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In this supplementary material, we first discuss the imple-
mentation details in Sec. A. Subsequently, in Sec. B we will
explain how to train a scene-specific PointNeRF for recon-
struction. Additionally, we will delve into more details of
pose refinement with efficient rendering-based optimization
in Sec. C. Then, in Sec. D, we demonstrate the effectiveness
of our efficient rendering-based optimization. Finally, we
provide additional ablation studies to show the necessity of
using our scene-agnostic localization feature extractor and
the robustness against noisy depth input in Sec. E.

A Implementation Details
In this section, we introduce the parameter settings when
training PNeRFLoc on three different datasets. Our model
operates on a single NVIDIA GeForce RTX 3090 GPU.
• 7Scenes (Shotton et al. 2013): For each scene in the

7Scenes, we select one image from every ten reference
images to train our model. For each scene, we train 30k
iterations. The resolution of each image is 640× 480.

• Replica (Straub et al. 2019): For each scene in the
Replica, we select one image from every ten reference
images to train our model. For each scene, we train 30k
iterations. The resolution of each image is 1200× 680.

• Cambridge Landmarks (Kendall, Grimes, and Cipolla
2015): For the "shop" scene, we use all reference images
as training data, and for other scenes, we select one im-
age from every two reference images to train our model.
During the training process, if the training images come
from the same sequence, we use the same appearance
embedding code. For each scene, we train 150k iterations.
The resolution of each image is 1024× 576. Additionally,
as the query images and reference images are taken at
different times under varying lighting conditions, we need
to learn the appearance embedding code of the query im-
age sequences. Therefore we randomly select one query
image from each sequence as a representative and then,
we render an image by using the camera pose provided
by structure-based localization and minimize the resid-
ual between the rendering image and the query image by
optimizing the appearance embedding code. It should be
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Figure A: Pose refinement with efficient rendering-based
optimization. We back-project the sample points on the vi-
sual reference image into the world coordinate system and
project them on the query with the initial pose (R, t). Then
We can optimize the camera pose by aligning the pixels on
the rendering image and the query image. To be noted, our
sampled points are very dense in practice (90k points).

noted that we optimize all representative images together
for 2k iterations.

We also compared the efficiency of our method and
the SOTA method PixLoc on the Replica dataset. The
PixLoc (Sarlin et al. 2021) runs at 0.25Hz with a 3.5GB GPU
memory cost. Our method is comparable and runs at 0.14Hz
with a 12GB GPU memory cost without any optimization.
Note that our system can be improved with implementation
optimization using CUDA.

B Scene-Specific PointNeRF Reconstruction
The radiance of a pixel can be determined by casting a ray
through the pixel, sampling M shading points at positions
{xi|i = 1, ...,M} along the ray, and then accumulating ra-
diance by utilizing volume density (see Sec. 3.1 in the main
paper). Specifically, given a training view image I , we first
sample N rays across the image, and on each of these rays,
we sample M shading points. To ensure these shading points
are primarily concentrated on the surface of the scene, we rely
on the sampling method provided by PointNeRF that shading
points are collected only in the areas where the emitted rays
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Figure B: Feature matching results. We compared the matching results with different features. Specifically, we extract 800 key
points from the query image. The features extracted on the left images are scene-agnostic localization features, while those on
the right are learned pointwise neural features. We then match 2D key points with the 3D points in the point cloud by computing
the cosine similarity and project the corresponding 3D points onto the query image using the ground truth camera poses. Finally,
we illustrate the matching relationships and demonstrate the necessity of using a localization feature extractor instead of the
learned pointwise neural features for feature matching.

Table A: Ablation of matching 2D-3D points with different features. We apply the PnP algorithm with the matching results
obtained from different features. We also report the median translation/rotation errors (meters/degrees) and the best results are
highlighted in bold.

Config. 7Scenes

Chess Fire

w/ Learned Pointwise Neural Features 3.19 / 134 4.49 / 124
w/ Scene-Agnostic Localization Features 0.03 / 1.21 0.03 / 1.47

are close to the point cloud. Following this, we apply scene-
specific feature adaptation (see Sec. 3.2 in the main paper)
to convert the features of K nearest neural point neighbors
of the shading points into learned point-wise neural features.
These learned point-wise neural features of the neighboring
points are then input into Multi-Layer Perceptrons (MLPs) to
learn the density and RGB values for each point. Moreover,
we employ standard inverse distance weighting to aggregate
the neural density and color from these K neighboring points
to obtain a single density and color of each shading point.
Finally, we calculate the color of each ray using Eq. 1 in
the main paper and train the NeRF model by minimizing the
rendering loss function (see Eq. 5 in the main paper).

C More Details on Pose Refinement
We depict the detailed process of pose refinement in Fig. A.
First, we obtain the visual reference image pose (R, t) of
the given query image through structure-based localization
and render the visual reference image under this pose with
a learned PNeRFLoc model. We then sample points (red
points) on the visual reference image and back-project them
into 3D space through the rendering depth map. In the first
step of optimization, we take (R, t) as the initial pose of
the query image and project the 3D points onto the query
image (red points). Due to the imprecise pose, there is a
misalignment between the sampled points on the reference
image and the projected points on the query image. Therefore,
we can minimize misalignment by optimizing the camera
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Figure C: Visualization of the rendering-based optimization given the initial pose with a large error. We visualize the
rendered images based on the estimated pose at step t of the optimization and the query image together. From top to bottom, it
shows the results with one, two, and four rendered images.

pose (R, t). Finally, we obtained the optimized accurate pose
(R′, t′), and the projected points are represented as purple
points, which align with the sampled points on the reference.
In this way, we don’t need to render a new image for each
step of optimization and avoid the backpropagation through
the networks for better convergence.

