
Public

SMART CONTRACT AUDIT REPORT

for

Bedrock Staking

Prepared By: Xiaomi Huang

PeckShield
February 15, 2024

1/20 PeckShield Audit Report #: 2024-065

contact@peckshield.com

Public

Document Properties

Client Bedrock
Title Smart Contract Audit Report
Target Bedrock Staking
Version 1.0
Author Xuxian Jiang
Auditors Jason Shen, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 February 15, 2024 Xuxian Jiang Final Release
1.0-rc1 February 9, 2024 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/20 PeckShield Audit Report #: 2024-065

Public

Contents

1 Introduction 4
1.1 About Bedrock Staking . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Improved Constructor Logic in RockXETH . 11
3.2 Improved xETHToBurn Calculation in Redemption 12
3.3 Revisited validatorSlashedStop() Logic in Staking 13
3.4 Trust Issue of Admin Keys . 15

4 Conclusion 18

References 19

3/20 PeckShield Audit Report #: 2024-065

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
Bedrock Staking protocol, we outline in the report our systematic approach to evaluate potential se-
curity issues in the smart contract implementation, expose possible semantic inconsistencies between
smart contract code and design document, and provide additional suggestions or recommendations
for improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About Bedrock Staking

Bedrock is a blockchain fintech company that helps our customers embrace Web 3.0 effortlessly through
the development of innovative products and infrastructure. It also strives to enable institutions and
disruptors in the financial and Internet sectors to gain seamless access to blockchain data, crypto
yield products and best-in-class key management solutions in a sustainable way. This audit covers
the staking support for ETH 2.0 in allowing users to deposit any number of ethers to the staking
contract, and get back equivalent value of uniETH token (decided by real-time exchange ratio). The
basic information of the audited protocol is as follows:

Table 1.1: Basic Information of The Bedrock Staking Protocol

Item Description
Name Bedrock
Type EVM Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report February 15, 2024

In the following, we show the Git repository of reviewed files and the commit hash values used
in this audit.

4/20 PeckShield Audit Report #: 2024-065

Public

• https://github.com/Bedrock-Technology/stake.git (b9fbe65)

And here is the commit ID after fixes for the issues found in the audit have been checked in:

• https://github.com/Bedrock-Technology/stake.git (6e6a7e7)

1.2 About PeckShield

PeckShield Inc. [11] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [10]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

5/20 PeckShield Audit Report #: 2024-065

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/20 PeckShield Audit Report #: 2024-065

Public

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [9], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/20 PeckShield Audit Report #: 2024-065

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/20 PeckShield Audit Report #: 2024-065

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the Bedrock Staking protocol.
During the first phase of our audit, we study the smart contract source code and run our in-house
static code analyzer through the codebase. The purpose here is to statically identify known coding
bugs, and then manually verify (reject or confirm) issues reported by our tool. We further manually
review business logics, examine system operations, and place DeFi-related aspects under scrutiny to
uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 3

Informational 0

Total 4

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/20 PeckShield Audit Report #: 2024-065

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity
vulnerability and 3 low-severity vulnerabilities.

Table 2.1: Key Bedrock Staking Audit Findings

ID Severity Title Category Status
PVE-001 Low Improved Constructor Logic in RockX-

ETH
Coding Practices Resolved

PVE-002 Low Improved xETHToBurn Calculation in
Redemption

Numeric Errors Confirmed

PVE-003 Low Revisited validatorSlashedStop() Logic
in Staking

Business Logic Resolved

PVE-004 Medium Trust Issue of Admin Keys Security Features Mitigated

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

10/20 PeckShield Audit Report #: 2024-065

Public

3 | Detailed Results

3.1 Improved Constructor Logic in RockXETH

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: RockXETH

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [1]

Description

To facilitate possible future upgrade, the RockXETH constract is instantiated as a proxy with actual
logic contract in the backend. While examining the related contract construction and initialization
logic, we notice current construction can be improved.

