{ "cells": [ { "cell_type": "markdown", "id": "5cbc8640", "metadata": {}, "source": [ "## Comparison of: \n", "(1) adaptive variable time steps \n", "(2) fixed time steps \n", "(3) exact solution \n", "### for the reaction `A <-> B`,\n", "with 1st-order kinetics in both directions, taken to equilibrium.\n", "\n", "This is a continuation of the experiments `react_2_a` (fixed time steps) and `react_2_b` (adaptive variable time steps)\n", "\n", "**Background**: please see experiments `react_2_a` and `react_2_b` " ] }, { "cell_type": "code", "execution_count": 1, "id": "060cf75d-57c8-4bb3-b6e0-39e0601b0443", "metadata": {}, "outputs": [], "source": [ "LAST_REVISED = \"Nov. 11, 2024\"\n", "LIFE123_VERSION = \"1.0.0.rc.0\" # Library version this experiment is based on" ] }, { "cell_type": "code", "execution_count": 2, "id": "bfc75f60-dd56-413b-a1e0-77e69953f0ed", "metadata": {}, "outputs": [], "source": [ "#import set_path # Using MyBinder? Uncomment this before running the next cell!" ] }, { "cell_type": "code", "execution_count": 3, "id": "a29db1c7", "metadata": { "tags": [] }, "outputs": [], "source": [ "#import sys\n", "#sys.path.append(\"C:/some_path/my_env_or_install\") # CHANGE to the folder containing your venv or libraries installation!\n", "# NOTE: If any of the imports below can't find a module, uncomment the lines above, or try: import set_path \n", "\n", "from life123 import check_version, ChemData, UniformCompartment\n", "\n", "import numpy as np\n", "import plotly.graph_objects as go\n", "from life123 import ReactionKinetics\n", "from life123.visualization.plotly_helper import PlotlyHelper" ] }, { "cell_type": "code", "execution_count": 4, "id": "46794745-9412-473e-90f4-9cea7fe42bb5", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "OK\n" ] } ], "source": [ "check_version(LIFE123_VERSION)" ] }, { "cell_type": "code", "execution_count": null, "id": "a7316c65-0489-404e-96ce-b045feff89bc", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "ac9eea69-174c-43e5-9eed-443cbc5e2ba7", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "1bc60f3e-6552-43d4-aef2-a33d95811016", "metadata": {}, "source": [ "## Common set up for the chemicals and the reaction (used by all the simulations)" ] }, { "cell_type": "code", "execution_count": 5, "id": "78077d8c", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of reactions: 1 (at temp. 25 C)\n", "0: A <-> B (kF = 3 / kR = 2 / delta_G = -1,005.1 / K = 1.5) | 1st order in all reactants & products\n", "Set of chemicals involved in the above reactions: {'A', 'B'}\n" ] } ], "source": [ "# Instantiate the simulator and specify the chemicals\n", "chem_data = ChemData()\n", "\n", "# Reaction A <-> B , with 1st-order kinetics in both directions\n", "chem_data.add_reaction(reactants=\"A\", products=\"B\", \n", " forward_rate=3., reverse_rate=2.)\n", "\n", "chem_data.describe_reactions()" ] }, { "cell_type": "code", "execution_count": null, "id": "04be6f77-eb76-4c4c-a2f9-7c80ca9bd8f0", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "b496f370-290f-4f3a-8ce4-3b0f3132e43c", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "23e12ad6-03b1-4856-bc39-92130e6f1b2f", "metadata": {}, "source": [ "# PART 1 - VARIABLE TIME STEPS\n", "We'll do this part first, because the number of steps taken is unpredictable; \n", "we'll note that number, and in Part 2 we'll do exactly that same number of fixed steps" ] }, { "cell_type": "code", "execution_count": 6, "id": "d3751799-542c-4d18-a4dd-36e42b63b138", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "SYSTEM STATE at Time t = 0:\n", "2 species:\n", " Species 0 (A). Conc: 10.0\n", " Species 1 (B). Conc: 50.0\n", "Set of chemicals involved in reactions: {'A', 'B'}\n" ] } ], "source": [ "dynamics_variable = UniformCompartment(chem_data=chem_data, preset=\"mid\")\n", "\n", "# Initial concentrations of all the chemicals\n", "dynamics_variable.set_conc({\"A\": 10., \"B\": 50.})\n", "\n", "dynamics_variable.describe_state()" ] }, { "cell_type": "markdown", "id": "9fd83080-a135-4f3d-bbf3-a1a9e815a915", "metadata": { "tags": [] }, "source": [ "### Run the reaction (VARIABLE adaptive time steps)" ] }, { "cell_type": "code", "execution_count": 7, "id": "cab9218d-0227-4d47-b128-0394c56f92c0", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "19 total step(s) taken in 0.039 sec\n", "Number of step re-do's because of elective soft aborts: 2\n", "Norm usage: {'norm_A': 17, 'norm_B': 15, 'norm_C': 15, 'norm_D': 15}\n", "System Time is now: 1.2268\n" ] } ], "source": [ "dynamics_variable.single_compartment_react(initial_step=0.1, target_end_time=1.2,\n", " variable_steps=True)" ] }, { "cell_type": "markdown", "id": "01dd1821-e725-48d7-b5fc-b76b3b95edd8", "metadata": {}, "source": [ "#### The flag _variable_steps_ automatically adjusts up or down the time steps\n", "In part 2, we'll remember that it took 19 steps" ] }, { "cell_type": "code", "execution_count": 8, "id": "08985297-d0a5-4351-aef2-354ce804cde6", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SYSTEM TIMEABcaption
00.00000010.00000050.000000Set concentration
10.01600011.12000048.8800001st reaction step
20.03200012.15040047.849600
30.04800013.09836846.901632
40.06720014.14492545.855075
50.08640015.09101244.908988
60.10944016.11732743.882673
70.13248017.02541142.974589
80.16012817.98957842.010422
90.19330618.98663541.013365
100.23311919.98462440.015376
110.28089420.94381239.056188
120.33822521.81988238.180118
130.40702222.56981037.430190
140.48957923.16016836.839832
150.58864723.57616936.423831
160.70752823.82809736.171903
170.85018623.95071336.049287
181.02137523.99290036.007100
191.22680224.00019335.999807last reaction step
\n", "
" ], "text/plain": [ " SYSTEM TIME A B caption\n", "0 0.000000 10.000000 50.000000 Set concentration\n", "1 0.016000 11.120000 48.880000 1st reaction step\n", "2 0.032000 12.150400 47.849600 \n", "3 0.048000 13.098368 46.901632 \n", "4 0.067200 14.144925 45.855075 \n", "5 0.086400 15.091012 44.908988 \n", "6 0.109440 16.117327 43.882673 \n", "7 0.132480 17.025411 42.974589 \n", "8 0.160128 17.989578 42.010422 \n", "9 0.193306 18.986635 41.013365 \n", "10 0.233119 19.984624 40.015376 \n", "11 0.280894 20.943812 39.056188 \n", "12 0.338225 21.819882 38.180118 \n", "13 0.407022 22.569810 37.430190 \n", "14 0.489579 23.160168 36.839832 \n", "15 0.588647 23.576169 36.423831 \n", "16 0.707528 23.828097 36.171903 \n", "17 0.850186 23.950713 36.049287 \n", "18 1.021375 23.992900 36.007100 \n", "19 1.226802 24.000193 35.999807 last reaction step" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dynamics_variable.get_history() # The system's history, saved during the run of single_compartment_react()" ] }, { "cell_type": "code", "execution_count": 9, "id": "aa8a05ce-b039-43fa-8341-0387bc74ef08", "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "Chemical=A
SYSTEM TIME=%{x}
Concentration=%{y}", "legendgroup": "A", "line": { "color": "darkturquoise", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "A", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 0, 0.016000000000000004, 0.03200000000000001, 0.048000000000000015, 0.06720000000000002, 0.08640000000000003, 0.10944000000000004, 0.13248000000000004, 0.16012800000000005, 0.19330560000000005, 0.23311872000000006, 0.28089446400000007, 0.3382253568000001, 0.4070224281600001, 0.48957891379200014, 0.5886466965504001, 0.7075280358604801, 0.850185643032576, 1.0213747716390913, 1.2268017259669095 ], "xaxis": "x", "y": [ 10, 11.120000000000001, 12.150400000000001, 13.098368, 14.144924672, 15.091011903488, 16.117327332206184, 17.025411223536032, 17.989578375994412, 18.98663519835745, 19.984623670615306, 20.94381162849702, 21.819881668013238, 22.569810450307923, 23.160167565358876, 23.576169251301298, 23.828097086531773, 23.950713378038216, 23.992900047366195, 24.000192655593363 ], "yaxis": "y" }, { "hovertemplate": "Chemical=B
SYSTEM TIME=%{x}
Concentration=%{y}", "legendgroup": "B", "line": { "color": "green", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "B", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 0, 0.016000000000000004, 0.03200000000000001, 0.048000000000000015, 0.06720000000000002, 0.08640000000000003, 0.10944000000000004, 0.13248000000000004, 0.16012800000000005, 0.19330560000000005, 0.23311872000000006, 0.28089446400000007, 0.3382253568000001, 0.4070224281600001, 0.48957891379200014, 0.5886466965504001, 0.7075280358604801, 0.850185643032576, 1.0213747716390913, 1.2268017259669095 ], "xaxis": "x", "y": [ 50, 48.88, 47.8496, 46.901632, 45.855075328, 44.908988096512, 43.88267266779381, 42.97458877646397, 42.01042162400559, 41.013364801642545, 40.015376329384694, 39.05618837150298, 38.180118331986755, 37.43018954969207, 36.83983243464112, 36.42383074869869, 36.171902913468216, 36.04928662196178, 36.007099952633794, 35.999807344406626 ], "yaxis": "y" } ], "layout": { "autosize": true, "legend": { "title": { "text": "Chemical" }, "tracegroupgap": 0 }, "shapes": [ { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0, "x1": 0, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.016000000000000004, "x1": 0.016000000000000004, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.03200000000000001, "x1": 0.03200000000000001, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.048000000000000015, "x1": 0.048000000000000015, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.06720000000000002, "x1": 0.06720000000000002, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.08640000000000003, "x1": 0.08640000000000003, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.10944000000000004, "x1": 0.10944000000000004, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.13248000000000004, "x1": 0.13248000000000004, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.16012800000000005, "x1": 0.16012800000000005, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.19330560000000005, "x1": 0.19330560000000005, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.23311872000000006, "x1": 0.23311872000000006, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.28089446400000007, "x1": 0.28089446400000007, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.3382253568000001, "x1": 0.3382253568000001, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.4070224281600001, "x1": 0.4070224281600001, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.48957891379200014, "x1": 0.48957891379200014, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.5886466965504001, "x1": 0.5886466965504001, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.7075280358604801, "x1": 0.7075280358604801, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.850185643032576, "x1": 0.850185643032576, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 1.0213747716390913, "x1": 1.0213747716390913, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 1.2268017259669095, "x1": 1.2268017259669095, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" } ], "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Reaction `A <-> B` . Changes in concentrations with time (time steps shown in dashed lines)" }, "xaxis": { "anchor": "y", "autorange": true, "domain": [ 0, 1 ], "range": [ -0.000835695998615061, 1.2276374219655246 ], "title": { "text": "SYSTEM TIME" }, "type": "linear" }, "yaxis": { "anchor": "x", "autorange": true, "domain": [ 0, 1 ], "range": [ 7.777777777777778, 52.22222222222222 ], "title": { "text": "Concentration" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5MAAAFoCAYAAADKJa96AAAgAElEQVR4Xu29CbgV1Znv/QIHzmGUQXFAhaAgKBhjOmortmMcEge0YyQ3iXLVJNr92ek23Y9G+9FOnmsSv07str1piZp8aJIOal/FIcaoiXpVWunEGBFRMAQ0iqIMMggHDvCtVXvXpk5RtWtaVbV27V+d5zx7Wutd7/q9q9au/15D9dmhDuGAAAQgAAEIQAACEIAABCAAAQgkINAHMZmAFkkhAAEIQAACEIAABCAAAQhAwCGAmKQhQAACEIAABCAAAQhAAAIQgEBiAojJxMjIAAEIQAACEIAABCAAAQhAAAKISdoABCAAAQhAAAIQgAAEIAABCCQmgJhMjIwMEIAABCAAAQhAAAIQgAAEIICYpA1AAAIQgAAEIAABCEAAAhCAQGICiMnEyMgAAQhAAAIQgAAEIAABCEAAAohJ2gAEIAABCEAAAhCAAAQgAAEIJCaAmEyMjAwQgAAEIAABCEAAAhCAAAQggJikDUAAAhCAAAQgAAEIQAACEIBAYgKIycTIyAABCEAAAhCAAAQgAAEIQAACiEnaAAQgAAEIQAACEIAABCAAAQgkJoCYTIyMDBCAAAQgAAEIQAACEIAABCCAmKQNQAACEIAABCAAAQhAAAIQgEBiAojJxMjIAAEIQAACEIAABCAAAQhAAAKISdoABCAAAQhAAAIQgAAEIAABCCQmgJhMjIwMEIAABCAAAQhAAAIQgAAEIICYpA1AAAIQgAAEIAABCEAAAhCAQGICiMnEyMgAAQhAAAIQgAAEIAABCEAAAohJ2gAEIAABCEAAAhCAAAQgAAEIJCaAmEyMjAwQgAAEIAABCEAAAhCAAAQggJikDUAAAhCAAAQgAAEIQAACEIBAYgKIycTIyAABCEAAAhCAAAQgAAEIQAACiEnaAAQgAAEIQAACEIAABCAAAQgkJoCYTIyMDBCAAAQgAAEIQAACEIAABCCAmKQNQAACEIAABCAAAQhAAAIQgEBiAojJxMjIAAEIQAACEIAABCAAAQhAAAKISdoABCAAAQhAAAIQgAAEIAABCCQmgJhMjIwMEIAABCAAAQhAAAIQgAAEIICYpA1AAAIQgAAEIAABCEAAAhCAQGICiMnEyMgAAQhAAAIQgAAEIAABCEAAAohJ2gAEIAABCEAAAhCAAAQgAAEIJCaAmEyMjAwQgAAEIAABCEAAAhCAAAQggJikDUAAAhCAAAQgAAEIQAACEIBAYgKIycTIyAABCEAAAhCAAAQgAAEIQAACiMk2bgN33vNLueH7P5O9Ro+UX919YxuTyFb1z/8//0tefPl1mXn+afIPl83IZozcEIAABCAAAQhAAAIQaBECiMkWCVRebj761H/L3133fbnyrz8nF5x3al7FVN7u33/zFvnFr5+XhU/Obom6uj8k/Ms3/lpOOe4TLeEzTkIAAuEEWq0PMhlL93tM22yVPthk/VvR1sLFy+SzX/4nfoRNGbxDjp8pp594pHz32stSWgjPVuT1wT/fMkdm3/WI3H3rP8khE8c1rctJn73CGfz46f/+R+N1zmLQbcvaRpx6ZCnL1rwtLSbdL08/XFtG2pp1lq7vNlzMuydznC9hfTK/s3K1HDblQOtOaBMnWVib0rajBLdm87EpE3Lp3JPUzY2nP4+3kyvyyyKJ72WkdS9E8/piLqNOZZSZ58VNq/SlJrm7dfb2tc1+/DMhJsMu1mw/R3Tb83/vN2szbh8Z1aebjKcJW1X68bdqYrLoNpVnf1vk9UEWMen6acusMN1/6qMdZ/pVQkz6fwnQJ5kNvxBU7QLI++uvab4uqzQ/BARdSKT94nYvyPxtqugvijT+N/t1zK2X2+kW+WWRpi5F5rH9QrlIFlnKyvPipmp9aRzOiMk4lETCLkYRk/H4lZUKMZmNfJ79bZHXB1USk+61hC3iNlsLS5a7kmLSloBWrbP0jqbqqbGmThhX/GcZ7XRtpBGj3lMmTEzqNHl23slO2+DUUb+K6fPi96/8wVnXWeSXhYm6YcN+AnmeH1XrS9NGs6yRybT+FpEvrN1Vsc0wMllEi2qNMvLsb4u8PsgiJm2MlIkZIjbWK8qnthOT7mYpLhj/1Dbv6I4XXtgUOPek86f9nzNOd9YD+A9XMIWdQP7RP50/bJRMv/83//hvzrRT98hzvra384oSLlENzxVn+jGLiPSXk1VUholJt13YOhXSbYdxp215vyzuUBsx6Q2E3MM/9Tps2qw/XRKbuqygc023Be2Lf8p10HkWNC3bjb9blzhtK+iiM2ldmrV3v09O3T1ra+PUzdtfxDnng9j6f2iJ09fo/lL3L//2v/6mV3/mtxVURzeNl+WjT/3GWVusD/1j1EcPPsBZs+0/vD9UhfXJZfSl7jR/1984P14F9fVhQsc/zdTb5wbFS/vh9kneixh/PJIsYfDHQucN8tdbL/93nTdPFKs47T/s/Aq76I1qM0H53Lau+1Bvm3Tbmd/PsO8C/1KJOH2QW7+gGLvnQlT8XRv+2Pu/E5L2bWn61LD+3cvM26Z0er1uzj3Cfqj2n3/+dG4MvdMMg2Ltb89pfPG3yWZtKqr/jLpe8n8H635H98tenmHtI4hl0DnnbSdJ24j3es6tS9i1iL89uXWJc+3q7x+DflxJ2g/G+R7UdfJrB//3uP8cjnstFhX7Vvm8kmIy7MI6aDqkfs/b2budivfLN0xIBAkPnVZf7OnOLM40G+8J5HYY3ov0Zu/pRubNH9SRmmqI/o4yyK+4ZZkYiYwqK20ZYWKy2YhllC9FfJ7UP++Xibe9Bf2qpmP97ntreq0FDYp/EpthswfciwXv+Re0vthf36BzNO4MhWZiUscuik9YfMPK1+fphWqzK73xUVDcgt7zXkxEnfNh/Z9mqy9q9CYHQdO2g2LqfoEGiUf/xXTYL+XeduH/gtWM9I7S3ou/IG429KVh3xVRPzAFXfC4rL1cg+roZxpnZNJ/kZNk04qwtM3EZFB57g+c3vM4yHacc7tZ/6nz/+7lJYFrlJq1mbALf/1DVtD1gPYh6H3/hXpQ/xX3h9eg89Z/TjaLf9B0/aBzKaqfdvuXLH1qs3LdPsAr+L0cm4m/IDHqfS/ohxu3D/Om85eRxJew9tisTcXpP8Pshl1n6h9w/GIyTl8a1M/7y4hqI97zOm67S3IdHcYiiZiM0w/G/R4MOof93wden/McNS7iejJNGZUTk1EN1v8LrXsiRG2E4//SijPdJOkFUFgD9IvEsFHNPKcm+H1IM1LndupJfqlN06j9J7V+HXXB5+ZptgFPnFGIrP6mze+yjTMCocsIaytx2rXro26vURcBOm2QzbCLVr+YbeaPd8OjZm1fny/NbtkSNTLp3e02CZ+oi/hm/YM/b5JzPuqLrFm5uh3pw90tL+wHqqAfHaLEZFQf6237fj/K7kubxT2qfel6+dm49dPixb14D/ouSiMm/X2AiWlkUSOT3l0Yw6Z5pT23m/WJ/nbiTZtGTGoR7N88I+w8jnuOun5EjVSEcdPtQh+6H4rqD4N2unTj77aLZn2lt71l6VObrWP97e9fc3aObxYff7sPY+P3MYiPe9Hvja2fSRJfkorJoDYVdypks3hH9fOun3H7dM3y4x89yPmxMcn1Qdj54Wcc9l2SpX+KGpn0xspfTtzvwajvnqBri2b9UtprPNvzVUJM+iEHDZdH/eLq7+iDhrR1OW6HHOcEiGqE3u2Qoy5WvGmTXFiaaIBh9UgqYNKIySBxF1cYuhdxacRkUBty/Y8zHcME9yQ2ksYiyZeF0+7r27j7fWr2a6+b1t+2m50X/i/ZZueZt8P2TlVJGp88xGSzOrpcml2sxeUQ52LKH7Oocr0jPUWJSf/0Ne1z1KidWy9/G8mjL/W2/ySi2PXR+2Oka8tdpnDaCUc4P3boejzyxPxeYqYVxWTYOet/P+653awfbLaDtikxGXYO+N9vNjPI/8NbUJ2CRqv96cLadpy6uv1is/PfW4csfap3ZCvsB84kAi7q+s37o6b/R0a9jMOdZuqeu7qee48e1Zhtk8SXIsVks3MkTExG9aXud0uzH/XjXh8kaXdh/sa5lnaZJxmZjPpRLcn3oDvTLeoHoTABn+RarlXTVkJM+n/ZDRpBClrT4w2af5dLvw3/xV2cX5aSiMmoXwG1mHQ7wqLFpHeKXVBDj3uCuXnTTkFNcpKlLaPZdNE0o7FJfM6SNqnQjftloX1ybfundPm/HOLajDNVz/0iaDZS7Bcc3osfl2Wc0eQ8xGScEcxmX6L+dhj3nI8zOyHqfHZ+PKiv6cxbTLq++C9swmZCBK3/8bPJqy8N+0ElzmwA1yf9XfXwr56TFxe+7oz+egWk/wJXx6HKYjLJuR3WN9okJoMu4r1+x/kRNOjcDFoXFzRdPGjtsbd89/ohrpjUedP2qTqvV1C6fsSZKhzU7sOESNB3sveHG31OHXbIgc6PNd7zS9vzMrRVTDa7zvQziduXar5B516aWUZB7cN/rup2N2bvPULvKVqWmEzyPei2SX/dwn64ZmQyy9VsCXmDLvzdDsx/cdLsS8fretyLpzgnQBIxmcev6aZC0my6XrN541HlpxV8zey6NuOIiCA7zcSk26EUOU03iqH7edB6m2Z54wq/JF+ycW0mEZP+qTJxeeh0bt6oi7g8xGQrjEzGGcGN2x8GXQD622bQiF5Y35JFTBbVl4Z91wS1Ue9Ux1+qaYvuBa7rq46FXgPlFwlVFpNZzm2XcRHTXJOMTGq/TN5Q3f0hz20XUSOTcX7YbSYmo6bmx+1Tm323uqIlyXdLkpFJ7w83+pzy/givR/7dDZa8/V8SX8K+g4K4Juk/mzEL22zO+90Wty8NKsf9ISTqB4ewWUZR7S7JtXCz7/g8RibjfA/6fXI5hF1nIiaTXKlZkDbswt993/tLS5yRRF0lE2u5dIfrzqMOm94SJEZtXDPpnjRhu6tFia84zcSEqMwqIl0/W3Vk0r2Y14/NphXpUZFmtwbxf1kkWbMRV0w2Ex5J1lV525Y+nz510lHOeg/vEXVx5PCqT+FN88tski8+N627BqrZr7Vx12MFMW+2dlGvidGHvsiKc2ufJBdDYT/YxV2j5WUZVG6Zfamug75w8K6f1f42m9robxtuTL3rJL3fOf73g84TryjV6868R9h3XJwfPl07YRdBQedI3Omsru0k05HjfG/oNP69DPz5wtpMkgv/uGIyCeeg+um6fPfay3p95OfeLP5x+jptPOx89JeVpU8Nqou/PScRcHHXTHr7c/2jr3e9olue//2w7wA3EHHXJiZpU3GvR5P0nXGvH4Ni4/+eT/JdHrfdRa2tjCPqTIrJOD/46jag2eh2FLe/Deq34/ZnrZyuUtNc/Rcj+svZ+4uJPtmCfknQXxZxdld0Oh3Plv5BUwv9X25hX0RBXzzue16f3feCdnj1n3xxprglbaxRYjFKbMYtzz2x04wohsU1btlBF2RBHZsrWONMa0tSttuO0qzF8pbjnYbn99//A0uSL4ug0WeXRZo1k9rnoHYdts7G9T3oViQvLVrqXIAFnTtx22ZeYtKtj1e0+TdZCapb0DkXd5qrl23QVu9uuwji5X5x6jVGaTbgSXLB5xUv/lvBuOeDvy8osy8NimXSae9ha5XcWIQtz/CPrMf9wTNMxDXrm8LaWR5i0hWD+lYxzc7tZv5GfeeFtZkkF/5xxaT20x3h8X9H6NgfOnn8LhekQdcsUTu8h8Xf7VuCZmLo/tq/AY9/NEnb1Ye7AVGWPjWoX/PPnkkiJr1C0O2bmp1/bhyCbh2i+5uwW8IF/cBWpph025Q3Lt525q2H228GXaN6+5agNur/zklyfZCl3Xm/84sWk2Hflf7vwbD6hc3Ki7PEJcn1YaukrayYjDrhvAEKWx/pptGdrr5o1V96YYt6e13UewSnft+7XtP0vdG8IzFRX6xpGmWcaaz+L6E05diSp9k6nrymt5oSky7DsDoE3dvQfxEX1hH61xxrW2nXTPovct3X+otRH0Fb/Qetv9Fpg27b4W1LUdNvdNq8xKTXdjOfguoWtXmAay/qS99bblis/eeel1mSkUlvn6ufB91n0j+yp9O57d/1Q/upBW3QLohl9qVBa2zijO76Y+Vvk80uioMuZP1rN4PuM+mNadIRM3884txn0vs9lHTEMs653ez7IepiP6jN5CUmtZ9x+t+w+gStu/RfZIfF37Xp76v1+0E/+rn393PzBX2/BdUlTp8adF77++skYtL10c8n6YypsOUgaXzxxzBJm4o7MhlWb3davF8Ux+1Lg9pIlusD7WdUu9Np/Oe69n/PPUY49xgtQ0xqn8LWfQb9GOuNedR9Zk0POjTrA234rKXFpA0A8QECEDBHoB3XGpijhyUItB+BpGK5/Qj1rnEePzq3O1PqDwGvME3yI2NVyCEmqxJJ6gGBFiKgfw30Tqf0/mqZdbpvC2HAVQhAwACBKs2OMYCjqQnEZN6Esd+uBNq5H0JMtmurp94QKJFA2NSSOFNdSnSboiEAAQsJePuTdpteljQciMmkxEgPgeYEmu1X0S7sEJPtEmnqCQEIQAACEIAABCAAAQhAwCABxKRBmJiCAAQgAAEIQAACEIAABCDQLgQQk+0SaeoJAQhAAAIQgAAEIAABCEDAIAHEpEGYmIIABCAAAQhAAAIQgAAEINAuBBCT7RJp6gkBCEAAAhCAAAQgAAEIQMAgAcSkQZiYggAEIAABCEAAAhCAAAQg0C4EEJPtEmnqCQEIQAACEIAABCAAAQhAwCABxKRBmJiCAAQgAAEIQAACEIAABCDQLgQQk+0SaeoJAQhAAAIQgAAEIAABCEDAIAHEpEGYmIIABCAAAQhAAAIQgAAEINAuBBCT7RJp6gkBCEAAAhCAAAQgAAEIQMAgAcSkQZiYggAEIAABCEAAAhCAAAQg0C4EEJPtEmnqCQEIQAACEIAABCAAAQhAwCABxKRBmJiCAAQgAAEIQAACEIAABCDQLgQQk+0SaeoJAQhAAAIQgAAEIAABCEDAIAHEpEGYmIIABCAAAQhAAAIQgAAEINAuBBCT7RJp6gkBCEAAAhCAAAQgAAEIQMAgAcSkQZiYggAEIAABCEAAAhCAAAQg0C4EEJPtEmnqCQEIQAACEIAABCAAAQhAwCABxKRBmJiCAAQgAAEIQAACEIAABCDQLgQQk+0SaeoJAQhAAAIQgAAEIAABCEDAIAHEpEGYmIIABCAAAQhAAAIQgAAEINAuBBCT7RJp6gkBCEAAAhCAAAQgAAEIQMAgAcSkQZiYggAEIAABCEAAAhCAAAQg0C4EEJPtEmnqCQEIQAACEIAABCAAAQhAwCABxKRBmJiCAAQgAAEIQAACEIAABCDQLgQQk+0SaeoJAQhAAAIQgAAEIAABCEDAIAHEpEGYmIIABCAAAQhAAAIQgAAEINAuBBCT7RJp6gkBCEAAAhCAAAQgAAEIQMAgAcSkQZiYggAEIAABCEAAAhCAAAQg0C4EEJPtEmnqCQEIQAACEIAABCAAAQhAwCABxKRBmJiCAAQgAAEIQAACEIAABCDQLgQQk+0SaeoJAQhAAAIQgAAEIAABCEDAIAHEpEGYmIIABCAAAQhAAAIQgAAEINAuBBCT7RJp6gkBCEAAAhCAAAQgAAEIQMAgAcSkQZiYggAEIAABCEAAAhCAAAQg0C4EEJPtEmnqCQEIQAACEIAABCAAAQhAwCABxKRBmJiCAAQgAAEIQAACEIAABCDQLgQQk+0SaeoJAQhAAAIQgAAEIAABCEDAIAHEpEGYmIIABCAAAQhAAAIQgAAEINAuBBCT7RJp6gkBCEAAAhCAAAQgAAEIQMAgAcSkQZiYggAEIAABCEAAAhCAAAQg0C4EEJPtEmnqCQEIQAACEIAABCAAAQhAwCABxKRBmJiCAAQgAAEIQAACEIAABCDQLgQQk+0SaeoJAQhAAAIQgAAEIAABCEDAIAHEpEGYmIIABCAAAQhAAAIQgAAEINAuBBCT7RJp6gkBCEAAAhCAAAQgAAEIQMAgAcSkAZjrP9wq6zf1GLCECZsIDBzQT7o6+8ma9VtscgtfDBEYOXSAfNi9TTZv2WbIImZsIdBHObLXqIGyYtUmW1zCD4MEBqp+uau/6ps30DcbxGqNKfpma0Jh3JE+qnPea4Tqm1dn65v3Uf07hz0EEJMGYoGYNADRQhOISQuDYtAlLlgMwrTMFGLSsoAYdgcxaRioZebomy0LiEF3EJMGYVpkCjFpIBiISQMQLTSBmLQwKAZd4oLFIEzLTCEmLQuIYXcQk4aBWmaOvtmygBh0BzFpEKZFphCTGYPxjW98Q674h6ubTnNdvGiBrHj7T3LcSac3Le3eObPluJM/JaN2Hx2absVbb8hv58+TM86ZEcvzh+6bIx8/4mjZe8z+kemT2nYNvjD/Wefp4UccE1mGN8FjD98nEyZNkXHjJyTK5yZe9f5Keerxh+XcGTNT5fdnWrZ0iSx59WX55KfOcT4yLSbTcspSuTtuu0k+d8GlMqCzM4uZzHmf+tUvZO999pWJk6dmtmXKgP+CZcGLv5GNG9bJUdNONFVE4Xa2dHfLz+6cJRd+6auFl11GgWH9G2JSxMZzzlQbKUtM+r8jTNUHO70JpBGTc+78gXx6+gwZOmw3cFpMwISYvO1//79y3XXXWVzL9nOt7cXk1791qzzw6LxdIr/wydmN986eeY28vuwt5/WB48bI/bOvb3yGmBRJK5IQk/l3OIjJcMaIyfzbX94lICbDCSMmzbc+xKR5pkEWEZPFcC6jFMRkGdTzLxMxqcTkK4uX9xKIXuwXXXGDrFq9rvG5FpajRg6TH914pZMMMYmYjHuaphXdce0HpUNMIiaztB/b8yImEZNFtlHEZDG0EZPFcC6jFMRkGdTzLxMxGSEmj51+uXzt0vNl+mnTnGjMfeQZ+d6su+TpuTc3osOayfwbahklmJ7mWkYdKDO+mIRVdQgwzbU6sQyqSVnTXKtN1Z7apRGT9niPJ80ImBCT2j67udrVzhCTvmmuI4cPbQjFBYuWyozLvilzbrlWpk4e70Qu6D3EpF2N2pQ3iElTJO20wwWLnXEx4RVi0gRFe20gJu2NjQnP6JtNULTTRquKSf+sRDvpBnsVpFtM+9/2YtIPVDcYfeh1kXHE5M+X/Fx+tuAuuejQL8sn9jnSdHywVyKBjn59paOjj2xW9yLkqB4BfUG6tWeH9GzbXr3KUSMZMqi/bFD3AOaoHoGODtU391V9M/eIrV5wVY3omysZ1lql1C99Q7pU37wpW988VPXvJg+9pO35Fxb1MukdXCpDTOqZkNd853a5/qpLGrMj09QZMZmGWsY8bvD0BjxxxKReM/lP6k8fnxx/mlxy2Ffk9AM+3cuLhS+/JH968w059fQzmnr3kzt+KKeoNKNH7xma7s03l8tzzz4j5834fKya3jPnp3LUMdNkv/3GRqZPats1+F/znnae/vnRx0aW4U3wwNz/lIMPOVQOnDAxUT438cqV78qjv3hIvnDhxany+zO9vmSxvLLwJTlr+mecj0yLybScslTu+/92o1zylb+Szs6uLGYy5/2litO+++0vh0w5NLMtUwb8Fywv/Ga+rFu/To4/4WRTRRRup7t7s9z+g3+Xv/6bKwovu4wCm/Vv7S4mbTznTLWRssSk/zvCVH2w05tAGjF5+63fl8+e/wUZthu7uVrdngyIyRv/+VtGd3M95PiZ4hWOLj8tMPfcfYR8++ovSxli0lQcEZOmSCaw4xWTOlvUmkktJlf92Qdy2+9myeZtm5ySPjr6cLlgypdkxsEXOq+5NUhwANjNNUHDTJmUDXjCwbGba8pGZVE2NuAJDwa7uZpvqGzAY55pkMU001y5NUgxsclaiolpriZvDaIF45Klf+q1D0pQHV0xqT9zRzDDBKh3hNO7TE7riWlHTJVn5i+Q1WvXO8Vc+sWzZL8xo50RSPdw8wSJQP8Iqs5/+cXnStDIqntXCsRk1lYbI78OrnczHf16wvh9G7u1xt3N9e0PVsudL98mdyy4Vd5a/6ZT8r5D95cLpn5Jju3/F7Jm5fvcZ9IXD8RkjAaaMQliEjGZsQlZnR0xiZgssoEiJouhjZgshnMZpdgmJvWo5FmnHO2MPjY73FsEuuJNp43SCzf/8F6Z9eMHxBV1Or0Wka5YdD/3T6fVtoOW2vmFrxaJ/3LbPY5e0Z/93ZfOa+zvErVkz3Ts237NpPcekhrukYdPbghJF3az+0zqNP4NeOa8cocjKl9673eOiYEdg+TCqV92hOXYYR8xHUPs5USADXhyAmuJ2TQXLJa4jhsRBNiAp9pNhA14qh1f+ubqxteEmNR0TOzm6o7YxVmTGDTNVd+n3r21YNjonxaQnz3zBGf00B2ZdIVrUB5tU49c6kEu7+e6znpD0Di+6rRaqN794BO72HE3EzXdwtpeTJoAGrab62PLHlai8gfyxPLHGsWcN+kLcqGaAvuxvT5homhs5EgAMZkjXAtMc8FiQRBycgExmRNYS8wiJi0JRE5u0DfnBNYCs1UVk+4SuSDE7mhmmJj0CsQwEfiH5W87U2HdUc6gctyRT+9nYfu/mG4KiEkDRKNuDfLCO/Odkcr/fO0/GqWdOPZUZ7Ty5HGnG/AAE3kQQEzmQdUem1yw2BML054gJk0TtcseYtKueJj2hr7ZNFF77NkkJjWVJNNcR40c1mvmondk0r/fSpjY02sm/SOTJsSkrod3ZqV3ii1rJu1p/6Ge6A14rviHq2X9pp7QNO4GPOM+cZDMVqLyzgW3yeae2mY9h43+uLNZz/kHXyD3zpktx538KRm1++hQWyveekN+O3+enHHOjFh0wtYUBWVOatu18cL8Z52nhx9xTCyf3ESsmUyEK1Vi1kyGY2MDnlRNyqpMrJkMDwcb8JhvqqyZNM80yGIaMckGPMXEJmspJsRkkRvwaMEYtptr0DTXZtNQs6VpdzAAACAASURBVIxMau5h01yDhCxiMmtLLTh/EjF53Em1Ucj1W9Y5I5V6wx53s579ho2Vi7ZdJKed+pey/z7jEZMx4rjq/ZXy1OMPy7kzZsZIHZ3Ef6FgemQyreiO9jw8BWISMZml/dieFzGJmCyyjSImi6GNmCyGcxml2CYmNYOgW4O4As3dnCdqzaS24+6o6p2KqgXnkYcf7NwnMouY1GsdtQ+r165rbBrqbsCjN97xC01dJ30wzbWMVp6izDRi0lvMzxbOdkSl3qznUvX3QN8H5C8mfVLOm/R5OWqfabt4lHT0kJHJ+EFFTMZnlTSljaMkjEwmjaJ96RGTiMkiWyVishjaiMliOJdRio1i0isEvUy8o4xxxGSYHe9urmmnubob5/g3DXV91KL1gUfnNdzX6zTdnWSZ5lpGS09RZtSayTgmH/3jz+XHL98uv17+y0byQ/f4mJw3+QuOsBw6YFgcM6QxSMD0yKRB1zBlgECaCxYDxWKiAAKsmSwAcolFsGayRPgFFE3fXADkkoowISa16yZ2cy0JQSWLZQMeA2E1ISZdN15f85rc8+pP5e5FP5GVH77jvN3Rt0MJSiUqJ39ejtw72bpEA9VrWxOIyWqHnguW6sYXMVnd2OqaISarHV/65urGFzFZzdgiJg3E1aSY9Lpz/5J7lLD8Sa9bixy258flMwd9Xs6a+BkZ1bW7Ae8xEUYAMVnttsEFS3Xji5isbmwRk9WOra4dfXN1Y4yYrGZsEZMZ45p1zaS3+LDdXJeseVXuWfRTR1gO+nCgHK/+Zqu/T477lJwx4Vw588BzpbNfV2BNWDMZP8CsmYzPKmlK1kwmJZYu/ZbubvnZnbPkwi99NZ2BFsvFmsnwgNl4zplqXmWNTLJm0lQEm9tJIybZzbWY2GQtxYSYNLmba9b6kL9GADGZsSUUISa9Lt7z/J2yfMES+ZfN32u83b/fADnjgHPkDCUqTxt/Zq8aISbjBxgxGZ9V0pQ2XtiyAU/SKNqXHjGJmCyyVSImi6GNmCyGcxmlICbLoJ5/mYjJjIyLFpPubq5/fvrJ8tCSe+XB1++V/3rr/zZqMWLgSPn0+HPkTDViOW3fEwQxGT/AiMn4rJKmREwmJZYuPSOT9V9J1cNeowbKilW1+/m242HjOWcqDoxMmiJppx3EpJ1xMeEVYtIERftsICYNxCSvNZNxXVv+wVJ56A/3OeJS32LEPfS9Kz+tRiz1NNjD9vyzuOZIVyfAmslqN4U0FyzVJlKd2rFmsjqxDKpJWWKy2lTtqR19sz2xMO2JCTGpfWI3V9ORyWYPMZmNn5O7bDHprcLC91+Sh15XwlKNWC5du6Tx0aTdD5Ez1IilXmM5YcQkA7WuvgnEZLVjzAVLdeOLmKxubHXNEJPVji99c3Xji5isZmwRkwbiapOY9Fbn+beflZ+rEcsH1Yile5sR/fmf7X1UY43l3kPGGCBQTROIyWrG1a0VFyzVjS9isrqxRUxWO7a6dvTN1Y0xYrKasUVMZoxrWWsmzzhnRizP3TWTi3oWOSOWWlxu2LK+kff4/U9WU2HPVZv3nCMb3/9Afjt/nsS17Rp5Yf6zztPDj0h2D8zHHr5PJkyaIuPGT4hVF3+iVe+vlKcef1jOnTEzVX5/JtZMGsEYaMTG9VtswJNfvIuyzAY84aRtPOdMtYuyRibZgMdUBJvbSSMm2c21mNhkLcWEmGQ316xRMJ8fMZmRaauIyb3H7O/UdPuO7c7ayoeWKmGpxKX3mDHmi3Lopinyl5+ZKUMGDI1NBjEZD1VaTvGsB6e647ab5HMXXCoDOjuzmMmc18YLW8Rk5rCWbgAxiZgsshEiJouhjZgshnMZpSAmk1E/dvrlToan596cLGPBqRGTGYG3mpj0Vnf9lnXO2kr9/+Qbj8s49efew/KEsZ+UE/Y/VU4ad6qM2+2AppTSiiRGJjM2vhjZEZPhkBCTMRqQ5UkQk4jJIpsoYrIY2ojJYjiXUQpiMj71uY88I//fnF/I6rXr5GuXni/TT5sWP3PBKRGTBoDbumYySdVWbHjLmQb76B9/LvPeeqpX1il7fFROHHuq8/+Jvf88idmWTsuayZYOX6TzaS5YIo2SwAoCrJm0Igy5OVHWNNfcKoThXgTom6vbIEyISU2nHXZzveiKG+Rjh0yQ3y2sbab5oxuvtLZhICYNhKYKYtKLYfWmVfLrN34pv16m/pf/UvQIpnuMHrSXGq08rS4uT5GujoEGCNppAjFpZ1xMecUFiymS9tlBTNoXE5MeISZN0rTPFn2zfTEx5ZGNYnJxd7e8trnbVBVj2zmoq1MmNlmCdMjxM2XOLdfKH5a/Ld+bdZfVU10Rk7HDHp6wamLSX9On1BRYLSp/vfzRXrcb6dunryMqtbg8Tm3kM3bYRwzQtMcEYtKeWOThCRcseVC1wyZi0o445OUFYjIvsnbYpW+2Iw55eGGjmHzwg3Vy1tJleVS3qc0zdxsmD4wfF5jGneJ6/+zrnc+1sLz+qkusneqKmMzYfFp5zaS/6iveeiNyN9dXVi2QXy17RJ5Y9qg8v6K2i6teZ6mPZbu9KUeNmSZH7n20HKkeo8QlayYzNr4Y2VkzGQ6JNZMxGpDlSVgzGR4gGze9MtWcyhKTrJk0FcHmdtKISXZzLSY2WUsxISZN7+aqRyb//q0VWauWOL8elfzumL0D87lTXC+/+Fznc/1aH7ZOdUVMJg5/7wztJia9tV/54bvyhBqxfPV3v5c31i2TR3p+0QuO3rinmbhETGZsfDGyIyYRkzGaScsmQUwiJotsvIjJYmgjJovhXEYpNorJMjhElalHIoOOhU/OjspayueIyYzY21lMuujc3Vw7xg2S599+Rp6r/6/dvKapuFz8zIvcZzJj+4vKjphETEa1kVb+HDGJmCyy/SImi6GNmCyGcxmlICajqesprkFrJG2e6oqYjI5rZIqqr5mMBBCS4KWVv2uISz0lds2m1buIyyP3OUaOUv9xpsWm9SNtPtZMpiXXGvnSXLC0Rs3wkjWT1W4DZU1zrTZVe2pH32xPLEx7YkJMap+qvJvr2TOvkVEjh+0ypdXmqa6ISQNnCmIyHsRWE5eIyXhxbdVUXLC0auSi/UZMRjNq5RSIyVaOXrTv9M3RjFo1BWKyVSPX3G/EpIG4IibTQXTFpR611FNj/SOXY4eNd9ZcljVyiZhMF9dWycUFS6tEKrmfiMnkzFopB2KylaKV3Ff65uTMWiUHYrJVIpXMT8RkMl67pGbNpIi7ZvLwI45JRNO/AU9DXL5dF5ebe0+L9YvLIVsGy1OPPyznzpiZqNywxP71MKbFZFpOWSrHmslweuzmmqVl2ZGXNZPhcWA3V/NtlDWT5pkGWUwjJtnNtZjYZC3FhJg0vZtr1jqRXwQxmbEVICbNiUl/KGri8tnGuss1PnH5scF/JsduPkb2nDZODt3jY3Lo6I9JR9/+qSOKmEyNLjKjjRe2iMnIsFmfADGJmCyykSImi6GNmCyGcxmlICbLoJ5/mYjJjIwRk/mJyShx2bl5gExXf7PUn3u4onKqEpdTlbjUr/vo3ivGgZiMASllEsRkSnAJs21R98v62Z2z5MIvfTVhztZMjphETBbZchGTxdBGTBbDuYxSEJNlUM+/zMLF5LHTL5fVa9cH1szW+6dEhYE1k1GE8vlcj1y+8O580Y8vvfeCLHr/5V0K6ujbIVpY6lFLR2juebgcPGpqLIdMT3ONVSiJCiOQ5oKlMOcoKBMB1kxmwmd9ZtZMWh+iTA7SN2fCZ3VmE2JSV7DKu7laHcAQ5woVk2Hb3bYiOK/PiEk7Irip58OasFT/C96rPS5Z8+ouznV1DHTE5dQ9DnME5tTRh8tBIyfvkg4xaUdc8/KCC5a8yJZvFzFZfgzy9AAxmSfd8m3TN5cfg7w8QEzmRbZcu4WKSZtvuJklDIjJLPTyzbt+y7qGsHSF5h8/eH2XQof0H+pMi52yx0cdYXnQyIPl0L0OkT2GjpA167fk6yTWSyHABUsp2AspFDFZCObSCkFMloa+kILpmwvBXEohiMlSsOdeKGLSg/jmH94rs378gFx/1SUy/bRpjU/0iOrry95yXh84bozcP/v6xmesmSxuzaT/bFj1/spUu7nqW5DoabEvqdHLBc4U2d/Jm+uWyyT1d5j6m6P+3GPsbuPkwOGT5KBRB8vEkZPU/8Hq+WTp6jcw8cnJbq77ysTJ8aYYJ4abIgMb8KSAZlkW1kyGB8TGdcqmmk9ZYpI1k6Yi2NxOGjHJbq7FxCZrKSbEJLu5Zo2C+fyFikktyk4+9uNy+cXnmq9JRotaSN794BPOek6vmLzoihtk1ep1DQHpn6qLmGw9MRnUVFZ++K48v+ApefsPy2ThHq/Ja6tekcVrFsmWbcGjkh8ZfqBMHOGKzMlKZKrRzBGTpaNf+G6yiEnEZMZuKjI7G/DUEDEyKYKYjDxdEidATCZGlioDYjIVtpbIhJhsiTAldrJQMTn3kWfke7Pukqfn3pzY0TwzuEJS++Wfiqs3DPrapec3Rir9dUBMVkNM6vYVtJvr8g1L5DdvLpDFq1+R11YvcgTm4lWLZPuO7YFNcoISmBPVyOVEJSz1dNmJakTTXY+JmERM5tmPaduIScSk28YQk+bPNsSkeaZBFhGTxXAuoxTEZDzqQZuV2rxJaaFiUgu1ZkcZoLxCUvvmFZMLFi2VGZd9U+bccq1MnTzecT3oPdZMxjs5Wi1V2AY8O2SHGrnUolKNXq591XnUQvP1Na8FVrFf336iRaZeh3ngiImy/24fkbFD1f/w8TJ60J6thqUy/qa5YKlM5SteEUYmqx3gsqa5VpuqPbWjb7YnFqY9MSEmtU9V381Vi8nPnnlCYyanf5ak6bhktVeomMzqrOn8fiGZVkya9gt7rUlAT4l95b1XZOF7C2XhyoXyyvvquXp8ffWuG/64NRzaOVTGK1E5fkTt/4CRBzSe6/e1EOWAAAQgAAEIQAACEGgPAn4xGaRXbCLR1mJSK/3nX1gUGI9Lv3iWHH/0YYxM2tRaC/bF1K1B9C1L9EjmEjVFdunaP8gbH/xRlq1bKm+s+6Os3rSqaa3GDvtIbSRTPY6tP+rX43YbL0MHDCuYSLWK49fvasXTWxtGJqsbW10zRiarHV/65urG18aRycWrFstr7wfPLMszEgftfpBaCjUxsAi/mNT7tRw8cax8++ov5+lSatuFi0m95vCa79zey2H/7qmpa2MgI2sm58kZ58xIRDLtWsDHHr5PJkyaIuPGT0hUnps47W6uYYUFrZns6uxn7NYgQZw+2LxWlq//Y01gfqAEpnpcvm6Z+l/q7DDb7Nh94B4NoekITI/w3HvIGCfrHbfdJJ+74FIZ0NmZirGpTDau32I3V1PRLc8Ou7mGs7fxnDPVUsoSk6yZNBXB5nbSiEl2cy0mNllLMSEmTe/m+uBrD8pZc87KWrXE+c+ceKY88LkHQsWk3hDUe5x1ytGISQ3EvfVG0BpEPRJowy6vfjHJbq7R5wdiMpqRTpGUU8/2Hmf0ctlaJTaV4Fyuni9fu7T2qESnHvEMO7o6BqrRzHFy3trPyJ8OWil77raX7Dl4b/W/j+w1SD/uLSMGjoznuIFUNl7YIiYNBLZkE4hJxGSRTRAxWQxtxGQxnMsoxUYxqUcm//7Rvy8chx6V/O4p3w0Vk941kzqR1ie2aCW/04WOTPqHbV1nbJoL7BeT2kfuM9n8HEsqklxrjExm67ve3bjCEZWO4FT/3tHN9zatdIxfpf7+Vf1tVn/+Q98rU4vKvYfsUxOaQ/aWvfSjEpt7qfec5+p/YMegbI6q3IjJzAhjGWA31xomprnaec7FasQxEjEyGQNSCydBTLZw8CJct1FM2kg7SC/ZPNW1UDEZJNR0EN2pr2Xs5mqiEbGbqwmK9tkwtWayjJpt2LreEZr6X4tO/f+O8/92/fnbsq77g1iuDe8aUReWNdG5lx7drAvNhuhUArSP/pZooSPNBUsLVa+tXUVMVjv8ZYnJalO1p3b0zfbEwrQnJsSk9qnddnN17yTByKQKfiuMTKY5cRCTaajZn6eVxWQcuhu3bmgIzRUblMj8cKfodMSneu+dDStky/buOOZqo5n1KbS9RjwHqffVZ7sP2kNGdI60ZodaLlhihbUlEyEmWzJssZ1GTMZG1ZIJ6ZtbMmyxnEZMxsLk6CX/mklbhaSuUaEjk62wZjJemHunQkymoWZ/nqqLybgRWLXpfUdoamH5rhrZdERmfbSz9v7bsvLDd+Oak2GduylROcpZszlS/Q8fMNJ5roXmiIHq/S71XueI2nPnvZEypP/Q2PbjJuSCJS6p1kuHmGy9mCXxGDGZhFbrpaVvbr2YxfUYMRmXVGulK1RMajS27+aaNHzf+MY35Ip/uFrWb+oJzbp40QJZ8faf5LiTTm9q/t45s+W4kz8lo3YfHZpuxVtvyG/nx99xNWyDiqACktp2bbBmMl6rScspnvXgVEXt5rptxzZHVLrTaWuPO0XnR1buJ0u3/0Hm9cyT7Tu2J65S/34DHJE50hGaSmCqx5oArYnS4QPq4tMrStV7Hf36h5bFBjyJw2BdBjbgCQ+JjeuUTTWgssQkG/CYimBzO2nEJLu5FhObrKWYEJOmd3PNWifyFzwyWUXgiMnku5S67YANePI/I4oSk1E18V7Yrt28RtZ2r5Y1m2v/qzevEv1e7fUq53Ftt3qt7sHpptFTctMcQzuH1UY3tfh0/uviU703ZvgeMqRjhPOvP/tg6XuyY/N2OfrYk0SL11Y82ICnFjVGJtmAJ4/zFzGZB9VdbSImi+FcRimIyTKo519m4SOT+Vep2BIQk4jJuC2uyiOTUQyyjpJ0b9vsE5xKbGpB6hGcDYG6aaco1SOmcY+j5CgZrv4eUX8D+nbKkM4hMri//h8sgwcMlcEdnuf6Pf1ZR/0z/XzAYBmi0g3Sn6m0QwbU8uvX+v0+jsTJ90BMIibdFpb1nMu3pWazzshkNn6250ZM2h6h9P4hJtOzszlnIWLSvTfKrB8H35zTBcRurjY3lfbzjTWTrR9zvWOtO9q5Ro9+dqvRTi02lRDd1LNWrfV8X1Z9WBel6r11Wz6QjVs2iL7Hp+nDFaaD6gJVrwPVAlS/1mLTEa3OZz4R6wpaR7Du/MzELVtM19EWe4xM2hKJfPwoS0zmUxus+gmkEZNQbA0CJsSkrmnVd3NtjWju9LIQMdlqUJL6ywY8SYm1RnrEZGvEKa2XzS5Y9EjoBiUq9fTaD7duVM/XO883qucb9fMe9eh9rd9Xr3U6nb72vJ5fpdXvmz769ennEZe1kdBB9dHTAR2d0tWvSwb061T/A5zHTjXa2qned54779cf1Xv6M51nQN8BKk1X4/NdXitbOm2ztaim65nGHmIyDbXWyYOYbJ1YpfEUMZmGWmvkQUy2RpySelmomAy7z6Te5fXuB5+Qp+fenNR/K9IjJq0Ig3EnEJPGkVplsOgLlkAxqgVnXXRucIRrTbDWxOtG+bBnpyh18rtp1aMWvGUd/fr2c6YCa6HaEJ+OIK2JTf2eI2QdcapF605h2xCyOk39c23LSVPPXxO2ShDXxW/Nlnrdv/bYEL7q/X59Ona53QxisqyWUUy5iMliOJdVStF9c1n1bMdyEZPVjLoVYtLd4bUVp7myZpI1k3G7BtZM7isTJ0+Niyv3dK2+m6ueirtzFLQ2Wrr+ww9k8S9/J3ue9BElNrtli/O/Rbp7Nku3ul+ofq7fc17rz7ar1z3qtfpMv9f4vJ7XtVFLq9JsrT3mMQ04TcBnykx5Uv0tU399+/St//cT9UyNnvZTq1TVs776VV8lOtX7Oo0Sws7r+mOv1+pKp69Op//ctOrRyevYqtmo2aqnbbz2fC6esvTnOt8Olb6e37XRx5NX23ReO371ccpovNbvq79er93P3Xr7/Fv/8vvSOXKQDNlvxM661v0Orruuc93vul+aXz/Nr+5Xnx11/9zXHq7apl4X7Njulb9fmtA2zVOWmGQDHuOhDDSYRkyym2sxsclaigkxyW6uWaNgPr8VYvLr37pVnpm/oCVHJhGTiMm4pyViEjEZt62kTVfUBjx6Y6OaKK0J1obYdF9r4aqfK7G6easSqY6QrYnZzVq0ej7XNvQoa+09JXzraWuCtyZ+3TKc8jy2PrP1M/KUEpNLdyxNi6yy+abLdEdkv6j+yj4awlyJUVeY7hT/yYV+/w49Gt1Xdmh77p8hoe8K7SCh3/VBfxnwfj/ZNKGn14ZaffQVsjrcTbbc1zXu9c98aZxPmuTz2+qjfoxwj532d31vFx92eMpJ4oPKpxys1cB9rPtQfymS0HbdWDArj62hA/urvmW79PRoJ1yKIYzr+d59apnsfsQY6afyun4nbvc7i2vUObENX4bebSGBtRx88cYygSdOnL1H6jrVm9TwwQNkzYYt6RgrX5b9/GW57rrrElWBxPkSyF1MBt1XMqhK1191iUw/bVq+tc3BOmISMRm3WSEmEZNx20radEWJybT+mc7nvc+kvn9p7X+buvbZLrsPHyBvr9oo27er99SfFsDO59vVo35df+z1eofKqdPpPzetenTy6j+dx33tpm289n3uTa/z9dmhxE+93Hoe53XdL/3Y+FzVoNdrnU79Bed3612ru+vf2HfHyAdd62TlkPdrddX1UTa2K78br+v16vW6ztEp3+FUs6/T7Ojj8V+/9nB1Ptd+exjV8sffUdl0+zBtb5JMksPU3xz1x2EXgb+Vv5XZ6m+t+uOoNoF/kn9CTFoW4tzFpLe+YWsmLWOS2B3WTCZG1hIZWDPZEmFK7WSaqVSpCyNjoQRYM1ko7sjCvEK/IeQdsZ5O6Hf026HuBdtH1m7cXBP5SYS+I6g9wr8u9Bs/FNR/ZGgm9N0Ka/Gsjx1KoDuPniEc9z13WGfn653pmuXz23bsqx8kvOV5h4z8tjKXp08it17uY738mg81Crv4qfI1fAng0rDpY+e11b+jj2zbtkNNp9/eaFuNcvz5POX1aoiug5GtMyBBfcDXyzCNmUY7sciX3u0nYa08d7fKwqZrQD/ZvKX2I1MaO1cccY2cNvnohM6TPE8ChYrJPCtSpm3EZJn08ysbMZkfWxssIyZtiEI+PiAm8+Fqi9Wy1kzaUv+q+0HfXN0Im1gzqelwaxC72ghi0kA8EJMGIFpoAjFpYVAMusQFi0GYlplCTFoWEMPuICYNA7XMHH2zZQEx6A5i0iBMi0wVKiYXLFoqMy77Zmj12c11thx38qdk1O6jQxmteOsN+e38eXLGOTNiNSPvmqKoDEltu/bSrgV87OH7ZMKkKTJu/IQo1wI/X/X+Snnq8Yfl3BkzU+X3Z/Lv1GdaTKbllKVyd9x2k3zugktlQGdnFjOZ8z71q1/I3vuwZjIzyAgD7bxm0osGMSli4zlnqv2XJSbZzdVUBJvbSSMm2c21mNhkLcWEmGQ316xRMJ+/UDF57PTLZdoRU+XIww+W7826q7F769kzr5GTj/24XH7xueZrmLNFNuBhA564TQwxiZiM21bSpkNM1sghJhGTac+hZvkQk3lQ3dUmYrIYzmWUgpgsg3r+ZRYqJt0NeA4Yu4/81df/pSEm9Y6vXnGZf7XNlYCYREzGbU2IScRk3LaSNh1iEjHpth1GJtOeReH5EJPmmQZZREwWw7mMUhCTZVDPv8xSxKS+BYgWlu60Vvf2Ia04zVWHiDWT+TfUMkowPc21jDpQZjiBNBcs8GwNAoxMtkac0npZ1jTXtP6SLxkB+uZkvFoptQkxqevLBjx2Rb1QMamnsx48cax8++ovi/f51791qzwzf0FjpNIuRNHeICajGbViCsRkK0Ytvs9csMRn1WopEZOtFrFk/iImk/FqtdT0za0Wsfj+Iibjs2qllIWKST8YPTrpHnNuuVamTh7fSuwaviImWzJskU4jJiMRtXQCLlhaOnxNnUdMVje2umaIyWrHl765uvFFTFYztqWKySogZc0kaybjtmPWTLJmMm5bSZuONZM1cohJNuBJew41y8eayTyo7mozjZhkN9diYpO1FBNikt1cs0bBfP5CxaS7AY9eM1mVAzGJmIzblhGTiMm4bSVtOsQkYtJtO2zAk/YsCs+HmDTPNMgiYrIYzmWUgpgsg3r+ZSImMzJGTCIm4zYhxCRiMm5bSZsOMYmYREymPXui8yEmoxmZSIGYNEHRThuISTvjktWrQsVkK99Pshlo1kxmbYZ25mfNpJ1xMeVVmgsWU2VjJ18CTHPNl2/Z1lkzWXYE8i2fvjlfvmVaNyEmtf/s5lpmFHctu1AxuWDR0l73l7QLRXpvEJPp2dmcEzFpc3Sy+8YFS3aGtlpATNoaGTN+ISbNcLTVCn2zrZHJ7hdiMjtDGy0UKia9u7cGweA+kzY2kfb1CTFZ7dhzwVLd+CImqxtbXTPEZLXjS99c3fgiJqsZ20LFZBURsmaSNZNx2zVrJlkzGbetpE3HmskaOcQku7mmPYea5WPNZB5Ud7WZRkyym2sxsclaigkxyW6uWaNgPn+hYjJsN9ebf3iv3P3gE/L03JvN1zBni4hJxGTcJoaYREzGbStp0yEmEZNu22E317RnUXg+xKR5pkEWEZPFcC6jFMRkGdTzL9MKMTn3kWfkmu/cLq04zRUxiZiMe5oiJhGTcdtK2nSIScQkYjLt2ROdDzEZzchECsSkCYp22kBM2hmXrF5ZISa//q1b5Zn5C1pyZFIHgA14sjZDO/OzZtLOuJjyKs0Fi6mysZMvAaa55su3bOusmSw7AvmWT9+cL98yrZsQk9p/dnMtM4q7lp27mHRHHaOqff1Vl8j006ZFJTP+uRayDzw6r2H3wHFj5P7Z1/cqR9/S5PVlbznvBX2OmDQeFisMIiatCENuTnDBkhva0g0jJksPQa4OICZzxVu6cfrm0kOQmwOIydzQlmo4dzHprV3YmskyVxjfIgAAIABJREFUCWih6BWP+vWokcPkRzde6bh10RU3yKrV6xpp/J/rNIjJMiOYX9mIyfzY2mCZCxYbopCPD4jJfLjaYhUxaUsk8vGDvjkfrjZYRUzaEAXzPhQqJs27b96iHql8ZfHyhng8dvrl8rVLz2+MmuqR1u/NuqsxJZc1k6yZjNsKWTPJmsm4bSVtOtZM1sghJtnNNe051CwfaybzoLqrzTRikt1ci4lN1lJMiEl2c80aBfP5EZM+plo8Thi/rzMyuWDRUplx2Tdlzi3XytTJ452U/vcQk4jJuKclYhIxGbetpE2HmERMum2H3VzTnkXh+RCT5pkGWURMFsO5jFIQk2VQz7/MwsWkFmur164PrFmZu7m6fnnXRMYVk1dd/Y+yZev20GgtfPkl+dObb8ipp5/RNKI/ueOHcopKM3r0nqHp3nxzuTz37DNy3ozPx2od98z5qRx1zDTZb7+xkemT2nYN/te8p52nf370sZFleBM8MPc/5eBDDpUDJ0xMlM9NvHLlu/LoLx6SL1x4car8/kyvL1ksryx8Sc6a/hnno45+faWjo49s7t5mxH5aTlkK//6/3SiXfOWvpLOzK4uZzHl/qeK07377yyFTDs1sy5QBPVVua88O6dlWO3df+M18Wbd+nRx/wsmmiijcTnf3Zrn9B/8uf/03VxRedhkFNuvfhgzqLxs+3FqGW1aUaeM5ZwpMR4fqm/uqvnmLmb45rl/+74i4+UiXjIC/b46T+/Zbvy+fPf8LMmy33eIkJ01ZBNS0kSFdqm/elL5vvvGfvyXXXXddWTWg3AAChYrJoPWGtkXFu0YyjpjU/ndv3dZUTNpWR/yJR8C0mIxXKqmKIpDmgqUo3ygnO4F2F5PZCdproSwxaS+RanlG31ytePaqjQExqe0NVT8WcthDoFAxaeMGPP5Q+O95GbVmUudnAx57GrRJT9iAxyRN+2ylmUplXy3wKIgAayar3S7YgKfa8aVvrm58TUxz1XS4NYhdbaTtxaQWi0/PvbkRFT16qg93h1d2c7WrwRbpDWKySNrFl8UFS/HMiyoRMVkU6XLKQUyWw72oUumbiyJdfDmIyeKZF1FioWJSC7WTj/24XH7xuUXULVYZ3ntI6gxJ7zPJBjxswBOroalEbMDDBjxx20radGzAUyOHmGQ317TnULN8bMCTB9VdbaYRk+zmWkxsspZiQkyym2vWKJjPX6iY9N9Ww3x1ireImEwvkh57+D6ZMGmKjBs/IVXgVr2/Up56/GE5d8bMVPn9mfwXCqZHJhGTiEkjDbWJEcQkYtJtHuzmav5sQ0yaZxpkETFZDOcySkFMlkE9/zILFZN6zWSzo8zdXNOiRkwiJuO2HcQkYjJuW0mbDjGJmERMpj17ovMhJqMZmUiBmDRB0U4biEk745LVq0LFZFZnbc3PBjy2RiabX6ZHJrN5Q27TBNJcsJj2AXv5EGCaaz5cbbHKmklbIpGPH/TN+XC1waoJManrwQY8NkRzpw+ISQPxQEwagGihCcSkhUEx6BIXLAZhWmYKMWlZQAy7g5g0DNQyc/TNlgXEoDuISYMwLTJVuJj0bnhz/VWXyPTTpome/nrk4ZPlRzdeaRGa+K4gJuOzaqWUiMlWilZyX7lgSc6sVXIgJlslUun8REym49YqueibWyVSyf1ETCZn1go5ChWTWkiOGjnMEY3e+zfe/MN75e4Hn+h1i45WgKd9ZM0kaybjtlXWTLJmMm5bSZuONZM1cohJdnNNew41y8eayTyo7mozjZhkN9diYpO1FBNikt1cs0bBfP5CxaQegZxzy7UydfL4XmJS7/J6zXduFzbgmS3HnfwpGbX76NBIr3jrDfnt/HlyxjkzYrWGh+6bIx8/4mjZe8z+kemT2nYNphVJ7OYaGZLMCe647Sb53AWXyoDOzsy2shiwcWdJ/wXLghd/Ixs3rJOjpp2Ypaql5kVMIibdBmjjOWfq5ChrZBIxaSqCze0gJovhXEYpiMkyqOdfZqFiUo9G/vu3/24XMcnIZC3Q985BTCZp8twaJJoWYjKcEWIyuv3YniLsxzJGJhmZzKPtIibzoLqrTcRkMZzLKAUxWQb1/MssVEx+/Vu3yjPzFzjTWd1prgeM3UdmXPZNOeuUo+XbV385/xrnUAJrJnOAaoFJ1kxaEIQcXUhzwZKjO5g2SAAxaRCmhabKGpm0EEUlXaJvrmRYnUqZEJPaDru52tVGChWTuurulFYvhku/eJZcfvG5dpFJ4A1iMgGsFkqKmGyhYKVwlQuWFNBaJAtiskUCldJNxGRKcC2Sjb65RQKVwk3EZApoLZClcDHZAkwSu4iYTIysJTIgJlsiTKmd5IIlNTrrMyImrQ9RJgcRk5nwWZ+Zvtn6EKV2EDGZGp3VGQsVkxddcYM8/8KiXTbaaeVbg7CbK7u5xj3D025UFNd+UDrWTIbTY81klpZlR17WTIbHgQ14zLdR1kyaZxpkMY2YZDfXYmKTtRQTYpLdXLNGwXz+QsWkXif52TNP2GVKKxvw1ALLBjzJGjgb8ETzQkwiJqNbSeumQEwiJotsvYjJYmgjJovhXEYpiMkyqOdfZqFiUo9AXn/VJTL9tGm9asatQRCTaZo6YjKaGmISMRndSlo3BWISMVlk60VMFkMbMVkM5zJKQUyWQT3/MgsVk1UcmdQhYs1k/g21jBJYM1kG9eLKTHPBUpx3lJSFAGsms9CzPy9rJu2PURYP6Zuz0LM7rwkxqWvIbq52xblQMamns8768QMy55ZrnXtN6mPBoqXOrUFaeUdXxKRdjdqUN4hJUyTttMMFi51xMeEVYtIERXttICbtjY0Jz+ibTVC00wZi0s64ZPWqUDGpnQ26NUjQ1NesFSsyP2KySNrFlYWYLI51GSVxwVIG9WLKREwWw7msUhCTZZEvplz65mI4l1EKYrIM6vmXWbiYzL9KxZbAbq7s5hq3xbGb674ycfLUuLhyT8durrkjzr0A1kyGI2Y3V/PNjzWT5pkGWUwjJtnNtZjYZC3FhJhkN9esUTCfHzGZkSliEjEZtwkhJhGTcdtK2nRburvlZ3fOkgu/9NW0JloqH2ISMVlkg0VMFkMbMVkM5zJKQUyWQT3/MgsXk3oTntVr1wfWbOGTs/OvseESEJOIybhNCjGJmIzbVtKmQ0zWyDHNVcSmkcntKia1/x3O47YdtcftO2rvb6u/v73+vvO5CmKv1yqqbv6Ojj7Sv6OfrP1wS81OYNq67UZZ9bIDy1K2vWUrm8q1hl/aH/26zxvLpOMPr8uHx5/sNDL1tnPUP60/1lpg7b26IU/awHzakG60Ol/9ud+2Y6qP40UjTc2pGPnqCf22e/tSd9cp3zFaq6B63shXe7de91qaRt13qUM9Xx2Bm9V9rNncmcb7vH//vrJt2w7p0Q2kfuxouBSc79AH75PXTvykdA8eUvPfBegvOMFrx8fGoWzWfUhgoo7Ra8ebO77N3r7E8MCNYUDSxLYCGKS3IdI1oJ9s3rLNw6YONibfY+76iVx33XUxIJCkKAKFismzZ14jo0YOkx/deGVR9SukHNZMFoK58EJYM1k48kILTPPrd6EOUlgiAl7Boi/ddh/RJW+v3pRasNTEjkf8hIqbPh5x1FywOALFYzNIsNSEVM1mr/T1y/Zd87tCLUKc6fo4Qsrnr6rXTnFXF3naz0Z5O0WZvqBv7r+2vVMguv4nCiSJIQABCDQh8LXdRsp3x+8LI4sIFComw+4zaRGPVK4gJlNhsz4TYtL6EGVyEDGZHp/+TXmLEjvd27fLFiU6utXzxqMaTehW7+nPt6h0m+tptqj3dZrG6/rn3Tr9jpqdLUp9uHm17W71Wo89OWXV/x27rm2Vzx3pSl8bcuZNoK8qoK8SyH1VPPXzfvq58179tRK4jTTu5zptPV0t/Q71X0vXv19fZUMNPqngO/l2Sbu9kXZnWbW8/QLLUrZ7lVUbhHLTahvO67ofmlftHVWwM1BWe157rz6w5wxG1Uf5PIN9jXweG05+Txrvcze981i32bBRz+eU7bMRr5x6PseX2uHNV3vXY7uRpl43b776aGCNhc62q+169jqj2uih6/fOcnbI0IH9pbtnu/Sof/dwBmUdtp58vnLceDRGVr0FJnzeqEe9jITZd/odOkJYaztxjl6+NM1QN9jEbnxb3oI8BhvtPY7nu6bROIYPHiBrNmzZGaaYHFxrnxw4mFuDpMOfWy7EpAG0iEkDEC00gZi0MCgGXWp1MdmjLsQ+VP8b1RX1hu3b1GPt9QYt3rQQ8wg6R5jVxVpNmGmhVhN7jdeO6Ku/rufVQq+XWKy/1mXbdjiiwvmviYYOpVT0BWhawRJP3PjFUTzB4gqqUMGi+PYWMDVhs1PQ1IRNLb9b74i6NtjUbHsFnl9wuaKrVt7OOmqebtqd5dfr7Pijbe8UiK6/ptsKu7maJmqXvVbvm+2iaZc3JtZM6hpxn0nL4qrmPRd2VaCnuZ587Mfl8ovPtYtCBm9YM8maybjNhzWT7b1mUou+jUqwOY+O6NumxJ847+0Ug/p5PY0SbrX0OwWjIx6d9DVx6D+6tm6Vv338l/Kd08+I2yxTpdNCYoCSDgOUWujs01f96+f11+p9/Z7zWlnv7Ks/97yu5+1Uo0vO5+5rJ03NXi1vH+lSSrBWTu2xU6kcr60n779bPvaJY2TffffvVQ8tYvYaNVBWrNqUqn5VyGTTmknTPMsSk2zAYzqSwfbSiEl2cy0mNllLMSEm2c01axTM5y90ZFLfY/J7s+6Sp+febL4mJVlETCIm4zY9xGTriMnNdcGnhVtttE+P/Glhp8Wfeq6FnjMiqD/fKQ57p1dp1Wdu/rjtJG46PSI1WAm1wUp86f8h6vmwbT3yFw/dL7/7y/OlyyPgtBjTos0VfZ1qXMp5T4s1/dgQbK74cwWcRyzqPFrMqbQdoVO34npvJh27uYZzREyaaWNeK4hJ80yDLCImi+FcRimIyTKo519moWJSr5lsdrCb62w57uRPyajdR4diWvHWG/Lb+fPkjHNmxGodYRdbQZmT2nZtpBVJjz18n0yYNEXGjZ8Qqy7+RKveXylPPf6wnDujebuKa9x/oWB6mmtaTnH9D0p3x203yecuuFQGdHZmMZM5b1kXtuuU2FujxN+abdtktXq+dkft+Rr1fJNaaLWyp0dW9ej3emSfxa9K58aN8vNDpkhP5hrvamBw335K9IkMcsRfHyX+1Gsl5vRr57l6zxGGDYGoxaJ+X79XSz9IPdbEYx8ZqB79B7u51ogwMmnXbq6mTydGJk0TtcseYtKueJj0BjFpkqY9tgoVk/ZU26wnrJk0y9MWa6bFpC31akU/9Bq/tWo00BGG23tk9baaSFyrxaIWh3WRuFalW6M/U+JQf17bfDz5oadUDlHTMF3hVhN1Wsipf/e5En16NLAmDj2Cr55Of6bfH1QXjjF3PU/uLDl2IYCYrHajKEtMVpuqPbVLIybt8R5PmhEwISa1fdZM2tXOEJMG4oGYNADRQhOIyXyCslaLvR09NSGo/ldr4acE4Vo1ndQRgY4g1EKxNoKon+vpommOoUrQjVDib4R+7Kcfa//D1f+YQf1lyA4lCNVN6mrv9ZXd+tRGD/ur5xytSwAx2bqxi+M5YjIOpdZNg5hs3dhFeY6YjCLUmp8XLib1uslrvnN7L1rXX3WJTD9tWmsSVF4jJls2dE0dR0zGj6seAXynZ6u8q4TfO0oQvquEoH79jnr9rn6tHlfVRwvTyML+6htIC76RarRwuBJ8jihUz0f07XAeh6sRwNp77mfqUb3XbG0fFyzx49tqKRGTrRaxZP4iJpPxarXU9M2tFrH4/iIm47NqpZSFismbf3ivzPrxAzLnlmtl6uTxDqcFi5bKjMu+KZd+8ayW3OWVDXjYgCfuCd+qayZXKWGoBeE7am3hu9uUQFTrDN9RU021QKy93yMrVZpmx/QXX5BlI0fJi/uPlWHuaKESfiP1iKAWgo4I1I9KHKrH2nu15/qzIQHrA+NyD0vnv2BZ8OJvZOOGdXLUtBOzmi4tP2sma+gRk6yZzOMkZAOePKjuajONmGQ312Jik7UUE2KS3VyzRsF8/kLF5LHTL5fPnnnCLqJRi8y7H3yiJXd5RUwiJuOelraJST111B01XFEfVXTEYUM81oSivs9gnGMvJf70/55K/O3V0V/2UkJRP9+zX39Z98yvZcyY/eWwyVOd+9TZcCAmbYhCNh/YzTWcX1mbXmWLaLzcZY1MIibjxSdrKsRkVoL25kdM2hubLJ4VKib1bq5BU1rdqa/s5spurkkaM7u5htPaoITicnXPwedmz5K+f/k5eVeJOj391JmCWn/UO53GOfRaQkcodmih2L8mFtX00tprLSCVYFTCsU8TkWjjhS1iMk707U6DmERMFtlCEZPF0EZMFsO5jFIQk2VQz7/MQsWkjSOTF11xgzz/wqIG6QPHjZH7Z1/fi/zZM6+R15e95bwX9DlrJvNvqGWUYPuaSS0Kl6sRxdp/j7yhHpf1bHEe31NTUKOOLjUZ0BlBdEYPlTDs6Cd791ViUT02RKJ6P+gWFFG2W+HzNBcsrVAvfGSaa9XbQFkjk1Xnakv96JttiYR5P0yISe0Vu7maj00Wi4WKSRvXTGqB+/TcmxsM9etpR0yVb1/9Zec9LTZXrV7XEJhaWI4aOUx+dOOVjTyIySxN0N68ZYvJHrW7aUMoqrWKy7bWhOJy9VyPOm5Sn4cd+ob1Y9XI4f5KDO6tBOPeehRRjSbWRGJtVFGPOLbzwQVLdaPPmsnqxlbXDDFZ7fjSN1c3vojJasa2UDGpEdq+m+vXv3WrvLJ4eUM8anH5tUvPb+w2q/3/3qy7eglQxGQ1T44ixOQHaqqpIxiVUNQi8Q0lEpc7I45b5E012tjs2F2NKO6vhOJYNfV0//79ZZx67rzW4lEJRo7mBLhgqW4LQUxWN7aIyWrHVteOvrm6MUZMVjO2hYtJ2zHqkceDJ451RibdnWaDdp9132MDHjbgiWrTm9T6xdeUWFzw3/Oc+ya+NnlKbTqqEo2rI6ajukJRC0T3XwvGcR0DZGjf6I1s7rjtJvncBZfKgM7OKDdz/Zw1k7nibRhnN9caCsQku7nmccaxZjIPqrvaTCMm2c21mNhkLcWEmGQ316xRMJ8fMelhqkclH3h0nrgbAcUVk9ddd13TyLz44ouyfPlyOfvss5um+8EPfuCk2WuvvULTLVu2TJ566im58MILY7WGO+64Q4477jgZN25cZPqktl2D2h996HKSHHfddZd89KMflUmTJiXJ1kj7zjvvyP333y9f+cpXUuX3Z3r11Vfl97//vZx//vmp7G1R005f2dwtCzdvloWbNssr3eq5enxdPerj+NdedR6fPGhnfYeq0cXxAwbI+E71P6C/HKBEX+157T/rzqc33HCDfPWrX5Wurq5UdTKVScdp7Nixcthhh5kyadzOc889Jx988IGceuqpxm0XZXCzans33XSTXHnlzmn4RZVdRjlJ+rcy/CuzzFY458rkk6bsrN8RacokTzwCut/T10XDhw+Pl4FULUtAD+JEXXe3bOVa1PFCxKS7VjLoXpLNPiuSabP1nIxMNo9E2ltePPbwfTJh0hQZN35CqlCXtZurXqn42pYtsnhrtyxWU1MXb+l2Rh5fV/9BhxaEE9RoohaTI/VmN4cf4UxNHavE4mi1C2qeByOT4XTZzTXPlleMbXZzDeds42wAU62irDWTjEyaimBzO4xMFsO5jFIYmSyDev5lFiImgzat8VbNv8lN/tXuXYJ/RNL7KWsmi46GPeXpNZPLZav8Zu2HjnDUgnGxmp66WAnJsJtqTOg/QCbW/w9SU1EnDuiUg9RrDvsIpLlgsa8WeBREgGmu1W4XZYnJalO1p3b0zfbEwrQnJsSk9ondXE1HJpu9QsRk2P0lXdfLvM+kFrr68N8OxPWN3VyzNbBWyf3e9m2yQI0wLuzeLEvUhjivqedaOOqpq0HHR7RQVJveHNS/UwlG9Vy91qKxo8m9FluFRbv4yQVLdSONmKxubHXNEJPVji99c3Xji5isZmzbWky6ayKDQnv9VZc0dnDlPpPVavxr1KY3L23ZrP67ZYEacdT/ehfVoGOsEogHqimpB6kRxolqqqo70tiFaGz5RsEFS8uHMLQCiMnqxhYxWe3Y6trRN1c3xojJasa2EDHpnyrqRxl0u41Wwc1urnbv5rpe7aS6oC4cX1Ib4WgB+Uc14ug/hqj7Mp703nsy+c3lsvtJpzni8dBBXbLHwAGyZn3wWsikbTTt2tKk5XjTs2YynB5rJrO0LDvysmYyPA6smTTfRlkzaZ5pkMU0YpLdXIuJTdZSTIhJdnPNGgXz+QsRk/57N/qrEbWm0ny1zVlETNojJvUtOLRYfElNVdVTVl9SI45LAjbF6VLC8VC1a+pUNUX1UCUapw7ocqao+i8UTN9nEjG5r0ycPNXcyZfREmIyI0ALsiMmEZNFNkPEZDG0EZPFcC6jFMRkGdTzL7MQMamroUcn9fH03Jt71Uq/v3rt+sbtOPKvstkSEJPlicnnVrwpLz/xqLxy2plKRG6SRWpjHP/Rod7QYlGLRue/c6AcHLIhDmLS7LnhtWbjKAliMr94F2UZMYmYLKqt6XIQk8XQRkwWw7mMUhCTZVDPv8zCxKSuirtrqrdaRx4+WX50Y2vfE239h1tl/aae/KPV5iXodY7Pq1HH57s3yXObP5Q123fdU7UmGruUgNQjjrXnev1UmsP0yGQaH8iTH4E0Fyz5eYNlkwRYM2mSpn222IDHvpiY9Ii+2SRNu2yZEJO6Ruzmallcd6jDLpdazxvEZD4x6yUeu5V43NZbPOp7NfZVV42XDB3RGHk0uZsqYjKfuNpilQsWWyJh3g/EpHmmNllETNoUDfO+0DebZ2qLRcSkLZEw60ehI5NmXbfHGmLSTCziiMejugbKUZ1dcmTXIBmrdlfN80BM5km3fNtcsJQfg7w8QEzmRdYOu4hJO+KQlxf0zXmRLd8uYrL8GOThAWIyI1XWTKZfM/mfD/0fWfORA+T5PfeU5wJGHsepezdq8Xikmq4aJB5Xvb9Snnr8YTl3xsyMUaxlZ82kEYyBRlgzmR9br+Utasfin905Sy780leLKbDkUlgzGR4AG885U82lLDHJmklTEWxuJ42YZDfXYmKTtRQTYpLdXLNGwXx+xGRGpojJ+GKy98jjJjn1uXny4r77yat77+NEwRWPeuTxCLVRTtTII2IyuvFya5BwRmzAE91+bE+BmERMFtlGEZPF0EZMFsO5jFIQk2VQz79MxGRGxojJcDHpF49rtm3rRfui38yXvgceJFMOmBhLPPpDhZiMbryIScRkdCtp3RSIScRkka0XMVkMbcRkMZzLKAUxWQb1/MtETBpgzJrJGkR9j8fn1S6rz6ndVp9XO6/6xeM4tcbxKLXWMe7Io4HQZDLBmslM+KzPnOaCxfpK4aBDgDWT1W4IZU1zrTZVe2pH32xPLEx7YkJMap/YzdV0ZLLZQ0xm4+fkblcxuXJbjzyhxOOvNm2UZ9XjWt+tOlpNPPqbAmLSwMlhsQkuWCwOTkbXEJMZAVqeHTFpeYAyukffnBGgxdkRkxYHJ4NriMkM8Nys7SQmX9naLb/6cKMjIvX9Hr1Hq4tHxKSBk6GFTHDB0kLBSugqYjIhsBZLjphssYAldJe+OSGwFkqOmGyhYCVwFTGZAFZQ0nZYM/nU5o3y600fyq+VgFy6dUsDQ1/17MSBg+X41151Nss58ahjE9F87OH7ZMKkKTJu/IRE+dzErJmMxsaayXBGbMAT3X5sT8GayfAIsZur+dbLmknzTIMsphGT7OZaTGyylmJCTLKba9YomM+PmMzItIpi8uizzlPCsS4g1RTW9Tu2NyiN7tdPTho4RE5Uax9PHDhIuvr0lRfmP+t8fvgRxySiiZhMhCtVYsQkYjJVw2mRTIhJxGSRTRUxWQxtxGQxnMsoBTFZBvX8y0RMZmRcFTG5Qq1/fGjpYlnzu/+Wm446uheVKeo+jyd2DXbE4yfULTv8B2IyXiNKyyme9eBUiEnEZJb2Y3texCRissg2ipgshjZishjOZZSCmCyDev5lIiYNMG7VNZPr1YY5D324Xv1vkCfVFFbvcYISjicoAXmSetT3f2zHgw14qh31NBcs1SZSndqxZrI6sQyqCWsmqx1f+ubqxteEmNR02M3VrjaCmDQQj1YSk3rC6s+VeHxQiUj96D0+PXionFEfgRzSt58BMq1tAjHZ2vGL8p4LlihCrfs5YrJ1YxfHc8RkHEqtm4a+uXVjF+U5YjKKUGt+jpg0ELdWEJN6Ax09CvlztQZyw/ZtjVofr0YePz1QichBQ2RYX72lDodLADFZ7bbABUt144uYrG5sdc0Qk9WOL31zdeOLmKxmbBGTGeNq85rJ+erWHfMfuEcemThJfjdiRKOmf6bWPZ6hNtH59KDBso/ahdU9Vrz1hvx2/jw545wZiaikXQvIBjyJMKdKzJrJcGzs5pqqSVmViTWT4eFgN1fzTZU1k+aZBllMIybZzbWY2GQtxYSYZDfXrFEwnx8xmZGpbWLyFXXrDj2F9aGN62Vpz1aZOe9peXLiZOnaZx9HQJ4xaKhM6B+8BhIxuUSWvPqyfPJT5zitwvTIZFrRnaWJIiYRk1naj+15EZOIySLbKGKyGNqIyWI4l1EKYrIM6vmXiZjMyNgGMbl821ZHPD60cYO8tLW7UaP91KjjF599Wg79xNFy7LgDImuKmERMRjaSlAlsHCVhZDJlMC3KhphETBbZHBGTxdBGTBbDuYxSEJNlUM+/TMSkAcZlrJlcVd+J9UElIv9LTWd1jxHqPpCfViOQZ6o1kNPUvSA50hMwPTKZ3hNy5kEgzQVLHn5g0zwB1kyaZ2qTRdZM2hQN877QN5tnaotFE2JS14XdXG37UgV9AAAVMklEQVSJaM0PxKSBeBQpJueqKaxzlYB8TG2k4x791dnpTGFVu7GeNnCwgRphQhNATFa7HXDBUt34IiarG1unb+7sJ139+8maDVuqXdE2rR19c3UDj5isZmwRkwbimreYXKLWQd6jBOQ9G9fJym09DY8/qYSj3oX1TCUiO0VfPnGYJICYNEnTPltcsNgXE1MeISZNkbTTDmLSzriY8oq+2RRJ++wgJu2LiQmPEJMZKea5ZvJ+NQqpBeQT6rYe7nHyB+vk2NcWyTnn/g8ZFeNWHmFrioKqzZpJ1kxmPB1Cs7NmMi+yve1u6e6Wn905Sy780leLKbDkUlgzGR4AG885U82lLDHJmklTEWxuJ42YZDfXYmKTtRQTYpLdXLNGwXx+xGRGpqbF5PjjT5ZfdHXJ3c4oZO1+kB3q/7whu8l5agRy//ffS3T7DsRk/AD7LxRMj0yym+u+MnHy1PgByTklG/DkDLgA84hJxGQBzaxRBGKyGNqIyWI4l1EKYrIM6vmXiZjMyNiUmHxUrYFc+H/+Q37y0Y/JO7vt5nh16IBOJSCHOf9D66OQSUcPEZPxA4yYjM8qaUobR0kQk0mjaF96xCRisshWiZgshjZishjOZZSCmCyDev5lIiYNMM6yZvJnGz6QO9X/S1tqt/Top860moAcKkd1DjTgHSbSEjA9MpnWD/LlQyDNBUs+nmDVNAHWTJomape9sqa52kWhut7QN1c3tibEpKbDbq52tRHEpIF4JBWT69VtPe7YsFaJyHXyVs9WxwN9T8gLhgyTLwwZLsNirIU04DYmIgggJqvdRLhgqW58EZPVja2uGWKy2vGlb65ufBGT1YwtYtJAXOOKyeVKOM7WInL9Otm8Y7tT8mEDuhwReb5aE8lhFwHEpF3xMO0NFyymidpjDzFpTyzy8AQxmQdVe2zSN9sTC9OeICZNE7XDHmIyYxzirJl8bMEL8uKby+Rfp+zcfOTErsFy4dDd5GTPfSHvnTNbjjv5UzJq99GhXrFmcieaVe+vlKcef1jOnTEzYxRr2VkzaQRjoBHWTObH1muZ3VxrNBCTIjaec6bOgrLEJGsmTUWwuZ00YpLdXIuJTdZSTIhJdnPNGgXz+RGTdaY3//BeufvBJ+TpuTfvQvnsmdfI68vect4/cNwYuX/29Y00zcTkY2pTHT2ddY26lce41atk7mGHq11Zh8mFg3eTj3V27VIOYjJZA0dMRvO647ab5HMXXCoDOjujE+eYwsYLWzbgyTHgBZlmA55w0Daec6aaBWLSFEk77SAm7YyLCa8QkyYo2mej7cXk3EeekWu+c7sTmZHDh+4iJi+64gZZtXpdQ0BqYTlq5DD50Y1XOnmCxOQctaHOHevVpjpba5vqHPHmm3LCug/k7E+eIWPV2siwAzGZ7ARBTEbzQkyGM0JMRrcf21MgJhGTRbZRRiaLoY2YLIZzGaUgJsugnn+ZbS8mXcRhI5PHTr9cvnbp+TL9tGlOUi0+vzfrrl6iU6+ZfHtjt7Ohzh3r18pb23qctPvWN9W5UG2qM4RNdfJvzYZLYM2kYaCWmUtzwWJZFXAnhADTXKvdNMoamaw2VXtqR99sTyxMe2JCTGqf2M3VdGSy2UNM1vkFickFi5bKjMu+KXNuuVamTh7vpPS/t3TLFvnXt9+T29asls2yw0nz0fqmOjPYVCdb6yw5N2Ky5ADkXDwXLDkDLtE8YrJE+AUUjZgsAHKJRdA3lwg/56IRkzkDLsk8YjKjmDzjD3+Un69b71j55OAhcsnwEXL6kCElhZNiTRLo6NdXOjr6yObubSbNYssSAvqCdGvPDunZVttZmaNaBIYM6i8b1KwRjuoR6OhQfXNf1TdvoW+uXnRrt36hb65iZFWd1C99Q7pU37wpW988VPXvHPYQQExmFJN6zeSSC/6nXDRsuHxi4MDAyC58+SX505tvyKmnn9E08j+544dyikozevSeoenefHO5PPfsM3LejM/HakX3zPmpHHXMNNlvv7GR6ZPadg3+17ynnad/fvSxkWV4Ezww9z/l4EMOlQMnTEyUz028cuW78ugvHpIvXHhxqvz+TK8vWSyvLHxJzpr+Gecj02IyLacslfv+v90ol3zlr6QzYMOnLHaT5v2litO+++0vh0w5NGnW3NL7L1he+M18Wadu23P8CSfnVmbehru7N8vtP/h3+eu/uSLvoqyw36x/a3cxaeM5Z6rRlCUm/d8RpuqDnd4E0ojJ22/9vnz2/C/IsN24zZrV7cmAmLzxn78l1113ndXVbDfnEJP1iKddMxnn1iCLFy2QFW//SY476fSm7YsNeJKdfmzAE82LDXjCGbEBT3T7sT0FG/CER4jdXM23XjbgMc80yGKaaa7cGqSY2GQtxcQ0V24NkjUK5vMjJiPEZJrdXP1hQkwGN9zHHr5PJkyaIuPGT0jVshGT0dgQk4jJ6FbSuikQk4jJIlsvYrIY2ojJYjiXUQpisgzq+ZfZ9mLSe2sQF/dZpxwt3776yw36ze4zqRPp3VzXb6rt4MpRHQJswFOdWJr69bvaRKpTOzbgqU4sg2rCBjzVjm8aMVltItWpnQkxqWmwm6tdbaLtxaSJcCAmTVC0zwZi0r6YmPSICxaTNO2yhZi0Kx6mvUFMmiZqlz36ZrviYdIbxKRJmvbYQkwaiAVi0gBEC00gJi0MikGXuGAxCNMyU4hJywJi2B3EpGGglpmjb7YsIAbdQUwahGmRKcRkxmCwAY/IC/OfdSgefsQxiWiyZjIRrlSJWTMZjo0NeFI1KasysWYyPBxswGO+qbJm0jzTIItpxCQb8BQTm6ylmBCTbMCTNQrm8yMmMzJFTCIm4zahtKI7rv2gdIhJxGSW9mN7XsQkYrLINoqYLIY2YrIYzmWUgpgsg3r+ZSImMzJGTCIm4zYhxOS+MnHy1Li4ck/HyGTuiHMvADGJmMy9kXkKQEwWQxsxWQznMkpBTJZBPf8yEZP5M6YECEAAAhCAAAQgAAEIQAAClSOAmKxcSKkQBCAAAQhAAAIQgAAEIACB/AkgJvNnTAkQgAAEIAABCEAAAhCAAAQqRwAxWbmQUiEIQAACEIAABCAAAQhAAAL5E0BMZmB89sxr5PVlbzkWDhw3Ru6ffX0Ga2Qtg0CSGF50xQ3y/AuLGm4S8zIilqzMJPH1Wr75h/fKrB8/INdfdYlMP21askJJXQiBNLE95PiZDd8u/eJZcvnF5xbiK4UkJ5A0vsdOv1xWr13fKGjhk7OTF0oOKwjo/vfuB5+Qp+febIU/OJGcQNwYcl2VnK2NORCTKaOiT4BVq9c1BKT+4hs1cpj86MYrU1okW9EEksZQX6x4v9z062lHTJVvX/3lol2nvBgEksbXNel+CeoLU8RkDNAlJEka2wWLlsqMy74pCMgSgpWiyKTx9X//+vOncIEsJRCY+8gzcs13bndKHjl8KGKyhBhkLTJpDLmuykrcjvyIyZRx0CfA1y49vzFqoU+g7826i84vJc8ysmWN4de/dau8sng5I9JlBC9GmWni6/01VY9iISZjgC4hSdLYanGx5+4j+OGnhFilKTJpfHX6z555QmOkOe6oSBrfyJM/AeKXP+O8S0gbQ66r8o5MPvYRkym4ur9yz7nlWpk6ebxjIei9FKbJUhABEzHUv4YfPHEsF6gFxSxJMWni6//yQ0wmIV5c2jSx1bHUIx3eaZDe/rs47ykpikCa+OoL0AcenSdnnXK00x/TN0dRtvvztELE7lq1l3dpY8i525rtBDGZIm5pvuxSFEOWHAlkjaF78cK6nByDlMF00vgGffEhJjMEIMesSWPrpveOMnP+5higjKaTxtf7Y673BwP65oyBKDF7WiFSossU7SOQJob0y63bjBCTKWKX5ssuRTFkyZFAlhi6m7MwspFjgDKaThpf/yYA3uJZZ5cxGIazJ41t2KwRfiwwHBhD5pLGVxfrjyUXpYaCUZKZNEKkJFcpNoRA0hhyXdXaTQkxmTJ+Sdd0pCyGbDkSSBNDLlJyDIhh02ni63UBsWE4IAbNJY1tUCyJr8GAGDaVJL5pxKdhdzFnmEBSIWK4eMwZIJAkhlxXGQBesgnEZMoAJN1tLmUxZMuRQFQM9dx9fbi3fPG/ztE1TBsgkDS+/iIRGwaCkJOJpLHV6Zcs/VNjgzR98fLM/AVsmJZTfLKaTRpffa4eefjkxm7qxDdrBMrNn0SIlOsppYcRCIsh11XVbDOIyQxxTXofrAxFkTUnAs1i6O303F+/g9xgx8+cgmPAbNz4BhWFmDQQgBxNJI2tdyoztx3IMTCGTCeNr/ceosTXUBAKNuO9rYRbtLupUsGuUFxKAlEx5LoqJVjLsyEmLQ8Q7kEAAhCAAAQgAAEIQAACELCRAGLSxqjgEwQgAAEIQAACEIAABCAAAcsJICYtDxDuQQACEIAABCAAAQhAAAIQsJEAYtLGqOATBCAAAQhAAAIQgAAEIAABywkgJi0PEO5BAAIQgAAEIAABCEAAAhCwkQBi0sao4BMEIAABCEAAAhCAAAQgAAHLCSAmLQ8Q7kEAAhCAAAQgAAEIQAACELCRAGLSxqjgEwQgAAEIQAACEIAABCAAAcsJICYtDxDuQQACEIAABCAAAQhAAAIQsJEAYtLGqOATBCAAAQhAAAIQgAAEIAABywkgJi0PEO5BAAIQgAAEIAABCEAAAhCwkQBi0sao4BMEIAABCEAAAhCAAAQgAAHLCSAmLQ8Q7kEAAhCAAAQgAAEIQAACELCRAGLSxqjgEwQgAAEIQAACEIAABCAAAcsJICYtDxDuQQACEIAABCAAAQhAAAIQsJEAYtLGqOATBCAAAQhAAAIQgAAEIAABywkgJi0PEO5BAAIQgAAEIAABCEAAAhCwkQBi0sao4BMEIAABCEAAAhCAAAQgAAHLCSAmLQ8Q7kEAAhCAAAQgAAEIQAACELCRAGLSxqjgEwQgAIEWIXDzD++VWT9+YBdvL/3iWXL5xefKsdMvdz57eu7Nu6TRn40cPkzun32981mUrUOOn9mUysjhQ51yLrriBnn+hUWBaa+/6hKZfto0OXvmNfL6srfEfe0mnvvIM3LNd26XA8eNafjlNxTHj2lHTJUHHp3XyHrWKUfLt6/+cqJy49SjRZoJbkIAAhCAQEUJICYrGliqBQEIQCBvAq7YmXPLtTJ18vhGcVoUPv70bxtiTIuvIw+fLD+68cpGmq9/61Z5Zv6ChsiMa8sv+vxiUH+uba1avS5UDOo0rpj0++W+30xMerm64jPIj6DPkpQbpx55xxj7EIAABCAAgWYEEJO0DwhAAAIQSEVAi0R3xK2ZAb+oWrBoqcy47Ju9RgXj2jIpJkeNHOaMYLpi2PVLC8woMRrHjzAxGbdcxGSqZkkmCEAAAhAokABiskDYFAUBCECgSgT801Sb1U0LoyVL/+SMROrROS2ovCOVSWzpcpqNCMYRYdqHgyeOlXffXyN77j7CmYKqR0v1od/LU0zGLTdOParUnqgLBCAAAQi0HgHEZOvFDI8hAAEIWEHAFXReZ4Kme7qfe9caLnxydq86JLUVJSbjrJnUou7Iww921khqf7R/epTyX267J3cxGadc1kxa0cxxAgIQgAAEmhBATNI8IAABCEAgMwG/8Ama/uoKQHdznrBCk9jKsmZSi0l3UxztiztammREMM2aybjlJvEjcwAxAAEIQAACEEhBADGZAhpZIAABCEAgnICeLqp3MvWPPgatlYziGGYramQyapqqO81Vi0l3F1lXmCYRcVnEZFS5SfyI4sjnEIAABCAAgTwIICbzoIpNCEAAAhUnoIXhf9z3uDOy5z9ckeTf5TVMTKaxZVJMav/1mk339iVJRFwWMRlVbhI/Kt7cqB4EIAABCFhKADFpaWBwCwIQgIDNBFxhqH30j0AG3QpEp2smJvXurklsmRaTXtZJRFxWMdms3CR+2NxW8A0CEIAABKpLADFZ3dhSMwhAAAK5E/BuquMWFrYmMmqaaxJbUWIy7gY8QSOrSURcmB/u9FyXibuG1Du91h8cf7lswJN786UACEAAAhDISAAxmREg2SEAAQhAAAIQgAAEIAABCLQjAcRkO0adOkMAAhCAAAQgAAEIQAACEMhIADGZESDZIQABCEAAAhCAAAQgAAEItCMBxGQ7Rp06QwACEIAABCAAAQhAAAIQyEgAMZkRINkhAAEIQAACEIAABCAAAQi0IwHEZDtGnTpDAAIQgAAEIAABCEAAAhDISAAxmREg2SEAAQhAAAIQgAAEIAABCLQjAcRkO0adOkMAAhCAAAQgAAEIQAACEMhIADGZESDZIQABCEAAAhCAAAQgAAEItCMBxGQ7Rp06QwACEIAABCAAAQhAAAIQyEgAMZkRINkhAAEIQAACEIAABCAAAQi0IwHEZDtGnTpDAAIQgAAEIAABCEAAAhDISAAxmREg2SEAAQhAAAIQgAAEIAABCLQjAcRkO0adOkMAAhCAAAQgAAEIQAACEMhIADGZESDZIQABCEAAAhCAAAQgAAEItCMBxGQ7Rp06QwACEIAABCAAAQhAAAIQyEgAMZkRINkhAAEIQAACEIAABCAAAQi0IwHEZDtGnTpDAAIQgAAEIAABCEAAAhDISAAxmREg2SEAAQhAAAIQgAAEIAABCLQjAcRkO0adOkMAAhCAAAQgAAEIQAACEMhIADGZESDZIQABCEAAAhCAAAQgAAEItCMBxGQ7Rp06QwACEIAABCAAAQhAAAIQyEgAMZkRINkhAAEIQAACEIAABCAAAQi0IwHEZDtGnTpDAAIQgAAEIAABCEAAAhDISAAxmREg2SEAAQhAAAIQgAAEIAABCLQjAcRkO0adOkMAAhCAAAQgAAEIQAACEMhIADGZESDZIQABCEAAAhCAAAQgAAEItCMBxGQ7Rp06QwACEIAABCAAAQhAAAIQyEgAMZkRINkhAAEIQAACEIAABCAAAQi0IwHEZDtGnTpDAAIQgAAEIAABCEAAAhDISAAxmREg2SEAAQhAAAIQgAAEIAABCLQjAcRkO0adOkMAAhCAAAQgAAEIQAACEMhIADGZESDZIQABCEAAAhCAAAQgAAEItCMBxGQ7Rp06QwACEIAABCAAAQhAAAIQyEgAMZkRINkhAAEIQAACEIAABCAAAQi0IwHEZDtGnTpDAAIQgAAEIAABCEAAAhDISAAxmREg2SEAAQhAAAIQgAAEIAABCLQjAcRkO0adOkMAAhCAAAQgAAEIQAACEMhI4P8HShuR4UIxQ+AAAAAASUVORK5CYII=", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dynamics_variable.plot_history(colors=['darkturquoise', 'green'], show_intervals=True)" ] }, { "cell_type": "markdown", "id": "017a76cd-9f36-4e8c-a98e-e32e659f45cf", "metadata": { "tags": [] }, "source": [ "#### Notice how the reaction proceeds in smaller steps in the early times, when [A] and [B] are changing much more rapidly\n", "That resulted from passing the flag _variable_steps=True_ to single_compartment_react()" ] }, { "cell_type": "code", "execution_count": null, "id": "d213e19d-4910-4f11-88c3-64b7d997e493", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "123ed7bd-cb03-4f5d-88b3-bfa5bc316274", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "10c710ac", "metadata": {}, "source": [ "# PART 2 - FIXED TIME STEPS" ] }, { "cell_type": "markdown", "id": "e0529a0c", "metadata": {}, "source": [ "#### This is a re-do of the above simulation simulation, but with a fixed time step\n", "The fixed time step is chosen to attain the same total number of data points as obtained with the variable time steps of part 1" ] }, { "cell_type": "code", "execution_count": 10, "id": "f9736433", "metadata": {}, "outputs": [], "source": [ "dynamics_fixed = UniformCompartment(chem_data=chem_data) # Re-use same chemicals and reactions of part 1" ] }, { "cell_type": "code", "execution_count": 11, "id": "9fc3948d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "SYSTEM STATE at Time t = 0:\n", "2 species:\n", " Species 0 (A). Conc: 10.0\n", " Species 1 (B). Conc: 50.0\n", "Set of chemicals involved in reactions: {'A', 'B'}\n" ] } ], "source": [ "# Initial concentrations of all the chemicals\n", "dynamics_fixed.set_conc({\"A\": 10., \"B\": 50.})\n", "\n", "dynamics_fixed.describe_state()" ] }, { "cell_type": "markdown", "id": "6bb5d54d-e085-4467-856e-b7db5fe20d00", "metadata": {}, "source": [ "### Run the reaction (FIXED time steps)" ] }, { "cell_type": "code", "execution_count": 12, "id": "635630b3-93a2-40c5-bb4b-b7e0b153a450", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "19 total step(s) taken in 0.039 sec\n" ] } ], "source": [ "# Matching the total number of steps to the earlier, variable-step simulation\n", "dynamics_fixed.single_compartment_react(n_steps=19, target_end_time=1.2,\n", " variable_steps=False)" ] }, { "cell_type": "code", "execution_count": 13, "id": "7d2144b8-7331-441a-9122-918725791627", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
SYSTEM TIMEABcaption
00.00000010.00000050.000000Set concentration
10.06315814.42105345.5789471st reaction step
20.12631617.44598342.554017
30.18947419.51567340.484327
40.25263220.93177639.068224
50.31578921.90068938.099311
60.37894722.56362937.436371
70.44210523.01722036.982780
80.50526323.32757236.672428
90.56842123.53991736.460083
100.63157923.68520736.314793
110.69473723.78461536.215385
120.75789523.85263136.147369
130.82105323.89916936.100831
140.88421123.93101036.068990
150.94736823.95279636.047204
161.01052623.96770336.032297
171.07368423.97790236.022098
181.13684223.98488036.015120
191.20000023.98965536.010345last reaction step
\n", "
" ], "text/plain": [ " SYSTEM TIME A B caption\n", "0 0.000000 10.000000 50.000000 Set concentration\n", "1 0.063158 14.421053 45.578947 1st reaction step\n", "2 0.126316 17.445983 42.554017 \n", "3 0.189474 19.515673 40.484327 \n", "4 0.252632 20.931776 39.068224 \n", "5 0.315789 21.900689 38.099311 \n", "6 0.378947 22.563629 37.436371 \n", "7 0.442105 23.017220 36.982780 \n", "8 0.505263 23.327572 36.672428 \n", "9 0.568421 23.539917 36.460083 \n", "10 0.631579 23.685207 36.314793 \n", "11 0.694737 23.784615 36.215385 \n", "12 0.757895 23.852631 36.147369 \n", "13 0.821053 23.899169 36.100831 \n", "14 0.884211 23.931010 36.068990 \n", "15 0.947368 23.952796 36.047204 \n", "16 1.010526 23.967703 36.032297 \n", "17 1.073684 23.977902 36.022098 \n", "18 1.136842 23.984880 36.015120 \n", "19 1.200000 23.989655 36.010345 last reaction step" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dynamics_fixed.get_history() # The system's history, saved during the run of single_compartment_react()" ] }, { "cell_type": "code", "execution_count": 14, "id": "35c15b2d-3796-4e29-b038-a003fc98154b", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "Chemical=A
SYSTEM TIME=%{x}
Concentration=%{y}", "legendgroup": "A", "line": { "color": "darkturquoise", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "A", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 0, 0.06315789473684211, 0.12631578947368421, 0.18947368421052632, 0.25263157894736843, 0.3157894736842105, 0.3789473684210526, 0.44210526315789467, 0.5052631578947367, 0.5684210526315788, 0.6315789473684209, 0.694736842105263, 0.7578947368421051, 0.8210526315789471, 0.8842105263157892, 0.9473684210526313, 1.0105263157894735, 1.0736842105263156, 1.1368421052631577, 1.1999999999999997 ], "xaxis": "x", "y": [ 10, 14.421052631578949, 17.445983379501385, 19.51567283860621, 20.931776152730563, 21.900688946605122, 22.563629279256137, 23.01722003317525, 23.327571601646223, 23.539917411652677, 23.685206650078147, 23.784615076369256, 23.852631368042122, 23.899168830765664, 23.931010252629136, 23.95279648864099, 23.967702860649098, 23.977901957286225, 23.98488028656426, 23.989654932912387 ], "yaxis": "y" }, { "hovertemplate": "Chemical=B
SYSTEM TIME=%{x}
Concentration=%{y}", "legendgroup": "B", "line": { "color": "green", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "B", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 0, 0.06315789473684211, 0.12631578947368421, 0.18947368421052632, 0.25263157894736843, 0.3157894736842105, 0.3789473684210526, 0.44210526315789467, 0.5052631578947367, 0.5684210526315788, 0.6315789473684209, 0.694736842105263, 0.7578947368421051, 0.8210526315789471, 0.8842105263157892, 0.9473684210526313, 1.0105263157894735, 1.0736842105263156, 1.1368421052631577, 1.1999999999999997 ], "xaxis": "x", "y": [ 50, 45.578947368421055, 42.554016620498615, 40.484327161393786, 39.06822384726943, 38.09931105339487, 37.43637072074386, 36.982779966824744, 36.67242839835377, 36.46008258834732, 36.31479334992185, 36.21538492363074, 36.147368631957875, 36.10083116923433, 36.06898974737086, 36.04720351135901, 36.0322971393509, 36.02209804271377, 36.01511971343574, 36.010345067087606 ], "yaxis": "y" } ], "layout": { "autosize": true, "legend": { "title": { "text": "Chemical" }, "tracegroupgap": 0 }, "shapes": [ { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0, "x1": 0, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.06315789473684211, "x1": 0.06315789473684211, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.12631578947368421, "x1": 0.12631578947368421, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.18947368421052632, "x1": 0.18947368421052632, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.25263157894736843, "x1": 0.25263157894736843, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.3157894736842105, "x1": 0.3157894736842105, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.3789473684210526, "x1": 0.3789473684210526, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.44210526315789467, "x1": 0.44210526315789467, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.5052631578947367, "x1": 0.5052631578947367, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.5684210526315788, "x1": 0.5684210526315788, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.6315789473684209, "x1": 0.6315789473684209, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.694736842105263, "x1": 0.694736842105263, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.7578947368421051, "x1": 0.7578947368421051, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.8210526315789471, "x1": 0.8210526315789471, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.8842105263157892, "x1": 0.8842105263157892, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.9473684210526313, "x1": 0.9473684210526313, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 1.0105263157894735, "x1": 1.0105263157894735, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 1.0736842105263156, "x1": 1.0736842105263156, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 1.1368421052631577, "x1": 1.1368421052631577, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 1.1999999999999997, "x1": 1.1999999999999997, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" } ], "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Reaction `A <-> B` . Changes in concentrations with time (time steps shown in dashed lines)" }, "xaxis": { "anchor": "y", "autorange": true, "domain": [ 0, 1 ], "range": [ -0.0008174386920980925, 1.2008174386920978 ], "title": { "text": "SYSTEM TIME" }, "type": "linear" }, "yaxis": { "anchor": "x", "autorange": true, "domain": [ 0, 1 ], "range": [ 7.777777777777778, 52.22222222222222 ], "title": { "text": "Concentration" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5MAAAFoCAYAAADKJa96AAAgAElEQVR4Xu29C7hcRZmvX8nO/X7BcAkQjAS5BTEyiAgDKDdRMHJmJPOMCgoijMN4BmdGhHlw9DmonBmZM8M4REQn4swx4DkQUFFBBf4gBxERDTcJxCA3CZIrJNm5/utb3dVZe2V19/rWqrW6uvtd+9nP7t1dX13er7q6fl1V3xq2w16GCwIQgAAEIAABCEAAAhCAAAQgoCAwDDGpoEVSCEAAAhCAAAQgAAEIQAACEIgIICbpCBCAAAQgAAEIQAACEIAABCCgJoCYVCPDAAIQgAAEIAABCEAAAhCAAAQQk/QBCEAAAhCAAAQgAAEIQAACEFATQEyqkWEAAQhAAAIQgAAEIAABCEAAAohJ+gAEIAABCEAAAhCAAAQgAAEIqAkgJtXIMIAABCAAAQhAAAIQgAAEIAABxCR9AAIQgAAEIAABCEAAAhCAAATUBBCTamQYQAACEIAABCAAAQhAAAIQgABikj4AAQhAAAIQgAAEIAABCEAAAmoCiEk1MgwgAAEIQAACEIAABCAAAQhAADFJH4AABCAAAQhAAAIQgAAEIAABNQHEpBoZBhCAAAQgAAEIQAACEIAABCCAmKQPQAACEIAABCAAAQhAAAIQgICaAGJSjQwDCEAAAhCAAAQgAAEIQAACEEBM0gcgAAEIQAACEIAABCAAAQhAQE0AMalGhgEEIAABCEAAAhCAAAQgAAEIICbpAxCAAAQgAAEIQAACEIAABCCgJoCYVCPDAAIQgAAEIAABCEAAAhCAAAQQk/QBCEAAAhCAAAQgAAEIQAACEFATQEyqkWEAAQhAAAIQgAAEIAABCEAAAohJ+gAEIAABCEAAAhCAAAQgAAEIqAkgJtXIMIAABCAAAQhAAAIQgAAEIAABxCR9AAIQgAAEIAABCEAAAhCAAATUBBCTamQYQAACEIAABCAAAQhAAAIQgABikj4AAQhAAAIQgAAEIAABCEAAAmoCiEk1MgwgAAEIQAACEIAABCAAAQhAADFJH4AABCAAAQhAAAIQgAAEIAABNQHEpBoZBhCAAAQgAAEIQAACEIAABCCAmKQPQAACEIAABCAAAQhAAAIQgICaAGJSjQwDCEAAAhCAAAQgAAEIQAACEEBM0gcgAAEIQAACEIAABCAAAQhAQE0AMalGhgEEIAABCEAAAhCAAAQgAAEIICbpAxCAAAQgAAEIQAACEIAABCCgJoCYVCPDAAIQgAAEIAABCEAAAhCAAAQQk33cB67/9g/NlV/+ltljxjTz4xuv6mMSxZr+53/5P8zDjzxlzjnrVPO3Fy4olhnWEIAABCAAAQhAAAIQ6BICiMkucVRZ1bz97p+bv/7Ml82nPv5n5kN/ekpZxfR8vn/zuWvM93/yM/PoXYu6oq3ui4R//uzHzcnH/VFX1JlKQgACzQl02xjk05fuc0zy7JYx2Gf7uzGvR59cYd5//j/wJWxO5x1y/DnmXe94q/mnyy/MmUNzsyrnB/94zWKz6IYfmBuv/QdzyAH7tWzLO99/cbT48V//9vfe21wkQ9eXJY8s7ShSVqi2XS0m3YdnEm4oK22tBktX9xAm8+7NnOVDWN7Mv1+5yhx+6P7BvaF9vMma9SnJu53gFjZvPnROKYO7pm3On0mb+CBX5YeFpu6dSOsmomV9MHeiTZ0os8zJTbeMpT65uzbHx9pWX/75EJPNJmuhv0ek7yU/91v1GTdGthvTffrTR1699OVvr4nJqvtUmeNtlfODImLS1TOUXWEyfsrVjzv9ekJMJr8JkDdZCN8Q9NoEKP7tr2++jlWeLwLSJhJ5P7jdhCzZp6r+oMhT/1bfjrl2uUG3yg+LPG2p0ib0iXKVLIqUVebkptfG0iycEZNZKBnTbDKKmMzGr1OpEJPFyJc53lY5P+glMenmEqGI22I9TGfdk2IyFIf22mAZX02VrbG+3jBO/BdZ7XR55BGj8bdMMzEpacocvHVv2/TU7b4Vk/fFrx57OjrXWeWHhY+2kUf4BMp8f/TaWJrXm51amcxb3yrsmvW7XuwzrExW0aO6o4wyx9sq5wdFxGSInvKxQyTEdrWrU9+JSRcsxYFJbm2Lr+7E4TXbAufedMm0H17wrug8QPJygqnZGyi5+if2zVbJ5Pm/+vt/jbaduqvM/drxwaudcGnX8Zw4k79FRGSynKKispmYdP0i1K2Qrh9m3bYV/7D4hg3EJAGE3JXcet1s22wynSZPKSvtvSZ9QeqS3HKd9j5L25bt/O/akqVvpU06tW1p1d+TdYraHjtbm6Vt8fEiy3s+jW3yi5YsY42MlzK+/Ov/+Ksh41kyr7Q2ujRxlrff/WB0tlgu+TLqTQe/ITqznbziX1Q1G5M7MZa6bf6uvlm+vEob65sJneQ20/iYm+YvqYcbk+KTmKQ/NEcYkr4Q27T6xtuV/KyL27RjlaX/N3t/NZv0tuszaXaur8sYGu+Trp8l69nssyB5VCLLGOTal+Zj915o53+XR9L3yc8E7diWZ0xtNr7HmcX7lKSXc3PuavZFdfL9l0znfBjfZpjm62R/zlOXZJ9s1afajZ/t5kvJz2AZd2RcjvNs1j/SWKa95+L9RNtH4vM515Zmc5Fkf3JtyTJ3TY6PaV+uaMfBLJ+D0qakdkh+jiffw1nnYu183y2v96SYbDaxTtsOKc/FB3s3qMQ/fJsJiTThIWllsieDWZZtNvE3kBsw4pP0Vs9JJ4vbpw2kvjpicqBMq1fWsnysRLYrK28ZzcRkqxXLdnWp4nVt/eIfJvH+lvatmvj6pZdXDzkLmuZ/TZ7Ndg+4yUL8/Zd2vjjZ3rT3aNYdCq3EpPiuHZ9m/m1WvrxPz7bBriTwUZrf0p6LTybaveebjX/CViY1EuQgbdt2mk/dB2iaeExOppt9Ux7vF8kPWGEkEaXjk780biGMpc0+K9p9wZQ24XGs41zT2phkmmVlMjnJ0QStaJa2lZhMK899wRl/H6flneW93Wr8FPtfPrIs9YxSqz7TbOIvX2SlzQekDmnPJyfqaeNX1i9e0963yfdkK/+nbddPey+1G6fd+FJkTG1VrhsD4oI/zrGV+EsTo/Hn0r64cWNYPF2yDE1dmvXHVn0qy/jZLN9m80z5AicpJrOMpWnjfLKMdn0k/r7O2u808+hmLDRiMss4mPVzMO09nPw8iNe5zFXjKuaTecroOTHZrsMmv6F1b4R2gXCSH1pZtptoJ0DNOmBSJDZb1Sxza0KyDnlW6tygrvmmNk+nTr6p5f92Ez5n0yoAT5ZViKL1zWvv2GZZgZAymvWVLP3a1VH6a7tJgKRNy7PZpDUpZlvVJx7wqFXfl/dLq1u2tFuZjEe71fBpN4lvNT4kbTXv+XYfZK3KlX4kl4uW1+wLqrQvHdqJyXZjbLzvJ+vR6bG0ld/b9S9pV5KNa5+IFzd5T/ssyiMmk2OAj21k7VYm41EYm23zyvvebjUmJvtJPG0eMSkiOBk8o9n7OOt71NWj3UpFM27SL+SScajdeJgW6dL53/WLVmNlvL8VGVNbnWP9xa9+E0WOb+WfZL9vxiZZxzQ+btIf922SiaYuWjGZ1qeyboVs5e9247yrZ9YxXVi+5U1vjL5s1MwPmr0/koybfZYUGZ/arUzGfZUsJ+vnYLvPnrS5RatxKe8cL3S7nhCTSchpy+XtvnFNDvRpS9pSjhuQs7wB2nXCeDjkdpOVeFrNxNJHB2zWDq2AySMm08RdVmHoJnF5xGRaH3L1z7Idwwd3TR5aX2g+LKJ+Xw/jnqxTq297Xdpk3271vkh+yLZ6n8UH7PhWFa1/yhCTrdrouLSarGXlkGUylfRZu3LjKz1Vicnk9jWpc7tVO9euZB8pYyyN93+NKHZ1jH8Z6fJyxxROPeHI6MsOaccP7nxgiJjpRjHZ7D2bfD7re7vVONgqgrYvMdnsPZB8vtXOoOQXb2ltSlutTqZr1reztNWNi63e//E2FBlT4ytbzb7g1Ai4dvO3+JeayS8Z5RiH22bq3rvSzj1nTG/sttHUpUox2eo90kxMthtL3WdLqy/1s84PNP2uWX2zzKUdc83KZLsv1TSfg26nW7svhJoJeM1crlvT9oSYTH6zm7aClHamJ+60ZJTLZB7JyV2Wb5Y0YrLdt4AiJt1AWLWYjG+xS+voWd9gzjbvFlTNmyxvGa22i+ZZjdXUuUhardDN+mEhdXJ5J7d0JT8csuaZZaue+yBotVKcFBzxyY9jmWU1uQwxmWUFs9WHaLIfZn3PZ9md0O79HH15UD/TWbaYdHVJTmya7YRIO/+TZFPWWNrsC5UsuwFcneSz6rYf328efvSpaPU3LiCTE1zxQy+LSc17u9nYGJKYTJvEx+ud5UvQtPdm2rm4tO3iaWeP4+W7+UNWMSm2ecdUsY0LSlePLFuF0/p9MyGS9pkc/+JG3lOHH7J/9GVN/P0l+cUZhiomW80zk0yyjqXCN+29l2eXUVr/SL5Xpd/N3PN1Te8p2ikxqfkcdH0y2bZmX1yzMllkNtsB27SJvxvAkpOTVh868apnnTxleQNoxGQZ36b7ckmr7Xqt9o23Kz+v4GuVr8szi4hIy6eVmHQDSpXbdNsxdK+nnbdpZZtV+Gk+ZLPmqRGTya0yWXlIOmfbbhJXhpjshpXJLCu4WcfDtAlgsm+mreg1G1uKiMmqxtJmnzVpfTS+1fGHdtuim+C6uoov5AxUUiT0spgs8t52jKvY5qpZmZR6+byhuvsiz/WLdiuTWb7YbSUm223NzzqmtvpsdaJF89miWZmMf3Ej76n4l/Cy8u8CLMXHP01dmn0GpXHVjJ+tmDULNhf/bMs6lqaV474IafeFQ7NdRu36nWYu3OozvoyVySyfg8k6OQ7N5pmISc1MLYC0zSb+7vn4Ny1ZVhKlST7OcsmA6/ZRN9vekiZGQzwz6d40zaKrtRNfWbqJD1FZVES6enbryqSbzMvfVtuKZFWk1a1Bkh8WmjMbWcVkK+GhOVcV71vyfjrtnUdF5z3iV7vJUcSrvoU3zzezmg8+l9adgWr1bW3W81hpzFudXZQzMXLJJCvLrX00k6FmX9hlPaMVZ5lWbifHUmmDTBzi52elvq22Nib7hvNp/Jxk/DMn+Xza+yQuSuXcWfxq9hmX5YtPl0+zSVDaeyTrdlaXt2Y7cpbPDUmTjGWQtGvWZzQT/6xiUsM5rX3Sln+6/MIhLyW5t/J/lrFOMm/2fkyWVWRMTWtLsj9rBFzWM5Px8Vy+9I2fV3TlJZ9v9hngHJH1bKKmT2Wdj2rGzqzzxzTfJD/nNZ/lWftdu7OVWUSdTzGZ5Qtf6QPCRvpR1vE2bdzOOp51c7qe2uaanIzIh3P8GxN5s6V9kyAfFlmiK0aDTiykf9rWwuSHW7MPorQPHvdcvM7uubQIr8k3X5YtbtrO2k4sthObWctzb+w8K4rN/Jq17LQJWdrA5gRrlm1tmrJdP8pzFiteTnwbXrL+yS9YNB8WaavPjkWeM5NS57R+3eycjat72q1Ifv348mgClvbeydo3yxKTrj1x0ZYMspLWtrT3XNZtrnG2aaHeXb9I4+U+OOWMUZ4APJoJX1y8JG8F494PybGgk2Npmi+1296bnVVyvmh2PCO5sp71C89mIq7V2NSsn5UhJp0YlFvFtHpvt6pvu8+8Zn1GM/HPKialnm6FJ/kZIb4/7KDZu0xI0+Ys7SK8N/O/G1vSdmLIeJ0MwJNcTZJ85XIBiIqMqWnjWnL3jEZMxoWgG5tavf+cH9JuHSLjTbNbwqV9wdZJMen6VNwv8X4Wb4cbN9PmqPGxJa2PJj9zNPODIv0u/plftZhs9lmZ/Bxs1r5mu/KyHHHRzA+7JW3Pisl2b7i4g5qdj3RpZNCVSat86DU71DtkUh8TnPJ8/Lym73ujxVdi2n2w5umUWbaxJj+E8pQTik2rczxlbW/1JSYdw2ZtSLu3YXIS12wgTJ45lrzynplMTnLd//LBKFdaqP+08zeSNu22HfG+1G77jaQtS0zG825Vp7S2tQse4PJr96EfL7eZr5PvvTgzzcpkfMyVx2n3mUyu7Ek61/9dPaSeImjToiB2cixNO2OTZXU36atkn2w1KU6byCbPbqbdZzLuU+2KWdIfWe4zGf8c0q5YZnlvt/p8aDfZT+szZYlJqWeW8bdZe9LOXSYn2c387/JMjtXyfNqXfu7+fs4u7fMtrS1ZxtS093VyvNaISVfHJB/tjqlmx0Hy1CXpQ02fyroy2azdblt8UhRnHUvT+kiR+YHUs12/kzTJ97rUf/fXTY3uMdoJMSl1anbuM+3L2LjP291n1veiQ6sxMITXulpMhgCQOkAAAv4I9ONZA3/0yAkC/UdAK5b7j9DQFpfxpXO/M6X9EIgLU82XjL1CDjHZK56kHRDoIgLybWB8O2X8W8ui2327CANVhQAEPBDopd0xHnC0zAIxWTZh8u9XAv08DiEm+7XX024IdJBAs60lWba6dLDaFA0BCARIID6e9Nv2Mq07EJNaYqSHQGsCreJV9As7xGS/eJp2QgACEIAABCAAAQhAAAIQ8EgAMekRJllBAAIQgAAEIAABCEAAAhDoFwKIyX7xNO2EAAQgAAEIQAACEIAABCDgkQBi0iNMsoIABCAAAQhAAAIQgAAEINAvBBCT/eJp2gkBCEAAAhCAAAQgAAEIQMAjAcSkR5hkBQEIQAACEIAABCAAAQhAoF8IICb7xdO0EwIQgAAEIAABCEAAAhCAgEcCiEmPMMkKAhCAAAQgAAEIQAACEIBAvxBATPaLp2knBCAAAQhAAAIQgAAEIAABjwQQkx5hkhUEIAABCEAAAhCAAAQgAIF+IYCY7BdP004IQAACEIAABCAAAQhAAAIeCSAmPcIkKwhAAAIQgAAEIAABCEAAAv1CADHZL56mnRCAAAQgAAEIQAACEIAABDwSQEx6hElWEIAABCAAAQhAAAIQgAAE+oUAYrJfPE07IQABCEAAAhCAAAQgAAEIeCSAmPQIk6wgAAEIQAACEIAABCAAAQj0CwHEZL94mnZCAAIQgAAEIAABCEAAAhDwSAAx6REmWUEAAhCAAAQgAAEIQAACEOgXAojJfvE07YQABCAAAQhAAAIQgAAEIOCRAGLSI0yyggAEIAABCEAAAhCAAAQg0C8EEJP94mnaCQEIQAACEIAABCAAAQhAwCMBxKRHmGQFAQhAAAIQgAAEIAABCECgXwggJvvF07QTAhCAAAQgAAEIQAACEICARwKISY8wyQoCEIAABCAAAQhAAAIQgEC/EEBM9ounaScEIAABCEAAAhCAAAQgAAGPBBCTHmGSFQQgAAEIQAACEIAABCAAgX4hgJjsF0/TTghAAAIQgAAEIAABCEAAAh4JICY9wiQrCEAAAhCAAAQgAAEIQAAC/UIAMdkvnqadEIAABCAAAQhAAAIQgAAEPBJATHqESVYQgAAEIAABCEAAAhCAAAT6hQBisl88TTshAAEIQAACEIAABCAAAQh4JICY9AiTrCAAAQhAAAIQgAAEIAABCPQLAcRkv3iadkIAAhCAAAQgAAEIQAACEPBIADHpESZZQQACEIAABCAAAQhAAAIQ6BcCiMl+8TTthAAEIAABCEAAAhCAAAQg4JEAYtIjTLKCAAQgAAEIQAACEIAABCDQLwQQk/3iadoJAQhAAAIQgAAEIAABCEDAIwHEpEeYZAUBCEAAAhCAAAQgAAEIQKBfCCAm+8XTtBMCEIAABCAAAQhAAAIQgIBHAohJjzDJCgIQgAAEIAABCEAAAhCAQL8QQEz2i6dpJwQgAAEIQAACEIAABCAAAY8EEJMeYZIVBCAAAQhAAAIQgAAEIACBfiGAmOwXT9NOCEAAAhCAAAQgAAEIQAACHgkgJj3CJCsIQAACEIAABCAAAQhAAAL9QgAx2S+epp0QgAAEIAABCEAAAhCAAAQ8EkBMeoRJVhCAAAQgAAEIQAACEIAABPqFAGKyXzxNOyEAAQhAAAIQgAAEIAABCHgkgJj0AHP9hi1m/catHnIii1AJTJ04ymwa3GY2bt4WahWplwcCY0cNmDGjB8zq9Zs95EYWIRPYa/pY88IrG0OuInXzQICx2wPELsiCsbsLnOSxijJ+c4VDADHpwReISQ8QA8+CCUngDvJUPSYknkB2QTaIyS5wkocqMnZ7gNgFWTB2d4GTPFYRMekRpoesEJMeICImPUAMPAsmJIE7yFP1mJB4AtkF2SAmu8BJHqrI2O0BYhdkwdjdBU7yWEXEpEeYHrJCTBaE+NnPftZc/LeXBrfNdcXyZWbZE4+Yk057X8EW+je/47abzZwDDzX7zZ7jP/MCOW4eHDTfun6hOfujn9gll05PSJY+/KB57dV15qhj3lGgheWY3rR4kTnuxNPM9N1mlFNAzlxf+cNKc/ePbjNnLjgncw5VTUjuv/cnZvyESWbu4UdkrltVCb/x1X8xf/ahC8yo0aOrKjJTOb7HNJ9i8u4ff9/sudfe5oCD5mZqS5WJvvpv/9N89C//rsoiM5X15ONLzYsvPGeOe+e7MqXPmyjP2P3dmxebtxx5tNlz5r55iy3Fbv26teZ7SxabBR/6WCn5F8n0oQd+GpnPO/LtRbLJbdtq7F58/VfMu+cvMBMnTc6dfxmGLz7/O/OLB+4z73nfgjKyL5Rn6GPaZz7zmULtw9gvgb4Xk5/+/LXm1tvv24Xqo3ctajz33nMuM0+teD76f//9ZppbFl3ReA0xqe+QiEk9M8SknhliUs9MLBCTem6hT7wQk7rz7ohJ/XsAMalnhpjUMxML+YIMMZmPXVlWiEkrJh978pkhAjEO+yMXX2leWbWu8boIy+nTJpmvX/WpKBliUt81EZN6ZohJPTPEpJ4ZYjIfM8Sknhsrk3pmrEw2Z8bKpL4/tbIIfUxDTPr1d9HcEJNtxOSx8y8yn7zgLDP/1GMi1kt+cK/50sIbzD1Lrm6w58xk0W4Yvn2erVLht4oaJglUtc0V8p0n4HOba+dbQw2aEWDs7o++wdjdH352reTMZFj+RkwmtrlOmzKxIRSXPr7cLLjwc2bxNZebuQfNjjyX9hxiMqxOXUZtmJCUQTW8PJmQhOeTsmqEmCyLbFj5MnaH5Y+yasPYXRbZMPOtWkwmdyWGSSW9Vmm6xXf9+15MJoFKh5FLzkVmEZO3LbvNfGvpDea8N11g5u0ZXjAN3x2mX/OTew9u3brDbN22vV8R9EW7RwwMNyNGDIvuKcrV2wQmjhtp5ItArt4mwNjd2/51rWPs7g8/u1bK+O3zkiNtP3vo8SFZxheXOiEmZSfkZV+8zlxxyXmN3ZF52oyYzEOtoI1zngTgySIm5czkP9gfud4953Rz/psvNCfMOrFgLYqbP7XsSfPYo782Z8z/k+KZec7h1iX/xxx8yGFm/zkHeM65WHaDg5vMdV/5d/Pxv7p4l4w6PSF56MEHzLr168zxJ3S+byXh/Oc3vmZOftd7zIwZuxdzgGfrlStfMrd//7vmA2efmznnqiYkd935IzNp4iQz74gjM9etqoRf/terzHkf+wszevSYqorMVI7vMc2nmPyh7Wd777OvOeTQwzK1pcpEV/3j56OI46Fdjz7ya/Pcs78zp9ixo8wrz9j97cX/ZY56+zFmn31mlVk1dd7r1q41N97wn+a88z+uti3b4P/dd09UxNuOPrbsolLzbzV2X3ftl837z/qAmTQ5rGiuzz77jLn/p/eaP13w5x1h1qrQ0Mc0n2cmDzn+HBMXjo6LCMzdd5tqvnDp+aYTYtJXp0BM+iKpyCcuJsWs3ZlJEZMrj1hlrv3lNXbVqvYt91F7HWPOmfsxc/qc/6Yo2W9S32H0fdaOADx6mgTg0TMjAI+emVgQzVXPLfRgFURzJZqrvlfrLIjmquMlqYnmqmcmFj6juYpgXLb8uSFxUNJq5cSkvOZWMJsJ0PgKZ/yYnOiJY46ca+59YKlZtWZ9VMwFHzzD7DNzRrQC6S5nkyYCkyuoYn/RuWeatJVVd1cKxGS+fqayEufGg+nI/3Nm792I1po1muuzq182//Hra8yipV8xf9j4clSHA6cfYj582AXmA4dkXxlRVb5FYsSkniT3mdQzEwvuM6nnxn0m9cx8j2k+z0wiJvX+JJqrnhnRXJszI5qrvj+1sgh9TPO1MimrkmecfHS0+tjqcrcIdOJN0rbTC1d/7Saz8Ju3GifqJL2ISCcW3evJ7bSSd9pRu6TwFZH4z1/9dqRX5LW//uifNuK7tDuy57e3GNP3Zybj95AUuG+dd1BDSDrYre4zKWniAXh2mB1WVC6MROXTq5+MsthzwsxopVJ+J4ya6NuH5FcBAYI4VAA5gCII4hCAEyqqgk8xWVGVKSYHAcbuHNC60ISxuwudVqDKPgLwuBW7LGcS07a5yn3q3a0Fm63+iYB8/+knRKuHbmXSCdc0G8lTVi5lkSv+uqCSgKBZ6ippRaje+J07d8nHBRMtgD7VtO/FpA+gzaK5/t/ffCsSlr986edRMeNHTjBnzz0/Wq3ca8LePoomj4oIMCGpCHSHi2FC0mEHVFg8YrJC2B0sirG7g/ArLJqxu0LYARQVmph0R+TS0LjVzGZiMi4Qm4nAp595IdoK61Y508pxK5/x15rFf/HtQsSkB6Ltbg3y42d+EG2BvfOZOxqlfeCQj9iVygvMQbsd6qEGZFE2ASYkZRMOI38mJGH4oYpaICaroNz5Mhi7O++DKmrA2F0F5XDK8CEmpTWaba7Tp00asnMxvjKZjLfSTOzJmcnkyqQPMSntiO+sjG+x5cxkOP22aU0kAI9Eylu/cWvb2j744v3RSuWSZTc20r5n/zPNOYd9zLxtL78R0HyfL2rbOEUCAvAoYNWTEoBHz4wAPHpmYkEAHj230M8XEYCHADz6Xq2zIACPjpekJgCPnplYVBmARwRjs2iuadtcW21DLbIyKe1uts01TcgiJvP1rY5ZacSkq+Sy1U9EovIbS69t1PvYfawKheEAACAASURBVN4Rnak8dfbpXtqCmNRjJACPnplYEIBHz40APHpmvsc0nyuTiEm9PwnAo2dGAJ7mzAjAo+9PrSxCH9N8BeARBmm3BnECzQXnaXdmUvJxEVXjW1FFcL513sHRfSKLiEk56yh1WLVmXSNoqAvAI4F3kkJT2iQX21z9vi9Kyy2PmHSVWfna781/2EA9i5YuNOsG10ZPH/a6N0ei8qyDP1Sozr4nXoUqkzBmZVJPk5VJPTNWJvXMxIKVST230CderEyyMqnv1ToLViZ1vCQ1K5N6ZmLhc2XS1SDt1hrxVcYsYjIuKOMti0dzzbvN1QXOSQYNdXUU0Xrr7fc1ipVzmi6SLNtc8/Wzyq3anZlsV6HBbZui6K+yWvnsumei5LMmzzYfrkeAHTkwql0WvF4yAc7dlAw4kOw5dxOIIyqohs+VyQqqSxE5CTB25wTXZWaM3V3msILV9XVmsmA1MK8TIACPh65QVEzGq7D4sW9EovKRP/wqenrKmKlRoB5ZrXzduBkeaksWeQgwIclDrftsmJB0n8/y1hgxmZdcd9kxdneXv/LWlrE7L7nutENMhuU3xKQHf/gUk646319+ayQqf/rcXdFTw+yPBOoRUbn/1Dd6qDVZaAgwIdHQ6t60TEi613famiMmtcS6Mz1jd3f6TVtrxm4tse5Oj5gMy3+IyYL+KHJmMkvR9z13d7QF9ntPL2kkP/OABdG9KuftcWTTLDgzmYXu0DQE4NEzEwsC8Oi5EYBHz8z3mOZTTHJmUu9PAvDomRGApzkzAvDo+1Mri9DHNJ8BePyS68/cEJMF/V62mHTVe/QPv44C9fzvRxc1avyOWadYUXmhecesk3dphe+JV0FMQ8wJwKOnSQAePTMC8OiZiQUBePTcQp94EYCHADz6Xq2zIACPjpekJgCPnplYlBGAJ19NsHIEEJMF+0JVYtJV87n1vzOLfl0L1rNp28bo6SP2PCra/vq+A85qtAYxqXcsK5N6ZmLByqSeGyuTema+xzRWJvU+8GnByqSeJiuTzZmxMqnvT60sQv+CjJVJv/4umhtisihBa1/Gmcl21Vq/eV0jAuxLr70YJZ8z9cDGucp29ryuI8C5Gx2vbk3NuZtu9Zy+3j7FpL50LKoiwNhdFenOlsPY3Vn+VZfOmcmqibcuDzHpwR+dEJPxal+/9KvRFtjfrHo8enrGuN2jlUrZAjtp9GQPLSQLJiT90QeYkPSHn6WViMn+8DVjd3/4mbG7P/zsWomYDMvfiEkP/ui0mHRNuGXZt6PVygdeqN24dNiwYeak/U6zv+82J73+NG4tUsDXTEgKwOsiUyYkXeSsglVFTBYE2CXmjN1d4qiC1WTsLgiwy8wRk2E5DDFZ0B9Vn5nMUt27fvcjc+v9N5hhK7eZxfbHXW/f+/hIXJ5sheWsybOzZFVKGgLw6LESgEfPjAA8emZiQQAePbfQzxcRgIcAPPperbMgAI+Ol6QmAI+emVgQgCcftzKtEJMF6YYoJqVJEqzikUd/YdbM3mDu+O33zI9WfH9ISw/f/Qhzsqxavv7d5uDd5hakoDNHTOp4SWrEpJ4ZYlLPDDGZjxliUs+NADx6ZgTgac6MADz6/tTKIvQxrV8C8Bw7/6LITfcsudqvgz3nhpgsCDRkMbnsiUfMSae9L2rhq5vXmztW3GaFZe13w9bXGi0/YNpBdrXSboW14lIiw5Z9ISb1hBGTemaIST0zxGQ+ZqFPvFiZZGUyX8/ObsXKZHZWLiUrk3pmYtEvK5NLfnCv+Y/F3zer1qwzn7zgLDP/1GPyAavACjHpAXIoZyazNmXHjh01Ybnie+aO5beZlzeubJjuPWnf+jnL08xx+56YNcueT8e5m553cdRAzt30h5+llZyZ7A9fM3b3h58Zu/vDz66V/XBm8iMXX2nefMgc88tHl0XN/vpVnwrWyYhJD67pNjGZbPJPn7srEpe32xXLZ9Yub7w8dey0WvAeOWdpf0cMjPRAqzuzYELSnX7T1poJiZZY96ZHTHav7zQ1Z+zW0OretIzd3eu7PDX3KSafHBw0v9k0mKcahWzeOGa0OWD06KZ5HHL8OWbxNZebp595wXxp4Q1Bb3VFTBbqCjXjbheTcQQPv/SguT3aDvs989gfljZeGjUwOooIG52ztAJz8pgpHsh1TxZMSLrHV0VqyoSkCL3uskVMdpe/8taWsTsvue6yY+zuLn8Vra1PMfmdtevMGctXFK2S2v70yZPMrbP3S7VzW1xvWXRF9LoIyysuOS/Yra6ISbX7hxp0y5nJPM38zSuP17bCWnH54Iv3D8nihFknNVYt95q4typ7zkyqcEWJOTOpZ8aZST0zsSCaq54bZyb1zAjAo2dGAJ7mzAjAo+9PrSxCH9N8BuCRlcm/ef5FvwAz5Carkv80c8/UlG6L60Xnnhm9Lv/LFepWV8RkBoe3StLLYjLe7ufW/a5+zvI2c7e99Uj8OnKvoxvnLOdMO7AtUcRkW0S7JEBM6pkhJvXMEJP5mIU+8SIADwF48vXs7FYE4MnOyqUkAI+emVj0QwAeWYlMux69a1E+aCVbISYLAu4XMRnHtHrjqsaKpZyz3Lp9S+PlQ1/3puh2I3LO8k0z5qXSRUzqOx1iUs8MMalnhpjMxwwxqefGyqSeGSuTzZmxMqnvT60sQh/TfK5M+iVXPDfZ4pp2RjLkra6IyeJ+76kzk1ocm7cPRhFho3OWdkvs2k1rGlm8fsr+jXOWb5v5x9qsg0rPuZug3FFaZTh3Uxra4DLmzGRwLimlQozdpWANLlPG7uBcUmqFfJ6ZLLWiOTJ/7zmXmenTJu2ypTXkra6IyRyOTpr0UgCeojjufOaOxqrlC+ufa2Q3Y9we9l6WNniPXbU8cb93FS2mcnsmJJUj70iBTEg6gr0jhSImO4K98kIZuytH3pECGbs7gr1jhfaymOwY1AIFIyYLwHOmiMl0iA+8cJ+93UgtgM9Tq3/TSDRh5ETztpnHmjfvfoQ53P6+efc/MpNGT/bgifKyYEJSHtuQcmZCEpI3yq0LYrJcvqHkztgdiifKrQdjd7l8Q8sdMRmWRxCTBf3Rj2cm8yB75OVfRbcbEWF50MoDzMP25wn7464Dpx9sheUf1QTmjCOMnL2s+tpsI3p96/qF5uyPfmKXojs9IeHMpL43cGZSz0wsiOaq5xb6+SIC8BCAR9+rdRYE4NHxktQE4NEzE4t+CMCTj0znrBCTBdkjJvUAb7n1v8zg9C3msR2PmV/a+1rKvS23bt86JKNxI8bXVy1rq5fz9vgjs8f4vfSFKSwQkwpYsaQ3LV5kjjvxNDN9txn5MijJCjGZDyxiUs8NMalnRgAePTMC8DRnRgAefX9qZRH6mNbLAXj8erKa3BCTBTkjJvUAk9Fcd5gd5pe//3lDWIrA/O3ap3bJeJ9Js3YKTLt6Oc+uZI4cGKWvQBMLxGQ+lIhJPbf77/2JGT9hkpl7+BF645ItEJN6wKFPvFiZZGVS36t1FqxM6nhJalYm9czEgpXJfNzKtKpcTB47/yKzas361DaFev+Udg7gzGQ7QvrXX96w0jy88sGYwPy5WTe4dpeMDp/xlobAfLNdvXzDlAP0hWWw6PQ21wxVJIkHApy78QCxS7LgzGSXOKpgNRm7CwLsEnPG7i5xlKdqcmbSE0hP2VQqJpuFu/XUlo5lg5isBv0Trzxmt8TuXMF85A+/2qXgaWOnR2cu5ezlm3c/Mvo7ZczUwhVkQlIYYVdkwISkK9zkpZKISS8Yg8+EsTt4F3mpIGO3F4xdkwliMixXVSomQ77hZhG3ICaL0Mtvu2HLa4nVywfNi68+v0uGc6Ye2Dh3KecvD3vdm9WFMiFRI+tKAyYkXem2XJVGTObC1nVGjN1d57JcFWbszoWta40Qk2G5DjEZ88fVX7vJLPzmreaKS84z8089pvGKrKg+taImUvbfb6a5ZdEVjdc4M6nv0Mkzk/ocmls8u+6ZKKCPC+wjfzdvHxxiMHpgTH3lsh491grMmRP3MZyZzOcJzkzquXFmUs9sxfJlZtkTj5iTTnuf3jjFwqeY5Myk3iUE4NEzIwBPc2YE4NH3p1YWoY9pBODx6++iuVUqJkWUnXjsW8xF555ZtN7e7UVI3vidO6PznHEx+ZGLrzSvrFrXEJDJrbqISb0ryhSTabV5eOUvhgjM+D0vXfq9JuxtjphxlJn3u0PNvqccbGZP2d+8fvL+ZsTwEVGSTn+7za1B9P2MaK56ZmJBAB49t9AnXgTgIQCPvlfrLAjAo+MlqQnAo2cmFgTgycetTKtKxeSSH9xrvrTwBnPPkqvLbJM6byckpV7JrbgSMOiTF5zVWKlMtgExqcZtqhaTyRqu2vhKbHts7Qzm6k2rzBj789/tzxftj7teH4nKN5iDXvdGs9+kN5i9J86ORKZElq3yQkzqaSMm9cwQk/mYISb13FiZ1DNjZbI5M1Ym9f2plUXoY1qvr0ymBSsNOUhppWJShFqrqxOg4kJS6hYXk0sfX24WXPg5s/iay83cg2ZHVU97jjOTfgexTuS2bPUT0erlIy//yixfs8z+Pm1WrH26aVXGjBhrXj/lDXYFc46ZbcWlPBaROXvqHLPb2Nd1ogmU6YEA5248QOySLHxuc+2SJvdlNTu9q6QvoXeg0YzdHYDewSJ7/cykiMn3n35CYydncpdkB9GnFl2pmAyt8UkhmVdMhtYu6uOHwNbtW82Trzxplq1aVvv7Sv2v/f+F9S80LWTa2GnmgOkHmDnT5pg50+fsfGz/nzh6op/KkQsEIAABCEAAAhCAQM8RSIrJNL0SUqP7WkyK0v/ZQ4+n+uOCD55hjj/6cFYmQ+qtHaxL8tvt9ZvXmd/alUtZxfzt6qfsX/u7Vv4uS70fpqv6nhNm1lYw7fbZ2VNr5zKj85n2d2DYQAdbSNFCgG+3+6cfsDLZH75mZbI//MzY3R9+dq30uTIpiwW/+cNvKgf4xt3eGC02pF1JMSnxWg4+YJb5wqXnV17PLAVWLiblzOFlX7xuSN2S0VOzVLysNJyZLIvsznw7fWayWQt9RXNdueElKzSfaohMeey2zm7eNjSybLwusmVWzmeKyHSPRWzuPWlfw5lJfb/kzKSemVgQgEfPLfTzRQTgIQCPvlfrLAjAo+MlqQnAo2cmFr4D8HznN98xZyw+I19lClidfsDp5tY/u7WpmJSAoPHrjJOPRkwKEHfrjbQziLISGEKU16SYJJprgXdKE9NeF5OtiP1u3Qqz3K5kOoFZ+/u0eWbt8qZmY0eMM6eMOsXsMXJPs3HfrWaP8XuaGeP2MLuP3yt6vLv9nTZ2un9HZcyRW4NkBBVLxq1B9My4NYiemZt4ISYRk/l6T3YrxGR2Vi4lYlLPrAwxKSuTf3P73+SrTAErWZX8p5P/qamYjJ+ZlESiT0LRSslKV7oymVy2dZUJaS9wUkxKHbnPZIF3S4ppP4vJZiS3bt9ink6KzPr22ZUbfm+Osj9T7M8P7E/aNWr4aLPHBCss7a8ITScyRWg68bmHFZ+TRk/260ybG2JSjxQxqWeGmNQzQ0zmu63Td29ebN5y5NFmz5n75oNekhXRXJuDJZqr304X+m6LfojmmhSTIW91rVRMpgk16f5u62snorn6ePsRzdUHxbDz6OS5GzmfKWcyn1//rHnptRej39/bXxGZL732QvR4zabVmQCOHzlhF7G5+wRZ5aytcDrhKen68eLcTf94nTOT/eHrTo7d/UE4jFYydofhh6pq4fPMZFV11pSTXHxzd5JgZdJS7IaVSY2zXVrEZB5q3WUT+oRk07aNDZH50qsiOEVo7hSe7vGrW4buwW/mBVnBlJXMZquckfCcuKeRFdFeupiQ9JI3W7cFMdkfvg597O4PL5TfSsbu8hmHVEI/iMnkmclQhaT0i0pXJrvhzGSeNwtiMg+17rLplQmJrHKKsJRVTVnR3FVw1kTopq0bMzlIzmpGZzbH7GamjLYbcUdPNVPGTDOTx9jH9u+UUfK3/pw8HjvVTBgZ7u1RmJBkcntPJEJM9oQb2zaiV8butg3t8wSM3f3VAXpdTHabNysVkwIn9GiuWgd+9rOfNRf/7aVm/catWtNS0/s+X+SzspyZ1NOsOpqrbJutic0XEttqa1tsnQiVe3FeYH+W2B8rTzM1bOTAqJrItPfjnBwToE6MThZBakXnlNFWjMrrVoxGz9nfgeHZb59CNNdM7tglEdFc9dxCP19EAB4C8Oh7tc6CADw6XpKaADx6ZmLhO5prvlpgFSdQuZjsNfyISb1HEZN6ZlWLyaw1fHnDSnPHzTeZ3Q/f12waPWhWD642a+2viNE1g6vs4zVm9Ub53z7evCZ6/rUtr2bNfpd0sv02Wv2MBOdOMTpVVkPrwtSJ0ZEbRpinH3jEnHLmn5ixI8ea0QNj2pZb1bfbBOBp64pdEvj+gsznyiRiUu/PJx9fal584Tlz3DvfpTdWWORZmSQAjwJwPSliUs8MMalnhpjMx6xsK8RkQcKIST1AxKSeWahiUlqijea6ZdvmoaLTCkwRoKsjATpUjK6xYnSNiFErTEWI7rA/WS8b09bMtz8L7Y9cw4cNN3KblbEjxppxo8absQNj6//b50bWfifa5yeMGW8Gto+pPWfTis24+uuRvbUbN9LaD3ld/h+b+QwpYjKrF3emQ0zqmbmJFyuTrEzm6z3ZrRCT2Vm5lIhJPTPEZD5mZVtVIibdvVEWfjP95pyukURzLdvd5J+XQJ5vt/OWhV1zAusG11ohWhOWO1dA6yuhKWJ0nT0jumHLa2bjlo1mcNum0tHKNtyxA3URasWmiNAxkYCtC9L640jQJgRpJFJF5NYFb/S3nkdNxMr/VrAO9FbQo9Kd0qQAnyuTnWoD5bYnwNjdnlEvpKhqV0kvsOqFNnBmMiwvViImw2qy/9oQgMc/09ByZEISmkf09dm23a5ObN1gNtrItxu32L82yNBGEZryXPR4g9myY6PZajaZV15b30gTidH665J2Q5Te/ro85Lm6YN28fVBfMaXFiOEjhgrOUXWhGV91jQvSIULWrrRGK6oxcSv/u9XWup2ca+31CzHZ6x6utY+xuz/8jJjsDz+7ViImw/J3pWKy2X0mJcrrjd+509yz5Oqw6GSsDWIyI6guTsaEpIudp6h60QnJth3basJSxGckOGOCtS5ih75eE7Ibtg4VrNFzkUCtC91tdcFqn5dtwlVcIihHDR9lRLzK35Ej7O+wkUaeHzlg/9YfR2nk/+Ej7aqppLd/Jb2ks7a19DttR9nXJb1LU0tfz1fylHLEvm7byMu+NmJgRBSEafgw+2t/Buzf6H/5jf9vtzRHz8tPPc0wM2wINsRkFb2o82UwdnfeB1XUoOjYXUUdKcMfAcSkP5Y+cgpCTLoIr924zZUzk/puyJlJPbNeOjOpb30+i16N5ioRdGsiU1ZZa4K1JlB3rrBGK6iSJnq9/rx7zq2qWnHbsBPRW19x/YvBC83/sj+b7E9I14HmQHO4/Vlsf/JccmY2+jU1ATpiYMDKy9pz9pmhojQSorXnaqLUppTH9eeGiU1dpMpzc9ceYtaMXmtWTni5IV6jkurCtyF6pTzJR2xtHvF8GgK5/rpLJ2U38qnXIbJz+di/0g7JryG0Xf1sOS/8YJmZ9e5Dam2vl9sQ2o26xAS5K7/OS+q6s84i5OttcMyiNtXrY59zwn7YsKHiPekzAvDoe/H6dWvN95YsNgs+9DG9cckWnJnUA+bMpJ6ZWBDNNR+3Mq2CEJOf/vy15t4HlnblyiRiUt89EZN6ZohJPbNeFZN6EjoLuTXIgg9+zAwfOdxs3r7ZroRusdt/7a9dEY1+t8vjLdFrW+3jKM1W+3jHVrPZpWmkt2mj9Jtj6et51Z+P8rS28TTRY1tGI3/7/4zBGWa/jfuan4y7y2y3K8Db7Y9sXZbV4O32b/S/fSzPbd9Re02ek7TyWBO8SUfMRIGeVtifh+1PaNc/mNpP1VdcdEaCPRKlO0XnwdsOMjO3zzR3jfn/rBi2P1Z8yo+kGbZDhGjtObF1r9Ver6VrvC5Sv27byEds6vYjB4bbtMPNDhu7S/KN0sZeb5TpcrWvH/7SXLNi8rNm7Zh19WetbV0cR3/rccDUz8VXx11+9efi4tutosdX0+XxqC0jzf7P72cef/1TkTsb6WLCvWFTqL613lLzQ/1xo4zac8n6Tl05yT5nzOoZ69vWrRW3emlDykirxxA2tuARA8PsDogBs2nztqG2ltLUpePMujduMttHuwBu6W0Y0i7pLw0f7Xz3JJkn6xGvfzy/tHTD1xoz8Nx2s/UQ+4VQq/5Q98PQL2gSbYjX1/kq5bm0eqQ9t+WJ18ywySPMiD3H7KzbkP7gWpqhHrG+GnUSufLUt/5eeemHy81nPvOZqoc0ymtBoHQxmXZfybT6XHHJeWb+qcd0nbMQk3qXISb1zBCTemaIST0zsejV+0yKwIx+TU1czpgyyjz/yms14Vl/riFKIyFaS1cTpTsiwerS7RCbukiV55578CkzdrqNBLzPtIZ4dWI3ErNO5Iq4rQvgbTaPeD5pAjkSyrbsmkCu18f+tbVpCOlIKEdtqAtosXH1s4//6Kk3mfte//Na26O6xIR2oy4xQe4Eep2XE+tRG+p5x1lEgn17vT5Si7qI3yHqrcUlq8z72R+5R21o1znmHHOX/ZEvCEK67F13bc3OiXYOhHYdb46PqiTcQrv+u/nvZpH9sbHBg6qa9H/hJnUL7Qr9CzLEZFg9pnQxGW9uszOTYSHR14Yzk3pm3WbBuZtu81i++nLuJh+3brTizGS5XovEa12AO3E7RHTWxbS8JqvGIj7lR9LsGCZCtPZc9Hr9NZdueyRU6zY2bWTjfiRtLM8J40aYTYNbzKYtVnTbtFFeqXlKHjbXellu+dGtaMfFcfK56DW34FIX0e2ei5ZK6+XtYltf+oyvpmepR5SfWzaNifkstkPrW+sbkV2iXbUl3vrrrg2uvsoy4/Ud+uVDjE29m9b6RM0/Q9pZf05WoO2RarNxsLYy2Syda1k8TbN6NLjF3ipZWKaVMcSXTdqQ1q7ouUTbc7XB+UYW1uN9L95nYtway+9xlvV61NjF+ojzUZZ2aftIvL71fvbJIy8zf7z/4TGv8LDTBCoVk51ubFnlIybLIhtOvojJcHxRZk0Qk2XSDStvxGRY/iirNozdZZENK1/G7rD8UXZtCMBTNmFd/ohJHa/U1IhJDxADz4IJSeAO8lQ9JiSeQHZBNojJLnCShyoydnuA2AVZMHZ3gZM8VhEx6RGmh6wqFZNLH19uFlz4uabVJpqrB4/Ws1ixfJlZ9sQj5qTT3ucvU085cWZSD5Izk3pmnJnUMxOLXj0zmaThU0ze/ePvmz332tsccNDcfNBLtJLIhx/9y78rsYR8WRPNVc+NaK7NmbUSk4uv/4p59/wFZuKkyXroJVoQzTUfXKK55uNWplWlYvLY+ReZY46ca94672DzpYU3NKK3vvecy8yJx77FXHTumWW2tZS8CcCjx4qY1DNDTOqZISb1zBCT+ZghJvXcEJN6ZohJxKS+1+SzCH1MIwBPPr+WZVWpmHQBeN4way/zF5/+54aYlIivcXFZVmPLyBcxqaeKmNQzQ0zqmSEm9cwQk/mYhT7xYmVym9lYv2VEFg9/9+bF5i1HHm32nLlvluSVpUFMIiar6myhj2mIyap6QrZyOiIm5RYgIizdtlZ3+5Bu3OYqmDkzma2zdXMqzt10s/ey151zN9lZdXtKn9tcu51FL9efsbuXvbuzbYzd/eFn10rOTIbl70rFpGxnPfiAWeYLl55v4o8//flrzb0PLG2sVIaFqH1tEJPtGXV7CiYk3e7BbPVnQpKNUy+kQkz2ghfbt4Gxuz2jXkjB2N0LXszeBsRkdlZVpKxUTCYbJKuT7lp8zeVm7kGzq2iz9zIQk96RBpchE5LgXFJKhZiQlII1yEwRk0G6xXulGLu9Iw0yQ8buIN1SWqUQk6WhzZVxR8VkrhoHZsSZSb1DODOpZ8aZST0zzkzqmYkF0Vz13EI/X8SZSc5M6nu1zuKhB34aGcw78u06Q0+piebqCWQ9m9DHNM5M+vV30dwqFZMuAI+cmeyVCzGp9yRiUs8MMalnhpjUM0NM5mMW+sQLMYmYzNezs1shJrOzcim5NYiemVhwa5B83Mq0QkwWpIuY1ANETOqZISb1zBCTemaIyXzMEJN6btwaRM+MaK7NmbEyqe9PrSxCH9NYmfTr76K5VSomu/l+kq1Ac2ayaDcM355zN+H7yEcNOXfjg2J35MGZye7wU9FaMnYXJdgd9ozd3eEnX7XkzKQvkn7yqVRMLn18+ZD7S/ppQudzQUx23gdl14AJSdmEw8ifCUkYfqiiFojJKih3vgzG7s77oIoaMHZXQTmcMhCT4fhCalKpmIxHb03DwH0mw+oc1GYnASYk/dEbmJD0h5+llYjJ/vA1Y3d/+Jmxuz/87FqJmAzL35WKybCa7qc2nJnUc+TMpJ4ZZyb1zDgzqWcmFkRz1XML/XwRAXgIwKPv1ToLAvDoeElqAvDomYkFAXjycSvTqlIx2Sya69Vfu8nc+J07zT1Lri6zraXkjZjUY0VM6pkhJvXMEJN6ZojJfMwQk3puBODRMyMAT3NmBODR96dWFqGPaQTg8evvorkFISaX/OBec9kXrzPduM0VManvgohJPTPEpJ4ZYlLPDDGZj1noEy9WJlmZzNezs1uxMpmdlUvJyqSeGSuT+ZiVbRWEmPz056819z6wtCtXJsVBBOApu5t2Pn/O3XTeB1XUgHM3VVAOowzOTIbhh7JrwdhdNuEw8mfsDsMPVdWCM5NVkc5WTuli0q06tqvOFZecZ+afeky7ZN5fFyF76+33NfLdf7+Z5pZFVwwpR25p8tSK56Pn0l5HTHp3S3AZMiEJziWlVIgJSSlYg8wUTGqoOAAAIABJREFUMRmkW7xXirHbO9IgM2TsDtItpVUKMVka2lwZly4m47VqdmYyV809GYlQjItH+X/6tEnm61d9KirhIxdfaV5Zta6RJvm6pEFMenJGwNkwIQnYOR6rxoTEI8zAs0JMBu4gT9Vj7PYEMvBsGLsDd5Dn6iEmPQMtmF2lYrJgXSsxl5XKx558piEej51/kfnkBWc1Vk1lpfVLC29obMnlzKTeLZyZ1DPjzKSeGWcm9czEgmiuem6cmdQzIwCPnhkBeJozIwCPvj+1sgh9TCMAj19/F80NMZkgKOJxzuy9o5XJpY8vNwsu/JxZfM3lZu5Bs6OUyecQk/ouiJjUM0NM6pkhJvXMEJP5mIU+8SIADwF48vXs7FYE4MnOyqUkAI+emVhwa5B83Mq0qlxMilhbtWZ9aps6Gc3V1St+JjKrmLzk0r83m7dsL9NP6ryfWvakeezRX5sz5v+J2rZsg1uX/B9z8CGHmf3nHFB2Uar8Bwc3meu+8u/m43918S52Y0YPmK1bd5it2zrj54cefMCsW7/OHH/Ciao2VZH4P7/xNXPyu95jZszYvYriMpexcuVL5vbvf9d84OxzM9uMGBhuRowYZjYNbstskyfhXXf+yEyaOMnMO+LIPOal2nz5X68y533sL8zo0WNKLUebue8xbeK4kdERBR/XD20/23uffc0hhx7mIzuveVz1j583F//tpV7z9JHZo4/82jz37O/MKXbsKPPKM3Z/e/F/maPefozZZ59ZZVZNnfe6tWvNjTf8pznv/I+rbcs2+H/33RMV8bajjy27qNT8W43d1137ZfP+sz5gJk2e3JG6NSv02WefMff/9F7zpwv+PKh6SWVCH9NYmQyry1QqJtPOG4aFY+gZySxiUuo/uGVbcGIyNK7dXp88E5Jub3M/1r8qMdmPbENrs08xGVrbqM9OAozd/dEbGLv7w8+ulTJ+c4VDoFIxGWIAnqQrkve8bHdmUuwJwBNOhy6rJgRxKItsWPkSxCEsf5RZGwLwlEk3nLwZu8PxRZk1Yewuk254eROAJyyf9L2YFLF4z5KrG16R1VO5XIRXormG1WE7VRsmJJ0iX225TEiq5d3J0hCTnaRfXdmM3dWx7mRJjN2dpF992YjJ6pm3KrFSMSlC7cRj32IuOvfMYCjE7yEpldLeZ5IAPHpXEoBHz4wAPHpmBODRMxMLornquRGAR8+MaK56ZkRzbc6MaK76/tTKIvQxjTOTfv1dNLdKxWTythpFKx+CPWJS7wXEpJ4ZYlLPDDGpZ4aYzMcs9IkX0VyJ5pqvZ2e3IpprdlYuJdFc9czEgmiu+biVaVWpmJQzk62uTkZzzQsZMaknh5jUM0NM6pkhJvXMEJP5mCEm9dxYmdQzY2WyOTNWJvX9qZVF6GMaK5N+/V00t0rFZNHKhmpPAJ5QPeOvXpy78ccy5Jw4dxOyd/zWjTOTfnmGmhtjd6ie8Vsvxm6/PEPPjTOTYXkIMenBH4hJDxADz4IJSeAO8lQ9JiSeQHZBNojJLnCShyoydnuA2AVZMHZ3gZM8VhEx6RGmh6wqF5PxgDdXXHKemX/qMUa2v7513kHm61d9ykOTqs8CMVk986pLZEJSNfHOlMeEpDPcO1EqYrIT1Ksvk7G7euadKJGxuxPUO1cmYrJz7NNKrlRMipCcPm1SJBrj92+8+ms3mRu/c+eQW3SEhal5bTgzqfcUZyb1zDgzqWfGmUk9M7EgmqueW+jniwjAQwAefa/WWRCAR8dLUhOAR89MLAjAk49bmVaViklZgVx8zeVm7kGzh4hJifJ62RevMwTg8efqFcuXmWVPPGJOOu19/jL1lBNiUg8SMalnhpjUM0NM5mOGmNRzIwCPnhkBeJozIwCPvj+1sgh9TCMAj19/F82tUjEpq5H//oW/3kVMsjJZ1I272iMm9Uw3Dw6ab12/0Jz90U/sYtzprVKISb0/EZN6ZojJfMxCn3ixMsnKZL6end2KlcnsrFxKVib1zFiZzMesbKtKxeSnP3+tufeBpdF2VrfN9Q2z9jILLvycOePko80XLj2/7PaWkj9nJkvBGlSmnRaTQcHo4cpw7qaHnZtoGmcm+8PXjN394WfG7v7ws2slZybD8nelYlKa7ra0xjFc8MEzzEXnnhkWGUVtEJMKWF2alAlJlzpOWW0mJEpgXZwcMdnFzlNUnbFbAauLkzJ2d7HzclQdMZkDWokmlYvJEtvSsawRkx1DX1nBTEgqQ93RgpiQdBR/pYUjJivF3bHCGLs7hr7Sghm7K8Xd8cIQkx13wZAKVComP3LxleZnDz2+S6Cdbr41CNFc9R2aADx6ZpyZ1DPjzKSemVgQzVXPjTOTemYE4NEzIwBPc2YE4NH3p1YWoY9pBODx6++iuVUqJuWc5PtPP2GXLa0E4Cnqxl3tCcCjZ0oAHj0zsbhp8SJz3Imnmem7zciXQUlWiMl8YBGTem6hT7wIwEMAHn2v1lkQgEfHS1ITgEfPTCy4NUg+bmVaVSomZQXyikvOM/NPPWZIm7g1iH8XIyb1TBGTemaIyXzM7r/3J2b8hElm7uFH5MugRCvEpB4uYlLPjJVJPTNWJpszY2VS359aWYQ+prEy6dffRXOrVEz24sqkOIAzk0W7Yfj2nLsJ30c+asi5Gx8UuyMPzkx2h5+K1pKxuyjB7rBn7O4OP/mqJWcmfZH0k0+lYlK2sy785q1m8TWXR/ealGvp48ujW4N0c0RXxKSfzhhyLkxIQvaOv7oxIfHHMvScEJOhe8hP/Ri7/XAMPRfG7tA95Ld+iEm/PIvmVqmYlMqm3Rokbetr0YZVaY+YrJJ2Z8piQtIZ7lWXyoSkauKdKw8x2Tn2VZbM2F0l7c6VxdjdOfadKBkx2QnqzcusXEyG1fzitSGaq54h0Vz1zIjmqmdGAB49M7HgzKSeW+jniwjAQwAefa/WWRCAR8dLUhOAR89MLAjAk49bmVaIyYJ0EZN6gIhJPTPEpJ4ZYlLPDDGZjxliUs+NADx6ZgTgac6MADz6/tTKIvQxjQA8fv1dNLfKxaQE4Vm1Zn1qvR+9a1HR9lRuj5jUI0dM6pkhJvXMEJN6ZojJfMxCn3h1YmVyu0W5fccOs83sMNvNsNrfHcZsi54zZsVvHjWvvPCsOez4U+wrpvErNjuG1fwgz0f/x16vPbfzdUm7S5qYzYRxI82mzVvNpi3bo3yjvFLzlHKGRa8/f9vNZuq8I83YPWdGac0w+7z8lSv2uP5MI01U5wzp473MpU+zdRwci22vrjdrb7vFTH3/B2p8WpQ1pIz6Py3LihkIh1qZtbbHy7KFpnLY9vAvovQD9QjV2TgI71p+UbZ1v0dPia/ck5Hfak+mpZdkI0cMNwMDxmwclJ4XS29fHH3zDWbzye8228dPqJXR6D87C23kHzGNHF3nK8nrFYvqVGu+S58sy9lGCdukH/H7F8yEpQ+b1SedtrMs16nitsPqbY/VLZl/u7Jq/ki0q0Vbdr//XrNhxu5m/ew5MQ71ThLVLdZH4v3FcYuK2vm+cc2q1Xton2r13qrxjTG3tvO+db1BTMbesAE8rFRMvvecy8z0aZPM16/6VABN91cFzkz6YxlqTpy7CdUzfuvFuRu/PEPKTQTHdjsRsZIiEjQzpo4xz6/aZP+3Aid6zoqSSPjUBM/O52tiKBJCki6aRlpxJKJIfu1ET16r2dm/dp7UsN8lH5euJqiifOr1cfWL/x/lN7xW1k4hVhNb8pqrww7bLsmvlq7WziH52NcicReVVRd28n9d2NWEnmu7zafRJld2rZ01RnW7If8Lmxofl09j8hhSJ6AuEIBA1xP45ORp5p9m79317eilBlQqJpvdZ7LbgSImu92D7euPmGzPqBdSICZrXpRvirfav5utONhiVcwWK16iv1ZKbLEqQX4328dbo7+Sxj62AmbzDvt6I719bPOopd8epduZvp5nI/2wKI9aGilnh83LRI931qFm74RVJNqcCHRCyAkcly4mHhE31b5Dh9vihlv+A1YwD5cVK/lrfTYQPWdfqy9QSBpZp3C/0f91Z8lzu76+cwEret1axu2jx7E8Rw7IMkpthUTyTb4+tIzaGlS0btKoQ20pS/KU5+qLKkMe116rGbjH0d/am6n2nMs34YaW6WOdtp5bI/92Zblihtat1q5afeyD2OMaxVrDG2XFlrsa+ezSFklfb18921rd2pfl0sTTN0DF69ZYom1e1gjbuUaOGIhWoYe0K8VvOxcad1a41oadfh7i851LmQ3/t0ofX2F13cClr/WDFmXV4Q9JH7V/aN2iijTrj7Hl12RZqf03Jb3LfyiHRhexL9f7e4a2DKlni7qlvc+GcqiVf8b4iYYAPImBpMP/IiY9OAAx6QFi4FkgJgN3kKfqdYOYFJG30QqvjVaIbbQTVfndkPhfXqs9J68n0tlP9pp93c6Kwo1WALq0G0RIur1cnriGkI2IkuG2XSI+RNDYXXGRuBDRI0JHNIe8Fv0vaRvPy+PtNWFkJ3Xymmy2i0RR/TkRSTW7mkhq2O+Sj0tXE1RRPvX6uPrF/4/ys76J8rOPa0KsJrbkNVcH+0Ee5VdLV2vnkHzsa5G4i8qqCzv5vy7sakLPtd3mY9tZa1O9bLFrMKrnE+MU1a3Oy+XjBEmnfc/Y3WkPVFN+N4zd1ZDoj1IQk2H5uVIxKdtcTzz2Leaic88Mi0KB2nBmUg+PM5N6ZpyZ1DPrxJlJ2eq3YbuNHGkn+xudSHNCLyYC1//sp2bL+PFmw4GHRGkjm0jkOfFnn9thn4tsbV4iDuX/aJWv3DW2S77/XfO/TjzFbBs1yowS0WXrPcoKiZHyzb8VGdFf+/xIWw15PMpKjhFWOYyUdMPt40b64TbNjnp6+9g+L3aSl6QXO7Efmr/kKWmlDGs7bHij7HW/XW5efvIx86ZTT68LppgIdEIoEnsikurCKiYek+LG561BODOpf38SgEfPjAA8zZkRgEffn1pZhD6mcWbSr7+L5lapmJR7TH5p4Q3mniVXF613MPaISb0rEJN6ZohJPbOkmJTtkdEqXUPUyQqfiLi6YLPCbYtdvtlql1he2bSlsVrnRJxbDZSVuygft5pn7aNVQPu/bMnMcp36yFKzZtxYc//s/bMkH5JmhBVOY63IGmvV0VgryMYOyOP6czblWCvGxg0fsK/Zx5LOKqtx9rkordjIY/v8OGdjX4/s7euS7uavXW3+7EMXmFGjR6vrVqbBiuXLzLInHjEnnfY+L8UgJr1gzJ0JYlKPDjGJmNT3mnwWiMl83PrVqlIxKWcmW11Ec/XXDX1PvPzVzBjEpJ4mYrLGbJ0VbavtCt2abdvMWvtY/q6xwm6NFYVrttX+rpX/7fNm1Svmj37xM/PN498ZCb3BjEJP752dFrLNsCbM7G8k6oaZMZGI2ynkxtnHe//y52aYPfex/eBDrahzYrBu0/T/Wh6j7OtlXtxnUk839IlXJ6K5tqOImGxHaNfXEZOISX2vyWcR+pjGymQ+v5ZlVamYLKsRnc6XM5Od9kD55XPuxh9j2aa5WkSfiEERgfbvWvt3df3/nSKx9lokEndsjf5mW/dLr6tsfaytzolos6t1kWhz/9f+TrSx5SeMHDDD7W0EotU9sYlW8WorfPEVwXE2bWN10NqOsyuEsoWTqzsI+FyZ7I4W92ctGbv7w++cmewPP7tWcmYyLH8jJj34AzHpAWLgWTAhSXfQy9u2mpWRCKyJvaEisSYYI5Fo0621IlJWDF+zK4d5r0l2tW+KFXlTor8jzGQr8OT/qVbYTZbnhtX/2v+n2uflOScAR2dY0WNCktcz3WeHmOw+n+WpMWN3HmrdZ8PY3X0+K1JjxGQRev5tKxeTcm7ysi9eN6QlV1xynpl/6jH+W1dRjojJikB3sJh+m5DIiuDvrQB8aesW85IVgNHjSDi6x9ui//NE/ZQgLFOssJsysFMM7hSIw60AFLHofiVd/TlrI9tIy7yYkJRJN6y8EZNh+aOs2vTb2F0Wx9DzZewO3UN+64eY9MuzaG6Vismrv3aTWfjNW83iay43cw+aHdV96ePLzYILP2cu+OAZXRnllQA8+i7ImUk9M19nJtdbMSgiUATiS43HW61YtP9vFfFof+3zmzKuHk6zQu9Dd/7YPHHk0WZg2vShItGKxUg0yoqhCEcRkbKNNMMKoZ7QrhadiOaatd733/sTM37CJDP38COymlSWjjOTetShny/izKQNtLVZYi1nu75782LzFjum7Tlz32wGFaXizGRz0ERz9dsJQx/TODPp199Fc6tUTB47/yLz/tNP2EU0isi88Tt3dmWUV8SkvgsiJvXM2onJTfY0oQjB2mpibRVRBGJjJbH+3KsZRaJsJ91jYKSZYcXfHlYI7m7/7m7/yuMZdtVw9xH2sf2VM4I3LV5kjjvxNDN9txn6hpVogZjMBxcxqecW+sQLMYmY1PdqncVDD/w0Mph35Nt1hp5SIyY9gaxnE/qYhpj06++iuVUqJiWaa9qWVrf1lWiuRd25055ornqWmwcHzbeuX2jO/ugndjHu5Fap9XbL6X2/fMCsWrfWbDriqLpQdNtOawJSzitmucZbITgjEooiEOu/I2pCcadYHG4kXdYLMZmV1M50rEzqmfke03xucw194oWYREzq33E6C8SkjpekfvH535lfPHCfec/7FuiNS7YIfUxDTJbcAZTZVyomQ1yZ/MjFV5qfPfR4A9v++800tyy6YgjG955zmXlqxfPRc2mvc2ZS2eu6MHnZYlLOHj5tzyf+1v4u3zJY/2sf2/9XWrHY7pIVQlkplBVDWTncZTUxWmEcaWTFkas5Ac7d9E/v8Ckm+4da97W07LG7+4j0Zo0Zu3vTr81axZnJsPxdqZgM8cykCNx7llzd8Ir8f8yRc80XLj0/ek7E5iur1jUEpgjL6dMmma9f9amGDWIyrE5dRm18TUh+F4nFmmj87bbN9rH8bjXPbN3ctNoSjfT1ViTuO2JkbfWwLhh3t+LQrTDK2UWu4gSYkBRn2C05ICa7xVPF6ulr7C5WC6zLJsDYXTbhsPJHTIblj0rFpDQ99Giun/78teaxJ59piEcRl5+84KxGtFmp/5cW3jBEgCImw+rUZdRGMyGRlcRILEbCcXPjr6wybrYrkM2u2SNGRaJx9shR0e/rrXiU373tL1c1BJiQVMM5hFIQkyF4ofw6aMbu8mtDCWURYOwui2yY+SImw/JL5WIyrObvWhtZeTz4gFnRyqSLNJsWfdY9RwAevUd7IQCPREX9rQ1qs9yuKP42Wl2sbUmV/9fZM47Nrj3tyqIIxJpgFLFY/zswyt72ojnLdgF49F7wZ8GZST1LzkzqmXFmUs9MLL76b//TcGaSM5P5ek92K85MZmflUnJmUs/MjWmcmczHriwrxGSMrKxK3nr7fcYFAsoqJkPs1E888YT51a9+Zc4666yy+k7ufG+44Qbzpje9yRx44IG58yjDcNOmTeZf/uVfzKc+VdvCLOcYn7RBeZYNbjZPbpK/9ndz7fELVjw2u6bZ84kHjBlt5oyW31H28RgzZ9So6PFE+1qe6/777zdr1641p5xySh7zUm2+8pWvmPe+971mjz32KLUcbea///3vzS233GI+9rGPaU1LT//DH/7QTJ482Rx11FGll6Ut4MorrzSf+MQnzBjbb0O6Qh7TpJ/NmjXLHH744SEhi+oiX3iG+Bn18MMPm2eeeSYaO0K7vvGNb5jjjjvO7LfffkFVbc2aNUbqJu/P0K677747qpJwC+2Sz/Wzzz7bTJkyJaiqrVixwgg3qVtoF2NaaB4Juz6ViEl3VjLtXpKtXqsSXavznKxM+vVEiCuTy+zq4i9fXWtWf/u/zL3v+9PoHOOKFucYx8g5xpF2S6qsLNa3p0arjFY07qaIhJqVLCuTWUntTMetQfTMxIJbg+i5hR75kJVJVib1vVpnwcqkjpekZmVSz0wsZLdFiF+Q5WtNb1hVIibTgtbE8SWD3FSNNrkiGS+fM5NVe6P88lbZ22g8vGWT+eXgJvPw5o3ml5s3mdVNbq0hAlHOMR40bqyZNXyE2cf+yjbVfTjHWL6jOlAC5246AL1DRXJmskPgKy6WM5MVA+9QcYzdHQLfoWI5M9kh8E2KrURMNru/pKtTJ+8zKUJXruTtQFzdiOYaVofNU5uHNw+ah61wFNH4sP19yq5CJq+97FnGN48Za948anR9tbEW/GbEsNpBRiYkech3nw0Tku7zWd4aIybzkusuO8bu7vJX3toyducl1512iMmw/NbXYtKdiUxzyRWXnNeI4Mp9JsPqtK1q86wNgrNTOA5Gq4+bzdAIqqPtPRnfPHpM7XfUGHO4/Z1pVx9bXUxIuqcPFKkpE5Ii9LrLFjHZXf7KW1vG7rzkusuOsbu7/FW0tojJogT92lciJpNbRZNNSLvdht9mlpcb0Vz1bH2dmdyww25XdSuONjiOrDy+aG/Lkbzm2MipIhjnWfEofw+zq49p12abx7euX2jO/uiuwQ06PSHhzKS+n3FmUs9MLDgzqefGmUk9sycfX2pefOE5c9w736U3VljkGbu/e/Ni85YjjzZ7ztxXUVL5SdevW2u+t2SxWfCh8IKKcWZS73/OTOqZiQVnJvNxK9OqEjGZvHdjskHtzlSWCaBo3ohJPcG8YvIJG0n1V/as40ObNtrtqoPmkS2DuxQ+bWC4OXxkbcWxtm11jJkyfHimSiImM2HaJRG3BtFz49YgembcGkTPzE28CMBDAJ58vSe7FWIyOyuXEjGpZ4aYzMesbKtKxKQ0QlYn5bpnydVD2iTPr1qzvnE7jrIb7Dt/xKSeaBYx+bJdYfyVPdtYE461845p92883K4yymqj27b6BhswJ++FmMxHDjGp54aY1DNDTOqZISbznXdnZVLf1xCTemaIST0zxGQ+ZmVbVSYmpSEuamq8UW+dd5D5+lW1+/p167V+wxazfuOu2yu7tT1V11tONEaCUbaqDtaiq/7Wnn1MXhJBVcSjCMdo26r9HVkPkFN2nfNslSq7TuTvnwDnbvwzDTVHzkyG6hm/9WLs9ssz1NwYu0P1TDn14sxkOVzz5lqpmMxbydDtEJM6Dz2zrR4kpxFhddBs3TE0SM44ex/H2opjbeVx3uixZo+BAV1BHlMzIfEIM+CsmJAE7BzPVUNMegYaaHaM3YE6xnO1GLs9Aw08O8RkWA5CTHrwB2KyPcRH7BnHOza+an9fM7+yj5PXgRIkJxZd9dAmQXLal1ROCiYk5XANLVcmJKF5pLz6ICbLYxtSzozdIXmjvLowdpfHNsScEZNheQUxWdAfnJlsDvABu/J4+4aagHxq6857O37g5z8zW94wx8x6/f711cexZlLGIDkF3dXSnDOT+ehyZlLPjTOTemacmdQzEwuJfEgAHgLw5Os92a04M5mdlUvJmUk9MzemfeYzn8lnjFUpBBCTBbEiJocCvHPjBnPHJhGQG8wLsXOPMwZGmJPHjjcn2d8dd95u5hx4qNlv9pyC9P2aIybz8URM6rkhJvXMEJN6ZohJAvDk6zV6K8SknhliUs8MMZmPWdlWiMmChPtdTG42O8wdG14zt9vVR9nGunb79gbR19vIqieNGx+JyLfZM4/uyhLNtaBbcpkjJnNhM4hJPTfEpJ4ZYlLPDDGJmMzXa/RWiEk9M8SknhliMh+zsq0Qkx4I99uZydXbttdXH2siMh485xB79vHk8RPNSWPGmzcFdu6xiKs5d1OEXvfYcu6me3xVtKacmSxKsDvsGbu7w09Fa8nYXZRgd9lzZjIsfyEmPfijH8Tkc3bLqpx9lN+7N20YQu1Iu+p40thx0RbWOSNHeyAaXhZMSMLzSRk1YkJSBtUw80RMhukX37Vi7PZNNMz8GLvD9EtZtUJMlkU2X76IyXzchlj1qpj8zebNjRXIB20wnfh1QiQeJ0QrkHuNGOGBYthZMCEJ2z++aseExBfJ8PNBTIbvIx81ZOz2QTH8PBi7w/eRzxoiJn3SLJ4XYrIgw147M/mwvW1HdP7RRmF9bMvOW3iMMsMa5x9FRE4uEH2VM5P6Trf04QfNa6+uM0cd8w69cckWnJnUA+bMpJ4ZZyb1zMSCaK6jzKZBornm6z3ZrTgzmZ2VS8mZST0zN6YRzTUfu7KsEJMFyfaCmPyp3bZ6xyZ7/tEG0nkmFoF16sBAffVxXBREZ8SwYQVp1cwRk3qMiEk9s1f+sNLc/aPbzJkLzslsXNW324jJzC5pJERM6pkhJgnAk6/X6K0Qk3pmiEk9M8RkPmZlWyEmCxLuRjG5QwRdPfqqRGJ9efu2BoW9R4yMzj7K73FjxhWkk26OmNRjRUzqmSEm9czE4htf/RfzZx+6wIwaHdb5Z8RkPn+yMsnKZL6eo7NCTOp4SWrEpJ4ZYjIfs7KtEJMeCHfDmclXrWC8Q1YgrXgUIblhx85beBxgI7CKeDzZbl89YvQYD0R6LwvO3fSeT9NaVNXKZH/QDLuVnJkM2z++asfY7Ytk2PkwdoftH9+148ykb6LF8kNMFuMXWYcqJldu29o4//ijRATWw0eNseLRBtEZN8Ec3KMRWD24tpEFExKfNMPNiwlJuL7xXTPEpG+iYebH2B2mX3zXirHbN9Gw80NMhuUfxKQHf4QmJu/auMEsenVNtAIZv95ut61K9NWTx40zs0aM8tDy/smCCUl/+JoJSX/4WVqJmOwPXzN294efGbv7w8+ulYjJsPyNmCzoj5DOTN6yYb0VkWvNA5s2mgNffMEc/tyzZtUfv6MWRMduY32dDagTwsWZSb0XODOpZ8aZST0zseDMpJ7b3T/+vtlzr73NAQfN1RuXbMGZSc5MltzFouw5M6mnzJlJPTOxkDGNaK752JVlhZgsSDYEMXn9+rXRSuRvtmyOWjPDisZzV68xs595xpz27vcVbKF/c8SkniliUs8MMalnhpjMxwwYjXGcAAAVzUlEQVQxqef25ONLzYsvPGeOe+e79MYKizwrk9+9ebF5y5FHmz1n7qsoqfyk69etNd9bstgs+NDHyi9MWQJiUgnMJkdM6pkhJvMxK9sKMVmQcKfE5HobUGeRve/gf6xfY16yZyPlmmMD6ZwzYbI5Z+IU4zvyYUFMQ8wRk3qaiEk9M8SknhliMh8zxKSeG2JSzwwx2ZxZq22ui6//inn3/AVm4qTJeuglWiAm88FlZTIftzKtEJMe6FZ5ZvI5ex9I2coqInLTDrnJh7ERWMdaATnZvG/cRA+tIYs0Anm+3YZk9xHg3E33+SxvjTkzmZdcd9kxdneXv/LWlrE7L7nutOPMZFh+Q0x68EcVYvLRLYNmkRWQ/9uuRrrrnfYc5DkTpph32KisXOUSYEJSLt9QcmdCEoonyq8HYrJ8xiGUwNgdghfKrwNjd/mMQyoBMRmSN4xBTHrwR5li8j57Sw9ZifzehlcbNT3TrkB+2G5lncc9IT14L1sWTEiycer2VExIut2D2euPmMzOqptTMnZ3s/ey152xOzurXkiJmAzLi4jJgv4o68zk9+1tPWQr60/r94ccZuspW1nlTOT+Ge4LyZlJvWM3Dw6ab12/0Jz90U/sYtzpCQlnJvX+5MyknplYEM1Vz40zk3pmnJnUM+PMZHNmnJnU96dWFqGPaURz9evvorkhJgsS9C0mF9eD6jxit7XKNWVgeLSVVX41t/ZATOodi5jUMxOLmxYvMsedeJqZvtuMfBmUZIWYzAcWMannFvrE66N/+Xf6RpVsgZjUA0ZMIib1vSafRehjGmIyn1/LskJMFiTrQ0wO7tjeCKrz7NZaZNZZI0aZD0eRWSebkcNkXVJ3ISZ1vCQ1YlLPDDGZj9n99/7EjJ8wycw9/Ih8GZRohZjUww194oWY3GY2bt6W2bHcGiQzqkZCbg2iZ0Y0Vz0zsSCaaz5uZVohJj3QzXtmcqW9pcd/2POQElhn3fbtUU0Os1tYPzxpinn/+EkeakYWvgh0epurr3aQT2sCnLvpnx7Cmcn+8DVjd3/4mbG7P/zsWsmZybD8jZj04A+tmFy2ZXN0HvIbVki669gx46LzkKeOm+ChRmThmwATEt9Ew8yPCUmYfimjVojJMqiGlydjd3g+KaNGjN1lUA03T8RkWL5BTHrwR1Yx+eDgpkhELtmwvlHqe6x4lK2sbxvN7T08uKK0LJiQlIY2qIyZkATljlIrg5gsFW8wmTN2B+OKUivC2F0q3uAyR0yG5RLEZEF/ZDkz+WMbkfU/1q82d27c0CjtA/a81DkTppqDRo0qWIN0c85M6rFyZlLPTCwIwKPnxplJPTPfY5pPMcmZSb0/CcCjZ0YAnubMiOaq70+tLEIf0wjA49ffRXNDTNYJXv21m8yN37nT3LPk6l2Yvvecy8xTK56Pnt9/v5nmlkVXNNK0EpP/97V1VkSuNb/cvClKP374QLSVVVYi9xoYUdR3Le19T7x8VvaO2242cw481Ow3e47PbAvnhZjMhxAxqeeGmNQz8z2mISb1PvBpgZjU00RMIib1vSafBWIyH7d+tep7MbnkB/eay754XeT/aVMm7iImP3LxleaVVesaAlKE5fRpk8zXr/pUZJMUkzvsc7KVdZE9D/m0PRsp155WOLp7RE6wgrKKy/fEy2edEZN6mtxnUs+MW4PomYkF0Vz13EKfeBHNlWiu+l6tsyCaq46XpCaaq56ZWBDNNR+3Mq36Xkw6uM1WJo+df5H55AVnmfmnHhMlFfH5pYU3DBGdcmby2dckqM5qG5l1rfnD9loI8gNH2tt7TJxiPmBXI7m6mwDnbrrbf1lrz7mbrKS6P53Plcnup9G7LWDs7l3fxlvG2N0ffnat5MxkWP5GTNb9kSYmlz6+3Cy48HNm8TWXm7kHzY5SJp97enCzuerFlebaNavN1h2yLmnMUaPH2pXIKeZ0IrOG1dsL1IYJSQF4XWTKhKSLnFWwqojJggC7xJyxu0scVbCajN0FAXaZOWIyLIchJguKyXc/vcLctm5dlMu7J0ww50+dZk4YNz4sL1ObwgTGjB4wW7fuMFu31e4HytWbBEYMDDcjRgwzmwaz3+C8N0n0fqsmjhtpZFcJV28TYOzubf+61jF294efXStl/OYKhwBisqCYlDOTT33ow+a8yVPMvDFjg/HsU8ueNI89+mtzxvw/CaZOriK3Lvk/5uBDDjP7zzkgqLoN2lu3XPeVfzcf/6uLd6lXpyckDz34gFm3fp05/oQTg2ImlfnPb3zNnPyu95gZM3YPqm4rV75kbv/+d80Hzj43c72qmpDcdeePzKSJk8y8I47MXLeqEn75X68y533sL8zo0WOqKjJTOb7HNJ9i8oe2n+29z77mkEMPy9SWKhNd9Y+fNxf/7aVVFpmprEcf+bV57tnfmVPs2FHmlWfs/vbi/zJHvf0Ys88+s8qsmjrvdWvXmhtv+E9z3vkfV9uWbfD/7rsnKuJtRx9bdlGp+bcau6+79svm/Wd9wEyaHNaRo2effcbc/9N7zZ8u+POOMGtVaOhjGtFcw+oyiMm6P/Kemcxya5BOuJwAPHrqRHPVMxMLornquRHNVc/M95jmc5srAXj0/iSaq54Z0VybM+PWIPr+1Moi9DENMenX30VzQ0y2EZPaaK5FHeLL3vfEy1e9JB+iueppEs1Vz4xornpmYkE0Vz230CdeRHMlmqu+V+ssiOaq4yWpieaqZyYWRHPNx61Mq74Xk/FbgzjQZ5x8tPnCpec3uLe6z6QkknM36zduLdNP5N1hAgRx6LADKiqeIA4VgQ6gGJ8rkwE0hyo0IcDY3R9dg7G7P/zsWkkAnrD83fdi0oc7EJM+KIadBxOSsP3jq3ZMSHyRDD8fxGT4PvJRQ8ZuHxTDz4OxO3wf+awhYtInzeJ5ISaLM2Rl0gPD0LNgQhK6h/zUjwmJH47dkAtishu8VLyOjN3FGXZDDozd3eAlf3VETPpj6SMnxGRBigTg0QPkzKSeGWcm9cw4M6lnJhacmdRz48yknhkBePTMCMDTnBkBePT9qZVF6GMaAXj8+rtobojJggQRk3qAiEk9M8SknhliUs8MMZmPWegTLwLwEIAnX8/ObkUAnuysXEoC8OiZiQUBePJxK9MKMVmQLmJSDxAxqWeGmNQzQ0zqmSEm8zFDTOq5sTKpZ8bKJCuT+l6TzyL0MY2VyXx+LcsKMVkWWfKFAAQgAAEIQAACEIAABCDQwwQQkz3sXJoGAQhAAAIQgAAEIAABCECgLAKIybLIki8EIAABCEAAAhCAAAQgAIEeJoCY7GHn0jQIQAACEIAABCAAAQhAAAJlEUBMFiD73nMuM0+teD7KYf/9ZppbFl1RIDdMO01A48+PXHyl+dlDjzeqjP877b3s5Wv8HM/16q/dZBZ+81ZzxSXnmfmnHpO9QFJ2jEAeXx9y/DmN+l7wwTPMReee2bH6U3A2Alo/Hzv/IrNqzfpG5o/etShbQaQKloCMzzd+505zz5Krg60jFdMRyOpT5mM6rmWkRkzmpCqd95VV6xoCUj7Mpk+bZL5+1ady5ohZJwlo/SmTkfiHlvx/zJFzzRcuPb+TzaDsNgS0fnbZuQ81mYAiJrujm2l9vfTx5WbBhZ8zCMju8K+rpdbPyc/qpH13tZ7aLvnBveayL14XgZg2ZSJisge6hNanzMc673TEZE4fSOf95AVnNVYopPN/aeENDGQ5eXbarKg/P/35a81jTz7D6nSnHdmm/Dx+jn87KqtWiMnAnVyvntbXIip2320qXwh1h3sbtdT6WdK///QTGivOWVc/ugxL31UXP/aey/P6lPlY9X0BMZmDufsGe/E1l5u5B82Ockh7LkfWmHSAgA9/yrfdBx8wi4loB/yXtcg8fk5+mCEms9LubLo8vhbfyspGfPtjfIzvbIsoPY1AHj/LRPPW2+8zZ5x8dDReM3b3Rt/KKzx6o/W92Yq8PuU9XX1/QEzmYJ7nAyxHMZhURKCoP93khHM3FTksZzFaP6d9kCEmc8Kv2Ezra5c+vurM+7pip+UoTuvn+Be/8S8OGLtzwA/MJK/wCKwZVCdGII9PGbc704UQkzm45/kAy1EMJhURKOJPF5SFFYyKnFWgGK2fk4f640Vzrq6AIyow1fq62c4SvjyowFkFitD6WYpK+pTJZwEHBGSaR3gEVH2qkkJA61PmY53rRojJnOy15zRyFoNZRQTy+JNJSEXO8VhMHj/Hi0dceHRGyVlpfZ3mW/xdspM8ZK/xcx7x6aGKZFEBAa3wqKBKFFGQgManzMcKwi5ojpjMCVAbQS5nMZhVRKCdP2UPvlzu9i/J/yuqJsUUJKD1c7I4xEVBB1RorvW1pF+2/LlGEDWZnNz7wFKCqlXoszxFaf0s7+G3zjuoEXkdP+ehHp6NRniEV3tqlEagmU+Zj4XXXxCTBXyivbdVgaIwrYBAK3/GBy/37XZalYj0WYGjChaR1c9pxSAmC8Kv2Fzr6/jWZm4zULGzChSn9XP8XqL4uQD4AEzjt5Fw1XHBlQKoHlXIQaCdT5mP5YBasglismTAZA8BCEAAAhCAAAQgAAEIQKAXCSAme9GrtAkCEIAABCAAAQhAAAIQgEDJBBCTJQMmewhAAAIQgAAEIAABCEAAAr1IADHZi16lTRCAAAQgAAEIQAACEIAABEomgJgsGTDZQwACEIAABCAAAQhAAAIQ6EUCiMle9CptggAEIAABCEAAAhCAAAQgUDIBxGTJgMkeAhCAAAQgAAEIQAACEIBALxJATPaiV2kTBCAAAQhAAAIQgAAEIACBkgkgJksGTPYQgAAEIAABCEAAAhCAAAR6kQBishe9SpsgAAEIQAACEIAABCAAAQiUTAAxWTJgsocABCAAAQhAAAIQgAAEINCLBBCTvehV2gQBCEAAAhCAAAQgAAEIQKBkAojJkgGTPQQgAAEIQAACEIAABCAAgV4kgJjsRa/SJghAAAIQgAAEIAABCEAAAiUTQEyWDJjsIQABCEAAAhCAAAQgAAEI9CIBxGQvepU2QQACEIAABCAAAQhAAAIQKJkAYrJkwGQPAQhAAAIQgAAEIAABCECgFwkgJnvRq7QJAhCAAAQgAAEIQAACEIBAyQQQkyUDJnsIQAACEIAABCAAAQhAAAK9SAAx2YtepU0QgAAEKiJw9dduMgu/eesupV3wwTPMReeeaY6df1H02j1Lrt4ljbw2bcokc8uiK6LX2uV1yPHntGzVtCkTo3I+cvGV5mcPPZ6a9opLzjPzTz3GvPecy8xTK5437n+XeMkP7jWXffE6s/9+Mxv1SmaUpR7HHDnX3Hr7fQ3TM04+2nzh0vNV5WZpR0VuphgIQAACEIBAKgHEJB0DAhCAAARyEXBiZ/E1l5u5B81u5CGi8Ef3/KIhxkR8vXXeQebrV32qkebTn7/W3PvA0obIzJpXUvQlxaC8Lnm9smpdUzEoaZyYTNbLPd9KTMZhOfGZVo+01zTlZmlHLsdhBAEIQAACEPBEADHpCSTZQAACEOg3AiIS3Ypbq7YnRdXSx5ebBRd+bsiqYNa8fIrJ6dMmRSuYTgy7eonAbCdGs9SjmZjMWi5ist/eUbQXAhCAQPcRQEx2n8+oMQQgAIEgCCS3qbaqlAijZcufi1YiZXVOBFV8pVKTl5TTakUwiwiTOhx8wCzz0h9Wm913mxptQZXVUrnkuTLFZNZys7QjiI5AJSAAAQhAoG8JICb71vU0HAIQgEAxAk7QxXNJ2+7pXo+fNXz0rkVDCtfm1U5MZjkzKaLurfMOjs5ISn2kfrJK+c9f/XbpYjJLuZyZLNY/sYYABCAAgfIJICbLZ0wJEIAABHqeQFL4pG1/dQLQBedpBkWTV5EzkyImXVAcqYtbLdWsCOY5M5m1XE09er6D0UAIQAACEAiSAGIySLdQKQhAAALdS0C2i0ok0+TqY9pZyXatbJZXu5XJdttU3TZXEZMuiqwTphoRV0RMtitXU492HHkdAhCAAAQgUAYBxGQZVMkTAhCAQI8TEGH4v2/+UbSyl7ycSEpGeW0mJvPk5VNMSv3lzKa7fYlGxBURk+3K1dSjx7sbzYMABCAAgUAJICYDdQzVggAEIBAyAScMpY7JFci0W4FIulZiUqK7avLyLSbjrDUirqiYbFWuph4h9xXqBgEIQAACvUsAMdm7vqVlEIAABEonEA+q4wprdiay3TZXTV7txGTWADxpK6saEdesHm57rmPizpDGt9cmnZMslwA8pXdfCoAABCAAgYIEEJMFAWIOAQhAAAIQgAAEIAABCECgHwkgJvvR67QZAhCAAAQgAAEIQAACEIBAQQKIyYIAMYcABCAAAQhAAAIQgAAEINCPBBCT/eh12gwBCEAAAhCAAAQgAAEIQKAgAcRkQYCYQwACEIAABCAAAQhAAAIQ6EcCiMl+9DpthgAEIAABCEAAAhCAAAQgUJAAYrIgQMwhAAEIQAACEIAABCAAAQj0IwHEZD96nTZDAAIQgAAEIAABCEAAAhAoSAAxWRAg5hCAAAQgAAEIQAACEIAABPqRAGKyH71OmyEAAQhAAAIQgAAEIAABCBQkgJgsCBBzCEAAAhCAAAQgAAEIQAAC/UgAMdmPXqfNEIAABCAAAQhAAAIQgAAEChJATBYEiDkEIAABCEAAAhCAAAQgAIF+JICY7Eev02YIQAACEIAABCAAAQhAAAIFCSAmCwLEHAIQgAAEIAABCEAAAhCAQD8SQEz2o9dpMwQgAAEIQAACEIAABCAAgYIEEJMFAWIOAQhAAAIQgAAEIAABCECgHwkgJvvR67QZAhCAAAQgAAEIQAACEIBAQQKIyYIAMYcABCAAAQhAAAIQgAAEINCPBBCT/eh12gwBCEAAAhCAAAQgAAEIQKAgAcRkQYCYQwACEIAABCAAAQhAAAIQ6EcCiMl+9DpthgAEIAABCEAAAhCAAAQgUJAAYrIgQMwhAAEIQAACEIAABCAAAQj0IwHEZD96nTZDAAIQgAAEIAABCEAAAhAoSAAxWRAg5hCAAAQgAAEIQAACEIAABPqRAGKyH71OmyEAAQhAAAIQgAAEIAABCBQkgJgsCBBzCEAAAhCAAAQgAAEIQAAC/UgAMdmPXqfNEIAABCAAAQhAAAIQgAAEChJATBYEiDkEIAABCEAAAhCAAAQgAIF+JICY7Eev02YIQAACEIAABCAAAQhAAAIFCSAmCwLEHAIQgAAEIAABCEAAAhCAQD8SQEz2o9dpMwQgAAEIQAACEIAABCAAgYIEEJMFAWIOAQhAAAIQgAAEIAABCECgHwkgJvvR67QZAhCAAAQgAAEIQAACEIBAQQKIyYIAMYcABCAAAQhAAAIQgAAEINCPBBCT/eh12gwBCEAAAhCAAAQgAAEIQKAgAcRkQYCYQwACEIAABCAAAQhAAAIQ6EcCiMl+9DpthgAEIAABCEAAAhCAAAQgUJDA/w+QWKXSHSFm1QAAAABJRU5ErkJggg==", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dynamics_fixed.plot_history(colors=['darkturquoise', 'green'], show_intervals=True)" ] }, { "cell_type": "markdown", "id": "3396051b-ecff-4a08-8c71-7c96f7429da3", "metadata": {}, "source": [ "Notice how grid points are being \"wasted\" on the tail part of the simulation, where little is happening - grid points that would be best used in the early part, as was done by the variable-step simulation of Part 1" ] }, { "cell_type": "code", "execution_count": null, "id": "8f453c61-296d-4627-8d4f-85c531eb4abc", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "73229033-14a0-41cd-84fb-5d688efc2e9d", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "f2d90ba4-b243-4dc0-8c83-d6e73c9cd6eb", "metadata": {}, "source": [ "# PART 3 - EXACT Solution" ] }, { "cell_type": "code", "execution_count": 15, "id": "33b22e64-70f3-4bf8-bb0b-0551ab11acd0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0. , 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21, 0.24, 0.27, 0.3 ,\n", " 0.33, 0.36, 0.39, 0.42, 0.45, 0.48, 0.51, 0.54, 0.57, 0.6 , 0.63,\n", " 0.66, 0.69, 0.72, 0.75, 0.78, 0.81, 0.84, 0.87, 0.9 , 0.93, 0.96,\n", " 0.99, 1.02, 1.05, 1.08, 1.11, 1.14, 1.17, 1.2 ])" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "t_arr = np.linspace(0., 1.2, 41) # A relatively dense uniform grid across our time range\n", "t_arr" ] }, { "cell_type": "code", "execution_count": 16, "id": "e33e7806-cb5b-40c7-8ada-1cf8aa2b8abb", "metadata": {}, "outputs": [], "source": [ "# The exact solution is available for a simple scenario like the one we're simulating here\n", "rxn = chem_data.get_reaction(0) # Object of type life123.reaction.Reaction\n", "\n", "A_exact, B_exact = ReactionKinetics.solve_exactly(rxn=rxn, A0=10., B0=50., t_arr=t_arr)" ] }, { "cell_type": "code", "execution_count": 17, "id": "00526b58-deb1-4209-b05b-f4ca927d990b", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "A (EXACT) :
SYSTEM TIME=%{x}
value=%{y}", "legendgroup": "wide_variable_0", "line": { "color": "darkturquoise", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "A (EXACT)", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21, 0.24, 0.27, 0.3, 0.32999999999999996, 0.36, 0.39, 0.42, 0.44999999999999996, 0.48, 0.51, 0.54, 0.57, 0.6, 0.63, 0.6599999999999999, 0.69, 0.72, 0.75, 0.78, 0.8099999999999999, 0.84, 0.87, 0.8999999999999999, 0.9299999999999999, 0.96, 0.99, 1.02, 1.05, 1.08, 1.1099999999999999, 1.14, 1.17, 1.2 ], "xaxis": "x", "y": [ 10, 11.95008833004919, 13.62854491045595, 15.073205877295173, 16.316637094683628, 17.386868261625793, 18.30802476363161, 19.100871512443824, 19.78328103322917, 20.37063635095752, 20.876177757921983, 21.311301279309443, 21.685815564897787, 22.008162997788812, 22.285610004458253, 22.524410856133898, 22.729948653948224, 22.906856675983857, 23.059122821643502, 23.190179507752262, 23.302981042849904, 23.400070223861437, 23.48363565638264, 23.555561090707048, 23.617467885737906, 23.670751558015873, 23.71661323975874, 23.75608675504709, 23.790061924513314, 23.819304623873283, 23.84447404846461, 23.86613757297239, 23.88478354131372, 23.90083227499327, 23.91464554808278, 23.926534742411462, 23.93676786680342, 23.945575598591333, 23.953156483595404, 23.959681411786764, 23.96529746952667 ], "yaxis": "y" }, { "hovertemplate": "B (EXACT) :
SYSTEM TIME=%{x}
value=%{y}", "legendgroup": "wide_variable_1", "line": { "color": "green", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "B (EXACT)", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21, 0.24, 0.27, 0.3, 0.32999999999999996, 0.36, 0.39, 0.42, 0.44999999999999996, 0.48, 0.51, 0.54, 0.57, 0.6, 0.63, 0.6599999999999999, 0.69, 0.72, 0.75, 0.78, 0.8099999999999999, 0.84, 0.87, 0.8999999999999999, 0.9299999999999999, 0.96, 0.99, 1.02, 1.05, 1.08, 1.1099999999999999, 1.14, 1.17, 1.2 ], "xaxis": "x", "y": [ 50, 48.04991166995081, 46.37145508954405, 44.92679412270483, 43.68336290531637, 42.61313173837421, 41.69197523636839, 40.899128487556176, 40.21671896677083, 39.62936364904248, 39.12382224207802, 38.68869872069055, 38.31418443510221, 37.991837002211184, 37.71438999554175, 37.4755891438661, 37.27005134605177, 37.09314332401614, 36.9408771783565, 36.80982049224774, 36.69701895715009, 36.599929776138566, 36.51636434361736, 36.444438909292955, 36.38253211426209, 36.32924844198413, 36.28338676024126, 36.24391324495291, 36.20993807548669, 36.18069537612672, 36.155525951535395, 36.13386242702761, 36.11521645868628, 36.09916772500673, 36.08535445191722, 36.07346525758854, 36.06323213319658, 36.05442440140867, 36.04684351640459, 36.04031858821324, 36.034702530473325 ], "yaxis": "y" } ], "layout": { "autosize": true, "legend": { "title": { "text": "Chemical" }, "tracegroupgap": 0 }, "margin": { "t": 60 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "EXACT solution" }, "xaxis": { "anchor": "y", "autorange": true, "domain": [ 0, 1 ], "range": [ 0, 1.2 ], "title": { "text": "SYSTEM TIME" }, "type": "linear" }, "yaxis": { "anchor": "x", "autorange": true, "domain": [ 0, 1 ], "range": [ 7.777777777777778, 52.22222222222222 ], "title": { "text": "concentration" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5MAAAFoCAYAAADKJa96AAAgAElEQVR4Xu29C5xc1X3neVrdrXfrCQJLYAnxCBKW44ANMeFpMyz5jJEVsgH2s4vDBxgWktXEwTsDmA0zw6x4zAYSW3HQhwDDhp2swBMsRPwJw8cxYLH2QAKOkYVkHkLCgI1BQlLr0Wr1Y8//Vp3qW9VVXXVvnXvuuae+5U+7quue+z//8/3dPpyfzrnndo3ql+IFAQhAAAIQgAAEIAABCEAAAhBIQKALM5mAFkUhAAEIQAACEIAABCAAAQhAICKAmeRCgAAEIAABCEAAAhCAAAQgAIHEBDCTiZFxAgQgAAEIQAACEIAABCAAAQhgJrkGIAABCEAAAhCAAAQgAAEIQCAxAcxkYmScAAEIQAACEIAABCAAAQhAAAKYSa4BCEAAAhCAAAQgAAEIQAACEEhMADOZGBknQAACEIAABCAAAQhAAAIQgABmkmsAAhCAAAQgAAEIQAACEIAABBITwEwmRsYJEIAABCAAAQhAAAIQgAAEIICZ5BqAAAQgAAEIQAACEIAABCAAgcQEMJOJkXECBCAAAQhAAAIQgAAEIAABCGAmuQYgAAEIQAACEIAABCAAAQhAIDEBzGRiZJwAAQhAAAIQgAAEIAABCEAAAphJrgEIQAACEIAABCAAAQhAAAIQSEwAM5kYGSdAAAIQgAAEIAABCEAAAhCAAGaSawACEIAABCAAAQhAAAIQgAAEEhPATCZGFtYJzzz/j+qP/9231M1/+D+pr/ze/xBW42gNBCAAAQhAAAIQgAAEIJAZgUKbyf/9jvvV33//xYZwfvsLZ6k/vf1G9T//b/+n+uefvtnQMJk4V19xifo3N15ZFe+vv/3f1D3f+n+j7/7sP/yhuvj8z00oxmkXXD3uuMkjHquZoo8/8O/VaacsaVas7ePtmskvXn6TOnbBPPVf/uL/qMrFxDVtbztRAkAAAhCAAAQgAAEIQAACXhEIwky2YryMoawta0xPPSMpSpnz5PNExsgY0toyW17foS6//t9Hom957pFx4ov5/MynThpnxlxdJZhJV6SpBwIQgAAEIAABCEAAAmER6BgzaUxdrXGbyMyZc8Ro/vOWN6PZzXqG0Mw4TrRUVExp7eydXEqhmsmw/kxoDQQgAAEIQAACEIAABCBQS6BjzKQ03Jg+MwtpZhPrGUQp/3/dv1498tjTSmYzX/7Jz6LlrvUMoyz1lNc/PH5f4issrZk0ucUrrLcMt3bZbW3+9WYmG3GJ85AluNLuX/5q97g2C8+4Ea9dOtwsp/i5Elw0MK9GM8iJwXMCBCAAAQhAAAIQgAAEINAWgY4yk0Iqfn+kmJSJZhNr7wesZ/yM8Ul7b2AaM2naEF+ya5bjGmNcb/nuRN/FObRqJoVno3sm65nJVnOKLw2Om0fzjwGt3Lva1l8FJ0MAAhCAAAQgAAEIQAACTQkEYSYbtbKRwTMzYxMZwIlm7OImrtk9l80USGMmGxk4mTk0s4BiLmXWsHa2tHZ2sZ2ZyaRmstWcms1qpjXuzbTgOAQgAAEIQAACEIAABCDQOoEgzGQrG/DEkRgzOdHGN/Vm51qdWWsdf7p7Js0s5ESmStpY73iteXRpJlvNCTOZ5AqiLAQgAAEIQAACEIAABPIh0HFmMv6YkEb3QIoU9R7xYSSSR2GYGb92H4GRZmZS8ojvMmvyMktVJzJjtYbYlZlMkhNmMp/OgFohAAEIQAACEIAABCCQhEBHmcnae+4aPS5konvzzDLR+H17eWzAUyuyMb9mlrbVWUBXZtIY9FZmSzGTSf6EKQsBCEAAAhCAAAQgAIF8CHSMmWy0UU69mcHazWzi0tSLYwzmRDuNyrLZP739xnEqp5mZrBernlF2cc+ksJJX7WNP6hlC7pnM54+cWiEAAQhAAAIQgAAEIJAFgY4xk41mD2sfF9LK7qz1zKa5x7J25i2+M2m9R5CkMZNyTnyprVwYjXZzjefT6m6u9WYr448iid+jWruhj7lIJ9rNtVlOzExm8adOTAhAAAIQgAAEIAABCNglEISZbITEmBbzPMRGj5SIPy5EYskjQyZ6/IQxoLWPFYkbx3hOE81YpjGT9eqpNZem/mbPdKxnHOVc00YTR9pg2NRueFR7/6bN50zWe0Ylu7na7QSIBgEIQAACEIAABCAAgTQECm0m0zSYcyAAAQhAAAIQgAAEIAABCECgfQKYyfYZEgECEIAABCAAAQhAAAIQgEDHEcBMdpzkNBgCEIAABCAAAQhAAAIQgED7BDCT7TMkAgQgAAEIQAACEIAABCAAgY4jgJnsOMlpMAQgAAEIQAACEIAABCAAgfYJYCbbZ0gECEAAAhCAAAQgAAEIQAACHUcAM9lxktNgCEAAAhCAAAQgAAEIQAAC7RPATLbPkAgQgAAEIAABCEAAAhCAAAQ6jgBmsuMkp8EQgAAEIAABCEAAAhCAAATaJ4CZbJ8hESAAAQhAAAIQgAAEIAABCHQcAcxkx0lOgyEAAQhAAAIQgAAEIAABCLRPADPZPkMiQAACEIAABCAAAQhAAAIQ6DgCmMmOk5wGQwACEIAABCAAAQhAAAIQaJ8AZrJ9hkSAAAQgAAEIQAACEIAABCDQcQQwkx0nOQ2GAAQgAAEIQAACEIAABCDQPgHMZPsMiQABCEAAAhCAAAQgAAEIQKDjCGAmO05yGgwBCEAAAhCAAAQgAAEIQKB9ApjJ9hkSAQIQgAAEIAABCEAAAhCAQMcRwEx2nOQ0GAIQgAAEIAABCEAAAhCAQPsEMJPtMyQCBCAAAQhAAAIQgAAEIACBjiOAmew4yWkwBCAAAQhAAAIQgAAEIACB9glgJttnSAQIQAACEIAABCAAAQhAAAIdRwAz2XGS02AIQAACEIAABCAAAQhAAALtE8BMts+QCBCAAAQgAAEIQAACEIAABDqOAGay4ySnwRCAAAQgAAEIQAACEIAABNongJlsnyERIAABCEAAAhCAAAQgAAEIdBwBzGTHSU6DIQABCEAAAhCAAAQgAAEItE8AM9k+QyJAAAIQgAAEIAABCEAAAhDoOAKYyY6TnAZDAAIQgAAEIAABCEAAAhBonwBmsn2GRIAABCAAAQhAAAIQgAAEINBxBDCTFiR/f9chC1EIkTeBBXOmqN39R9TQ8EjeqVB/mwR6uiepeX296ld7DrcZidN9INA3rSdKo//QkA/pkEObBOhr2wTo0en0tR6JYSmVhfOnWYpEmE4hgJm0oDRm0gJED0IwwPFABEspMMCxBNKTMJhJT4SwlAZ9rSWQHoShr/VABMspYCYtA+2AcJhJCyJjJi1A9CAEAxwPRLCUAgMcSyA9CYOZ9EQIS2nQ11oC6UEY+loPRLCcAmbSMtAOCIeZtCAyZtICRA9CMMDxQARLKTDAsQTSkzCYSU+EsJQGfa0lkB6Eoa/1QATLKWAmLQPtgHCYSQsiYyYtQPQgBAMcD0SwlAIDHEsgPQmDmfRECEtp0NdaAulBGPpaD0SwnAJm0jLQDgiHmbQgMmbSAkQPQjDA8UAESykwwLEE0pMwmElPhLCUBn2tJZAehKGv9UAEyylgJi0D7YBwHW8mb73zAbXxmR+Ok3rLc49Uvvvy1bepN3e8F/1+0pJF6slH1lSVx0yG8ZfCACcMHaUVDHDC0VJagpkMS0/62nD0pK8NR0vTEsxkeJpm3SLMpDaTr72+c5xBNOCvueketWv3vspxMZbz581SD993c0UbzGTWl6mb+Axw3HB2UQsDHBeU3dWBmXTH2kVN9LUuKLupg77WDWeXtbg0k/XG1C7b2k5dm7duV1feeIdaf//tasWype2EKvy5mMkmZvLcVavV1264Qq265JxI7A1Pv6DuXfeY2rRhLWay8Jd/dQMY4IQjKAOccLSUlmAmw9KTvjYcPelrw9HStMSmmZQJmRdf2VoFad6cvsoYOg8zKeP42+5+UK255brK2D6NipjJMWqYyZplrvGLvN6FUu87ZibT/Bn6dw4DHP80SZsRA5y05Pw8DzPppy5ps6KvTUvOv/Poa/3TpN2MbJnJ0y64WsXH1CYvMZjHHDVX3fX161UeZrJdPuZ8zCRmsuG1JBe2vOS+yFbM5J88+yfq5Dmnqd/5td+1dX0SJycCM6b2qEODw2pkZDSnDKjWFoFJk7rUtMnd6sDAkK2QxMmRwOTeSVHtg0dGcsyCqm0RoK+1RTL/OPS1+WtgO4O+6b1thxTD+Mb2d6tW8dULasykHDMzmI0MaHyGM760VFYQnnPmCvXCS5vV7j39UTU3XLVSHb9oQTQDaV7mnHpj+9oZVDl/9bWXqXozq2ZPFczkmKIdPzNZe3Gb6W+5WFoxk13/oSsK8cUlF6t/+/lb1eeP+622/wgJkA8BBjj5cM+iVgY4WVDNLyZmMj/2WdRMX5sF1Xxi0tfmwz3LWm2YSZmVXHnx2dHs40Qvs8GlMW9SVszhyUuPq+xNUrt3ydqHnlDrHt2ojKmT8mIijVk0x2uX00rsehNFtcZXxv5/9lffjuqXY3/8r36vck9kswmnLHXxOTZmskaduJk0F/VE90x+88Vvqjue+49q18BHUaTLl12lvvrZm9Xi2Z19M67PF32j3Fh6VUTV6ufM0qtwtJSWsMw1LD3pa8PRk742HC1NS9pd5momYlq5J7HeMld5yoLZGLPR7J8YyMsvvTCaPTQzk8a41jtHYsrMpex3Ej8ubZZNdFrJVcqKUX38qWfHxWEDntHRjl7TJxdhfDOdZv8iUu/Cf+OXH6pv/tN/Un/x8p9WepXVZ/wb9Uefu1lN65keXk8TaIsY4IQjLAOccLTETIalpbSGvjYcTelrw9HSRzNpJnjqUTazmY3MZNwgNjKBb+18P1oKG38cYG1dZuYz/n2j1YvhXQ2ttajjZybjz5AUZGedvqzqsR/yXavPmdyx9y315/94j/r2tv8non/UtKO1obxFXfPpG1tTg1K5EmCAkyt+q5UzwLGKM/dgzEzmLoHVBOhrreLMNRh9ba74M6m83ZlJSSrJMtfax+3FZyZrVwvWa3CWZlLaEfcF8SW23DM5pkbHm0kbf4m1u7m++Iv/T31Dm8rn3/leFH75/BXqq9pU/suTfsdGdcTIiAADnIzA5hCWAU4O0DOsEjOZIdwcQtPX5gA9oyrpazMCm2NYG2ay2QY8Yhgb7eZab5nrRMtQ2zGTgrnRMtd6RhYzWf/CxExa+INt9GiQp974W/XnL9+ttn20JarlwsX/Qv3RGbeozy38vIVaCWGbAAMc20Tzi8cAJz/2WdSMmcyCan4x6WvzY2+7Zvpa20Tzj2fDTEor6j0axBg0szlPs3smJY7ZUTW+FFUM51mnL4+eE9mOmZR7HSWH3Xv2VW55MxvwyMY7tUZT2iQvlrlWX6eYSQt/t82eM/ngT76lvvFPd6vdh3ZFtV25/PfVH+lNej45a4mF2glhiwADHFsk84/DACd/DWxmgJm0STP/WPS1+WtgKwP6Wlsk/Yljy0zGjWC8dfFZxlbMZKM48d1c5dEgtRvwtHLPpNk4p/aWN3OumNaNz/ywkr7cp2l2kmWZ65iqmEkLf7/NzKRUsX+wP9qk51uv3Fup8V9rQ/lVvUnPlO6pFrIgRLsEGOC0S9Cf8xng+KOFjUwwkzYo+hODvtYfLdrNhL62XYL+nW/TTPrXOjLKggBm0gLVVsykqWb7njf0LOV/Uv9123+Jvlow/Zhok56rV/yvFjIhRDsEGOC0Q8+vcxng+KVHu9lgJtsl6Nf59LV+6dFONvS17dDz81zMpJ+6+JwVZtKCOknMpKnuR+9t0qbyHrXp59+Pvlo86wR1za//gbr203+gurq6LGRFiKQEGOAkJeZveQY4/mqTJjPMZBpq/p5DX+uvNkkzo69NSsz/8phJ/zXyLUPMpAVF0phJU+2Tb3xbrXvlz9WrH/44+kpmKo2pnN47w0J2hGiVAAOcVkn5X44Bjv8aJckQM5mElv9l6Wv916jVDOlrWyVVnHKYyeJo5UummEkLSrRjJk31333zO+qhn/ylkseKyKtv8ix17a//YTRTOW/afAtZEqIZAQY4zQgV5zgDnOJo1UqmmMlWKBWnDH1tcbRqlil9bTNCxTuOmSyeZnlnjJm0oIANM2nS+P7O/6YeevVb6rmdpWdU9nT3qmtX6OWvegnsor7jLWRLiEYEGOCEc20wwAlHy+gf16b1RA3qPzQUVsM6tDX0teEIT18bjpamJZjJ8DTNukWYSQuEbZpJk86P3vuBkkeKPL39qUqGX/nUv4pM5Ulzf81C1oSoJcAAJ5xrggFOOFpiJsPSUlpDXxuOpvS14WiJmQxPS1ctwkxaIJ2FmTRp/fiX/6hnKv9Sfef1xyqZ/t6p/0tkKlcc/RkL2RPCEGCAE861wAAnHC0xk2FpiZkMS0/62rD0lNYwMxmeplm3CDNpgXCWZtKkt23Xlmj5699seaSS8aUn/250T+XnPvF5C60gBGYynGuAAU44WmImw9ISMxmWnvS1YemJmQxPTxctwkxaoOzCTJo0d+7bHm3UIz/mddGS345mKs87/osWWtO5ITCT4WjPACccLTGTYWmJmQxLT/rasPTETI7Xc8PTL6jb7n5Q3XDVSrX62su8FnztQ0+odY9uVGtuuU6tuuQcZ7liJi2gdmkmTbofHPhFxVQODB+Kvv7sJ35TXbnsK+oK/TOpa5KFlnVWCMxkOHozwAlHS8xkWFpiJsPSk742LD07xUyeu2p1JNymDWubCihlv3bDFRVz9uWrb1Nv7nhv3HliNuUlZm7Lc49UHT/tgqvVyovPVnd9/frK981ykOO79/RXxZG4EqvRS0ykvO5d91hLbWva+BYLYCZbBDVRsTzMpMln3+G92lR+K7qv8uOB3dHXs6fMUVcs/4o2lr+vfm3eMgst7IwQmMlwdGaAE46W0hJ2cw1LT/racPSkrw1HS9OS0O+ZlJnG/7z+77VR21dlEuspKTN939v0snrykTWVw2Iml5+yuMoYxs+99c4H1Guv76ycc81N90SHH77v5kqxiXLYvHW7uvLGO8aZT4krL2NITbn199+uVixbWpW+5HjRuWc4m0nFTFroB/I0k/H0H9v61+qxrY+qF98vPatSXl9YfHE0U/mlk/yemrcgQ9shGOC0jdCbAAxwvJHCSiKYSSsYvQlCX+uNFG0nQl/bNkLvAoRuJsXc/cZpJ6sfb3ljnMmrFaOeKWtmJiWGzCpefumF6vhFC6IlsrUzlRPlIPHnz5tVZT7rXSQTmcl6JjjLCw0zaYGuL2bSNOWVX76kTeVfq/XbHlVDw0eir4/r+2RpCayesVw48zgLrQ4vBAOccDRlgBOOltISzGRYetLXhqMnfW04WpqW2DKTe4dH1A/273cOaE53tzp35oyG9coyUZnNe2vn+02Xg5qy8Zm/Vsykuc9y3py+yFTW3ms5UQ5yrJV7Hicyk+ZYrYnNSgzMpAWyvplJ06T+wX3RTOX6rf+32vrRTystXXny/6iuOPUr6oLFF1lofTghGOCEoyUDnHC0xEyGpaW0hr42HE3pa8PR0raZ3Dk4qJZs2eYc0OLJk9WO006tW69ZXmqWrTYzbnK81pBNdM9k3DTK7OOu3fuqlshKUhPlMJFBrG1Qs7L1cs9KDMykBbK+msl4055/53uRsXzyjW9Xvl521KciUykzln1TZlkgUewQDHCKrV88ewY44WiJmQxLS8xkWHrS14alp7TG5szkVTvfcQ5odvck9ejiT9at1ywvNaav3v2M8RMbmcmJ7pk0hlE2wZFX7cxksxyaGVyTH2bS+aWVbYVFMJOGwPv970ZLYB/TS2B/vm9n9HXPpB5tKq9SVy7/fXX6sWdmC8vj6JhJj8VJmBoDnITAPC/OMlfPBUqYHn1tQmAeF6ev9ViclKnZMpMpq8/0tEY7oTZaDpp2mavZAVYaU3vPZLMcbNwzyTLXTC+jbIIXyUzGCXz3ze9ES2C/v/OZytfyeJEvnXiZuvTky9SxMxZmA8zTqAxwPBUmRVoMcFJA8/gUzKTH4qRIjb42BTRPT6Gv9VSYNtIK1UzK8tJ6j8yYaCYwzQY8tbOd8d9bycHcb1n7KBHZVOf9Dz5qaTdXNuBp4w8gr1OLaiYNr5/t2lrasEcby72H91Qwyk6wkbE85XfV9J7GNzPnxd12vQxwbBPNLx4DnPzYZ1EzZjILqvnFpK/Nj73tmulrbRPNP16oZrLRjN9ES10bPRqk0XMmxextfOaHDZ8zKY8MqbdTa70camcwZTOf+HMxeTRI/n8rVjMoupk0MEbVqHrqjb9Vf/fmE+q7b22oMJJlsGIqv6RnK397aemhrCG+GOCEoyoDnHC0lJZgJsPSk742HD3pa8PR0rQkVDOZVimzZHXVJeekDeH0vEazn1kmwQY8FuiGYibjKGSGUozlU9pYvvDus5VDc6fOi55ZufLk31VnLzrfAj1/QjDA8UeLdjNhgNMuQb/Ox0z6pUe72dDXtkvQn/Ppa/3RwlYmmMlqkmbZ6Q1XrRz3iA9bzG3FkZnUdY9ubOnRIrbqlDiYSQs0QzSTcSzv7N2h/u6tJyJz+eqHP64cWjx7qbpUG0sxlyuO/owFkvmGYICTL3+btTPAsUkz/1iYyfw1sJkBfa1NmvnGoq/Nl38WtWMms6AadkzMpAV9QzeTcURbPnq1MmO5Y+9blUNiJsVUXqpnLBfPOsECVfchGOC4Z55VjQxwsiKbT1zMZD7cs6qVvjYrsu7j0te6Z551jZjJrAmHFx8zaUHTTjKTcVw/eu8HaqPcY6lnLXcf2lU59FvHXaAuXPwv1PmfvEgtn7/CAmE3IRjguOHsohYGOC4ou6sDM+mOtYua6GtdUHZTB32tG84ua8FMuqQdRl2YSQs6dqqZjKN7evtT0cY9T735t2poZKhy6PhZi9X5x39RnaeN5XnHf0H1TZ5lgXg2IRjgZMM1j6gMcPKgnl2dmMns2OYRmb42D+rZ1Elfmw3XPKNiJvOkX8y6MZMWdMNMjkE8NHRQPfP2d9UPfv599fw731O/2P9eFWHZtOf8T34xmrX07T5LBjgW/hg8CcEAxxMhLKWBmbQE0pMw9LWeCGEhDfpaCxA9C4GZ9EyQAqSDmbQgEmayMUTZsEdM5fPv/IOSZbHx18KZx0Wm8rzjvqDOX3yRmj1ljgU10odggJOenW9nMsDxTZH28sFMtsfPt7Ppa31TJH0+9LXp2fl6JmbSV2X8zQszaUEbzGRrEPsH96nnd35Pz1r+g3pe/7zb/07Vib+58Jxo1vI8vSz2M8d8trWgFksxwLEIM+dQDHByFsBy9ZhJy0BzDkdfm7MAFqunr7UI05NQmElPhChQGphJC2JhJtNBlJ1hZdZSlsRu0j/x1zEzPlGatdT3WZ5//EVq3rT56SpJcBYDnASwPC/KAMdzgRKmh5lMCMzz4vS1nguUID362gSwClIUM1ktFM+ZbH7hYiabM2paAjPZFFHTAgeO7K/cZ/kDvSR25763q8753Cc+X97I54vqjGPPahovTQEGOGmo+XkOAxw/dUmbFWYyLTk/z6Ov9VOXNFnR16ah5vc5IZvJc1etVrv39FcJsOW5RyYURM752g1XqFWXnBOV+/LVt6k3d1TvByLf33DVyuj4ukc3qtqYp11wtVp58dnqrq9fX6lL4spr04a1detvlKvEavRac8t10aF71z3WMG4WVx9m0gJVzKQFiDUhtu3aosRUPv/z0v2Wo/p/5nX09AXRUtjzyktiF0w/xkoCDHCsYPQiCAMcL2SwlgRm0hpKLwLR13ohg5Uk6GutYPQqSOhm8vJLL1Srr70sYn7NTfeoXbv3qScfWVNXg7UPPaG+t+nlquNiJpefsrjKGMZPvvXOB9Rrr++snCN1yOvh+26uFJPZzv+8/u+1sd1XZVSlwOat29WVN94xznxKXHkZQ2rKrb//drVi2dKq/CXHi849o9LOrC8wzKQFwphJCxAnCDEwdGhs1lIvh92+542q0qcfe2ZkLuURJGcuPDt1MgxwUqPz7kQGON5J0lZCmMm28Hl3Mn2td5KkToi+NjU6b0/sJDMpZvHxp55tOItXz5Q1M5MirMwqimk9ftECddvdD46bqRSD+Runnax+vKU0no0bTYk/f96squ/qXSwTmcl6JjjLCw4zaYEuZtICxAQhXt+9NWYu/6HquZZyb+V5x8mjR0ozl8fOWNhyZAY4LaPyviADHO8lSpQgZjIRLu8L09d6L1HLCdLXtoyqMAVtmcm9h/eqH+yo3sXfBYQ50+aocz95bt2qjMkzM5PNjKEsKa2d+Wt2jlRs7rOcN6cvMpWmPpOUifvWzvfHLUmVY7Jc1SyrbcRsIjNpjjVbwmtLD8ykBZKYSQsQU4YYGjkS7QxrNvJ5Y/e2qkifOurX1RmfOEvJ7OUZx5ypTphzUsOaGOCkFMHD0xjgeChKGylhJtuA5+Gp9LUeipIyJfralOA8Ps2Wmdy5Z6da8o0lzlu6ePZiteOrOxqaydp7JmvvZYyfKMau1pBNdM9k3DQ2WkJrlriapbVx8ziRQaxtULOy9XLPSgzMpAWymEkLEC2FkCWwco+lebbl4MjhqsiyS+wZYiz1Jj6na3MpJrNnUk9UhgGOJRE8CMMAxwMRLKaAmbQI04NQ9LUeiGApBfpaSyA9CmPLTMrM5FVPXOW8ZbOnzlaP/s6jDc1k7UyhmC7ZPKd29lACNDKTE90zKeeJYZRNcORVW59Z4hq/b1PKmaWuNmYmG+WelRiYSQtkMZMWIGYQYmR0RL30ix+qV375knr5ly9G7786+EFVTd2TukumUv9ceOJvqVPnflYdPfXYDLIhpEsCDHBc0s6+Lsxk9oxd1oCZdEk727roa7Plm0d0W2Yyj9yb1Vm7zFXKT7RsNe0yV7MDrMSvvWey0W6sZgbUxj2TLHNtdiV4eBwz6aEoDVKSmUsxli+LwfzFi+q1XZvHlVwy+8Ro9lJmLcVkfvmVwY0AACAASURBVHrBbxSngWQaEWCAE9aFgJkMS0/MZDh60teGo6VpSSeZSWO6Gs1MptmAp3b31vjvZsay9nEg8dlIc79l7fJb2VTn/Q8+amk3VzbgKeDfJWaygKKVU+4/vE+9/EFp5vKnu/5R/ejn/131D+6ratCM3plq2VGfUsvmx370732TZxW34YFnzgAnLIExk2HpiZkMR0/62nC07BQzWXvPZCMjKTwaPRqk0XMmxextfOaHDZ8zKY8MqbdTa73Hh9TOYMpmPnETyqNBPP3bk4tGHjZau4tS/Gbbk5YsGvc8Gsykp4ImTMsMcH7ywT9HS2L/qbw0tvZRJCbs4tlLtcE8TZ2qTeZy/XOq/nzi3FMS1krxLAgwwMmCan4xMZP5sc+iZsxkFlTziUlfmw/3LGsNeWYyDTezZLXZ7qppYmdxTqPZzyzqMjG5Z7JMwjxrRv7FIm4ma3djqreWGTOZ5SXqLnajAc6ugY/U1g83q627tqhtu7eorR+VPg8OV2/uI5lO750RmcqSuSwZzOVHrVCzp8xx1xBqYplrYNcAZjIsQTGT4eiJmQxHS9MSzGS1pmbZ6UQzmL5cBY0mxbLODzOpCccfWlq7i1Ltv0jUc/yYyawvUzfxkw5wfrZrqzaXP1XbtLF8TRtMeX+3/526yR4/a3G0TLYyi3nUaerkuae6aVgH1sIAJyzRMZNh6Zm0rw2r9WG1hr42LD2lNZjJ8DTNukUdbybjRlJgN3veS701ypjJrC9TN/FtDHA+PrQ7Mpgyc7lVb+6z9SOZyfypGhg+NK4RU3umRTOXlXsxtcFcNn+Fmjt1npsGB1wLA5ywxMVMhqWnjb42LCLFbQ19bXG1a5Q5ZjI8TbNuUUebyVojmdZMZi0S8YtPYNtH29SrH7yqNv9qs9r8webo89t73q7bsE/O/qT69DGfVisWrFArjlkRfT7t6NOKD4EWQAACEIAABCAAAQgERaCjzaTcD/niK1vrCiproy84+zPqyhvvUOvvv12tWLY0KsfMZFDXf1VjXP9r+T79QF95NIksj5XZy627SktmDxzZPw5yb/fk6D7MU+YtVyfojX9OmHOSWjLnRHXCrBNV3xR2la0Fxr+Wh/V3ysxkWHq67mvDoudXa+hr/dLDRjbMTNqg2FkxOtpM1pOaeyY76w8g3lpfBjiye2y02U9kMkub/ezY+1ZDYRZMP1YbTG0s52qDqY3m0tllo6nN5vSeGR0pKAOcsGTHTIalpy99bVhU82kNfW0+3LOsFTOZJd0wYzs3k7KhTe0zXgzaLc89kjvlWjPJbq65S+IsAZ8HOPLsSzGXb+z+mXp775uRuXxbfj5+q+79mAbaJ2Yu0gbzRG0wjdnU79psHjfreDWzt88ZW9cVMcBxTTzb+jCT2fJ1Hd3nvtY1i6LXR19bdAXH54+ZDE/TrFvk1EzWe6xG1g1MGr/WTMr5PGcyKcVili/qAOe9/p/r+y+1wdy3XW3/OGY0tdk8MjzYUAx5XMnCvuPUopnHq4Uzj4s+y/uivvLv+nPPpJ5CiskAp5CyNUwaMxmWnkXta8NSwU5r6GvtcPQpCmbSJzWKkYtTM1nPqBUD08RZsptrCCoqFeIA5519O0pGc+/2aEbz7T1vRZ/f3/+uOnjkQFPhjp25sGQ0y2az1ngumH5M0xh5FGCAkwf17OrETGbHNo/IIfa1eXD0oU76Wh9UsJsDZtIuz06Ihpm0oDJm0gJED0J02gBn16GPIlMZ/fSX3/Vnmek0342q0QmVmdw9pWI2oxnN8uzmwhl6hlMvpV2ol9n2TXa/QRADHA/+oCymgJm0CNODUJ3W13qAPLMU6GszQ5tbYMxkbugLW7FTMynLRS869wy1+trLCgusXuKYyTDkZIBTraMYSWMyKwYzbjy1Ad018FFT8WdNmV1aOqsNZtVSWjGeMxapo2ccY32jIAY4TWUpVAHMZKHkaposfW1TRIUpQF9bGKlaThQz2TIqCpYJODWTG55+Qd277jG1acPaoATATIYhJwOc5DrKUtnxs5vvVb57b9/P1cGh5stpZTOgo6YvUAu0sTx62oLIYMr7UXoZrSylPVofO0r/LsendE9tmigDnKaIClUAM1kouZomS1/bFFFhCtDXFkaqlhPFTLaMioJ5mEm5Z3Kilw+7uaa5MjCTaaj5dw4DnGw02X1ol3r/wNhS2miWU5bV6u8+2P8L9auDH6hDQwdbrlxmOuVxKJHZnKENpjabc6bMVXOmzlOyqdBc/T5v2jy1ZP7RamhwRnSsqBsJtQwl8IKYybAEpq8NR0/MZDhampZgJsPTNOsWOZ2ZzLoxecXHTOZF3m69DHDs8kwSTR598qE2lR8e+pX68IB+P/iryGR+dKj0OfpOH5PvJtqhtlGdct+mGE35EdM5R961yZw9VUyoftef58rv8r02orMnl473TXF/v2cSbp1SFjMZltL0teHoiZkMR0vMZHhaumoRZtICacykBYgehGCA44EILaSwZ+BjbSp/qY2mNpdl47l3cI/aM7Bb7R3Q74f1++E9qn9or9q1f5eSY0MjQy1EHl+ku6u7ynSWTKg2m1NLprRkOmMGtGJO57S0HDdVUh14EmYyLNHpa8PREzMZjpaYyfC0dNUi52ZS7pu87e4Hq9q35pbr1KpLznHVZuv1YCatI80lIAOcXLBnUmntAKf/8D5tMj+OfvbKjzadH5c/izndq39Kx/dEx6PvxJDqGdO0r+m9M8ozoXr2c7L+mVaaAY0MaNl0RrOj0YypnhmV41JOH+NVTQAzGdYVQV8bjp6YyXC0xEyGp6WrFjk1k2sfekKte3SjWn//7WrFsqVRGzdv3a6uvPEOdcNVKwu7yytm0tXlmm09DHCy5esyuq0BztDwEbXHzHpGRlObUJkB1e/RTKi8xz9HJrRkSgeHD6dqcldXl5INiWb0zlQzJ/fpzzPVjPK7/C4mVY7PnKy/L79H5U2ZKfpzzww1XR+fqjcrmtYzTd8z2psqF19Owkz6ooSdPOhr7XD0IYqtvtaHtpBDiQD3THIlJCXg1Eyeu2q1uvzSC8eZRjGZjz/1bGF3ecVMJr3s/CzPAMdPXdJk5cMA58CR/aUZTm1GZebzY2M0y7OelZlSWZprjOlgadbU9ks2IJqqTaWYy6m98q5/evRn+a78/RT9+7Q639cvr8/rNeVjseR8/b3Et/nCTNqkmX8s+tr8NbCVgQ99ra22EAczyTWQjoBTMym7udZb0mqWvrKbazoROcsOAQY4djj6EKXIA5yR0RF1YHC/OjC0X+0f7Ff7tSk9UH6X38Wk1v9el5Xzysdlh9yBoQF1aPiQkhlW16+SUS0Zy+hz2WRGhlU+RyZWPpdMrjzyJX7OtPL38t3c6TOicqNDkyvlK0a4XAc79rpWOH199LXp2fl2ZpH7Wt9Y+pIPM5O+KFGcPJyaSWYmi3NhdGKmDHDCUZ0BTrWWsgHRgDaVYi4HhuRd/wzrz0fkffz3h2q+PyxlTfnoXP1zpGRUS/HKccvfy3HXL1nKK0t6m82+Tp40WfV26x9dfnL0Prn0Xu87XUa+n9I9pXxcyvYq2Zipu6sneuTMJP25p1t/1r93T5Lv9Y/+Xn6vHJffo7KTondzrmtGvtRHX+uLEu3nQV/bPkPfImAmfVPE/3ycmknumfT/gujkDBnghKM+A5z8tTSGs2RWS+ZTPkcGVD6XTelhMaJiVI3JjX7X5SJDW/p+aPRwZHz3H9GzrbHvK0ZWZl9T7tibJ6mKKdVm1BjRkiktmc+q49qIGhMqx+VYpWx3t9JHo3MqBrZsZqOyk8bOjY6Xy47Vo78xdepjlc9yri4tZtkY5IpZLpvibjHI5eP6zFLeZTMdGW1tsKPj0q6y0T52znTVf3BUjY50VYy4lBWzzatYBOhri6VXK9liJluhRJk4AadmUipmN1cuQF8JYCZ9VSZ5XgxwkjPz+YxW7pmUpbylmdLxs6+HR+S70veDI4PRs0qPjBzRmyTJ+2Dpvd53uox8b84plT8SGdfh0aHofWR0WC8j1p/178Mjw/p7/aO/l98rx+X3qOxI1bk+M88jNzGT1aZ1zJxG5rliYEsmNTLX2qiWTKuZHS7NAJdiTVJdo6XPlR99XvRZ/lf+visqK7ZZ/tel5Hc5JpthRf+r867M96Ol42pUfyPlJiobj6UB18auxGxQZ5epSx+XV+X8lvMcX6fE0EnXb2fp26q6KjmWz5G+tm9ar9p3cKgqRrmmMo8ymzrtitcdMTT/m4hjvXxjbEoaNK4z0su0q3xeI50rfOJ1Njgn0qRe3ubaGGtdXeZ5/M3VqxMz6YsSxcnDuZksDprWM2UDntZZ+VwSM+mzOslyw0wm4+V76VbMpO9tqJdfZDzFdGozaoxoyZSWzOe440obV/m+fKxSdnhYjZSPVY7Hy47oo2VzG5na2LFSPfqbcp0SMzLIph5dupRf2TAbs1w21HKuOa5bUzmvEkfnZsy3MdpS/xGJGTPiUqeYbV4Q6FQC4/5xwRjTCQx2yeyO/SNB5R81av6xw8Ru+g8W+rydf/x2p0pAu1MSwEymBBc/DTNpAaIHITCTHohgKQXMpCWQnoQJ1Ux6gtd5Go36WjGT1aa1xjzHZoQjA1w24sb8GnMtcUqxRtRoV+lz5UfPHkef5X/l70ejsmLI5X96+W3le/05+n38u0xFmu9lMF+vjDk3XrZSTlOvjV23XLzurlKdpVf9vBrGjM4dX6eUlwP12hnVUq6z0taaslKmt0epgcHhqhjlmspcGvOJkorzK0Wp5lmus1GeUW4VNubcCeoss4/imfY1qLPEuyafBudEvOrwqWpPuX312uL8D7FBhaP/zlxjvmREHr4TcGImZRdXeY6kPGNyohe7ufp+uYSdH2YyHH0xk+FoKS3BTIalJ31tOHrS19rTcpwRNca0nsGO/2NG+R8Jyv/EUG1oa4xvs3+EkBhnnXCqvUYRqSMIODGToZNkZjIMhRnghKGjtIIBTjhaYibD0lJaQ18bjqb0teFoaVrCPZPhaZp1i5yayUbPmZRdXh9/6lm1acParNubSXzMZCZYnQdlgOMceWYVMsDJDG0ugZmZzAV7ZpXS12aG1nlg+lrnyDOvEDOZOeLgKvDCTJodXlnmGtz1VagGMcAplFwTJssAJxwtmZkMS0tmJsPSk742LD2lNZjJ8DTNukVemMlb73xAvfDSZmYms1ab+BMSwEyGc4EwwAlHS8xkWFpiJsPSk742LD0xk+Hp6aJFmZvJes+VrNewNbdcp1Zdco6LNluvg2Wu1pHmEhAzmQv2TCplgJMJ1tyCssw1N/SZVExfmwnWXILS1+aCPdNKmZnMFG+QwTM3k3Fqje6ZLDpZzGTRFSzlzwAnDB2lFQxwwtFSWoKZDEtP+tpw9KSvDUdL0xLMZHiaZt0ip2Yy68bkFR8zmRd5u/UywLHLM89oDHDypG+/bsykfaZ5RqSvzZO+3brpa+3y9CEaZtIHFYqVA2bSgl6YSQsQPQjBAMcDESylwADHEkhPwmAmPRHCUhr0tZZAehCGvtYDESyngJm0DLQDwjk1k5u3bldX3nhHQ6zs5toBV5zHTWSA47E4CVNjgJMQmOfFMZOeC5QwPfrahMA8Lk5f67E4KVPDTKYE18GnOTWT565arc45c4U66/Tl6t51j1V2b/3y1bepi849Q62+9rJCSsHMZCFlG5c0A5wwdJRWMMAJR0tpCWYyLD3pa8PRk742HC1NSzCT4WmadYucmkmzAc+JixeqP7j1zypmUnZ8jZvLrBttOz5m0jbRfOIxwMmHexa1MsDJgmp+MTGT+bHPomb62iyo5hOTvjYf7lnWipnMkm6YsXMxk/IIEDGWZlmreXwIy1zDvMiK0ioGOEVRqnmeDHCaMypSCcxkkdRqnit9bXNGRSlBX1sUpVrPEzPZOitKlgg4NZOynHX5KYvVXV+/XsU/33rnA+qFlzZXZiqLJg4zk0VTrH6+DHDC0FFawQAnHC2lJZjJsPSkrw1HT/racLQ0LcFMhqdp1i1yaiZrGyOzk+a1/v7b1YplS7NubybxMZOZYHUelAGOc+SZVcgAJzO0uQTGTOaCPbNK6WszQ+s8MH2tc+SZV4iZzBxxcBXkaiZDoYmZDENJBjhh6CitYIATjpbSEsxkWHrS14ajJ31tOFqalmAmw9M06xY5NZNmAx65ZzKkF2YyDDUZ4IShI2YyHB1NSzCTYWlKXxuOnpjJcLTETIanpasWYSYtkMZMWoDoQQgGOB6IYCkFBjiWQHoSBjPpiRCW0qCvtQTSgzD0tR6IYDkFZiYtA+2AcE7NZNGfJ9noesBMhvGXwgAnDB2ZmQxHR2Ymw9NSWkRfG46umMlwtGRmMjwtXbXIqZncvHV71fMlXTUy63owk1kTdhOfAY4bzi5qYYDjgrK7OpiZdMfaRU30tS4ou6mDvtYNZ5e1MDPpknYYdTk1k/HdW+vh4zmTYVxURW0FA5yiKjc+bwY44WgpLcFMhqUnfW04etLXhqMlM5PhaemqRU7NpKtGua6HmUnXxLOpjwFONlzziMoAJw/q2dWJmcyObR6R6WvzoJ5NnfS12XDNMyozk3nSL2bdTs1ko91c1z70hHr8qWfVpg1rC0kRM1lI2cYlzQAnDB2lFQxwwtGSmcmwtJTW0NeGoyl9bThaMjMZnpauWuSFmdzw9AvqtrsfVCxzdSU79dQjwAAnnOuCAU44WmImw9ISMxmWnvS1YekprWFmMjxNs26RF2by1jsfUC+8tDmXmUmpe+MzP6xwPmnJIvXkI2uquMsutG/ueC/6rt5xZiazvkzdxMdMuuHsohYGOC4ou6uDZa7uWLuoib7WBWU3ddDXuuHsshbMpEvaYdSVuZk0s47NcK255Tq16pJzmhWzflyMYtw8yu/z581SD993c1TXNTfdo3bt3lcpU3tcymAmrcuSS0AGOLlgz6RSBjiZYM0tKGYyN/SZVExfmwnWXILS1+aCPdNKMZOZ4g0yeOZmMk6t0T2TPpGVmcrXXt9ZMY/nrlqtvnbDFRWjK+b43nWPVc2iYiZ9UjB9Lgxw0rPz7UwGOL4p0l4+mMn2+Pl2Nn2tb4qkz4e+Nj07X8/ETPqqjL95OTWT/mIYy0zM48lLj4tmJuW5mFfeeIdaf//tasWypVGhet9hJougbPMcGeA0Z1SUEgxwiqJUa3liJlvjVJRS9LVFUap5nvS1zRkVrQRmsmiK5Z8vZrKsgZjI3Xv6q+6JbNVM9h88kr+SZNA2gRlTe9ShwWE1MjLadiwC5Etg0qQuNW1ytzowMJRvItRuhcDk3klRnMEjI1biESRfAvS1+fK3WTt9rU2afsTqm97rRyJkURgCzs2kMW31CPmwm2v8HknMZGGuYyuJMsCxgtGLIAxwvJDBWhKYSWsovQhEX+uFDFaSoK+1gtGrIJhJr+QoRDJOzWS9zWt8o1T7mBLumfRNoezyYelVdmxdR2bplWvi2dbHMtds+bqOTl/rmnh29dHXZsc2r8gsc82LfHHrdWomfdyAR8zipg1rKwqK4ZWX2eGV3VyLe3EnzZwBTlJi/pZngOOvNmkyw0ymoebvOfS1/mqTNDP62qTE/C+PmfRfI98y7HgzGX+GpIjDcyZ9u0Td5cMAxx3rrGtigJM1YbfxMZNueWddG31t1oTdxaevdcfaVU2YSVekw6nHqZkU43bRuWeo1ddeFg5B3RJ2cw1DTgY4YegorWCAE46W0hLMZFh60teGoyd9bThampZgJsPTNOsWOTWT9Z7RmHUDXcTHTLqgnH0dDHCyZ+yqBgY4rki7qQcz6Yazq1roa12Rzr4e+trsGbuuATPpmnjx63NqJuWeyYlePuzmmkZSzGQaav6dwwDHP03SZsQAJy05P8/DTPqpS9qs6GvTkvPvPPpa/zRpNyPMZLsEO+98p2YyVLyYyTCUZYATho7SCgY44WgpLcFMhqUnfW04etLXhqOlaQlmMjxNs24RZtICYcykBYgehGCA44EIllJggGMJpCdhMJOeCGEpDfpaSyA9CENf64EIllPATFoG2gHhnJvJ+O6pa265Tq265Bwly1/POn2Zevi+mwuJHDNZSNnGJc0AJwwdmZkMR0fTEsxkWJrS14ajJ2YyHC2ZmQxPS1ctcmomxUjOnzcrMo3yfMev3XBFZCbXPvSEevypZ6ue9+gKgI16MJM2KOYfgwFO/hrYyoABji2SfsTBTPqhg60s6Gttkcw/Dn1t/hrYzoCZSdtEw4/n1EzKDOT6+29XK5YtrTKTssvrbXc/qNiAJ/wLzucWMsDxWZ1kuTHAScbL99KYSd8VSpYffW0yXj6Xpq/1WZ10uWEm03Hr5LOcmkmZjfzLu/54nJlkZrKTL0F/2s4Axx8t2s2EAU67BP06HzPplx7tZkNf2y5Bf86nr/VHC1uZYCZtkeycOE7N5K13PqBeeGlztJzVLHM9cfFCdeWNd6iVF5+t7vr69YUkzzLXQso2LmkGOGHoKK1ggBOOltISzGRYetLXhqMnfW04WpqWYCbD0zTrFjk1k9IYs6Q13rAbrlqpVl97WdZtzSw+ZjIztE4DM8BxijvTyhjgZIrXeXDMpHPkmVZIX5spXqfB6Wud4nZSGWbSCeagKnFuJoOiV24MZjIMVRnghKGjtIIBTjhaSkswk2HpSV8bjp70teFoaVqCmQxP06xb5NRMXnPTPerFV7aO22iHR4NkLTPxWyHAAKcVSsUowwCnGDq1miVmslVSxShHX1sMnVrJkr62FUrFKoOZLJZePmTr1EzKfZKXX3rhuCWtbMDjw6VADgxwwrkGGOCEoyUzk2FpKa2hrw1HU/racLRkZjI8LV21yKmZlBnINbdcFz1bMv7i0SCu5KaeiQgwwAnn+mCAE46WmMmwtMRMhqUnfW1YekprmJkMT9OsW+TUTDIzmbWcxG+HAGayHXp+ncsAxy892s2GZa7tEvTrfPpav/RoJxv62nbo+XkuZtJPXXzOyqmZlOWs6x7dqNbff3v0rEl5bd66PXo0SJF3dGUDHp8v8dZzY4DTOivfSzLA8V2hZPlhJpPx8r00fa3vCrWeH31t66yKUhIzWRSl/MnTqZmUZtd7NEi9pa/+IGqeCWayOaMilGCAUwSVWsuRAU5rnIpSCjNZFKVay5O+tjVORShFX1sElZLliJlMxovSSjk3kyFCx0yGoSoDnDB0lFYwwAlHS2kJZjIsPelrw9GTvjYcLU1LMJPhaZp1izCTFghjJi1A9CAEAxwPRLCUAgMcSyA9CYOZ9EQIS2nQ11oC6UEY+loPRLCcAmbSMtAOCOfcTMomPLv39NdFu+W5RwqJHDNZSNnGJc0AJwwdmZkMR0fTEsxkWJrS14ajJ2YyHC2ZmQxPS1ctcmomv3z1bWr+vFnq4ftudtU+J/VgJp1gzrwSBjiZI3ZWAQMcZ6idVISZdILZWSX0tc5QZ14RfW3miJ1XwMykc+SFr9CpmWz0nMmiU8RMFl3BUv4McMLQkZnJcHRkZjI8Lelrw9IUMxmWntIazGR4mmbdIsykBcKYSQsQPQiBmfRABEspMMCxBNKTMMxMeiKEpTToay2B9CAMfa0HIlhOATNpGWgHhHNqJmWZ60XnnqFWX3tZUGgxk2HIyQAnDB2ZmQxHR2Ymw9OSmcmwNMVM2tNzVIeKfkZHo3d5Rb93jX03VkaOmXJd5fLyXvquFEfOjf1eDjiuTFR+rM6zjpllr1FE6ggCTs2kPGPy3nWPqU0b1gYFFzMZhpyYyTB0xEyGoyNmMjwtJzKTI/rgsB4BD+mB7XD0WZU+6+/k96HoXR+P3rsq38l58p0pK7+XYpUGyeb36H1kpPS7HqCb72XwLnWUvtcDcn3eiBmUl2NUD+JLo3Iz0NdPWRs/iI8P0KMY5scM7ksGoPRTHshXypXL1D1Pn6BzNBlEhqE2duy7KHpkKuRTuc6yWTHnRbFqvitloMtH542ZnFK9Yz/ye29Plxo4IsTKBkY+VZ1XfU4p5zHzIu2pfGfOq8O90uZKPjF+5fOk6nh+Y3zGmEb1GYKRUWuRoanXGLSa8wRWVd2GYRWzGqNo9Iny8eM1+huf9iMRsigMAadmUu6ZnOjFbq6FuW6CTBQzGY6s/Gt5OFpKS0Jd5hoZJmOO9Cg0Mkxl81QyTDXH9SA4+t6Yq0rZkjmKDJU5Xv69VFaMV+nYkBil2LGovI4bmbiyITPmLDo3VueYySvFkZgSu8rwmZzKJk7KGRNYMojatOn6j4yUz43VOSKjel4Q6FAC8k8E0Y/+myv9c0H5d/Hm5e/GysgxU07+maD8bwwlH1/5XfveSrkopv4/c545p1S+FEt+dq5Y1qEK0Oy0BJyaybRJ+n4eM5O+K9RafpjJ1jgVoRRmsggqtZ5jK2ZSDMuh0RE1oAdPA9F7+bOeiTqsjc2Arm5geFgN6s9HdNkj+vfB6H209K7NzbjvdBkpG52j45TKi+EbM3nVs2IlQ2hm1ySn6HjZyI2oSVWza60T6IySk3Qzu/WguUcPabujz6r0WX8nv/dE7+azPq4/60kxTbV0zJSV30uxSoNk83v0PmlS6Xd9nZjvZaAudZS+1wPzKGZ5cN1g8F2KrP8/GujrD3Je1TnxwX6pTPWgvWwAJIYxBZUy5e9qfzd1yeVg6qsqM/48KRoZkchUmDr177HzKmWiXOI/ZbMS1VWKE5WN/UhfK3+f+w4cGTMw8qnK1MTYRHFq2JS/i84x543jVaq0imH89/J5Y2VihqqS75imUUOkXXo2Mc5ivIalFleVMQatRh9Jfhy/yrVRnXsVx5h5jPLK+cU9kzkLUMDqMZMWRMNMWoDoQQjMpAciWEoBM2kJZBthKmbOGDvtquS7Q9peDZQ/y++HdR0DelAXldeGbkCMn5STz+XvhybpZXTazO3XZjBeJvpsyrSRa16nRoYpMkRiZuTzmHkqGafYbvGGNwAAIABJREFUcc3FmKeKuSobrchQ6QFuZKjKpkiMVSmuxDHnls1XuWxk3OS4Zjj2uWzozLn6mIlTZfIqxq583Jg8k1PZxElucRMo9Rw7e4rqP6AtttbTmMDIyJXNSl56UG9yAvS1yZn5fgZm0neF/MvPuZmU+yZvu/vBKhJrbrlOrbrkHP/otJgRZrJFUJ4Xw0x6LlCC9BjgVMOSpYYDYuLEeEUGTH8W02Y+R4as/L3M8FWViRs+U6ZkCKOZwMgcxs8vmUbXLzEl0/TPVG1ipurZp6nyOfoZ+zxF/z5F/96r33t1gpPlXf9E7/r30md9XMcoHSt/p38vnSPfl2a8uvWMRo82uRUTF5mokiE0s2u1xm6SZmWMlbx36ou+Nhzl6WvD0dK0BDMZnqZZt8ipmVz70BNq3aMb1fr7b1crli2N2rZ563Z15Y13qBuuWlnYXV4xk1lfpm7iM8Bxw9lFLUUe4IgNOyCzcPrngDYf+7VROzA6HL1H32mjJu/79XtUTpu//SPDNd+PLfkUwyfLLV2/SiZOlc2c/qynnuS7aXoBoflcZfQiE1g2g1JOPpfN4dypPZFBHB0cKRlFKSvHjGksz8K5biP1pSNAX5uOm49nFbmv9ZGnDzlhJn1QoVg5ODWT565arS6/9MJxplFM5uNPPVvYXV4xk8W66BtlywAnDB2lFT4McMT07dHL+Pbq973a9H0sn7Xp26M/y+97os/y3aguN1T6Tt9xt3fY/qyezIJFxk2zmWjWrtnM3piRE0NoZgJLn2tnAW1eTa3cM2mzPmJlS4C+Nlu+LqP70Ne6bG8n1IWZ7ASV7bbRqZmU3VzrLWk1S1/ZzdWuuERLRoABTjJePpe2NcCRGb09kSkUszcaGcOPjfErG0Uxh5Fp1LOI0XtkEmVTl3SmUBY/ztTGb4aedZspP+azNoQzJ3Wr6brAzK5u/blLzSi/y/czdDn5rvRZqen6XQzetABm7TCTPv+1Jc+NvjY5M1/PsNXX+tq+TswLM9mJqrfXZqdmkpnJ9sTi7GwJMMDJlq/L6LUDnP7KTKDMCorh06aw/F4xgPoewjEzWJox7Ndl0r6ma3M3W5vBOd3dak7lc4+arT/P0TsgztFmLzpefp+ry83W5nC27OzXwffT1eONmUx7Ffp5Hn2tn7qkyQozmYaa3+dgJv3Wx8fsnJpJ7pn08RIgJ0OAAU4xrgWZCfzV8BH1kTZ6v9IzgR8OlZaS7hkpzR6W3kdUv96mfdeg/tzGPYOymUrJ7GlDGBlAbRC14RODaIygfDenW5tEPQMo5SJTqGcIZaMXXnYIYCbtcPQlCn2tL0q0nwdmsn2GvkXATPqmiP/5ODWTgoPdXP2/KDo1QwY4+Snfrw3fh3r56IeROdTvkWEc0oax/J0cK38nz/1L+pKlopEB1DN+YvwiA1g1Myizh3KsbBzLx/v0O6/8CWAm89fAZgb0tTZp5hsLM5kv/yxqx0xmQTXsmM7NZIg42YAnDFUZ4GSj425tEN/XpvB9bRLf16bwvSNHonf5+UD/yOyi7Dja6muWNngLtCE8WpvBo7T5k8+yjNTMFs7Vv8/r6VZL+qaooQPD0bFOfgxDq1x9LoeZ9Fmd5LnR1yZn5usZmElflUmfF2YyPbtOPdOpmbzmpnvUi69sVbUb7cjGPGedvkw9fN/NhdQBM1lI2cYlzQAnuY4HtQksmURtEMtm8X0xj2IW9e/vDR1RUqbZS2YOI2PYUzKJR0dmUb7rGTOO+vsFvT1qil5O2uzFAKcZoWIdx0wWS69m2dLXNiNUnOP0tcXRqtVMMZOtkqKcIeDUTLIBDxeezwQY4FSrI4tJxwyiGMPBikk0ZnFXCxvUzNL3Dy7qmawWTupRC7VZXKgN4qLe3uhdfo7WJlI2q7H5YoBjk2b+sTCT+WtgMwP6Wps0841FX5sv/yxqx0xmQTXsmE7NJI8GCftiKnrrOm2AI0awYhZjs4vvxWYZm92dOFnPElYMYo82iGWzuLC7VxtIMYzdKo/7DhngFP2vsTp/zGRYenZaXxuWetWtoa8NT13MZHiaZt0ip2aSmcms5SR+OwRCHOC8o5eZvq1nFN/W9ynu0CZx++Cg2llegtrK8tNjZfbQGET9vkibxGhGsfyd3K/o44sBjo+qpM8JM5menY9nhtjX+sjZRU70tS4ou60DM+mWdwi1OTWTPj4axNzHacQ8acki9eQja6q0/fLVt6k3d7wXfVfvOPdMhvCnoFRRBzjvasO4IzKN+qdsGuVdTOREO5/Koy3EFNYaxNKMYmkJalE3rmGAE8bfpGkFZjIsPYva14algp3W0Nfa4ehTFMykT2oUIxenZlKQ+PZoEJkt3bRhbUUt+f2cM1eou75+ffSdmM1du/dVDKYYy/nzZlVtFoSZLMbF3ixLnwc4/XpJ6rYjg+oNMYn6PZpllHe9PHVggg1uPqEN4Qm9k9UJ8j55slqiZxbl9+O0iZRNb0J9McAJS1nMZFh6+tzXhkU6+9bQ12bP2HUNmEnXxItfn3Mz6TuyW+98QL32+s6KeRRz+bUbrlCrLjknSl3M8L3rHqsyoJhJ31VtLT9fBjhiErfqn216ZnHr4QH9WWYeBxs2QpaaLtUb3CzRm9qcoGcV5WeJvOvfbW9s0xrJ/EsxwMlfA5sZYCZt0sw/li99bf4kip8BfW3xNaxtAWYyPE2zbhFmsoawzDwuP2VxNDO5eet2deWNd6j199+uVixbGpWs9x1mMuvL1E181wOcfSMj6rUjA2rb4BFtGA9HP9v0PY0H6sw09nZ1qeW9U9QpMsuoZxVP0J+NYewLeIYxrfIMcNKS8/M8zKSfuqTNynVfmzZPzmtOgL62OaOilcBMFk2x/PPFTMY0kFnJjc/8sPIczFbNZP4ykoHvBLYNHFabBwbUq4cOqc2H5H1Ava2NY73XJyf3qk9Pm6ZWTJ2qVkybqj9PVafpz7wgAAEIQAACEIAABCDgEwHMZFmNiTYHYmbSp0s2u1xs/Gv5x8P63sYhPcsYzTbKElVZqnpYDajxD9mYqmcUT9UzjcsmT1HL5D36PFXN1Rvj8GqPAP9a3h4/385mZtI3RdrLx0Zf214GnG2LAH2tLZL+xGFm0h8tipIJZlIrVTsjGRePeyaLcim3n2fSAc7P9MyiGEfZGOc1bRjlHkfZWbXe63i9NHWZXpp6qjaOslxVTOTJ+odXNgQY4GTDNa+omMm8yGdTb9K+NpssiGqDAH2tDYp+xcBM+qVHEbLpeDMp90jKq/ZxIEY8dnMtwmVsJ8dGA5xdeifVrYMy21jeFGdQzzjqz4N1Zhtlw5tT9a6pJcMo5rFXf56q5DEcvNwRYIDjjrWLmjCTLii7qwMz6Y511jXR12ZN2H18zKR75kWvsaPNpLknsp6Ia265rrKDK8+ZLPpl3lr+ZoDzk4FD6hU90/hPh+V9QG1vsJPqYr2D6jK9Y2p8tvFEZhtbg51xKQY4GQN2HB4z6Rh4xtVhJjMG7DA8fa1D2I6qwkw6Ah1QNR1tJm3pyG6utki6j9Ovd1R9Wc80vqxN409HDqsf7T+o+mt2U52hZxuX6dlGWaZaur+xdI9jH7ON7gVrsUYGOC2CKkgxzGRBhGoxTcxki6AKUIy+tgAiJUwRM5kQGMUVZtLCRYCZtADRUQiZZRTjWPo5pB/NMX5H1SV6xvGMKVPV6XoznNP1+6e1geRVLAIMcIqlV7NsMZPNCBXrOGayWHpNlC19bThampZgJsPTNOsWYSYtEMZMWoCYQYgRHfMlWaoqM4+ydFXf9/ir4aGqmrr18xsj06h/LpzXp04d7VVHK+5vzEAOpyEZ4DjFnXllmMnMETutADPpFHemldHXZoo3l+CYyVywF7pSzKQF+TCTFiBaCrFd76b6/KGD6vmBA9F77SY5x3T3VGYdzexjjzaU8mKAY0kED8IwwPFABIspYCYtwvQgFH2tByJYSoG+1hJIj8JgJj0SoyCpYCYtCIWZtAAxZYih0VH1/GFtHrVx/IGefXzjyOGqSJ/S9zeeMbU08yjm8QS9hLXRiwFOShE8PI0BjoeitJESZrINeB6eSl/roSgpU6KvTQnO49Mwkx6L42lqmEkLwmAmLUBMEOJ1bRjFOD5/6ID6gTaSQ6NjJ8/Vm+KcP3WGOn/adHXe1OnqWD0T2eqLAU6rpPwvxwDHf42SZIiZTELL/7L0tf5r1GqG9LWtkipOOcxkcbTyJVPMpAUlMJMWIE4QYkDvrjpmHg+p7TWb5sgmOWIcz9c/Z06ZljoZBjip0Xl3IgMc7yRpKyHMZFv4vDuZvtY7SVInRF+bGp23J2ImvZXG28QwkxakwUxagFgTYtvgoF6+qmceB0pLWGOTj+ro7u7IPJ6nZyDPmzpNLUgw+zhRpgxw7OuYV0QGOHmRz6ZezGQ2XPOKSl+bF3n79dLX2mead0TMZN4KFK9+zKQFzTCT7UM8oGcfS/c96h/9vnP4SFXQz+kZx/P0z/nTZkT3PmbxYoCTBdV8YjLAyYd7VrViJrMim09c+tp8uGdRK31tFlTzjYmZzJd/EWvHTFpQDTOZDuIWvVw1uu9R3/+4Se++Gn/JrqvR0lV97+P5U2aoed3ZP66DAU46HX08iwGOj6qkzwkzmZ6dj2fS1/qoSrqc6GvTcfP5LMykz+r4mRtm0oIumMnWIPaPyOxjadOc5/UM5LtD1c98/M1o5lEvX50yXX0mo9nHiTJlgNOajkUoxQCnCCq1niNmsnVWRShJX1sElVrLkb62NU5FKoWZLJJafuSKmbSgA2ayMcSfDA5U7nv80eFDVQUX9ujZR20cZeMcWb46W+/EmueLAU6e9O3WzQDHLs+8o2Em81bAbv30tXZ55hmNvjZP+tnUjZnMhmvIUTGTFtTFTI5BPKTvfXymvHRVZiF/MVw9+3i2mMdppXsfV+hnQPr0YoDjkxrt5cIApz1+vp2NmfRNkfbyoa9tj59PZ9PX+qSGnVwwk3Y4dlIUzKQFtTGTSj19cL/6O/3z1MF+FbePx/f0RjOPsnnOeXoJa9+kbgvEswnBACcbrnlEZYCTB/Xs6sRMZsc2j8j0tXlQz6ZO+tpsuOYZFTOZJ/1i1o2ZtKBbp5pJWba68UC/+rtD/Wr38EiF5G9p83hheenq8t7JFgi7CcEAxw1nF7UwwHFB2V0dmEl3rF3URF/rgrKbOuhr3XB2WQtm0iXtMOrCTFrQsZPMpOzA+pQ2kE/pWcgdQ4MVerJk9dIZfepLM2aqxd29Fqi6D8EAxz3zrGpkgJMV2XziYibz4Z5VrfS1WZF1H5e+1j3zrGvETGZNOLz4mEkLmoZuJt8ZOqJnH/US1v396tUjhyvEFvdMVpdOn6m+pH9WTPbr/sc0sjLASUPNz3MY4PipS9qsMJNpyfl5Hn2tn7qkyYq+Ng01v8/BTPqtj4/ZYSYtqBKimdyrH+Mh9z/KDOQL+jEe5jVXP+/xS9NmqpUzZqmz9X2QIb0Y4ISjJgOccLSUlmAmw9KTvjYcPelrw9HStAQzGZ6mWbcIM2mBcChmclSzkCWsMgv5XW0izaunqysykDID+dv6J9QXA5xwlGWAE46WmMmwtJTW0NeGoyl9bThaYibD09JVizCTFkgX3Uz+bHBQPXZgr/7Zp/boGUnz+oLefVVMpNwLOb0r32dAWpCpaQgGOE0RFaYAA5zCSNVSosxMtoSpMIXoawsjVdNE6WubIipcAWYmCydZ7gljJi1IUFQzKbOP6/fvVd+PLWP9rF66KjOQci/ksd09FugUJwQDnOJo1SxTBjjNCBXrOGayWHo1y5a+thmh4hynry2OVq1miplslRTlDAHMpIVroUhm8n29mc5j+/epxw7uUz8fKj0RsqdLqSumz1JX9s1Wp0+eaoFIMUMwwCmmbvWyZoATjpbSEsxkWHrS14ajJ31tOFqalmAmw9M06xZhJi0QLoKZfP7QAb2MtV89qTfVMa9legfWK/RGOlfqn75J4S9jbSY1A5xmhIpznAFOcbRqJVPMZCuUilOGvrY4WjXLlL62GaHiHcdMFk+zvDPGTFpQwFcz2T86UpqF1D+vxR7psVLfAykzkRfoeyJ5jRFggBPO1cAAJxwtmZkMS0tpDX1tOJrS14ajJTOT4WnpqkWYSQukfTOTrxwe0AZyr1qvZyGHRmWPVqWO6+mpLGVd2GH3QrYqMQOcVkn5X44Bjv8aJcmQmckktPwvS1/rv0atZkhf2yqp4pRjZrI4WvmSKWbSghK+mEnZjVVmIV88fKjSKtmR9YoZs6NNdXhNTIABTjhXCAOccLSUlmAmw9KTvjYcPelrw9GSmcnwtHTVIsykBdJ5msl9+lEeD/V/rB7av0d9PFx6rMdsff/jFTPlXsg56td6ey20sDNCMMAJR2cGOOFoiZkMS0tpDX1tOJrS14ajJWYyPC1dtQgzaYF0Hmbyg+EhbSL3RD8D5aWsn50yNdpM54qZsxXb6SQXlgFOcma+nsEAx1dl0uXFzGQ6br6eRV/rqzLJ86KvTc7M9zNY5uq7Qv7lh5m0oIlLM7lz+Ih6aF/JRJrXRdNmqGv75qjzprKhTjtyMsBph55f5zLA8UuPdrPBTLZL0K/z6Wv90qOdbOhr26Hn57mYST918TkrzKQFdVyYyW2Dg3op68fqb/Q9keZ1qd6V9dqZc9Tn9Iwkr/YJMMBpn6EvERjg+KKEnTwwk3Y4+hKFvtYXJdrPg762fYa+RcBM+qaI//lgJi1olKWZ/LHemVVmIb8Tez7k7+mlrDITuUI/J5KXPQIMcOyxzDsSA5y8FbBbP2bSLs+8o9HX5q2Avfrpa+2x9CUSZtIXJYqTB2bSglZZmMkf6R1ZH9z3sXr60IFKhl/R90KKiTypd7KFrAlRS4ABTjjXBAOccLSUlmAmw9KTvjYcPelrw9HStAQzGZ6mWbcIM2mBsE0z+f2Bg9HurM8dOhhl1tPVFS1lFRO5SD8rkld2BBjgZMfWdWQGOK6JZ1sfZjJbvq6j09e6Jp5dffS12bHNKzJmMi/yxa0XM2lBOxtm8rsH90fLWc0zIvu6JqlrZs1R182cq+Z1szerBZmahmCA0xRRYQowwCmMVC0liplsCVNhCtHXFkaqponS1zZFVLgCmMnCSZZ7wphJCxK0Yyaf1PdCrtPLWV8dPBxlsqC7W12jZyFlJnK6NpS83BFggOOOddY1McDJmrDb+JhJt7yzro2+NmvC7uLT17pj7aomzKQr0uHUg5m0oGUaM/mjwwfVN/Z+rDbpZa3yWtzTWzGRXRZyIkRyAgxwkjPz9QwGOL4qky4vzGQ6br6eRV/rqzLJ86KvTc7M9zMwk74r5F9+mEkLmiQxk9uPDKpv7Nut/uuB/qjmBd096o9mz1NX6811eOVLgAFOvvxt1s4AxybN/GNhJvPXwGYG9LU2aeYbi742X/5Z1I6ZzIJq2DExkxb0bcVM7h8ZjmYi/1JvrmNe/3r2fPXV2XPVFMVcpAUZ2g7BAKdthN4EYIDjjRRWEsFMWsHoTRD6Wm+kaDsR+tq2EXoXADPpnSTeJ4SZtCBRMzP5V/qeyG9qE7l7eDiq7Qr9nEiZjZSlrbz8IcAAxx8t2s2EAU67BP06HzPplx7tZkNf2y5Bf86nr/VHC1uZYCZtkeycOJhJC1o3MpMb9VLWb/TvVtsGB6NaLpw2Xf1R3zz1uanTLNRKCNsEGODYJppfPAY4+bHPombMZBZU84tJX5sfe9s109faJpp/PMxk/hoULQPMZFmxtQ89oR5/6lm1acPacRp++erb1Js73ou+P2nJIvXkI2uqytSayf+uN9f55r496vlDB6Jyy3sn6+Ws89W/nD6zaNdHR+XLACccuRnghKOltAQzGZae9LXh6ElfG46WpiWYyfA0zbpFHW8mNzz9grrt7gcjzvPm9I0zk9fcdI/atXtfxUCKsZw/b5Z6+L6bK9oYM/n2kN5cR98X+e0D+6JjR03qjpazyqM+ePlPgAGO/xq1miEDnFZJFaMcZrIYOrWaJX1tq6T8L0df679GSTPETCYlRvmON5PmEmg0M3nuqtXqazdcoVZdck5UVMznveseqzKdb3y4P5qJ/Au9S6t5rZ41TxvJuWoaz4oszF8ZA5zCSNU0UQY4TREVqgBmslByNU2WvrYposIUoK8tjFQtJ4qZbBkVBcsEMJNlEPXM5Oat29WVN96h1t9/u1qxbGlUsva7b374kbrj/Q/ULr1bq7wu15vrfJXNdQr5B8YAp5Cy1U2aAU44WkpLMJNh6UlfG46e9LXhaGlagpkMT9OsW4SZbNNMdv341SjCF2fMVP923nz1+enTs9aM+BkRmDG1Rx0aHFYjI6MZ1UBYVwQmTepS0yZ3qwMDQ66qpJ4MCUzunRRFHzwykmEthHZFgL7WFens66GvzZ6x6xr6pvOkAdfMi14fZrJNM/knv/hAnTypV/1OX1/Rr4WOz58BTjiXAAOccLSUlmAmw9KTvjYcPelrw9HStAQzGZ6mWbcIMzmBmZRDrdwz2ew5k1mLSHw7BFh6ZYejD1FYeuWDCvZyYJmrPZY+RKKv9UEFOznQ19rh6FMUlrn6pEYxcsFMNjGTSXZzLYbkZNmIAAOccK4NBjjhaCktwUyGpSd9bTh60teGo6VpCWYyPE2zblHHm8n4o0EM7JUXn63u+vr1FfZJnzOZtWjEz4YAA5xsuOYRlQFOHtSzqxMzmR3bPCLT1+ZBPZs66Wuz4ZpnVMxknvSLWXfHm0kbsrHM1QbF/GMwwMlfA1sZMMCxRdKPOJhJP3SwlQV9rS2S+cehr81fA9sZYCZtEw0/HmbSgsaYSQsQPQjBAMcDESylwADHEkhPwmAmPRHCUhr0tZZAehCGvtYDESyngJm0DLQDwmEmLYiMmbQA0YMQDHA8EMFSCgxwLIH0JAxm0hMhLKVBX2sJpAdh6Gs9EMFyCphJy0A7IBxm0oLImEkLED0IwQDHAxEspcAAxxJIT8JgJj0RwlIa9LWWQHoQhr7WAxEsp4CZtAy0A8JhJi2IjJm0ANGDEAxwPBDBUgoMcCyB9CQMZtITISylQV9rCaQHYehrPRDBcgqYSctAOyAcZtKCyJhJCxA9CMEAxwMRLKXAAMcSSE/CYCY9EcJSGvS1lkB6EIa+1gMRLKeAmbQMtAPCYSYtiIyZtADRgxAMcDwQwVIKDHAsgfQkDGbSEyEspUFfawmkB2Hoaz0QwXIKmEnLQDsgHGayA0SmiRCAAAQgAAEIQAACEIAABGwTwEzaJko8CEAAAhCAAAQgAAEIQAACHUAAM9kBItNECEAAAhCAAAQgAAEIQAACtglgJm0TJR4EIAABCEAAAhCAAAQgAIEOIICZTCnyl6++Tb25473o7JOWLFJPPrImZSROc0kgiW7X3HSPevGVrZX00NmlUs3rSqJlPNrah55Q6x7dqNbccp1adck5zSuihBMCafQ87YKrK7ndcNVKtfray5zkSiXNCSTV89xVq9XuPf2VwFuee6R5JZTInYD0p48/9azatGFt7rmQQOsEWtWNcVDrTDu5JGYyhfryx7Vr976KgZT/aM6fN0s9fN/NKaJxiisCSXWTwU38P5Dy+zlnrlB3ff16VylTTwMCSbU0Ycx/QGXQipn05/JKqufmrdvVlTfeoTCQ/mgYzySpnrX/Da09389WdnZWG55+Qd1294MRhHlz+jCTBbkckurGOKggwuacJmYyhQDyx/W1G66ozGrIH+e96x6jM03B0uUp7ep2650PqNde38kstEvRGtSVRsv4v8TKjBZm0gMhyykk1VPMxjFHzeUfdvyRsCqTpHpK+csvvbAys9zqrImnze+otNCqmHKn1Y1xUDH1zjprzGRCwuZfxNfff7tasWxpdHa97xKGpXjGBGzoJv96vvyUxQxgM9aqWfg0Wtb+hxMz2Yyyu+Np9BT9ZDYkviwy3ie7y56aagmk0VMGqBuf+aFaefHZUf9KX1uc6yqtKSlOC8PMNK1u/G2GeT202yrMZEKCaf5DmbAKimdAoF3dzGCH+3gyECdhyKRa1vuPJmYyIfQMiyfV05SPzyzz95mhQAlDJ9Uz/g+y8X8goK9NCD6n4mlNSU7pUm2ZQBrd6Ge5fBoRwEwmvDbS/IcyYRUUz4BAO7qZDVuY+chAmBQhk2pZu4FAvEruuUshgOVTkurZaCUI/0BgWZiU4ZLqKdXUasegNSX8HE5LY0pySJMqawgk1Y1xEJfQRAQwkymuj6T3g6SoglMyIJBGNwY1GQhhIWQaLePVYjwsiGAxRFI96+mHphYFaTNUEj3TmM820+N0iwSSmhKLVROqDQJJdGMc1AboDjkVM5lC6KQ71aWoglMyINBMN7kXQF7mMS+1v2eQEiFTEkiqZW01GI+U4DM6LameUv6N7e9WNj2Twc4LL21mE7SM9EkaNqme8vd41unLKjuio2dS4vmVT2JK8suSmmsJNNKNcRDXShoCmMk01PQ5SZ+hlbIaTrNMYCLd4p2o+dfyetWzC6hlUVKGa1XLeuExkymhZ3haUj3jy5d5NEGGwqQMnVTP+DND0TMldIenxR8xYao1Gyg5TIOqEhJophvjoIRAKR4RwExyIUAAAhCAAAQgAAEIQAACEIBAYgKYycTIOAECEIAABCAAAQhAAAIQgAAEMJNcAxCAAAQgAAEIQAACEIAABCCQmABmMjEyToAABCAAAQhAAAIQgAAEIAABzCTXAAQgAAEIQAACEIAABCAAAQgkJoCZTIyMEyAAAQhAAAIQgAAEIAABCEAAM8k1AAEIQAACEIAABCAAAQhAAAKJCWAmEyPjBAhAAAIQgAAEIAABCEAAAhDATHINQAACEIAABCAAAQhAAAIQgEBiApjJxMg4AQIQgAAEIAABCEAAAhCAAAQwk1wDEIAABCAAAQhAAAIQgAAEIJCYAGYyMTJOgAAEIAABCEAAAhCAAAQgAAHMJNcABCCE2YIEAAAHS0lEQVQAAQhAAAIQgAAEIAABCCQmgJlMjIwTIAABCEAAAhCAAAQgAAEIQAAzyTUAAQhAAAIQgAAEIAABCEAAAokJYCYTI+MECEAAAhCAAAQgAAEIQAACEMBMcg1AAAIQgAAEIAABCEAAAhCAQGICmMnEyDgBAhCAAAQgAAEIQAACEIAABDCTXAMQgAAEIAABCEAAAhCAAAQgkJgAZjIxMk6AAAQgUFwCax96Qq17dOO4Btxw1Uq1+trL1LmrVkfHNm1YO66MHJs3Z5Z68pE10bFmsU674OoJQc2b0xfVc81N96gXX9lat+yaW65Tqy45R3356tvUmzveU+Z3U3jD0y+o2+5+UJ20ZFElr9pAreRxzpkr1MZnflg5deXFZ6u7vn59onpbaUdxrxwyhwAEIAABCIwngJnkqoAABCDQIQSM2Vl//+1qxbKllVaLKfzeppcrZkzM11mnL1MP33dzpcytdz6gXnhpc8Vkthqr1vTVmkE5LrF27d7X0AxKGWMma/My309kJuPyGvNZL496x5LU20o7OuRSo5kQgAAEINAhBDCTHSI0zYQABCAgJtHMuE1Eo9ZUbd66XV154x1Vs4KtxrJpJufPmxXNYBozbPISg9nMjLaSRyMz2Wq9mEn+xiAAAQhAoNMIYCY7TXHaCwEIdCyB2mWqE4EQY/TG9nejmUiZnRNDFZ+pTBJL6ploRrAVEyY5LD9lsfrgo4/VMUfNjZagymypvOS7LM1kq/W20o6OvfhoOAQgAAEIBEkAMxmkrDQKAhCAwHgCxtDFj9Rb7mmOx+813PLcI1UBk8ZqZiZbuWdSTN1Zpy+P7pGUfCQ/maX8s7/6duZmspV6uWeSvzoIQAACEOg0ApjJTlOc9kIAAhDQBGqNT73lr8YAms15GoFLEqudeybFTJpNcSQXM1uaZEYwzT2TrdabJA8uQghAAAIQgEAIBDCTIahIGyAAAQi0QUCWi8pOprWzj/XulWxWTaNYzWYmmy1TNctcxUyaXWSNMU1i4toxk83qTZJHM44chwAEIAABCBSBAGayCCqRIwQgAIE2CYgx/JvvfC+a2at9GZNUu8trIzOZJpZNMyn5yz2b5vElSUxcO2ayWb1J8mhTTk6HAAQgAAEIeEEAM+mFDCQBAQhAIFsCxhhKLbUzkPUeBSLlJjKTsrtrkli2zWScVhIT166ZnKjeJHlkqzbRIQABCEAAAm4IYCbdcKYWCEAAAl4QiG+qYxJqdE9ks2WuSWI1M5OtbsBTb2Y1iYlrlIdZnmuYmHtI48trawWsrZcNeLy4xEkCAhCAAAQcEsBMOoRNVRCAAAQgAAEIQAACEIAABEIhgJkMRUnaAQEIQAACEIAABCAAAQhAwCEBzKRD2FQFAQhAAAIQgAAEIAABCEAgFAKYyVCUpB0QgAAEIAABCEAAAhCAAAQcEsBMOoRNVRCAAAQgAAEIQAACEIAABEIhgJkMRUnaAQEIQAACEIAABCAAAQhAwCEBzKRD2FQFAQhAAAIQgAAEIAABCEAgFAKYyVCUpB0QgAAEIAABCEAAAhCAAAQcEsBMOoRNVRCAAAQgAAEIQAACEIAABEIhgJkMRUnaAQEIQAACEIAABCAAAQhAwCEBzKRD2FQFAQhAAAIQgAAEIAABCEAgFAKYyVCUpB0QgAAEIAABCEAAAhCAAAQcEsBMOoRNVRCAAAQgAAEIQAACEIAABEIhgJkMRUnaAQEIQAACEIAABCAAAQhAwCEBzKRD2FQFAQhAAAIQgAAEIAABCEAgFAKYyVCUpB0QgAAEIAABCEAAAhCAAAQcEsBMOoRNVRCAAAQgAAEIQAACEIAABEIhgJkMRUnaAQEIQAACEIAABCAAAQhAwCEBzKRD2FQFAQhAAAIQgAAEIAABCEAgFAKYyVCUpB0QgAAEIAABCEAAAhCAAAQcEsBMOoRNVRCAAAQgAAEIQAACEIAABEIhgJkMRUnaAQEIQAACEIAABCAAAQhAwCEBzKRD2FQFAQhAAAIQgAAEIAABCEAgFAKYyVCUpB0QgAAEIAABCEAAAhCAAAQcEsBMOoRNVRCAAAQgAAEIQAACEIAABEIhgJkMRUnaAQEIQAACEIAABCAAAQhAwCEBzKRD2FQFAQhAAAIQgAAEIAABCEAgFAKYyVCUpB0QgAAEIAABCEAAAhCAAAQcEsBMOoRNVRCAAAQgAAEIQAACEIAABEIhgJkMRUnaAQEIQAACEIAABCAAAQhAwCEBzKRD2FQFAQhAAAIQgAAEIAABCEAgFAKYyVCUpB0QgAAEIAABCEAAAhCAAAQcEsBMOoRNVRCAAAQgAAEIQAACEIAABEIhgJkMRUnaAQEIQAACEIAABCAAAQhAwCEBzKRD2FQFAQhAAAIQgAAEIAABCEAgFAKYyVCUpB0QgAAEIAABCEAAAhCAAAQcEsBMOoRNVRCAAAQgAAEIQAACEIAABEIhgJkMRUnaAQEIQAACEIAABCAAAQhAwCGB/x83Xb1cWJnCUAAAAABJRU5ErkJggg==", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig_exact = PlotlyHelper.plot_curves(x=t_arr, y=[A_exact, B_exact], title=\"EXACT solution\", x_label=\"SYSTEM TIME\", y_label=\"concentration\",\n", " legend_title=\"Chemical\", curve_labels=[\"A (EXACT)\", \"B (EXACT)\"],\n", " colors=[\"darkturquoise\", \"green\"], show=True)" ] }, { "cell_type": "code", "execution_count": null, "id": "d951e46a-674d-4842-9f19-aa91c89aea38", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "d1d8c2c8-af8d-44d4-a6f2-ee7b5bc24ff4", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "766e8bba-3a15-461e-9bf6-9daf509197d5", "metadata": { "tags": [] }, "source": [ "# PART 4 - Comparing Variable Steps, Fixed Steps and Exact Solution \n", "#### To avoid clutter, we'll just plot [A]" ] }, { "cell_type": "code", "execution_count": 18, "id": "e9b8f945-b324-4d28-b2fd-b315df812de2", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "Chemical=A
SYSTEM TIME=%{x}
Concentration=%{y}", "legendgroup": "A", "line": { "color": "darkturquoise", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "A", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 0, 0.016000000000000004, 0.03200000000000001, 0.048000000000000015, 0.06720000000000002, 0.08640000000000003, 0.10944000000000004, 0.13248000000000004, 0.16012800000000005, 0.19330560000000005, 0.23311872000000006, 0.28089446400000007, 0.3382253568000001, 0.4070224281600001, 0.48957891379200014, 0.5886466965504001, 0.7075280358604801, 0.850185643032576, 1.0213747716390913, 1.2268017259669095 ], "xaxis": "x", "y": [ 10, 11.120000000000001, 12.150400000000001, 13.098368, 14.144924672, 15.091011903488, 16.117327332206184, 17.025411223536032, 17.989578375994412, 18.98663519835745, 19.984623670615306, 20.94381162849702, 21.819881668013238, 22.569810450307923, 23.160167565358876, 23.576169251301298, 23.828097086531773, 23.950713378038216, 23.992900047366195, 24.000192655593363 ], "yaxis": "y" } ], "layout": { "autosize": true, "legend": { "title": { "text": "Chemical" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "VARIABLE time steps" }, "xaxis": { "anchor": "y", "autorange": true, "domain": [ 0, 1 ], "range": [ 0, 1.2268017259669095 ], "title": { "text": "SYSTEM TIME" }, "type": "linear" }, "yaxis": { "anchor": "x", "autorange": true, "domain": [ 0, 1 ], "range": [ 9.222211519133703, 24.777981136459662 ], "title": { "text": "Concentration" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5MAAAFoCAYAAADKJa96AAAgAElEQVR4Xu29C5we1X3ffbRXaaVdSbtCMuAYgm8Fgu3gviamUmNSl5A0BpU4QC62CRACceTU0JiL8sGGT8TFMbiJakMIYNWOW8A2EfDGIby2IUWvU2hjY8s2LiYqGMRFSCtpdVntvefMs7OaffTcZubMmf85z3f8kVfanfM///n+ZsV+deayYEZvig0CEIAABCAAAQhAAAIQgAAEIJCCwAJkMgUtdoUABCAAAQhAAAIQgAAEIACBiAAyyYkAAQhAAAIQgAAEIAABCEAAAqkJIJOpkTEAAhCAAAQgAAEIQAACEIAABJBJzgEIQAACEIAABCAAAQhAAAIQSE0AmUyNjAEQgAAEIAABCEAAAhCAAAQggExyDkAAAhCAAAQgAAEIQAACEIBAagLIZGpkDIAABCAAAQhAAAIQgAAEIAABZJJzAAIQgAAEIAABCEAAAhCAAARSE0AmUyNjAAQgAAEIQAACEIAABCAAAQggk5wDEIAABCAAAQhAAAIQgAAEIJCaADKZGhkDIAABCEAAAhCAAAQgAAEIQACZ5ByAAAQgAAEIQAACEIAABCAAgdQEkMnUyBgAAQhAAAIQgAAEIAABCEAAAsgk5wAEIAABCEAAAhCAAAQgAAEIpCaATKZGxgAIQAACEIAABCAAAQhAAAIQQCY5ByAAAQhAAAIQgAAEIAABCEAgNQFkMjUyBkAAAhCAAAQgAAEIQAACEIAAMsk5AAEIQAACEIAABCAAAQhAAAKpCSCTqZExAAIQgAAEIAABCEAAAhCAAASQSc4BCEAAAhCAAAQgAAEIQAACEEhNAJlMjYwBEIAABCAAAQhAAAIQgAAEIIBMcg5AAAIQgAAEIAABCEAAAhCAQGoCyGRqZAyAAAQgAAEIQAACEIAABCAAAWSScwACEIAABCAAAQhAAAIQgAAEUhNAJlMjYwAEIAABCEAAAhCAAAQgAAEIIJOcAxCAAAQgAAEIQAACEIAABCCQmgAymRoZAyAAAQhAAAIQgAAEIAABCEAAmeQcgAAEIAABCEAAAhCAAAQgAIHUBJDJ1MgYAAEIQAACEIAABCAAAQhAAALIJOcABCAAAQhAAAIQgAAEIAABCKQmgEymRsYACEAAAhCAAAQgAAEIQAACEEAmOQcgAAEIQAACEIAABCAAAQhAIDUBZDI1MgZAAAIQgAAEIAABCEAAAhCAADLJOQABCEAAAhCAAAQgAAEIQAACqQkgk6mRMQACEIAABCAAAQhAAAIQgAAEkEnOAQhAAAIQgAAEIAABCEAAAhBITQCZTI2MARCAAAQgAAEIQAACEIAABCDgrUz+m/OuiNL75v231U3xt//wT9XTP3hO/fDxTfP2+Y833K7+7ltPRp+r/lq8o6n/6o7hI2r/yi+dpj5z3eV168VfuOqjv6k+/Bu/fMT4k993YfS5WnXM5x/9h/+pPv7Jz9U8pnf93FvUl//zn9Sc+/47P6VOftvxNcc1qhkPqMch/nrMrNZ+5pjesHKwYRYSv9XM+WEybnQOSeybniAAAQhAAAIQgAAEICCBgLcy+We336s23feI+uz1H1Vn/uL/cwTLHz77vDrv0k/VlLZY6MygetJXS1ZjKasnTqZuLeGLm/viV/5e3fK5/zbXay0xi+e48Pyz1B9ffsHhfWePp7p+LHmtyGR1zTQnIDKZhhb7QgACEIAABCAAAQhAIHwC3spkI1k0sdWTzVjojISaFcB68ldv5bORxDaTyXgl7CN6xdJIZS2RrSeT5phqCZ0EmfT124SVSV+To28IQAACEIAABCAAAQkEvJVJA6/eZazma/VkMCkQjUTMtkzG8huvDtYTz0YyWet4Xchk8rLg5EkbrwobVma1Nr4ENz4GI8t/ry/bNZcax1tyTPIy4norq8lVZFOj3kpyrW+mmFfya/FqcK2vmf2SfVSvJJuvV68mx8du/oEgeXlyrX+kqFUvzfFI+AuDHiAAAQhAAAIQgAAEIBAT8Fom4x/Oq38gb3apaCx0jcStnkw2krdGK5PximYsK/Xq1Oup3uddyKQ5WRpd5lpPJs245GXISSmt9fmkqMXHm7y3tFFe1d/StfKrzqfRymTca60+k8IZ31ublMdaq+a1VrRbyY6/qiAAAQhAAAIQgAAEICCVgNcyaaDWErhqcYvh1/p8PWms9fl68hrXbyST9YSr+j7GZg/Lqb5HtBUhaVbT9J/nATyNViaTDyFKXmKcvM+11uera1Zn2Kjf6lXg5DefOQfie1HryWRyZbX6IUqmr5//ubfOPYSpWZ+xeNabyxz7u9/59roPT5L6Fwd9QQACEIAABCAAAQhAwHuZrCVT9X7Ar/X5evdA1nqaa7Mnlja7dLV6BbXRQ35qPSwnlq7k19LIZFEP4GlVJutJWvXnG8lgzKDRA4fif2QwHxtdRlpP8Or9Y4SpZ8aYLb6kt965Vn1McU6NHtDEX0cQgAAEIAABCEAAAhDwiYD3Mll96WMzYakXTvWrOqpFLxaMeq/0iAWm0es76s2dXG1sdiln9X2TIcpkKyup9Z7im2Rcfb+l+VpSQuvJZL17ROPayX9UaFUmzdhadfMIvk9/0dArBCAAAQhAAAIQgEB4BLyXSRNJUvzq3dvX6J6/Wg+2qbVqGNeoJwD1VibN52tJaK1765rJZLU8hiiTMRebD6ep9VqXZiuTzS79jc+95MOH4r8i6l3Sm/wrJF79bkWMw/urhyOCAAQgAAEIQAACEPCdQBAymbxU1TxRs5a4Nbqfsda9kI3upTRPIa0lALXmaHafZbXINpPJslYmY8a1BMv2Za6NJK2VbzjD0GRUfb9j9T8omD9/9wc/Ud+8/7Z5ZRvdM1k9f72VyVpzfea6yzPP08pxsw8EIAABCEAAAhCAAARcEghCJuOVrBhcteg1EzozrloE68lkvK/5WH3fXi2ZbPT6ElOjurdW3jOZXLFztTLZ7KE09V4NkhS6ZpcgJ4+r1tNc43wN50arhvXGVufTaPWw1tNc47y+/8y2eQ/gMZ9PCmm9f5wwgpvsu5XsXP5lwFwQgAAEIAABCEAAAhBIQyAImTQHHEtbrYfkNBM6M776B/tGMpmUVyNARi7+7ltPzuNuPm+e0nnepZ+quVKa3DkpOc3uF6wW2Gb39xmxNlvyHYi1TpBWLumMVyfj8a28ZzKrTCbFsbrfRvetxvvWeqdjrXHV/Jq9Z9LUT/5jRXyeJN+ZWb1Po2NphXuab2j2hQAEIAABCEAAAhCAgCsCwcikK2DMA4EkgXqXuUIJAhCAAAQgAAEIQAACoRNAJkNPmOMrlAAyWSheikMAAhCAAAQgAAEICCaATAoOh9bkE0Am5WdEhxCAAAQgAAEIQAACxRBAJovhSlUIQAACEIAABCAAAQhAAAJBE0Amg46Xg4MABCAAAQhAAAIQgAAEIFAMAWSyGK5UhQAEIAABCEAAAhCAAAQgEDQBZDLoeDk4CEAAAhCAAAQgAAEIQAACxRBAJovhSlUIQAACEIAABCAAAQhAAAJBE0Amg46Xg4MABCAAAQhAAAIQgAAEIFAMAWSyGK5UhQAEIAABCEAAAhCAAAQgEDQBZDLoeDk4CEAAAhCAAAQgAAEIQAACxRBAJovhSlUIQAACEIAABCAAAQhAAAJBE0Amg46Xg4MABCAAAQhAAAIQgAAEIFAMAWSyGK5UhQAEIAABCEAAAhCAAAQgEDQBZDLoeDk4CEAAAhCAAAQgAAEIQAACxRBAJovhSlUIQAACEIAABCAAAQhAAAJBE0Amg46Xg4MABCAAAQhAAAIQgAAEIFAMAWSyGK5UhQAEIAABCEAAAhCAAAQgEDQBZDLoeDk4CEAAAhCAAAQgAAEIQAACxRBAJovhSlUIQAACEIAABCAAAQhAAAJBE0Amg46Xg4MABCAAAQhAAAIQgAAEIFAMAWSyGK5UhQAEIAABCEAAAhCAAAQgEDQBZDLoeDk4CEAAAhCAAAQgAAEIQAACxRBAJovhSlUIQAACEIAABCAAAQhAAAJBE0Amg46Xg4MABCAAAQhAAAIQgAAEIFAMAWSyGK5UhQAEIAABCEAAAhCAAAQgEDQBZDLoeDk4CEAAAhCAAAQgAAEIQAACxRBAJovhSlUIQAACEIAABCAAAQhAAAJBE0Amg46Xg4MABCAAAQhAAAIQgAAEIFAMAWSyGK5UhQAEIAABCEAAAhCAAAQgEDQBZDLoeDk4CEAAAhCAAAQgAAEIQAACxRBAJovhSlUIQAACEIAABCAAAQhAAAJBE0Amg46Xg4MABCAAAQhAAAIQgAAEIFAMAWSyGK5UhQAEIAABCEAAAhCAAAQgEDQBZDLoeDk4CEAAAhCAAAQgAAEIQAACxRBAJovhSlUIQAACEIAABCAAAQhAAAJBE0Amg46Xg4MABCAAAQhAAAIQgAAEIFAMAWSyGK5UhQAEIAABCEAAAhCAAAQgEDQBZDLoeDk4CEAAAhCAAAQgAAEIQAACxRBAJovhSlUIQAACEIAABCAAAQhAAAJBE0Amg46Xg4MABCAAAQhAAAIQgAAEIFAMAWSyGK5UhQAEIAABCEAAAhCAAAQgEDQBZDLoeDk4CEAAAhCAAAQgAAEIQAACxRBAJovhSlUIQAACEIAABCAAAQhAAAJBE0Amg46Xg4MABCAAAQhAAAIQgAAEIFAMAWSyGK5UhQAEIAABCEAAAhCAAAQgEDQBZDLoeDk4CEAAAhCAAAQgAAEIQAACxRBAJovhSlUIQAACEIAABCAAAQhAAAJBE0Amg46Xg4MABCAAAQhAAAIQgAAEIFAMAWSyGK5UhQAEIAABCEAAAhCAAAQgEDQBZNJCvC/vGrVQhRLSCAz296iDY1Pq0PiUtNboxwKBlcsWquF9Y2pyasZCNUpIIrBggVJvWL5IvTLM382ScrHVS3dXh1q2uFu9vnfMVknqCCLQ19upero71Z7944K6ohVbBAb09+6U/u/ugUOTmUseM7Qo81gG2ieATFpgikxagCiwBDIpMBSLLSGTFmEKK4VMCgvEcjvIpGWgwsohk8ICsdwOMmkZqIByyKSFEJBJCxAFlkAmBYZisSVk0iJMYaWQSWGBWG4HmbQMVFg5ZFJYIJbbQSYtAxVQDpm0EAIyaQGiwBLIpMBQLLaETFqEKawUMiksEMvtIJOWgQorh0wKC8RyO8ikZaACyiGTFkJAJi1AFFgCmRQYisWWkEmLMIWVQiaFBWK5HWTSMlBh5ZBJYYFYbgeZtAxUQDlk0kIIyKQFiAJLIJMCQ7HYEjJpEaawUsiksEAst4NMWgYqrBwyKSwQy+0gk5aBCiiHTFoIAZm0AFFgCWRSYCgWW0ImLcIUVgqZFBaI5XaQSctAhZVDJoUFYrkdZNIyUAHlkEkLISCTFiAKLIFMCgzFYkvIpEWYwkohk8ICsdwOMmkZqLByyKSwQCy346NMnnPhejU0OKDuue0qyzSKL7f1mW3qgstvUPfefp065cQTCpkQmbSAFZm0AFFgCWRSYCgWW0ImLcIUVgqZFBaI5XbqyaR5a93kzLT+pZR5O/DhP8+oSf3u0amZGTUxrT8u0H+O9ql8jMZEY83XlN5nena8+fpM9PuJ2Y/mz2Yz/z9jfm9ONvMH80F/nNG1zR9mzP+Sn5/dqfrz0WBdw9SqVK6MnathCse1a9Qwnzq8fwV01Fud+ZL9Jfs+co7Dx3e4t6rjTh7j7Lzz+69dI+pxll11bfO1js4FqqNjgRqfnJ7HORozuyX516t1+POHeSidT1ylUsOgTvKvHOPhjA9nGwc9L8OY9WyNw7klaxw+T+rmksgrqmH6nD1/KhnHfVSdH3XOsbkc4q/POydq8J89x6rPg4hcrTmi/avP3fnsKod05PdCNMcs+3k19Odj7nM515lj5uffMXcu2PjNRVfcop78zjPzSg0u61dPbN4Yfa4Mmdz8yBa1/ua71IarL1Frz1qd+TCRyczo3A5EJt3ydjUbMumKdDnzIJPlcHcxKzJZoWwEaHJWmCpCNCtJsRjpr1XLVSRN0biKXFXGz34uFrK58WafytfNfvo95JG0TU7Pfm52/6iG+Vz058qYiWj/yjxG6qI+zH5m3tlaE0r3O7NgVuj0PvE8eh+9u/7zrPiZOROi4eIcYw4IQKA8AjZl8uT3XaiS4hgflRHMVSuWq5uuvbQUmbRFF5m0RbLgOshkwYBLKo9MlgTe0bTIpCPQJUzjg0wakRrV0nRQr4KZj6NT+mPyc/r3B6en9OeU/vq0/r3eR8tgvH/0UX/uoP6cGXdo3j6VfY1wtdPWpQ+2a0GH/qVUp/n93J8XRL/v1Esi5mtdsx/n/mzGRPvqfTTvLn0CdXXoz83+3tTq1p+LapqTS2/m/6Pfzq7aLIg+M6MXvmY/6j/HXzcf576e/HxUqLIkVH+fyrJUva/PLlwe7inuI/FxXh+J/mZ3qapdOWMqxxf3Vum+uo/oqGYZRPvPrulVj60c32yN2RPyiNrxnLpKrw6iq7NDHTw0eUQf8flcs7/ZGtX5zLGbXWKbXQBLZDi/v2S2SXYVKnrf5HFH2VRxqtNHJavm50d8HlX6rJxgh/uozH9EH3Vqz2Vc3VMLNebPXcWoheOuZFXFS/c50NetpvW/Kh0c0/km2c0uCUfHnfj8vPNn9lw6ZmhRfCrk+miE8SfbXppbgaxXLF6ZNF+PVzDrCWhyhTN5aematevU6vecorY8tVUN79kXTXXZh85WP3PsymgFMt7iMbUksHoF1Yxfd/G5qtbK6g8f3xSVRCZznSLuBiOT7li7nAmZdEnb/VzIpHvmrma0IZPjRvDmZK1a5rTgRWI3X/BGjeBFcqdmpS+5j5HHWRnU48bmLqYrjkq3vlSwS8vDYbkyv6/8qsjWAtXdYQQq3kf/2XzN7GO+PitX3Vqsos/p4zIfD4tVLGZmfzNO/zkSMP0rkrHZzxl5M73omrGQdUf7JyVvpiKCs31F88Q1Izms7Nut91nY1aEGF3erPSNjun/d26z0FUeSyi4JcM+kS9ru55J0z6RZlTz7zNOj1cdGm5HJ557fHsmfkTezGTl86wlvnLuP0gjdruER9eCmDdHXN979gLrjSw+pWOrM/kYiY1mMv159Oa0Za2pUS2C1+Jqvf/avvhLNb7728d/7jbl7Ik2/9eoUkTj3TFqgikxagCiwBDIpMBSLLSGTFmGWVGqXXrkzK3SR1GlRi1b2ol/TqntRl3p1/1hF6mLBm6ms9FVW/MzK3+Fxlf2MQFZWCou+bNLI0iItSH1ahhaZ35tf5veJz/V1dOo/K72P/qiFapEWqWj/uc8dHr9Qma+ZOrMfdZ2O2VW0kuIpbFoewFMYWhGFkUkRMRTWhBSZjGWtlXsSa90zec2Nd6ofPftCTfGL4RmBPO8DZ0QCGq9MxuJaa8XQ1DQrl+ZezeTXTT3zEJ1Weo1F9v6HHzuiDg/gKey0zl8YmczPUGIFZFJiKvZ6QibtsbRRyawE7pqcUsNa/HZNTehf+vda7IwwDke/nzr8uanJ6PNFbj1ayuYEbvb3fZ1G7mYFrkoE+6J9tMxF+8wK4Lx9Ep/Tl/D1Vi4cZMtAAJnMAM2jIcikR2FlaDVEmYwfllMLR7yaWU8mk4JoVitrSeA/v/BydClsvMpZa5545TP5NbM/l7lmOEnLGIJMlkG9+DmRyeIZlzkDMlks/X1GArUYGhGsiKH+aH7FwjhZEULzebPPPr1v2m25FrfFWuD6FlRW7qKP+rJN83FwYZeaGZ+a/ZzZpyJ70Ue9gldZ4ausCCbHVVYJK/fdsckkgEzKzMVWV8ikLZIy60iRSUMnzWWu1a8GSa5MxjLZTPbMPZPVK5M2ZNIcx2mnnjh3yW3yEltkUub3wRFdIZOeBJWyTWQyJTDPdkcm0wUWrxBGQqjlb7dZNdQrhMP60lEjiLEYmq+ZX2alMc1m7uMb0pdzDupVu6GOLjWoZW9Iy2Ll9/qj/r353GBnV+X3WvjMpaK1Nhv3TKbpnX3dEkAm3fJ2PRsy6Zq42/kkyWSzB/AYYaz3NNdal7k2ugw1z8qkSajeZa61RBaZdHtOW5kNmbSCUVwRZFJcJFYbameZrL6kNLqc1EhgnUtKzQpj8h1vrQSxWMveUFdF+owMRhKYkMIh/WfzNbOPEcYBLYq2NmTSFkmZdZBJmbnY6gqZtEVSZh1JMmkI1Xo1SCxo8cN5mt0zaerET1RNrk4a4Tzt1JOi90TmkUlzr6PpYXjPyNyTZ+MH8JgH71SLpjkms3GZq8zvgZpdIZMehZWiVWQyBSwPdw1NJs0rIl6YmFDbzWrh7OphdHmpuQdRX1IarSCaP2e+pDReMaysEkariJEkVlYMjRDG8mhEcWGJD39BJj38hkzRMjKZApaHuyKTHoaWomVpMpkUweRhJFcZW5HJenWST3PNeplr/OCc+KmycZ9xj0ZaH3r023Ptm/s04yfJcplripOzzF2RyTLpFzc3MlkcWwmVfZRJc2npC5Pj6vnJCS2O5uOk+qn+9bz+3KtaIlvdzKsdoktHZ2Ww3orhYEf33OWm9tYNW+0y+37IZHZ2PoxEJn1IKXuPyGR2dj6MlCiTPnCT3COvBrGQDjJpAaLAEsikwFAstiRVJl8xcjg1PiuJRhr1r1mB3KNlst5mBPH4rm71M9E9hbP3FUYrhtWXmHZavaTUYiTWSiGT1lCKLIRMiozFWlPIpDWUIgshkyJjydUUMpkLX2UwMmkBosASyKTAUCy2VJZMTut3Gf5UryJGq4v6l1lVjIRRvw7jhYnJ6J2I9bZ+LYfHaVE8rrsnEsfoo/lzV496Y5d5pTubIYBMhn0eIJNh54tMhp0vMhlevsikhUyRSQsQBZZAJgWGYrGlImXSCKERw0gUjSTG4hitMk40fM7pUXolcU4WtTC+SUtiJI5aGI/S9yeyNSeATDZn5PMeyKTP6TXvHZlszsjnPZBJn9Or3TsyaSFTZNICRIElkEmBoVhsKa9M7tYPsnlBrzCaS1DNymK80mjk0Vyq2mgzq4hGDqNVxblVRiOM3apfP+GULR8BZDIfP+mjkUnpCeXrD5nMx0/6aGRSekLp+0Mm0zM7YgQyaQGiwBLIpMBQLLbUikyah9rMf9iNlsZopXFc7Z6qfzmqeWdiZTXR/NLC2KnFsbvy++O1RJr7G9mKI4BMFsdWQmVkUkIKxfWATBbHVkJlZFJCCnZ7QCYt8EQmLUAUWAKZFBiKxZaSMrl1fEx9T//app+QOve0VH056qi+v7HetkSvIBpZrEhi5TLU46MVR/0QHP2LrTwCyGR57F3MjEy6oFzeHMhkeexdzIxMuqDsdg5k0gJvZNICRIElkEmBoVhoyaw0Pj1+SP1kwZT6HyP79e/H1KE6D71Zkbx/0UijuSy10zz4plut1L9nk0kAmZSZi62ukElbJGXWQSZl5mKrK2TSFkk5dZBJC1kgkxYgCiyBTAoMJWVLr09Pqe+NHYpWHb+nBdL8fqf+XPX2Zn3f4ju7e9Xbe8zqYk9lxdHcv6ifnsrmHwFk0r/M0nSMTKah5d++yKR/maXpGJlMQ8uPfZFJCzkhkxYgCiyBTAoMpUFL5gmqh6VxTD2txdE8DKd6W6lXG9/Vu1CdPrBYvX1Bt/q5zl41yFNS/Qq7SbfIZFBxHnEwyGTY+SKTYeeLTIaXLzJpIVNk0gJEgSWQSYGhJFr6wUTlPsfvHRpV39O//4H+ffW2WN/X+E4tjmbV0QjkO3p69as2KvcztvIAHtkE6K4eAWQy7HMDmQw7X2Qy7HyRydbzXbN2XbTzE5s3tj6ohD2RSQvQkUkLEAWWQCblhGLe12jE0dzr+P2xyqrjoRpva3yHlsZIHrU0vqtnkTpRX7Zab0Mm5eRruxNk0jZRWfWQSVl52O4GmbRNVFY9ZLK1PDY/skV94d6/U8N7RtSVl52v1p61urWBJeyFTFqAjkxagCiwBDJZTiiv69dxfN+sOmphNNL4ff2EVfO56u0EfW9jtNpoBNLI48KFqke1/soNZLKcfF3Miky6oFzeHMhkeexdzIxMuqBc3hzIZGvsL7riFvXzJ79VffeHP4kG3HPbVa0NLGEvZNICdGTSAkSBJZDJ4kMxq4uRMJrVRvOAHL36aFYhqzfz5NTDl6ou1KuOC/V9jvkejoNMFp9vWTMgk2WRdzMvMumGc1mzIJNlkXczrzSZfFb//PG/Dx15m0zRNN6+sFe9rbe37jQnv+9Cde/t16l/fuFldesd94m+1BWZtHC2IJMWIAosgUzaD8Xc12jub4zuc9S/N/c9Vm+L9RNUzWqjWXU0AmkuW43vc7TZETJpk6asWsikrDxsd4NM2iYqqx4yKSsP291Ik8mH946os7c9b/swm9b7wNIB9dAJx9fcL77E9cFNG6KvG7HccPUlYi91RSabxt18B2SyOSMf90Am86dmZPGx0YPq8dEDkTyaJ65Wb+ahOHPyqMXxJC2QLjZk0gXlcuZAJsvh7mpWZNIV6XLmQSbL4e5qVmkyaVYm/+P2V1wd/tw8ZlXyM8ceXXPe+BLXdRefG33d/NlsUi91RSYtnD7IpAWIAksgk+lDmZyZUY8dOqi+peXxcf3xp5PzX81h7nM09zfOPWE15X2O6TuqPwKZtElTVi1kUlYetrtBJm0TlVUPmZSVh+1upMmk7eOzUc+sRNbafvj4JhvlrddAJi0gRSYtQBRYAplsLRQjjEYcv3XwgHps7KAyQhlvR+t7HX9pUZ9638LF6rSFi9SQfsejlA2ZlJKE/T6QSftMJVVEJiWlYb8XZNI+U0kVkcnGaZhLXGvdIyn5Uldk0sJ3GDJpAaLAEshk/VCeHBudE8jq+x7f3btInaHF8YxFi6MH5UjdkEmpyeTvC5nMz1ByBWRScjr5e0Mm8zOUXAGZbJzOOReuV0ODA0dc0ir5Uldk0sJ3HDJpAaLAEsjk4VD2Tk/ry1f1yqO+//Gx0f1ql/5zvLGuk6UAACAASURBVC1e0KHO6FuszjASqQVylV6N9GFDJn1IKVuPyGQ2br6MQiZ9SSpbn8hkNm6+jEImfUmq9T6RydZZ1d0TmbQAUWCJdpfJH4+P68tWKwL5/+vLWJPbW/S9j5FA6hXIX9SXsPq4IZM+ptZaz8hka5x83QuZ9DW51vpGJlvj5OteyKSvydXvG5m0kCkyaQGiwBLtJpPmTsfoyatmBVLL47aJ+e97/Nd61fGMXn3/o74H8m3dPQITS9cSMpmOl097I5M+pZW+V2QyPTOfRiCTPqWVvldkMj0z6SOQSQsJIZMWIAos0Q4y+fLkZPTQHPPqDiOSyVd3rNQPyzmjb4lefTQP0OlT/fr9jyFtyGRIac4/FmQy3GzNkSGTYeeLTIadLzIZXr7IpIVMkUkLEAWWCFUm/2nsULTy+JgWyKfHD80jb17bccaiikD+S/3Ox5A3ZDLcdJHJcLNFJsPO1hwdMhl2xshkePk6l8k1a9ep4T37apKU+v6UZrEjk80I+fn1UGRy//SUvnR1dE4gX5uanAukVy3Q8tg3twJ5rCcPz7FxRiGTNijKrIFMyszFVlesTNoiKbMOMikzF1tdIZO2SMqp41Qm6z3uVg6ObJ0gk9m4SR/ls0yO6nc9fu3AiPq6fvfjP+h7IJPb8V3d0cqjefKq+RXWxautn1XIZOusfNsTmfQtsXT9IpPpePm2NzLpW2Lp+kUm0/HyYW+nMin5hZt5wkIm89CTO9ZHmfxHff/j1w7sV1/VIjmhhTLe3hu9tqMikCd198qF7rAzZNIhbMdTIZOOgTueDpl0DNzxdMikY+COp0MmHQN3MB0yaQEyMmkBosASvsjkDn3Z6tcO7lNf3T+ifpx4Ausavfr463396v1aIJd3dgokXG5LyGS5/IucHZkskm75tZHJ8jMosgNkski65ddGJsvPwHYHTmXSXOb6/jXvVusuPtf2cZRaD5ksFX9hk0uXyUf1A3TMCuTfHtw/x+AYfc/jry/u178G1FsDeH1HYeHqwshkkXTLrY1Mlsu/6NmRyaIJl1sfmSyXf9GzI5NFE3Zf36lMbn5ki7r1jvvUE5s3uj/SAmdEJguEW2JpiTL53MSYXoXcrx44sE+9NDkxR+ff6Vd4nKsF8iy9CsnWGgFksjVOPu6FTPqYWus9I5Ots/JxT2TSx9Ra7xmZbJ2VL3s6lUlzz2Sjjae5+nLatEefUmRyxjxMR1/G+oCWyH/Qq5Hx9i96etS5fQPRSuQb2ugprLbOPmTSFkl5dZBJeZnY7AiZtElTXi1kUl4mNjtCJm3SlFHLqUzKOGT7XbAyaZ+phIply6R5B+TX9AqkuZR1ZHo6QtKlf0qOLmPV90L+K31PJFt2AshkdnbSRyKT0hPK1x8ymY+f9NHIpPSE8vWHTObjJ3F028vkRVfcop78zjNz2bzl+GPVg5s2zMvK3Ov53PPbo8/V+joyKfHUzt9TGTK5T0ujkUcjkd/VMhlv/7J3YXQfpBHJxQva9WUe+TNNVkAm7fKUVA2ZlJSG/V6QSftMJVVEJiWlYb8XZNI+07IrOpdJc9/k+pvvmnfcG66+RK09a3UpLNasXTfvHk7z59XvOUXddO2lUT9GNncNj8wJZq13ZSKTpURX+KQuZfK/68tXK/dCjqjKGqTST2Dt0CuQRiAH1Dt6eJ2H7cCRSdtE5dRDJuVkUUQnyGQRVOXURCblZFFEJ8hkEVTLrelUJjfe/YC640sPqXtvv06dcuIJ0ZFvfWabuuDyG9RlHzpbxFNer7nxTvWjZ1+Yk0cjl1dedv6c7NZ6iBAyWe5JXNTsRcvkdv0AHbMC+YC+H/IniVd6/JJ+iM65egXy3+tLWdmKI4BMFse27MrIZNkJFDs/Mlks37KrI5NlJ1Ds/MhksXzLqO5UJo2YnfeBM46QRiOZ9z/8mIinvJqVx5Pedly0MhmLbi35TX4OmSzj1C1+zqJk0rzKwwjkI4lXehzX1R09jfWDS/rV8Z3dxR8cM/BqkIDPAWQy4HD1oSGTYeeLTIadLzIZXr5OZdI8zbXWJa3xpa9lP83VrEo+9Oi3VdxHqzK5c+9YeGcGR6QG+rrVoYkpNT4RX3iaHYp5jccXRvaqr+zfq16ZnJwrtHbJgDpP//q3fbzSIzvdbCOX9/eokQMTamp6JlsBRsklsECpof5etWuEv5vlhpS9s87OBap/UZfas//w65GyV2OkNAK9PR2qu7NT7R8lX2nZ2Ohnsf7enZqaUYfGpzKXW7GUW38ywytgoFOZlLwy2egS3GYrk+OT+WWjgGwpmZNAl/6BxTxEdVq/miPr9tz4uNq4c5e6Y9euuRLvXLhI/fbyZeq3li1VR3V1ZS3NuJwEuvU9qZM64Bzx5uyA4UUR0C4ZrV7xd3NRhMut26GXnjs7FqiJKf7bW24SxczeqfM1z5mb1MLBFh4B871rtjz/kNuj/35nk0PAqUxKvWeyekUyGQ/3TMo5WV13kucy1x9ribxr/x713/RKZLyZeyA/1L9Unda7yPWhMF8NAtwzGe5pwWWu4WZrjozLXMPOl8tcw86Xy1zDy9epTBp80p7mau6RNFv160DiqHmaa3gnfatHlEUmvzc+pu7et0c/WGdkbprz9b2QlwwsUyd1c1lGq+xd7IdMuqBczhzIZDncXc2KTLoiXc48yGQ53F3Niky6Iu1uHucy6e7Qms8U3xNZa8/kvZ28Z7I5yxD3SCOTTx0ajVYizcN14u3DS5ZGEvnmrp4Q8Xh/TMik9xHWPQBkMtxszZEhk2Hni0yGnS8yGV6+bS2TtuLkaa62SMqq04pMbjl0UN2lVyL/P/2eSLOZOwEu6V+mfy1Xb+R+SFmBVnWDTIqOJ1dzyGQufOIHI5PiI8rVIDKZC5/4wcik+IhSN+hEJs1TXM17JM07JhttZT/NNTW92QHIZFZyssc1kslvank0EvnftUyabaF+WoCRyIv1r5X6KXRs8gkgk/IzytohMpmVnB/jkEk/csraJTKZlZwf45BJP3JK06UTmUzTkI/7IpM+pta851oy+fXR/epu/YqP/zFWkciBjg71e3oV0oik+T2bPwSQSX+yStspMpmWmF/7I5N+5ZW2W2QyLTG/9kcm/cqrlW6dymS990yap7ze//Bj6onNG1vpWdw+yKS4SKw0lJTJvzm4T901skc9PX4oqm1WH80qpJFIsyrJ5h8BZNK/zFrtGJlslZSf+yGTfubWatfIZKuk/NwPmfQzt0Zdi5DJ+AmvXOYa3gnm8xEZmbxr57D6/PAu9czEeHQo5j5Icz+kkcjKm5LYfCWATPqaXPO+kcnmjHzeA5n0Ob3mvSOTzRn5vAcy6XN6tXsXIZPmPY9bntrKymR455e3R/RF/X7ILxzYq54dG4uO4c3dPZFAmie0soVBAJkMI8daR4FMhputOTJkMux8kcmw80Umw8u3cJms9V7JWhiTr+LwDTOXufqWWO1+Z/SnzUN17tq3W700ORntdHJPb3Q5q3lXJFtYBJDJsPJMHg0yGW62yGTY2ZqjQybDzhiZDC/fwmUyiazePZO+Y0UmfU9Qqb8+MKJu3bNL7ZiqSOS7ehaq/7ByhfrAwiXq0PiU/wfIERxBAJkM96RAJsPNFpkMO1tkMvx8kcnwMnYqk+HhqxwRMulvsuY9kbfu3aWeGqs8WOcXevvUxQNL1a8uWqJaec+kv0dO58hkuOcAMhlutshk2Nkik+Hni0yGlzEyaSFTZNICRMclXpqc0BI5rO7XK5Jme1NXt7py6aD6YOJyVmTScSiOp0MmHQN3OB0y6RB2CVNxz2QJ0B1OyWWuDmGXMBUyWQL0gqd0KpNbn9mmLrj8hrqHxNNcC06b8hGBvxgZVp/Rl7TGF69+fOlQJJLVT2dFJsM+YZDJcPNFJsPNlpXJsLNlZTL8fJHJ8DJ2KpNr1q5Tq99zijrt1JPUrXfcN/f01nMuXK/ev+bdat3F53pJmJVJP2J7UL8r8tY9w+qfJyuv+fj3ff3qymWD6me7emoeADLpR65Zu0Qms5KTPw6ZlJ9Rng5ZmcxDT/5YViblZ5SnQ2QyDz2ZY53KZPwAnjcfd4z6g2s+OyeT5omvSbmUiap+V8ik7MS+Nz4W3Rf5zdEDUaM/37tQr0QOqTMW9jVsHJmUnWve7pDJvATljkcm5WZjozNk0gZFuTWQSbnZ2OgMmbRBUVaNUmRy7VmrlRHL+LLW+PUhXOYq6+TwvZuR6Wl168guddfInuhQlnd2qCsHVqjf7W/tXZHIpO9nQOP+kclw80Umw83WHBkyGXa+yGTY+SKT4eXrVCbN5awnve04ddO1l6rk76+58U615amtcyuVvmFmZVJeYvfo90UakdwzNR01d4l+V6RZjRzo6Gi5WWSyZVRe7ohMehlbS00jky1h8nYnZNLb6FpqHJlsCZO3OyGT3kZXt3GnMlndhVmdjLd7b79OnXLiCV4SRiblxPatUfOqj53qaX1pq9nev2hxJJHv6OlN3SQymRqZVwOQSa/iStUsMpkKl3c7I5PeRZaqYWQyFS7vdkYmvYusacOlymTT7jzZAZksP6j/o1/1YZ7Qulk/ZMdsb9EP1TFPaD17cX/m5pDJzOi8GIhMehFTpiaRyUzYvBmETHoTVaZGkclM2LwZhEx6E1XLjTqVyfgBPOaeyZA2ZLK8NKdnZvTlrLvVf9IP2DFbl/4p0kjkxwYGczeFTOZGKLoAMik6nlzNIZO58IkfjEyKjyhXg8hkLnziByOT4iNK3SAymRrZkQOQSQsQM5T4yv69kUi+qFclzXb+4oHoktZju7oyVDtyCDJpBaPYIsik2GhyN4ZM5kYougAyKTqe3M0hk7kRii6ATIqOJ1NzTmXS9/dJ1iOMTGY69zIP2jE1qT61e6cy74002y/09kXvizy9d1HmmrUGIpNWcYorhkyKi8RaQ8ikNZQiCyGTImOx1hQyaQ2lyELIpMhYcjXlVCa3PrNt3vslc3UuaDAy6S6Mrx4Y0SL5utqtX/vRt6BD/UrfEvUXQ6sKaQCZLASrmKLIpJgorDeCTFpHKqogMikqDuvNIJPWkYoqiEyKisNKM05lMvn01lrd855JK5kGWWRYv+Lj+j2vKyOTZjtLP6X1U8tXqp+xdElrLWjIZJCn0txBIZPh5otMhputOTJkMux8kcmw80Umw8vXqUyGh69yRKxMFpuseULr9fqyVnN5a7f+KfH65UepjyxZWuykujoyWTjiUidAJkvFX+jkyGSheEsvjkyWHkGhDSCTheItvTgyWXoE1htwKpP1nua68e4H1P0PP6ae2LzR+gG6KIhMFkN5RF/K+qk9O9V9+kE7ZjPvjPzU8hXqZ/VrP1xsyKQLyuXNgUyWx77omZHJogmXWx+ZLJd/0bMjk0UTLrc+Mlku/yJmFyGTmx/ZotbffJfiMtciIvaz5v97cH90b+QrejWyQx/Cp/Rq5MX9y5weDDLpFLfzyZBJ58idTYhMOkNdykTIZCnYnU2KTDpDXcpEyGQp2AudVIRMXnPjnWrLU1tZmSw0aj+KH9Crkddrifzy7L2R71vYF4nkW7vdrEYmKSGTfpwzWbtEJrOSkz8OmZSfUZ4Okck89OSPRSblZ5SnQ2QyDz2ZYwuXyXjVsdnhb7j6ErX2rNXNdhP5dS5ztRPLI6MH9GrkDv3eyMmo4HX6ktbf719up3iGKshkBmgeDUEmPQorZavIZEpgnu2OTHoWWMp2kcmUwDzbHZn0LLAW2i1cJpM91LtnsoU+Re+CTOaLZ1zNRJe0/pd9lXsjV+vVSPOQnX9Rwmpk8kiQyXy5Sh+NTEpPKHt/yGR2dj6MRCZ9SCl7j8hkdnY+jEQmfUgpXY9OZTJda/7sjUxmz+obh/Rq5PBO9X8mx6Mi1y4bUh8dGMxe0OJIZNIiTIGlkEmBoVhqCZm0BFJoGWRSaDCW2kImLYEUWgaZFBpMjraQyRzw4qHIZHqIUzMz+r2RO9Xd+/ZEg9/b26c+qS9rPaWnN32xgkYgkwWBFVIWmRQSRAFtIJMFQBVUEpkUFEYBrSCTBUAVVBKZFBSGpVacy+SatevU8J59Ndvnaa6WUhVe5vvjY+qPd72mfjAxFnV6lV6N/JiQ1cgkOmRS+ImUsz1kMidAwcORScHhWGgNmbQAUXAJZFJwOBZaQyYtQBRWwqlMnnPhejU0OKDuue0qYRjytcPKZOv8/uv+EfWJ4df0XZJKvatnodoweFT0UeKGTEpMxV5PyKQ9ltIqIZPSErHbDzJpl6e0asiktETs9oNM2uUpoZpTmeQBPBIiL6+H9fohO5tmL2v9nSVL1S2DK8trpoWZkckWIHm8CzLpcXhNWkcmw83WHBkyGXa+yGTY+SKT4eWLTFrIlJXJxhD/9/i4+sTu19T/GjsU7XiTlsgPa5mUviGT0hPK1x8ymY+f5NHIpOR08veGTOZnKLkCMik5nfy9IZP5GUqr4FQmzWWu71/zbrXu4nOlccjVDzJZH98DB/epT+zaoUZnpqNXffzZ4Cp1aq/My1qrjwKZzPVtIX4wMik+oswNIpOZ0XkxEJn0IqbMTSKTmdF5MRCZ9CKmVE06lcnNj2xRt95xn3pi88ZUTUrfGZmsndAN+rLWv5y9rPWDiwfUp/X9kb0LOqTHOdcfMulNVJkaRSYzYfNiEDLpRUyZm0QmM6PzYiAy6UVMmZtEJjOjEzvQqUyaeyYbbTzNVex5kqqxFyYn9EN2dqgthw5G4z65bIW6dGB5qhoSdkYmJaRQXA/IZHFsy66MTJadQLHzI5PF8i27OjJZdgLFzo9MFsu3jOpOZbKMA3QxJyuThyl//eB+9cf6aa17pqfVcZ3d6jNDK9XpC/tcxGB9DmTSOlJRBZFJUXFYbQaZtIpTXDFkUlwkVhtCJq3iFFcMmRQXSe6GkMncCJVCJisQP713l/rzvcPR7/9d3xL1GX1/5ECHP5e1Vp8KyKSFbw7BJZBJweHkbA2ZzAlQ+HBkUnhAOdtDJnMCFD4cmRQeUIb2nMukeQjPc89vj1rdcPUlau1Zq5W5/PW0U0/09v2T7S6TO6Ym9WrkDvWN0QNRrlctG1IfGxjMcDrKGoJMysrDdjfIpG2icuohk3KyKKITZLIIqnJqIpNysiiiE2SyCKrl1nQqk0YkhwYHImlcs3aduvKy8yOZ3Hj3A+r+hx/z9sE87SyT5r7IP9r1mnpVC+Wqzk59Wesq9UsLF5d7VluaHZm0BFJoGWRSaDAW2kImLUAUXAKZFByOhdaQSQsQBZdAJgWHk7E1pzJpViDvvf06dcqJJ8yTSfOU1/U336V4AE/GFEsa9tUDI5FImu3f6PsiPzP0BrVSC2UoGzIZSpK1jwOZDDdfZDLcbM2RIZNh54tMhp0vMhlevk5l0qxGfv6mjx8hk6xM+ndibRwZVjfv2RU1fnH/MnXD8qP8O4gmHSOTwUU674CQyXDzRSbDzRaZDDtbc3TIZNgZI5Ph5etUJq+58U615amt0eWs8WWubz7uGHXB5Teos888Xd107aVeEm63y1zX6/dHbpp9f+R6fX/kHwRwf2StEw+Z9PLbseWmkcmWUXm3IzLpXWSpGmZlMhUu73ZGJr2LLFXDyGQqXF7s7FQmDZH4ktYkncs+dLZad/G5XgCr1WS7yOShmWn1UX1Z6yP69R9m26jvjzx38YC3uTVrHJlsRsjvryOTfufXqHtkMtxszZEhk2Hni0yGnS8yGV6+zmUyPITt8WqQ5ycntEi+qp4eOxTdF/l5fX/kez19f2Sr5yAy2SopP/dDJv3MrZWukclWKPm7DzLpb3atdI5MtkLJ332QSX+zq9e5U5m86Ipb1JPfeeaIB+3wahDZJ9Y/jo2qj+58Vb2mn9j6zp5e9bkVb1A/29Uju2kL3SGTFiAKLoFMCg4nZ2vIZE6Awocjk8IDytkeMpkToPDhyKTwgDK051QmzX2S533gjCMuaeUBPBmSczTkbw7uU3+oRdJsv7xocSSSixZ0OJq93GmQyXL5Fz07Mlk04fLqI5PlsXcxMzLpgnJ5cyCT5bF3MTMy6YKy2zmcyqRZgdxw9SXRuyWTG68GcRt6q7Pdvm+3+tPdO6PdP7JkqbpxcGWrQ4PYD5kMIsa6B4FMhpsvMhlutubIkMmw80Umw84XmQwvX6cyKXllst7qqHkC7UOPfvuI5JPvxAzxATyf1E9svWv2ia1XLR1SH1s6GN7Z3+SIkMmwI0cmw80XmQw3W2Qy7GzN0SGTYWeMTIaXr1OZNMJ2x5ceUvfefl30rkmzbX1mW/RqkLKe6Jp8uuzgsv7otSXJzcjkj559QT24aUPd9EOSycmZGfUH+kE7fzv7xNb/pJ/Y+hsBP7G10bc0MhneX3jJI0Imw80XmQw3W2Qy7GyRyfDzRSbDy9ipTBp8tV4NUuvSV9eoG61MtotMvjj7xNZ/0k9sHerojO6PXBP4E1uRSdffaXLmQyblZGG7E2TSNlFZ9bjMVVYetrthZdI2UVn1kElZedjoxrlM2mi6iBqtXuZaa/UyhJXJ742Pqd/b+YraroXy5G7zxNZV6q36YztvrEyGnT4yGW6+yGS42bIyGXa2rEyGny8yGV7GyORspq0+UfacC9dHI5KXve7eP+71mfGPowfV77y8Xe2enlJn9i1Rf3X00apfr0y2+7ZkYZcam5xWE/oXW3gEBvq61YFDk2pqeia8g2vzI1qgj3/p4h6154Dffze3eYx1D7+royO6r25kdAJEARLo7epQXfqX+fuZLTwCi/T37rT+sWpsYirzwS1fEv7r6TLDKWGgc5k0D+EZ3rOv5qEmH2rjmkWrMlnrybOjY9m/IVwfZ/V839i/X53/0k/VqP6B+oNLl6ovHvvGslsSM39Pd4eamppBNsQkYreRhT2d0X/M9G3CbKER0Da5SOfr89/NoUVi83jM26l6tGyMjfMPfTa5SqnV2blAdejLC/iHXCmJ2O3DXKY+o//DO6l/vsq6GSFlk0PAqUyaVb2hwQF1z21XySEw20kemfT1Mte/1w/ZuUhf2mq28/RDdj6rH7bDdpgAl7mGfTZwmWu4+XKZa7jZmiPjnsmw8+WeybDz5TLX8PJ1KpP13jMpAWs9mTQrqcknvJo/v/WEN84TYh9l8iEtkpfPiuSH9Tskb2qzd0i2cs4hk61Q8ncfZNLf7Jp1jkw2I+T315FJv/Nr1j0y2YyQ319HJv3Or1b3bS+TtZ4ue/aZp6ubrr004mVWU597fvscu9NOPfGIlVXfZPL+AyPq47tei47p0oHl6pPLVoR3Zls4ImTSAkTBJZBJweHkbA2ZzAlQ+HBkUnhAOdtDJnMCFD4cmRQeUIb2nMqkEbP3r3m3WnfxuRlalTvEJ5n84v696prhHRHMjy0dUlctHZQLtuTOkMmSAyh4emSyYMAllkcmS4TvYGpk0gHkEqdAJkuE72BqZNIBZMdTOJVJswp46x33zbts1PHxFjKdLzJ558hudf2enRGDT2iJ/CMtk2z1CSCTYZ8dyGS4+SKT4WZrjgyZDDtfZDLsfJHJ8PJ1KpPmnslGW5lPc80TrQ8y+Rd7h9Ute3dFh3nd8hXq9/uX5znkthiLTIYdMzIZbr7IZLjZIpNhZ2uODpkMO2NkMrx8ncpkePgqRyRdJj+tRfLPZ0XyxuUr1Uf6l4YahdXjQiat4hRXDJkUF4m1hpBJayhFFmJlUmQs1ppCJq2hFFkImRQZS66mkMlc+OTL5A27d6q/3Lc7avQ2/cTW8/WTW9laI4BMtsbJ172QSV+Ta943Mtmckc97IJM+p9e8d2SyOSOf90AmfU6vdu/OZbLW01M3XH2JWnvWam/pSl2Z/JPdr6sv7NsTcf38ijeoc/r6vWVcRuPIZBnU3c2JTLpj7XomZNI1cbfzIZNuebueDZl0TdztfMikW94uZnMqk+Zdjnd86SF17+3XqVNOPCE6vq3PbFMXXH6DuuxDZ3v7lFeJMvmnekXy9tkVyXuOOkb98qLFLs6noOZAJoOK84iDQSbDzReZDDdbc2TIZNj5IpNh54tMhpevU5lcs3adOu8DZxwhjUYy73/4MW+f8ipNJm8dGVa37ak8bOevVhytfrVvSXhnroMjQiYdQC5xCmSyRPgFT41MFgy45PLIZMkBFDw9Mlkw4JLLI5MlB1DA9E5l0jzNtdYlrfGlrzzNNX/Cn9Ov/7hx9vUfG/WlredyaWtmqMhkZnReDEQmvYgpU5PIZCZs3gxCJr2JKlOjyGQmbN4MQia9iarlRp3KJCuTLeeSace79f2R1+n7JM32Z4Or1G8tGchUh0EVAshk2GcCMhluvshkuNmaI0Mmw84XmQw7X2QyvHydyiT3TBZ3An15/171ieEd0QQ3LD9KXdy/rLjJ2qQyMhl20MhkuPkik+Fmi0yGna05OmQy7IyRyfDydSqTBh9Pc7V/Ej1wcJ9at/PVqPC1y1aojw4stz9JG1ZEJsMOHZkMN19kMtxskcmws0Umw88XmQwvY+cyGR5Cpcp8AM/XD+5Xv7fzlQjrFcuG1JUDgyEiLuWYkMlSsDubFJl0htr5RMikc+ROJ+QyV6e4nU/GyqRz5E4nRCad4nYyGTJpAXNZMvmt0YPqQ69vj47g8v7l6k+Wr7BwNJSICSCTYZ8LyGS4+SKT4WZrjgyZDDtfZDLsfJHJ8PJ1IpPxvZK13iXZ6Gu+4C5DJv9xbFT91mvb1biaUb+r74/8U32fJJtdAsikXZ7SqiGT0hKx1w8yaY+lxErIpMRU7PWETNpjKbESMikxlXw9OZHJcy5cr4YGB9Q9t11Vs9uLrrhF7RoeUQ9u2pDvaEoa7Vomnx4/pH5zx3Y1Mj2tfnPJUvWZwZUlHXnY0yKTYeeLTIabLzIZbrasTIadrTk6ZDLsjJHJ8PJ1IpP13i8Z4+Q9k62fWD8eH9ci+ZLaMT2l1up3SH5Ov0uSrRgCyGQxXKVURSalJGG/xEAsRQAAGVNJREFUD2TSPlNJFVmZlJSG/V6QSftMJVVEJiWlYacXZNICR1crky9OTqjzd7ysXpgcV2ctWqzuPuoYC91Toh4BZDLscwOZDDdfZDLcbFmZDDtbVibDzxeZDC9jJzK5Zu06deVl56u1Z62uSdCsTN56x33qic0bvSTsQibNvZHnvvqS+q6+xPV9i/rUl4861ktWPjWNTPqUVvpekcn0zHwZgUz6klS2PlmZzMbNl1GsTPqSVLY+kcls3CSPciKT19x4p/rRsy/UvSey2T2VkgGa3lzI5MX69R+P6NeA/Fx3r/rqqmNVf0endCze94dMeh9hwwNAJsPNF5kMN1tWJsPOlpXJ8PNFJsPL2IlMGmxmddJs1auP5vPDe/apHz6+yVu6Rcvk1cM71Jf271UrO7vU17RIntDV4y0rnxpHJn1KK32vyGR6Zr6MQCZ9SSpbn6xMZuPmyyhWJn1JKlufyGQ2bpJHOZNJA8GsUD706Lfn8Tjt1BPrPuVVMrhkb0XK5G17d6lb9w6rBXrCr656o/qF3kW+YPG+T2TS+wgbHgAyGW6+yGS42ZojQybDzheZDDtfZDK8fJ3KZHj4KkdUlEz+tV6NvEqvSprtjhVHqw/0LQkVocjjQiZFxmKtKWTSGkpxhZBJcZFYbQiZtIpTXDFkUlwkVhtCJq3iFFEMmbQQQxEy+fejB9RFr78cdXf9sqPUJQPLLHRKiTQEkMk0tPzbF5n0L7NWO0YmWyXl537IpJ+5tdo1MtkqKT/3Qyb9zK1R18ikhUxty+R3xw6pX3/tJTWmn+D6hwPL1TXLVljokhJpCSCTaYn5tT8y6VdeabpFJtPQ8m9fZNK/zNJ0jEymoeXfvsikf5k16xiZbEaoha/blMmX9LskP7jjJfXi5KQ6b/GA+uzQqhY6YJciCCCTRVCVUxOZlJOF7U6QSdtEZdVDJmXlYbsbZNI2UVn1kElZedjoBpm0QNGWTE7MzKhf37Fd/dPYqDpDv0vyr3mXpIV0spdAJrOz82EkMulDStl6RCazcfNlFDLpS1LZ+kQms3HzZRQy6UtSrfeJTLbOqu6etmTyEv0uyb/T75I8Wb9L8mv6ya39HR0WuqNEVgLIZFZyfoxDJv3IKUuXyGQWav6MQSb9ySpLp8hkFmr+jEEm/cmq1U6RyVZJNdjPhkxeo5/a+sXZd0l+Vb9L8s28S9JCMvlKIJP5+EkfjUxKTyh7f8hkdnY+jEQmfUgpe4/IZHZ2PoxEJn1IKV2PyGQ6XjX3ziuTX9o/oq4efi2qbd4l+V7eJWkhlfwlkMn8DCVXQCYlp5OvN2QyHz/po5FJ6Qnl6w+ZzMdP+mhkUnpC6ftDJtMzO2JEHpn8X/rJree89mJU89P6YTu/rR+6wyaDADIpI4eiukAmiyJbfl1ksvwMiuwAmSySbvm1kcnyMyiyA2SySLrl1EYmLXDPKpMHZqbVr736knp2YkxduGSp2jC40kI3lLBFAJm0RVJmHWRSZi42ukImbVCUWwOZlJuNjc6QSRsU5dZAJuVmk7UzZDIrucS4rDL5BztfVQ8e3KdO05e1PqAvb2WTRQCZlJWH7W6QSdtE5dRDJuVkUUQnyGQRVOXURCblZFFEJ8hkEVTLrYlMWuCfRSY3jgyrm/fsip7Y+vU3/Iw6gQfuWEjCbglk0i5PadWQSWmJ2OsHmbTHUmIlZFJiKvZ6QibtsZRYCZmUmEq+npDJfPyi0Wll8pujB9SHX385GvuXQ29Qv7a430IXlLBNAJm0TVRWPWRSVh42u0EmbdKUVwuZlJeJzY6QSZs05dVCJuVlkrcjZDIvwZQy+crUpPrVV19UO/THP1o6qD6xdMhCB5QoggAyWQRVOTWRSTlZ2O4EmbRNVFY9ZFJWHra7QSZtE5VVD5mUlYeNbpBJCxTTrEz+9o7t6vFDB9WZixarLxx1jIXZKVEUAWSyKLIy6iKTMnIoogtksgiqcmoik3KyKKITZLIIqnJqIpNysrDVCTJpgWSrMrlB3yP5eX2v5Bu7utTfrnqTWtHZaWF2ShRFAJksiqyMusikjByK6AKZLIKqnJrIpJwsiugEmSyCqpyayKScLGx1gkxaINmKTD6gn9q6Tj+91Wz3rjxWrVnYZ2FmShRJAJkskm75tZHJ8jMoqgNksiiyMuoikzJyKKoLZLIosjLqIpMycrDZBTJpgWYzmfzx+Li+T/KnakzNqOuWr1C/37/cwqyUKJoAMlk04XLrI5Pl8i9ydmSySLrl10Ymy8+gyA6QySLpll8bmSw/A9sdIJMWiDaTyV977UX13bFD6oOLB9SfD62yMCMlXBBAJl1QLm8OZLI89kXPjEwWTbjc+shkufyLnh2ZLJpwufWRyXL5FzE7MmmBaiOZ/MSu19SXD4yok7t7o/dJdpmfcti8IIBMehFT5iaRyczoxA9EJsVHlKtBZDIXPvGDkUnxEeVqEJnMhU/kYGTSQiz1ZPIL+/aoP9n9ujL6+PWj36TeoYWSzR8CyKQ/WWXpFJnMQs2PMcikHzll7RKZzErOj3HIpB85Ze0SmcxKTu44ZNJCNrVk8snxUXXuqy9F1W8dXKkuWLLUwkyUcEkAmXRJ2/1cyKR75q5mRCZdkS5nHmSyHO6uZkUmXZEuZx5kshzuRc6KTFqgWy2T+6an9QN3XlTbJsfVJQPL1PXLjrIwCyVcE0AmXRN3Ox8y6Za3y9mQSZe03c+FTLpn7nJGZNIlbfdzIZPumRc9IzJpgXC1TF668xX1twf3q/f2LlJfXfVGCzNQogwCyGQZ1N3NiUy6Y+16JmTSNXG38yGTbnm7ng2ZdE3c7XzIpFveLmZDJi1QTsrkn+8dVp/eu0st6+xQX1/1JnVcV7eFGShRBgFksgzq7uZEJt2xdj0TMumauNv5kEm3vF3Phky6Ju52PmTSLW8XsyGTFijHMvno6AH1u6+/HFW866hj1K8sWmyhOiXKIoBMlkXezbzIpBvOZcyCTJZB3d2cyKQ71mXMhEyWQd3dnMikO9auZkImLZA2MvnixIT6tR0vqp1TU+qKpUPqyqWDFipTokwCyGSZ9IufG5ksnnFZMyCTZZF3My8y6YZzWbMgk2WRdzMvMumGs8tZkMlZ2hvvfkDd//Bj6onNG4/gf86F69Vzz2+PPv+W449VD27aMG8fI5MX7Niunjh0UP1K3xJ114qjXWbIXAURQCYLAiukLDIpJIgC2kAmC4AqqCQyKSiMAlpBJguAKqgkMikoDEuttL1Mbn5ki1p/810RzsFl/UfI5EVX3KJ2DY/MCaQRy6HBAXXPbVfNRfD7//xTdefIHnVcZ3f0PsllHR2W4qFMmQSQyTLpFz83Mlk847JmQCbLIu9mXmTSDeeyZkEmyyLvZl5k0g1nl7O0vUzGsOutTK5Zu05dedn5au1Zq6NdjXzeesd9c9L5xeHd6iMvvBh97Ssrj1WnL+xzmR9zFUgAmSwQroDSyKSAEApqAZksCKyQssikkCAKagOZLAiskLLIpJAgLLaBTM7CrCWTW5/Zpi64/AZ17+3XqVNOPCHas/pzPU9vVRMzM+r65UepS/qXWYyGUmUTQCbLTqDY+ZHJYvmWWR2ZLJN+8XMjk8UzLnMGZLJM+sXPjUwWz9j1DMhkTplc8N3vq98ZWKo+f/QxrrNjvoIJLOrtVBOTM2pyarrgmShfBoHFC7vU6PiUmp6eKWN65iySwAKllizsVvtHJ4qchdolEejoWKAW9nSqg4cmS+qAaYskYP6xoFNnfEj//cwWHoFe/b1r/rs7MZn9Z6v+Pl67J+nMQCZzyuT/PDiq3q66lP7ZhS0wAshkYIFWHQ4yGXC+yGTA4SqFTAYdr0Imw84XmQwvX2SygUyaLzW7Z9LsE79nMrzTo72PiMtcw86fy1zDzZfLXMPN1hwZl7mGnS+XuYadL5e5hpcvMtlEJlt5misyGd43hjkiZDLMXOOjQibDzReZDDdbZDLsbM3RIZNhZ4xMhpdv28tk8tUgcbxnn3m6uunaS+fSbuU9k+GdGhwRMhn2OYBMhpsvMhlutshk2Nkik+Hni0yGl3Hby6SNSFmZtEFRXg1kUl4mNjtCJm3SlFULmZSVh+1uuMzVNlFZ9ViZlJWH7W6QSdtEy6+HTFrIAJm0AFFgCWRSYCgWW0ImLcIUVgqZFBaI5XaQSctAhZVDJoUFYrkdZNIyUAHlkEkLISCTFiAKLIFMCgzFYkvIpEWYwkohk8ICsdwOMmkZqLByyKSwQCy3g0xaBiqgHDJpIQRk0gJEgSWQSYGhWGwJmbQIU1gpZFJYIJbbQSYtAxVWDpkUFojldpBJy0AFlEMmLYSATFqAKLAEMikwFIstIZMWYQorhUwKC8RyO8ikZaDCyiGTwgKx3I6RyempGbX/0GTmyscMLco8loH2CSCT9plSEQIQgAAEIAABCEAAAhCAQPAEkMngI+YAIQABCEAAAhCAAAQgAAEI2CeATNpnSkUIQAACEIAABCAAAQhAAALBE0Amg4+YA4QABCAAAQhAAAIQgAAEIGCfADKZkek5F65Xzz2/PRr9luOPVQ9u2pCxEsPKJJAmx4uuuEU9+Z1n5tol9zKTa23uNPkmK268+wF1x5ceUhuuvkStPWt1a5Oxl1MCWbI9+X0XzvV42YfOVusuPtdpz0zWOoG0+a5Zu04N79k3N8EPH9/U+mTsKYqA+fv3/ocfU09s3iiqL5pJR6DVHPnZKh1XiXsjkxlSMSf+ruGROYE0/9EbGhxQ99x2VYZqDCmLQNoczQ8ryf+4mT+vfs8p6qZrLy3rEJi3AYG0+cal4v8Amh9MkUmZp1jabLc+s01dcPkNCoGUmWd1V2nzrf5vcPV4P46aLjc/skWtv/muCMTgsn5k0tNTIm2O/GzladCJtpHJDBmaE//Ky86fW7Ew3zi33nEff/FlYFnmkLw5XnPjnepHz77AqnSZITaYO0u+yX9JNatYyKTMcNNma+Ri1Yrl/MOPzDiP6Cptvmb/8z5wxtxKc6srIp7gaLs2yS+MyLPmyM9W/uWPTKbMLP4X7ntvv06dcuIJ0ehan0tZlt0dE7CRo/nX8JPedhw/oDrOrpXpsuRb/R8+ZLIV0u73yZKtydKsdCQvg0z+He7+KJixHoEs+ZofPh969Nvq7DNPj/4+5u9mv8+vrBLi91GH133WHPn+9e9cQCZTZpblP3Qpp2B3BwTy5hj/8MJ9OQ7CyjBF2nxr/UcPmcwA3sGQtNnG+ydXmfn+dRBUxinS5pv8B93kPxjwd3PGAAQMyyohAlqnhQSBLDnyd7OfpxAymTK3LP+hSzkFuzsgkCfH+OEsrGw4CCrjFGnzrX4AQHJa7rPLGEJBw9JmW+/KEf6xoKCAcpZNm6+ZrjpLfiDNGULJw7NISMktM30NAmlz5Gcrf08jZDJDdmnv58gwBUMcEMiSIz+kOAjG0hRZ8k1OjWxYCqKAMmmzrZUl+RYQjKWSafLNIp+W2qRMQQTSSkhBbVA2J4E0OfKzVU7YJQ9HJjMEkPZJcxmmYIgDAs1yNNftmy1+7Uv1nx20yBQ5CKTNt3oqZCMH/IKHps3W7P+TbS/NPSTN/OCy5amtPDSt4Jyylk+br/lePe3UE+eeqE6+WcnLGJdGQmR0TBe1CNTLkZ+twjtfkMmMmaZ9B1bGaRhWMIFGOSb/wov/9btWOzzxs+CQcpRvNd9aUyCTOcA7GJo22+SlzLx2wEFAOadIm2/yHaLkmxN+ScOTr5SIW4gfqlRSS0ybgUCzHPnZKgNU4UOQSeEB0R4EIAABCEAAAhCAAAQgAAGJBJBJianQEwQgAAEIQAACEIAABCAAAeEEkEnhAdEeBCAAAQhAAAIQgAAEIAABiQSQSYmp0BMEIAABCEAAAhCAAAQgAAHhBJBJ4QHRHgQgAAEIQAACEIAABCAAAYkEkEmJqdATBCAAAQhAAAIQgAAEIAAB4QSQSeEB0R4EIAABCEAAAhCAAAQgAAGJBJBJianQEwQgAAEIQAACEIAABCAAAeEEkEnhAdEeBCAAAQhAAAIQgAAEIAABiQSQSYmp0BMEIAABCEAAAhCAAAQgAAHhBJBJ4QHRHgQgAAEIQAACEIAABCAAAYkEkEmJqdATBCAAAQhAAAIQgAAEIAAB4QSQSeEB0R4EIAABCEAAAhCAAAQgAAGJBJBJianQEwQgAAEIQAACEIAABCAAAeEEkEnhAdEeBCAAAQhAAAIQgAAEIAABiQSQSYmp0BMEIAABCEAAAhCAAAQgAAHhBJBJ4QHRHgQgAAEIQAACEIAABCAAAYkEkEmJqdATBCAAAQhAAAIQgAAEIAAB4QSQSeEB0R4EIAABCEAAAhCAAAQgAAGJBJBJianQEwQgAAFPCGy8+wF1x5ceOqLbyz50tlp38blqzdp10dee2LzxiH3M1waXDagHN22Ivtas1snvu7AhlcFl/dE8F11xi3ryO8/U3HfD1ZeotWetVudcuF499/x2Ff853nnzI1vU+pvvUm85/ti5vqoLtdLH6vecoh569NtzQ88+83R107WXppq3lePw5DShTQhAAAIQCJQAMhlosBwWBCAAgaIJxLJz7+3XqVNOPGFuOiOF33jin+ZkzMjXaaeeqO657aq5fa658U615amtc5LZaq1q6auWQfN1U2vX8EhdGTT7xDJZ3Vf8+UYymeQay2etPmp9Lc28rRxH0RlTHwIQgAAEINCIADLJ+QEBCEAAApkIGEmMV9waFaiWqq3PbFMXXH7DvFXBVmvZlMmhwYFoBTOW4bgvI5jNZLSVPurJZKvzIpOZTksGQQACEICAQwLIpEPYTAUBCEAgJALVl6k2OjYjRj/Z9lK0EmlW54xQJVcq09Qy8zRaEWxFwkwPJ73tOPXazt1q1Yrl0SWoZrXUbOZzRcpkq/O2chwhnU8cCwQgAAEI+EcAmfQvMzqGAAQgIIJALHTJZmpd7hl/PXmv4Q8f3zTvGNLWaiaTrdwzaaTutFNPiu6RNP2Y/swq5Wf/6iuFy2Qr83LPpIjTnCYgAAEIQKABAWSS0wMCEIAABHITqBafWpe/xgIYP5yn3qRpauW5Z9LIZPxQHNNLvFqaZkUwyz2Trc6bpo/cAVIAAhCAAAQgkIEAMpkBGkMgAAEIQKA+AXO5qHmSafXqY617JZtxrFer2cpks8tU48tcjUzGT5GNxTSNxOWRyWbzpumjGUe+DgEIQAACECiCADJZBFVqQgACEAicgBHD//o334hW9qq3WJKqn/JaTyaz1LIpk6Z/c89m/PqSNBKXRyabzZumj8BPNw4PAhCAAASEEkAmhQZDWxCAAAQkE4jF0PRYvQJZ61UgZr9GMmme7pqmlm2ZTLJOI3F5ZbLRvGn6kHyu0BsEIAABCIRLAJkMN1uODAIQgEDhBJIP1Yknq3dPZLPLXNPUaiaTrT6Ap9bKahqJq9dHfHluzCS+hzR5eW11ONXz8gCewk9fJoAABCAAgZwEkMmcABkOAQhAAAIQgAAEIAABCECgHQkgk+2YOscMAQhAAAIQgAAEIAABCEAgJwFkMidAhkMAAhCAAAQgAAEIQAACEGhHAshkO6bOMUMAAhCAAAQgAAEIQAACEMhJAJnMCZDhEIAABCAAAQhAAAIQgAAE2pEAMtmOqXPMEIAABCAAAQhAAAIQgAAEchJAJnMCZDgEIAABCEAAAhCAAAQgAIF2JIBMtmPqHDMEIAABCEAAAhCAAAQgAIGcBJDJnAAZDgEIQAACEIAABCAAAQhAoB0JIJPtmDrHDAEIQAACEIAABCAAAQhAICcBZDInQIZDAAIQgAAEIAABCEAAAhBoRwLIZDumzjFDAAIQgAAEIAABCEAAAhDISQCZzAmQ4RCAAAQgAAEIQAACEIAABNqRADLZjqlzzBCAAAQgAAEIQAACEIAABHISQCZzAmQ4BCAAAQhAAAIQgAAEIACBdiSATLZj6hwzBCAAAQhAAAIQgAAEIACBnASQyZwAGQ4BCEAAAhCAAAQgAAEIQKAdCSCT7Zg6xwwBCEAAAhCAAAQgAAEIQCAnAWQyJ0CGQwACEIAABCAAAQhAAAIQaEcCyGQ7ps4xQwACEIAABCAAAQhAAAIQyEkAmcwJkOEQgAAEIAABCEAAAhCAAATakQAy2Y6pc8wQgAAEIAABCEAAAhCAAARyEkAmcwJkOAQgAAEIQAACEIAABCAAgXYkgEy2Y+ocMwQgAAEIQAACEIAABCAAgZwEkMmcABkOAQhAAAIQgAAEIAABCECgHQkgk+2YOscMAQhAAAIQgAAEIAABCEAgJwFkMidAhkMAAhCAAAQgAAEIQAACEGhHAshkO6bOMUMAAhCAAAQgAAEIQAACEMhJAJnMCZDhEIAABCAAAQhAAAIQgAAE2pEAMtmOqXPMEIAABCAAAQhAAAIQgAAEchJAJnMCZDgEIAABCEAAAhCAAAQgAIF2JIBMtmPqHDMEIAABCEAAAhCAAAQgAIGcBJDJnAAZDgEIQAACEIAABCAAAQhAoB0JIJPtmDrHDAEIQAACEIAABCAAAQhAICcBZDInQIZDAAIQgAAEIAABCEAAAhBoRwLIZDumzjFDAAIQgAAEIAABCEAAAhDISQCZzAmQ4RCAAAQgAAEIQAACEIAABNqRADLZjqlzzBCAAAQgAAEIQAACEIAABHIS+L8WR3jkxlVLSAAAAABJRU5ErkJggg==", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig_variable = dynamics_variable.plot_history(chemicals=['A'], colors='darkturquoise', title=\"VARIABLE time steps\", show=True) # Repeat a portion of the diagram seen in Part 1" ] }, { "cell_type": "code", "execution_count": 19, "id": "76070b5f-1bc1-42cf-bf7a-b06f6ec62e7b", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "Chemical=A
SYSTEM TIME=%{x}
Concentration=%{y}", "legendgroup": "A", "line": { "color": "blue", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "A", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 0, 0.06315789473684211, 0.12631578947368421, 0.18947368421052632, 0.25263157894736843, 0.3157894736842105, 0.3789473684210526, 0.44210526315789467, 0.5052631578947367, 0.5684210526315788, 0.6315789473684209, 0.694736842105263, 0.7578947368421051, 0.8210526315789471, 0.8842105263157892, 0.9473684210526313, 1.0105263157894735, 1.0736842105263156, 1.1368421052631577, 1.1999999999999997 ], "xaxis": "x", "y": [ 10, 14.421052631578949, 17.445983379501385, 19.51567283860621, 20.931776152730563, 21.900688946605122, 22.563629279256137, 23.01722003317525, 23.327571601646223, 23.539917411652677, 23.685206650078147, 23.784615076369256, 23.852631368042122, 23.899168830765664, 23.931010252629136, 23.95279648864099, 23.967702860649098, 23.977901957286225, 23.98488028656426, 23.989654932912387 ], "yaxis": "y" } ], "layout": { "autosize": true, "legend": { "title": { "text": "Chemical" }, "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "FIXED time steps" }, "xaxis": { "anchor": "y", "autorange": true, "domain": [ 0, 1 ], "range": [ 0, 1.1999999999999997 ], "title": { "text": "SYSTEM TIME" }, "type": "linear" }, "yaxis": { "anchor": "x", "autorange": true, "domain": [ 0, 1 ], "range": [ 9.222796948171535, 24.766857984740852 ], "title": { "text": "Concentration" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5MAAAFoCAYAAADKJa96AAAgAElEQVR4Xu2dCbwcVZX/z9sSQAiQCCjIBBHQEDKj8FcUkxEEMaiEiAqIoJEdNTqAGiBOVDQsCjgShRgBo4gEUAhBgWFQ0CAKCi4RooCRqLiwRBYxJG/7161+9dKv0/26llu3zq36Np/36fe6q8499/urQ91fbtWtjsHgJbwgAAEIQAACEIAABCAAAQhAAAIJCHRgJhPQYlMIQAACEIAABCAAAQhAAAIQCAlgJjkQIAABCEAAAhCAAAQgAAEIQCAxAcxkYmTsAAEIQAACEIAABCAAAQhAAAKYSY4BCEAAAhCAAAQgAAEIQAACEEhMADOZGBk7QAACEIAABCAAAQhAAAIQgABmkmMAAhCAAAQgAAEIQAACEIAABBITwEwmRsYOEIAABCAAAQhAAAIQgAAEIICZ5BiAAAQgAAEIQAACEIAABCAAgcQEMJOJkbEDBCAAAQhAAAIQgAAEIAABCGAmOQYgAAEIQAACEIAABCAAAQhAIDEBzGRiZOwAAQhAAAIQgAAEIAABCEAAAphJjgEIQAACEIAABCAAAQhAAAIQSEwAM5kYGTtAAAIQgAAEIAABCEAAAhCAAGaSYwACEIAABCAAAQhAAAIQgAAEEhPATCZGxg4QgAAEIAABCEAAAhCAAAQggJnkGIAABCAAAQhAAAIQgAAEIACBxAQwk4mRsQMEIAABCEAAAhCAAAQgAAEIYCY5BiAAAQhAAAIQgAAEIAABCEAgMQHMZGJk7AABCEAAAhCAAAQgAAEIQAACmEmOAQhAAAIQgAAEIAABCEAAAhBITAAzmRgZO0AAAhCAAAQgAAEIQAACEIAAZpJjAAIQgAAEIAABCEAAAhCAAAQSE8BMJkbGDhCAAAQgAAEIQAACEIAABCCAmeQYgAAEIAABCEAAAhCAAAQgAIHEBDCTiZGxAwQgAAEIQAACEIAABCAAAQhgJjkGIAABCEAAAhCAAAQgAAEIQCAxAcxkYmTsAAEIQAACEIAABCAAAQhAAAKYSY4BCEAAAhCAAAQgAAEIQAACEEhMADOZGBk7QAACEIAABCAAAQhAAAIQgABmkmMAAhCAAAQgAAEIQAACEIAABBITwEwmRsYOEIAABCAAAQhAAAIQgAAEIICZ5BiAAAQgAAEIQAACEIAABCAAgcQEMJOJkbEDBCAAAQhAAAIQgAAEIAABCGAmOQYgAAEIQAACEIAABCAAAQhAIDEBzGRiZOwAAQhAAAIQgAAEIAABCEAAAphJjgEIQAACEIAABCAAAQhAAAIQSEwAM5kYGTtAAAIQgAAEIAABCEAAAhCAgNdm8qNnXSI3/+Dulip+4dMflL89tkbO+/JVI7Y56I17y/nzTpZo/1mHT5ePnXzERnE+f8kSWXz1LRJtbzaYvO+sUY8a0+aBb3i13PrDn8kpn/xy023r48U5BL9x7f+GfYhi1+/zng99Vn75m4flmkWfksm77RQnnIptIra+5a0CHklAAAIQgAAEIAABCEBAAYFSmMk4hiQyXfffsXgE9shQNhq1+x98RA474VMjjGRkJl+5xy5y5Zc+Map8kZlsZlQjQzrng++W977rzW0PA8xkW0RsAAEIQAACEIAABCAAAQg4JlB5MxkZxBdtO16+f82Fw/j3P+zU8Pf6z2yZSROnlYltpv9oZtLx8WKtOWYmraEkEAQgAAEIQAACEIAABAohgJkMsEeziNHlp6MZHTOrmHVmMlI6TqzISDYeHdGMZ2RK62dcTVzTl+222Tq8TDd6Ne4Tfd5qhtQYanOZcOP+cY7UiGH9ttHsb7PvzHb1eUQzw832jz6r73vj5ceNM9DN4iW93DhOv9kGAhCAAAQgAAEIQAACVSGAmRxSOjI4xnAZA9bqPso4BtCEHO0y10Yz1O4y3dFmJluZSdNGfR/qTWmzz+sv842MV71pbnXZb7NCiXKq71fjZcajGfYo12Z51hvO+ntm681j46xyMy2iNuJealyV/yHQTwhAAAIQgAAEIAABCMQlUAoz2ayzjSah1T2T9ftGM3GjzTwmXYCnlSk17UaGqtnCOvV5pTGTjbNukRlszKfZ54aVmZFsvMQ3yqOd+TUczWXDjfeVmv5GCx21m/1tNmtozOMvfvPQcF7NjHS9kY+OgVZtmb7f+6vfxbpvNW5BsR0EIAABCEAAAhCAAASqQqAUZrKduTFiJjGTjfdP1h8MNmcmXZpJ04fo8lezkm1jnxpXrG1m5qIZvnbmN2I92mWkrQxe1EazGcNon2gWspWZbOxr/axs4+WvVSl0+gkBCEAAAhCAAAQgAAHbBDCTQ0QjY2JMjHkMh++XuTYzcnHMZLN7CxsPujiXhkaGsn7f+v1amclW94jWx4n+8SCumTT7Nosb595X2wVHPAhAAAIQgAAEIAABCJSFAGYyULJxNmy0lVZtzkzGjWXjMtfG2br6A7jRZJq/R7s8N83BH10eHBnBdjOT7WY/TQ6tzGSrS3rr8273jNE0fWQfCEAAAhCAAAQgAAEIVIkAZjJQu5mp0/RokNEuLx1tNdd2l7NGB3qjmWx1z2TcwjA5NbbdaIhHu/+y1QxqY/utzGRjW83yGc1cx+0n20EAAhCAAAQgAAEIQKDKBCpvJlvdS9n4uJB64xXn8sjRVnONZunizL61MnzR53mYyWaruUbtGZN90Wc/LJN326ll3Zj+Nd532sh5tNnDZqu5msbMPh/+xEUbLcBTf89ss1Vnm800s5prlf+3R98hAAEIQAACEIAABGwQKL2ZbHavXHQ/YWRwWt0DGF2K2bg4zWjgI4MYmclm26Z5vmFjvDjPmUw7M1lvHOufM2k+j2Okm9132WxRo0Zt2j1n0rRff/ltZBJN7HbPw2x2D2cSM2+j2IgBAQhAAAIQgAAEIACBMhHw2kyWSQj6kpzAaAvwJI/GHhCAAAQgAAEIQAACEIBAEgKYySS02FYVAcykKjlIBgIQgAAEIAABCECgYgQwkxUTvEzdxUyWSU36AgEIQAACEIAABCDgGwHMpG+KkS8EIAABCEAAAhCAAAQgAAEFBDCTCkQgBQhAAAIQgAAEIAABCEAAAr4RwEz6phj5QgACEIAABCAAAQhAAAIQUEAAM6lABFKAAAQgAAEIQAACEIAABCDgGwHMpG+KkS8EIAABCEAAAhCAAAQgAAEFBDCTCkQgBQhAAAIQgAAEIAABCEAAAr4RwEz6phj5QgACEIAABCAAAQhAAAIQUEAAM6lABFKAAAQgAAEIQAACEIAABCDgGwHMpG+KkS8EIAABCEAAAhCAAAQgAAEFBDCTCkQgBQhAAAIQgAAEIAABCEAAAr4RwEz6phj5QgACEIAABCAAAQhAAAIQUEAAM6lABFKAAAQgAAEIQAACEIAABCDgGwHMpG+KkS8EIAABCEAAAhCAAAQgAAEFBDCTCkQgBQhAAAIQgAAEIAABCEAAAr4RwEz6phj5QgACEIAABCAAAQhAAAIQUEAAM6lABFKAAAQgAAEIQAACEIAABCDgGwHMpG+KkS8EIAABCEAAAhCAAAQgAAEFBDCTCkQgBQhAAAIQgAAEIAABCEAAAr4RwEz6phj5QgACEIAABCAAAQhAAAIQUEAAM6lABFKAAAQgAAEIQAACEIAABCDgGwHMpG+KkS8EIAABCEAAAhCAAAQgAAEFBDCTCkQgBQhAAAIQgAAEIAABCEAAAr4RwEz6phj5QgACEIAABCAAAQhAAAIQUEAAM6lABFKAAAQgAAEIQAACEIAABCDgGwHMpG+KkS8EIAABCEAAAhCAAAQgAAEFBDCTCkQgBQhAAAIQgAAEIAABCEAAAr4RwEz6phj5QgACEIAABCAAAQhAAAIQUEAAM6lABFKAAAQgAAEIQAACEIAABCDgGwHMpG+KkS8EIAABCEAAAhCAAAQgAAEFBDCTCkQgBQhAAAIQgAAEIAABCEAAAr4RwEz6phj5QgACEIAABCAAAQhAAAIQUEAAM6lABFKAAAQgAAEIQAACEIAABCDgGwHMpG+KkS8EIAABCEAAAhCAAAQgAAEFBDCTCkQgBQhAAAIQgAAEIAABCEAAAr4RwEz6phj5QgACEIAABCAAAQhAAAIQUEAAM6lABFKAAAQgAAEIQAACEIAABCDgGwHMpG+KkS8EIAABCEAAAhCAAAQgAAEFBDCTCkQgBQhAAAIQgAAEIAABCEAAAr4RwEz6phj5QgACEIAABCAAAQhAAAIQUEAAM6lABFKAAAQgAAEIQAACEIAABCDgGwHMpG+KkS8EIAABCEAAAhCAAAQgAAEFBDCTCkQgBQhAAAIQgAAEIAABCEAAAr4RwEz6phj5QgACEIAABCAAAQhAAAIQUEAAM6lABFKAAAQgAAEIQAACEIAABCDgGwHMpG+KkS8EIAABCEAAAhCAAAQgAAEFBDCTCkQgBQhAAAIQgAAEIAABCEAAAr4RwEz6phj5QgACEIAABCAAAQhAAAIQUEAAM2lBhL88udZCFEJoJrD9hE0FnTUrZCe3LTbtDgM9u7bPTkCiqCVATauVxmpi1LRVnKqDUdOq5bGanNGalx4CmEkLWmAyLEBUHoKTlHKBLKXHwNMSSA/CUNMeiGQhRWraAkRPQlDTnghlIU3MpAWIFkNgJi3AxExagKg8BCcp5QJZSo+BpyWQHoShpj0QyUKK1LQFiJ6EoKY9EcpCmphJCxAthsBMWoCJmbQAUXkITlLKBbKUHgNPSyA9CENNeyCShRSpaQsQPQlBTXsilIU0MZMWIFoMgZm0ABMzaQGi8hCcpJQLZCk9Bp6WQHoQhpr2QCQLKVLTFiB6EoKa9kQoC2liJi1AtBgCM2kBJmbSAkTlIThJKRfIUnoMPC2B9CAMNe2BSBZSpKYtQPQkBDXtiVAW0sRMWoBoMQRm0gJMzKQFiMpDcJJSLpCl9Bh4WgLpQRhq2gORLKRITVuA6EkIatoToSykiZm0ANFiCMykBZiYSQsQlYfgJKVcIEvpMfC0BNKDMNS0ByJZSJGatgDRkxDUtCdCWUjTtZk8ZNZcmTB+nFx+4RwL2bsNsWLlKjni5LNkySXzZMqknXNpHDNpAStm0gJE5SE4SSkXyFJ6DDwtgfQgDDXtgUgWUsyzpgcHRQYGRMz7oHkP8o3+3vB5R/j98Odm26G/zQ6N24d/B3HCeBt9H8SKPq+LM9x+4/ZD+TRvp5ZX9LNx3nXtN/Rr43gdMhAm3aI/o/Jp6OfgBl5N40U5N+Gz2dhu+ee/+mrc6uI05RNHhxF8RurYSgfDsVXetc8bjoehfoSHumG44S3sR/h33Xuzzxq3GRFrqA8jthmqqzjxa7E6RuTRtL2GPKPSbWyjvn/1caK+x40dxbXwv4gwxDGnnid337dyRLjxW20hy5cuCD8rwkwuveVOmXvupTL/9ONk5vSpqbuKmUyNzu2OmEm3vItojYFnEdTdt5nnwNN9b2hxNALUdPbjo69PZP16kd71HbK+N/h9XfB78L5uXUf43ht8ty783mwXbDP8e+1vs01/f/ATxOkPBtUm3kDwt3nvDwbd5vPa70PbDH1nBux9fYGBGfq7L3gf3s/EC386wn07gv9qeQ6Gn2/YNog/vO1QO8NtBbEbzUoTE5OdIBEgAIE0BGyaycn7zpJ64xjlYwzmdi/cWs4584RCzGQaLs32wUzaIplzHMxkzoAVhGfgqUAEBylgJh1AVtKEDzVtzE5k1iJTVjNrxrQFZqyFWdvIwA0ZvfXBPpHhM3FDQ1cXo94Imu3Ctof2icyieQ/NY/BdOAtT4VdHMGHT2RkY1uC9w7wHLKK/zbv5kY7B8Pvhz822Q3+bHaLtRsQyuw3FrY/XYWKZuEMxNmq/vp267aJ2RuTRWcsr+qnPY7g/UbyGfkW5bYg3GObUvJ3WfBrb6Rxi1cinGb9mfLbavEeeWdtb49vAfaPtm+gwks8GNrXPR+o4HK8uTru8a3wajochncMyqk0ARm9hP8K/696bfda4TRSk5bZDNRsnrjl+o1e0fdP2GvJs3GfEvg3tj+j7UF/r22jWnq3LXI1hfGjVn4dnIFv97yyamTTfRzOYrQxo/Qxn/aWl02bOlqmvmSJ33rNC1jz1bNjUSUfPkB132DacgYxe0T7NTGDjDKrZf/axhzadWb3/jsVhSMxkK1WVfY6ZVCZIDun4MPDModuVC4mZrI7kcWraGK1//asj+DHvdb8/V/tsbd1n654PzFcbs9bcwHUMmcPazF69WTNmUvOru1ukp0dkzNhBGRO+D/09Jvh9zKD0BO9jgx/z3tMzKGPN9+F3Q98H+3R1BT9BnK5gUG3idQZ/m/euYNBtPq/9PrTN0HfG+HR3BwZm6O/u4H14PxMv/BkM9918067wfV0A03y+Ydsg/vC2Q+0MtxXEbjRzkfEaMon1g2PNGlUptzg1XSUeZe6rLTNpZiVnHLhPOPs42suYyYcfeTQ0f8a8mZcxh7vu/JLh+yiN0XtyzTNyw+L54fcLLrtOFl6xTCJTZ7Y3JjIyi9H3jZfTmn1NjEYT2Gh8zfdf+Oq1Yfvmu1OOf9fwPZEm31Zx8jguuGfSAlXMpAWIykNwklIukKX0MJOWQDoME8fwPTdk/kJj+FzNGEp/tzz5j/6aSaz/vs44mthFvozZiWvWjHkzJq2pgRsyemMCQ7fBzG0wfPVGcGxgDMM2jeELzWEQN3g322yIXdvG5Kf9RU1rV8hefpyn7bHUHsmGmYzMWpx7EpvdM3nG2YvkgQdXNzV+ET9jIA87eL/QgEYzk5FxbTZjaGKamUtzr2b99yaeWUQnTq6Rkb3mxts3isMCPIqPbMykYnEspcZJyhJI5WEYeLoV6J//FHnm6Y7w5+lnRJ5+yvwevIefBe/PBJ/XffbP4Mqg+plCYxL7gssu83p1B4Zps80Ggx/zPvT7C+o+q/t97CbGcI1u1oZn5IxRG57JG5qxazBrZlsfzFpe7G3FpaZtkdQfh/O0fo1sZajNTEaL5TTrXzSb2cpM1htEM1vZzAT+fvVfwktho1nOZu1EM5/135ntuczV1lGXcxzMZM6AFYTnJKVABAcpMPBMBvn54NLO0AgGxq/2Xv97ZBRFnhoyjMNGMTCOZnuzMErWVzPD9wJj8l5QM4GbRibQvNeZv+237ZH1g+trJnFo20bjaGbiePlNgJr2W78k2XOeTkLL721tmElDIMllro2PBqmfmYzMZDuzZ+6ZbJyZtGEmTT/23nPS8CW39ZfYYiY9OdYxk54IlSFNTlIZ4Hm0a1UHnsbYPf64yGOPdciTj5tZQjMjONIoPmNmDo1ZrJspNAvBZHkZ0zduy0HZMvyJfq+9jwv+3nJc8PlWQ78Hn20xbuRM4QsCE2jMZJoXNZ2Gmn/7VLWm/VMqe8bUdHaGvkSwZSbbLcBjDGOr1VybXeY62mWoWWYmjS6tLnNtZmQxk74cyXV5YiY9FC1hypykEgLzdPMyDTzXrq2ZwyeCn/A9MInm/bG/y/Dv4Wd/7xAzw5jmZRZUMUbQGD9jALcyxi8wfDWDuMEUbhVus8EURkYxrRFMk2vjPtS0DYr6Y5SppvXTLjZDarpY/i5bt2UmTc7NHg0SGbRocZ5290yaONFKq/Wzk8Zw7r3n7uFzIrOYSXOvo8lhzVPPDK88Gy3AYxbeaTSapk/mxWWuLo/KjG1hJjMC9GB3TlIeiGQhRe0DT3N/oDGEjwcm8HHz/pjU3oeMYmQczWfP1lYej/XafHORbbYdHP5pNlMYmsOhmcLIKG4S3Cfo64ua9lW5ZHlrr+lkvWHr0QhQ09U5PmyayXojWE+wfpYxjplsFad+Nde0l7lGC+dEq8pGeUY5GtO67Na7htM392lGK8lymasndYGZ9ESoDGlyksoAz6Ndixp4tjKHjwezhrXvAtMYvK95su4hXG24mlnDbbcblBduMyjbGqMYvG+zXWAazfvQ39H35nLTqr2o6WooXlRNV4Ourl5S07r0yDMb22Yyz1yrEJtHg1hQGTNpAaLyEJyklAtkKb08Bp7mEtLVj3QGPx3hzx9X197//rfaZadmFnFww3OhR+2JWd1z2ByGM4kbzGFoGKOfbYLLT4NLTnm1JkBNV+PoyKOmq0HOv15S0/5pljZjzGRacvnsh5m0wBUzaQGi8hCcpJQLZCm9tAPPJ54ITKIxi4FRNO+PBOYx+vuvf2k/mzhhQmQEg9nEwBCGhnHErGJgGs3fL8QgWpJaqGlbJHXHSVvTuntFds0IUNPVOS4wk7q0xkxa0AMzaQGi8hCcpJQLZCm90QaekVEcnmU0M4x/qBnIZ4PVT1u9zCIzEycOysSdBoKf4D34/d+C9xdvX7v81BjH7m5LHSBMbALUdGxUXm+ImfRavkTJU9OJcHm9MWZSl3yYSQt6YCYtQFQegpOUcoEspPfPfwarnP6tRx4JDOLvHhoI32uXpAazjMF7f3/rRswlpTsFBtGYxMgs7hSYx38LjOOO/8ZsogV5rIegpq0jVRkQM6lSllySoqZzwaoyKGZSlyyYSQt6YCYtQFQegpOUcoFipmcegxHdu7h69YZLUc0Mo7l/cbTXDi8JzGJgDnd6qXnfMMtoZhu3Ho9hjCmBms2oaTVS5JoIZjJXvKqCU9Oq5Mg1GcxkrngTB8dMJka28Q6YSQsQlYfgJKVcoIb0Vvy6U1b8qlMefmjIPIb3MnbKc8+17odZ/XTnnWtmcYcda7OK9cZxzBi/GJDt6ASo6WocIZjJauhseklNV0vr6vRWf08xkxY0wkxagKg8BCcpnQINDIgY4/ibFcY8dgz/bp7H2OxlFrqJLkWdGJjGicEMY/T39jsMCgNPnTrnkRU1nQdVfTGpaX2a5JURNZ0XWX1xmZnUpQlm0oIemEkLEJWH4CRVvEB9fSK/aWIcm93LuMuugzLl3wdk0uSBEfcyjtty9MtRGXgWr7OrDKhpV6SLbYeaLpa/y9apaZe0i20LM1ks/8bWMZMW9MBMWoCoPAQnKbcC9a6vm3H8dTDjGFyyamYfmz2PcbeX14yj+dlj6GeLLdLly8AzHTcf96KmfVQtec7UdHJmvu5BTfuqXPK8MZPJmeW5B2bSAl3MpAWIykNwkspPoHXrajOO4X2OZuYxMI/GODZ7vWKSMYyDsseUwDz+R81AvuAF9nJj4GmPpfZI1LR2hezkR03b4ehDFGraB5Xs5FgVMzlt5uwQ2PKlC+yAyykKZtICWMykBYjKQ3CSsiPQ2rUbG8cH7m9uHM0lqlMi42hmHgPzuOmmdvJoFYWBZ758NUWnpjWpkV8u1HR+bLVFpqa1KZJfPlUwk0tvuVO+tuRmWfPUM3LaSYfLzOlT8wOaMTJmMiNAsztm0gJE5SE4SSUX6F//ql2qGl2iuiKYcfztA82N4+Q9jFkcmnEcMo5mdVXXLwaerokX1x41XRx7ly1T0y5pF9sWNV0sf5etV8FMHnPqefKqybvKL+5/KER7+YVzXCJO1BZmMhGu5htjJi1AVB6Ck9ToAv3zn0P3OA7d22iM4+9+29w41u5tHHmfo5bHbjDwVF6IFtOjpi3CVByKmlYsjuXUqGnLQBWHs2kmH3xQ5He/c9/Zl79cZLfdWrc7ed9ZsuSSefL71X+RCxZerfpSV8ykheMHM2kBovIQnKRGCmQWyLnj9i654wed8uPlXfLQgx0bKdgZeMnQOIb3N9bMo/m9u0ev2Aw89WpjOzNq2jZRnfGoaZ265JEVNZ0HVZ0xbZrJG28UmTHDfT8PPlhk2bLm7UaXuN6weH64gTGW808/Tu2lrphJC8cPZtICROUhOEmJrPp9R2Aeawbyh4GRNI/qiF7d3VJbSbXBOHZ1KRe2IT0Gnn7plSVbajoLPX/2pab90SprptR0VoL+7G/TTJqZyY9+1H3fzazk+ec3bze6xHX2sYeGG5i/zUvrpa6YSQvHD2bSAkTlIap6kvrRHZ2hgfzh7Z3y25UjL1vd69UDsu9+/bLvGwfkVXsNSMfGk5PKVd04PQae3kmWOuGq1nRqYJ7uSE17KlyKtKnpFNA83cWmmdSIwMxENnvdf8dijekKZtKCLJhJCxCVh6jKSerRPwezj8Gs4w+D2UdjIp97boMwW241KPsFxnHfN/bLG4L3bbcdVK5a8vQYeCZn5useValpX/WxlTc1bYuk/jjUtH6NbGVYZjNpLnFtdo+k5ktdMZMWjmzMpAWIykOU+ST1058El60OXb7662ABnfqXuWx1v/0HAvPYL6/bZ0C5StnTY+CZnaEvEcpc075o4CJPatoFZR1tUNM6dHCRRZnN5CGz5sqE8eM2uqRV86WumEkLRz1m0gJE5SHKdJJ6/PGO4ZnHO4LLV/+xZsP1qeY5jmbmcd/AQJpLWF+yY/lmH0c71Bh4Ki9Ei+mVqaYtYildKGq6dJK27BA1XS2tq9Nb/T3FTFrQCDNpAaLyEL6fpH5xr7lsNfgJLmH9+T0jZx93e/lgOPO47361S1ir/GLgWR31fa/p6iiVrafUdDZ+Pu1NTfukVrZcyzwzmY1MMXtjJi1wx0xagKg8hG8nqWeeNiuv1syjWTznb3/dMPtoVlh9w9DCOcY8vmyXas0+MjOpvNgcpedbTTvCUrpmMJOlk5SZyepIOqrWYNBDADNpQQvMpAWIykP4MPB84P6h2cfg/scfLx85+zhx4mBw6Wpt5VVjIMeMUQ68oPQYeBYEvoBmfajpArCUrklqunSSYiarIylm0hOtMZMWhMJMWoCoPITGgee6dbLhuY+BgVy9euSzOV4/zSyeU7t8ddLk8i+eY+MQYuBpg6IfMTTWtB/k/MqSmvZLryzZUtNZ6Pm1L5e56tLLuZmcNnO2rHnq2aYUtD4/pZ1kmMl2hPz/XstJ6uGHzOWrtUtXzftAnUd80YuD2Ucz8zh0CesW47h8NemRx8AzKTF/t9dS0/4S9CNzatoPnWxkSU3boOhHDMykLp2cmslWy93qQpI8G8xkcma+7RFcN6wAACAASURBVFHkSWplcPnq1Vd1hebxoQdHzj6+eu8N5vGVezL7mPW4YuCZlaA/+xdZ0/5Q8j9Tatp/DeP2gJqOS8r/7TCTujR0aiY1P3AziyyYySz0/Ni3iJPUzd/rkm9d0SU/uC1YMWfoNX5CMPsYXLYarr4azEK+8IXMPto8ghh42qSpO1YRNa2bSDmzo6bLqWuzXlHT1dK6Or3V31PMpAWNMJMWICoP4eok9dQ/OuSqK42J7JZVv6/NQnb3iLz7PX0y8x398trXMfuY56HCwDNPurpiu6ppXb2uXjbUdHU0p6arpXV1equ/p07NpLnM9YBpe8nsYw/VTyZBhpjJBLA83TTvk9Qvf9EpVwWzkFdd2S39Q4963HW3QXn3UX2BkeyXcVsyA+ni0GHg6YKyjjbyrmkdvSQLaro6xwA1XS2tq9Nb/T11aiaX3nKnXLDwalm+dIF+MgkyxEwmgOXppnmdpJZeV5uFrH+UxwEH9suRR/fLmw8acpWeMvMxbQaePqqWLue8ajpdNuyVFwFqOi+y+uJS0/o0ySsj7pnMi2y6uE7NpLlncrQXq7mmE5G98idg8yT12N87wnshzSzkn/9Uu5R1882DS1nNLORR/fLyV3Apa/6KNm+BgWdR5N23a7Om3WdPi3EJUNNxSfm/HTXtv4Zxe4CZjEvKzXZOzaSbLrlvhZlJ98xdt2jjJHX3T4NLWb/ZLdcu2bCgzuQ9BsJZSGMkx4513SvaayTAwLM6x4SNmq4OLX97Sk37q13SzKnppMT83R4zqUu7ypvJY049T+6+b+WwKrvstIPcsHj+CJXMvZ4PP/Jo+Fmz7zGTug7qPLLJcpK6+lu1Wcif3d05nNpbZwSXsgazkPsGq7Ly0kOAgaceLfLOJEtN550b8e0RoKbtsdQeiZrWrpC9/DCT9ljaiOTcTJr7Jueee+mI3OeffpzMnD7VRn8Sx5g2c/aIezjN31NfM0XOOfOEMJYxm0+ueWbYYDZ7ViZmMjF273ZIepL642qzKmt3uKjO44/XLmU1j/UwBtLMQu70UhbU0XgQMPDUqEo+OSWt6XyyIGreBKjpvAnriU9N69Ei70wwk3kTThbfqZlccNl1svCKZbLkknkyZdLOYaYrVq6SI04+S046eoaKVV7POHuRPPDg6mHzaMzlaScdPmx2my0ihJlMdtD5uHXck9SP7gguZQ1M5LLrN1zKuuf/Cy5lHbof0se+VylnBp7VUTtuTVeHSDl7Sk2XU9dmvaKmq6V1dXqrv6dOzaQxZocdvN9GptGYzGtuvF3FKq9m5nH33SaGM5OR0W1mfus/w0zqP9CzZjjaSaqvV0IDaRbV+fWvNlzK+o531WYhX/d6FtTJyt/V/gw8XZEuvh0GnsVr4CIDatoFZR1tUNM6dHCRBTOTLijHb8OpmTSruTa7pDW69LXo1VzNrOSyW++SKI+4ZnLNs+vjE2dLLwmM32KMNOr80IMdcsXXO+Wb3+iSp5+udWv7HQbl6PcOyFHBj/mdl18ENh1Tm1Feu557Wf1SLnm2zWo6eRT20E6AmtaukL38qGl7LLVHMlrz0kPAqZnUPDM52iW47WYmn2fgqeeIzimTTQKTEel8000dsvjyDrnxxtq9kOb1n/85KLPePyjvPhIDmZMETsJ2d9U07etHRyfAC2ykvqYLTIOmcyZATecMWFF4alqRGDmnYrTmpYeAUzOp9Z7JxhnJenm4Z1LPwVpkJuPGbioXfLFXllzZJb9dueFS1iOPDp4N+Z5+MfdF8vKfAJfE+a9h3B5wSVxcUn5vR037rV+S7KnpJLT83pbLXHXp59RMmq5rW83V3CNpXo2PA4lkYjVXXQes62zu/415NmTwaI/g+ZDPP19r3azEau6FNCuzmhVaeZWHAAPP8mjZricMPNsRKsf31HQ5dIzTC2o6DqVybIOZ1KWjczOpqfvRPZHNcqq/t5PnTGpSzU0u31tmng3ZJbd/f8OlFPvtHyyoE8xCmmdE8ionAQae5dS1Wa8YeFZDa2q6GjqbXlLT1dK6Or3V39NKm0lb8rCaqy2SxcZZ86R5NmRXsCprtzzyh9q9c2PHSjgL+ZEPdcu2O64tNkFaz50AA8/cEatpgIGnGilyTYSazhWvquDUtCo5ck2Gmclc8SYO7sRMmlVczXMkzTMmR3sVvZprYnpDO2Am05LTs9/iy7rl3M/2yLPP1nJ6xaQBOSKYhTRGcvPN+RdPPUrlmwkDz3z5aorOwFOTGvnlQk3nx1ZbZGpamyL55YOZzI9tmshOzGSaxHzaBzPpk1ojc/3FvZ1yTmAif7y8tqjOmw/qlyOP7pcDDhx5KSsnKX81TpI5A88ktPzelpr2W7+42VPTcUn5vx017b+GcXuAmYxLys12Ts1kq+dMmlVer7nxdlm+dIGbXltuBTNpGaiDcP2BVzQzkRcv6A5be8mOg3L6J3rl7e9ofj8kJykHoihogoGnAhEcpUBNOwJdcDPUdMECOGyemnYIu+CmMJMFC9DQvAozGa3wymWuug6OsmZz49KucDZy9SO1+yKPP7lPzgiMpLk/stWLk1RZj4aR/WLgWQ2dTS+p6WpoTU1XQ2dqujo6R1pXq8e6e6vCTJrnPN55zwpmJnUfK95nt3p1Rzgbuez62gqte792IJyNfE3w3u7FwLMdoXJ8z8CzHDrG6QU1HYeS/9tQ0/5rGLcH1HRcUv5vx8ykLg1zN5PNnivZDEH9ozh0IWqfDZe5tmdU9BYLv9wdzkb29YpsuqmEJvK4E/tip8VJKjYqrzdk4Om1fImSp6YT4fJ2Y2raW+kSJ05NJ0bm7Q6YSV3S5W4m67vb6p5JXUiSZ4OZTM7M1R4/+XGnnP2ZHrnv57UFdt7xrv7QSG6/w2CiFDhJJcLl7cYMPL2VLnHi1HRiZF7uQE17KVuqpKnpVNi83AkzqUs2p2ZSV9ftZYOZtMfSVqTnnhM5JzCRX7u0tsDOLrvWFtg56K3NF9hp1y4nqXaEyvE9A89y6BinF9R0HEr+b0NN+69h3B5Q03FJ+b8dZlKXhphJC3pgJi1AtBji2iW1BXb+/rfaAjsfPqVP5swNrm/N8OIklQGeR7sy8PRIrIypUtMZAXqyOzXtiVAW0qSmLUD0JARmUpdQTs3kipWr5IiTz2pJgNVcdR0cvmXzu992BgvsdMutt9QW2Nn3jeaS1j6Z8u/tF9hp11dOUu0IleN7Bp7l0DFOL6jpOJT834aa9l/DuD2gpuOS8n87zKQuDZ2ayWkzZ8vU10yRvffcXS5YePXw6q2HzJorB0zbS2Yfe6guOjGzYWYyJqgcN/vC57vl/PN6wha2Hm8uae2To94bf4GddqlxkmpHqBzfM/Ash45xekFNx6Hk/zbUtP8axu0BNR