + this.child1.ToString() + "]";
}
}
}
#endregion
}
///
/// The Huffman compression scheme using 4-bit data blocks.
///
public sealed class Huffman4 : Huffman
{
///
/// Gets a short string identifying this compression format.
///
public override string ShortFormatString
{
get { return "Huffman-4"; }
}
///
/// Gets a short description of this compression format.
///
public override string Description
{
get { return "Huffman compression scheme using 4-bit datablocks."; }
}
///
/// Gets the value that must be given on the command line in order to compress using this format.
///
public override string CompressionFlag
{
get { return "huff4"; }
}
///
/// Creates a new instance of the 4-bit Huffman compression format.
///
public Huffman4()
: base(BlockSize.FOURBIT) { }
#region 4-bit block size Compression method
///
/// Applies Huffman compression with a datablock size of 4 bits.
///
/// The stream to compress.
/// The length of the input stream.
/// The stream to write the decompressed data to.
/// The size of the decompressed data.
public override int Compress(Stream instream, long inLength, Stream outstream)
{
if (inLength > 0xFFFFFF)
throw new InputTooLargeException();
// cache the input, as we need to build a frequency table
byte[] inputData = new byte[inLength];
instream.Read(inputData, 0, (int)inLength);
// build that frequency table.
int[] frequencies = new int[0x10];
for (int i = 0; i < inLength; i++)
{
frequencies[inputData[i] & 0xF]++;
frequencies[(inputData[i] >> 4) & 0xF]++;
}
#region Build the Huffman tree
SimpleReversedPrioQueue leafQueue = new SimpleReversedPrioQueue();
SimpleReversedPrioQueue nodeQueue = new SimpleReversedPrioQueue();
int nodeCount = 0;
// make all leaf nodes, and put them in the leaf queue. Also save them for later use.
HuffTreeNode[] leaves = new HuffTreeNode[0x10];
for (int i = 0; i < 0x10; i++)
{
// there is no need to store leaves that are not used
if (frequencies[i] == 0)
continue;
HuffTreeNode node = new HuffTreeNode((byte)i, true, null, null);
leaves[i] = node;
leafQueue.Enqueue(frequencies[i], node);
nodeCount++;
}
while (leafQueue.Count + nodeQueue.Count > 1)
{
// get the two nodes with the lowest priority.
HuffTreeNode one = null, two = null;
int onePrio, twoPrio;
one = GetLowest(leafQueue, nodeQueue, out onePrio);
two = GetLowest(leafQueue, nodeQueue, out twoPrio);
// give those two a common parent, and put that node in the node queue
HuffTreeNode newNode = new HuffTreeNode(0, false, one, two);
nodeQueue.Enqueue(onePrio + twoPrio, newNode);
nodeCount++;
}
int rootPrio;
HuffTreeNode root = nodeQueue.Dequeue(out rootPrio);
// set the depth of all nodes in the tree, such that we know for each leaf how long
// its codeword is.
root.Depth = 0;
#endregion
// now that we have a tree, we can write that tree and follow with the data.
// write the compression header first
outstream.WriteByte((byte)BlockSize.FOURBIT); // this is block size 4 only
outstream.WriteByte((byte)(inLength & 0xFF));
outstream.WriteByte((byte)((inLength >> 8) & 0xFF));
outstream.WriteByte((byte)((inLength >> 16) & 0xFF));
int compressedLength = 4;
#region write the tree
outstream.WriteByte((byte)((nodeCount - 1) / 2));
compressedLength++;
// use a breadth-first traversal to store the tree, such that we do not need to store/calculate the side of each sub-tree.
// because the data is only 4 bits long, no tree will ever let the offset field overflow.