In the following, we shows its initialization routine. We notice its constructor does not have any
payload. With that, it can be improved by adding the following statement, i.e., _disableInitializers
();. Note this statement is called in the logic contract where the initializer is locked. Therefore any
user will not able to call the initialize() function in the state of the logic contract and perform any
malicious activity. Note that the proxy contract state will still be able to call this function since the
constructor does not effect the state of the proxy contract.

29 function initialize () initializer public {
30 __ERC20_init("Universal ETH", "uniETH");
31 __ERC20Burnable_init ();
32 __ERC20Snapshot_init ();
33 __Ownable_init ();
34 __Pausable_init ();

36 setMintable(owner (), true); // default mintable at constructor
37 }

Listing 3.1: RockXETH::initialize()

Recommendation Improve the above-mentioned constructor routine in RockXETH.

11/20 PeckShield Audit Report #: 2024-065

Public

Status This issue has been fixed by the following commit: bcc15ae.

3.2 Improved xETHToBurn Calculation in Redemption

• ID: PVE-002

• Severity: Low

• Likelihood: Medium

• Impact: Low

• Target: RockXStaking

• Category: Numeric Errors [8]

• CWE subcategory: CWE-190 [2]

Description

SafeMath is a widely-used Solidity math library that is designed to support safe math operations by
preventing common overflow or underflow issues when working with uint256 operands. While it
indeed blocks common overflow or underflow issues, the lack of float support in Solidity may
introduce another subtle, but troublesome issue: precision loss. In this section, we examine one
possible precision loss source that stems from the different orders when both multiplication (mul) and
division (div) are involved.

In particular, we use the RockXStaking::redeemFromValidators() as an example. This routine is
used to redeem staked funds by turning off associated validators.

945 function redeemFromValidators(uint256 ethersToRedeem , uint256 maxToBurn , uint256
deadline) external nonReentrant onlyPhase (1) returns(uint256 burned) {

946 _require(block.timestamp < deadline , "USR001");
947 _require(ethersToRedeem % DEPOSIT_SIZE == 0, "USR005");
948 _require(ethersToRedeem > 0, "USR005");

950 uint256 totalXETH = IERC20(xETHAddress).totalSupply ();
951 uint256 xETHToBurn = totalXETH * ethersToRedeem / currentReserve ();
952 _require(xETHToBurn <= maxToBurn , "USR004");

954 // NOTE: the following procedure must keep exchangeRatio invariant:
955 // transfer xETH from sender & burn
956 IERC20(xETHAddress).safeTransferFrom(msg.sender , address(this), xETHToBurn);
957 IMintableContract(xETHAddress).burn(xETHToBurn);

959 // queue ether debts
960 _enqueueDebt(msg.sender , ethersToRedeem);

962 // try to initiate restaking operations
963 IRockXRestaking(restakingContract).withdrawBeforeRestaking ();
964 IRockXRestaking(restakingContract).claimDelayedWithdrawals(type(uint256).max);

966 // return burned
967 return xETHToBurn;

12/20 PeckShield Audit Report #: 2024-065

https://github.com/Bedrock-Technology/stake/commit/bcc15ae

Public

968 }

Listing 3.2: DebtLocker::redeemFromValidators()

We notice the calculation of the resulting xETHToBurn (line 951) involves mixed multiplication
and devision. For improved precision, it is better to calculate the result in favor of the protocol,
i.e., xETHToBurn = (totalXETH * ethersToRedeem - 1)/ currentReserve()+ 1. Note that the resulting
precision loss may be just a small number, but it plays a critical role when certain boundary conditions
are met. And it is always the preferred choice if we can avoid the precision loss as much as possible.

Recommendation Revise the above calculations to better mitigate possible precision loss.

Status The issue has been confirmed.

