
Public

SMART CONTRACT AUDIT REPORT

for

RockX ETH Staking

Prepared By: Xiaomi Huang

PeckShield
June 12, 2022

1/21 PeckShield Audit Report #: 2022-238

contact@peckshield.com

Public

Document Properties

Client RockX
Title Smart Contract Audit Report
Target RockX ETH Staking
Version 1.0
Author Xuxian Jiang
Auditors Xiaotao Wu, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 June 12, 2022 Xuxian Jiang Final Release
1.0-rc1 June 10, 2022 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/21 PeckShield Audit Report #: 2022-238

Public

Contents

1 Introduction 4
1.1 About RockX . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Incorrect Validator Replacement Logic in replaceValidator() 11
3.2 Suggested Adherence of Checks-Effects-Interactions 12
3.3 Proper minToMint Enforcement in mint() . 13
3.4 Proper Event Emission in mint() . 15
3.5 Trust Issue of Admin Keys . 16

4 Conclusion 19

References 20

3/21 PeckShield Audit Report #: 2022-238

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
staking support of RockX, we outline in the report our systematic approach to evaluate potential se-
curity issues in the smart contract implementation, expose possible semantic inconsistencies between
smart contract code and design document, and provide additional suggestions or recommendations
for improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About RockX

RockX is a blockchain fintech company that helps our customers embrace Web 3.0 effortlessly through
the development of innovative products and infrastructure. It also strives to enable institutions and
disruptors in the financial and internet sectors to gain seamless access to blockchain data, crypto
yield products and best-in-class key management solutions in a sustainable way. This audit covers
the staking support for ETH 2.0 in allowing users to deposit any number of ethers to the staking
contract, and get back equivalent value of uniETH token (decided by real-time exchange ratio). The
basic information of the audited protocol is as follows:

Table 1.1: Basic Information of The RockX ETH Staking

Item Description
Name RockX

Website https://www.rockx.com/
Type EVM Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report June 12, 2022

In the following, we show the Git repository of reviewed files and the commit hash values used
in this audit.

4/21 PeckShield Audit Report #: 2022-238

Public

• https://github.com/RockX-SG/stake.git (735f12c)

And here is the commit ID after fixes for the issues found in the audit have been checked in:

• https://github.com/RockX-SG/stake.git (f1d0bef)

1.2 About PeckShield

PeckShield Inc. [11] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [10]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

5/21 PeckShield Audit Report #: 2022-238

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/21 PeckShield Audit Report #: 2022-238

Public

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [9], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/21 PeckShield Audit Report #: 2022-238

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/21 PeckShield Audit Report #: 2022-238

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the staking support in RockX.
During the first phase of our audit, we study the smart contract source code and run our in-house
static code analyzer through the codebase. The purpose here is to statically identify known coding
bugs, and then manually verify (reject or confirm) issues reported by our tool. We further manually
review business logics, examine system operations, and place DeFi-related aspects under scrutiny to
uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 1

Medium 1

Low 2

Informational 1

Total 5

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/21 PeckShield Audit Report #: 2022-238

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 high-severity vulnerability,
1 medium-severity vulnerability, 2 low-severity vulnerabilities, and 1 informational suggestion.

Table 2.1: Key RockX ETH Staking Audit Findings

ID Severity Title Category Status
PVE-001 High Incorrect Validator Replacement Logic

in replaceValidator()
Business Logic Resolved

PVE-002 Low Suggested Adherence Of The Checks-
Effects-Interactions Pattern

Time and State Resolved

PVE-003 Low Proper minToMint Enforcement in
mint()

Business Logic Resolved

PVE-004 Informational Proper Event Emission in mint() Status Codes Resolved
PVE-005 Medium Trust Issue of Admin Keys Security Features Mitigated

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

10/21 PeckShield Audit Report #: 2022-238

Public

3 | Detailed Results

3.1 Incorrect Validator Replacement Logic in replaceValidator()

• ID: PVE-001

• Severity: High

• Likelihood: Medium

• Impact: High

• Target: RockXStaking

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [4]

Description

The RockXStaking contract of RockX provides an external replaceValidator() function that allows for
replacing a validator in case of misconfiguration. Our analysis with this function shows the current
logic has a flawed implementation that needs to be corrected.

