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Abstract

Due to the ability to synthesize high-quality novel views, Neu-
ral Radiance Fields (NeRF) has been recently exploited to
improve visual localization in a known environment. However,
the existing methods mostly utilize NeRF for data augmen-
tation to improve the regression model training, and their
performances on novel viewpoints and appearances are still
limited due to the lack of geometric constraints. In this paper,
we propose a novel visual localization framework, i.e., PNeR-
FLoc, based on a unified point-based representation. On one
hand, PNeRFLoc supports the initial pose estimation by match-
ing 2D and 3D feature points as traditional structure-based
methods; on the other hand, it also enables pose refinement
with novel view synthesis using rendering-based optimization.
Specifically, we propose a novel feature adaption module to
close the gaps between the features for visual localization
and neural rendering. To improve the efficacy and efficiency
of neural rendering-based optimization, we also developed
an efficient rendering-based framework with a warping loss
function. Extensive experiments demonstrate that PNeRFLoc
performs the best on the synthetic dataset when the 3D NeRF
model can be well learned, and significantly outperforms all
the NeRF-boosted localization methods with on-par SOTA per-
formance on the real-world benchmark localization datasets.
The code and supplementary material are available on the
project webpage: https://zju3dv.github.io/PNeRFLoc/.

Introduction
Visual localization is a fundamental task in computer vision
that aims to determine the precise position and orientation
of a camera in a known scene based on the visual input, and
it has widespread applications in areas such as robot nav-
igation, augmented reality, virtual reality, etc. Traditional
structure-based localization, as the mainstream solution for
visual localization, has advantages such as scene agnosticism,
robustness, and high precision. These methods (Brachmann
and Rother 2021; Sarlin et al. 2019) require computing and
storing a global map consisting of 3D point locations and
try to find the correspondences between 2D feature points
extracted in the query image and 3D points in the recon-
structed scene and use a Perspective-n-Point (PnP) solver
(Haralick et al. 1994; Bujnak, Kukelova, and Pajdla 2008)
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in a RANSAC loop (Fischler and Bolles 1981; Chum and
Matas 2008) to compute the camera poses. Besides hand-
crafted features (Bay et al. 2008; Lowe 2004), deep features
(DeTone, Malisiewicz, and Rabinovich 2018; Dusmanu et al.
2019; Germain, Bourmaud, and Lepetit 2020; Sarlin et al.
2020) have been extensively utilized recently to improve fea-
ture matching for better localization. Very recently, some
state-of-the-art (SOTA) feature matching methods have been
proposed to train the deep features and align features through
pose refinement in an end-to-end manner (Lindenberger et al.
2021; Sarlin et al. 2021). However, these structure-based
methods rely on 2D-3D or 2D-2D point matching, and thus
the accuracy is limited when the feature extraction and match-
ing is sparse or noisy due to the large view changes between
images and textureless structures.

Regression-based localization trains a neural network and
takes the network parameters as a global map representation
which can directly regress the 6-DOF camera poses (Kendall,
Grimes, and Cipolla 2015; Balntas, Li, and Prisacariu 2018;
Kendall and Cipolla 2017; Moreau et al. 2022a; Shavit, Fer-
ens, and Keller 2021) or the 3D scene coordinate of each
pixel (Cavallari et al. 2017; Li et al. 2020; Yang et al. 2019)
by taking the query image as the network input. For the sim-
plicity and end-to-end training manner, these methods have
attracted considerable attention. However, these methods are
usually scene-specific, and the accuracy heavily relies on the
distribution of the training images with poor generalization
to new viewpoints (Sarlin et al. 2021). Thus Neural Radiance
Fields (NeRF) (Mildenhall et al. 2020) has been introduced
recently to render realistic novel viewpoint images for data
augmentation (Chen et al. 2022; Chen, Wang, and Prisacariu
2021; Moreau et al. 2022b) that can boost the training of the
regression network. However, these methods are inherently
regression-based, which imposes constraints on the localiza-
tion accuracy as it is not feasible to indefinitely expand the
training data and cover the whole 6D pose space.