LinkedList printQueue = new LinkedList();
printQueue.AddLast(root);
while (printQueue.Count > 0)
{
HuffTreeNode node = printQueue.First.Value;
printQueue.RemoveFirst();
if (node.IsData)
{
outstream.WriteByte(node.Data);
}
else
{
// bits 0-5: 'offset' = # nodes in queue left
// bit 6: node1 end flag
// bit 7: node0 end flag
byte data = (byte)(printQueue.Count / 2);
if (data > 0x3F)
throw new InvalidDataException("BUG: offset overflow in 4-bit huffman.");
data = (byte)(data & 0x3F);
if (node.Child0.IsData)
data |= 0x80;
if (node.Child1.IsData)
data |= 0x40;
outstream.WriteByte(data);
printQueue.AddLast(node.Child0);
printQueue.AddLast(node.Child1);
}
compressedLength++;
}
#endregion
#region write the data
// the codewords are stored in blocks of 32 bits
uint datablock = 0;
byte bitsLeftToWrite = 32;
for (int i = 0; i < inLength; i++)
{
byte data = inputData[i];
for (int j = 0; j < 2; j++)
{
HuffTreeNode node = leaves[(data >> (4 - j * 4)) & 0xF];
// the depth of the node is the length of the codeword required to encode the byte
int depth = node.Depth;
bool[] path = new bool[depth];
for (int d = 0; d < depth; d++)
{
path[depth - d - 1] = node.IsChild1;
node = node.Parent;
}
for (int d = 0; d < depth; d++)
{
if (bitsLeftToWrite == 0)
{
outstream.Write(IOUtils.FromNDSu32(datablock), 0, 4);
compressedLength += 4;
datablock = 0;
bitsLeftToWrite = 32;
}
bitsLeftToWrite--;
if (path[d])
datablock |= (uint)(1 << bitsLeftToWrite);
// no need to OR the buffer with 0 if it is child0
}
}
}
// write the partly filled data block as well
if (bitsLeftToWrite != 32)
{
outstream.Write(IOUtils.FromNDSu32(datablock), 0, 4);
compressedLength += 4;
}
#endregion
return compressedLength;
}
#endregion
}
///
/// The Huffman compression scheme using 8-bit data blocks.
///
public sealed class Huffman8 : Huffman
{
///
/// Gets a short string identifying this compression format.
///
public override string ShortFormatString
{
get { return "Huffman-8"; }
}
///
/// Gets a short description of this compression format.
///
public override string Description
{
get { return "Huffman compression scheme using 8-bit datablocks."; }
}
///
/// Gets the value that must be given on the command line in order to compress using this format.
///
public override string CompressionFlag
{
get { return "huff8"; }
}
///
/// Creates a new instance of the 4-bit Huffman compression format.
///
public Huffman8()
: base(BlockSize.EIGHTBIT) { }
#region 8-bit block size Compression method
///
/// Applies Huffman compression with a datablock size of 8 bits.
///
/// The stream to compress.
/// The length of the input stream.
/// The stream to write the decompressed data to.
/// The size of the decompressed data.
public override int Compress(Stream instream, long inLength, Stream outstream)
{
if (inLength > 0xFFFFFF)
throw new InputTooLargeException();
// cache the input, as we need to build a frequency table
byte[] inputData = new byte[inLength];
instream.Read(inputData, 0, (int)inLength);
// build that frequency table.
int[] frequencies = new int[0x100];
for (int i = 0; i < inLength; i++)
frequencies[inputData[i]]++;
#region Build the Huffman tree
SimpleReversedPrioQueue leafQueue = new SimpleReversedPrioQueue();
SimpleReversedPrioQueue nodeQueue = new SimpleReversedPrioQueue();
int nodeCount = 0;
// make all leaf nodes, and put them in the leaf queue. Also save them for later use.
HuffTreeNode[] leaves = new HuffTreeNode[0x100];
for (int i = 0; i < 0x100; i++)
{
// there is no need to store leaves that are not used
if (frequencies[i] == 0)
continue;
HuffTreeNode node = new HuffTreeNode((byte)i, true, null, null);
leaves[i] = node;
leafQueue.Enqueue(frequencies[i], node);
nodeCount++;
}
while (leafQueue.Count + nodeQueue.Count > 1)
{
// get the two nodes with the lowest priority.
HuffTreeNode one = null, two = null;
int onePrio, twoPrio;
one = GetLowest(leafQueue, nodeQueue, out onePrio);
two = GetLowest(leafQueue, nodeQueue, out twoPrio);
// give those two a common parent, and put that node in the node queue
HuffTreeNode newNode = new HuffTreeNode(0, false, one, two);
nodeQueue.Enqueue(onePrio + twoPrio, newNode);
nodeCount++;
}
int rootPrio;
HuffTreeNode root = nodeQueue.Dequeue(out rootPrio);
// set the depth of all nodes in the tree, such that we know for each leaf how long
// its codeword is.
root.Depth = 0;
#endregion
// now that we have a tree, we can write that tree and follow with the data.