3.3 Revisited validatorSlashedStop() Logic in Staking

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: RockXStaking

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

The RockXStaking contract allows to deposit any number of ethers to the staking contract, and get
back equivalent value of uniETH token (decided by real-time exchange ratio). In addition, the contract
handles the slashing logic in reducing the staked amount. While examining the related slashing logic,
we observe current implementation needs to be improved.

To elaborate, we show below the related validatorSlashedStop() function. It comes to our
attention that there are three requirements to validate the given input and the third one ensures the
staking contract receives the returned remaining funds after slashing, i.e., _stoppedPubKeys.length

* 16 ether (line 681). However, this requirement does not take into account the recentReceived

state, which keeps track of received, but un-accounted amount. In addition, the returned remaining
amount after slashing should be added into _balanceIncrease so that new rewards can be properly
tracked.

677 function validatorSlashedStop(bytes [] calldata _stoppedPubKeys , bytes32 clock)
external nonReentrant onlyRole(ORACLE_ROLE) {

678 _require(vectorClock == clock , "SYS012");
679 uint256 amountUnstaked = _stoppedPubKeys.length * DEPOSIT_SIZE;
680 _require(_stoppedPubKeys.length > 0, "SYS017");
681 _require(address(this).balance >= _stoppedPubKeys.length * 16 ether +

totalPending + accountedManagerRevenue , "SYS019");

13/20 PeckShield Audit Report #: 2024-065

Public

682
683 // record slashed validators.
684 for (uint i=0;i<_stoppedPubKeys.length;i++) {
685 bytes32 pubkeyHash = keccak256(_stoppedPubKeys[i]);
686 _require(pubkeyIndices[pubkeyHash] > 0, "SYS006");
687 uint256 index = pubkeyIndices[pubkeyHash] - 1;
688 _require (! validatorRegistry[index].stopped , "SYS020");
689 validatorRegistry[index]. stopped = true;
690 }
691 stoppedValidators += _stoppedPubKeys.length;
692 recentStopped += _stoppedPubKeys.length;
693
694 // currentReserve changed to:
695 // (totalPending + 16 ETH) + (totalStaked - amountUnstaked) +

accountedUserRevenue - rewardDebt - totalDebts
696 // the remaining part(revenue) will be taken as the accruing rewards of

existing holders.
697 totalStaked -= amountUnstaked;
698 totalPending += _stoppedPubKeys.length * 16 ether;
699 // track recent slashed
700 recentSlashed += _stoppedPubKeys.length * 16 ether;
701
702 // log
703 emit ValidatorSlashedStopped(_stoppedPubKeys.length);
704
705 // vector clock moves
706 _vectorClockTick ();
707 }

Listing 3.3: RockXStaking::validatorSlashedStop()

Recommendation Revisit the above logic to properly keep track of the funds due to slash-
ing. Note the lack of recentReceived consideration is also present in other routines, including
withdrawManagerFee() and validatorStopped().

Status This issue has been resolved as the team confirms that validatorSlashedStop() and
validatorStop() do not change balance in this contract. Therefore, it does not need to record the
balanceIncrease/Decrease.

14/20 PeckShield Audit Report #: 2024-065

Public

3.4 Trust Issue of Admin Keys

• ID: PVE-004

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple contracts

• Category: Security Features [5]

• CWE subcategory: CWE-287 [3]

Description

In RockX-SG Staking, there is a privileged administrative account, i.e., the account with the DEFAULT_ADMIN_ROLE

role. The administrative account plays a critical role in governing and regulating the staking-wide
operations. It also has the privilege to control or govern the flow of assets within the protocol con-
tracts. Our analysis shows that this privileged account needs to be scrutinized. In the following,
we use the RockXStaking contract as an example and show the representative functions potentially
affected by the privileges of the administrative account.