To fix the problems of existing methods, we propose a
novel framework for visual localization, i.e., PNeRFLoc, that
integrates the structure-based framework and the rendering-
based optimization with NeRF representation. Specifically,
on one hand, our framework supports the initial pose estima-
tion by matching 2D and 3D feature points; on the other hand,
it also enables the pose refinement with novel view synthe-
sis using rendering-based optimization, i.e., minimizing the



photometric error between the rendered image and the query
image. In this way, compared to the existing NeRF-boosted
methods (Chen et al. 2022; Chen, Wang, and Prisacariu 2021;
Moreau et al. 2022b), our approach transcends the limita-
tions of regression-based techniques, achieving significant
accuracy improvements in both indoor and outdoor scenes.
Moreover, compared to the SOTA feature matching methods
which may be limited by sparse matches between reference
and query images due to large view changes and thus stuck
in local optima, our method can achieve better accuracy by
minimizing the photometric loss with the capability to render
novel-view images.

However, it is non-trivial to design the framework. First,
there is no unified scene representation that supports both
2D-3D feature matching used in structure-based localization
and neural rendering for rendering-based optimization. In
this paper, we adapt a recent point-based neural radiance
field representation (i.e., PointNeRF (Xu et al. 2022)) and
design a feature adaptation module to bridge the gap between
the scene-agnostic features for localization and the scene-
specific features for neural rendering. We find that although
these two types of features aim for different tasks, they can
be easily transferred via a feature adaptation module. In this
way, we can utilize any existing scene-agnostic features for
initial localization (e.g., R2D2 (Revaud et al. 2019)), and
learn the scene-specific adaptation module together with the
NeRF models. Moreover, from the adaptation module, we
can also learn a score for each dense feature for better fea-
ture matching and initial localization. Second, the rendering-
based optimization may be easily stuck in the local minimum
(Maggio et al. 2022) due to the backpropagation through the
networks and also time-consuming. To improve the neural
rendering-based optimization with point-based representa-
tion, we further propose a novel efficient rendering-based
optimization framework by aligning the rendered image with
the query image and minimizing the warping loss function.
In this way, we don’t need to render a new image for each
step of optimization and avoid the backpropagation through
the networks for better convergence. Lastly, to further im-
prove the robustness of the proposed method for outdoor
illumination changes and dynamic objects, we utilize appear-
ance embedding and segmentation masks to handle varying
lighting conditions and complex occlusions respectively.

Our contributions can be summarized as follows. At first,
we propose a novel visual localization framework with a
unified scene representation, i.e., PNeRFLoc, which enables
both structure-based estimation and render-based optimiza-
tion for robust and accurate pose estimation. Second, to close
the gaps between the features for visual localization and neu-
ral rendering, we propose a novel feature adaptation module
that can be learned together with NeRF models. Furthermore,
a novel efficient rendering-based framework with a warp-
ing loss function is proposed to improve the efficacy and
efficiency of neural rendering-based optimization. Extensive
experiments show that the proposed framework outperforms
existing learning-based methods when the NeRF model can
be well learned, and performs on-par with the SOTA method
on the visual localization benchmark dataset.