D Effectiveness of the Proposed Efficient
Rendering-based Optimization

In the experiment of our main paper (Sec. 3.3 in the main
paper), we have shown the effectiveness of the proposed
efficient rendering-based optimization given the initial pose
estimated from the structure-based localization. One may be
curious about whether the proposed method can handle the
initial poses with large errors (Also mentioned in Sec. 1 in
the main paper).

To illustrate this, we evaluated our method on the Replica
dataset using a randomly generated pose with significant
viewpoint changes, where the translation/rotation error is
0.90m/25.6◦. We set the total number of optimization itera-
tions at 1k and compared the outcomes of rendering the visual
reference image once, twice, and four times respectively. The
different optimization results are shown in Fig. C. The first
row displays the results of rendering a single reference im-
age, and at 1000 steps, the rendering image shows significant
misalignment with the query image and the translation/rota-
tion error between the optimized pose and the Ground Truth
pose is 0.34m/4.54◦. The second row demonstrates the re-
sults of rendering the reference image twice, meaning we
render the visual reference image again at 500 steps based
on the estimated pose from the previous optimization. We
can see that the estimated pose with two rendered images is

better but there is still slight misalignment at 1000 steps with
the translation/rotation error of 0.11m/1.57◦. The last row
shows the results of rendering the reference image four times,
that is, rendering the visual reference image at 250, 500,
and 750 steps. In this case, the final rendered image almost
aligns with the query image, with a translation/rotation error
of 0.03m/0.42◦, achieving precise localization results. Our
experiments demonstrate the effectiveness of our efficient
rendering-based optimization which can optimize an initial
pose with large errors via iteratively rendered images. This
experiment demonstrates that even when there are large view
changes between the query image and the visual reference
image, our method can still effectively optimize the pose.
We attribute this to our proposed efficient rendering-based
optimization method that uses warping loss, which by avoid-
ing backpropagation through the networks provides greater
stability and is less prone to falling into incorrect local min-
ima, and more accurate optimization results can be obtained
by iteratively rendering the visual reference image with up-
dated poses for several times. However, in most cases in our
experiment, the initial poses provided by structure-based lo-
calization are not far away from the GT poses. Therefore, in
practice, we only render the visual reference image once for
efficiency.

E More Ablation Studies
E.1 Ablation Studies on Scene-Agnostic Feature

Extractor
We conduct experiments to demonstrate the importance of
our scene-agnostic feature extractor. We compared directly
learned pointwise neural features and scene-agnostic localiza-
tion features (R2D2 (Revaud et al. 2019)) for feature match-



Config. 4% 3% 2% 1%

room0 0.06 m / 1.13◦ 0.04 m / 1.02◦ 0.03 m / 0.98◦ 0.02 m / 0.75◦

room1 0.48 m / 7.53◦ 0.25 m / 4.32◦ 0.15 m / 2.52◦ 0.08 m / 1.70◦

room2 0.12m / 3.05◦ 0.12 m / 2.32◦ 0.06 m / 1.32◦ 0.03 m / 1.24◦

office0 0.10 m / 2.08◦ 0.06 m / 1.39 ◦ 0.04 m / 0.82◦ 0.01 m / 0.59◦

office1 0.08 m / 2.91◦ 0.04 m / 1.85◦ 0.02 m / 0.95◦ 0.01 m / 0.69◦

office2 0.04 m / 0.92◦ 0.04 m / 0.85◦ 0.03 m / 0.80◦ 0.01 m / 0.71◦

office3 0.06 m / 1.28◦ 0.04 m / 0.91◦ 0.04 m / 0.96◦ 0.02 m / 0.74◦

office4 0.05 m/ 1.02◦ 0.04 m / 0.85◦ 0.03 m/ 0.66◦ 0.02 m/ 0.59◦

Table B: Robustness against different depth errors on Replica datasets. We report median translation/rotation errors. The
"n%" means adding a Gaussian noise with the mean value of ±n% ∗ depth to the GT depth.

ing on the 7Scenes dataset with our points filter strategy (see
Sec. 3.3 in the main paper). As shown in Fig B, due to the lack
of distinctiveness in learned pointwise neural features, they
cannot be used as robust descriptors, leading to many incor-
rect correspondences. On the other hand, using well-studied
deep features for localization performed excellently, with
most matches being correct. We also report structure-based
localization median translation/rotation errors (meters/de-
grees) in Table A. We can see that if the learned pointwise
neural features are used for feature matching, it will result
in significant errors in the structure-based localization. This
demonstrates the necessity of choosing the scene-agnostic
localization features instead of the learned pointwise neural
features for feature matching.

E.2 Robustness against Noisy Depth
To evaluate the robustness of our method against noisy depth
input, we add random noises to the depth image on the
Replica Dataset. From Table B, we can see that our method
is robust to noisy depth and it still works reasonably well
when the noise level is up to 4%. This is also demonstrated
by our experiment on the real-world 7Scenes dataset where
the depth is also noisy.
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