415 function toggleWhiteList(address account) external onlyRole(DEFAULT_ADMIN_ROLE) {
416 whiteList[account] = !whiteList[account];
417
418 emit WhiteListToggle(account , whiteList[account]);
419 }
420
421 /**
422 * @dev toggle autocompound
423 */
424 function toggleAutoCompound () external onlyRole(DEFAULT_ADMIN_ROLE) {
425 autoCompoundEnabled = !autoCompoundEnabled;
426
427 emit AutoCompoundToggle(autoCompoundEnabled);
428 }
429
430 /**
431 * @dev set manager ’s fee in 1/1000
432 */
433 function setManagerFeeShare(uint256 milli) external onlyRole(DEFAULT_ADMIN_ROLE) {
434 _require(milli >=0 && milli <=1000, "SYS008");
435 managerFeeShare = milli;
436
437 emit ManagerFeeSet(milli);
438 }
439
440 /**
441 * @dev set xETH token contract address
442 */
443 function setXETHContractAddress(address _xETHContract) external onlyRole(

DEFAULT_ADMIN_ROLE) {
444 xETHAddress = _xETHContract;

15/20 PeckShield Audit Report #: 2024-065

Public

445
446 emit XETHContractSet(_xETHContract);
447 }
448
449 /**
450 * @dev set eth deposit contract address
451 */
452 function setETHDepositContract(address _ethDepositContract) external onlyRole(

DEFAULT_ADMIN_ROLE) {
453 ethDepositContract = _ethDepositContract;
454
455 emit DepositContractSet(_ethDepositContract);
456 }
457
458 /**
459 * @dev set redeem contract
460 */
461 function setRedeemContract(address _redeemContract) external onlyRole(

DEFAULT_ADMIN_ROLE) {
462 redeemContract = _redeemContract;
463
464 emit RedeemContractSet(_redeemContract);
465 }
466
467 /**
468 * @dev set withdraw credential to receive revenue , usually this should be the

contract itself.
469 */
470 function setWithdrawCredential(bytes32 withdrawalCredentials_) external onlyRole(

DEFAULT_ADMIN_ROLE) {
471 withdrawalCredentials = withdrawalCredentials_;
472 emit WithdrawCredentialSet(withdrawalCredentials);
473 }

Listing 3.4: Example Privileged Operations in RockXStaking

We understand the need of the privileged functions for contract maintenance, but at the same
time the extra power to the owner may also be a counter-party risk to the protocol users. It would
be worrisome if the privileged administrative account is a plain EOA account. Note that a multi-sig
account could greatly alleviate this concern, though it is still far from perfect. Specifically, a better
approach is to eliminate the administration key concern by transferring the role to a community-
governed DAO.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changes to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been mitigated as the team confirms the use of Aragon DAO to use these

16/20 PeckShield Audit Report #: 2024-065

Public

administrative functions.

17/20 PeckShield Audit Report #: 2024-065

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the Bedrock Staking protocol, which
makes it possible for anyone to access efficient and reliable mining and staking services. The staking
contract allows users to deposit any number of ethers to the staking contract of ETH 2.0, and get
back equivalent value of uniETH token (decided by real-time exchange ratio). The current code base is
well structured and neatly organized. Those identified issues are promptly confirmed and addressed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

18/20 PeckShield Audit Report #: 2024-065

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[2] MITRE. CWE-190: Integer Overflow or Wraparound. https://cwe.mitre.org/data/definitions/

190.html.

[3] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[4] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[8] MITRE. CWE CATEGORY: Numeric Errors. https://cwe.mitre.org/data/definitions/189.html.

[9] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

19/20 PeckShield Audit Report #: 2024-065

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html

Public

[10] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[11] PeckShield. PeckShield Inc. https://www.peckshield.com.

20/20 PeckShield Audit Report #: 2024-065

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Bedrock Staking
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improved Constructor Logic in RockXETH
	Improved xETHToBurn Calculation in Redemption
	Revisited validatorSlashedStop() Logic in Staking
	Trust Issue of Admin Keys

	Conclusion
	References