Related Work
Structure-based localization. Structure-based meth-
ods (Camposeco et al. 2017; Cheng et al. 2019; Sattler et al.
2015; Sattler, Leibe, and Kobbelt 2016; Toft et al. 2018;
Zeisl, Sattler, and Pollefeys 2015) utilize 3D scene informa-
tion from structure from motion (SfM), and a query image
taken from the same scene can be registered with explicit
2D-3D correspondences and PnP + RANSAC algorithm. Typ-
ically, these methods can yield accurate poses but are prone
to noisy matches. To mitigate outlier influence, recent scene
coordinates regression (Brachmann et al. 2017; Brachmann
and Rother 2021; Yang et al. 2019) methods rely on CNNs
to fuse semantic features for obtaining accurate dense corre-
spondences map, while the recent (Sarlin et al. 2020) excels
graphical transformer with 2D relative positional encoding
to achieve impressive sparse matching results. Despite the
promising performance, the structure-based methods still
suffer large-view changes especially when a few reference
points are available.
Regression-based localization. PoseNet (Kendall, Grimes,
and Cipolla 2015) and its subsequent work (Walch et al. 2017)
regress the camera pose of an image directly through CNN or
LSTM. These methods are limited in terms of scalability and
performance. Despite some attempts to improve the accuracy
by incorporating geometry prior (Brahmbhatt et al. 2018),
these methods can only perform comparable results to that
of image retrieval baselines (Arandjelovic et al. 2016; Torii
et al. 2015) and cannot achieve the identical performance of
structure-based counterparts. Moreover, adapting these re-
gressed models to novel scenes is prohibited, which narrows
their potential for real-time applications.
Localization with NeRF. Neural Radiance Fields (Milden-
hall et al. 2020) has recently been employed for localiza-
tion tasks. This is because NeRF can synthesize high-quality
novel view images, which can be beneficial for localization
tasks. For example, Purkait et al. proposed LENS (Moreau
et al. 2022b), which uses NeRF-w (Martin-Brualla et al. 2021)
to render realistic synthetic images to expand the training
space. LENS leverages the NeRF-w model to obtain scene
geometry information and render views from virtual camera
poses covering the entire scene. However, LENS is limited
by its long-time offline pre-training and infeasibility of cov-
ering the whole pose space, and it also lacks compensation
for the domain gap between synthetic and real images, such
as pedestrians and vehicles in outdoor scenes. Chen et al.
proposed DFNet (Chen et al. 2022), which incorporates an
additional feature extractor to learn high-level features to
bridge the domain gap between synthetic and real images.
However, the training process remains lengthy, as DFNet still
needs to train NeRF, pose regression, and feature extraction
networks separately. Maggio et al. proposed a Monte Carlo
localization method called Loc-NeRF (Maggio et al. 2022),
where Loc-NeRF continuously samples candidate poses un-
der the initial pose and uses NeRF to render novel views
to find the correct pose direction. However, Loc-NeRF is
unstable and still requires an initial camera pose. Moreover,
Yen-Chen et al. introduced iNeRF (Yen-Chen et al. 2021), an
inverse NeRF approach to optimize camera poses, but it is
also limited by the need to provide an initial pose.



Figure 1: Visual localization with PNeRFLoc. In the proposed framework, we associate raw point clouds with scene-agnostic
localization features and train a scene-specific feature adaptation together with the point-based neural radiance fields. Subse-
quently, PNeRFLoc integrates structure-based localization with novel rendering-based optimization to accurately estimate the
6-DOF camera pose of the query image.

Method
We propose a novel visual localization framework called
PNeRFLoc based on the scene representation as shown
in Fig.1. In order to enable both structure-based estima-
tion and render-based optimization in a unified framework,
we adapt the recent point-based radiance field representa-
tion (Xu et al. 2022) and design a feature adaptation mod-
ule to bridge the scene-agnostic localization feature and the
point-based neural rendering (Sec. 3.2). Additionally, to pre-
vent iterative re-rendering of images for every optimization
step like iNeRF (Yen-Chen et al. 2021), we propose an effi-
cient rendering-based optimization strategy by minimizing
the warping loss function to align the pixels on the rendered
image and the query image, which reduced the neural render-
ing frequency to just once for most cases, while performing
high accuracy (Sec. 3.3).

Point-based Radiance Field Representation
Neural Radiance Fields (NeRF) compute pixel radiance by
sampling points along the ray shot through each pixel and
computing the integral result. Specifically, each pixel in an
image corresponds to a ray r(t) = o + td. To render the
color of ray r, NeRF draws the point samples with distances
{ti}Ni=1 to the camera origin o along the ray, and passes the
point locations r(ti) as well as view directions d to obtain
density σi and colors ci. The resulting color is rendered
following the quadrature rules (Max 1995):

Ĉ(r) = R(r, c, σ) =

K∑
k=1

T (tk)α (σ(tk)δ(tk)) c(tk),

T (tk) = exp(−
k−1∑
k′=1

σ(tk′)δk′), α(x) = 1− exp(−x),

(1)

where R(r, c, σ) is the volumetric rendering through ray r
of color c with density σ, c(t) and σ(t) are the color and
density at point r(t) respectively, and δk = tk+1 − tk is

the distance between two adjacent sampling points on the
ray. Stratified sampling and informed sampling are used to
select sample points {tk}Kk=1 between the near plane tn and
far plane tf . Additionally, the depth D̂ of each ray r can be
computed as:

D̂ =

K∑
k=1

T (tk)α (σ(tk)δ(tk)) tk. (2)

Following PointNeRF (Xu et al. 2022), we regress the ra-
diance field from the point cloud P = {(pi, fi, γi)|i =
1, ..., N}, where each point i is located at pi and associated
with a feature vector fi that encodes the local scene content.
And γi represents the confidence of a point being located
on the actual surface of the scene. Given any 3D location x,
we query K neighboring neural points around x and regress
the density σ and view-dependent color c from any viewing
direction d as:

(σ, c) = PointNeRF(x, d, p1, f1, γ1, ..., pK , fK , γK). (3)

To enable PointNeRF to handle dynamic objects and il-
lumination changes, we adopt the appearance embedding
from NeRF-W (Martin-Brualla et al. 2021) and a segmen-
tation mask to handle occasional object occlusions and il-
lumination variations. Contrary to NeRF-W which directly
employs a transient MLP to address the issue of occasional
object occlusions, we adopt a more stable approach by uti-
lizing a segmentation mask to compel the network to focus
exclusively on architectural areas. In this paper, we utilize
Detectron21 to perform object detection on the images and
generate segmentation masks.

Scene-Specific Feature Adaptation
Once the point-based NeRF model is built, a straightforward
way is to utilize the learned point-wise neural features for

1https://github.com/facebookresearch/detectron2



feature matching. However, we find that these neural features
are not distinctive enough and cannot be used as robust and
efficient descriptors for feature matching as shown in our
supplementary material because these features are learned to
encode local color and geometry information of the specific
scene for the neural rendering. Based on this observation, we
resort to existing well-studied deep features for visual local-
ization that are trained on large datasets for feature matching
and design a feature adaptation module to bridge the features
for visual localization and neural rendering. Moreover, we
can also learn the scores of neural features with the adaptation
module for better feature matching for the specific scene.
Scene-agnostic point localization feature extractor. In this
paper, we utilize the deep feature R2D2 (Revaud et al. 2019)
as the scene-agnostic feature for visual localization due to
its ability to robustly extract reliable and distinctive features.
For each reference image Ik ∈ RW×H×3, the R2D2 network
extracts a feature map Fk ∈ RW×H×128. For each 3D point
i constructed from each reference image k, we define the
scene-agnostic point feature as:

fi = Fk[pi] ∈ R128, (4)

where pi is the projection of i in the reference image and
[·] is a lookup with sub-pixel interpolation. Searching for
matches throughout the entire point cloud is inefficient as
the reliability of scene-agnostic localization features can be
compromised by the structure of the scene. Therefore, we
utilize the matching score of each point (introduced in the
feature adaptation) to enable point filtering during the match-
ing process. By removing candidate points in the point cloud
below a certain score threshold, we can reduce the number
of matching pairs to be computed, thus improving efficiency.
Scene-specific feature adaptation. As explained before,
due to the significant gap between scene-agnostic features for
localization and scene-specific features for neural rendering,
we cannot learn the radiance fields from the R2D2 features.
Thus we design a feature adaptation module to bridge this gap,
which consists of a four-layer Multi-Layer Perceptron (MLP).
We empirically find that despite the scene-agnostic feature
and the scene-specific NeRF representation feature aiming at
two completely different tasks, they can be adapted via the de-
signed module. Thus any other SOTA scene-agnostic feature
for visual localization can also be utilized in our framework.
Moreover, as mentioned above, we also utilize the adaptation
module to learn a score S for each point in the point cloud
according to its dense features and position. These scores are
then used for point filtering, which improves the efficiency of
feature matching while maintaining the accuracy of the final
pose estimation.
Scene-specific PointNeRF reconstruction. Given the pre-
trained point localization feature extractor and feature adapta-
tion module, similar to PointNeRF (Xu et al. 2022), we learn
the NeRF model by minimizing the following loss function:

Lrender =
∑
r∈R

∥Ĉ(r)− C(r)∥22, (5)

where R is the set of rays in each batch, and C(r), Cˆ(r) are
the ground truth and predicted RGB colors for ray r computed
by Eq.1. To be noted, we also learned to fine-tune the feature

adaptation module for each scene for better rendering quality.
Please refer to our supp. material for more details.