To elaborate, we show below its current implementation. By design, the current logic updates the
internal accounting to remove the oldpubkey-mapped pubkeyIndices and add the new pubkey-mapped
pubkeyIndices. However, there is a need to validate the pubkeyIndices of the oldpubkey is indeed
present. The current implementation accidentally ensures the non-presence of oldpubkey (line 271)!
Moreover, the current implementation can also be improved by validating the new pubkey does not
exist, which is currently missing.

265 function replaceValidator(bytes calldata oldpubkey , bytes calldata pubkey , bytes
calldata signature) external onlyRole(REGISTRY_ROLE) {

266 require(pubkey.length == PUBKEY_LENGTH , "INCONSISTENT_PUBKEY_LEN");
267 require(signature.length == SIGNATURE_LENGTH , "INCONSISTENT_SIG_LEN");
268
269 // mark old pub key to false
270 bytes32 oldPubKeyHash = keccak256(oldpubkey);
271 require(pubkeyIndices[oldPubKeyHash] == 0, "PUBKEY_NOT_EXSITS");
272 uint256 index = pubkeyIndices[oldPubKeyHash] - 1;
273 delete pubkeyIndices[oldPubKeyHash];
274
275 // set new pubkey
276 bytes32 pubkeyHash = keccak256(pubkey);

11/21 PeckShield Audit Report #: 2022-238

Public

277 validatorRegistry[index] = ValidatorCredential ({ pubkey:pubkey , signature:
signature , stopped:false});

278 pubkeyIndices[pubkeyHash] = index +1;
279 }

Listing 3.1: RockXStaking::replaceValidator()

Recommendation Revise the validator replacement logic in the above routine to ensure the
old one is correctly replaced by the new one.

Status This issue has been fixed in the following commit: e0bd595.

3.2 Suggested Adherence of Checks-Effects-Interactions

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: RockXStaking

• Category: Time and State [7]

• CWE subcategory: CWE-663 [3]

Description

A common coding best practice in Solidity is the adherence of checks-effects-interactions principle.
This principle is effective in mitigating a serious attack vector known as re-entrancy. Via this
particular attack vector, a malicious contract can be reentering a vulnerable contract in a nested
manner. Specifically, it first calls a function in the vulnerable contract, but before the first instance
of the function call is finished, second call can be arranged to re-enter the vulnerable contract by
invoking functions that should only be executed once. This attack was part of several most prominent
hacks in Ethereum history, including the DAO [13] exploit, and the Uniswap/Lendf.Me hack [12].

We notice an occasion where the checks-effects-interactions principle is violated. Using the
RockXStaking as an example, the withdrawManagerFee() function (see the code snippet below) is pro-
vided to externally interact with a given to address to transfer assets. However, the invocation of an
external address requires extra care in avoiding the above re-entrancy.

Apparently, the interaction with the external address (line 357) starts before effecting the update
on internal state (line 358−360), hence violating the principle. In this particular case, if the external
address is an contract with certain hidden logic that may be capable of launching re-entrancy via
the very same withdrawManagerFee() function. Note that there is no harm that may be caused to
current protocol. However, it is still suggested to follow the known checks-effects-interactions best
practice.

