Feedback - VIII. Neural Networks: Representation

You submitted this quiz on Sun 13 Apr 2014 1:50 PM IST. You got a score of 4.50 out of 5.00 . You can attempt again in 10 minutes.

Question 1

Consider the following neural network which takes two binary-valued inputs $x_{1}, x_{2} \in\{0,1\}$ and outputs $h_{\Theta}(x)$. Which of the following logical functions does it (approximately) compute?

Your Answer
Score
Explanation
XOR (exclusive OR)
NAND (meaning "NOT
AND")

OR

- AND $\vee 1.00 \quad$| This network outputs approximately 1 only when |
| :--- |
| both inputs are 1. |

Total
1.00 /
1.00

Question 2

Consider the neural network given below. Which of the following equations correctly computes the activation $a_{1}^{(3)}$? Note: $g(z)$ is the sigmoid activation function.

Your Answer
Score Explanation
v 1.00 This correctly uses the first row of $\Theta^{(2)}$ and includes the "+1" term of $a_{0}^{(2)}$.
$a_{1}^{(3)}=g\left(\Theta_{1,0}^{(1)} a_{0}^{(1)}+\Theta_{1,1}^{(1)} a_{1}^{(1)}+\Theta_{1,2}^{(1)} a_{2}^{(1)}\right)$
$a_{1}^{(3)}=g\left(\Theta_{1,0}^{(1)} a_{0}^{(2)}+\Theta_{1,1}^{(1)} a_{1}^{(2)}+\Theta_{1,2}^{(1)} a_{2}^{(2)}\right)$
The activation $a_{1}^{(3)}$ is not present in this network.

Total
1.00 /
1.00

Question 3

You have the following neural network:

Layer 1 Layer 2

You'd like to compute the activations of the hidden layer $a^{(2)} \in \mathbb{R}^{3}$. One way to do so is the

```
% Theta1 is Theta with superscript "(1)" from lecture
% ie, the matrix of parameters for the mapping from layer 1 (input) to layer 2
% Theta1 has size 3x3
% Assume 'sigmoid' is a built-in function to compute 1 / (1 + exp(-z))
a2 = zeros (3, 1);
for i = 1:3
    for j = 1:3
        a2(i) = a2(i) + x(j) * Theta1(i, j);
    end
    a2(i) = sigmoid (a2(i));
end
```

You want to have a vectorized implementation of this (i.e., one that does not use for loops).
Which of the following implementations correctly compute $a^{(2)}$? Check all that apply.

Your Answer		Score	Explanation
$\begin{aligned} & \text { a2 = sigmoid (Thet } \\ & \text { a2 * x); } \end{aligned}$	\checkmark	0.25	$\Theta^{(2)}$ specifies the parameters from the second to third layers, not first to second.
z = sigmoid(x); a2 = sigmoid (Theta1 * z);	\checkmark	0.25	You do not need to apply the sigmoid function to the inputs.
$\text { a2 }=\text { sigmoid (} \mathrm{x}^{*} \mathrm{~T}$ heta1);	\times	0.00	The order of the multiplication is important, this will not work as x is a vector of size 3×1 while Theta 1 is a matrix of size $3 x 3$.
$\begin{aligned} & \text { z = Theta1 * x; a2 = } \\ & \text { sigmoid (z); } \end{aligned}$			This version computes $a^{(2)}=g\left(\Theta^{(1)} x\right)$ correctly in two steps, first the multiplication and then the sigmoid activation.
Total		$\begin{aligned} & 0.75 / \\ & 1.00 \end{aligned}$	

Question 4

You are using the neural network pictured below and have learned the parameters
$\Theta^{(1)}=\left[\begin{array}{ccc}1 & 1 & 2.4 \\ 1 & 1.7 & 3.2\end{array}\right]$ (used to compute $a^{(2)}$) and $\Theta^{(2)}=\left[\begin{array}{ccc}1 & 0.3 & -1.2\end{array}\right]$ (used to
compute $\left.a^{(3)}\right\}$ as a function of $a^{(2)}$). Suppose you swap the parameters for the first hidden layer between its two units so $\Theta^{(1)}=\left[\begin{array}{ccc}1 & 1.7 & 3.2 \\ 1 & 1 & 2.4\end{array}\right]$ and also swap the output layer so $\Theta^{(2)}=\left[\begin{array}{lll}1 & -1.2 & 0.3\end{array}\right]$. How will this change the value of the output $h_{\Theta}(x) ?$

Your Answer

Score Explanation

It will increase.

Insufficient information
to tell: it may increase or
decrease.

It will decrease
© It will stay the same. $\quad 1.00 \quad$ Swapping $\Theta^{(1)}$ swaps the hidden layers output $a^{\wedge}\{(2)\}$. But the swap of $\Theta^{(2)}$ cancels out the change, so the output will remain unchanged.

Total
1.00 /
1.00

Question 5

Which of the following statements are true? Check all that apply.

| Your Answer | Score | Explanation |
| :--- | :--- | :--- | :--- |
| A two layer (one input layer, | $\checkmark 0.25$ | We must compose multiple logical operations
 by using a hidden layer to represent the XOR |
| one output layer; no hidden
 layer) neural network can
 represent the XOR function. | | function. |

If a neural network is overfitting the data, one solution
0.25 A larger value of λ will shrink the magnitude of the parameters Θ, thereby reducing the
would be to increase the chance of overfitting the data. regularization parameter λ.
\checkmark Suppose you have a multiclass classification problem with three classes, trained with a 3 layer network. Let
$a_{1}^{(3)}=\left(h_{\Theta}(x)\right)_{1}$ be the activation of the first output unit, and similarly $a_{2}^{(3)}=\left(h_{\Theta}(x)\right)_{2}$ and $a_{3}^{(3)}=\left(h_{\Theta}(x)\right)_{3}$. Then for any input x, it must be the case that
$a_{1}^{(3)}+a_{2}^{(3)}+a_{3}^{(3)}=1$.
The activation values of the
$\times \quad 0.00$
The outputs of a neural network are not probabilities, so their sum need not be 1 . hidden units in a neural network, with the sigmoid activation function applied at every layer, are always in the range $(0,1)$.

Total
0.75 /
1.00