Two-stage Pose Estimation
Once the NeRF model is learned, we design a two-stage pose
estimation framework for the query image during the test.
Initialization with structure-based localization. The goal
of the structure-based localization stage is to establish the cor-
respondence between the 2D key points on the query image
and the 3D points in the scene point cloud, thereby providing
an initial pose estimate for the subsequent pose refinement
stage. For each query image q with the keypoints Pq and fea-
tures Fq extracted by the scene-agnostic localization feature
extractor, and the point cloud Pr generated by PointNeRF
with features Fr, we can find a 2d-3D correspondence:

∀i ∈ Pq, M(i) = argmax
j∈Pr

Fi
q · Fj

r

∥Fi
q∥∥Fj

r∥
, (6)

where M(i) signifies the corresponding point within the point
cloud for the keypoint i present on the query image q, which
is ascertained via the maximization of cosine similarity. How-
ever, as mentioned in Sec. 3.2, the process of directly seeking
correspondences within the entire point cloud proves to be
inefficient. In response to this, we employ a thresholding
technique based on the learned score S to filter the point
cloud Pr. Given a threshold St, we can get the filtered point
cloud as Ps = {i ∈ Pr | Si ≥ St}, where Si denotes the
learned score for the point i. For each query image q and the
discovered correspondence M , we define a residual:

ri = ∥pi −
∏

(RM(i) + t)∥2, (7)

where
∏
(·) represents the pixel obtained post the projection

of the 3D point onto the image. (R, t) denote the camera
pose to be determined, while pi signifies the pixel of the
keypoint i within the query image. The total error over all
key points is:

E(R, t) =
∑
i∈Pq

ri. (8)

Moreover, a direct optimization of Eq.8 is often susceptible
to the distortions caused by incorrect correspondences (out-
liers). Therefore, a RANSAC loop is also adopted, effectively
improving the accuracy.
Pose refinement with efficient rendering-based optimiza-
tion. Previous works (Yen-Chen et al. 2021; Zhu et al. 2022)
have utilized gradient descent to minimize the photometric
residuals between the rendered and input images for local
pose estimation. However, this optimization method is ineffi-
cient since neural rendering is required for each optimization
step, and it is also unstable due to the backpropagation over
the deep networks. Therefore, we propose a novel and effi-
cient rendering-based optimization strategy using the warping
loss function, which only requires rendering the image once
and avoiding the backpropagation through the networks.

Specifically, for a given query image q and initial pose
(R, t), PNeRFLoc first renders the visual reference image qr
under the initial pose according to Eq. (1) and the depth map
dq according to Eq. (2). Subsequently, we randomly sample



N pixels within the image qr. For the pose (R′, t′) that we
aspire to optimize, we define the warping loss function as:

Lwarping =
∑
pi∈N

∥C(q,W (pi,R, t,R′, t′))−C(qr, pi)∥2, (9)

W (pi,R, t,R′, t′) =
∏

(R′(R−1
∏−1

(pi, D̂(pi)−R−1t)+t′),

(10)
where C(qr, pi) represents the RGB color at pixel pi on
rendering image qr, and the function W denotes the corre-
sponding pixel on query image q by warping pi from render
image qr. Specifically, W back-projects pi into the 3D space
of the qr’s camera coordinate system using the depth D̂(pi),
and then transposes it to the camera coordinate system of
image q through the camera pose (R′, t′) and projects it
onto image q finally. However, we find that there are often
blanks in the rendering images, which occur when the rays
emitted from the camera pass through the gaps in the point
cloud and do not aggregate to the neural points. In this case,
incorrect depth and color can interfere with the optimiza-
tion. Hence, we propose using a blank depth mask to handle
such situations. For the set of sampled pixels N on the vi-
sual reference image qr, we define the valid pixels set as
Nv = {pi ∈ N |D̂(pi) >= 0.01} and let the warping loss
function only consider the pixels in Nv . Our rendering-based
optimization method optimizes the pose (R′, t′) by using
warping loss aligning the RGB colors of sampled pixels on
qr and q. Thereby we avoid gradient descent through the com-
plex neural networks and improve accuracy and efficiency.
Moreover, when the viewpoint changes significantly between
the visual reference image and the query image, the optimiza-
tion result may not reach its optimum. We could potentially
enhance the accuracy by iteratively rendering the visual refer-
ence image multiple times. However, we found that a single
rendering’s outcome was already satisfactory in our experi-
ments. Therefore, to save time, our optimization process only
renders the visual reference image once in practice.

Experiments
We first compare our method with various representative and
SOTA learning approaches (Sarlin et al. 2021; Moreau et al.
2022a,b; Brachmann and Rother 2021) on both synthetic
datasets and real-world datasets. Then, we offer insights into
PNeRFLoc through additional ablation experiments.