// write the compression header first
outstream.WriteByte((byte)BlockSize.EIGHTBIT); // this is block size 8 only
outstream.WriteByte((byte)(inLength & 0xFF));
outstream.WriteByte((byte)((inLength >> 8) & 0xFF));
outstream.WriteByte((byte)((inLength >> 16) & 0xFF));
int compressedLength = 4;
#region write the tree
outstream.WriteByte((byte)((nodeCount - 1) / 2));
compressedLength++;
// use a breadth-first traversal to store the tree, such that we do not need to store/calculate the size of each sub-tree.
// NO! BF results in an ordering that may overflow the offset field.
// find the BF order of all nodes that have two leaves as children. We're going to insert them in an array in reverse BF order,
// inserting the parent whenever both children have been inserted.
LinkedList leafStemQueue = new LinkedList();
#region fill the leaf queue; first->last will be reverse BF
LinkedList nodeCodeStack = new LinkedList();
nodeCodeStack.AddLast(root);
while (nodeCodeStack.Count > 0)
{
HuffTreeNode node = nodeCodeStack.First.Value;
nodeCodeStack.RemoveFirst();
if (node.IsData)
continue;
if (node.Child0.IsData && node.Child1.IsData)
{
leafStemQueue.AddFirst(node);
}
else
{
nodeCodeStack.AddLast(node.Child0);
nodeCodeStack.AddLast(node.Child1);
}
}
#endregion
HuffTreeNode[] nodeArray = new HuffTreeNode[0x1FF]; // this array does not contain the leaves themselves!
while (leafStemQueue.Count > 0)
{
Insert(leafStemQueue.First.Value, nodeArray, 0x3F + 1);
leafStemQueue.RemoveFirst();
}
// update the indices to ignore all gaps
int nodeIndex = 0;
for (int i = 0; i < nodeArray.Length; i++)
{
if (nodeArray[i] != null)
nodeArray[i].index = nodeIndex++;
}
// write the nodes in their given order. However when 'writing' a node, write the data of its children instead.
// the root node is always the first node.
byte rootData = 0;
if (root.Child0.IsData)
rootData |= 0x80;
if (root.Child1.IsData)
rootData |= 0x40;
outstream.WriteByte(rootData); compressedLength++;
for (int i = 0; i < nodeArray.Length; i++)
{
if (nodeArray[i] != null)
{
// nodes in this array are never data!
HuffTreeNode node0 = nodeArray[i].Child0;
if (node0.IsData)
outstream.WriteByte(node0.Data);
else
{
int offset = node0.index - nodeArray[i].index - 1;
if (offset > 0x3F)
throw new Exception("Offset overflow!");
byte data = (byte)offset;
if (node0.Child0.IsData)
data |= 0x80;
if (node0.Child1.IsData)
data |= 0x40;
outstream.WriteByte(data);
}
HuffTreeNode node1 = nodeArray[i].Child1;
if (node1.IsData)
outstream.WriteByte(node1.Data);
else
{
int offset = node1.index - nodeArray[i].index - 1;
if (offset > 0x3F)
throw new Exception("Offset overflow!");
byte data = (byte)offset;
if (node0.Child0.IsData)
data |= 0x80;
if (node0.Child1.IsData)
data |= 0x40;
outstream.WriteByte(data);
}
compressedLength += 2;
}
}
#endregion
#region write the data
// the codewords are stored in blocks of 32 bits
uint datablock = 0;
byte bitsLeftToWrite = 32;
for (int i = 0; i < inLength; i++)
{
byte data = inputData[i];
HuffTreeNode node = leaves[data];
// the depth of the node is the length of the codeword required to encode the byte
int depth = node.Depth;
bool[] path = new bool[depth];
for (int d = 0; d < depth; d++)
{
path[depth - d - 1] = node.IsChild1;
node = node.Parent;
}
for (int d = 0; d < depth; d++)
{
if (bitsLeftToWrite == 0)
{
outstream.Write(IOUtils.FromNDSu32(datablock), 0, 4);
compressedLength += 4;
datablock = 0;
bitsLeftToWrite = 32;
}
bitsLeftToWrite--;
if (path[d])
datablock |= (uint)(1 << bitsLeftToWrite);
// no need to OR the buffer with 0 if it is child0
}
}
// write the partly filled data block as well
if (bitsLeftToWrite != 32)
{
outstream.Write(IOUtils.FromNDSu32(datablock), 0, 4);
compressedLength += 4;
}
#endregion
return compressedLength;
}
#endregion
#region Utility Method: Insert(node, HuffTreeNode[], maxOffset)
///
/// Inserts the given node into the given array, in such a location that
/// the offset to both of its children is at most the given maximum, and as large as possible.
