Feedback — VIII. Neural Networks: Representation

You submitted this quiz on **Sun 13 Apr 2014 1:50 PM IST**. You got a score of **4.50** out of **5.00**. You can attempt again in 10 minutes.

Question 1

Consider the following neural network which takes two binary-valued inputs $x_1, x_2 \in \{0, 1\}$ and outputs $h_{\Theta}(x)$. Which of the following logical functions does it (approximately) compute?

Question 2

Consider the neural network given below. Which of the following equations correctly computes the activation $a_1^{(3)}$? Note: g(z) is the sigmoid activation function.

Help

following Octave code:

```
% Theta1 is Theta with superscript "(1)" from lecture
% ie, the matrix of parameters for the mapping from layer 1 (input) to layer 2
% Theta1 has size 3x3
% Assume 'sigmoid' is a built-in function to compute 1 / (1 + exp(-z))
a2 = zeros (3, 1);
for i = 1:3
  for j = 1:3
    a2(i) = a2(i) + x(j) * Theta1(i, j);
  end
    a2(i) = sigmoid (a2(i));
end
```

You want to have a vectorized implementation of this (i.e., one that does not use for loops).

Your Answer	Sc	ore	Explanation
a2 = sigmoid (Thet a2 * x);	✔ 0.2	25	$\Theta^{(2)}$ specifies the parameters from the second to third layers, not first to second.
z = sigmoid(x); a2 = sigmoid (Theta1 * z);	✔ 0.2	25 `	You do not need to apply the sigmoid function to the inputs.
✓ a2 = sigmoid (x * T heta1);	× 0.0	00	The order of the multiplication is important, this will not work as x is a vector of size $3 imes 1$ while Theta1 is a matrix of size $3x3$.
Z = Theta1 * x; a2 = sigmoid (z);	✔ 0.2	25	This version computes $a^{(2)}=g(\Theta^{(1)}x)$ correctly in two steps, first the multiplication and then the sigmoid activation.
Total	0.7 1.0	75 /)0	

Which of the following implementations correctly compute $a^{(2)}$? Check all that apply.

Question 4

You are using the neural network pictured below and have learned the parameters

 $\Theta^{(1)}=egin{bmatrix} 1&1&2.4\ 1&1.7&3.2 \end{bmatrix}$ (used to compute $a^{(2)}$) and $\Theta^{(2)}=egin{bmatrix} 1&0.3&-1.2 \end{bmatrix}$ (used to

compute $a^{(3)}$ } as a function of	$a^{\left(2 ight)}$). Suppose you swap the parameters for the first hidden la	ayer
between its two units so $\Theta^{(1)}$ =	$\begin{bmatrix} 1 & 1.7 & 3.2 \\ 1 & 1 & 2.4 \end{bmatrix}$ and also swap the output layer so	
$\Theta^{(2)} = [egin{array}{cccccccccccccccccccccccccccccccccccc$	by will this change the value of the output $h_{\Theta}(x)$?	
$\begin{array}{c} +1 \\ x_1 \\ x_2 \\ Layer 1 \end{array}$	$ \begin{array}{c} +1 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
Your Answer	Score Explanation	
Your Answer It will increase. 	Score Explanation	
Your Answer It will increase. Insufficient information to tell: it may increase or decrease. 	Score Explanation	
Your Answer It will increase. Insufficient information to tell: it may increase or decrease. It will decrease	Score Explanation	
 Your Answer It will increase. Insufficient information to tell: it may increase or decrease. It will decrease It will stay the same. 	ScoreExplanation1.00Swapping $\Theta^{(1)}$ swaps the hidden layers output ar{(2)}. But the swap of $\Theta^{(2)}$ cancels out the change, so the output will remain unchanged.	

Question 5

Which of the following statements are true? Check all that apply.

Your Answer		Score	Explanation
A two layer (one input layer, one output layer; no hidden layer) neural network can represent the XOR function.	~	0.25	We must compose multiple logical operations by using a hidden layer to represent the XOR function.
If a neural network is overfitting the data, one solution	~	0.25	A larger value of λ will shrink the magnitude of the parameters $\Theta,$ thereby reducing the

would be to increase the regularization parameter λ .		chance of overfitting the data.
Suppose you have a multiclass classification problem with three classes, trained with a 3 layer network. Let $a_1^{(3)} = (h_{\Theta}(x))_1$ be the activation of the first output unit, and similarly $a_2^{(3)} = (h_{\Theta}(x))_2$ and $a_3^{(3)} = (h_{\Theta}(x))_3$. Then for any input x , it must be the case that $a_1^{(3)} + a_2^{(3)} + a_3^{(3)} = 1$.	★ 0.00	The outputs of a neural network are not probabilities, so their sum need not be 1.
✓ The activation values of the hidden units in a neural network, with the sigmoid activation function applied at every layer, are always in the range (0, 1).	✔ 0.25	The activation function $g(z)=rac{1}{1+exp(-z)}$ has a range of (0, 1).
Total	0.75 / 1.00	