12/21 PeckShield Audit Report #: 2022-238

https://github.com/RockX-SG/stake/commit/e0bd595

Public

354 function withdrawManagerFee(uint256 amount , address to) external nonReentrant
onlyRole(MANAGER_ROLE) {

355 require(amount <= accountedManagerRevenue , "WITHDRAW_EXCEEDED_MANAGER_REVENUE");
356 require(amount <= _currentEthersReceived (), "INSUFFICIENT_ETHERS");
357 payable(to).sendValue(amount);
358 accountedBalance -= int256(amount);
359 // track manager ’s revenue
360 accountedManagerRevenue -= amount;
361 emit ManagerFeeWithdrawed(amount , to);
362 }

Listing 3.2: RockXStaking::withdrawManagerFee()

In the meantime, we should mention that the supported tokens in the protocol do implement
rather standard ERC20 interfaces and their related token contracts are not vulnerable or exploitable
for re-entrancy.

Recommendation Apply necessary reentrancy prevention by following the checks-effects-

interactions best practice.

Status This issue has been fixed in the following commit: e0bd595.

3.3 Proper minToMint Enforcement in mint()

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: RockXStaking

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [4]

Description

The RockXStaking contract allows to deposit any number of ethers to the staking contract, and
get back equivalent value of uniETH token (decided by real-time exchange ratio). In addition, the
contract allows the user to specify the minimum uniETH amount (minToMint) that will be returned.
While examining the related exchange logic, we observe the minToMint enforcement needs to be
improved.

To elaborate, we show below the related mint() function. It comes to our attention that the
minToMint parameter is enforced to ensure require(toMint >= minToMint) (line 669), which may not
represent the actual amount of the returned uniETH. In other words, the current enforcement only
ensures that the exchange ratio is at least 1. However, the proper enforcement requires the use of
the final toMint of totalXETH * msg.value / totalEthers (line 672)!

13/21 PeckShield Audit Report #: 2022-238

https://github.com/RockX-SG/stake/commit/e05b6e0

Public

658 function mint(uint256 minToMint , uint256 deadline) external payable nonReentrant
whenNotPaused {

659 require(block.timestamp < deadline , "TRANSACTION_EXPIRED");
660 require(msg.value > 0, "MINT_ZERO");
661
662 // track balance
663 _balanceIncrease(msg.value);
664
665 // mint xETH while keeping the exchange ratio invariant
666 uint256 totalXETH = IERC20(xETHAddress).totalSupply ();
667 uint256 totalEthers = currentReserve ();
668 uint256 toMint = 1 * msg.value; // default exchange ratio 1:1
669 require(toMint >= minToMint , "EXCHANGE_RATIO_MISMATCH");
670
671 if (totalEthers > 0) { // avert division overflow
672 toMint = totalXETH * msg.value / totalEthers;
673 }
674 // mint xETH
675 IMintableContract(xETHAddress).mint(msg.sender , toMint);
676 totalPending += msg.value;
677
678 // spin up n nodes
679 uint256 numValidators = totalPending / DEPOSIT_SIZE;
680 for (uint256 i = 0;i<numValidators;i++) {
681 if (nextValidatorId < validatorRegistry.length) {
682 _spinup ();
683 }
684 }
685 }

Listing 3.3: RockXStaking::mint()

Recommendation Revisit the above logic to properly enforce the minToMint. An example
revision is shown in the following:

658 function mint(uint256 minToMint , uint256 deadline) external payable nonReentrant
whenNotPaused {

659 require(block.timestamp < deadline , "TRANSACTION_EXPIRED");
660 require(msg.value > 0, "MINT_ZERO");
661
662 // track balance
663 _balanceIncrease(msg.value);
664
665 // mint xETH while keeping the exchange ratio invariant
666 uint256 totalXETH = IERC20(xETHAddress).totalSupply ();
667 uint256 totalEthers = currentReserve ();
668 uint256 toMint = 1 * msg.value; // default exchange ratio 1:1
669
670 if (totalEthers > 0) { // avert division overflow
671 toMint = totalXETH * msg.value / totalEthers;
672 }
673

14/21 PeckShield Audit Report #: 2022-238

Public

674 require(toMint >= minToMint , "EXCHANGE_RATIO_MISMATCH");
675
676 // mint xETH
677 IMintableContract(xETHAddress).mint(msg.sender , toMint);
678 totalPending += msg.value;
679
680 // spin up n nodes
681 uint256 numValidators = totalPending / DEPOSIT_SIZE;
682 for (uint256 i = 0;i<numValidators;i++) {
683 if (nextValidatorId < validatorRegistry.length) {
684 _spinup ();
685 }
686 }
687 }

Listing 3.4: Revised RockXStaking::mint()

Status This issue has been fixed in the following commit: e0bd595.