Datasets and Implementation Details
Datasets. Following (Chen et al. 2022; Moreau et al.
2022b,a), we evaluate our method on two standard localiza-
tion datasets since they have well-distributed training images
which support dense 3D reconstruction. Moreover, we gener-
ate a synthetic localization dataset using the commonly used
Replica dataset in NeRF-based SLAM systems.

• Cambridge Landmarks (Kendall, Grimes, and Cipolla
2015) contains five outdoor scenes, with 200 to 2000
images captured at different times for each scene. This
dataset is challenging for camera pose estimation because
the query images are taken at different times than the
reference images, resulting in different lighting conditions
and occlusions from objects such as people and vehicles.

Table 1: Comparison on Replica datasets. We report me-
dian translation/rotation errors (meters/degrees) and the best
results are highlighted as first .

Methods CoordiNet PixLoc PNeRFLoc

R
ep

lic
a

room0 1.60 / 50.8 0.055 / 1.89 0.005 / 0.29
room1 1.38 / 47.3 0.020 / 0.36 0.016 / 0.55
room2 1.26 / 20.2 0.901 / 8.71 0.022 / 0.92
office0 1.14 / 20.1 0.021 / 0.71 0.006 / 0.69
office1 0.81 / 36.3 0.016 / 0.75 0.017 / 0.64
office2 0.83 / 19.9 0.012 / 0.40 0.007 / 0.44
office3 0.76 / 18.8 0.015 / 0.67 0.006 / 0.30
office4 0.89 / 46.3 0.033 / 0.82 0.009 / 0.23

• 7Scenes (Shotton et al. 2013) contains seven indoor
scenes, captured by a Kinect RGB-D sensor. Each scene
has 1k to 7k reference images and 1k to 5k query images,
captured along different trajectories.

• Replica (Straub et al. 2019) contains eight synthetic
indoor scenes, commonly used for SLAM evaluation.
We follow iMAP (Sucar et al. 2021), using its produced
sequences as training images, with an image size of
1200*680 pixels, and randomly generate 50-120 query
images. Due to the small number of reference images and
the significant changes in the viewpoint of the query im-
ages, this dataset presents a certain level of challenge for
localization tasks.

Implementation. We use R2D2 (Revaud et al. 2019) as the
scene-agnostic localization feature extractor. In the structure-
based localization stage, the score threshold St is set to 0.7,
and the number of RANSAC iterations is set to 20k. During
the rendering-based localization stage, we use the Adam op-
timizer with a learning rate of 0.001. All our experiments are
evaluated on a single NVIDIA GeForce RTX 3090 GPU. Sim-
ilar to DSAC* (Brachmann and Rother 2021), we obtain the
estimated depth images rendered from a 3D model learned by
Factorized-NeRF (Zhao et al. 2022). For the 7scenes dataset,
we follow PixLoc (Sarlin et al. 2021) utilizing the estimated
depth rendered by DSAC* (Brachmann and Rother 2021).
Lastly, we leveraged a pre-trained model from MonoSDF (Yu
et al. 2022) to render the estimated depth for the Replica
dataset. Please refer to the supp. material for more details.
Evaluation on the Replica Dataset
We first compare our method with the SOTA structure-based
method PixLoc (Sarlin et al. 2021) and the regression-based
method CoordiNet (Moreau et al. 2022a) on the Replica
dataset. Our method and PixLoc adopt 200 images as refer-
ence images, while for CoordiNet, we use 2000 images for
training to generate reasonable results. The evaluation results
are shown in Table 1. Our method achieves state-of-the-art
results on the Replica dataset. We believe that PNeRFLoc
surpasses PixLoc on the Replica dataset for two primary rea-
sons: i) Each query image in Replica has a relatively large
view-point change compared to the reference image, leading
to a large initial reprojection error in PixLoc and causing
the optimization to fall into incorrect local minima; ii) with
high-quality input images and accurate camera poses, PNeR-
FLoc can learn a fine NeRF model, which further facilitates
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Figure 2: Pose estimation results. We visualize the rendering images based on the estimated pose at time t and the query image
to compare different optimization methods.

Figure 3: We show the effectiveness of our reliable and repeat-
able score filtering on localization efficiency and accuracy.

rendering-based optimization given the initial pose estimation
from the structure-based localization. The regression-based
method CoordiNet has the worst performance unsurprisingly
due to its poor generalization to the query image with large
view-point changes although more reference images are pro-
vided to train the regression model. Please refer to our sup-
plementary material for more comparisons.