/// In order to do this, the contents of the array may be shifted to the right.
///
/// The node to insert.
/// The array to insert the node in.
/// The maximum offset between parent and children.
private void Insert(HuffTreeNode node, HuffTreeNode[] array, int maxOffset)
{
// if the node has two data-children, insert it as far to the end as possible.
if (node.Child0.IsData && node.Child1.IsData)
{
for (int i = array.Length - 1; i >= 0; i--)
{
if (array[i] == null)
{
array[i] = node;
node.index = i;
break;
}
}
}
else
{
// if the node is not data, insert it as far left as possible.
// we know that both children are already present.
int offset = Math.Max(node.Child0.index - maxOffset, node.Child1.index - maxOffset);
offset = Math.Max(0, offset);
if (offset >= node.Child0.index || offset >= node.Child1.index)
{
// it may be that the childen are too far apart, with lots of empty entries in-between.
// shift the bottom child right until the node fits in its left-most place for the top child.
// (there should be more than enough room in the array)
while (offset >= Math.Min(node.Child0.index, node.Child1.index))
ShiftRight(array, Math.Min(node.Child0.index, node.Child1.index), maxOffset);
while (array[offset] != null)
ShiftRight(array, offset, maxOffset);
array[offset] = node;
node.index = offset;
}
else
{
for (int i = offset; i < node.Child0.index && i < node.Child1.index; i++)
{
if (array[i] == null)
{
array[i] = node;
node.index = i;
break;
}
}
}
}
if (node.index < 0)
throw new Exception("Node could not be inserted!");
// if the insertion of this node means that the parent has both children inserted, insert the parent.
if (node.Parent != null)
{
if ((node.Parent.Child0.index >= 0 || node.Parent.Child0.IsData)
&& (node.Parent.Child1.index >= 0 || node.Parent.Child1.IsData))
Insert(node.Parent, array, maxOffset);
}
}
#endregion
#region Utility Method: ShiftRight(HuffTreeNode[], index, maxOffset)
///
/// Shifts the node at the given index one to the right.
/// If the distance between parent and child becomes too large due to this shift, the parent is shifted as well.
///
/// The array to shift the node in.
/// The index of the node to shift.
/// The maximum distance between parent and children.
private void ShiftRight(HuffTreeNode[] array, int idx, int maxOffset)
{
HuffTreeNode node = array[idx];
if (array[idx + 1] != null)
ShiftRight(array, idx + 1, maxOffset);
if (node.Parent.index > 0 && node.index - maxOffset + 1 > node.Parent.index)
ShiftRight(array, node.Parent.index, maxOffset);
if (node != array[idx])
return; // already done indirectly.
array[idx + 1] = array[idx];
array[idx] = null;
node.index++;
}
#endregion
}
///
/// Composite compression format representing both Huffman compression schemes.
///
public class HuffmanAny : CompositeFormat
{
///
/// Creates a new instance of the general Huffman compression format.
///
public HuffmanAny()
: base(new Huffman4(), new Huffman8()) { }
///
/// Gets a short string identifying this compression format.
///
public override string ShortFormatString
{
get { return "Huffman"; }
}
///
/// Gets a short description of this compression format.
///
public override string Description
{
get { return "Either the Huffman-4 or Huffman-8 format."; }
}
///
/// Gets if this format supports compression. Always returns true.
///
public override bool SupportsCompression
{
get { return true; }
}
///
/// Gets the value that must be given on the command line in order to compress using this format.
///
public override string CompressionFlag
{
get { return "huff"; }
}
}
}