3.4 Proper Event Emission in mint()

• ID: PVE-004

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: RockXStaking

• Category: Status Codes [8]

• CWE subcategory: CWE-391 [2]

Description

In Ethereum, the event is an indispensable part of a contract and is mainly used to record a variety
of runtime dynamics. In particular, when an event is emitted, it stores the arguments passed in
transaction logs and these logs are made accessible to external analytics and reporting tools. Events

can be emitted in a number of scenarios. One particular case is when system-wide parameters or
settings are being changed. Another case is when tokens are being minted, transferred, or burned.

In the following, we show the set of events defined in RockXStaking. While examining the list of
events, we notice the following three of them are defined, but not used: RevenueWithdrawedFromValidator
(line 876), Redeemed (line 881), and RedeemFromValidator (line 882). Therefore, there is a need
to properly emit them when respective operations are performed. For example, we may emit
RedeemFromValidator within redeemFromValidators() and emit Redeemed within _payDebts().

873 event ValidatorActivated(uint256 node_id);
874 event ValidatorStopped(uint256 stoppedCount , uint256 stoppedBalance);
875 event RevenueAccounted(uint256 amount);
876 event RevenueWithdrawedFromValidator(uint256 amount);
877 event ValidatorSlashedStopped(uint256 stoppedCount , uint256 slashed);

15/21 PeckShield Audit Report #: 2022-238

https://github.com/RockX-SG/stake/commit/e0bd595

Public

878 event ManagerAccountSet(address account);
879 event ManagerFeeSet(uint256 milli);
880 event ManagerFeeWithdrawed(uint256 amount , address);
881 event Redeemed(uint256 amountXETH , uint256 amountETH);
882 event RedeemFromValidator(uint256 amountXETH , uint256 amountETH);
883 event WithdrawCredentialSet(bytes32 withdrawCredential);
884 event DebtQueued(address creditor , uint256 amountEther);
885 event XETHContractSet(address addr);
886 event DepositContractSet(address addr);
887 event RedeemContractSet(address addr);
888 event BalanceSynced(uint256 diff);

Listing 3.5: The Events Defined in RockXStaking

Recommendation Properly emit the above-mentioned events within respective functions to
timely reflect state changes. This is very helpful for external analytics and reporting tools.

Status This issue has been fixed in the following commit: e0bd595.

3.5 Trust Issue of Admin Keys

• ID: PVE-005

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple contracts

• Category: Security Features [5]

• CWE subcategory: CWE-287 [1]

Description

In RockXStaking, there is a privileged administrative account, i.e., the account with the DEFAULT_ADMIN_ROLE

role. The administrative account plays a critical role in governing and regulating the staking-wide
operations. It also has the privilege to control or govern the flow of assets within the protocol con-
tracts. Our analysis shows that this privileged account needs to be scrutinized. In the following,
we use the RockXStaking contract as an example and show the representative functions potentially
affected by the privileges of the administrative account.