Evaluation on the Cambridge and 7Scenes
We compare with multiple SOTA approaches (Sarlin et al.
2021; Moreau et al. 2022a,b; Brachmann and Rother 2021)
on the benchmark visual localization datasets, i.e., Cambridge
Landmarks and 7Scenes. We report the median translation
and rotation error for each scene in Table 2.

For the indoor 7Scenes dataset, since the generated depth
by DSAC* (Brachmann and Rother 2021) are noisy with
misalignments, it affects the training of the methods based
on depth images, like DSAC* and our method. As a result,
our method performs on-par or slightly worse than the SOTA
PixLoc method on 7Scenes, while it still outperforms all other
methods in general. In the subsequent ablation experiments,
we provide the results with relatively better depth inputs,
which confirms our observations.

For the outdoor Cambridge Landmarks dataset, there are
large appearance variations and dynamic objects. Moreover,
we find that the provided camera poses and intrinsic param-
eters of the training images are not very accurate, which
prevents PNeRFLoc from learning a fine 3D NeRF model
and rendering higher-quality novel view images. Even so,
PNeRFLoc still performs on-par with the SOTA method and
performs much better than all other NeRF-boosted localiza-
tion methods (Moreau et al. 2022b; Chen et al. 2022), which

Figure 4: We inspect the trained model with estimated depth
or with input GT depth.

demonstrates its robustness and the potential of the NeRF-
based methods for outdoor datasets. As long as more accurate
depths and camera poses are provided, our method achieves
the SOTA performance as shown on the Replica dataset.

Ablation Studies
Justification of the proposed rendering-based optimiza-
tion. As shown in Fig. 2 and Table 3, we justify our design
decisions by comparing different variants of PNeRFLoc. All
experiments were optimized 250 times during the rendering-
based localization stage. We report the median translation/ro-
tation errors (meters/degrees) and time consumption (second-
s/per image). We can see that the proposed rendering-based
optimization significantly improves the localization accuracy
given the initial pose estimated in the structure-based esti-
mation stage. Without the blank depth mask, the accuracy
slightly degrades due to the numerous sampling points on
the image, and a small proportion of blank area sampling
does not affect the overall trend of optimization. Further-
more, direct optimization using photometric loss is more
time-consuming, and it may also fall into incorrect local min-
ima due to the backpropagation through networks. These
ablation studies demonstrate the efficacy and efficiency of
the proposed rendering-based optimization.
Impact of score filtering. We analyzed the impact of score
filtering on the Replica’s office4 scene. As shown in Fig.3, we
report the time consumption (in seconds) and recall at (5cm,
5◦). With the increase of score threshold, the efficiency of the
PnP algorithm is significantly improved, which is because
the number of remaining candidate points in the point cloud
decreases, saving the time to calculate cosine similarity. At
the same time, we can see that the accuracy is preserved and



Table 2: Comparison on the Cambridge Landmarks and 7Scenes datasets. We report median translation/rotation er-
rors(meters/degrees). Best results are highlighted as first , second.

Methods PoseNet CoordiNet LENS DFNet DSAC* PixLoc PNeRFLoc
7S

ce
ne

s

Chess 0.32 / 8.12 0.14 / 6.7 0.03 / 1.3 0.04 / 1.48 0.02 / 1.10 0.02 / 0.80 0.02 / 0.80
Fire 0.47 / 14.4 0.27 / 11.6 0.10 / 3.7 0.04 / 2.16 0.02 / 1.24 0.02 / 0.73 0.02 / 0.88

Heads 0.29 / 12.0 0.13 / 13.6 0.07 / 5.8 0.03 / 1.82 0.01 / 1.82 0.01 / 0.82 0.01 / 0.83
Office 0.48 / 7.68 0.21 / 8.6 0.07 / 1.9 0.07 / 2.01 0.03 / 1.15 0.03 / 0.82 0.03 / 1.05

Pumpkin 0.47 / 8.42 0.25 / 7.2 0.08 / 2.2 0.09 / 2.26 0.04 / 1.34 0.04 / 1.21 0.06 / 1.51
Kitchen 0.59 / 8.64 0.26 / 7.5 0.09 / 2.2 0.09 / 2.42 0.04 / 1.68 0.03 / 1.20 0.05 / 1.54
Stairs 0.47 / 13.8 0.28 / 12.9 0.14 / 3.6 0.14 / 3.31 0.03 / 1.16 0.05 / 1.30 0.32 / 5.73