301 function setManagerFeeShare(uint256 milli) external onlyRole(DEFAULT_ADMIN_ROLE) {
302 require(milli >=0 && milli <=1000, "SHARE_OUT_OF_RANGE");
303 managerFeeShare = milli;
304
305 emit ManagerFeeSet(milli);
306 }
307
308 /**
309 * @dev set xETH token contract address
310 */

16/21 PeckShield Audit Report #: 2022-238

https://github.com/RockX-SG/stake/commit/e0bd595

Public

311 function setXETHContractAddress(address _xETHContract) external onlyRole(
DEFAULT_ADMIN_ROLE) {

312 xETHAddress = _xETHContract;
313
314 emit XETHContractSet(_xETHContract);
315 }
316
317 /**
318 * @dev set eth deposit contract address
319 */
320 function setETHDepositContract(address _ethDepositContract) external onlyRole(

DEFAULT_ADMIN_ROLE) {
321 ethDepositContract = _ethDepositContract;
322
323 emit DepositContractSet(_ethDepositContract);
324 }
325
326 /**
327 * @dev set redeem contract
328 */
329 function setRedeemContract(address _redeemContract) external onlyRole(

DEFAULT_ADMIN_ROLE) {
330 redeemContract = _redeemContract;
331
332 emit RedeemContractSet(_redeemContract);
333 }
334
335 /**
336 @dev set withdraw credential to receive revenue , usually this should be the

contract itself.
337 */
338 function setWithdrawCredential(bytes32 withdrawalCredentials_) external onlyRole(

DEFAULT_ADMIN_ROLE) {
339 withdrawalCredentials = withdrawalCredentials_;
340 emit WithdrawCredentialSet(withdrawalCredentials);
341 }

Listing 3.6: Example Privileged Operations in RockXStaking

We understand the need of the privileged functions for contract maintenance, but at the same
time the extra power to the owner may also be a counter-party risk to the protocol users. It would
be worrisome if the privileged administrative account is a plain EOA account. Note that a multi-sig
account could greatly alleviate this concern, though it is still far from perfect. Specifically, a better
approach is to eliminate the administration key concern by transferring the role to a community-
governed DAO.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changes to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-

17/21 PeckShield Audit Report #: 2022-238

Public

tended trustless nature and high-quality distributed governance.

Status This issue has been mitigated as the team confirms the use of Aragon DAO to use these
administrative functions.

18/21 PeckShield Audit Report #: 2022-238

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the staking support in RockX, which
makes it possible for anyone to access efficient and reliable mining and staking services. The staking
contract allows users to deposit any number of ethers to the staking contract of ETH 2.0, and get
back equivalent value of uniETH token (decided by real-time exchange ratio). The current code base is
well structured and neatly organized. Those identified issues are promptly confirmed and addressed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

19/21 PeckShield Audit Report #: 2022-238

Public

References

[1] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[2] MITRE. CWE-391: Unchecked Error Condition. https://cwe.mitre.org/data/definitions/391.

html.

[3] MITRE. CWE-663: Use of a Non-reentrant Function in a Concurrent Context. https://cwe.

mitre.org/data/definitions/663.html.

[4] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[6] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[7] MITRE. CWE CATEGORY: Concurrency. https://cwe.mitre.org/data/definitions/557.html.

[8] MITRE. CWE CATEGORY: Error Conditions, Return Values, Status Codes. https://cwe.mitre.

org/data/definitions/389.html.

[9] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

20/21 PeckShield Audit Report #: 2022-238

https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/391.html
https://cwe.mitre.org/data/definitions/391.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/557.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html

Public

[10] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[11] PeckShield. PeckShield Inc. https://www.peckshield.com.

[12] PeckShield. Uniswap/Lendf.Me Hacks: Root Cause and Loss Analysis. https://medium.com/

@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09.

[13] David Siegel. Understanding The DAO Attack. https://www.coindesk.com/

understanding-dao-hack-journalists.

21/21 PeckShield Audit Report #: 2022-238

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists

	Introduction
	About RockX
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Incorrect Validator Replacement Logic in replaceValidator()
	Suggested Adherence of Checks-Effects-Interactions
	Proper minToMint Enforcement in mint()
	Proper Event Emission in mint()
	Trust Issue of Admin Keys

	Conclusion
	References