C
am

br
id

ge Kings 1.66 / 4.86 0.70 / 2.92 0.33 / 0.5 0.43 / 0.87 0.15 / 0.3 0.14 / 0.24 0.24 / 0.29
Hospital 2.62 / 4.90 0.97 / 2.08 0.44 / 0.9 0.46 / 0.87 0.21 / 0.4 0.16 / 0.32 0.28 / 0.37

Shop 1.41 / 7.18 0.73 / 4.69 0.27 / 1.6 0.16 / 0.59 0.05 / 0.3 0.05 / 0.23 0.06 / 0.27
Church 2.45 / 7.96 1.32 / 3.56 0.53 / 1.6 0.50 / 1.49 0.13 / 0.4 0.10 / 0.34 0.40 / 0.55
Court 2.45 / 3.98 0.00 - 0.00 - - 0.49 / 0.3 0.30 / 0.14 0.81 / 0.25

Table 3: Ablation study. We report the median translation/rotation errors (meters/degrees) and time consumption (seconds/per
image). The best results are highlighted in blod.

Config. Replica

room0 office0

w/o Rendering-Based Optimization 0.030 / 0.79 / 3.20 0.082 / 1.38 / 1.88
w/o Blank Depth Mask 0.027 / 0.63 / 5.84 0.050 / 1.09 / 5.66
w/o Warping Loss, w/ Photometric Loss 0.035 / 0.81 / 47.7 0.082 / 1.38 / 39.2
Full Model 0.005 / 0.29 / 5.56 0.006 / 0.56 / 5.45

Table 4: Comparison of using input depth and estimated depth. We report median translation/rotation errors (meters/degrees)
and the best results is highlighted as first .

Config. 7Scenes Replica

chess office stairs room1 office0 office1

With Estimated Depth 0.02 / 0.80 0.03 / 1.05 0.32 / 5.73 0.02 / 0.55 0.01 / 0.56 0.02 / 0.64
With GT Depth 0.02 / 0.80 0.03 / 1.06 0.20 / 3.61 0.01 / 0.34 0.01 / 0.54 0.01 / 0.39

even slightly improved with the score filtering because more
reliable points for the scene are selected.

Performance with input depth images. Since our method
requires depth images to establish a point-based NeRF repre-
sentation of the scene, we analyze the robustness of PixelLoc
against the depth images. So as shown in Table 4, we compare
our results of learning the NeRF model with ground-truth
input depth and estimated depth on the 7Scenes and Replica
datasets. Since the Replica dataset is a synthetic dataset, its
GT depth is dense and accurate, allowing for more precise
neural point clouds and better rendering quality. In contrast,
the estimated depth often loses details. As illustrated in Fig.4,
the estimated depth rendered by MonoSDF (Yu et al. 2022)
fails to capture the vase. Therefore, using GT depth on the
Replica dataset significantly improves localization accuracy.
In real-world scenes, however, the depth obtained by the
Kinect RGB-D sensor is noisy, which is mainly influenced
by the reflection and refraction of object surfaces, as well as
the sensor’s maximum and minimum measurement ranges.
Consequently, the improvement in scene training quality is
limited, and there is no significant improvement in localiza-

tion accuracy. However, the advantage of taking the input
depth is evident in the stairs scene, where the complex spatial
structure leads to misalignment in the estimated depth. Please
refer to our supp. material for more ablation studies.

Conclusion
In this paper, we present a novel visual localization method
based on point-based neural scene representation. With a
novel feature adaption module that bridges the features for
localization and neural rending, the proposed PNeRFLoc
enables 2D-3D feature matching for initial pose estima-
tion and rendering-based optimization for pose refinement.
Moreover, we also develop several techniques for efficient
rendering-based optimization and robustness against illu-
mination changes and dynamic objects. Experiments show
the superiority of the proposed method by integrating both
structure-based and rendering-based optimization, especially
on the synthetic data suitable for NeRF modeling. Although
our current framework is more efficient than the existing
neural rendering-based optimization, we should further im-
prove the efficiency and integrate it into visual odometry for
real-time applications.
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