2XlP/bYSZ1aejUTEYL8Lxs4vbygTO+MGwmzYqv9eZSF6L22WAm2zPKa4sf3BZc0vqZbnng/toCO+85ui80kuMnJFtgp11+nKTaESrH9ww8y6FjnF5Q03Eo+b8NNe2/hnF7QE3HJeX/dphJXRoWYiZnTp8qxlhGl7VGjw/hMlddB4fmbJ54ovbMyKu+WbukdY8p5pmRfbLf/ukW2GnXV05S7QiV43sGnuXQMU4vqOk4lPzfhpr2X8O4PaCm45LyfzvMpC4NnZpJcznr7rtNlHPOPEHqfz/j7EVy5z0rhmcqdSFqnw0zk+0Z2dziisXmmZHd8vRTtQV25pzZKx8+1d4lrc1y5SRlU0G9sRh46tXGdmbUtG2iOuNR0zp1ySMrajoPqjpjYiZ16eLUTDZ23cxORq8ll8yTKZN21kUnZjaYyZigMm72q192ho/7WP7D2iWt099Se2bkrrvZvaQVM5lRKI93Z+DpsXgJU2fgmRCYp5tT054KlyJtajoFNE93wUzqEq5QM6kLRfpsMJPp2cXZczDwiuaS1i99sfbMyBdvX3tm5DsPy+eSVsxkHFXKuQ0Dz3LqSk1XR9fGnlLT1dEeM1ktravTW/09dWomowV4zD2TZXphJvNT83s3doVGctXva5e0HnuCWWCnVzbbLL82GXi6ZaupNQaemtTINxcGnvny1RKdmtaiRP55UNP5M9bSAjOTWpSo5YGZtKAHZtICxIYQf/5TbYGd679TW2Dn1XubBXZ65bWvy/7MyDTZcpJKQ82/fRh4+qdZ2oyp6bTk/NqPmvZLryzZUtNZ6Pm1L2ZSl15OzaTvz5NsJR1m0u5Bvehis8BOj6xfLzJmjMgZgYk84QP5LrDTrgecpNoRKsf3DDzLoWOcXlDTcSj5vw017b+GcXtATccl5f92mEldGjo1kytWrhrxfEldKNJng5lMz65+z5/+pDOcjfzZ3bUFdmYeWltgZ8d/y3+BnXY94CTVjlA5vmfgWQ4d4/SCmo5Dyf9tqGn/NYzbA2o6Lin/t8NM6tLQqZmsX721GQaeM6nr4HCVzdq1tQV2Lv1KbYGdl+48GM5GvnWGuwV22vWVk1Q7QuX4noFnOXSM0wtqOg4l/7ehpv3XMG4PqOm4pPzfDjOpS0OnZlJX1+1lw8xkepbfuba2wM5fHq0tsPOhj9QW2Omo/anmxUlKjRS5JsLAM1e8qoJT06rkyC0Zajo3tOoCU9PqJMktIcxkbmhTBXZqJlut5rrgsuvkmhtvl+VLF6TqRNE7YSaTK/DwQx3hMyNvuam2wM60N9QW2Hnlq4pZYKddDzhJtSNUju8ZeJZDxzi9oKbjUPJ/G2rafw3j9oCajkvK/+0wk7o0VGEml95yp8w991LhMlddB0de2Vx0Ybecd3ZPGH7cluaS1j557/uLXWCnXV85SbUjVI7vGXiWQ8c4vaCm41Dyfxtq2n8N4/aAmo5Lyv/tMJO6NFRhJs84e5Hcec8KZiZ1HRvWszH3Rp54zBj5/v/VZiOPeE9tgZ1ttil+gZ12neUk1Y5QOb5n4FkOHeP0gpqOQ8n/bahp/zWM2wNqOi4p/7fDTOrSMHczGc06tuv2/NOPk5nTp7bbTOX3XObaXpa//bVDTgiM5L0/65QdXjIo557fK288QM8CO+16wEmqHaFyfM/Asxw6xukFNR2Hkv/bUNP+axi3B9R0XFL+b4eZ1KVh7mayvrut7pnUhSR5NpjJ0Zn99oHO0Ej+/uEOmbzHgHx18XqZuJP+2cj6XnGSSl4XPu7BwNNH1dLlTE2n4+bbXtS0b4qlz5eaTs/Otz0xk7oUc2omdXXdXjaYydYsf3JXp5z4/jHy5JMd8vppgZH82nrZciu/jKTpHScpe/WiORIDT83q2M2NmrbLU2s0alqrMvbzoqbtM9UaETOpSxnMpAU9MJPNId78va7wHsn+4GrWtx3SL1+5bL0F2sWE4CRVDHfXrTLwdE28uPao6eLYu2yZmnZJu9i2qOli+btsHTPpknb7tpybyWkzZ8uap55tmhmrubYXzJctrvpml3z0v8aE6R71vj4574JeX1JvmicnKa/li508A8/YqLzfkJr2XsJYHaCmY2EqxUbUdClkjNUJzGQsTM42cmomD5k1VyaMHyeXXzjHWQddNMTM5EjKl3ypWz77qdqjP2b/V1+4YqvvL05SvisYL38GnvE4lWEraroMKrbvAzXdnlFZtqCmy6Jk+35gJtszcrmFUzPJAjwupS2mrXM+0yNf+mJ32Ph/f7pXTvqg7udHxqXESSouKb+3Y+Dpt35Jsqemk9Dyd1tq2l/tkmZOTScl5u/2mEld2mEmLejBzGQN4pxTe+Sb36gZyQu+uD58jmRZXpykyqLk6P1g4FkNnU0vqelqaE1NV0Nnaro6OkdaV6vHunvr1Eyay1wPmLaXzD72UN1UEmaHmZTw0R/fW9YlXV0ii4IVW6e/pTxGkpNUwoLweHMGnh6LlzB1zGRCYJ5uTk17KlyKtKnpFNA83YWZSV3COTWTS2+5Uy5YeLUsX7pAF4WM2VTZTD71j47QSP54eadMmDAoi4JnSL72dQMZierbnZOUPk3yyIiBZx5UdcakpnXqYjsrato2Ub3xqGm92tjODDNpm2i2eE7NpLlncrQXq7lmE9P13o/8ITCSwTMk7/9Np7xsl8BIBjOSr5hUPiNpuHKScn10FdMeA89iuBfRKjVdBHX3bVLT7pkX1SI1XRR59+1iJt0zH61Fp2ZSV9ftZVPFmclf3tcZzkg++ucO2evVA/LVwEhu96JBe1CVReIkpUyQnNJh4JkTWIVhqWmFouSQEjWdA1SlIalppcLkkBZmMgeoGUJiJjPAi3atmpm8/ftdcmJgJJ97TmT/N/XLV4NLW8eOtQBScQhOUorFsZgaA0+LMJWHoqaVC2QpPWraEkgPwlDTHohkKUXMpCWQlsI4N5NmEZ6HH3k0TH/+6cfJzOlTxVz+uveek7x9/mSVzOT13+mSD504JtTvnYf1yxcvXm/pUNQdhpOUbn1sZcfA0xZJ/XGoaf0a2ciQmrZB0Y8Y1LQfOtnIEjNpg6K9GE7NpDGSE8aPC03jtJmz5bSTDg/N5ILLrpNrbrzd24V5qmImF1/WLXPn9IRH33En9smn5/faOxKVR+IkpVwgS+kx8LQE0oMw1LQHIllIkZq2ANGTENS0J0JZSBMzaQGixRBOzaSZgVxyyTyZMmnnEWbSrPI699xLhQV4LCprOdT/nN8tnz+3ZiQ/OqdXTvlYn+UWdIfjJKVbH1vZMfC0RVJ/HGpav0Y2MqSmbVD0IwY17YdONrLETNqgaC+GUzNpZiMvPueUjcwkM5P2BM0j0qc+0SNfXdgdhv7sub3y/uOqZSRNvzlJ5XFk6YvJwFOfJnllRE3nRVZXXGpalx55ZkNN50lXV2zMpC49nJrJM85eJHfesyK8nDW6zPVlE7eXI04+S2YcuI+cc+YJuujEzKbMl7l+5INj5NtXd4UkvvSV9fL2d/THpFKuzThJlUvPVr1h4FkNnfkHouroTE1XR2vO09XSujq91d9Tp2bS4Iguaa1Hc9LRM2T2sYfqp9UiwzKayXXrJHyG5G23dslmm0n4DMn99q+mkWTg6W1pJk6cgWdiZN7uwMDTW+kSJU5NJ8Ll9cbUtNfyJUqemclEuHLf2LmZzL1HBTRQNjP59791hM+Q/Pk9nbL9DoPhMyRfuedAAWT1NMlJSo8WeWbCwDNPurpiU9O69MgrG2o6L7L64lLT+jTJKyPMZF5k08V1aiaPOfU8ufu+lRsttMOjQdKJl8dev13ZGT5D8uGHOmT3yQPhMyR3eulgHk15FZOTlFdypU6WgWdqdN7tSE17J1mqhKnpVNi83Ima9lK2VEljJlNhy20np2bS3Cd52MH7bXRJKwvw5KZvosA//UlgJINLW594okP2mRoYyWBGcqutMZIGIiepRIeStxsz8PRWusSJU9OJkXm5AzXtpWypkqamU2HzcifMpC7ZnJpJMwM5//TjwmdL1r94NEjxB8UtN3WFM5J9wUKtbz24P7xHktcGApykqnE0MPCshs78A1F1dKamq6M15+lqaV2d3urvqVMzqXlmstXsqFmBdtmtd22kZP0zMX2/Z3LJlV1y2kfGhH18z9F98rkv9Oo/ch1nyEnKMfCCmmPgWRD4ApqlpguAXkCT1HQB0AtqkpouCHwBzTIzWQD0UZp0aiaNYVt4xTJZcsm88FmT5rVi5arw0SBFrehav7rs+K22CB9bUv8yZvKBB1fLDYvnt8Tos5lc+OVu+cwne8K+ffDDfXLmPIxkM6E5Sen6H1de2TDwzIusvrjUtD5N8siIms6Dqs6Y1LROXfLICjOZB9X0MZ2aSZNms0eDNLv0NX2X0u052sxkWc3kuZ/tkQX/0x0Cm/vJXvnA7OAaV15NCXCSqsaBwcCzGjqbXlLT1dCamq6GztR0dXSOtK5Wj3X31rmZ1Ioj7mWuzWYvfZyZnHNaj3zz6zUj+fngstYjg8tbebUmwMCzGkcHA89q6MzAszo6U9PV0ZrzdLW0rk5v9fcUMzmkUdwVZQ+ZNTfco/6y16ee8+vS0Pcf3SVLr++Ujg6Rr1/ZLwfPqPYzJOOU6VYv6BHfdI7TL7YZSWCTns7wg+d7qYmyHxvUdNkVrvWPmq6GzqaX1HS1tK5Ob/X31LmZNIvwrHnq2aZk6he1cY0urplstvLsv573Y1bv6aeDBXaO7JLbf9Ah48eLfOuqfpn2nzz6I86xttkm3eKLznH6wzbNCfR018xkbx9msuzHCDVddoVr/aOmq6Gz6SU1XS2tq9Nb/T11aibNrN6E8ePk8gvnqCOTxUz6cJnr6tUd4TMkV/y6U16682D4DMlJkxkwxz0QuXwmLim/t+OSOL/1S5I9NZ2Elr/bUtP+apc0c2o6KTF/t2cBHl3aOTWTrZ4zqQFJKzNpZlLrV3g1f++680tGGGLtZvJXv+wMnyH5pz92yKv2GgiN5Iu3Z0YyyXHHSSoJLX+3ZeDpr3ZJM6emkxLzc3tq2k/d0mRNTaeh5uc+mEldulXeTDZbXXbGgfvIOWeeECplZlMffuTRYdX23nPSRjOrms3kD283RnKsPBtcWfzGA/plUWAkN91U10HoQzacpHxQKXuODDyzM/QlAjXti1LZ8qSms/HzaW9q2ie1suWKmczGz/beTs2kMWYHTNtLZh97qO1+FBpPq5m84fou+cDxY0I2h76zXxYsXF8oJ58b5yTls3rxc2fgGZ+V71tS074rGC9/ajoepzJsRU2XQcV4fcBMxuPkaiunZtLMAl6w8OoRl4266mie7Wg0k1+/vFvO/HhP2O1jju+Tz5zj14qzeeqVJjYnqTTU/NuHgad/mqXNmJpOS86v/ahpv/TKki01nYWeX/tiJnXp5dRMmnsmR3sVuZprFlm0mclrruqSU2bXZiRP/XifnPZxjGQWfc2+nKSyEvRjfwaefuhkI0tq2gZF/TGoaf0a2cqQmrZFUn8czKQujZyaSV1dt5eNJjO58v5OmX7AWOkL/ONbD67dI8krOwFOUtkZ+hCBgacPKtnJkZq2w1F7FGpau0L28qOm7bHUHgkzqUshzKQFPTSZybe9eaz84t5OOfzIfrnwIoykBXnDEJykbJHUHYeBp259bGZHTdukqTcWNa1XG9uZUdO2ieqNh5nUpY1zM9ls9dT5px8nM6dP1UUmQTZazOQZH+uRb3ytWybvMSA33bZOursTdIJNRyXASaoaBwgDz2rozD8QVUdnaro6WnOerpbW1emt/p46NZPmWY4Lr1gmSy6ZJ1Mm7RzSWbFylRxx8lly0tEzvF3lVYOZvPKKbvn4KbUFd773f+vkla8a0H/0eZQhJymPxMqQKgPPDPA825Wa9kywlOlS0ynBebgbNe2haClTZmYyJbicdnNqJqfNnC2HHbzfRqbRmMxrbrzd21VeizaTv/5Vp7wluE9ycFDkvAt65aj39eV0uFQ3LCepamjPwLMaOjMzWR2dqenqaM15ulpaV6e3+nvq1Eya1VybXdIaXfrKaq7JDxhjII2RNIbyqPf2yXkXsnJrcort9+Ak1Z5RGbZg4FkGFeP1gZqOx8n3rahp3xWMnz81HZ+V71syM6lLQadmkplJ++J/LLi09VvBJa7/8crafZK88iHASSofrtqiMvDUpkh++VDT+bHVFJma1qRGvrlQ0/ny1RQdM6lJDRGnZpJ7Ju2KbxbbMYvudHaK3Pz9dbLHFO6TtEt4QzROUnmR1RWXgacuPfLMhprOk66e2NS0Hi3yzoSazpuwnviYST1amEycmknTIKu52jkAzOM/zGNAzOv8/1kv7z6q305gojQlwEmqGgcGA89q6Gx6SU1XQ2tquho6U9PV0TnSulo91t1b52ZSN4502blegKc3eHzkQW8aKyvv75T3HdMnZ3+O+yTTKRd/Lwae8Vn5vCUDT5/VS5Y7NZ2Ml69bU9O+Kpc8b2o6OTNf92BmUpdymEkLerg2k6fMHiPXXNUle716QJbdzH2SFiRsG4KTVFtEpdiAgWcpZIzVCWo6FibvN6KmvZcwdgeo6diovN8QM6lLQidmMrpXstmzJEf7Theq1tm4NJOXLeqWeWf2yJgxtfskXzGJ+yRdHCecpFxQLr4NBp7Fa+AqA2raFeli26Gmi+XvsnVq2iXtYtvCTBbLv7F1J2bykFlzZcL4cXL5hXOa9v6YU8+TJ9c8Izcsnq+LTsxsXJnJe37aKW9/W+0+yS9+eb2883Duk4wpUebNOEllRuhFAAaeXshkJUlq2gpG9UGoafUSWUuQmraGUn0gzKQuiZyYyVbPl4xQ8JzJ9gfF2rXmeZKbyIO/65DjTuyTT8/nPsn21OxtwUnKHkvNkRh4albHbm7UtF2eWqNR01qVsZ8XNW2fqdaImEldymAmLejhYmZy9klj5Lpvd8nerx2Q677LfZIWZEsUgpNUIlzebszA01vpEidOTSdG5uUO1LSXsqVKmppOhc3LnTCTumRzYianzZwtp510uMycPrVp783M5AULr5blSxfoohMzm7zN5KKLu+XT83pks83MfZLPyy67DsbMjM1sEeAkZYuk7jgMPHXrYzM7atomTb2xqGm92tjOjJq2TVRvPMykLm2cmMkzzl4kDzy4uuU9ke3uqdSFbONs8jSTP/lxp7zzkNp9kl/6ynp5+zu4T7KI44GTVBHU3bfJwNM986JapKaLIu+2XWraLe8iW6Omi6Tvtm3MpFve7VpzYiZNEmZ20rwaZx/N52ueelbuv2Nxu1zVfp+XmXz2mQ456ICx8odVHXLiB/pk3lncJ1nUQcBJqijybttl4OmWd5GtUdNF0nfXNjXtjnXRLVHTRSvgrn3MpDvWcVpyZiZNMmaGctmtd43Ia+89J7Vc5TVOBzRsk5eZPPn4MbLs+i55/bQBueZ67pMsUmtOUkXSd9c2A093rItuiZouWgE37VPTbjhraIWa1qCCmxwwk244x23FqZmMm5Rv2+VhJi9e0C3zP90j47YclJtvWyc7vZT7JIs8LjhJFUnfXdsMEKP6/wAAF01JREFUPN2xLrolarpoBdy0T0274ayhFWpagwpucsBMuuEctxXMZFxSo2xn20z+6I5Oefc7a/dJfuWy9fK2Q7hP0oJMmUJwksqEz5udGXh6I1XmRKnpzAi9CEBNeyGTlSSpaSsYvQiCmdQlE2bSgh42zeQ/1nTIW940Vv64ukM+9JE+OeO/uU/SgkSZQ3CSyozQiwAMPL2QyUqS1LQVjOqDUNPqJbKWIDVtDaX6QJhJXRJhJi3oYdNMHj9rjNz03S55w34D8q1ruU/SgjxWQnCSsoJRfRAGnuolspYgNW0NpepA1LRqeawmR01bxak6GGZSlzyYSQt62DKTF13YLeed3SPjJ9Tuk3zJjtwnaUEeKyE4SVnBqD4IA0/1EllLkJq2hlJ1IGpatTxWk6OmreJUHQwzqUsezKQFPWyYyR/c1iVHHzEmzObSr6+Xg97KfZIWpLEWgpOUNZSqAzHwVC2P1eSoaas41QajptVKYz0xato6UrUBMZO6pMFMWtAjq5l8/PHgeZL7j5W//qVDPnJan3z8DO6TtCCL1RCcpKziVBuMgadaaawnRk1bR6oyIDWtUpZckqKmc8GqMihmUpcsmEkLemQ1k+8/aozcekuXvPGAfrliyXoLGRHCNgFOUraJ6ozHwFOnLnlkRU3nQVVfTGpanyZ5ZURN50VWX1zMpC5NMJMW9MhiJi/8XLdc8Lke2Xa72n2SL3ox90lakMR6CE5S1pGqDMjAU6UsuSRFTeeCVV1QalqdJLklRE3nhlZdYMykLkkwkxb0SGsmzWykmZU0r8VXrpc3vZn7JC3IkUsITlK5YFUXlIGnOklyS4iazg2tqsDUtCo5ck2Gms4Vr6rgmElVcghm0oIeacykuT/yLQeMlcce65CPzumVUz7WZyETQuRFgJNUXmR1xWXgqUuPPLOhpvOkqyc2Na1Hi7wzoabzJqwnPmZSjxYmE8ykBT3SmEmzcqtZwfXNB/XL5Vdwn6QFGXINwUkqV7xqgjPwVCNF7olQ07kjVtEANa1CBidJUNNOMKtoBDOpQobhJDCTFvRIaibNsyTNMyW332FQbgruk9xmG+6TtCBDriE4SeWKV01wBp5qpMg9EWo6d8QqGqCmVcjgJAlq2glmFY1gJlXIgJm0KUMSM3nTd7vk+Fm1+yS/efV62W9/7pO0qUVesThJ5UVWV1wGnrr0yDMbajpPunpiU9N6tMg7E2o6b8J64mMm9WhhMmFm0oIecc3kn/4YPE8yuE/yH2s6ZM7cXvnwKdwnaQG/kxCcpJxgLrwRBp6FS+AsAWraGepCG6KmC8XvtHFq2inuQhvDTBaKf6PGMZMW9IhrJt/9zrHyozs65a0H98uir3GfpAX0zkJwknKGutCGGHgWit9p49S0U9yFNUZNF4beecPUtHPkhTWImSwMfdOGMZMW9IhjJs8+q0e+fFG3TJxYu09yq625T9ICemchOEk5Q11oQww8C8XvtHFq2inuwhqjpgtD77xhato58sIaxEwWhh4zmRf6dmZy2fVdcvLxtfskl3xnnUx7w0BeqRA3JwKcpHICqywsA09lguSYDjWdI1xFoalpRWLknAo1nTNgReExk4rECFJhZtKCHqOZyT+sqt0n+ewzHTL3k73ygdncJ2kBufMQnKScIy+kQQaehWAvpFFquhDszhulpp0jL6xBarow9M4bxkw6Rz5qg5hJC3qMZibfNXOs3HVnpxzy9n65+KvcJ2kBdyEhOEkVgt15oww8nSMvrEFqujD0Thumpp3iLrQxarpQ/E4bx0w6xd22McxkW0TtN2hlJj89r0cWXdwtO7/M3Cf5vGyxRftYbKGTACcpnbrYzoqBp22ieuNR03q1sZkZNW2Tpu5Y1LRufWxmh5m0STN7LMxkdobSzExe9+0umX1S7T7Jby9bJ6/bh/skLaAuLAQnqcLQO22YgadT3IU2Rk0Xit9Z49S0M9SFN0RNFy6BswQwk85Qx2oIMxkL0+gbNZrJhx4M7pPcfxNZu1bkU5/pleNP5j5JC5gLDcFJqlD8zhpn4OkMdeENUdOFS+AkAWraCWYVjVDTKmRwkgRm0gnm2I1gJmOjar1ho5l8+9vGyj0/7ZR3vKtfLrqE+yQtIC48BCepwiVwkgADTyeYVTRCTauQIfckqOncEatpgJpWI0XuiWAmc0ecqAHMZCJczTeuN5PzzuyRyxZ1y8tfMRA+T3KTTSw0QIjCCXCSKlwCJwkw8HSCWUUj1LQKGXJPgprOHbGaBqhpNVLknghmMnfEiRrATCbCNbqZvHZJl/zXh2r3SS793jp59d7cJ2kBr4oQnKRUyJB7Egw8c0espgFqWo0UuSZCTeeKV1VwalqVHLkmg5nMFW/i4JjJxMg23sHMTK68v1MOetNY6Q2uav3MOb1yzPHcJ2kBrZoQnKTUSJFrIgw8c8WrKjg1rUqO3JKhpnNDqy4wNa1OktwSwkzmhjZVYMzkELYFl10n19x4uyxfumAjkIfMmisPP/Jo+PkuO+0gNyyeP2IbYyYPnj5W7vt5pxx+ZL9ceBH3SaY6GhXvxElKsTgWU2PgaRGm8lDUtHKBLKVHTVsC6UEYatoDkSyliJm0BNJSmMqbyaW33Clzz700xDl+qy02MpPHnHqePLnmmWEDaYzlhPHj5PIL5wxL8L5j+uQbX+uW3ScPyM3BfZLdPZbUIYwaApyk1EiRayIMPHPFqyo4Na1KjtySoaZzQ6suMDWtTpLcEsJM5oY2VeDKm8mIWquZyWkzZ8tpJx0uM6dPDTc15vOChVcPm85LAx96/PG1KN/933Xyqr24TzLVkah8J05SygWylB4DT0sgPQhDTXsgkoUUqWkLED0JQU17IpSFNDGTFiBaDIGZHILZzEyuWLlKjjj5LFlyyTyZMmnncMvGzzo7RQYHRc49v1eOnsV9khaPTVWhOEmpkiO3ZBh45oZWXWBqWp0kuSRETeeCVWVQalqlLLkkhZnMBWvqoJjJjGayo0Nk1vsH5KIv9acWgR31E9hisx559l+9+hMlw0wExvQE/zoUvNb3coVBJpAe7ExNeyCShRSpaQsQPQlBTXsilIU0jda89BDATGY0k/feK7LrK3rFmEpe5SXASaq82tb3jIFnNXQ2vaSmq6E1NV0Nnanp6ugcaV2tHuvuLWZyFDNpvmp3z6TZxqzmyqvcBLh8ptz6Rr3jkrhq6Gx6SU1XQ2tquho6U9PV0TnSulo91t1bzGQbMxlnNVfMpO6D3EZ2DDxtUNQfg4Gnfo1sZUhN2yKpOw41rVsfm9lR0zZp6o7FPZO69Km8max/NEgkzYwD95FzzjxhWKk4z5nUJSvZ2CbASco2UZ3xGHjq1CWPrKjpPKjqi0lN69Mkr4yo6bzI6ouLmdSlSeXNpA05mJm0QVF3DE5SuvWxlR0DT1sk9cehpvVrZCNDatoGRT9iUNN+6GQjS8ykDYr2YmAmLbDETFqAqDwEJynlAllKj4GnJZAehKGmPRDJQorUtAWInoSgpj0RykKamEkLEC2GwExagImZtABReQhOUsoFspQeA09LID0IQ017IJKFFKlpCxA9CUFNeyKUhTQxkxYgWgyBmbQAEzNpAaLyEJyklAtkKT0GnpZAehCGmvZAJAspUtMWIHoSgpr2RCgLaWImLUC0GAIzaQEmZtICROUhOEkpF8hSegw8LYH0IAw17YFIFlKkpi1A9CQENe2JUBbSxExagGgxBGbSIkxCQQACEIAABCAAAQhAAAIQqAoBzGRVlKafEIAABCAAAQhAAAIQgAAELBLATFqESSgIQAACEIAABCAAAQhAAAJVIYCZrIrS9BMCEIAABCAAAQhAAAIQgIBFApjJlDAPmTVXHn7k0XDvXXbaQW5YPD9lJHbTQiCJpsecep7cfd/K4dQ5BrSo2D6PJDrXR1tw2XWy8IplMv/042Tm9KntG2KLwgmk0XryvrOG8z7p6Bky+9hDC+8HCYxOIKnO02bOljVPPTsc9P47FoO4BATM/6OvufF2Wb50QQl6Qxfi6sl4rPhjBTOZQgNz4D655plhA2lOZBPGj5PLL5yTIhq7aCCQVFMzGKk/YZm/p75mipxz5gkaukMOLQgk1TkKE53UzAAUM+nH4ZVU6xUrV8kRJ58lGEg/9I2yTKpz4/m6cX+/ek+2hsDSW+6UuedeGsIYv9UWmEnPD4ukejIeK15wzGQKDcyBe9pJhw/PTpgD/4KFV/M/sBQsteySVdMzzl4kDzy4mhlqLYK2yCONzvX/OmpmrTCTykUeSi+p1sZUbPfCrfkHIT/kHc4yqc5m+8MO3m94xjnu7IdnWCqZLlqWS/a0ejIec38cYCYTMo/+9XrJJfNkyqSdw72bfZYwLJsXSMCGpuZfu3ffbSID0QJ1bNd0Gp0bT2aYyXaUdXyfRmujrZnVqL/8sf7/8zp6Rhb1BNLobAaay269S2YcuE/4/2v+312eYyqt+SgPgXL1JK2e1LT74wAzmZB5mpNXwibY3DGBrJpGgxPuu3EsXMLmkurc7ESGmUwIvaDNk2odbV8/60xdFyRegmaT6lz/j7/1/3DA/7sTQFe8aVrzobhLlU4tjZ78f7uYQwYzmZB7mpNXwibY3DGBLJpGi7Iwg+FYtBTNJdW58ab++ia5ry6FAA53Sap1q6tL+McDh6KlaCqpzqaJRk0ZfKYAr3SXNOZDaVdIKyCQVE/GY8UdNpjJFOyT3qORogl2cUwgjaYMQhyLZKG5NDrXN4u5sCCCoxBJtW6mLXo7EitDM0l0TmM+M6TGro4JJDUfjtOjuYQEkujJeCwhXMubYyZTAE26elyKJtjFMYF2mppr8M0regRM49+O06W5lASS6tzYDOYiJfgCdkuqtdn+oVV/Hl5IzQxO7rxnBQurFaBdkiaT6mxqeO89Jw2vvo7OSWjr3jaJ+dDdE7IzBFrpyXhM3/GBmUypSdLnWqVsht0cEhhN0/r/eUX/ut0sNVb6dChYyqbi6twsPGYyJfSCdkuqdf2lzTxioCDRUjSbVOf6Z4micwrgynapf5RElFq0wJKyVEknBoF2ejIeiwHR8SaYScfAaQ4CEIAABCAAAQhAAAIQgEAZCGAmy6AifYAABCAAAQhAAAIQgAAEIOCYAGbSMXCagwAEIAABCEAAAhCAAAQgUAYCmMkyqEgfIAABCEAAAhCAAAQgAAEIOCaAmXQMnOYgAAEIQAACEIAABCAAAQiUgQBmsgwq0gcIQAACEIAABCAAAQhAAAKOCWAmHQOnOQhAAAIQgAAEIAABCEAAAmUggJksg4r0AQIQgAAEIAABCEAAAhCAgGMCmEnHwGkOAhCAAAQgAAEIQAACEIBAGQhgJsugIn2AAAQgAAEIQAACEIAABCDgmABm0jFwmoMABCAAAQhAAAIQgAAEIFAGApjJMqhIHyAAAQhAAAIQgAAEIAABCDgmgJl0DJzmIAABCEAAAhCAAAQgAAEIlIEAZrIMKtIHCEAAAhCAAAQgAAEIQAACjglgJh0DpzkIQAACEIAABCAAAQhAAAJlIICZLIOK9AECEIAABCAAAQhAAAIQgIBjAphJx8BpDgIQgAAEIAABCEAAAhCAQBkIYCbLoCJ9gAAEIAABCEAAAhCAAAQg4JgAZtIxcJqDAAQgAAEIQAACEIAABCBQBgKYyTKoSB8gAAEIFERgwWXXycIrlm3U+klHz5DZxx4q02bODr9bvnTBRtuY78ZvNU5uWDw//K5drMn7zhq1l+O32iJs55hTz5O771vZdNv5px8nM6dPlUNmzZWHH3lUor+jjZfecqfMPfdS2WWnHYbzagwUJ4+pr5kiy269a3jXGQfuI+eceUKiduP0oyDZaRYCEIAABCAQEsBMciBAAAIQgEAqApHZWXLJPJkyaefhGMYU3rb83mEzZszX3ntOkssvnDO8zRlnL5I771kxbDLjxmo0fY1m0HxvYj255pmWZtBsE5nJxryiz0czk/WwIvPZLI9m3yVpN04/UgnHThCAAAQgAAFLBDCTlkASBgIQgEDVCBiTGM24jdb3RlO1YuUqOeLks0bMCsaNZdNMThg/LpzBjMxwlJcxmO3MaJw8WpnJuO1iJqtWUfQXAhCAgH8EMJP+aUbGEIAABFQQaLxMdbSkjDF6aNWfw5lIMztnDFX9TGWSWKad0WYE45gwk8Puu02Uvz/xD9nuhVuHl6Ca2VLzMp/laSbjthunHyoOBJKAAAQgAIHKEsBMVlZ6Og4BCEAgG4HI0NVHaXa5Z/R9/b2G99+xeETjSWO1M5Nx7pk0pm7vPXcP75E0+Zj8zCzlF756be5mMk673DOZ7fhkbwhAAAIQyJ8AZjJ/xrQAAQhAoPQEGo1Ps8tfIwMYLc7TCkqSWFnumTRmMloUx+QSzZYmmRFMc89k3HaT5FH6A4wOQgACEICASgKYSZWykBQEIAABfwmYy0XNSqaNs4/N7pVs18tWsdrNTLa7TDW6zNWYyWgV2ciYJjFxWcxku3aT5NGOI99DAAIQgAAE8iCAmcyDKjEhAAEIlJyAMYbfuv62cGav8RWZpMZVXluZyTSxbJpJk7+5ZzN6fEkSE5fFTLZrN0keJT/c6B4EIAABCCglgJlUKgxpQQACENBMIDKGJsfGGchmjwIx241mJs3qrkli2TaT9ayTmLisZnK0dpPkoflYITcIQAACECgvAcxkebWlZxCAAARyJ1C/qE7UWKt7Ittd5pokVjszGXcBnmYzq0lMXKs8ostzIybRPaT1l9c2itPYLgvw5H740gAEIAABCGQkgJnMCJDdIQABCEAAAhCAAAQgAAEIVJEAZrKKqtNnCEAAAhCAAAQgAAEIQAACGQlgJjMCZHcIQAACEIAABCAAAQhAAAJVJICZrKLq9BkCEIAABCAAAQhAAAIQgEBGApjJjADZHQIQgAAEIAABCEAAAhCAQBUJYCarqDp9hgAEIAABCEAAAhCAAAQgkJEAZjIjQHaHAAQgAAEIQAACEIAABCBQRQKYySqqTp8hAAEIQAACEIAABCAAAQhkJICZzAiQ3SEAAQhAAAIQgAAEIAABCFSRAGayiqrTZwhAAAIQgAAEIAABCEAAAhkJYCYzAmR3CEAAAhCAAAQgAAEIQAACVSSAmayi6vQZAhCAAAQgAAEIQAACEIBARgKYyYwA2R0CEIAABCAAAQhAAAIQgEAVCWAmq6g6fYYABCAAAQhAAAIQgAAEIJCRAGYyI0B2hwAEIAABCEAAAhCAAAQgUEUCmMkqqk6fIQABCEAAAhCAAAQgAAEIZCSAmcwIkN0hAAEIQAACEIAABCAAAQhUkQBmsoqq02cIQAACEIAABCAAAQhAAAIZCWAmMwJkdwhAAAIQgAAEIAABCEAAAlUkgJmsour0GQIQgAAEIAABCEAAAhCAQEYCmMmMANkdAhCAAAQgAAEIQAACEIBAFQlgJquoOn2GAAQgAAEIQAACEIAABCCQkQBmMiNAdocABCAAAQhAAAIQgAAEIFBFApjJKqpOnyEAAQhAAAIQgAAEIAABCGQkgJnMCJDdIQABCEAAAhCAAAQgAAEIVJEAZrKKqtNnCEAAAhCAAAQgAAEIQAACGQlgJjMCZHcIQAACEIAABCAAAQhAAAJVJICZrKLq9BkCEIAABCAAAQhAAAIQgEBGApjJjADZHQIQgAAEIAABCEAAAhCAQBUJYCarqDp9hgAEIAABCEAAAhCAAAQgkJEAZjIjQHaHAAQgAAEIQAACEIAABCBQRQKYySqqTp8hAAEIQAACEIAABCAAAQhkJICZzAiQ3SEAAQhAAAIQgAAEIAABCFSRAGayiqrTZwhAAAIQgAAEIAABCEAAAhkJYCYzAmR3CEAAAhCAAAQgAAEIQAACVSSAmayi6vQZAhCAAAQgAAEIQAACEIBARgKYyYwA2R0CEIAABCAAAQhAAAIQgEAVCWAmq6g6fYYABCAAAQhAAAIQgAAEIJCRwP8H99q7Tlavoa0AAAAASUVORK5CYII=", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig_fixed = dynamics_fixed.plot_history(chemicals=['A'], colors='blue', title=\"FIXED time steps\", show=True) # Repeat a portion of the diagram seen in Part 2" ] }, { "cell_type": "code", "execution_count": 20, "id": "1dfe1166-2bb3-4472-9b4e-a167c1a7d54d", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "A (EXACT) :
SYSTEM TIME=%{x}
concentration=%{y}", "legendgroup": "wide_variable_0", "line": { "color": "red", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "A (EXACT)", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21, 0.24, 0.27, 0.3, 0.32999999999999996, 0.36, 0.39, 0.42, 0.44999999999999996, 0.48, 0.51, 0.54, 0.57, 0.6, 0.63, 0.6599999999999999, 0.69, 0.72, 0.75, 0.78, 0.8099999999999999, 0.84, 0.87, 0.8999999999999999, 0.9299999999999999, 0.96, 0.99, 1.02, 1.05, 1.08, 1.1099999999999999, 1.14, 1.17, 1.2 ], "xaxis": "x", "y": [ 10, 11.95008833004919, 13.62854491045595, 15.073205877295173, 16.316637094683628, 17.386868261625793, 18.30802476363161, 19.100871512443824, 19.78328103322917, 20.37063635095752, 20.876177757921983, 21.311301279309443, 21.685815564897787, 22.008162997788812, 22.285610004458253, 22.524410856133898, 22.729948653948224, 22.906856675983857, 23.059122821643502, 23.190179507752262, 23.302981042849904, 23.400070223861437, 23.48363565638264, 23.555561090707048, 23.617467885737906, 23.670751558015873, 23.71661323975874, 23.75608675504709, 23.790061924513314, 23.819304623873283, 23.84447404846461, 23.86613757297239, 23.88478354131372, 23.90083227499327, 23.91464554808278, 23.926534742411462, 23.93676786680342, 23.945575598591333, 23.953156483595404, 23.959681411786764, 23.96529746952667 ], "yaxis": "y" } ], "layout": { "autosize": true, "legend": { "title": { "text": "Chemical" }, "tracegroupgap": 0 }, "margin": { "t": 60 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "EXACT solution" }, "xaxis": { "anchor": "y", "autorange": true, "domain": [ 0, 1 ], "range": [ 0, 1.2 ], "title": { "text": "SYSTEM TIME" }, "type": "linear" }, "yaxis": { "anchor": "x", "autorange": true, "domain": [ 0, 1 ], "range": [ 9.224150140581852, 24.74114732894482 ], "title": { "text": "concentration" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5MAAAFoCAYAAADKJa96AAAgAElEQVR4Xu29CZwdVZmH/faafesEcEAF2TRgXEBFkSggYNQhRNSAjmBGFomQGQVHCFEQZhJgFHC+AMkEZBj4VEANIegnsgiSGBYVxQiRVVBw2NLZl96/OnW7bm7f3O5bVfecU6fOfS6//nX3vVXvec/zr355/zm1NPQFL+EFAQhAAAIQgAAEIAABCEAAAhBIQKABM5mAFptCAAIQgAAEIAABCEAAAhCAQEgAM8mBAAEIQAACEIAABCAAAQhAAAKJCWAmEyNjBwhAAAIQgAAEIAABCEAAAhDATHIMQAACEIAABCAAAQhAAAIQgEBiApjJxMjYAQIQgAAEIAABCEAAAhCAAAQwkxwDEIAABCAAAQhAAAIQgAAEIJCYAGYyMTJ2gAAEIAABCEAAAhCAAAQgAAHMJMcABCAAAQhAAAIQgAAEIAABCCQmgJlMjIwdIAABCEAAAhCAAAQgAAEIQAAzyTEAAQhAAAIQgAAEIAABCEAAAokJYCYTI2MHCEAAAhCAAAQgAAEIQAACEMBMcgxAAAIQgAAEIAABCEAAAhCAQGICmMnEyNgBAhCAAAQgAAEIQAACEIAABDCTHAMQgAAEIAABCEAAAhCAAAQgkJgAZjIxMnaAAAQgAAEIQAACEIAABCAAAcwkxwAEIAABCEAAAhCAAAQgAAEIJCaAmUyMzK8d7vrVb+SrF14t5575WTn5Mx/1a3LMBgIQgAAEIAABCEAAAhAwRiDXZvJrFy+Sn//y4UHhfOzIQ+Q7F8yWfzrrP+QPf3pmUMMUxZl1wjT5t9knDoh3449+IZdd/cPwvSsvOlOO+fB7hxTjwMNn7fR5lEdprGqK3rrkW3Lg/ntV26zmz2s1kx+Zeba8Ydc2+f5V3xiQSxQ3mnvNiRIAAhCAAAQgAAEIQAACEHCKgBdmMo7xigxl+baR6alkJJVS0X7q56GMUWRIy7d5/KnnZebp3wpFf/z+G3YSX5nPd719353MmK2jBDNpizTjQAACEIAABCAAAQhAwC8CdWMmI1NXbtyGMnPRPspo/uHxZ8LVzUqGMFpxHOpUUWVKy1fv1KHkq5n068+E2UAAAhCAAAQgAAEIQAAC5QTqxkyqiUemL1qFjFYTKxlEtf23F90sN9xyp6jVzN899mR4umslw6hO9VSve2+9IvERltZMRrmVDljpNNzy027L86+0MjkYl1Ie6hRcNe+XX23fac6KZ6kRLz91uFpOpfuq4EqD6DXYCnJi8OwAAQhAAAIQgAAEIAABCNREoK7MpCJVen2kMilDrSaWXw9YyfhFxifttYFpzGQ0h9JTdqPTcSNjXOn03aHeK+UQ10wqnoNdM1nJTMbNqfTU4FLzGP1jQJxrV2v6q2BnCEAAAhCAAAQgAAEIQKAqAS/M5GCzHMzgRStjQxnAoVbsSk1ctWsuqymQxkwOZuDUymG0CqjMpVo1LF8tLV9drGVlMqmZjJtTtVXNtMa9mhZ8DgEIQAACEIAABCAAAQjEJ+CFmYxzA55SJJGZHOrGN5VW5+KurMXHn+6ayWgVcihTpeZY6fNy82jTTMbNCTOZ5AhiWwhAAAIQgAAEIAABCGRDoO7MZOljQga7BlJJUekRH5FE6lEY0YpfrY/ASLMyqfIovctslFd0qupQZqzcENsyk0lywkxmUwwYFQIQgAAEIAABCEAAAkkI1JWZLL/mbrDHhQx1bV50mmjpdXtZ3ICnXOTI/EartHFXAW2Zycigx1ktxUwm+RNmWwhAAAIQgAAEIAABCGRDoG7M5GA3yqm0Mlh+M5tSaSrFiQzmUHcaVafNfueC2TupnGZlslKsSkbZxjWTipV6lT/2pJIh5JrJbP7IGRUCEIAABCAAAQhAAAImCNSNmRxs9bD8cSFx7s5ayWxG11iWr7yV3pm00iNI0phJtU/pqbbqwBjsbq6l+cS9m2ul1crSR5GUXqNafkOf6CAd6m6u1XJiZdLEnzoxIQABCEAAAhCAAAQgoJeAF2ZyMCSRaYmehzjYIyVKHxeiYqlHhgz1+InIgJY/VqTUOJbmNNSKZRozWWmccnMZjV/tmY6VjKPaN5pjFEfNIWJTfsOj8us3dT5nstIzKrmbq94iQDQIQAACEIAABCAAAQikIZBrM5lmwuwDAQhAAAIQgAAEIAABCEAAArUTwEzWzpAIEIAABCAAAQhAAAIQgAAE6o4AZrLuJGfCEIAABCAAAQhAAAIQgAAEaieAmaydIREgAAEIQAACEIAABCAAAQjUHQHMZN1JzoQhAAEIQAACEIAABCAAAQjUTgAzWTtDIkAAAhCAAAQgAAEIQAACEKg7ApjJupOcCUMAAhCAAAQgAAEIQAACEKidAGaydoZEgAAEIAABCEAAAhCAAAQgUHcEMJN1JzkThgAEIAABCEAAAhCAAAQgUDsBzGTtDIkAAQhAAAIQgAAEIAABCECg7ghgJutOciYMAQhAAAIQgAAEIAABCECgdgKYydoZEgECEIAABCAAAQhAAAIQgEDdEcBM1p3kTBgCEIAABCAAAQhAAAIQgEDtBDCTtTMkAgQgAAEIQAACEIAABCAAgbojgJmsO8mZMAQgAAEIQAACEIAABCAAgdoJYCZrZ0gECEAAAhCAAAQgAAEIQAACdUcAM1l3kjNhCEAAAhCAAAQgAAEIQAACtRPATNbOkAgQgAAEIAABCEAAAhCAAATqjgBmsu4kZ8IQgAAEIAABCEAAAhCAAARqJ4CZrJ0hESAAAQhAAAIQgAAEIAABCNQdAcxk3UnOhCEAAQhAAAIQgAAEIAABCNROADNZO0MiQAACEIAABCAAAQhAAAIQqDsCmMm6k5wJQwACEIAABCAAAQhAAAIQqJ0AZrJ2hkSAAAQgAAEIQAACEIAABCBQdwQwk3UnOROGAAQgAAEIQAACEIAABCBQOwHMZO0MiQABCEAAAhCAAAQgAAEIQKDuCGAm605yJgwBCEAAAhCAAAQgAAEIQKB2ApjJ2hkSAQIQgAAEIAABCEAAAhCAQN0RwEzWneRMGAIQgAAEIAABCEAAAhCAQO0EMJO1MyQCBCAAAQhAAAIQgAAEIACBuiOAmdQg+d/XbtMQhRBZE9h1/DBp39Ql3T29WafC+DUSaG5qlLYxLfLq+o4aI7G7CwTGjGgO09i0rduFdMihRgLU2hoBOrQ7tdYhMTSlsvvEEZoiEaZeCGAmNSiNmdQA0YEQNDgOiKApBRocTSAdCYOZdEQITWlQazWBdCAMtdYBETSngJnUDLQOwmEmNYiMmdQA0YEQNDgOiKApBRocTSAdCYOZdEQITWlQazWBdCAMtdYBETSngJnUDLQOwmEmNYiMmdQA0YEQNDgOiKApBRocTSAdCYOZdEQITWlQazWBdCAMtdYBETSngJnUDLQOwmEmNYiMmdQA0YEQNDgOiKApBRocTSAdCYOZdEQITWlQazWBdCAMtdYBETSngJnUDLQOwmEmNYiMmdQA0YEQNDgOiKApBRocTSAdCYOZdEQITWlQazWBdCAMtdYBETSngJnUDLQOwmEmNYiMmdQA0YEQNDgOiKApBRocTSAdCYOZdEQITWlQazWBdCAMtdYBETSngJnUDLQOwmEmNYiMmdQA0YEQNDgOiKApBRocTSAdCYOZdEQITWlQazWBdCAMtdYBETSnYNNMHjdrnkxsGyvXX3Gu5lmYD7d6zXNy4uyL5eZFF8iUyXubH9DhETCTGsTBTGqA6EAIGhwHRNCUAg2OJpCOhMFMOiKEpjSotZpAOhCGWuuACJpT0Gkmv3j2ZfLwo2sGZNg2foysWLYwfC8LM7nszpUy79LrZP55p8qMaYelpoeZ3IEOM5n6MNqxI2ZSA0QHQtDgOCCCphRocDSBdCQMZtIRITSlQa3VBNKBMNRaB0TQnIIuM3ng4bOk1DhGaSqDudukCXLJ+adnYiZ14cJMYiZ1HUthHMykVpyZBaPByQy99oFpcLQjzTQgZjJT/NoHp9ZqR2ovYG+vNPT0iPT1igQ/NzeITBjZJK+v2x7+Hn71fxZuF73X/35D6e/hz33S0DtwuwHbRLGi/cKYwT7975fGL+6nPusfe2AsNVZ/jiXxwvfK4u2I1Vecw4D5BNvvPJf+98LxC+MMORc1bpRnOP6OsYr7luQ1OM/y/QbhWRorGivSKJpPXxBLvVfjSxnGp597sbgCOVi4aGVSfR6tYA5mQEtXOEtPLZ06Y44c9r4psvKR1dK+flM41BknTZc37bFruAIZvaJ9KpnA8hVUtf+cU46XSiurj99/QxgSM4mZrPHPZODumEmtODMLRoOTGXrtA2MmtSPNNCBmMlP82gf3rdY2dHWJdHVKQ2fwvbMj+B78HPwu6nv/V+Hzwlf0/k7v9W+z0+cqvmrwu7ulIfiSnv7v6mf1XtlnO7brCT5T2/TvO5QB6zd0DWWGRpmsAYZI+9FAQOcIKENZ40utSk4/5tBw9XGolzKTzzz/Umj+lHlTL2UO99v7jcXrKJWhW9u+UW6/YX74+cLvLZXFNy2XyNSp7ZWJjMxi9Hn56bRqXxWj3ASWG1/1+ZXX/igcX3321dM+U7wmUuU7WJwakeV6d05z1SAfZlIDRAdC+NbgOIA0sxQwk5mhNzIwZtII1syCJqq1yiyFBi0ybMqQdRQMWWCydpgz9V7we9GQRaZOGbzCPuG2xX36Py95rzTuwH0KRnHH55Fx7M9FQ/OdmRhJB25slL6mJpGGRpHgZ/XV0NQovQ3BEmX/79Fn4XbRe+p7sE9f6e/hzw3BewO3G7BN/zjF98KYwT4l40djFLdRn/WPPTCWGmtH3uF+wXbhe2XxdsTaMa8B86k4l53nN+Rc+sdXeRTmU8JQvVeaV5RnRZ7l+w3Cs2SOfWqsUn1K5rP7pJFJj4oB20dmLc41iZWumZy7YIk88dQLFY1fNJAykDOPPSI0oNHKZGRcK60Yqphq5VJdq1n6uYqnbqITJ9fIyN56x307xeEGPH31VAVr+vsYdGfMpBmutqMmanBsJ8d4iQhgJhPhcn5jzKR9iRq2b5OGrcHXtq0S/rwt+lK/bw8+G/i+dATvKaPWEZi6CqtwxZW64LPWni7p3lYwhOG2HRVW8qLVPXUqoOOvvpYWkZZW6Wvt/z5smPQFv0tr8F7wWV/we+Fz9V7we2vwufq5/71w//59Cu8P3Cf8XDX+zc3SF3xJU/939bN6r+yz0CAVP1Pb9O87lAHrN3ShyRjKAJZpQa11/OBMkV6t10zqNJPRzXIqTSNazRzMTJYaRLVaWckEPvvC38NTYaNVzkrjRCufpZ+p7TnNdQcRViZT/KGV74KZ1ADRgRCYSQdE0JQCDY4mkI6EwUwOLUTD1i3SsHmzNG7eFH5vCL439n/f6f1NFbYpGsPAIG4LTGFgIJ15KbOkTNewUvMV/ByaL2XMItOm3lPmrd+0hfsUtimYusLvoVErNXIl74UGsOI+BaNYNIihGdwRNzRfdfqi1vonfK1mUhFJcppr+aNBSlcmIzNZzeypaybLVyZ1mEk1j0MOmlw85bb0FFvMJGZS618/ZlIrzsyCYSYzQ699YBoc7UgzDeibmQxPudw0mOkrmL0hjeEWZR7VdgXTGN6ERPOrb/gI6RsxPPgaWfgaHvw8Un1X70dfO96XYcHnRXNXWHkrXWXbsVLXKuPbRsnGnibpDlbYohU9tVoXmr7I6PUbw3o2apolNRKOWmsEa6ZBdZjJajfgUYZxsLu5VjrNdajTUGtZmVSgBzvNtZKRxUxWPjRZmdTwJ4uZ1ADRgRCYSQdE0JQCDY4mkI6EccFMhjdPWb9OGtVXyarfkKuAFVcKAyOorvnT+OobOUr6Ro+W3tFjwu99wffe/u+F9wvvDbpN0SQG5nBkYBQDwyjqGjhDL2qtIbAZhKXWZgDd8JA6zKRKsdKjQSKDFt2cp9o1kypOdEfV0tVJZTgPOeiA8DmRtZhJda2jyqF9/cbinWejG/CoG++UG001J/XiNNeBByFmUsMfJWZSA0QHQtDgOCCCphRocDSBdCSMNjMZ3CKgcV1gBjesC4zh+oIxDL/W9xvFHe/t9PmWYAVQ0ytctato+pThG8L0le4zaodpDK+ny9GLWpsjsaqkSq31R8toJrrMZKkRLKVUusoYx0wOFqf0bq5pT3ONbpwT3VU2yjPKUZnW5XetKqavrtOM7iTLaa47VMVMaqgDmEkNEB0IQYPjgAiaUqDB0QTSkTDVzGTj2tel8dVXpenVl6XxNfX9FWl85RVpCn5uVD+/Fvwc/N74+mupZxSewjluvPROaJPeMTtMX3EVMDR35auDFVYKxwTbqVM66/hFrfVHfGqtP1qaMJP+0WFGlQhgJjUcF5hJDRAdCEGD44AImlKgwdEEMsMwjRs3hiZQmcFR65RZfEW6Xvq/0Cw2vvJywTD2G0f1XL24r97xgSEc3yZ94fcJwVfhe1/087jgvQnq9/7PQwMZ/B6sGPLSQ4Baq4ejC1GotS6ooDcHnSuTejMjmqsEMJMalMFMaoDoQAgaHAdE0JQCDY4mkJrDqEdMlK4YhiuHgTFURjFaRWwKVhjV70nuKKrMXu+ub5CeXXeT3l12lZ7dCt97g997gvd7dw3e6//M5LWAmnF5G45a64+01Fp/tIxmgpn0T1PTM8JMaiCMmdQA0YEQNDgOiKApBRocTSDjhOnpGbBKGJrD6FRT9V2dXtp/qmnjhg1xIobbqJXAHmUIA2PY+IbdpG+3N8j2CZMCo6jMYb9pVN+Dr/AOoLxyQ4BamxupqiZKra2KKHcbYCZzJ1nmCWMmNUiAmdQA0YEQNDgOiKApBRqc2kGq00ybXvxb8VTTwipisILYf3ppY3B9YriKmOA6RHWtYHGVsLiKGJhDtZrYbwyjz/uCaxCjV7VrJmufLRFsEqDW2qRtdixqrVm+WUTHTGZBPd9jYiY16IeZ1ADRgRA0OA6IoCkFGpzqINUqYdPfXgi+/ipNfw2+v/hXaVbf1e/B++qup7FewSMkolNI1Spizy6F1cKCOew/1TQ85TQwjcHpqGlemMk01Nzdh1rrrjZJM6PWJiXm/vaYSfc1ci1DzKQGRTCTGiA6EIIGxwERNKVAgyPh4y5KzWJzYBZD0xiZxeDzoV7q2YU9b3pzccWwp98YFlYRA2MYGseCWTT9wkyaJmw3PrXWLm+To1FrTdLNJjZmMhvueR4VM6lBPcykBogOhKDBcUAETSnUU4PT/PST0vzM08HXU9L8dPClvgdfje3tQ5vF4DTSnje/WbrfGBjGN+9ZMI5v2lO6+3/unbSLJjVqD4OZrJ2hSxGotS6pUVsu9VRrayOVn70xk/nRypVMMZMalMBMaoDoQAgaHAdE0JSCbw2OOiW1YBZ3No4S3ACn0kvdwKY7MIs9g5nFiZM00TYfBjNpnrHNEai1NmmbHcu3WmuWVj6iYybzoZNLWWImNaiBmdQA0YEQNDgOiKAphbw2OOo01B2rjP3GMTCQTS//36BkevbcS7r321+69w2+9ntr8H2/8Gd111NfXphJX5QszINa64+eea21/iigfyaYyYFMl925UuZdep2ccdJ0mXPK8fqBa4y48HtLZfFNy2X+eafKjGmHaYw8dCjMpAbUmEkNEB0IQYPjgAiaUnC5wWno2F4wjE8ps1h6aurT0rB1S0UCfSNGFkxiZBaVeez/uW/4CE3U3A2DmXRXmzSZUWvTUHNzH5drrZvE3M+qHszk1BlzQiFWLFtYVRC17TlnnFA0Z8fNmifPPP/STvsps6leysw9fv8NAz4/8PBZMv2YQ+WS808vvl8tB/V5+/pNA+KouCrWYC9lItXr8sW3xJpb1cnH3AAzGRPUUJthJjVAdCAEDY4DImhKwYUGRz1bUZnFluA6xqZ+0xj+/MJfBp1lzxv+obDCWDSOyjQGq4zBdYz1/MJM+qU+tdYfPV2otf7QdGMmvptJtdL4Pzf/PDBqGweYxEr01UrfPSt+J7ffML/4sTKTB+y/5wBjWLrv3AVL5ImnXiju88WzLws/vv6Kc4ubDZXD6jXPyYmzL97JfKq46hUZ0mi7mxddIFMm7z0gfZXjUVMPtraSipnU8LeLmdQA0YEQNDgOiKApBZsNjrqesWX1H4KvP0rzmser3wCnsbH/lNTo1NQdp6j2jhuniYBfYTCTfulJrfVHT5u11h9qbs/EdzOpzN27D9xPfv/40zuZvHJlKpmyamZSxVCrijOPPULetMeu4Smy5SuVQ+Wg4k9sGzvAfFY6YoYyk5VMsMmjDjOpgS5mUgNEB0LQ4DgggqYUTDU4ja+/Ji1/fKzfPKrvgYF8tvA/pPKXeqbigOsYi6eovlXTLOsnDGbSL62ptf7oaarW+kMofzPRZiaDf2iVBx6wD2D8+MDNTR10XHWaqFrNe/aFv1c9HTTatnTlL46ZjK6zbBs/JjSV5ddaDpWD+izONY9Dmcnos3ITa0oMzKQGsphJDRAdCEGD44AImlLQ0eA0vfRiYBaVYdzxpZ7RWP7qa22VrinvDL+61ff+m+HYeP6iJlzOh8FMOi9RogSptYlwOb2xjlrr9ATrMDltZvKFF0T22ss+wT2Dy0Kef77iuNHppdFpq9WMm/q83JANdc1kqWlUq49r2zcOOEVWJTVUDkMZxPIJVdu2Uu6mxMBMaiCLmdQA0YEQNDgOiKAphaQNjrqOsfUxdarqY9Lcbx6bXnl5Z+MYPG6j6+3vkK53FMxj1zveJV0HTtGUNWEGI4CZ9OvYoNb6o2fSWuvPzP2diTYzqVYmTzrJPih1uchNN1UcNzq9NDJ9la5nLN1xMDM51DWTkWFUN8FRr/KVyWo5VDO4UX6YSfuHltERMZNG8VoLToNjDbXxgao1OOrGOK0PrQq/hj3464o3xeltawsMY2AWQ9MYfAUmsnv/txnPnQF2JoCZ9OuooNb6o2e1WuvPTOtnJtrMpIPIBrsT6mCng6Y9zTW6A6xCUH7NZLUcdFwzyWmuDh581VLCTFYjlI/PaXDyoVOcLMsbnOY/r5FhD/1aWgPj2PrwKml68W8Dwijj2Hnw+4qnqyrz2LPnW+IMxTYWCGAmLUC2OAS11iJsw0NhJg0DziC8r2ZSnV5a6ZEZQ60EprkBT/lqZ+nvcXKIrrcsf5SIuqnO3195PdbdXLkBTwZ/OLUOiZmslaAb+9PguKGDjiyGP7Faxj/6kHTc/0BoIMtPWVXXM3a8/1DpfP8HpfMDHwxNJC93CWAm3dUmTWbU2jTU3NwHM+mmLrVk5auZHGzFb6hTXQd7NMhgz5lUZm/5XasGfc6kemRIpTu1VsqhfAVT3cyn9LmYPBqklqPcwX0xkw6KkiIlGpwU0BzZpeX3vwtWHtVpq8HKY/DVuHbtgMx6dt+jaBw7AgPZPfkARzInjTgEMJNxKOVnG2ptfrSqlilmshqh/H3uq5lMq0R0yuqMaYelDWF1v8FWP00mwQ14NNDFTGqA6EAIGhwHRIiZQutvHi4Yx/7TVtWzHktfPXvuJY0fmiobDvpAsPJ4aPiIDl75JYCZzK92lTKn1vqjJ2bSHy2jmWAmB2oanXZ6xknTd3rEh2vqq5XUxTctj/VoEZ25YyY10MRMaoDoQAgaHAdEqJRCX19oHNWNctT1jq0PrpKGrVsGbNm9z37h6aqd4amrh4rss6+0jWmRV9d3ODop0kpCADOZhJb721Jr3dcoboaYybik8rMdZjI/WrmSKWZSgxKYSQ0QHQhBg+OACEEKDZ2d/aerFu62qoykeq/01f22ycE1j5F5/KD0vPFNAz6nwXFDS11ZYCZ1kXQjDrXWDR10ZEGt1UHRrRiYSbf0yEM2mEkNKmEmNUB0IAQNTjYiqFXG1oceHLD6KL29A5JRj+UorDoWbpjTs9sbhkyWBicbLU2Nipk0RTabuNTabLibGJVaa4JqtjExk9nyz+PomEkNqmEmNUB0IAQNjj0RWn/3Gxl2950y7IH7pPWRh3YauOtdB0lHeNpqYfWxd+KkRMnR4CTC5fzGmEnnJUqUILU2ES6nN6bWOi1PquQwk6mw1fVOmEkN8mMmNUB0IAQNjkERguseh9/zCxl218/D701/++uAwTrfe0jROCoD2TtuXE3J0ODUhM+5nTGTzklSU0LU2prwObUztdYpObQkg5nUgrGugmAmNciNmdQA0YEQNDh6RWhc+7oMV6uPwdfwu38x4KY56m6r24+eJj277CZbZp8lfSNHaR2cBkcrzsyDYSYzl0BrAtRarTgzDUatzRS/kcExk0aweh0UM6lBXsykBogOhKDBqV2E5qf+3L8CGZjIlb8aELDr3QeHBnL7MR8TdRqryRcNjkm69mNjJu0zNzkitdYkXbuxqbV2edsYDTNpg7JfY2AmNeiJmdQA0YEQNDjpRFB3W1Urj8Pu/rm0PPH4gCAdRx0TGMiPFVYh37xnugFS7EWDkwKaw7tgJh0WJ0Vq1NoU0BzdhVrrqDA1pIWZrAFene6KmdQgPGZSA0QHQtDgxBdh+M+WByuQwerjXXdK0ysvF3fsnTBBOvrN4/ZjpknfqNHxg2rckgZHI0wHQmEmHRBBYwrUWo0wMw5Frc1YAAPDYyYNQPU8JGZSg8CYSQ0QHQhBgzO0COq01eG3L5URt/9EGtvbixt377NfcOrqtMBEBl8fOsIBJUVocJyQQVsSmEltKJ0IRK11QgYtSVBrtWB0Kghm0ik5cpEMZlKDTJhJDRAdCEGDs7MILasfC8zjUhm+7CfS/PxzxQ3UNY/bPjFdOtT1jwdOcUC9gSnQ4DgnSU0JYSZrwufcztRa5yRJnRC1NjU6Z3fETDorjbOJYSY1SIOZ1ADRgRA0OAURml54XkYsD1YgAwPZ8tjvi8p0v2Uf2X7c8bJtxqek6+3vcECxwVOgwXFansTJYSYTI3N6B2qt0/IkSo5amwhXLjbGTOZCJqeSxExqkAMzqQGiAyHqucFpXL9ehvcbyM34aSkAACAASURBVGEP3FdUo3fiRNk2/XjZHhjIjg9+yAGV4qVAgxOPU162wkzmRal4edZzrY1HKD9bUWvzo1XcTDGTcUmxXUQAM6nhWMBMaoDoQIi6a3D6+sJTWNU1kMPvWLZDgebm0ECqFcjtHz/WAWWSp0CDk5yZy3tgJl1WJ3ludVdrkyPKzR7U2txIFTtRzGRsVGzYTwAzqeFQwExqgOhAiHppcIbdd0+/iVwqDZs2Fsmrx3hEJrJv5CgHFEmfAg1OenYu7omZdFGV9DnVS61NTyg/e1Jr86NV3Ewxk3FJsV1EADOp4VjATGqA6EAInxucxrVrZeQPb5SRP7hJmp/6c5F253sPke1qFTK4FrJn9z0cUEFPCjQ4eji6EgUz6YoSevLwudbqIZSfKNTa/GgVN1PMZFxSbIeZ1HgMYCY1wswwlI8NTutDqwIDqUzkjUWy3XvvK9s+NTNcheyefECGxM0NTYNjjm0WkTGTWVA3N6aPtdYcLbcjU2vd1idNdpjJNNTqex9WJjXoj5nUANGBEN40ON3dwSrkTTLy+/8rrb99pEh2+7RPyNbPnZzb6yCTHCI0OEloub8tZtJ9jZJk6E2tTTJpT7el1vonLGbSP01NzwgzqYEwZlIDRAdC5L3BaXnicRkRnsp6ozRu2BAS7Z20S2ggt37uJOned38HKNtJgQbHDmdbo2AmbZG2M07ea60dSvkYhVqbD52SZImZTEKLbRUBzKSG4wAzqQGiAyHy2uCo50Gq6yGH3Xt3kWLnoVNDA7n1xM87QNZ+CjQ49pmbHBEzaZKu/dh5rbX2Sbk/IrXWfY2SZoiZTEqM7TGTGo4BzKQGiA6EyFOD0/TSi+FprOp01qa//TWk19faKls/e5Js+6cvSOdB73GAaHYp0OBkx97EyJhJE1Szi5mnWpsdpXyMTK3Nh05JssRMJqHFtooAZlLDcYCZ1ADRgRB5aHDUYz3UHVlH3PajIrGuA6cUTmX9p5Olb/QYB0hmnwINTvYa6MwAM6mTZvax8lBrs6eUjwyotfnQKUmWmMkktNgWM6npGMBMagKZcRiXG5wRt/5ARi+5Rlr+8GiR0rZPfiY8lbXjiKMyJufe8DQ47mlSS0aYyVroubevy7XWPVpuZ0StdVufNNlhJtNQq+996n5l8otnXyYPP7qmeBTsu9cecvsN8wccFcfNmifPPP9S+F6lzzGTfvwRudjgjLzx+sBEXi3Nfy4coz1venP/DXVOlp493ugHeAOzoMExADXDkJjJDOEbGNrFWmtgmnURklrrn8yYSf80NT0j62Zy6ow50r5+U8V5PX7/Dabnu1N8lc+KZQuL76vfD3vfFLnk/NPD95TZXNu+sWgwlbGc2DZWrr/i3OI+mEnrshkZ0JkGp69PRgWrkMpENr3wfDjX7rdOli2nf1m2fOEUI3P3LSgNjl+KYib90tOZWusX1kxmQ63NBLvRQTGTRvF6GdyqmaxkxFyjOnfBEnniqReK5lGZy3POOEFmTDssTHXZnSvl8sW3DDCgmEnXVEyXT9YNTsPWLf0m8hppfPWVcBJd73y3bP7SmbJt5ufSTapO96LB8Ut4zKRfemZda/2ime1sqLXZ8jcxOmbSBFW/Y1o1kwcePkvmn3dq0Zi5iFYZ3gP23zNcmVy95jk5cfbFcvOiC2TK5L3DdCu9h5l0UcnkOWXV4DSuXSujrr0mMJJXS+PGjWHine//YLgSuW36J5NPhD2EBsevgwAz6ZeeWdVavyi6MRtqrRs66MwCM6mTZn3EwkyW6KxWJZfftUqi023jmsm1Gzvr42jxfJbjR7fIpm3d0tPTZ2WmjcHjPYYvvkpGLLoqWILsCsfsOvIo2T57jnQeM81KDr4O0tTUIMqArN9c4Mor3wRGDmsMJ7C1ozffEyH7kIDtWgt2cwSotebYZhV54tjWrIZm3JwSsGom1arfUVMPljmnHO8croXfWyqLb1pedRWyksHs6Opxbj4klJxAa3OjdHX3ifrP5KvhqSel6aqrpGnxouIwvdOPk56z5kjv4YebHLpuYjdIg7Q0N0hnN+bDB9GbGgtmsqcXPX3Q01at9YGV63Og1rquUPL8hrU0Jd+JPeqagFUzWel6Qxfol69IlubENZMuKGQnB9OnXrX86Y/hNZEjf3BjcULbjp8pW4JrIjsPfq+dSdbJKJx65ZfQnObql56ma61ftNyeDbXWbX3SZMdprmmo1fc+Vs2kumZyqFcWd3NVq6XqVf44kChP7uZaP38gphqclicel9FXXiYjbvtxEebWz8+SLad9WboOfHv9ALY4Uxoci7AtDIWZtADZ4hCmaq3FKTBUPwFqrX+HAmbSP01Nz8iqmTQ9maTxo1NWK+1XeqMgnjOZlGw+t9fd4DS2t8uYyy+RUf99dRHIllPPCFciu9+yTz4h5SRrGpycCBUzTcxkTFA52Ux3rc3JtL1Mk1rrn6yYSf80NT2jujaTuuByN1ddJLONo7PBGb3wisBIXiYNmwvPVN3yz6fJ5rPPlZ5/2D3bSdbJ6DQ4fgmNmfRLT5211i8y+ZsNtTZ/mlXLGDNZjRCflxOwbibVdZPzLr1uQB6uPy6k2mGDmaxGKB+f62hwRvzohzLmO5dK87NPh5Pe/rF/lE3nnCdd7zooHxA8yZIGxxMh+6eBmfRLTx211i8i+Z0NtTa/2g2WOWbSP01Nz8iqmRzqjqlnnDTdybu8xhEAMxmHkvvb1NLgDFtxv4wOTOSwXz8QTrTr3QeHJnL7tE+4P3EPM6TB8UtUzKRfetZSa/0ikf/ZUGvzr2H5DDCT/mlqekZWzaS6M+rMY4/YyTQqk3nrHffJimULTc/XSHzMpBGs1oOmaXCan34yXIkc8ZNbwnzVaaybAxO5Zdap1vNnwB0EaHD8Ohowk37pmabW+kXAn9lQa/3RMpoJZtI/TU3PyKqZVHdzrXRKa3TqaxZ3c9UBGDOpg2L2MZI0OI0bN8royy+V0Vd/t5B4Q4Ns+trc8LrIvpaW7CdT5xnQ4Ph1AGAm/dIzSa31a+b+zYZa65+mmEn/NDU9I6tmkpVJ03ISvxYCcRuc0YsWyugrLpXGdevC4baeNEs2nX2e9LzpzbUMz74aCdDgaITpQCjMpAMiaEwhbq3VOCShDBGg1hoCm2FYzGSG8HM6tFUzyTWTOT1K6iTtag2Oek7kmMBENq95IiSy/aiPhqe0dr73kDohlJ9p0uDkR6s4mWIm41DKzzbVam1+ZkKm1Fr/jgHMpH+amp6RVTOpJsPdXE1LSvy0BAZrcFof+nX4mI9h990Thu56+zsKN9c5dkbaodjPMAEaHMOALYfHTFoGbng4zKRhwBbDU2stwrY0FGbSEmiPhrFuJj1iV5wK10z6oWp5g9OwZbOM/dY8GfU/14YT7J20S3hd5JZTz/Bjwh7PggbHL3Exk37piZn0R09qrT9aRjPBTPqnqekZYSY1EMZMaoDoQIjSBked0jr2onnS9OLfwsw2f+XfgtXI4OY6I0Y6kCkpVCNAg1ONUL4+x0zmS69q2WImqxHKz+fU2vxoFTdTzGRcUmwXEbBiJtVdXNVzJBfftHxI8tzNlQMzSwKqwVn/7Isy6ptzZcStPwhT6fjwkbLxogXhqa288kOABic/WsXJFDMZh1J+tsFM5keraplSa6sRyt/nmMn8aZZ1xlbMZNaTND0+K5OmCduJ/4al35eGr39dGtavCx/vsfHC+bLljLPsDM4oWgnQ4GjFmXkwzGTmEmhNADOpFWemwai1meI3Mjhm0ghWr4NaNZODPWdS3eX11jvukxXLFuYSNmYyl7IVk27+y7PhtZHDf1ZYOd/+8WPD1cjut+yT74nVcfY0OH6Jj5n0S0/MpD96Umv90TKaCWbSP01Nz8gJMxnd4ZXTXE3LTfxyAqP+++rASJ4vDV1dIhMmyKaLLpFNnzsZUDknQIOTcwHL0sdM+qUnZtIfPam1/miJmfRPS1szcsJMzl2wRFY+spqVSVuqM460/OmP4WrksPvvDWls+8xnpeXK70j7qInS3dMLoZwToMHJuYCYSb8ELJsNZtIfeam1/miJmfRPS1szMm4mKz1XstLk5p93qsyYdpiteWsdh9NcteI0HmzMFZfJmAUXheP07PFG2fitBbLtk58WGhzj6K0NQINjDbWVgViZtILZ2iDUWmuojQ9ErTWO2PoAnOZqHXnuBzRuJksJDXbNZN4pYibzoWDrQ6vCU1pbf/tImPCWfz4tMJLzpW/U6PB3Gpx86BgnSxqcOJTysw1mMj9axcmUWhuHUj62odbmQ6ckWWImk9BiW0XAqpn0FTlm0n1lx/77BTL6v74TJtq9/9vCG+xsP3ragMRpcNzXMW6GNDhxSeVjO8xkPnSKmyW1Ni4p97ej1rqvUdIMMZNJibE9ZlLDMYCZ1ADRUIhh994t4741V5rXPBGOsPmsr4arkZVeNDiGRMggLA1OBtANDomZNAg3g9DU2gygGxqSWmsIbIZhMZMZws/p0FbN5Oo1z8mJsy8eFBV3c83pUeRo2uPmniOjrl0UZtd50HtCE9l56NRBs6XBcVTIFGnR4KSA5vAumEmHxUmRGrU2BTRHd6HWOipMDWlhJmuAV6e7WjWTU2fMkcPeN0UOOegAuXzxLcW7tx43a54cNfVgmXPK8bmUgZVJt2Rr/vMaGX/OWdL68INhYpvO/YZs+rfzqyZJg1MVUW42oMHJjVSxEsVMxsKUm42otbmRqmqi1NqqiHK3AWYyd5JlnrBVMxndgGefPXeXL8+9smgm1R1fS81l5lQSJoCZTAjM4OYjbv2BjP/qWdLQsV263zZZ1l9+lXQe8oFYI9LgxMKUi41ocHIhU+wkMZOxUeViQ2ptLmSKlSS1NhamXG2EmcyVXE4km4mZVI8AUcYyOq01enwIp7k6cUzkNolx8/5NRv331WH+22Z+TtZfsVD6ho+IPR8anNionN+QBsd5iRIliJlMhMv5jam1zksUO0FqbWxUudkQM5kbqZxJ1KqZVKezHrD/nnLJ+adL6c9zFyyRlY+sLq5UOkMnZiKsTMYEZWiz5qf+LOPPniOtD/06HGHD/G/Lli+dmXg0GpzEyJzdgQbHWWlSJYaZTIXN2Z2otc5Kkzgxam1iZM7vgJl0XiLnErRqJstnr1Yno9fNiy6QKZP3dg5QnIQwk3EomdlmxI9vDo1kw9Yt4SM/1Gpk5/s/mGowGpxU2JzciQbHSVlSJ4WZTI3OyR2ptU7Kkiopam0qbE7vhJl0Wh4nk8vUTDpJJEVSmMkU0DTsMvab58roRQvDSNs+fWLhtNaRo1JHpsFJjc65HWlwnJOkpoQwkzXhc25naq1zkqROiFqbGp2zO2ImnZXG2cSsmsnoBjzqmkmfXphJu2o2P/t0eJOd1lUrwoE3/vtlsnn2nJqToMGpGaEzAWhwnJFCSyKYSS0YnQlCrXVGipoTodbWjNC5AJhJ5yRxPiHMpAaJMJMaIMYMMWLprYXTWjdvku599y+c1jrEsyNjhg03o8FJQsvtbWlw3NYnaXaYyaTE3N6eWuu2Pkmyo9YmoZWPbTGT+dDJpSytmsm8P09yMOEwk3YO6bEXni+jr/5uONi242cWTmsdPUbb4DQ42lBmHogGJ3MJtCaAmdSKM/Ng1NrMJdCWALVWG0pnAmEmnZEiN4lYNZOr1zw34PmSuaFUJVHMpFklm//yrIwLTmsdtvJX4UAbL75ENn/5X7UPSoOjHWlmAWlwMkNvZGDMpBGsmQWl1maGXvvA1FrtSDMPiJnMXILcJWDVTJbevbUSKZ4zmbvjx3jCI277sYw75yxp3LhRuvfeVzYEq5Edh33YyLg0OEawZhKUBicT7MYGxUwaQ5tJYGptJtiNDEqtNYI106CYyUzx53Jwq2Yyl4RiJM3KZAxIKTYZe9E3ZPTCK8I9t33y07Lh8qukd+zYFJHi7UKDE49THraiwcmDSvFzxEzGZ5WHLam1eVApXo7U2nic8rQVZjJParmRq1UzOdjdXBd+b6ncesd9smJZ4TEPeXthJvUq1vTKyzL+y6fKsF/9Mgy88cL/kM1zztY7SIVoNDjGEVsbgAbHGmorA2EmrWC2Ngi11hpq4wNRa40jtj4AZtI68twP6ISZXHbnSpl36XXCaa65P55qnkDL6sdkwqkni3r8R/deexdOa/3QETXHjROABicOpXxsQ4OTD53iZomZjEsqH9tRa/OhU5wsqbVxKOVrG8xkvvRyIVsnzOTcBUtk5SOrWZl04YjIMIdh99wlbaedLA2bNoYGct21N0rvxInWMqLBsYba+EA0OMYRWx0AM2kVt/HBqLXGEVsbgFprDbW1gTCT1lB7M5BxMxmtOlYjNv+8U2XGtMOqbebk55zmWrssI39wo4z/lzPCQNs+faKsW3x97UETRqDBSQjM4c1pcBwWJ0VqmMkU0BzehVrrsDgJU6PWJgSWg80xkzkQybEUjZvJ0vkOds2kY0wSp4OZTIxswA6jv/ttGfsfF4bvqUd+qEd/ZPGiwcmCupkxaXDMcM0qKmYyK/JmxqXWmuGaRVRqbRbUzY6JmTTL18foVs2kjwDVnDCT6ZUdd/7XZNSSa8IAGy9aIJvP/Er6YDXuSYNTI0CHdqfBcUgMDalgJjVAdCgEtdYhMWpMhVpbI0AHd8dMOiiK4ylhJjUIhJlMAbG3Vyac/gUZsewn4c7rFn1Ptn3msykC6duFBkcfy6wj0eBkrYDe8TGTenlmHY1am7UC+san1upj6UokzKQrSuQnD+tmcuqMOdK+flNFQtzNNT8HTi2ZNr38fzLhtC9I64MrwxvsrFvyv9Lx4SNrCallXxocLRidCEKD44QM2pLATGpD6UQgaq0TMmhJglqrBaNTQTCTTsmRi2SsmsnjZs2TiW1j5forzs0FnLhJsjIZl5RIyx//UHj0x3PPSPfkA6R9yY3hdxdeNDguqKAnBxocPRxdiYKZdEUJPXlQa/VwdCEKtdYFFfTmgJnUy7Meolk1k9yApx4OqcHnOPyeX4RGsmHzpnAlUq1I2nz0RzX6NDjVCOXncxqc/GgVJ1PMZBxK+dmGWpsfraplSq2tRih/n2Mm86dZ1hljJjUowMpkdYgjv/+/Mv5fZ4cbqmsj1TWSrr1ocFxTJH0+NDjp2bm4J2bSRVXS50StTc/OtT2pta4pUns+mMnaGdZbBKtmUp3metTUg2XOKcd7xRkzObSco6/8Txk7/1vhRupurequrS6+aHBcVCVdTjQ46bi5uhdm0lVl0uVFrU3HzcW9qLUuqlJbTpjJ2vjV495WzeSyO1fK5YtvkRXLFnrFGjM5uJzj5p4jo65dFG6gnh+pniPp6osGx1VlkudFg5Ocmct7YCZdVid5btTa5Mxc3YNa66oy6fPCTKZnV697WjWT6prJoV7czdWjw1A9+uO0k2XE7UvDSa1bfL1s+/SJTk+QBsdpeRIlR4OTCJfzG2MmnZcoUYLU2kS4nN6YWuu0PKmSw0ymwlbXO1k1k76SZmVyoLLhoz9OPUlaH1pVePTHtTdKx4eOcF5+GhznJYqdIA1ObFS52BAzmQuZYidJrY2NyvkNqbXOS5Q4QcxkYmR1vwNmUsMhgJncAbHlsd8XHv3xl2cLj/649ibpfttkDZTNh6DBMc/Y1gg0OLZI2xkHM2mHs61RqLW2SJsfh1prnrHtETCTtonnfzzrZlLdhOeZ518Kyc0/71SZMe0wUae/HnLQ5Nw+fxIzWfhDaPnTH6XthBnS9MrLhUd/BCuSvW1tufkrocHJjVRVE6XBqYooVxtgJnMlV9VkqbVVEeVmA2ptbqSKnShmMjYqNuwnYNVMKiM5sW1saBqnzpgj55xxQmgmF35vqdx6x325vTEPZjIwkk88Lm0nBkby7y/J9o8fK+033pK7PzIanNxJNmjCNDj+aKlmgpn0S09qrT96Umv90TKaCWbSP01Nz8iqmVQrkDcvukCmTN57gJlUd3mdd+l1wg14TMttJn7zk2tk4omflKa//VW2f/Tj0v79H5sZyHBUGhzDgC2Gp8GxCNvCUJhJC5AtDkGttQjb8FDUWsOAMwiPmcwAes6HtGom1WrkNZd8dSczycpkfo+i5meekoknBEbyhb/I9qOnSfsPC3dvzeOLBiePqlXOmQbHHy3VTDCTfulJrfVHT2qtP1pGM8FM+qep6RlZNZNzFyyRlY+sDk9njU5z3WfP3eXE2RfL9GMOlUvOP930fI3Er9fTXNVNdtoCI9n83DPS8ZGjZe3Ny0QaGowwthGUBscGZTtj0ODY4WxrFMykLdJ2xqHW2uFsYxRqrQ3KdsfATNrl7cNoVs2kAhad0loK74yTpsucU47PLc96NJNNLzwfntra/PST0nH4RwIjeZtIc3NuNVSJ0+DkWr4BydPg+KOlmglm0i89qbX+6Emt9UfLaCaYSf80NT0j62bS9ISyiF9vZrLpxb8FRnKGNP95jXRMPVzab7lN+lqHZYFe65g0OFpxZhqMBidT/NoHx0xqR5ppQGptpvi1Dk6t1YrTiWCYSSdkyFUSVs3kF8++TB5+dM1ON9rh0SD5OWbU3VrbPvtJaXn8T9J56FRZq4zkiJH5mcAQmdLgeCFjOAkaHH+0ZGXSLy3VbKi1/mhKrfVHy2gmmEn/NDU9I6tmUl0nOfPYI3Y6pZUb8JiWWU989fzItuDU1pbVj0nn+w8NT23tGz1GT3AHotDgOCCCphRocDSBdCQMK5OOCKEpDWqtJpAOhKHWOiCC5hQwk5qB1kE4q2ZSrUDOP+/U8NmSpS8eDeL+kdb4+mvBXVtnSMtjv5fO9x4i7cHNdnrHjXM/8QQZ0uAkgOX4pjQ4jguUMD3MZEJgjm9OrXVcoATpUWsTwMrJppjJnAjlUJpWzSQrkw4pnyCVxvb2YEVyhrQ++lvpPOg9BSPZ1pYgQj42pcHJh05xsqTBiUMpP9tgJvOjVZxMqbVxKOVjG2ptPnRKkiVmMgkttlUErJpJdTrr4puWy82LLgifNaleq9c8Fz4aJM93dPX5BjyNGzYUjORvHpaud747uEYyMJKTdvHyr4cGxx9ZaXD80VLNBDPpl57UWn/0pNb6o2U0E8ykf5qanpFVM6kmU+nRIJVOfTU9cZ3xfTWTDZs3hY//aH1olXS9/R2y9tbbpXfX3XSicyoWDY5TctSUDA1OTfic2xkz6ZwkNSVEra0Jn1M7U2udkkNLMphJLRjrKoh1M+kjXR/NZMO2rcE1koGRXLVCug58e3hqa88/7O6jfMU50eD4Iy8Njj9asjLpl5ZqNtRafzSl1vqjJSuT/mlpa0aYyX7Sg91Rdu6CJbL8rlU76fH4/TcU3/PNTDZ0dkhbYCSHrbhfut82Obhra2Ak3/gmW8dkZuPQ4GSGXvvANDjakWYakJXJTPFrH5xaqx1pZgGptZmhNzYwK5PG0Hob2LqZVDfhaV+/qSLQUoNmi3jpabdt48fIimULBwytzOQTT70gt98wf9CUvDKT3d3hqa3D7r9Xuvd7a/j4j54997IlR6bj0OBkil/r4DQ4WnFmHgwzmbkEWhOg1mrFmWkwam2m+I0Mjpk0gtXroFbN5HGz5snEtrFy/RXnOgd1qJXJujGTfX2BkZwhw+69W7r33lfab7lNut+yj3NamUqIBscUWftxaXDsMzc5ImbSJF37sam19pmbGpFaa4psdnExk9mxz+vIVs3kYM+ZdAFe3NNcK61e+rIy2fbZ42X43XcGK5FvCe7aGhjJffd3QRprOdDgWENtfCAaHOOIrQ6AmbSK2/hg1FrjiK0NQK21htraQJhJa6i9GQgz2S/lYGayXGm1uqpepae9rt/clfsDYuS/nimt118r0twsmx78nfQE10rW22vsyGbZsr1Henr76m3q3s23qbFBRg1vko1bu72bWz1OaHhrYzjt7Z299Th97+ZMrfVHUmqtP1pGMxk/usW/STEjowSsmkllxI6aerDMOeV4o5NKEzyumYyusSy9vnNrR74b1pbLLpWWC78ZPHW0Qbb/8n7p/cChaRDmfp/hrU3S0dUrfcHpvrzyTaAhOJaHtTQG5qMn3xMh+5BAS1PBTHb1YCZ9OCSotT6oWJgDtdYfLaOZjBzW7N+kmJFRAlbNpDJily++Zaeb3BidYczgtZjJPJ/mOuJHP5QJs08JKa1bcoNsO35mTGL+bcapV/5oyqlX/mipZsJprn7pSa31R09qrT9aRjPhNFf/NDU9I6tmUl0zOdQri7u5RvkMZibV3WdL7/Cqft9v7zcOuIlQXs1k64MrZdKxx4QINl7w77L5X84xfbw5HZ8Gx2l5EiVHg5MIl/MbYyadlyhRgtTaRLic3pha67Q8qZLDTKbCVtc7WTWTLpIufTRIlN/0Yw6VS84/PfxVnZr7zPMvFVM/5KDJO92NNo9msumF5wMjebQ0/f0l2XLKl2TDZVe6KI/VnGhwrOI2OhgNjlG81oNjJq0jNzogtdYoXqvBqbVWcVsZDDNpBbNXg9S9mdShZu7MZE+PTPrHo6T1Nw/L9o9+XNq//2MdGHIfgwYn9xIWJ0CD44+WaiaYSb/0pNb6oye11h8to5lgJv3T1PSMrJvJSiuB8887VWZMO8z0XI3Fz5uZnHDayTLith9L14FT5PWf3SN9o8cYY5OnwDQ4eVJr6FxpcPzREjPpl5ZqNtRafzSl1vqjJWbSPy1tzciqmVTXJS6+abncvOgCmTJ573COq9c8JyfOvljOOGm6k3d5jSNEnszk2G/Nk9FXXSm948fL6z+9V7rr8BEgg2lKgxPnaM/HNjQ4+dApbpasTMYllY/tqLX50ClOltTaOJTytQ0rk/nSy4VsrZpJdfOamccesZNpjHsnVReAVcohL2Zy1HWLZdx5Z4dTWHvzMuk4qnDzHV4FAjQ4/hwJNDj+aKlmgpn0S09qrT96Umv90TKaCWbSP01Nz8iqmVR3c610SnhTjQAAH91JREFUSmulZzeanrjO+Hkwk8N//lNpO6nw2I8Nly+ULV8oPA6E1w4CNDj+HA00OP5oiZn0S0v+4c4vPam1fumpZoOZ9E9T0zOyaiZZmTQtZ+X4LasfC264c7Q0bNksm84+Vzadf2E2iTg+KmbScYESpEeDkwBWDjZlZTIHIiVIkVqbAJbjm1JrHRcoRXqYyRTQ6nwXq2aSaybtH22N7e3hnVubn/qzbJv5OVl3zXX2k8jJiDQ4OREqRpo0ODEg5WgTzGSOxIqRKrU2BqScbEKtzYlQCdLETCaAxaYhAatmUg3I3VztHnkTZ06XYb+8RzoPnSqvL/+F3cFzNhoNTs4EGyJdGhx/tFQzwUz6pSe11h89qbX+aBnNBDPpn6amZ2TdTJqeUBbxXb1mcvxXz5SRN/2P9Oy5V3Dn1nuk5x92zwJPbsakwcmNVFUTpcGpiihXG2AmcyVX1WSptVUR5WYDam1upIqdKGYyNio27Cdg1Ux+8ezL5OFH18jj998wQAB1Y55DDpos119xbi6FcdFMjvnOJTLm0n8XaW6W1++4Wzrfe0gu2dpMmgbHJm2zY9HgmOVrOzpm0jZxs+NRa83ytRmdWmuTtp2xMJN2OPs0ilUzyQ147Bw6I2/+f2X8WaeHg6277ibZNuNTdgbO+Sg0ODkXsCR9Ghx/tFQzwUz6pSe11h89qbX+aBnNBDPpn6amZ2TVTPJoENNyigxb+SuZOONj4UAbL1ogm8/8ivlBPRmBBscTIYNp0OD4oyVm0i8t1Wyotf5oSq31R0vMpH9a2pqRVTPJyqRZWZuff04mfuIoaXrlZdly2mzZcMnlZgf0LDoNjj+C0uD4oyVm0i8tMZN+6Umt9UtPNRtWJv3T1PSMrJpJHg1iTs6Gzk6ZeOzR0vq738j2j/2jtN90q7nBPI2MmfRHWBocf7TETPqlJWbSLz2ptX7piZn0T08bM7JqJtWEeDSIGVknnPJ5GXH7Uuma8k55/Wf3SN/IUWYG8jgqZtIfcWlw/NESM+mXlphJv/Sk1vqlJ2bSPz1tzMi6mbQxKdtjZH031zH/OV/UV+/EieEjQLr3e6ttBF6Mh5n0QsZwEjQ4/miJmfRLS8ykX3pSa/3SEzPpn542ZoSZ1EA5SzM57N67ZeIJx4WzaP/hUtl+9DQNM6rPEJhJf3SnwfFHS8ykX1piJv3Sk1rrl56YSf/0tDEjzKQGylmZycYNG2SXIz8gTS88L5vOOU82zb1Aw2zqNwRm0h/taXD80RIz6ZeWmEm/9KTW+qUnZtI/PW3MCDOpgXJWZnLC6bNkxNJbpePDR8ran/xUw0zqOwRm0h/9aXD80RIz6ZeWmEm/9KTW+qUnZtI/PW3MCDOpgXIWZnLUkmtk3Plfk75Ro+W1+1ZJ9977aphJfYfATPqjPw2OP1piJv3SEjPpl57UWr/0xEz6p6eNGWEmNVC2bSZbH/2tTDrmQ2Hm6665TrbN/JyGWRACM+nPMUCD44+WmEm/tMRM+qUntdYvPTGT/ulpY0aYSQ2UbZvJXY48VFr++AfZcsqXZMNlV2qYASFocPw6Bmhw/NJzzIjmcEKbtnX7NbE6nQ3/cOeP8NRaf7SMZrL7xBH+TYoZGSWAmdSA16aZHPf1r8io65dI1zvfLa/d+2sN2RMiIkCD48+xQIPjj5asTPqlJf9w55ee1Fq/9GRl0j89bcwIM6mBsi0zOeLWH8iEL58aZvz6XQ9I50Hv0ZA9ITCT/h0DNDh+acrKpF968g93/uhJrfVHS1Ym/dPS1owwkxpI2zCTzc89I7sccag0bNksGxZ8R7ac/mUNmROilAANjj/HAw2OP1qyMumXlqxM+qUntdYvPVmZ9E9PGzPCTGqgbMNMTjz+EzLsgftk2/EzZd2SGzRkTYhyAphJf44JGhx/tMRM+qUlZtIvPam1fumJmfRPTxszwkxqoGzaTI5ZcJGMueIy6dnzLfLaL1dJ77hxGrImBGbS32OABscvbTnN1S89+Yc7f/Sk1vqjZTQTbsDjn6amZ4SZ1EDYpJkcftfPpe1znwqzXHvrcuk48igNGROiEgEaHH+OCxocf7RkZdIvLVmZ9EtPaq1ferIy6Z+eNmaEmdRA2ZSZbFy7VnY58gPS9NKLsunr88IvXuYIYCbNsbUdmQbHNnGz47EyaZav7ejUWtvEzY1HrTXHNqvIrExmRT6/42ImNWhnykxOOOXzMuL2pdLxkaNl7S23a8iUEEMRoMHx5/igwfFHS1Ym/dKSlUm/9KTW+qUnK5P+6WljRphJDZRNmMnR1/yXjL1gbnh95Gu/fDC4XnIvDZkSAjNZH8cADY5fOrMy6Zee/MOdP3pSa/3RMpoJK5P+aWp6RphJDYR1m8nWhx+USZ/4SJiZunOruoMrL/MEaHDMM7Y1Ag2OLdJ2xsFM2uFsaxRqrS3S5seh1ppnbHsEzKRt4vkfDzOpQUOtZrKnJ7xOsuXxP8mWL50pG+Z/W0OGhIhDgAYnDqV8bEODkw+d4maJmYxLKh/bUWvzoVOcLKm1cSjlaxvMZL70ciFbzKQGFXSayfFnnyUjb7xeOg9+r7z+i19pyI4QcQnQ4MQl5f52NDjua5QkQ8xkElrub0utdV+juBlSa+OSys92mMn8aOVKpphJDUroMpMjf3CjjP+XM8KM1PMku97xLg3ZESIuARqcuKTc344Gx32NkmSImUxCy/1tqbXuaxQ3Q2ptXFL52Q4zmR+tXMkUM6lBCR1msvnJNcHprR+Uho7tsuE/vytbvni6hswIkYQADU4SWm5vS4Pjtj5Js8NMJiXm9vbUWrf1SZIdtTYJrXxsi5nMh04uZYmZ1KCGDjM5afpHpXXVCtk283Oy7prrNGRFiKQEaHCSEnN3exocd7VJkxlmMg01d/eh1rqrTdLMqLVJibm/PWbSfY1cyxAzqUGRWs3k2Iu/KaP/n8ule5/9gtNbfy19o0ZryIoQSQnQ4CQl5u72NDjuapMmM8xkGmru7kOtdVebpJlRa5MSc397zKT7GrmWIWZSgyK1mMnh/98d0nbyCWEWa5f+TDo+dISGjAiRhgANThpqbu5Dg+OmLmmzwkymJefmftRaN3VJkxW1Ng01t/fBTLqtj4vZYSY1qJLaTAaPAdn1/e+S5r88K5vOv1A2nX2uhmwIkZYADU5acu7tR4Pjnia1ZISZrIWee/tSa93TJG1G1Nq05NzdDzPprjauZoaZ1KBMWjM59sLzZfTV35XO939QXv/p3RoyIUQtBGhwaqHn1r40OG7pUWs2mMlaCbq1P7XWLT1qyYZaWws9N/fFTLqpi8tZYSY1qJPGTLY+8pBM+viR4eiv/+xe6TzkAxoyIUQtBGhwaqHn1r40OG7pUWs2mMlaCbq1P7XWLT1qyYZaWws9N/fFTLqpi8tZYSY1qJPGTE76x6Ol9aFfy+YzvyIbL1qgIQtC1EqABqdWgu7sT4PjjhY6MsFM6qDoTgxqrTta1JoJtbZWgu7tj5l0TxPXM8JMalAoqZkcvWihjP3mudK9197y6kN/EGlu1pAFIWolQINTK0F39qfBcUcLHZlgJnVQdCcGtdYdLWrNhFpbK0H39sdMuqeJ6xlhJjUolMRMNr3wvOz6gXdJQ2enrLv++7Jt+ic1ZEAIHQRocHRQdCMGDY4bOujKAjOpi6Qbcai1buigIwtqrQ6KbsXATLqlRx6ywUxqUCmJmZxw2sky4rYfy7ZPnSDr/vt/NIxOCF0EaHB0kcw+Dg1O9hrozAAzqZNm9rGotdlroCsDaq0uku7EwUy6o0VeMsFMalAqrpkccduPZMJpX5C+ESPD01t79nijhtEJoYsADY4uktnHocHJXgOdGWAmddLMPha1NnsNdGVArdVF0p04mEl3tMhLJphJDUrFMZMNHduD01vfLU1/fUE2LPiObDn9yxpGJoROAjQ4OmlmG4sGJ1v+ukfHTOommm08am22/HWOTq3VSdONWJhJN3TIUxaYSQ1qxTGT477xdRm1+CrpOOzDsnbZzzWMSgjdBGhwdBPNLh4NTnbsTYyMmTRBNbuY1Nrs2OsemVqrm2j28TCT2WuQtwwwkxoUq2YmW1etkEnTPxqO9PpdD0jnQe/RMCohdBOgwdFNNLt4NDjZsTcxMmbSBNXsYlJrs2Ove2RqrW6i2cfDTGavQd4ywExqUKyamZz0sSOk9TcPy+Z//Zps/ObFGkYkhAkCNDgmqGYTkwYnG+6mRsVMmiKbTVxqbTbcTYxKrTVBNduYmMls+edxdMykBtWGMpOjF14hYy/6hnTv91Z59cHfaxiNEKYI0OCYIms/Lg2OfeYmR8RMmqRrPza11j5zUyNSa02RzS4uZjI79nkdGTOpQbnBzGTzc8/Iru9/l0hvr7TfeIts//ixGkYjhCkCNDimyNqPS4Njn7nJETGTJunaj02ttc/c1IjUWlNks4uLmcyOfV5HxkxqUG4wM9k267My/Ke3y9YTPy/rr1qiYSRCmCRAg2OSrt3YNDh2eZseDTNpmrDd+NRau7xNjkatNUk3m9iYyWy453lUzKQG9SqZyRE/+qFMmH2K9I0ZW3im5G5v0DASIUwSoMExSddubBocu7xNj4aZNE3YbnxqrV3eJkej1pqkm01szGQ23PM8KmZSg3rlZrJhy+bCMyX//pJs+PZ/yZZ/Pk3DKIQwTYAGxzRhe/FpcOyxtjESZtIGZXtjUGvtsTY9ErXWNGH78TGT9pnnfUTMpAYFy83kuPPOllHXLZaOwz8ia398h4YRCGGDAA2ODcp2xqDBscPZ1iiYSVuk7YxDrbXD2cYo1FoblO2OgZm0y9uH0TCTGlQsNZPDHrhPJh7/iTDqa79cJV3vCG7AwysXBGhwciFTrCRpcGJhys1GmMncSBUrUWptLEy52IhamwuZEiWJmUyEi40DAphJDYdBqZnc5eip0vL738mmr82VTed9U0N0QtgiQINji7T5cWhwzDO2OQJm0iZt82NRa80ztjUCtdYWaXvjYCbtsfZlJMykBiUjMzn6yv+UsfO/Jd2TD5BXV/xWQ2RC2CRAg2OTttmxaHDM8rUdHTNpm7jZ8ai1ZvnajE6ttUnbzliYSTucfRoFM6lBTWUmm59cI7t+8OAwWvsPl8r2o6dpiEwImwRocGzSNjsWDY5ZvrajYyZtEzc7HrXWLF+b0am1NmnbGQszaYezT6NgJjWoqcxk2+c/I8Pv/Jls/fwsWf/dazREJYRtAjQ4tombG48GxxzbLCJjJrOgbm5Maq05trYjU2ttEzc/HmbSPGPfRsBM9iu68HtL5dY77pMVyxbupPFxs+bJM8+/FL6/7157yO03zB+wzfqrlsj4OV+S3rY2efXBx6R34kTfjpO6mA8Njj8y0+D4o6WaCWbSLz2ptf7oSa31R8toJphJ/zQ1PaO6N5PL7lwp8y69LuTcNn7MTmbyi2dfJmvbNxYNpDKWE9vGyvVXnFvQZv166d3/rdL42quy/sqrZetJ/2xaM+IbIkCDYwhsBmFpcDKAbnBIzKRBuBmEptZmAN3QkNRaQ2AzDIuZzBB+ToeuezMZ6TbYyuTUGXPknDNOkBnTDgs3Vebz8sW37DCds2eLLF4s24/6qLTffFtODwPSVgRocPw5Dmhw/NFSzQQz6Zee1Fp/9KTW+qNlNBPMpH+amp4RZrKfcCUzuXrNc3Li7Ivl5kUXyJTJe4db7vReQ0P4/mu/ekS6Dny7ab2Ib5AADY5BuJZD0+BYBm54OMykYcCWw1NrLQM3OBy11iDcjEJjJjMCn+NhMZMazGTHNy6QzrnfyPFhQOqKwKjhzbKts0d6e/sAknMCjY0NMqK1SbZs7875TEhfEWhtaQxBdHb1AsQDAtRaD0TsnwK11h8to5mMGdni36SYkVECmMlazeSTT8qmNxVWLXnlmwANTr71K82eBscfLTGTfmmpZkOt9UdTaq0/WmIm/dPS1owwk0OYSfVR1Wsmg23Uo0F45Z8Ap17lX8NoBpx65Y+Waiac5uqXntRaf/Sk1vqjZTQTTnP1T1PTM8JMVjGTVe/mipk0fYxai0+DYw218YFocIwjtjoAZtIqbuODUWuNI7Y2ALXWGmprA2EmraH2ZqC6N5OljwaJVJ1+zKFyyfmnF0Wu9pxJVib9+HugwfFDRzULGhx/tGRl0i8t1Wyotf5oSq31R0tWJv3T0taM6t5M6gCNmdRBMfsYNDjZa6ArAxocXSTdiMPKpBs66MqCWquLZPZxqLXZa6A7A1YmdRP1Px5mUoPGmEkNEB0IQYPjgAiaUqDB0QTSkTCYSUeE0JQGtVYTSAfCUGsdEEFzCphJzUDrIBxmUoPImEkNEB0IQYPjgAiaUqDB0QTSkTCYSUeE0JQGtVYTSAfCUGsdEEFzCphJzUDrIBxmUoPImEkNEB0IQYPjgAiaUqDB0QTSkTCYSUeE0JQGtVYTSAfCUGsdEEFzCphJzUDrIBxmUoPImEkNEB0IQYPjgAiaUqDB0QTSkTCYSUeE0JQGtVYTSAfCUGsdEEFzCphJzUDrIBxmUoPImEkNEB0IQYPjgAiaUqDB0QTSkTCYSUeE0JQGtVYTSAfCUGsdEEFzCphJzUDrIBxmUoPImEkNEB0IQYPjgAiaUqDB0QTSkTCYSUeE0JQGtVYTSAfCUGsdEEFzCphJzUDrIBxmsg5EZooQgAAEIAABCEAAAhCAAAR0E8BM6iZKPAhAAAIQgAAEIAABCEAAAnVAADNZByIzRQhAAAIQgAAEIAABCEAAAroJYCZ1EyUeBCAAAQhAAAIQgAAEIACBOiCAmUwp8nGz5skzz78U7r3vXnvI7TfMTxmJ3WwSSKLbF8++TB5+dE0xPXS2qVT1sZJoWRpt4feWyuKblsv8806VGdMOqz4QW1ghkEbPAw+fVcztjJOmy5xTjreSK4NUJ5BUz6kz5kj7+k3FwI/ff0P1QdgicwKqnt56x32yYtnCzHMhgfgE4upGHxSfaT1viZlMob7641rbvrFoINX/NCe2jZXrrzg3RTR2sUUgqW6quSn9H6T6/bD3TZFLzj/dVsqMMwiBpFpGYaL/gaqmFTPpzuGVVM/Va56TE2dfLBhIdzQszSSpnuX/Dy3f381Z1ndWy+5cKfMuvS6E0DZ+DGYyJ4dDUt3og3IibMZpYiZTCKD+uM4544Tiqob647x88S0U0xQsbe5Sq25zFyyRJ556gVVom6INMlYaLUv/JVataGEmHRCyP4WkeiqzsdukCfzDjjsSDsgkqZ5q+5nHHlFcWY67auLo9OsqLbTKp9xpdaMPyqfeprPGTCYkHP2L+M2LLpApk/cO9670XsKwbG6YgA7d1L+eH7D/njSwhrWqFj6NluX/48RMVqNs7/M0eir91GpI6WmRpTXZXvaMVE4gjZ6qQV1+1yqZfsyhYX2l1ubnuEprSvIzQz8zTasbf5t+Hg+1zgozmZBgmv9RJhyCzQ0QqFW3qNnhOh4D4iQMmVTLSv/TxEwmhG5w86R6RtuXrizz92lQoIShk+pZ+g+ypf9AQK1NCD6jzdOakozSZdh+Aml0o85y+AxGADOZ8NhI8z/KhEOwuQECtegW3bCFlQ8DwqQImVTL8hsIlA7JNXcpBNC8S1I9BzsThH8g0CxMynBJ9VTDlGtH05oSfga7pTElGaTJkGUEkupGH8QhNBQBzGSK4yPp9SAphmAXAwTS6EZTY0AIDSHTaFk6LMZDgwgaQyTVs5J+aKpRkBpDJdEzjfmsMT1210ggqSnRODShaiCQRDf6oBpA18mumMkUQie9U12KIdjFAIFquqlrAdQresxL+e8GUiJkSgJJtSwfBuOREryh3ZLqqbZ/+rkXizc9U83OykdWcxM0Q/okDZtUT/X3eMhBk4t3REfPpMSz2z6JKckuS0YuJzCYbvRBHCtpCGAm01AL9kn6DK2Uw7CbZgJD6VZaRKN/La80PHcB1SxKynBxtawUHjOZErrB3ZLqWXr6Mo8mMChMytBJ9Sx9Zih6poRucbfSR0xEw0Y3ULKYBkMlJFBNN/qghEDZPCSAmeRAgAAEIAABCEAAAhCAAAQgAIHEBDCTiZGxAwQgAAEIQAACEIAABCAAAQhgJjkGIAABCEAAAhCAAAQgAAEIQCAxAcxkYmTsAAEIQAACEIAABCAAAQhAAAKYSY4BCEAAAhCAAAQgAAEIQAACEEhMADOZGBk7QAACEIAABCAAAQhAAAIQgABmkmMAAhCAAAQgAAEIQAACEIAABBITwEwmRsYOEIAABCAAAQhAAAIQgAAEIICZ5BiAAAQgAAEIQAACEIAABCAAgcQEMJOJkbEDBCAAAQhAAAIQgAAEIAABCGAmOQYgAAEIQAACEIAABCAAAQhAIDEBzGRiZOwAAQhAAAIQgAAEIAABCEAAAphJjgEIQAACEIAABCAAAQhAAAIQSEwAM5kYGTtAAAIQgAAEIAABCEAAAhCAAGaSYwACEIAABCAAAQhAAAIQgAAEEhPATCZGxg4QgAAEIAABCEAAAhCAAAQggJnkGIAABCAAAQhAAAIQgAAEIACBxAQwk4mRsQMEIAABCEAAAhCAAAQgAAEIYCY5BiAAAQhAAAIQgAAEIAABCEAgMQHMZGJk7AABCEAgvwQWfm+pLL5p+U4TOOOk6TLnlONl6ow54Wcrli3caRv1Wdv4sXL7DfPDz6rFOvDwWUOCahs/Jhzni2dfJg8/uqbitvPPO1VmTDtMjps1T555/iWJfo82XnbnSpl36XWy7157FPMqDxQnj8PeN0WW37WquOv0Yw6VS84/PdG4ceaR3yOHzCEAAQhAAAI7E8BMclRAAAIQqBMCkdm5edEFMmXy3sVZK1N4z4rfFc2YMl+HHDRZrr/i3OI2cxcskZWPrC6azLixyk1fuRlUn6tYa9s3DmoG1TaRmSzPK3p/KDNZKm9kPivlUemzJOPGmUedHGpMEwIQgAAE6oQAZrJOhGaaEIAABJRJjFbchqJRbqpWr3lOTpx98YBVwbixdJrJiW1jwxXMyAxHeSmDWc2MxsljMDMZd1zMJH9jEIAABCBQbwQwk/WmOPOFAATqlkD5aapDgVDG6OnnXgxXItXqnDJUpSuVSWKpcYZaEYxjwlQOB+y/p7zy+jrZbdKE8BRUtVqqXuo9k2Yy7rhx5lG3Bx8ThwAEIAABLwlgJr2UlUlBAAIQ2JlAZOhKP6l0umf0eem1ho/ff8OAgEljVTOTca6ZVKbukIMOCK+RVPmo/NQq5ZXX/si4mYwzLtdM8lcHAQhAAAL1RgAzWW+KM18IQAACAYFy41Pp9NfIAEY35xkMXJJYtVwzqcxkdFMclUu0WppkRTDNNZNxx02SBwchBCAAAQhAwAcCmEkfVGQOEIAABGogoE4XVXcyLV99rHStZLVhBotVbWWy2mmq0WmuykxGd5GNjGkSE1eLmaw2bpI8qnHkcwhAAAIQgEAeCGAm86ASOUIAAhCokYAyhj+47Z5wZa/8FZmk8ru8DmYm08TSaSZV/uqazejxJUlMXC1mstq4SfKoUU52hwAEIAABCDhBADPphAwkAQEIQMAsgcgYqlHKVyArPQpEbTeUmVR3d00SS7eZLKWVxMTVaiaHGjdJHmbVJjoEIAABCEDADgHMpB3OjAIBCEDACQKlN9WJEhrsmshqp7kmiVXNTMa9AU+lldUkJm6wPKLTcyMm0TWkpafXlgtYPi434HHiECcJCEAAAhCwSAAzaRE2Q0EAAhCAAAQgAAEIQAACEPCFAGbSFyWZBwQgAAEIQAACEIAABCAAAYsEMJMWYTMUBCAAAQhAAAIQgAAEIAABXwhgJn1RknlAAAIQgAAEIAABCEAAAhCwSAAzaRE2Q0EAAhCAAAQgAAEIQAACEPCFAGbSFyWZBwQgAAEIQAACEIAABCAAAYsEMJMWYTMUBCAAAQhAAAIQgAAEIAABXwhgJn1RknlAAAIQgAAEIAABCEAAAhCwSAAzaRE2Q0EAAhCAAAQgAAEIQAACEPCFAGbSFyWZBwQgAAEIQAACEIAABCAAAYsEMJMWYTMUBCAAAQhAAAIQgAAEIAABXwhgJn1RknlAAAIQgAAEIAABCEAAAhCwSAAzaRE2Q0EAAhCAAAQgAAEIQAACEPCFAGbSFyWZBwQgAAEIQAACEIAABCAAAYsEMJMWYTMUBCAAAQhAAAIQgAAEIAABXwhgJn1RknlAAAIQgAAEIAABCEAAAhCwSAAzaRE2Q0EAAhCAAAQgAAEIQAACEPCFAGbSFyWZBwQgAAEIQAACEIAABCAAAYsEMJMWYTMUBCAAAQhAAAIQgAAEIAABXwhgJn1RknlAAAIQgAAEIAABCEAAAhCwSAAzaRE2Q0EAAhCAAAQgAAEIQAACEPCFAGbSFyWZBwQgAAEIQAACEIAABCAAAYsEMJMWYTMUBCAAAQhAAAIQgAAEIAABXwhgJn1RknlAAAIQgAAEIAABCEAAAhCwSAAzaRE2Q0EAAhCAAAQgAAEIQAACEPCFAGbSFyWZBwQgAAEIQAACEIAABCAAAYsEMJMWYTMUBCAAAQhAAAIQgAAEIAABXwhgJn1RknlAAAIQgAAEIAABCEAAAhCwSAAzaRE2Q0EAAhCAAAQgAAEIQAACEPCFAGbSFyWZBwQgAAEIQAACEIAABCAAAYsEMJMWYTMUBCAAAQhAAAIQgAAEIAABXwhgJn1RknlAAAIQgAAEIAABCEAAAhCwSAAzaRE2Q0EAAhCAAAQgAAEIQAACEPCFAGbSFyWZBwQgAAEIQAACEIAABCAAAYsEMJMWYTMUBCAAAQhAAAIQgAAEIAABXwhgJn1RknlAAAIQgAAEIAABCEAAAhCwSAAzaRE2Q0EAAhCAAAQgAAEIQAACEPCFAGbSFyWZBwQgAAEIQAACEIAABCAAAYsE/n/4SiDzQrkCnwAAAABJRU5ErkJggg==", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig_exact = PlotlyHelper.plot_curves(x=t_arr, y=A_exact, title=\"EXACT solution\", x_label=\"SYSTEM TIME\", y_label=\"concentration\",\n", " curve_labels=\"A (EXACT)\", legend_title=\"Chemical\",\n", " colors=\"red\", show=True) # Repeat a portion of the diagram seen in Part 3" ] }, { "cell_type": "code", "execution_count": 21, "id": "c4b58649-0d8a-4a66-922f-bc0b821574c2", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "FIXED time steps
Chemical=A
SYSTEM TIME=%{x}
Concentration=%{y}", "legendgroup": "A", "line": { "color": "blue", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "FIXED time steps", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 0, 0.06315789473684211, 0.12631578947368421, 0.18947368421052632, 0.25263157894736843, 0.3157894736842105, 0.3789473684210526, 0.44210526315789467, 0.5052631578947367, 0.5684210526315788, 0.6315789473684209, 0.694736842105263, 0.7578947368421051, 0.8210526315789471, 0.8842105263157892, 0.9473684210526313, 1.0105263157894735, 1.0736842105263156, 1.1368421052631577, 1.1999999999999997 ], "xaxis": "x", "y": [ 10, 14.421052631578949, 17.445983379501385, 19.51567283860621, 20.931776152730563, 21.900688946605122, 22.563629279256137, 23.01722003317525, 23.327571601646223, 23.539917411652677, 23.685206650078147, 23.784615076369256, 23.852631368042122, 23.899168830765664, 23.931010252629136, 23.95279648864099, 23.967702860649098, 23.977901957286225, 23.98488028656426, 23.989654932912387 ], "yaxis": "y" }, { "hovertemplate": "VARIABLE time steps
Chemical=A
SYSTEM TIME=%{x}
Concentration=%{y}", "legendgroup": "A", "line": { "color": "darkturquoise", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "VARIABLE time steps", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 0, 0.016000000000000004, 0.03200000000000001, 0.048000000000000015, 0.06720000000000002, 0.08640000000000003, 0.10944000000000004, 0.13248000000000004, 0.16012800000000005, 0.19330560000000005, 0.23311872000000006, 0.28089446400000007, 0.3382253568000001, 0.4070224281600001, 0.48957891379200014, 0.5886466965504001, 0.7075280358604801, 0.850185643032576, 1.0213747716390913, 1.2268017259669095 ], "xaxis": "x", "y": [ 10, 11.120000000000001, 12.150400000000001, 13.098368, 14.144924672, 15.091011903488, 16.117327332206184, 17.025411223536032, 17.989578375994412, 18.98663519835745, 19.984623670615306, 20.94381162849702, 21.819881668013238, 22.569810450307923, 23.160167565358876, 23.576169251301298, 23.828097086531773, 23.950713378038216, 23.992900047366195, 24.000192655593363 ], "yaxis": "y" }, { "hovertemplate": "EXACT solution
A (EXACT) :
SYSTEM TIME=%{x}
concentration=%{y}", "legendgroup": "wide_variable_0", "line": { "color": "red", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "EXACT solution", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21, 0.24, 0.27, 0.3, 0.32999999999999996, 0.36, 0.39, 0.42, 0.44999999999999996, 0.48, 0.51, 0.54, 0.57, 0.6, 0.63, 0.6599999999999999, 0.69, 0.72, 0.75, 0.78, 0.8099999999999999, 0.84, 0.87, 0.8999999999999999, 0.9299999999999999, 0.96, 0.99, 1.02, 1.05, 1.08, 1.1099999999999999, 1.14, 1.17, 1.2 ], "xaxis": "x", "y": [ 10, 11.95008833004919, 13.62854491045595, 15.073205877295173, 16.316637094683628, 17.386868261625793, 18.30802476363161, 19.100871512443824, 19.78328103322917, 20.37063635095752, 20.876177757921983, 21.311301279309443, 21.685815564897787, 22.008162997788812, 22.285610004458253, 22.524410856133898, 22.729948653948224, 22.906856675983857, 23.059122821643502, 23.190179507752262, 23.302981042849904, 23.400070223861437, 23.48363565638264, 23.555561090707048, 23.617467885737906, 23.670751558015873, 23.71661323975874, 23.75608675504709, 23.790061924513314, 23.819304623873283, 23.84447404846461, 23.86613757297239, 23.88478354131372, 23.90083227499327, 23.91464554808278, 23.926534742411462, 23.93676786680342, 23.945575598591333, 23.953156483595404, 23.959681411786764, 23.96529746952667 ], "yaxis": "y" } ], "layout": { "autosize": true, "legend": { "title": { "text": "Simulation run" } }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Variable time steps vs. Fixed vs. Exact soln, for [A] in reaction `A<->B`" }, "xaxis": { "range": [ 0, 0.4 ], "title": { "text": "SYSTEM TIME" }, "type": "linear" }, "yaxis": { "autorange": true, "range": [ 9.222211519133703, 24.777981136459662 ], "title": { "text": "concentration [A]" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5MAAAFoCAYAAADKJa96AAAgAElEQVR4XuydCZxcVZ3v/7139pUESCB7IIEgixC2CFFAQIGIA4IzKhr1ARod9Y2ozOO98Y2KvtH5vGEExgcOPt8o4ogkqIQ1gYR9C4TsO2QhS3eSztJLdXW9///eOlW3bt9bdc//Vld3df3O51Of6qq+5y7fc2r51v+c/6lKcSEUEAABEAABEAABEAABEAABEAABELAgUAWZtKCFTUEABEAABEAABEAABEAABEAABBwCkEl0BBAAARAAARAAARAAARAAARAAAWsCkElrZKgAAiAAAiAAAiAAAiAAAiAAAiAAmUQfAAEQAAEQAAEQAAEQAAEQAAEQsCYAmbRGhgogAAIgAAIgAAIgAAIgAAIgAAKQSfQBEAABEAABEAABEAABEAABEAABawKQSWtkqAACIAACIAACIAACIAACIAACIACZRB8AARAAARAAARAAARAAARAAARCwJgCZtEaGCiAAAiAAAiAAAiAAAiAAAiAAApBJ9AEQAAEQAAEQAAEQAAEQAAEQAAFrApBJa2SoAAIgAAIgAAIgAAIgAAIgAAIgAJlEHwABEAABEAABEAABEAABEAABELAmAJm0RoYKIAACIAACIAACIAACIAACIAACkEn0ARAAARAAARAAARAAARAAARAAAWsCkElrZKgAAiAAAiAAAiAAAiAAAiAAAiAAmUQfAAEQAAEQAAEQAAEQAAEQAAEQsCYAmbRGhgogAAIgAAIgAAIgAAIgAAIgAAKQSfQBEAABEAABEAABEAABEAABEAABawKQSWtkqAACIAACIAACIAACIAACIAACIACZRB8AARAAARAAARAAARAAARAAARCwJgCZtEaGCiAAAiAAAiAAAiAAAiAAAiAAApBJ9AEQAAEQAAEQAAEQAAEQAAEQAAFrApBJa2SoAAIgAAIgAAIgAAIgAAIgAAIgAJlEHwABEAABEAABEAABEAABEAABELAmAJm0RoYKIAACIAACIAACIAACIAACIAACkEn0ARAAARAAARAAARAAARAAARAAAWsCkElrZKgAAiAAAiAAAiAAAiAAAiAAAiAAmUQfAAEQAAEQAAEQAAEQAAEQAAEQsCYAmbRGhgogAAIgAAIgAAIgAAIgAAIgAAKQSfQBEAABEAABEAABEAABEAABEAABawKQSWtkqAACIAACIAACIAACIAACIAACIACZRB8AARAAARAAARAAARAAARAAARCwJgCZtEaGCiAAAiAAAiAAAiAAAiAAAiAAApBJ9AEQAAEQAAEQAAEQAAEQAAEQAAFrApBJa2SoAAIgAAIgAAIgAAIgAAIgAAIgAJlEHwABEAABEAABEACBCAT+7+8fpx///Ld07JiR9PRDP4tQozI2+euv/iOteGcj3fSpy+nvbrmhMi4aVwkCIOAQgEyWqCP81+/fQ4898zKtWvpAwSOecvFNdMWHZ9M/3XFLwW2xAQiUMwGb10U5X2d/PvdV67fS9V/+HyX9EmmOabiW4gus6avmmKefOpX+41//XtW0H7n+m/T+nuZM3VKcv+pEUSmQwBPPvkrf+O8/p9u+ciN99rqPglKaAN7P0RVAoDIJlK1MyoexlHy/DJpfyqIIXJTmN2+U//wPX6HLLjo7SpXMNjZvssWWyXwffHGuyQpAkTc2vw5r2qLIp9Knd+f/0uo/WXltGJa98YXW5nXRm6DNe0nYOfQGO++5FPs9w4Z1b8ikXG+pmUtfffOdDQWjUeb1JAyjvD9FvRbDOY7E2rRrb22brz/1pc+r/3XPg/TA7xZH/oFYeJbLj8T+H068faGQQMtnzhmnTsOP4b31AsJxQaAXCJStTJo38rAPa/OBVMw37zgfZDZfmov9xRAy2QuvrD5yyCg/ukAmCzdWsX+YKnxEuy2K/Z5hc/RSy6Tprw/94n/QKdMn2pxqrG2jyqT3h4conz+QydxmKReZjNqZvD8uSB3Nj9uGiWZorfQv23rm+4r/NWa+dxUSyqhssB0IgED/IFC2MllIFgvJZqmbr6/KZKk5FOt4iExGIxlFJqPtqWe2snld9MwZRNsrZDKcU6ll0iYiFK11o20VRSa9LFas2ujMISskD1FlMtpZlv9Wpe5PPU1M3jtkSPPneDiszLW0FTHpH1LiRKTNPqJKZZhMynn05g9XPd1W2D8IgICOQNnKpFxuvi94/i/RQcP9gt5YzRu/DJ81b8ByLPmF7i9Pv+QMa/H+Whc2/M3/BcL7pdm736BzCHuz9h8ryq/eJirp7x6mrvli5r0mYSXn9VEeyisffqb465jnw4abac7X7NP/a648bz6Eg/4n//efh5ezt745hvfav/b3/5Izhyko6uHfX5QPd6kTtp2/j/rngcl5RmnjfC/9KDLpj1wbLkHnbV5H3i9EQecdNGIgaDvpZ/JFq9AX7nzXEfQ+oGmrfByjyqQ5rv/6g5J2+M8x3xfGoNexaZ+g/UT50mja2XvdQe1W6HUU9OXf9rUV9eMraPid91qj9EVvf9+9b7/znh7ltRZFJr3X/fpb6yLJg41M+j8bvD+q/YoTw4i8mhJliK1s6/1s8n5OeusXei8P4p6PadB7uLzXff6GK5z5t/5i+nrQ55VsG7Q//3tKT/XJfH3X/9rI93ng308xJDJsn4XeH8JkstCP+FFfx9gOBECgfxEoa5k0HyD+X/rMlwWvXMiHpGznnesY9AXV+6GZ78PIDK+S7UW6vJPwg754er8EefcbdA5BMhk0VCXqB1O+Ya5hMilf8L0i4/0yG/S8vw3inG9QVNn/4ZYvMmnONeg8vX3C+2U66AcC005BH6BBfSzorSHsy4+pb76wBe0vrH/bvAVpZNL75czLK2iYd9AQ2aDzDuMVVdLC2tu0jel/cdqqGDIp+zBfyP39xy/n8hrx/2gR9JoOG2Uh25pj2EYLgr4s+tsiqM2Cnssnk8LD/9qS95Y4WTALCYX3vShfX5Rzs5l3GUUmzQ9xJjFPlPfoYsikXItX/mwi/t7PprAf0fzy4b8u0we8n21h4hHU92Rb+UFP+kW+yGRQ2wftL+i5fO/3cftk2HuH/3zzRfzMPnpCIm1FNew8o5y/zecTtgUBEOgfBMpaJqUJ8n35KjSnJmjujTcy6W/isC8x/u38oiD/D/twDxI9/xfDQnUL/QKtkUn58uDPVBj2hbXY5xvWBtJeZ33gJGeeVD6Z9H+hM+3jHx4X1p7+LzP5jiX7yJcGPd8XKm8yj3znIhEObcbAfAl4zOsjrH945VG+bAUN0QrrE/4v3mFtYvOlN99r3XyJjdNWUWQybBuvlPgTpUQR+rA+GnXIn61M5nuNmP4c9jr099VCkUnvvMZiDE8Pe61E7WPaTJyFZDJov1G+fBdDJv2fATbXmO81GPezx88synnZyGS+bf39odCPEIU+RzVf+fznkO9HSPNjTpQRL5pzCapjxNU/AiZoBICpXyiqWaxzw35AAATKh0DZy2TQh3UhmfA3j384T9ivlIU+jPz79f5Cnu8D2/9F0P847Hr8UZmwblcsmQw7D//zcc/XsMr3oVooUhUUcfD/eJDvxwHvNXijsoV+oAhqA3/bB30B8g7TKjTk0+btJYrI5Osf+ZKJROlXci1REmpEueag9vK/VuK2VRjbqBFUU98/LDWs34R9aTPbR5UvW5k015NvGHXYPv3t3hdkMl8f8zOMIjRhr+N82VyD3uOjjGDoyzJp+15eaNpHlB9kbWQy3+vD3x6FPr+LLZNh/SzsPVkjk0HvHzZTIwrJZND7ljlPzWehzWcXtgUBECgfAmUvk/4P66A3cO98Du8bYNAHkW1k0rwZez+I8v1CHfSluZBMmmNEiYoEbRPlS3/QnEl/ZDKqTMY9X28k13s9XkEM+xLh/xIfxMO0VVSZlH0E7TfqL7R+/mEJRILm/cT9lTquTMq1Bw1ZlufD5q56mUu/2rFrb+iabDaRybCIsf9LTZy2KpZMyn5MOwcl3PCeo/c9wd8no3z5Nm1k8yVS6gR98fcPFw76Ucb/ntsXZDLfe5x/qGtPyWS+97187xV9WSajvpcHzQn2vo+bPh7l9W4jk/leH/4fmkstk/mie8ImTF778jBXOW/MmyyfL/g4UxAoFYGyl0kB5f3CHPRhZfMhYiOThYQmSmQy6IMzKDIZZ92mUsuktEec8w3q/Ga4pvkALhSZjJIxL98XkUKRHlM36hd4r4hH5WP6ss28Lj+7uDIZJTJZ6Bf9fP0vypdL7zV5X5/yt5RCC8fbtlVQ/yt2ZDLsuv19sqcik0HXaL7EGjlHZDKXUr5hroWGV0uSn3zyEPU17m8Tm8+gsC8V+V6DUd+rwj43o0YHvedmI5N9OTIZ9vqJKmM9IZVmn4V+CC00PDtoykGpvrTiOCAAAn2PQL+QSW+Cim/89593y4AZ9mEZNzJZKLlKFJkMOoeocxCjdqd8w2GDriFqBNIc37+9rSD4r0Pq/9Mdt+Q87RcS8zjoC1rY+fuPE7X9ZLsrP3JutzXtoh5HjutNVBP0xTLomqVeIakt1AfiyKT3C4XJZByUMTeKUOebW/nYMy8XzOZqrtMbFROO/h8NitFWcWXS/2XRfIHzRiDjzEc05+edrxv1S7+pG9Tf/O9Fcc7R5ge8Qn046uu2N+dM5vuxoZA89OXIZNT38mKw9/bnMCZR5uuGfS71ZJ/099GgxE/+H8WiLBtjPgPkPs4olagS6X1/kPfloKGshfqz7esZ24MACJQ/gX4hk95hrNIkYWn5g7L8+be3iUwGzYfxDl8Lkknvm3PYm3LQF++woYZyvrJ+lTdLbVC3LDSPtJjDXM0HYNjSK4XO10QhvV++g34pLRQ5CZIcqWP26/0RwsvP/6tr0HDFKHOh/O2Q75dmc33evhv0hcScS9RIhlYmg45tvjAHnaP/fLzZGYVDEGvznPw/ypxJ75dEmdcc1L+itpUtR5vIpJ+56SveL4OFeHhfj0F9wz9UOuqXfsMw6P0kLJtroazIxRjmao4dpV8XkoKg4fDe9+JiD3ON8uU6X//pyzIZ9b086P3ZO8zT/0OKiJS/j3vno0b9IUPOL+j1EXQ+hfpNoREWNl/3Cr1fFJJN/7FMHysUUQw6x7DvDvmuJ19kMujHMRs22BYEQKD/EegXMinNYt68w95s/fO75AvSaTMmOxkq4yTg8c/Pki+MIksSIQ2SSbOunulKQV+ewiQpaI5T1A8Xv3BHWWdSO2fSXFuc8w2aq+MXDj/7QutMynl5vxibLxf+NgmS0KD5L1GG0nrfMsw+wuoF8fJ/wbGVII1M5hsWatql0DqTct3+9vDKo/n/7r37ySYy6RXTMPGI0la2HMMSi/hfx/6houb/3r5mlsUI4iHb+9eyleeC5qf6owbmRxjZvtD7gv/9IF8d/2vR33+LIZM2X3jDpECuIei64mQ69b9+gxLwhP0o5a2bTx76ukx6P1+91+TvY/7XnfSTt9dsDnx9+/u+03acrMtbvP2u2OtMFjvDsPe8o/y4INv35aGi+eZ7xomQ5jQwHoAACPQbAv1GJvtNi+BCSkYg35fSkp0EDgQCFU5AGyksNbZ8cybjnIuNTMY5DuqCAAiAAAiAQE8QgEz2BFXssywIQCbLoplwkv2cQE9JWrGx9dR5QiaL3VLYHwiAAAiAQCkJQCZLSRvH6lMEIJN9qjlwMhVKQIbnXj73HPq7W27o0wT8Q//iDPfzDkmWi44yV7RPw8HJgQAIgAAIVCwByGTFNj0uHARAAARAAARAAARAAARAAAT0BCCTenaoCQIgAAIgAAIgAAIgAAIgAAIVSwAyWbFNjwsHARAAARAAARAAARAAARAAAT0ByKSeHWqCAAiAAAiAAAiAAAiAAAiAQMUSgExWbNPjwkEABEAABEAABEAABEAABEBATwAyqWeHmiAAAiAAAiAAAiAAAiAAAiBQsQQgkxXb9LhwEAABEAABEAABEAABEAABENATgEzq2aEmCIAACIAACIAACIAACIAACFQsAchkxTY9LhwEQAAEQAAEQAAEQAAEQAAE9AQgk3p2qAkCIAACIAACIAACIAACIAACFUsAMlmxTY8LBwEQAAEQAAEQAAEQAAEQAAE9Aciknh1qggAIgAAIgAAIgAAIgAAIgEDFEoBMVmzT48JBAARAAARAAARAAARAAARAQE8AMqlnh5ogAAIgAAIgAAIgAAIgAAIgULEEIJMV2/S4cBAAARAAARAAARAAARAAARDQE4BM6tmhJgiAAAiAAAiAAAiAAAiAAAhULAHIZMU2PS4cBEAABEAABEAABEAABEAABPQEIJN6dqgJAiAAAiAAAiAAAiAAAiAAAhVLADJZsU2PCwcBEAABEAABEAABEAABEAABPQHIpJ4daoIACIAACIAACIAACIAACIBAxRKATFZs0+PCQQAEQAAEQAAEQAAEQAAEQEBPADKpZ4eaIAACIAACIAACIAACIAACIFCxBCCTFdv0uHAQAAEQAAEQAAEQAAEQAAEQ0BOATOrZoSYIgAAIgAAIgAAIgAAIgAAIVCwByGTFNj0uHARAAARAAARAAARAAARAAAT0BCCTenaoCQIgAAIgAAIgAAIgAAIgAAIVSwAyWbFNjwsHARAAARAAARAAARAAARAAAT0ByKSeHWqCAAiAAAiAAAiAAAiAAAiAQMUSgExWbNPjwkEABEAABEAABEAABEAABEBATwAyqWeHmiAAAiAAAiAAAiAAAiAAAiBQsQQgkxXb9LhwEAABEAABEAABEAABEAABENATgEzq2aEmCIAACIAACIAACIAACIAACFQsAchkxTY9LhwEQAAEQAAEQAAEQAAEQAAE9AQgk3p2qAkCIAACIAACIAACIAACIAACFUsAMlmxTY8LBwEQAAEQAAEQAAEQAAEQAAE9Aciknh1qggAIgAAIgAAIgAAIgAAIgEDFEoBMVmzT48JBAARAAARAAARAAARAAARAQE8AMqlnh5ogAAIgAAIgAAIgAAIgAAIgULEEIJMV2/S4cBAAARAAARAAARAAARAAARDQE4BM6tmhJgiAAAiAAAiAAAiAAAiAAAhULAHIZMU2PS4cBEAABEAABEAABEAABEAABPQEIJN6dqgJAiAAAiAAAiAAAiAAAiAAAhVLADJZsU2PCwcBEAABEAABEAABEAABEAABPQHIpJ4daoIACIAACIAACIAACIAACIBAxRKATFZs0+PCQQAEQAAEQAAEQAAEQAAEQEBPADKpZ4eaIAACIAACIAACIAACIAACIFCxBCCTFdv0uHAQAAEQAAEQAAEQAAEQAAEQ0BOATOrZZWrubGotwl4qZxc11VU0elgD7d7fVjkXXaQrHTW0gQ63Jqg90VWkPVbGbgY21FB9XQ0dONxRGRdcxKs8ftQAwnucPdDhg+upI5Gko+1J+8oVXKOhrpoGD6ijppb2Cqagu/SxIxpp38F2SnaldDuo4FryPocCAiCgIwCZ1HHLqYUvWnYQIZN2vLxbQyZ17CCTOm5SCzKpYweZ1HGDTOq4SS3IpJ4dZFLPDjVBADJZhD4AmbSDCJm04wWZ1PMyNSGTeoaQSR07yKSOG2RSxw0yqedmfjSLtwfUBoHKJQCZLELbQybtIEIm7XhBJvW8IJPx2UEmdQwhkzpukEkdN8iknhtkMh471AYByGQR+gBk0g4iZNKOF2RSzwsyGZ8dZFLHEDKp4waZ1HGDTOq5QSbjsUNtEIBMFqEPQCbtIEIm7XhBJvW8IJPx2UEmdQwhkzpukEkdN8iknhtkMh471AYByGQR+gBk0g4iZNKOF2RSzwsyGZ8dZFLHEDKp4waZ1HGDTOq5QSbjsUNtEIBMFqEPQCbtIEIm7XhBJvW8IJPx2UEmdQwhkzpukEkdN8iknlt/ksmVazbTDbd8nx685w6aNWNyPCioDQIRCUAmI4LKtxlk0g4iZNKOF2RSzwsyGZ8dZFLHEDKp4waZ1HGDTOq5FUsm77r/Ybr314u6ncjNn7maFsy/lh5ZvJxuv/M++sF3vkjzLr8w3gmH1LaVyS9888fU1NxCCx/4QWaPpTjPHrl47LTXCEAmi4AeMmkHETJpxwsyqecFmYzPDjKpYwiZ1HGDTOq4QSb13IohkyJlL7+xpltEUATzqWWv58havDPNX7sYMtmT54d9908CkMkitCtk0g4iZNKOF2RSzwsyGZ8dZFLHEDKp4waZ1HGDTOq5FUMmT7n4Jrr6svPpR9/7cuiJ+EVvzrwFdOE5s2j5Kyup+cAhp55EMU8YN8aJYJriHbJ6zU2308zpE3KO440u+o9hJNd7UquWPuA8/O4Pf0GLnngh53xnnzmDvvGl67oNlfVv679WOa9RI4c6+xKpljJy+BBa9shdeRsmqJ5c79//+P681yk71R4zXk9B7SACkMki9AvIpB1EyKQdL+/Wo4Y20OHWBLUnuvQ7qcCaAxtqqL6uhg4c7qjAq493yZBJHT/IpI4bZFLHTWqNHdFI+w62U7Irpd9JhdaU97k4RcRw5PCheSOQQTIpEmlk0QyT9UqYCJMUMwxVI5Mih2b+pH9/QcNc/edpRNJIqJyPX55lvxu37nBkWIb0ShEm0yaPp1/+7LZQtEH1jCjmk2azjeaYcdoZdYMJQCaL0DMgk3YQIZN2vCCTel6mJmRSzxAyqWMHmdRxg0zquEEm9dykZlyZNPMMvWfhnxsZFpk00cygIaoichK5NBE+W5n0UxFhfejRJZn9RZFJEUevJMo+jfgawTRRQq84yrmvXr8tr2AH1bORSYmG2h4zXk9B7SACkMki9AvIpB1EyKQdL8iknhdkMj47yKSOIWRSxw0yqeMGmdRzK4ZMeo/uH1pqhoRGlUmvhPrlTyOTEiE0w2jNeRoJLCSTsn1Qdlj/tUAm4/W/cq8NmSxCC0Im7SBCJu14QSb1vCCT8dlBJnUMIZM6bpBJHTfIpJ5bsWXSeybeIaK9IZMSVZR5kCZ6548oQibj9RvUdglAJovQEyCTdhAhk3a8IJN6XpDJ+OwgkzqGkEkdN8ikjhtkUs8trkyKJP7mj08FJt8x8ibzIqV4o3wmAY9/mGuhyKR/aGdYAp5N23Y6iXy8cx1tZVLmWvbWMNd81ykstdHQeD0FtYMIQCaL0C8gk3YQIZN2vCCTel6QyfjsIJM6hpBJHTfIpI4bZFLPrRgyKZIoxStu8tgbGSxGZNI/h9LM1Zw6cZwzN9F7DCOvXjmV8/Gep18u5X/aBDya+YthcyYLXSdkMl5/L3ZtyGQRiEIm7SBCJu14QSb1vCCT8dlBJnUMIZM6bpBJHTfIpJ5bXJk0Rzai5j0Tb+KaYsik7Ns7B1IkUiSuqbmlm0xKVNG/pIecz72/XpQjvSajquw77tIgtslwwmSy0HVCJuP192LXhkwWgShk0g4iZNKOF2RSzwsyGZ8dZFLHEDKp4waZ1HGDTOq5FUsm450BaoNA+RKATBah7SCTdhAhk3a8IJN6XpDJ+OwgkzqGkEkdN8ikjhtkUs8NMhmPHWqDAGSyCH0AMmkHETJpxwsyqecFmYzPDjKpYwiZ1HGDTOq4QSb13CCT8dihNghAJovQByCTdhAhk3a8IJN6XpDJ+OwgkzqGkEkdN8ikjhtkUs8NMhmPHWqDAGSyCH0AMmkHETJpxwsyqecFmYzPDjKpYwiZ1HGDTOq4QSb13CCT8dihNghAJovQByCTdhAhk3a8IJN6XpDJ+OwgkzqGkEkdN8ikjlslymRHB9GRw1V09CjfHyG+r6JW529+znmc/pvv5X/muaP8f7O93EudtWuq9eBREwQqnABksggdADJpBxEyaccLMqnnBZmMzw4yqWMImdRxg0zquJWLTLa1ETU3VdH+/VV8z383V9GhFlf0jOB5JdCRw7QwihC62/CNhbCzU8/KXzOVKt6+sCcQqDQCkMkitDhk0g4iZNKOF2RSzwsyGZ8dZFLHEDKp4waZ1HHrDZmUyKCIoQjh/ubs3yKJrix6/sfbyGMRwWKVunqiQYNSNHCg3BPf89+ee/Ocua8ZkiQa3kWdQxJ866KOgUlqa0jQ0cYu+o+zxxXrtLAfEKg4ApDJIjQ5ZNIOImTSjhdkUs8LMhmfHWRSxxAyqeMGmdRxiyuTnQk3SugKIMug/O089oqhN6pYRYcP259rQwPRyFEpGjEixfdEI0amaNhQlsDBIoNZORQxFAkcIM8NdoXRPOf8zRLZUtVFTV0Jau7i+2SSmlNd1MwXIvdNnfI4mblvTnZRKz8fVlJnnGZ/MagBAiDgEIBMFqEjQCbtIEIm7XhBJvW8IJPx2UEmdQwhkzpukEkdN69MtnekPJHB7sNKHVFMDzF1pZGcoaa2RSKDI1kGRQhHjvRJoiOL7vPu/93Hg1kag0o7pdLiJyKYFkIRREcUE7TfCKNz38nPJ7mGXRlQVU2jampoZHW1cxtVU+f+zc/dOQmRSTuaPbf1Xfc/TPf+ehGtWvpAzx0Eey4qAchkEXBCJu0gQibteEEm9bwgk/HZQSZ1DCGTOm6QyVxu7E7ZYaSZyGHusFJniKnMPTxYTXv2pujgAXsxrK0NF8OMMHIk0SuPQziiGFYOZqRPoocsfyyGTSyAEiF0I4euMMrzIoyH+X+2ZUQNi2BVLY2qZUF0RLGW5TAti4408v8y8lhDg1gcw4q8z/XHcs1Nt9PGrTtyLm3qxHH0+RuuoNvvvC/z/A++80V6b8eeQIk75eKb6OrLzqcffe/LFLQ/2cnNn7maFsy/lubMW0DNBw7lHO/Be+6gWTMmh+KVOtdfNdepL6WvyKT/vPpj/yjWNUEmi0ASMmkHETJpxwsyqecFmYzPDjKpYwiZ1HHr7zKZfxhpWhLT0rh/vzvc1LaIM7mRQI4KpiOEQdFDEy0cMYJo2PBwMezk7DRGBF0xTAuiI4X8OHPPYugML+V5iZYZbeqpKi2FLIEsgKNEClkWR7EQymNHFtl4R1Tx/9LyWFNlz6YSZXLm9PCtnvUAACAASURBVAmOCPrLyjWb6YZbvk9e2fvuD39Bq9dvo4UP/MDZ/Avf/LFz/8uf3ebci0yG7U/+HyaGRjaD+PdVaeur52X7flCK7XtcJuUXDdsiv5qYjmxbtze2h0zaUYdM2vGCTOp5QSbjs4NM6hhCJnXcykkmD0iSmXTiGZOdNCzxjIkeWjqWA7H7cNGsJLqRQlcep01iJavroKGcZCZfOcSRwOaMFEpk0L058w69EcX0cNIWCY9alqHOUFIWPydaaP6WaKE85957/x6SJ2oY9dBViQRVHTrEtxaqPpy+N4/T9/L/av6/9162r3/91aiHKavt8slfkEx6hfCEcWOc6KV3uKmtTMr+8kUaRVZffmNNhqk3amqOKx4x+8wZme0kSrp73/7MY4mqzrv8wsw+RIgXPfFC5nG+yKg5N7PxyOFDaNkjdzkS7T8v4yX59i8CeuE5s3KO7z2/sOOVVacKONmSyKTNuGcB/dSy1yGT5d6z8pw/ZFLfuKOGNtDh1gS1J+w/3PVHLf+aAxtqqL6uhg4c5vSDKFYEIJNWuDIbQyZ13HpLJlsOdhdDN0upf35hNnrI7mVdhkukMGceYa4YeqOJZrt8ATj5JHAlkOcQDqymLYfaaa9EC51hpSaKKMNLswlpOixnG9byCTjy5wwrlcggC2I6UiiP3QiiG1F0/s/3dXGjhnwN1Tyxs2bfPr7nW1OT87i6SR7zvfO85zFbfZWsI6ItGsv3HWv9eqJ167QnoK930klE06cH19fI5COLlzsSKWLlHX4qR9DIpNQTIfRLnzljfwTQHN8vkxIdNTJmht2K9DU1t2ScQURv+SsrHSGUIts/9OiSzGMvJf9xzPX9423znWG5QZHJQvuXOlLM8Y14yrUUOp6+B/R+TchkEdoAkUk7iJBJO17erSGTOnaQSR03qQWZ1LGDTOq4FVsm9+ypop073Nuunem/+X4vP59ZzoIjjJLN1LYMHdY98Yx/fqE3c6n8r1AA7qgzj1CGkboCKEKYTT7TmclaarKV7lcY7WDvvEKWwpEcPcwOKxUpNLIoclhLw1kW45bqgwdZBPd2l0KRRBFEI4mONPLjAwfsD8kS2zVkCKWGDKWuoUPd+8Hu4xQ/3xV0n95u9KVz7I/nq/GTnxDd5o4GLWn59reJfuyORu1WguY4mkhdWGRSduKXNLPjKHMm/QIqdfMNGY0ik0ZE/efsl0XZ17du/lROpDJMZI3cRZVccx359h90neb4Ul8kPex4Je00RT4YZLIIQCGTdhAhk3a8vFtDJnXsIJM6blILMqljB5nUcbORSYka7kwLYkYU0+LoPM+3RMTBCOwabnIZJwNpOnro/TudjVTmF7rDTlMkSWuiFokG7mRj3cXyt8O57+THnc79bmc4qbu8Rb7lK4KOJbMGTWbSsQ21NKyriobnDCHNTUwjw04bY0YNq9rbukcGw6SQn69hUSS+VqsiYshh2q5RfBs52rlPyuPRx3R73myXkkUmlaUYCXgWLiS6/37lCcSods01RPPnB+9AG5n86b2/c3bYVyKTUWUybGpdmMD5h6zKcFozPzRMDINIm/3nk0kZipvveDG6QK9X7XGZ7PUrLMEJQCbtIEMm7XhBJvW8TE3IpJ4hZFLHDjKp42ZkcuuOdo4mVudEE/0RxqMRRjWOHp2i445P0fHj3Jv5e+zY3OGmssyFtshoV1cUWRD55oqiK47mfg8/F6XI8hXZ4aTpYaNOwpn0MNL0cNLssNJqqkrL4dgRjbTvYDslu+wWzag6cphqdr9P1Xt2ZyOH+ziKKMNMTaQwI4tNJNvbFokUGil05C9HCkUaWRiNPI5iYRRrL2EphkyW8HQjH0ojkya6Jwfp6TmTcoxiRibzDactBM1EPb2Zaf0yXWj/hWTSew7+4xU6v778/z4hk+aXBJu5lX0JKmTSrjUgk3a8IJN6XpDJ+OwgkzqGkMlwbm1tLF/eYaeeaOL7u6qd/0UZ5SjDTB1JFFkMEEb5X2Ojrv28tXalI4iOGPLw0x287mFWFFkeI0TdZN7hcRxtO57XNjy+ti7ztzx3LD925yDy8hV8ry1+maziJDQiiTXv76Jq556Fkf92xDH9vPwtCWhsSqq+IR0xzCOFo0UO3YiiSGKqPoat25ycclvIpLt0hz97a9xsrmYoab5sriK8o0YOzUQEg+ZMRo1Myvlu2Lw9Z46kPPeNL13XbXkSGSK7c/e+nEy3Xln0n5fhk2//fpn0nk+h4ym7bp+o1msy6c9oVGgdmj5BK+QkIJN2rQOZtOMFmdTzgkzGZweZ1DGsVJkUr3JEcVd2rqJfHJuaCi/pMHAgD7H2RRNFGLNRxi6Soalxyx6OHnaPJHJkkecqmqGoyQjJWY7j4aPH87hXrygeL8+lnx/L98UqIn+OJIoUGjnk+0HNeymxfQdV73KFUWQySkkNGEjJscdS17F8yxlampbBdNQwacSQ5x72t1JpMmmEzbSjyNrLb6x2spD6Azs9vc6k91zCsrlGlUm5Hv9QUpOh1d9nTWTQ+7xXev3nFZbN1bt//zqb3v8VOl45v6ZKLpP+dLv9YSIqZNLuJQCZtOMFmdTzgkzGZweZ1DHsrzIpcxNz5iem5yaaIai73y8sijKkNBNJTEcUjSROnMCZKafUUqquXQfeU0sS2EgkMTMENR1h3MH35rkomU3H8NDSrCimpZEjjMc5z0uksZZXSYxfqlt4SYvdLIImkmhkkSOKXnGMOsxU5hA6ksi3pIjiscc5j7PPHcf/49vw4fFPvsz30F9lssybpexOv1LXpiyZTHonxRrzLzT2uFx6EWTSrqUgk3a8IJN6XpDJ+OwgkzqG5SiTe/f6RNEMRTVZUPlxoSUHZfqed25ibjTRHZY6Zkz4nL6oCXhk7UMRwp0yL9E37NQktpHMqIWKzD00UcVu0UUWxXHVtSRDVOMUJ5OpTxJzhp6mh5xWHT0S6TCpQYNzJDHJkijCOHjyCXRwyGhKOALJzw0bFml/2MhNNIYCAnEJQCbjEsxTP2xOJGSyB6H34V1DJvWNg2yuOnZIwKPjJrUgkzp2fU0mDx7ILothoogmE6p53BEh8+kYTlzTbX6iL7oYx71EJonXhX1n/+GceYnZxDZukptDhayWm20YL2lxHMtgdripG0X0SmNjjJiiLF8RSRIjrn/oSGJaDJ0Ioiea6EYX05FETmYTVLQJeHQ9vH/Vgkz2r/bE1ZSWQEkikyKNQWOWIZOlbey+cjTIpL4lIJM6dpBJHTfIpJ5bKWXyCAe0MoKYiSa6iWzMfMXDERJwjuDlLowoejOgepPcxMl6KjTbM0tkuEtjiBiaSKJEGt9Pr69YiLyslegktJFhpjwf0RFEfnyck+DGfX6wMplN9f796QQ1O7PJanLmJ7pJbaraWgudpvP/FK91KCIYNOTUkcS0KMp6iHEKZFJPDzKpZ4eaIFASmRTM3mGuZp4kZLIyOyBkUt/ukEkdO8ikjhtkUs+tWDIp0UKvKOZEE9PzFw/sLzwMU5LVHD+uKzsENSD7qSS9iVM6OVGNI4acvCZsiYy9EZbIGFBdTcd65iNKdHGcJwOqRBeH8Ta2pbq5Oa8kOtlOJXFNVElk+cuRRCeJDUujRBS9ksgyWYoCmdRThkzq2aEmCJRMJg1qJOBBp4NM6vsAZFLHDjKp4waZ1HOLIpMyUtM75DQnsU06wijzGAsVWf6iW+ZT35IZsoxG3OKNIDpLY/BcxeycxU56P+ISGd5hp9nlMtzo4qTGepowuJGaWqIn4KnmNRCzCWrSy2B4l8Rwooosie28JkmE4qyJyHMOvUNOjSR6k9fIsNS+VCCT+taATOrZoSYIlFwmDXLv0iBhaXvLpXmQgMeupSCTdry8W0MmdewgkzpukEk9NyOTW9/rog3rqmj9ump6993schkmK2qhI3AQLrOWon/oqXk8alR8UZTzaOIhplsSCdqcaKctHEHcmujImbdYKJ2NaG9OEptMdJGHnqb/HsNDUfMVbwKe6qZ97tqIjhjudO+DJLEjmnhKQppukpgeYuqNJvY1SSzUR8z/IZNRSXXfDjKpZ4eaINBrMulFH5agp1yaBzJp11KQSTtekEk9L1MTMqlniAQ80djJkhjrWRo3rK927rdsrKE1a6qIg2Z5ixHCjCia4afp+7HHFkcUzUkcEWHkCOIWnp8o0riZ/97M0rgl2UH7k/l1UdZKFFkc501iI0tkyNxFZ65i9LUUq3j8bs32d6nm3W1U8957fNtGte+9S3Xb+fGOHUQyJzFKRiC+MFnawi+J7rqJuUNOZamM/lwgk/rWhUzq2aEmCPS4TIoo+hdAzYddIpZPLXudzOKg5dBEkEm7VoJM2vGCTOp5QSbjs4NM5jKUiKKRRifiyPK4YX0V7W8OHo46bHiKpp/Et+ldNGlKihxp9MxXVEz9K9ioooRbOjtYEhNOpHFTJ0ca0wIpSW7CylA+mcm19TSJ5ydOrqujSZxtJyuKdRRdFYlFsJ0FMS2L29+jWkca+TFLo3O/k4WxQOkaMSI99zBgyKkji27ymtSAmJM9C51ImfwfMqlvKMiknh1qggBksgh9ADJpBxEyaccLMqnnBZmMz65SZXLHdjfK6AqjO0xVpFGW2Agqkgl1+vQUTTupi6bx/Zmn19CUqUkaNqozfiOE7GGHI4gsjRJllBsLnCuNHZwzNbjU8bodU0QU09I4qaaeJtezPLJAjuGoY9Qi8w9dWeQbRxgdWZSbRBvl+V078++KxTV5wonUecIE597cqidPosapk6hp0EhKNWLtv6jtIdtBJm1o5W4LmdSzK6eaZoqdTZCrnK6vt84VMlkE8pBJO4iQSTtekEk9L8hkfHb9XSbf43mMjjR6hFEij4dagqVR5idKpNFI43SWR3ks6y96S5QEPFFax8xjNJHGzZz0ZgsPS5WoY2sqfFjqBB52OomlcTJHFyXSKPIo0ijPRymS0dQMQa010UQji3LPcxfzFh76mhHFE1kYx59ASb7vdMTRFcig4p0zGeU8sU2WAGRS3xv6o0xec9PtNGrkUPrlz27LASOJMKV4n58zb4Hz3LJH7srZVp5vPnAo85w3x8kji5fT7Xfel/mfWanBPBF1n7K9V+7kvGdOn0A/+t6XuzWo/G/j1u6jGm7+zNW0YP613baXc7j+qrmZ//UVmfSfl77n9o2aJZFJ20udOnEchrnaQiuj7SGT+sZCAh4dO8yZ1HGTWv1FJt/dlp3PaKKMGzjaGLb+4jHHiDDyjYenOsNUWRqncsRxzJhocxhtZPIoS6E7JFXmLvKwVPmbo4syr7GZs6aGFYkkSkRRhqNO4vmKk+saaBLLokQeJQKZr1S1Hu0ui2lplChj9Z7d+TsNH88vi50ijUYWWR41BTKpoebWgUzq2fVHmTSy54/Cich86+ZP0bzLL3SAyXb//uBjLI0tOc/L//zSIyLa1NyS+Y6+cs1muuGW79OD99xBs2ZMzjRAnH0Wkskw0Qxq/b4qbX31vLSvoB6XSe2JlVM9RCbtWgsyacfLuzVkUscOMqnjVo4yuW2rOyTVO69RIo9HjgQzkIiiDEs1EUYTcRw9Opo0hpH1y2QXr8Eoomik0RmWmpZGWZMxrAxx5jGaCGNWGuU5meMYVqqOHnGGoNZmktxk5ys6srh3T95OkWIhNRHE5IkcTRzPQ1K9sjhuvL5T5akJmdRjhUzq2fVHmRQa/vXcgwRTBPGMU6bRm6s2OAD9EUt/ZO+hR5dkIphhMhlnn8WSSf9ShBKo+vwNVzjRVCPYwmf2mTPo5TfWONd+9WXn0+59+zOP/dHW7/7wF7ToiRcyHc0v0d4e6F21Qp43Ud2g8zJ5YvLtXwT0wnNm5Rzfe35hx9O/KqLXrHiZzNeoBqM3rB4UNYVMRu9wsiVk0o6Xd2vIpI4dZFLHTWr11cjkls1ZadyYzqAq0tjaGnytxx6XK41TJeLIEjmySMtqmKPuYEmUiOKu6i5az/MK17e5EUbJmJpvHqMTYTTDUSXSWFdLU2obeB5j+FIaIoy1WzZT7aaNVLNlE9Vudm81m/lxgWGoqfr6rCym5yw6ssjSKMNRk8eP03eaGDUhk3p4kEk9u2LI5Pr2dlrXFm2ZGv2Zdq95UmMDTW9oCNylf0iryIrIklcYRahEijZt20k/vfd3OUNd/RE0v+iFyWScfRZLJgWI//z9Mm1kUngYGROhlCG2/iissFv+ysoMH9neK9beBgiSdrmuf7xtvhPBDYpMFtq/f9iwEU8R40LHK2Z/C9pXxcukNI53jLgxfzNW29+ZgsagQybtuilk0o4XZFLPy9SETOoZ9rZMbtqYTX4jw1JNxJG/twWW48dlpdEZpjrNHaY6fES8SKP3YM28hMZmJ0NqOvGNDE91oowJkiGrYeVEkyXVSKPMY2RpnMD3YcVJdLOZhZEFsVaE0RFH93G+jKiphkZ3yGlQVFGeP+54fafowZqQST1cyKSeXTFk8ie799BtOwvMJdafYmjNb48dQz8+/tjA//slI2yIq4mM+SOZ/jmTRrTMwYJk0gxxjbpP2Zd3v4VkMs6cySCZNNE9/7X4ZdHPTs7bz8twMcfxRzbN/4NkstD+g+qY48t+JeIadrwe6HY5u6x4mfQDFtNfvX5bZjx40AvP/8sNZNKum0Im7XhBJvW8IJPx2ZVKJiUBTiZ7ajpzqiy7wZ4WWMaNd4emusKYHaY6dFhxpFGkUDKjuhlSXWl079t5HmO4MEokUZLdnDygkSbyvMLxvKCGJMGZzH/XV4UMS+XjOLLoiSw6EUcRRs6MGlacoaiTp1LnpMnUyffJyVP4nm+TpoQmuInfI3p2D5BJPV/IpJ5dMWRy4cEWur+pWX8SyprXDBtK80eNDK1thGPKhOPp1u/+c04AxQxHNclr/JFMr8D4gytywCCZtNmnOWk5R5NEp5BMxpkzGUcm5RyDSpjA+YesynBaExEOE8N8+88nkzL/Nd/xlF0rcjXIpA+VtxMHvUiCnoNMRu5vzoaQSTtekEk9L8hkfHbFlEmeNujMZ9zoZE7NrtEoEUf2qcBywonZJDgmGY7McRwyNL40yh5k+KlIotw2ef6W4aphxZ3HmF6PkYeLStIbM6/RzGPsloCHL96NLm6mGo4uZiONPCx125bwhuJjiSiKMCanyH1aGFkakxMmxW/gPrYHyKS+QSCTenbFkEn90Xu2phHEsaNHBA5xDTq6mVPoFxj/6L2g78Rh0hW2Tzm+97t3X5ZJbeTPcDLCXEgMg9rEpo7/eD3bw3hd4RSXnj5IuezfO/5YzjmqTO47WPox8uXCNOg8q6uraPigOmo+FBJyKOeL6+FzH8rcWts7KdGJl60N6ob6aqrjiNHh1nBBsNlfJW07elgD2b7HSQJSRxb5ti49NHX9Wne9xrDkpBMmpuikk921Gp379JIbgwfHp93JH3OrOtpodUeC1nCkUQRSxFHuw2KMkg11Mkf+pnCGVBHFKSyNToSRnzs2z3qMMgS1hiOMA97bQqkNnNCCbyKP8hzl+biVqKJzY2Hsksgi35vH8QmUzx7qaqtoQEMttRzBa9W21UYOqacDzK2rC58Ptuzkfa6/FhONMwlovFlc/SPthIF36KZfYMz34rChoXIs7T57IjLpn5oWJzIpUr5h8/Zukd1vfOm6nEy2wlCGyO7cvS9neRMv16Apc4X2H5RZ15xPoeP1dN+GTKYJm4m33sxMUWWyozN8yFNPN2A57l8S1tfW8vA1cLNuvroaXuibvyhIZkiU6ARqWAxkhGFnEtyiU3O3rOfXath7HE8TpLVridasrnLvOSGe+Tusi06ZQjRjZopOPpnvZxCdPCPl3A8aZHtmwdvv4RDnSk6C8Tavk7iyrY3ebm1z7sPKRBbEqQ11NI3nGE5rqKdp9Q38WNZkzDOPcdtWqtrIcrhxA99v5Jvcb3LuQ0OsfAKpiZMoNZUBTJ1GqWl8Y2GUxyl+THkS7RSHTHnspZpfqzJ6JZFnKHF5XEnpz7KOX6ud/LmKdzl79vI+159L0JqPUdahDIqGme/Ln/zYRfSHPz+bwSaCKUuMFFrb0j8PU3bgXScybC1JiWzarjPpXQszLJtr1DmTcp7+oaTedTe9/cf4g/c57zX6zyssm6t3/35u3v8VOl5P923IpKdz+NfiEfiYM1n8LohhrnqmyOaqY4cEPDpuUkuGf23b1cpRxe7Lbcg8x7AyeYpneKrMbUwvv9HYqD8Xf831iXZaw9HF1R18479Xc9Tx/ZBlNqazNM7kKOMMiTA6iW/cKGM9BV9Dzfu7qHbjeiei6M5ldBPg1GxiaeTjhJUkr68ow1Jrpk+jxMTJ1DqB5zNKpJGjjpJBFSU/AQxz1fcQDHPVs+vPw1z1VFCzLxHoy2tTllwmg36RMI0VJHM93ZDyK4cU86uA/3jI5lr8FoBM6plCJnXsIJPRuEmGVLNGo1luY8umGh6qGl5/Kie/kbmMTiIcWW4jfR+SqT7aifi2OsTJcEQUHXHk7KarO+W+ndoDYjAyn1GkcSZHGGfwbSaL40w+mYYQaazes5vq1q2h2rV84/u6dWupdv0aqm5qChdGzoTqJrxxRdH5W+457JpqHODU6zZnUnXllVcJMqlvc8iknh1kUs8ONUtDADKZ5hwWUi9NM3Q/SlBY2GzlnWSLdSaL20KQST1PyKSOHWQyl5usxSjS6GRQNZlT+V7WbgwrJrKYI4287AYH+Ipa3uXENxlxdKKNHbSV5TGoTOC5jDP4BBxpdASynjOoBp9Q9d49rjSKLKbv5XH1vr2B++4aOZI6p5+cTX4jSXCcTKmTKTV4SMFrhkwWRBS4AWRSx01qQSb17CCTenaoCQIljUyGrcdS7s2AbK52LQiZtOPl3RoyqWNXqTIpkcY1q1xpNPIo99u2BksjB/U8UUZJhtNF559TT8PHtvI8Zx37sFoJnlS52hmi2pYeqsriyPJ4sKv7HHRJhnOKM0SVbzJcNS2Pw+SEfaW6aV82wmikce1qEpkMKl3Dh1PnSTOcW8K5Z4Hk+7jrMEImdf0FMqnjBpnUc5OakMl4/FC7sglAJovQ/pBJO4iQSTtekEk9L1OzUmSy5WAVvfJyNb3yEt/4/lW+BRXJ9TItnS11GkcXZWjq1PScRr+fFWNpkD08jzFHHFki14bMO5R1Gk9xpNGIYyOdHBD+rG5udoajOsNSPcNUa3YHLxreNWxYWhpZFqdnxTE5bnz8DhawB8ikDitkUscNMqnnBpmMxw61QaCkMinDRS+ZcxaZxVH7C37IpF1LQibteEEm9bz6u0zu2VNFr6bFUQTy7be6y+PMU7LJb7xDVKNStZXJtTwsdU0nRxk5LOrc8+PdIUlxRBJFGmVO44xad5jqWN+yG9UHDqSHpYo4Zoep1uzaGXgJqSFDOcLoRhclyphgcew8mSONnBinlAUyqaMNmdRxg0zquUEm47FDbRAoqUyGrT9T7s0AmbRrQcikHS/IpJ5Xf5PJ997NRh4l6rhuba48SlTxnNlddM65XXS2c5+kuOs0hslkCw9HXZXgIaoeeRRx7AhIiiPDUU0mVfde5jjWU72s15Iu1QcPZuYyOhHHdEKcmp07gqVx0OAcaew8eSaL48mUPHFC/A5ThD1AJnUQIZM6bpBJPTfIZDx2qA0CJZVJmTOZr/RGNtdidAHIpB1FyKQdL8iknle5y+TGDSyPL9Vkhq765zoO4MShIo7nzE6m77uIc9IUtYhMvri7hVals6mukaQ4HHXclgxeVF4S4EiEcYaTRbXRWYpjQk32pKoOtWSHpjrZU91oY83294KlccBAJ7Lonc8okcfkhElFvc5i7wwyqSMKmdRxg0zquUEm47FDbRAoqUz2V9yQSbuWhUza8YJM6nmVm0yueic731GGrb6/KzdRzvARqUzkUSKQZ53dPVlNHFrtvARHdt1GN+q4ljOpHkgmu+1WltoQUczMb5S/6xpJluZwCkcu61a+RXWrVmYyqIo41rz3brA08pIaJvlNZpgqS2Qnr9VYjgUyqWs1yKSOG2RSzw0yGY8daoMAZLIIfQAyaQcRMmnHCzKp59XXZfKN19xEOSZhzv7mXHkceyzLoxN5dIeunjqrePK4mwXRjTbKvEb3fh0nxgkqx/I8Rok2zmRZFIGU+Y0n8b0pVbz2Y93bLI4ijytXZP4WofSXFA9xzUijyKLJoMpLb/SnApnUtSZkUscNMqnnBpmMxw61QaDkMinzJm+/874c8t41HcuxSSCTdq0GmbTjBZnU8+pLMtnZSU52VSOOMnz16NHca5swIUVnizymh67K2o7FKLIMxxs8v/GNtjZ6k5fieIPlb1dIUhyRxZmSDEeS4vC8xrljhlFXC598ujjDVEUavfK4elXgaTrLbZx6mpsIR6RR5HHKtGJcUp/fB2RS10SQSR03yKSeG2QyHjvUBoGSyuRd9z9M9/56ET14zx00a4Y7dGnlms10wy3fp5s/c3XZZnmFTNq9kCCTdrwgk3pevSmTR45QZr6jybjqHy0qS3LIfEdHIDn6eCLLZDGKzGd8k4XxjfZWvrU7AukvwyUpTn2jkwhH1m10sqry37W8pqMp1U1NdOy2NdTy/CsZeazduD7wFEUaE6edTolZH+Ab/833KU6SU6kFMqlrecikjhtkUs8NMhmPHWqDQEllcs68BXT9VXO7SaNI5kOPLqFlj9xVli0CmbRrNsikHS/IpJ5XKWWyuSl3jcc3X+++TMes00zU0b0fMza+PEr2VIk0OhHHNpZHHrL6fkDU8VSWxTM5IY65TeEEOd5S8/6udMSRh6k6w1XfopptW7vBT9XVpYXxA9Qp8igSKeLoGfYav8XKfw+QSV0bQiZ13CCTem6QyXjsUBsESiqTks01aEirGfqKbK6V0SEhk/p2HjW0gQ63Jqg9Uby5c/qzKZ+aAxtqqL6uhg4cDp4TqLmSXTs98sjJclavk5RNwwAAIABJREFU6i6PHzwnO99RIo/DhseXx22dCRZGlkcWyNc58riC5dFfRlfX0BkcdTyzkW9yzxI50LMMR8272zLCWPe2K49B6zamBg6iqjPPoCMzZmUEUsQRpTAByGRhRkFbQCZ13CCTem6QyXjsUBsESiqTiEyiwwkByKS+H0AmdeyKIZNbt8gyHZIwh5fq4PtNG3OT5fAIUU+mVXepDna5WEWyq0qkUcRRIo8ij5I4x19mSdSRs6GeycNVRSKnyMmkS+2mDZ75jTLXcQVVN+3rto+u4cNZGNPDVE/joaqncuSR5ziGrTMZ68IqoDJkUtfIkEkdN8iknhtkMh471AaBksok5kyiw0Em4/UByKSOn0Ym166pzkmYs/29XHkcMoTobLO+Y3rOo2e6oepEt/IyHGaOo0QfV7BE+ssxNemoowxZZXE8wxN1rF2z2s2mmkmQw+LY0tJdHI8Zw/MbZW5jdo5jZ0g2VcikqikJMqnjBpnUcYNM6rlBJuOxQ20QKKlMCm5kc0WnQ2RS3wcgkzp2UWTyrRVuplWTcXXv3lx5HD06u0yHJMw5/Yx4Q43bOOroJMmRIascfZR5j7sD5jqelo42mrmOk2Wuo6zh+M7bTpTRzG+U7KpVPGfSX5LjxrtDVE1yHJ7jmDzhxMggIZORUeVsCJnUcYNM6rhBJvXcIJPx2KE2CJRcJvsjciTgsWtVyKQdL+/WkEkduyCZzC7R4a71eKglVx7HjZdMq9mEOSfPjCePWznD6ussezJc9U3OsLoiIMPqGF7P8Yy0PJ7Fw1bl74GdSapb8UY3eaSA4a6dEyenI45u1LGTs6omxx6rg5auBZnU4YNM6rhBJnXcIJN6bpDJeOxQGwQgk0XoA5BJO4iQSTtekEk9L1OzJlVDr71aS88s7XLnPfKtw5eLZ/IUE3l05ztOmqxPltPGGVZNghw3+thOewKijh+QYaoijzxU9ayGATSpto5qdmyn+td4KY7XX3Hu6199mYjXifSXzum8dqMTcRRxdOc4do0cGR+Wbw+QSR1SyKSOG2RSxw0yqecGmYzHDrVBoCQyKVlcZR1JWWMyX0E218rokJBJfTsjMhmNXcvB3GU6ZOiqv8w4JTfT6vHj9PK4hTOsSnIckyjnrYAMq2M4w6okyRF5dDKs8t+NVOVEHR1pTItjzbYt3c7VLL+RkUceqpoazJM2S1AgkzrIkEkdN8ikjhtkUs8NMhmPXV+oHXdVCJPTpVw9pLfboCQy2dsX2dPHR2TSjjBk0o6Xd2vIZDC7PXuq6FUn06obdXz7rYBlOs5O0Zlnc9QxPXR11CidPLbKXEeWxcyQVR6uuidgyOkHRBo52ujII0ceJ/Fcx+rmZqrniGNdWhxFIKuOHsm5qK5hwyjxwXOo44Oz+cb3Z88umTgG0YVM6l6vkEkdN8ikjhtkUs+tP8vkNTfdThu37ugGRwI8UiTI4xcoCQBdfdn59KPvfTlTT1ZjkBK2Hrz8v/nAoZzjyH5lX2ElaKlAbSvayqR/dQnIpJa8W6+kMhm2zqQ04kOPLgntpPEusedrQybtGEMm7XhBJrvzeu/dbORRoo7r1ubKYzU/NNJ4NsvjxRcRjRyhW2dyV2cnvdjRSq+l5zu+HRR15Ayr7nqOvDxHg7s8RyOv61i7bo0zTFUEUsRRsq36S+fU6Y4wGoFMnHKqvoP0QE3IpA4qZFLHDTKp4ya1xo5opH0H2ynZpfuhTH/k8q8p73P9sYhMzpw+IUcMvdf53R/+glav30YLH/iB8/QXvvlj5/6XP7sts5mI2r8/+BjLYgt96+ZP0bzLL8z8b+WazXTDLd/vJp+yXylGSM12D95zB82aMbnoqOPKZNFPqMJ22Cdk0rYT9LU2gkzatQhk0o6Xd+tKjUxu3CBrPPL6junI47atuclyBvD3AJnneI5ZqoMFkqcfZkqUbK5m4+ZkF73YfpRvrfRi21Fam/BNruQNTzcZVp21HRtpIh9MMqmKODpRR+f2Mq/n2JTT2Kn6epbGdMQxHXXs4mU6+nKBTOpaBzKp4waZ1HGTWpBJPbtKlUkhZqJ0J4wbQ7ffeV+3SKUI5hmnTKM3V23oJpoiq6NGDs2Rz6BWiCqTJkJo9jFy+JCcQJM30ur9n98jgiKPJmgl1/PyG2sypzl14jj6/A1XdLv2sGN5mXmn7/WUKOt7delq9gmZlF8wlr+yEpHJ0rV7rx4JMqnHXykyueodd7iqkcf3d+XK4/ARuZlWzzo7f6bVfDJ5mJfZcMXRlce3E+05DTSQI4zn8TDV2SKOTuSxkRp4rmPNtq2ZiKMjkW++3q1hk+NPcIeqskC6kcdz9I3fSzUhkzrwkEkdN8ikjhtkUs9NahZFJtevJ1q3Lt6JaGqfdBLR9OmBNQtFJqWSETGRs+uvmksL5l+bsy8ZVSiitGnbTvrpvb/L+a4eNuLQfzJRZDIosCTn/4+3zXeimSKBTc0tOVHUDZu3O+djI5NeGTTX6q+f71imvgzrNUOE/dtrmrGc6/S4TAatKxkErJhjp0vdIIhM2hGHTNrx8m7dX2Xyjdey4igCub85Vx7HHptd41EikKfOslumwyuTCR4CJsNWHXnk+1d9azPWVlWxPA7kWwOd1ziQzmGBlOJkWE1HHOXvmu3vdWvIxBlnOUNWHYE86xxKTpiob+w+UhMyqWsIyKSOG2RSxw0yqedWNJn8yU+IbssOD413Rha1v/1toh+7w1P9Jd+cSa80hsmQGeJqhsF65TGKIJrzibKt8YUwH/CLq3efIrreqGq+yGQUmcx3LBHbQvu3aL1+sWmPy6SXUtRfMMqNLGTSrsUgk3a8+ptM8hREknmO2chjDR09mstkwoQUnS3DVtNDV6dNjzcHaEVXO73ES3Q8c+gw37dS0rfUhgijiKMjkCyS9fv2ZrKruhL5MlX51hLpGjXKEcbMfEdJlMPRy/5WIJO6FoVM6rhBJnXcIJN6bkWTyYULie6/P96JaGpfcw3R/PmhMplvzqRUEomTiKMUf2TSDHE14umfUxn1e30UmZTjy0jFRU+8kLmW2WfOcIbQhtU3x5cKxZLJQseSOaOQydzuVlKZ1LxGyqEOZNKulSCTdrzKXSaPcLJSM9/RZFz1Jz+dfpIMW026AsnzHU9kmYxTVnCSnBd4yKoZvioZWL3ldJ7neC4L5PkDBtK5PP9x+BpOlMPCaLKs1m7k4Uq+0nnyDDfqmBbIzpNmxDnFsqkLmdQ1FWRSxw0yqeMmtTBnUs+uKMNc9YfvsZpRhrmKGEliHb+QyeOwbKxmeGex50x6QRipk8yzIrOITPZYN4m9Y8hkbIREkEk7iJBJO17lJpMH9lfRSy9mI49vvt59mY5Zp5moo3s/Zmw8eVzN8xxfbGtzEueIRB7keZDeMpOF8aLBg+nMmga6oCNJY97IJskRgaw+eDBn+xRLphmumkgLZNfIkfqGK+OakEld40EmddwgkzpukEk9N6lZqTLpjzR6H5uIpX85EK/UmaGp/qVEJJHOzt37rLK5+usYmTXDXm3mTPol17+0if//mjmT3ihuua9KEe/VU+KlQcyvDGEnXa6LhUIm7bohZNKOVznIpEQa/7Sohh59pIYe+3NNtwuU5TnOPicrkMOGx5PHTZ0dzpzHF2TeIw9b3ZPksbOeMpnXdDyfh5yey7eLOJ355FdfoPqXX6TUiy9S3cq3up1fcsKkzJqOMt8xcfqZ+kbqZzUhk7oGhUzquEEmddwgk3pu/V0mw9aZFNmTIaVh60zKkiFBmVqDlg/xRzD9WVijDHMNcgQTlTStGzWbq39fIrveRJ/efC5xsrma4b+QyZRv8lC812Pe2vLLwIXnzKLZZ87MyQglneOSOWd1yyDVg6dS1F1DJu1wQibtePVlmXzmKRbIhTX0J7555z1eMCc731Eij42N+muWmu91JpxMqy92cPSRBVIee8t4XprDGbbK8nhBZxdNfYnlcfmz1LDsWap75+3cg3OCHSdBjqztKENW+e/kuPHxTrAf14ZM6hoXMqnjBpnUcYNM6rn1Z5mMRwW1QSAagZIOczWh8SkTjqdbv/vPmfTCYaH0aJfQ+1tBJu3aADJpx6uvyaQkz3GikCyQu9/PZl2V6OPHr07SVdckSbKvxikSaZSIowxZlcQ5G31rPR5TXUPn8VDU8yRxDt9O4aU5GpY/Rw3PLaX6l57POXSKl/LovOgioosupoOnneUIpKz3iBKNAGQyGif/VpBJHTfIpI4bZFLPDTIZjx1qg0CvyKRkQhKxNKH1oLVlyqlpIJN2rQWZtOPVF2Ry7epqepQFUiKQGzdkBfLkGWmBnJekqdP0AilzHB1x5KU6Xmg9Sqt98ji0WtZ6NBlXB9AZa9ewPD5L9Rx5FIms4jre0nHu+dR+4UXUceGHnPt860zqW6MyakImde0MmdRxg0zquEEm9dwgk/HYoTYIlFQmvVmlvH9LKmDvWOZyaxbIpF2LQSbtePWWTO7YXpWJQHqT6Iwbn8pEIM84y269R3MtnTy6/jlnvqObMEeyr3pLA1VxplWe8yhDV3mpjnN2bOdhqxx5dOTxWareuydn+8Qps6hjzkWOOLazQKYGD8n5P2RS3+cgkzp2kEkdN8ikjhtkUs8NMhmPHWqDQEll0o/bO2H3wXvuIFkItBwLZNKu1SCTdrxKKZOHWqpoUXoO5HNLs1lYhwxNOcNXZRjrRXN1ArmN5zkuZXFc2nqE71upw7Nch8Q6zZxHWe/xgpZDLI5LHXkUiazdsikHWnLCRFccWSA7+D557HF5oUIm9X0OMqljB5nUcYNM6rhBJvXcIJPx2KE2CPSqTPYX/JBJu5aETNrx6mmZlBRcMnxVhrH+mW/echUPX72KBfJjfNOU50UeHYGUoau50cfTebmOOQMG8TqPnDSHUjRk+bL0sFVOmvP2ipzDdY0alR626kYeO6edZHU6kEkrXDkbQyZ17CCTOm6QSR03yKSeG2QyHjvUBoGSyqR/wdH+gh8yadeSkEk7Xj0lk0ufyWZiPXw4e5SLP+xGID/OkcghuaNFC574bk6cI/K4xIk+HqFDXdl5lEOqqunigYPoYh66OnfAYDrhlRfTw1afo/oXluXsO8Wi2THHne8ot8QZZxU8dr4NIJN6fJBJHTvIpI4bZFLHDTKp5waZjMcOtUEAMlmEPgCZtIMImbTjVUyZfP3VbCKdXTuziXTO/GAXXS3DWPl23PF2iXRe52yrS1gcJfr4Ji/d4S0zWAov5jmPcwcOpIvXb0gPW00nzTl6JGfbjtnn5STNIV7Co1gFMqknCZnUsYNM6rhBJnXcIJN6bpDJeOxQGwRKKpPlvp5kWHeBTNq9kCCTdrziyuT6dZxIR+ZB8hDWdWuz8yCnn8SJdNLzIE86Ofo8SMm8auTxWZbIPcnsENi66ipHHi/meY9X7N5Dk158wZ37KElz9uzOufDEzFOc+Y5m7mNqyFA9mAI1IZN6tJBJHTvIpI4bZFLHDTKp5waZjMcOtUGgpDK5cs3mnPUl+wt+yKRdS0Im7XhpZFKijmYepEQjTTn2ODeRjtzOOju6QL7D2VZl2OrSVjcDq7dMqq1neRxAVxxto7m83uMAyboqSXM2bcjZLnnihEy2VSdpzvHj9CAsa0ImLYF5NodM6thBJnXcIJM6bpBJPTfIZDx2qA0CJZVJb/bWIPRm3clyaxbIpF2LQSbteEWVSZn3aCKQS57OJtIZPJgyEci5H4mWSKeNM62axDnPsjy+m0jknPQcjjxexnMgr3rtdZryEkcfOfJY99abOdt0jRyZmzRn+sn6C49ZEzKpBwiZ1LGDTOq4QSZ13CCTem6QyXjsUBsESiqT/RU3ZNKuZSGTdrwKyaRkYJVMrCKSkpnVlI9d5SbSkYysUaYfbkx0OAIpQ1eX8PxH78zJ42pqOWnOQLrh7ZV0PkcfB3Pm1Ybnn8u5kFRdXWatR4k8dpz5Qf2FFrkmZFIPFDKpYweZ1HGDTOq4QSb13CCT8dihNgiUVCbDsrnedf/D9NCjS2jZI3eVZYtAJu2aDTJpxytIJp98MrucR8vBbKKaD13c5UQhZTmPocMKJ9Jxoo/ptR83sEx6yzk8dPXyRJI+8cILdNIzT1HDU4upev/+nG06zp6dnvfImVfnXExUnR1Sq7/K4teETOqZQiZ17CCTOm6QSR03yKSeG2QyHjvUBoE+IZOPLF5Ot995H2GYa2V0SMikrp1XvFFNTy2up98/RLR9e1YgTz+zy5kDKVHI8SfkF8jtnbx0Bw9bXXr0MEtkK7XycFZTRrAIzuV1H6/es5cu5cjjqKcep4an2Vo9pXPGzMxyHRJ97Bo2THcxJa4FmdQDh0zq2EEmddwgkzpukEk9N8hkPHaoDQJ9Qia/+8Nf0PJXViIyWSH9ETIZvaE3bsgm0lm7Ohv1mzKVE+nw8FWJQJ48M38indUccVx85BA9wcNXV3IiHW85TZbuaBxEn1i3ls56dik1PvEY1a14I2eb9g/NpfZLPkptl11OnVOnRz/5PrQlZFLfGJBJHTvIpI4bZFLHDTKp5waZjMcOtUGgx2XSRB0Lof7Bd75I8y6/sNBmffL/GOZq1yyQyfy89uyuokfTS3m88lJWIMeMTdF11xFd8fFOOuODnXl3sjLRTot5HcfFrYdobUd2+OpATppzMc99vJgjkNdw9HEcD19tfHIx1by7LbO/1KDBjjg6AnnpFSSJdMq9QCb1LQiZ1LGDTOq4QSZ13CCTem6QyXjsUBsEelwmvYjD5kyWezNAJu1aEDLZnddRXm3DWcqDb888lc3EOmCAm4lVhrF+5NIkjRraQIdbE9Se6B6NXNHeRo9z9FEkcj3LpCmjq2vooyKPHQm69Llnee7j4xyBXExVRzj9a7rIsh1tl7JA8q2NJbK/FcikvkUhkzp2kEkdN8ikjhtkUs8NMhmPHWqDQEllsr/ihkzatSxkMsvrsT+7WVj/xNlYeTpjplzxMZ4DmZ4HWVubfd4vk6+zQC7m+Y8ikZs8CXTGcPbVj3IE8vqdu+lDzy11BLLhuSU5DZU4/UyOQF7hRCD7UuZVu94UbWvIZDROQVtBJnXsIJM6bpBJHTfIpJ4bZDIeO9QGAchkEfoAZNIOYqXL5PPLqmnRI65AHtifTaRzwZxsIp0RI4MT6YhMPrW/hR5tOeRI5LZkdv1HWb7j8oGD6a/feYdm8/zHBh6+WrdqZU7jtH/kUo48cvSRh7EmJ0yya7gy3hoyqW88yKSOHWRSxw0yqeMGmdRzg0zGY4faIFBymZwzbwE1HzgUSB7ZXCujQ1aiTL61ojoTgXx3W1YgP3C6u5SHZGI9cUJ4JtYX21vp8dbD9ASv/7jNE4Ecz2HLK+sb6XPPv0CnL33GEcia93dlOlLX8OE8dPUKRx5l+GpqyNDK6GS+q4RM6psdMqljB5nUcYNM6rhBJvXcIJPx2KE2CJRUJq+56XYaNXIo/fJnt/Ur8ohM2jVnpcjkls1uIp1HOQq5elU2kc6kyZyJVQSSb6ecGp6JdTmv//h4qyTROUw7PWNgJ9TW0XVHWunG55fRzCWuQFZ5kux0Tp5K7SKPMgfyog/bNU4/3RoyqW9YyKSOHWRSxw0yqeMGmdRzg0zGY4faIFBSmUQCHnQ4IdCfZXLvXncpD7m99GJWIEePdpfyEIE897xwgXzWkccjjkTuTmYnUU6uq6fPv7udPv3qi3TCE49T3QvP53SmjrNnu8lzeA5k4tTT0NEQmSxaH4BM6lBCJnXcIJM6bpBJPTfIZDx2qA0CkMki9AFEJu0g9jeZbOfEqc5SHnx78vFsJtaGBspEIC/9aDIU0jM8dPXxozwHkgVyX1d2u2l1DfTVt9+ijy9bRifyEh6169dm91FT4wxbbWd5lPvkuPF2jVBhWyMyqW9wyKSOHWRSxw0yqeMGmdRzg0zGY4faIFBSmZRhrpfMOYsWzL+2z5G/6/6H6aFHl9CyR+7KObfv/vAXtOiJF7qdr3d+J2TSrjn7i0w+/pgrkI9yIh3PNEa67HI3Ank13zigGFie4iGskkBH1oHcn8xGKk/nv7/28it02bJn6binnqDqpn2Z+l3HjKHUlVfSUZbHw3Mvo1QjrxuCEokAZDISpsCNIJM6dpBJHTfIpI4bZFLPDTIZjx1qg0BJZfKRxcvpp/f+rpuw9WYzyDndfud9zimMHD4kUCZXr99GCx/4QehpQibtWrCcZfLF56szUcimpmwinfMuSGdiZYEcNSo4kY67hIdI5CFq6coK5Ef2NdEtL79EFz37LI1++gmiVLZ+58kzMtlXO86fk3edSbtWqKytIZP69oZM6thBJnXcIJM6bpBJPTfIZDx2qA0CJZVJmTOZr/RmNtd8kUnIZHFfKOUmk++sZIHkJDoylHXb1qxAnjrLzcQqyXQmTuoukDJg1RHItEQe9gxhvX7jJpr/4gt0Li/hMfSN13IAizS2XfpRvl1BIpPe4l9nsrgt03/3BpnUty1kUscOMqnjBpnUcYNM6rlBJuOxQ20QKKlM9mXcUYe5BkUvEZm0a9lykEmRRjMPcuXb2UQ6EyZmM7HOOi04kY7MgVzE0cdHjxyiNspK5mfWrqUvP/UUncXzHwds3ZKBlmpodLOv8vBVSaAjw1nDCmTSrq+ZrSGTOm7mSxbe4+z5QSbtmUkNyKSOG2RSzw0yGY8daoMAZDLdB8Jk0t9FZN6nFO+w1/2HO9CTLAhUV1XRkIG1dPBIwqJWz2/a1MTt+sdqeuThalq+LCuQo0YRXfOJLuc250PBArmirY3+eLiFb4doeyJ7Xdft3EW3LnmaZv/lzzRgzerMRXSNG0eJj17Jt8v5dgWnuM0m7sl3pUMG1FFbR5ISnnmWPU+m/I/QUFtNtXw70pbNkFv+V1WaKxgxuJ7wHmfPelBjLXV2dlE731CiE6irqabG+ho61Nq3Ph+iX0HvbTlsUB0dOtpJXZ6pEr13NuV1ZHmfQwEBENARKLlMioxt3LrDOdsffOeLNO/yC0mGv84+c0avrj8ZVSbNHEvvkNzW9vBMnbpm6d+12CX512fORspS1NtFlmd8+A9V9PDDvKTHo9khrHV1RJ/8qxRde22KPn5V8BxIkcb/bDnItxZ6o7U1cylzDh2i7yxdQhctfowG8VBWU1LHj6PkJ//KuXWde57q0uvrqqmTRdIz5VK1n0qrVFNTRfIjRgJf7K2bfkBDDeE9zhob1fGPF/KlPpkMfv+w32Nl1Kjm3/FqWSg7EpBw2xYXCW9PJL3T7m13UbHby/scCgiAgI5ASWVSRHLUyKGONM6Zt4C+dfOnHJmMKnK6S4xWK+o5BMkkhoBFY2y26gvDXJ96wp0DKXMhZWkPUy65zJ0DKXMhGxu7X1cHD1tdxMNXFx45TM+0HclscHxngv5h6bP08SeeoGOfejwrkAMHUes111Kb3HgYa9yCYa46ghjmquMmtTBnUscOw1x13DDMVcdNao0d0Uj7DrZTsgs/YNhSlPc5FBAAAR2BksqkRCAfvOcOmjVjco5MBgma7nL0tcJkUqTXu1yIPJ42eXxOFBUyace9t2TypRernaU85LZ3bzYKOfvcdCKdeUk65pjgD+ElMg+y9bAjkm2p7C/m//Oll+gGngc55U8LqUrCnOnSduVV1Drvk9R6NS+DU1trByjP1pBJHUrIpI4bZFLPDTKpYweZ1HGDTOq5mfe5eHtAbRCoXAIllUkRsbt/9I1uMhk1KtgTzeRdGsTs/+rLzqcffe/LzkPvsFx5HDQcFzJp1zKllMnVq7JLeWzelBXImadkl/KYPCVYIFcm2lkeWSA5mc52jjyacsvKd+iLTz9Fp/3lT1S7b2/m+fYLL3IikCKQXTLRsgcKZFIHFTKp4waZ1HODTOrYQSZ13CCTem6QyXjsUBsESiqT3/3hL2j5KyudSJ8Z5jplwvF0wy3fJ6/AlVuzQCbtWqynZfK9d7OZWN9akU2kc8KJPP/xancI6+lnBM/H2ZXsZHk8zMNYW+itjuz4149v2UJff/ppuuDxx2jApo2ZC07M+kBmGGvnpCl2IBRbQyYV0LgKZFLHDTKp5waZ1LGDTOq4QSb13CCT8dihNgiUVCYFd1Ak8ObPXE0L5vNwwDItkEm7husJmTywnxPoLHLnQS5/LiuQw4a7S3nI7cKQTKwJTpKxkIewLuRsrM+0Hc1czKw9u+n2JUvpsscX04gVb2SeT06Y6EQfZS5k4vQz7S4+5taQSR1AyKSOG2RSzw0yqWMHmdRxg0zquUEm47FDbRAouUz2R+SQSbtWLaZMHj5MdM+/1tE9d9VmEunIKhsmAnnlx8MzxjrzIHkIq9za0qnUhx45Qv+4dCl94sknaPxzSzMX1jV8OLWlBbL9og/bXXARt4ZM6mBCJnXcIJN6bpBJHTvIpI4bZFLPDTIZjx1qg0BJZfIL3/wxvfzGGvIuqyFN0BeWBonTFSCTdvSKIZMyhfHuf62lu1kiD7W4cyE/fEk2E+vAgcHntJKHrkoSnUWtMg8yu+bg9559lj7D8yBP/tOibEVeSkKij63XfJLarppnd5E9tDVkUgcWMqnjBpnUc4NM6thBJnXcIJN6bpDJeOxQGwRKKpMyT/L6q+Z2G9Lamwl4itEFIJN2FOPK5L/dXetEIk1GVpHIW77aSedfGDIPkqVR5FEkcoVnHuRnX3udbnnmafqgJNLh9SJNaZ97SVoir6XUkKF2F9fDW0MmdYAhkzpukEk9N8ikjh1kUscNMqnnBpmMxw61QaCkMikRyB9854vO2pLe0heWBonTFSCTdvS0MvnA/SyRHI3c/p4biRR5vHVBJ839SPBQ1sWcSOf3nEhncWt2Pci5a9fQ3z2zhC7iRDoD33s3c+IdZ52dycSaHH+C3QWVcGvIpA42ZFLHDTKp5waZ1LGDTOq4QSb13CCT8dihNgiUVCYRmUSHEwK2MvmbX7sSaZb2+OCkD9YrAAAf/ElEQVQ5XU4k8vIru0ukLOEhAvl7XtJjW6e77uNUlsb/xvMgP/bE4zRq1TuZRuicOt3NxMpzIROnnFoWjQOZ1DUTZFLHDTKp5waZ1LGDTOq4QSb13CCT8dihNgiUVCZlOOu9v15ED95zh7PWpJSVazY7S4OUc0ZXRCbtXkhRZfIPv69xJHINrxUpZdZpLJEcibzmE90l8kmOPopE/pmjkVJGHzhAC3gpj888/SRNeunFzAl2HTPGHcI675PUce4FdifeB7aGTOoaATKp4waZ1HODTOrYQSZ13CCTem6QyXjsUBsESiqTgjtoaZCgoa/l1DSQSbvWKiSTf+YlPiSxzoo3XYmcflKKh7Mm6LobciVS1oQUgfwdL+mxlSOStckkXc/Rx68tWUKzn3oic1Kp+gZ3CCsLZNtHr7Q72T62NWRS1yCQSR03yKSeG2RSxw4yqeMGmdRzg0zGY4faIFBymeyPyCGTdq0aJpNPPs6RSJbIl19yJXLCRJHITvqbz2Wzrsrzshbk7w4fpD+lo5BXLl9G8zkKedUTi6mutTVzMm2XXeEKJItkqqHR7iT76NaQSV3DQCZ13CCTem6QSR07yKSOG2RSzw0yGY8daoMAZLIIfQAyaQfRL5PPLa121oqUeynHHudK5PwvZyVyD0cdRSB/zxlZN/FcyPPfWkHXPfkkffapJ2nknt2ZE5Chq2YYqwxp7W8FMqlrUcikjhtkUs8NMqljB5nUcYNM6rlBJuOxQ20QKLlMShKe5gOHAsn7158sl+aBTNq1lJHJhX/pcCKRTz1R4+xg5KiUk1hHbrzEo1OWtB51hrIuPHqIhh45Qp9f+AjdvGghnbx+XeagiZmnOEl0JAopSXX6c4FM6loXMqnjBpnUc4NM6thBJnXcIJN6bpDJeOxQGwRKKpPX3HQ7jRo5lH75s9v6FXnIpF1zvr2ihu67p57+8Ae33qBBxAKZoFu/1kkNDUR7nbmQhxyJXJ/ooNnvrHQkcj7fannNSCnJcePdTKzXcCIdXtajUgpkUtfSkEkdN8iknhtkUscOMqnjBpnUc4NMxmOH2iBQUpkMW2ey3JsBMhmtBSUrqyTWefg/3UhkbS05w1klEjl0WIqea+OMrIcP0cMchZRyE0cgb3l0EZ3z+muZA7RfchkdvfGzjkhWYoFM6lodMqnjBpnUc4NM6thBJnXcIJN6bpDJeOxQGwQgk0XoA5DJ/BA3baxy5kT+9v+5EinlG98g+uyX2qh2FEchj7bQQxyFXNvRQSdt3Upf4Ajkf3l0IQ1rbna27Ro2jI7+9eccieycMbMILVa+u4BM6toOMqnjBpnUc4NM6thBJnXcIJN6bpDJeOxQGwRKKpMyzPWSOWfRgvn9K6oEmQx+IW1/TySylh64n0OQ6XLT/E766teStH9iB/3b+030nyyRUuYteYa+smgRXfLsksy2HWfPpqOfZon89GeIarIiWskvW8ikrvUhkzpukEk9N8ikjh1kUscNMqnnBpmMxw61QaCkMilrTP703t/Rskfu6lfkIZO5zbl3b5UznPUXd2cl8sa/SdLfLGinV485SP/Jkch3OtppbFOTE4X8Kg9nPf7dbZmdOFHIT3+WOmaf16/6STEuBjKpowiZ1HGDTOq5QSZ17CCTOm6QST03yGQ8dqgNAiWVSZkzma8gm2t5d8iWg24k8m6+dSbca7n2r5J0yd8epuVj9tODh1uoi5+7+LXXaAEPY72W50Oa0jn9ZB7K+lknEtk1YkR5g+jBs4dM6uBCJnXcIJN6bpBJHTvIpI4bZFLPDTIZjx1qg0BJZbK/4q70yGR7O9Hd/1LrzIvk1Tuc8rGrk3T6N/fT82MP0FJe3qORI5GfX7iQ/pYFcjpnZzWl7ePXOPMh2y69vL92j6JeF2RShxMyqeMGmdRzg0zq2EEmddwgk3pukMl47FAbBCCTRegDlSqTqRQ5kUi5NTe5C0N++GMJmvhfm2jZ6AO0gZf1OGPtWvoSD2OV4awNLJVSuo49jqrmz6c9195IyQmTitAClbMLyKSurSGTOm6QST03yKSOHWRSxw0yqecGmYzHDrVBoOQyKfMmb7/zvhzyP/jOF2ne5ReWbWtUokze/wtXInftdCXyg9e10thb99HS4QfpSKqLPv3YX+hWjkJe8NKLmXZt/9BcZyhrx3U30OhhDbR7f1vZtnlvnThkUkceMqnjBpnUc4NM6thBJnXcIJN6bpDJeOxQGwRKKpN33f8w3fvrRfTgPXfQrBmTHfor12ymG275Pt38mavLNstrJcnk//sVz4nk5DrbtroSOeNzh2jw5/fRq0MP0aQdO5wI5M08H3L07t3O/1MDBqbnQn6WEqed7jxXU10FmVS+90AmdeAgkzpukEk9N8ikjh1kUscNMqnnBpmMxw61QaCkMjln3gK6/qq53aRRJPOhR5eUbZbXSpDJ3z9Y40Qi162tdl41J361iWpvaKbNA1vpyuXLHIn85NNPZV5RiQ+c4a4Nyct6pBoH5LzSIJP6Nx7IpI4dZFLHDTKp5waZ1LGDTOq4QSb13CCT8dihNgiUVCYlm2vQkFYz9BXZXPteh1z4R5ZIjkSufJslclSCjrmliTquaqaao030eZ4L+WWWyOmbN2VOvPW6G51IZPuFF4VeDGRS386QSR07yKSOG2RSzw0yqWMHmdRxg0zquUEm47FDbRAoqUwiMlk+HW7xX9xI5GuvsESe0kpDPt9Ehz7cTBesWMES+YgTieTO41xQ56QpTgRSIpFdY8YWvEjIZEFEoRtAJnXsIJM6bpBJPTfIpI4dZFLHDTKp5waZjMcOtUGgpDKJOZN9v8MtedqVyOeXsUR+pIUaP72POj7Q4sijRCLPf2tF5iLaPnolS+Rnqe1jV1tdGGTSClfOxpBJHTvIpI4bZFLPDTKpYweZ1HGDTOq5QSbjsUNtECipTApuZHPtm53uheXVjkQ+w/d0bRPVXN9EJydWs0T+kb7AEjm8pcU58a5Ro+jojZ91hrJ2TjtJdTGQSRU2pxJkUscOMqnjBpnUc4NM6thBJnXcIJN6bpDJeOxQGwRKLpP9EXk5J+B5/VVXIh97p5Pok81U9VdN9MnljztRSEmsY0rHuRe4Q1k5Ehm3QCb1BCGTOnaQSR03yKSeG2RSxw4yqeMGmdRzg0zGY4faIFBSmfzCN39ML7+xhvyJdiQxz+wzZ9Avf3ZbWbZIOcqkJNSRxDoLN7cT3bCPxp2x3hnKKpHIiTt3uu1QW+vIo9w6PnhO0doGMqlHCZnUsYNM6rhBJvXcIJM6dpBJHTfIpJ4bZDIeO9QGgZLKJBLw9H6HW7+uiiORdfTQllZHIi9peMKRyBsXP5Y5ucTMU1ggP0etLJFdQ4cW/aQhk3qkkEkdO8ikjhtkUs8NMqljB5nUcYNM6rlBJuOxQ20QKKlMYmmQ3utw27axRHIk8tfbjhDd2ERf3fR/aP4jf6TT163LnFTrvE86Etn+4Ut69EQhk3q8kEkdO8ikjhtkUs8NMqljB5nUcYNM6rlBJuOxQ20QKKlMIjJZ+g73/i6JRNbSfdsPU8Nf7aCvr7iPvvbb39C4PXuck0mMP4HaZCjrjZ+h5AknluQEIZN6zJBJHTvIpI4bZFLPDTKpYweZ1HGDTOq5QSbjsUNtECipTGJpkNJ1uP3NrkTevesgDfv4Fvr6C7+krz34Gxp58KBzEu1nn0udZ5xFB3/4v0p3UukjQSb1yCGTOnaQSR03yKSeG2RSxw4yqeMGmdRzg0zGY4faIFBSmRTcWBqkZzvdER7F+q8/r6V79h2gY+auoa89/Sv6+m/+gxo7ONGOSOSH5tKRL99KbZd/rGdPJM/eIZN69JBJHTvIpI4bZFLPDTKpYweZ1HGDTOq5QSbjsUNtECi5TPZH5H0hm2snr+zxz7+oonv3HaRx57xJX//T/6UFD/42g7vtsivoyH/5CrVf9OFebwLIpL4JIJM6dpBJHTfIpJ4bZFLHDjKp4waZ1HODTMZjh9ogAJksQh/obZn86QNE9zYfoCkzX6Sv/eE/6It/fDhzVZJU58iXbqWO2ecV4UqLswvIpJ4jZFLHDjKp4waZ1HODTOrYQSZ13CCTem6QyXjsUBsEIJNF6AO9JZP/9GAX/Z8DB2jmic868yH/+i9/zlzN0Rv+xhnOmjjt9CJcYXF3AZnU84RM6thBJnXcIJN6bpBJHTvIpI4bZFLPDTIZjx1qgwBksgh9oNQy+U8LE3TfoYN05qAnnfmQn1jyTOYqjtz0RWc4a+e0k4pwZT2zC8iknitkUscOMqnjBpnUc4NM6thBJnXcIJN6bpDJeOxQGwQgk0XoA6WSyZ8sbqN/P3KQLuj4i7O8x+UvPO+cfaq21olCynDWUi3vEQcbZFJPDzKpYweZ1HGDTOq5QSZ17CCTOm6QST03yGQ8dqgNApDJIvSBnpbJO59tpV8dOUCX7FnoSORFr7/mnHVy8GA6+uWvOCLZNfqYIlxJaXYBmdRzhkzq2EEmddwgk3pukEkdO8ikjhtkUs8NMhmPHWqDAGSyCH2gp2Typy+00X2tzXTVhofo67/9Dzp71SrnbDtZHFtZIA/zcNbUoMFFuILS7gIyqecNmdSxg0zquEEm9dwgkzp2kEkdN8iknhtkMh471AYByGQR+kCxZfLuV1rpnoMH6JOrfuUk1jl140bnLBMnnMgS+RU6zCJJNTVFOPPe2QVkUs8dMqljB5nUcYNM6rlBJnXsIJM6bpBJPTfIZDx2qA0CkMki9IFiyeSv3minf967n25c8W/OcNYp299zJXL6yTycledEcnKd/lAgk/pWhEzq2EEmddwgk3pukEkdO8ikjhtkUs8NMhmPHWqDAGSyCH0grkz+fmUH/cuW9+m6Ffc42VmP27fPOavWU0+n9ptvJVnmoz8VyKS+NSGTOnaQSR03yKSeG2RSxw4yqeMGmdRzg0zGY4faIACZLEIf0MrkY2sTdNfKLXTtm/c4kcjhhw45Z3PorPOo89avUOs11xbh7PreLiCT+jaBTOrYQSZ13CCTem6QSR07yKSOG2RSzw0yGY8daoMAZLIIfcBWJp/b3Ek/f341Xb3iXkciGzo6nLNoPu/DRAu+Qm2XXVGEs+q7u4BM6tsGMqljB5nUcYNM6rlBJnXsIJM6bpBJPTfIZDx2qA0CkMki9IGoMvn69k66+/E36WNv3Etf/d1vM0feddGVVP/1r1D7h+YW4Wz6/i4gk/o2gkzq2EEmddwgk3pukEkdO8ikjhtkUs8NMhmPHWqDAGSyCH2gkEyu39tFd//nC3T5a3fTFxY+kjnitkuupUHfWkAdZ88uwlmUzy4gk/q2gkzq2EEmddwgk3pukEkdO8ikjhtkUs8NMhmPHWqDAGSyCH0gTCZ3HmSJ/NUSuvSlu+nGJx7LHGntlX9No769gBKnnlaEo5ffLiCT+jaDTOrYQSZ13CCTem6QSR07yKSOG2RSzw0yGY8daoMAZDLdB+66/2F66NEltOyRu7r1imtuup02bt3hPD914jha+MAPcrbxy+ThjhT9/K6/0Nzl99C8Zc9ktn3rmi/Scd9bQJ1TplV0z4NM6psfMqljB5nUcYNM6rlBJnXsIJM6bpBJPTfIZDx2qA0CFS+TjyxeTrffeZ/TE0YOH9JNJr/wzR9TU3NLRiBFLEeNHEq//Nltmd7jlcm77/wDXbT0Hrr0tRec/ydqaum1T9xCk//bAkqOG48exwQgk/puAJnUsYNM6rhBJvXcIJM6dpBJHTfIpJ4bZDIeO9QGgYqXSdMFwiKTc+YtoG/d/Cmad/mFzqYinz+993c50iky+av/+Rua8/Q9dOE7rzvbtQwcQq9efTOd8g9fo65Ro9DTPAQgk/ruAJnUsYNM6rhBJvXcIJM6dpBJHTfIpJ4bZDIeO9QGAchkug8EyeTKNZvphlu+Tw/ecwfNmjHZ2dL/3L/97b30wb/8nM7a8I7z/93Dj6FXr7qZzvrh1yk1YCB6WAAByKS+W0AmdewgkzpukEk9N8ikjh1kUscNMqnnBpmMxw61QQAyGVMmqarK2cPWsePptY/fSh/9398i8xy6VzCBKmY2sLGGjrR2ApElgQENtdTRmaRkMmVZs7I3r6utdoZXt3UkKxuE4uqHDKyjQ0cTipqVXaWxvoaSXSlKdHZVNgjLq6+pqaL62hpqbcfngyU6GjSglo62JSmVwueDLTt5n0MBARDQEYBMxpTJ313+xf/f3h2E2lGdcQCfZbswxJeCUAvaYIUkZJOFgRDBVXAVUzd1IwSVEKHZ2IWagAshRhfaRRYGqxIQim3BxnQjIlRIECzUTbCBVoKFuiho2tqVu3Kuzut98+69M9+Z+/LOnfm9Tci7c2bO/M53587/zZm51Tc/3lf99OWf543ACFsJk/mDLkzm2QmTeW6plTCZZydM5rkJk3luqZUwmW8nTObbaUlAmFwQJtNLXe+ZVErdBUxz7W7VXNI01zw701zz3FKrH+76ftX2Xbr5ax9uS9Nc88bWNNc8t9Tqjtu/V335n28mV8T9xATScc4PAQJ5AsJkS5iMPs01bxjG1UqYzB9vYTLPTpjMcxMm892EyTw7YTLPTZjMd6uPc/3WoDWB8QqMPkxOfzVIXQZHjxyqzp0+sV4V0e+ZHG85ddtzYbKb06ylhMk8O2Eyz02YzHcTJvPshMk8N2Ey302Y7GenNYHRh8lllIApYDFFYTLmNb20MJlnJ0zmuQmT+W7CZJ6dMJnnJkzmuwmT/ey0JiBMLqEGhMkYojAZ8xIm873qlsJkvqF7JvPshMk8N2Eyz02YzHcTJvvZaU1AmFxCDQiTMURhMuYlTOZ7CZP97YTJPENhMs9NmMxzEybz3YTJfnZaExAml1ADwmQMUZiMeQmT+V7CZH87YTLPUJjMcxMm89yEyXw3YbKfndYEhMkl1IAwGUMUJmNewmS+lzDZ306YzDMUJvPchMk8N2Ey302Y7GenNQFhUg0QIECAAAECBAgQIECAQFhAmAyTaUCAAAECBAgQIECAAAECwqQaIECAAAECBAgQIECAAIGwgDAZJtOAAAECBAgQIECAAAECBITJzBp46PiZ6rPPv5i0vufuO6t3L57NXNMwmkU9Fi3/7AuvVZff/2gTzKcfXhwGVsteRC3T6s6/8U712z/8sbpy6fwojNJOLtNJzXU/nj321EvVx59cX6+zMR3/IjXX5jTmmos4Np3GVG/R41yblZqLn7Olz9YLb12uzj7zRHXswcOj+Xy1owQiAsJkROu7ZdNJwlc3v14PkOmDcdfajurNV57OWNvqN4l6tC2fPvD+8te/jzKgt9k0q+XSe1erMy++Pvn12s7bRhMml+2k5rofz+4/dmpDnaX/H75vf3Xu9InVP5gt2INozbU5jbXmoo7p83X6j7Vj+rxdtpWa+/aP/l1rqP4j7c1//1eYHPTR3c71FRAmMwTTScIvTv5s/a9U6YT+5Qu/Gc2JfJMs6tG2/Fg/8JJrm828ch3blcllO6m5/OPZWOxya65+zzadxuLW9/Oi2X5Mbmou4wRtRpMcx+nP1H0PHBcmlzMU1jJQAWEyOLDXrt+oHnny+ertV5+r9u/ZPWk963fB1a7s4lGPLss3p+KM5YpbFxthcvb7ret7cF7oVnP5x7P0V/6999416CuTfd6b9Xu26TTGmluGYwoGP9n9o8HPBNoKKzXX7Zyt+TkhTK7sKaqO3yIBYTIIvYwDfHCTRS8e9YguX09JSf8O/b7UHJu6OMZ0ZfJWOKUTfzX3/4A57yBUn5wO/X7mPjWX7Lo4jaHm+jimEJmmG47lnslbYaXmNh/jZn2WCpNFn4bqXAECwmRwEPoc4IObWonFox7R5RNCfV+gE9Zv/6o660eY3DxjoI+Tmts4+2KeZXowxfQsjZU4aGV0Mue4Nf2Hni5OY6i5Po61Z/M+wozhXIkmt8JKzW0Ok80HZ00Xy8lHj1anHn94JepHJwncSgFhMkM7Z/59xmZWpknUI7r8GD7w6sGO2kyfsI7paa5b7aTmFt8D3uVK28ocwDp2NKfmIk5jqbkcx+khGotT2uetthqLZV9HVyY7HiQtNloBYTJj6KNPWMvYxEo1afNoTqVpW37WUxDHcI9MGvQ2m3nTksZ0ZXIrnNTc/Ke5NmtuDFPjZh2Ao+/NNqex1lzUsenU5rpSH54tnV22lZqb/TTXtpoSJof0rrIvWyEgTGaqRr4nK3MTK9VskcesA3Xb8vV3eCaEgwf2DP5hC9OD3WaTlq3vH53+apB6HUePHBr0w1Dq/Vym0/S61NzG782dfv/WU+9mHZzG8D1sXWuui9OYa66rY6qzptNY7pnMOc61Wam52d8zKUyu1OmmzhYoIEwWOCi6RIAAAQIECBAgQIAAgdIFhMnSR0j/CBAgQIAAAQIECBAgUKCAMFngoOgSAQIECBAgQIAAAQIEShcQJksfIf0jQIAAAQIECBAgQIBAgQLCZIGDoksECBAgQIAAAQIECBAoXUCYLH2E9I8AAQIECBAgQIAAAQIFCgiTBQ6KLhEgQIAAAQIECBAgQKB0AWGy9BHSPwIECBAgQIAAAQIECBQoIEwWOCi6RIAAAQIECBAgQIAAgdIFhMnSR0j/CBAgQIAAAQIECBAgUKCAMFngoOgSAQIECBAgQIAAAQIEShcQJksfIf0jQIAAAQIECBAgQIBAgQLCZIGDoksECBAgQIAAAQIECBAoXUCYLH2E9I8AAQIECBAgQIAAAQIFCgiTBQ6KLhEgQIAAAQIECBAgQKB0AWGy9BHSPwIECBAgQIAAAQIECBQoIEwWOCi6RIAAAQIECBAgQIAAgdIFhMnSR0j/CBAgQIAAAQIECBAgUKCAMFngoOgSAQIECBAgQIAAAQIEShcQJksfIf0jQGAQAuffeKe68NblTfty8tGj1anHH67uP3Zq8tqVS+c3LZNeW9u5o3r34tnJa23r2vfA8YVmaztvm2znsadeqj7+5PrMZc8+80R17MHD1UPHz1Sfff5FVf+/XvjSe1erMy++Xt1z953r/WquqEs/Dt+3v7r8/kfrTY8eOVSdO30itN0u+zGIIrITBAgQIECgMAFhsrAB0R0CBIYnUIedt199rtq/Z/f6DqZQ+MGVP6+HsRS+Dh7YU735ytPryzz7wmvV1T9dWw+ZXdfVDH3NMJheT+v66ubXc8NgWqYOk81+1b9fFCanR7IOn7P6Meu1yHa77MfwqsoeESBAgACB7RcQJrd/DPSAAIGBC6SQWF9xW7SrzVB17fqN6pEnn99wVbDrupYZJnet7ZhcwazDcN2vFDDbwmiXfswLk123K0wO/A1k9wgQIECgWAFhstih0TECBIYi0Jymumi/UjD6241/TK5EpqtzKVBNX6mMrCttZ9EVwS4hLPVh7713Vf/88l/VHT+4fTIFNV0tTT/pd1sZJrtut8t+DKWW7AcBAgQIEChJQJgsaTT0hQCBQQrUgW5652ZN96xfn77X8NMPL24wia6rLUx2uWcyhbqDB/ZO7pFM/Un9S1cpf/mr3215mOyyXfdMDvJtY6cIECBAYAUEhMkVGCRdJEBgOALN4DNr+msdAOuH88zb+8i6+twzmcJk/VCc1Jf6amnkimDOPZNdtxvpx3AqyZ4QIECAAIHtFxAmt38M9IAAgZEKpOmi6UmmzauPs+6VbCOat662K5Nt01Traa4pTNZPka2DaSTE9QmTbduN9KPN0esECBAgQIBAdwFhsruVJQkQIBAWSMHw17//YHJlr/lTh6TmU17nhcmcdS0zTKb+p3s2668viYS4PmGybbuRfoQHUAMCBAgQIEBgroAwqTgIECCwhQJ1MEybaF6BnPVVIGm5RWEyPd01sq5lh8lpqkiI6xsmF2030o8tHGqrJkCAAAECoxMQJkc35HaYAIHtEJh+qE69/Xn3RLZNc42sqy1Mdn0Az6wrq5EQN68f9fTc2qS+h3R6em1zvJrb9QCe7aho2yRAgAABAlUlTKoCAgQIECBAgAABAgQIEAgLCJNhMg0IECBAgAABAgQIECBAQJhUAwQIECBAgAABAgQIECAQFhAmw2QaECBAgAABAgQIECBAgIAwqQYIECBAgAABAgQIECBAICwgTIbJNCBAgAABAgQIECBAgAABYVINECBAgAABAgQIECBAgEBYQJgMk2lAgAABAgQIECBAgAABAsKkGiBAgAABAgQIECBAgACBsIAwGSbTgAABAgQIECBAgAABAgSESTVAgAABAgQIECBAgAABAmEBYTJMpgEBAgQIECBAgAABAgQICJNqgAABAgQIECBAgAABAgTCAsJkmEwDAgQIECBAgAABAgQIEBAm1QABAgQIECBAgAABAgQIhAWEyTCZBgQIECBAgAABAgQIECAgTKoBAgQIECBAgAABAgQIEAgLCJNhMg0IECBAgAABAgQIECBAQJhUAwQIECBAgAABAgQIECAQFhAmw2QaECBAgAABAgQIECBAgIAwqQYIECBAgAABAgQIECBAICwgTIbJNCBAgAABAgQIECBAgAABYVINECBAgAABAgQIECBAgEBYQJgMk2lAgAABAgQIECBAgAABAsKkGiBAgAABAgQIECBAgACBsIAwGSbTgAABAgQIECBAgAABAgSESTVAgAABAgQIECBAgAABAmEBYTJMpgEBAgQIECBAgAABAgQICJNqgAABAgQIECBAgAABAgTCAsJkmEwDAgQIECBAgAABAgQIEBAm1QABAgQIECBAgAABAgQIhAWEyTCZBgQIECBAgAABAgQIECAgTKoBAgQIECBAgAABAgQIEAgLCJNhMg0IECBAgAABAgQIECBAQJhUAwQIECBAgAABAgQIECAQFhAmw2QaECBAgAABAgQIECBAgIAwqQYIECBAgAABAgQIECBAICwgTIbJNCBAgAABAgQIECBAgACB/wHHwFFL00NTEgAAAABJRU5ErkJggg==", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "PlotlyHelper.combine_plots(fig_list=[fig_fixed, fig_variable, fig_exact],\n", " xrange=[0, 0.4], y_label=\"concentration [A]\",\n", " title=\"Variable time steps vs. Fixed vs. Exact soln, for [A] in reaction `A<->B`\",\n", " legend_title=\"Simulation run\") # All the 3 plots put together: show only the initial part (but it's all there; you can zoom out!)" ] }, { "cell_type": "markdown", "id": "3d37253d-7510-4384-abd6-4bb5cc18ef95", "metadata": {}, "source": [ "#### Not surprisingly, the adaptive variable time steps outperform the fixed ones (for the same total number of points in the time grid), at times when there's pronounced change. \n", "If you zoom out on the plot (by hovering on it, and using the Plotly controls that appear on the right, above), you can see all 3 curves essentially converging as the reaction approaches equilibrium." ] }, { "cell_type": "code", "execution_count": null, "id": "353e5490-2cca-4f05-8f60-b6a34524a715", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "d83e4e09-853c-46af-9669-295dcff914b9", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "4375bea1-4a14-486f-906d-92b5ba588e79", "metadata": { "tags": [] }, "source": [ "# PART 5 - Repeating Part 4 with a coarser grid\n", "#### The advantage of adaptive variable step will be even more prominent" ] }, { "cell_type": "code", "execution_count": 22, "id": "71c89174-9c43-428f-bac5-af9ef17e35d3", "metadata": {}, "outputs": [], "source": [ "# A coarser version of the variable-step simulation of Part 1\n", "dynamics_variable_new = UniformCompartment(chem_data=chem_data, preset=\"fast\") # Re-use same chemicals and reactions of part 2\n", "\n", "dynamics_variable_new.set_conc([10., 50.])" ] }, { "cell_type": "code", "execution_count": 23, "id": "e38d2dcb-1ea1-4728-a26f-126821669d6a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "14 total step(s) taken in 0.031 sec\n", "Number of step re-do's because of elective soft aborts: 3\n", "Norm usage: {'norm_A': 13, 'norm_B': 9, 'norm_C': 9, 'norm_D': 9}\n", "System Time is now: 1.4712\n" ] } ], "source": [ "dynamics_variable_new.single_compartment_react(initial_step=0.1, target_end_time=1.2,\n", " variable_steps=True)" ] }, { "cell_type": "markdown", "id": "aa18698d-2dea-4a83-a166-de67565e918b", "metadata": {}, "source": [ "### Note that the variable-step simulation is now taking 14 steps instead of the earlier 19" ] }, { "cell_type": "code", "execution_count": 24, "id": "6ce6eae6-0c4a-4908-9670-d096445d08b4", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "SYSTEM TIME=%{x}
A=%{y}", "legendgroup": "", "line": { "color": "darkturquoise", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "", "orientation": "v", "showlegend": false, "type": "scatter", "x": [ 0, 0.021599999999999998, 0.043199999999999995, 0.0648, 0.0972, 0.12312, 0.16199999999999998, 0.20087999999999998, 0.2592, 0.31751999999999997, 0.40499999999999997, 0.5362199999999999, 0.73305, 1.028295, 1.4711625 ], "xaxis": "x", "y": [ 10, 11.512, 12.860704, 14.063747968, 15.673420797183999, 16.75254546186895, 18.161450624081628, 19.29646462276016, 20.668015538763296, 21.63962220765992, 22.67205145402947, 23.543318495040737, 23.992761598146394, 24.00344710792273, 23.995814047582883 ], "yaxis": "y" } ], "layout": { "autosize": true, "legend": { "tracegroupgap": 0 }, "shapes": [ { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0, "x1": 0, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.021599999999999998, "x1": 0.021599999999999998, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.043199999999999995, "x1": 0.043199999999999995, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.0648, "x1": 0.0648, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.0972, "x1": 0.0972, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.12312, "x1": 0.12312, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.16199999999999998, "x1": 0.16199999999999998, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.20087999999999998, "x1": 0.20087999999999998, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.2592, "x1": 0.2592, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.31751999999999997, "x1": 0.31751999999999997, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.40499999999999997, "x1": 0.40499999999999997, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.5362199999999999, "x1": 0.5362199999999999, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.73305, "x1": 0.73305, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 1.028295, "x1": 1.028295, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 1.4711625, "x1": 1.4711625, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" } ], "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "VARIABLE time steps (time steps shown in dashed lines)" }, "xaxis": { "anchor": "y", "autorange": true, "domain": [ 0, 1 ], "range": [ -0.0009755719496021219, 1.472138071949602 ], "title": { "text": "SYSTEM TIME" }, "type": "linear" }, "yaxis": { "anchor": "x", "autorange": true, "domain": [ 0, 1 ], "range": [ 9.222030716226515, 24.781416391696215 ], "title": { "text": "[A]" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5MAAAFoCAYAAADKJa96AAAgAElEQVR4Xu29CZglRZmo/VVXd1fvO900KCCjjOhwr8oMKsLAHRFBFFv8wfaiXgYRQcDxx1EQHDZlc8EFGUGE6XFtwR8axCsyjHAFcRl1HBGZi8qwL713VS9V1dufkVVZnZWVeTIjIzLzq3Pe4+MD1Ikt3y/inHhPZER27QxewgsCEIAABCAAAQhAAAIQgAAEIGBBoAuZtKBFUghAAAIQgAAEIAABCEAAAhAICSCTdAQIQAACEIAABCAAAQhAAAIQsCaATFojIwMEIAABCEAAAhCAAAQgAAEIIJP0AQhAAAIQgAAEIAABCEAAAhCwJoBMWiMjAwQgAAEIQAACEIAABCAAAQggk/QBCEAAAhCAAAQgAAEIQAACELAmgExaIyMDBCAAAQhAAAIQgAAEIAABCCCT9AEIQAACEIAABCAAAQhAAAIQsCaATFojIwMEIAABCEAAAhCAAAQgAAEIIJP0AQhAAAIQgAAEIAABCEAAAhCwJoBMWiMjAwQgAAEIQAACEIAABCAAAQggk/QBCEAAAhCAAAQgAAEIQAACELAmgExaIyMDBCAAAQhAAAIQgAAEIAABCCCT9AEIQAACEIAABCAAAQhAAAIQsCaATFojIwMEIAABCEAAAhCAAAQgAAEIIJP0AQhAAAIQgAAEIAABCEAAAhCwJoBMWiMjAwQgAAEIQAACEIAABCAAAQggk/QBCEAAAhCAAAQgAAEIQAACELAmgExaIyMDBCAAAQhAAAIQgAAEIAABCCCT9AEIQAACEIAABCAAAQhAAAIQsCaATFojIwMEIAABCEAAAhCAAAQgAAEIIJP0AQhAAAIQgAAEIAABCEAAAhCwJoBMWiMjAwQgAAEIQAACEIAABCAAAQggk/QBCEAAAhCAAAQgAAEIQAACELAmgExaIyMDBCAAAQhAAAIQgAAEIAABCCCT9AEIQAACEIAABCAAAQhAAAIQsCaATFojIwMEIAABCEAAAhCAAAQgAAEIIJP0AQhAAAIQgAAEIAABCEAAAhCwJoBMWiMjAwQgAAEIQAACEIAABCAAAQggk/QBCEAAAhCAAAQgAAEIQAACELAmgExaIyMDBCAAAQhAAAIQgAAEIAABCCCT9AEIQAACEIAABCAAAQhAAAIQsCaATFojIwMEIAABCEAAAhCAAAQgAAEIIJP0AQhAAAIQgAAEIAABCEAAAhCwJoBMWiMjAwQgAAEIQAACEIAABCAAAQggk/QBCEAAAhCAAAQgAAEIQAACELAmgExaIyMDBJoj8PoTzpbnVq6Vc854p7zn+Dc21xBqLkzgxDM/GcbsX2+6qnAeEg4R+PtLviw/+NHP5aF7l1WC5OWHnyRH/82r5TMXnF5J+VGhDz3ymJxw6kVy0juOko+cvrRlXZ/+8nJZ9p075aavXCQv32+fSttlW3gUjzqY2baN9BCAAAQg0AyBcSuTZlJtXq0maGYS95vf/XHMRCT6QjT5syYp0aQ9GZa0L9F4eVH6rMm+mbyYV9aX8V3/59/k/73wmtTe8Iq/eLF880sfH/VeVHeriUerMkcmOzmTtVaTOnNNuy+cN+4my+Ntkh/F4HMXnyFHHvZXI/0g6zqiCWxav2nm46Z4rWb8mT6V7O/FS9CTcrz1s1bk6u5TyOSQTGr6jP3azT+UK6/5Nj9o6fmIoSUQgAAEGiUwbmUy+vU2ObEekaPhX4LTpC0SOpM2S/rSZDWSsixxMuW2mrhHX8KtBC6qI/kLdtYkzkYmi/wqntUbkclGx6m0WtlAJpuNTV7tyGQeoez3kUl9MmmilfVDbflIkxMCEIAABMYrgXErk9HkOmuFL0s2I6EzEmpWALPkL2vls5XE5slkNKn8X8HtiVm/7GbJpOlgaRMrDTI5Xjv/eJrkt5pUj6frKNpXWJksSqq90yGTQzKp7WVz2662ttMeCEAAAhDwS2DcymTer6NZMhifeLcSMd8ymfzyzRLPVjKZ9mtwHTKZdhuv4R+tCicn/tE1mFXfHwa37ZpbjaNXPI/ZRxa9sm7Tja8im7Q2ewUjXvEhE93WnPaeSRdvR3Il2byfvC06unbzA0H89uS0HynSyit6PVl7u/KuI5kv/mOK+UEjLQZJ5mm3gqfdOm2zxyt5G3l8tT/rFvN4O6IfdaLYpt0tEF37f9t/3/DHm+iV9gNUsrx4/877yG3Vz6LPKcP5i5/8YLhvrlWbzXt51xYfX/F9s2kCnpSx6POvaFvSrr1Vn/rn4BbItPGexzAcW8N3k8TTmrgadvHYp/WPVneLxMtLjkubPmLKSX4WZv0YmUwXXUeRu0PS9kwmYxv/PjHtMnsso1dWHcl+mjYObD6j2vFHrCL9lDQQgAAEIDCawLiWyay9G3m3ikZftq3ELUsmW8lbq5XJ5AQhq5ysNmX9vQ6ZjE+i0sQiSyaTE/L4BCt+e3La6kN0vfEJT6t4JQd2WvyS8Wk1GUrbn5jGOprYxieVaavmaSvaRWJnriu67qxbultdR9bE35Qbl7/4RDP59+ThMdG1xEU477bzeHyScUjj1WplMmprWvvj/TNtf3JaH0qLQ9Hb+Ir2MyNYSeFJ+4Egrd60vyXzxuU+ziXJMSqrSFuyvixb9am8cZ1VZtbYTrt2c02m78X3DSfjkNan0upo1UeSP/REYz0ptuaa4nv309ps89llI5Om7rg8xn8sivNJ23OZHIe2n1GaDwpiogcBCEAAAvURGNcyaTClCVzWl1zWl3RyMmD+O22SmHfwQCuZzBKu5K/IeYflJIWiiJDklWmuN++0xFa3m7VamYyvnGRNdNL+niUTUQxbtbfVLVgmf3SaYpaEZa38RP3ilX/xkpHTH/PaGU3ss+oy137gf//zlqc2RnyyVv7KyGSyHxUdM3l7Nw2jVofmtGIbj00W16w+FH0WxMdT1mpusi+3imGrkzdd+1myHa3YJK8lGXPD7jcP/TFcFYxLkMkXZ5LVV2xuJ221MhkXmFbXk/bjT9qBS0XblRwjrfpJvJ9l9ZFkn8gaH1EfiJhn1WtzW6iNTKatQiavKYth8kcq28+ovB+56pvGUBMEIAABCDRJYNzLZNZqUdrEJG3SmLWiYnMrVRTAvFtX037pTopsq1+wo4lKfAJhI5NFbrHK6ow+ZDJrcpn8e6uJV55YxWNh/r3VbaRZk6dWv7ibPHFhyhKR5DVF/MqcrJon0D5ksqjot5qkm2v899/9oeWpvvFbGbNWWiNpt5ULE4u46GeJQvIaopWkMo87iFa2yvSz5JjK63fxFeLkODDXbm61/u3Dj8qzK9eEQh/1wbyVZsO7qLRF0h5nldUnispkq/Ge1a6025JN26I+lbVSm/x8KyqTeWMs+mzNam+TMpn1GZUUYdvPKGSyyakbdUMAAhDQQ2Dcy2RSvvKEJQt9ciKZXJmMJi+tJpxZMpm15zBqS3xSnXc7VPIWqnaUySIrqa1EJCmU8ZjbTKyz+kpyf1+a9KT1w7R+UETwNclk1iQ+zipvlTttb5zJn7x9MI1r1h7RqP64rBeVSZM3rVyb/azJvmLTz6LrbiV0yXEfFwHDyezXNeXEBfJ//+vP5M57fjHmFsy0Z142KZOtpDPZrnjfSdvfnPZZGo9N0dt7kwKWtY83Kjv6XsiSziZlMrkHOtlX036cjKfJ+oxCJvVM5GgJBCAAgSYJjHuZNPDi4pc1KbKZqCXLjAIUlZH15Zolk1mT2qL7euIdJCmP7SiTyV/MfQyQaOITn0zmrUzmSVHUT9Kkp9UKXnQ90QQ1T4zzVmPzVk2KrCLZrkzaHLaTF7+o7rgIZq2mFFn9jP+Y0OqwnVbXEE3Aba/Tpp+5rExGfc+sxC7abW54i2t0e7Fpe3T41eKF80duyY6keTzLZNbqbZHxlvaDoM3KpOGX99xTjTKZXLHPG4/x91t9RiGTNiRJCwEIQKB9CbSFTMZvVTW/0Gc9WzLrFsO0vZBZB/C0+nJNk8m8fZbJFQetK5OtVseK7pnMWzWOrwS1OoAlbziaesyEOb5f0+RJTt6zxKTo7XmtZDKtrs9ccPqophetJ2/S1kqwiu5vKyqTNissaXEy9Rj5ju+tS5Oc5O3EUVlFpCFPJpMTfsMvGZsi9RTtZ0X3KdrsmYz6s7mt2LzMLa5RfzfXY251Te6f1CqTpl1F97dm/SiYjJf5vHrT618zZi9y8nOlqEwWPWwmb2+lzZ0IrQ5SajUOi+6ZTI7PtHGQt8fZnCJr+4NL3uc370MAAhCAwPgi0BYymbxtLrnSkyd00WQmuTJi/h4/pS8+STX/nvwSTZPJvFMhk21rJZPRRCouXXWtTLaaVFQhk1F9WT8MtFo1zMqbjE/e/r8f/OjnI3uw4jJj9qVF8lH0oKa0kyCLxC5PjMz7eYfS+FyZNPWlneZq/m64m0dDtFq9Sdv32+r027SJatpprlG7zD+jQ3NaHc4V/4xIO+kyb9xG15v241Wy3qIyGcmekcC8k2rjcTf/Hh8PrfYL2rQl66us6A8URX8sifepeFzit1RH15f2WR79zZQT5U/ro2mfrUVl0pSdNobN3804No+fiWQ+rd9FK91NyGT0/Zb2+BTTH8wPEebHHdvPqFZ3RIyvaRCthQAEIAABFwJtIZPxSVjWF6aZoLUSkOTEPmtlMpy4xZ6HZsTOyIURj/jL/N2c0mmeK5d3sEd88pG3XzA5uS6yH9O0K/4MxLQOU+SWzuR+uSLPmYyvDtqsTEZtTNvvk8czOdGOykrLl+SX95zJ+IQ1mmCaf8af15hM0+painCPJqymj2Wlz7qOohP/oiuT0bVk9dMi+wzT9l2mTbKT+xhbPWcyalc8fpEkJmOTHENZzzdM+yEpOXbiIpPVz2wFLskn6xmKaRIetSHr88u2LWmfFUX7lI1MmnqS1236xPOr1oWfrfHYJ5mbcR09SzTt0STJz+X4Z5KNTMbHYZJLclwmP7dMnzPfBU3JZPw7Mt72tD2kedcW/w4scj1pfYi/QQACEIBA+xBoG5lsn5BwJeOJgMvtuDbX6Xp7qU1d7ZI2SxTa5fq4Dgg0RaDIyn1TbaNeCEAAAhColwAyWS9vamszAnXJpMGW9RibNkPq7XKQSW8oKQgCIwSKbBsBFwQgAAEIdA4BZLJzYs2VVkCgTpk0zY/2NRW5nbSCyx1XRSKT4ypcNHYcEIhupy+y1WAcXA5NhAAEIAABDwSQSQ8QKQICEIAABCAAAQhAAAIQgECnEUAmOy3iXC8EIAABCEAAAhCAAAQgAAEPBJBJDxApAgIQgAAEIAABCEAAAhCAQKcRQCY7LeJcLwQgAAEIQAACEIAABCAAAQ8EkEkPECkCAhCAAAQgAAEIQAACEIBApxFAJjst4lwvBCAAAQhAAAIQgAAEIAABDwSQSQ8QKQICEIAABCAAAQhAAAIQgECnEUAmOy3iXC8EIAABCEAAAhCAAAQgAAEPBJBJDxApAgIQgAAEIAABCEAAAhCAQKcRQCY7LeJcLwQgAAEIQAACEIAABCAAAQ8EkEkPECkCAhCAAAQgAAEIQAACEIBApxFAJjst4lwvBCAAAQhAAAIQgAAEIAABDwSQSQ8QKQICEIAABCAAAQhAAAIQgECnEUAmOy3iXC8EIAABCEAAAhCAAAQgAAEPBJBJDxApAgIQgAAEIAABCEAAAhCAQKcRQCY7LeJcLwQgAAEIQAACEIAABCAAAQ8EkEkPECkCAhCAAAQgAAEIQAACEIBApxFAJjst4lwvBCAAAQhAAAIQgAAEIAABDwSQSQ8QKQICEIAABCAAAQhAAAIQgECnEUAmOy3iXC8EIAABCEAAAhCAAAQgAAEPBJBJDxApAgIQgAAEIAABCEAAAhCAQKcRQCY7LeJcLwQgAAEIQAACEIAABCAAAQ8EkEkPECkCAhCAAAQgAAEIQAACEIBApxFAJjst4lwvBCAAAQhAAAIQgAAEIAABDwSQSQ8QKQICEIAABCAAAQhAAAIQgECnEUAmOy3iXC8EIAABCEAAAhCAAAQgAAEPBJBJDxApAgIQgAAEIAABCEAAAhCAQKcRQCY7LeJcLwQgAAEIQAACEIAABCAAAQ8EkEkPECkCAhCAAAQgAAEIQAACEIBApxFAJjst4lwvBCAAAQhAAAIQgAAEIAABDwSQSQ8QKQICEIAABCAAAQhAAAIQgECnEUAmOy3iXC8EIAABCEAAAhCAAAQgAAEPBJBJDxApAgIQgAAEIAABCEAAAhCAQKcRQCY7LeJcLwQgAAEIQAACEIAABCAAAQ8EkEkPECkCAhCAAAQgAAEIQAACEIBApxFAJjst4lwvBCAAAQhAAAIQgAAEIAABDwSQSQ8QKQICEIAABCAAAQhAAAIQgECnEUAmOy3iXC8EIAABCEAAAhCAAAQgAAEPBJBJDxApAgIQgAAEIAABCEAAAhCAQKcRQCY7LeJcLwQgAAEIQAACEIAABCAAAQ8EkEkPECkCAhCAAAQgAAEIQAACEIBApxFAJjst4lwvBCAAAQhAAAIQgAAEIAABDwSQSQ8QKQICEIAABCAAAQhAAAIQgECnEUAmOy3iXC8EIAABCEAAAhCAAAQgAAEPBJBJDxApAgIQgAAEIAABCEAAAhCAQKcRQCY7LeJcLwQgAAEIQAACEIAABCAAAQ8EkEkPECkCAhCAAAQgAAEIQAACEIBApxFAJj1EvG/zVunbss1DSRThi8DMqRPDooiLL6L+ytlj/lR5Zs0WfwVSkhcC4Zjp6hLzecZLF4HFwZh5LhgzO3U1q+NbMyMYM12MGZX9gDGjMixixsyEYMz0KvueMfMSXuUJIJPl2Y3kRCY9QPRcBDLpGajH4pBJjzA9FoVMeoTpuSgmxp6BeioOmfQEsoJiGDMVQPVQJDLpAaLCIpBJD0FBJj1A9FwEMukZqMfikEmPMD0WhUx6hOm5KCbGnoF6Kg6Z9ASygmIYMxVA9VAkMukBosIikEnHoFx88cVy9kfOK3Q75fKvXSfHLFkqM2fNzq31luXL5LAj3iTzFyzMTXvHrcvlwIMOlsV77pWbNi1BX+8G+f6K5bL0Pe+3ym9zPUUK/ufrvyDvfM9pMrmnp0jylmnMxPiqT18m7zvzo85l2RRQlqVNHWlpn336CfnVLx6QN79tqWtRleePZPKRhx+UZ595Sg57/dGV16m9gqb6TZwLMjm6l2gaU0yMdY5gF5n0+X2nk06zrWLMNMs/q3aNMnn9lz4lF154oU5g46RVyKRjoJDJYnJcBLPPL1dksgjxZtIgk2O5I5PN9MVWtSKT+mKirUXIpLaI7GoPMqkzNsikzri4tgqZdCSITCKT8S7UlBRomvjmDSlkEpnM6yMa3tc0ppgYa+gRY9uATOqMi2kVY0ZnbJBJnXFxbRUy6UowyM+eSQ8QPRfBnknPQD0Wx55JjzA9FsVtrh5hei6KibFnoJ6Kc5FJT02gmAwCjBmdXUOjTBpSnObq1l+QSTd+YW5k0gNEz0Ugk56BeiwOmfQI02NRyKRHmJ6LYmLsGain4pBJTyArKIYxUwFUD0Uikx4gKiwCmfQQFGTSA0TPRSCTnoF6LA6Z9AjTY1HtJpNbd+6UjTt2yMadO2TTjuDfg3+a/95k/hn8v2+7+fftwd+G3gv/HqbfGaQfStMf/Lvv1868MrvG1tg9oUu2B+20f6UUZl/ISI7cttuU7bVp+YV5bfvwdQaPy5Ou4H87WsU0v2mFqA2131NhhWoskSijeXbs/Vxj+TEz+rpT2+6liV4KaR2kvM+aIiF2buboAsxzWc0rr0/kvV+k6UXTnD17vpy7z+5Fk5MuhQAy6dgt2DPJnsl4F2LPZP6AYs/kWEZN9Zt4SzTI5OZQ6AKZM5I3LIObgn/2bd8W/C0SQvPP7cPCF/x7KIVD8mf+PZLGASkjX7uI7LN6tRz+yMOy7OBD8zs1KSBgSeDcH9whnz/ijdI/aZJlTpJDAAI+CVx0+62c5uoIFJl0BIhMIpPIpN0gQibbRya3m1W8EckbXtnbMSSCu1b6YiuD4SphsCpoVv6iVcJo9TDIY8rz9ZoY/AA+vWuCzJzQLTOClT3z7zO6dv37zAkTZHrw/xnm7+bfg1/Mzb/P7Db/3i3bnn1aHv/Vz+TVxx7v3KTo1/jUggpc8sK5U2TVuv6CelygQIsratl2i3IKNt6ixPzr9Nb2jFZNnzIxXCzctGXb6BT5TZMf/tM18jf/8xSZ1OJRWEPtL1CYBTWvSVs0zY69/2u0GzOjqYxpu7fmeSsoO4zDK3+l4+zcxNYFTJ/SLROCNvYlx0zQYLs+U/oKhzLGmrniy59FJh1xIpOOAJFJZBKZtBtEyGSzMmlW7MJbO3dsG7X6t61bZGPw3potW4dW98KVvmiFMFgJjK0MRreHmpVEn6+podgZ8Qukz8jdsOQNCaGRvKH3jfQZEdz196G04d+H00wJ/uny4jRXF3qdkddlz6TPR2F1Bm27q2TPpB2vulJr3DPJcybdo49MujPkAB4PDH0XwZ5J30T9lceeSTuWZu/I0J6++B7Aob19Q/sB43sAo31/0R7A6JbQobRmRXCbx9U/8wtztKK3S/wm7loJDMWvO0wzs3tIEIdkb7T4GSk0chj4LK8UAkyMdXYLF5nUeUXt0yrGjM5YapRJQ4rTXN36CzLpxi/MzQE8HiB6LgKZ9AzUY3HI5BDMp7Ztk0e3DQb/3yqPbh0M/tusCA7dHmoOhxnaFzgkgT5fk4P78mZ0D0leeItncFunkbw5k8zqX7f0bJfgb8Mrg0YEh1cCQxEcXg0cuj20S6Y5rv75vK52LouJsc7oIpM642JaxZjRGRtkUmdcXFuFTLoSRCY9EPRfBDLpn6mvEjtJJtcFUhgKYyCLjwaHyIT/PjgkkP0WkjiymjcsceFtoCO3ewarfhOC1cBh2QtvDw1vA+0O/h7fDziUZ1LGnhoNB/D46mPtVg4TY50RRSZ1xgWZ1BsXZFJvbFxahky60AvysmeSPZPxLtTUqZya9nflDal22zNpHkHxp+HVxSFxDFYag3/+V/C31cGew6zXwmD1788mTpZ9g9Mc9x0YkJ4ffl/2e+f/St0vmMfUx/vI5GiKmsYUMumjh/svw0Um2TPpPx7xEhkz1fItW7pGmWTPZNlo7sqHTDoyRCaRSWTSbhCNV5l8ckQYt4aiGInj48G/Z73M3sB9JwayGEjji4w0mn+fNDmUSLNqGL2a+hEi3m5kEpm0G8mkRib19gFkUmdskEmdcXFtFTLpSBCZRCaRSbtBpFkm1wUH1IS3pA6vMP5p+BbV/wr2N7a6LdXIYiiKk4dE0aw2vqh7kiyeGDw6oMALmSwAqeYkrEzWDHwcVodM6g0aMqkzNsikzri4tgqZdCUY5OcAHg8QPRfBnknPQD0W1/SeycHg8RePDm4Nbk0duhU1OgDHSOSa4BmJWa9F3RPDFcY/M6I4vMIYrTS6PYTCI1yHoliZdIBXcVYmxhUDLlm8i0yWrJJsBQkwZgqCqjmZRpk0CDjN1a0jIJNu/MLcyKQHiJ6LQCY9A/VYXF0yGd6WGtvDaGTRrDC2ui3VPKLiRUYag1tRh/4/dIuqkcb4bakecagpCplUE4oxDWFirDM2yKTOuJhWMWZ0xgaZ1BkX11Yhk64EkUkPBP0XgUz6Z+qrRJ8yuTY44CY67MasMP4pukU1WHkcCFYg015dwR9DQYxEMbaXcfdAJDv1hUzqjTwTY52xQSZ1xgWZ1BsXZFJvbFxahky60AvysmeSPZPxLtTU3jdN+7vyhpTtnsn4banRSuN/bQ9WHYNHbLS6LdWIobkd9c+G9zLGBdIIpaZXU/0mzgCZHN0jNI0pZFLTaN3VFheZ5DTXamPKmKmWb9nSNcokp7mWjeaufMikI0NkEplEJu0GUZZMPhE8UiOUxMRjNp5ocVrqzOB5iqNWGINbU8P9jOFtqd12DWswNTLZIPyMqpFJfTHR1iJkUltEdrUHmdQZG2RSZ1xcW4VMOhJEJpFJZNJuEBmZvP2ZtfLzh/5Dep99Wv71wL8Kn804sHNHakHmcJtw/2IgiNHBN+YQHLPSaA7FaYcXMqkvisikvphoaxEyqS0iyKTeiAy1DJnUHqFy7UMmy3EblYsDeDxA9FwEeyY9A3Us7g/BXsaf9G8J/r9JfjrYL+uCvY7Jl7ktNboVNXy8RvCYjegwHG23pTriUJmd21xVhiVsFKssOmPjIpM6r6h9WsWY0RlLjTJpSHGaq1t/QSbd+IW5kUkPED0XgUx6BmpZ3MpAFu8PxPGBgf5AIDdL8lbVl0zqkYN7pshBU6aOCOSM4JZVXs0RQCabY59XMxPjPELNvI9MNsO9SK2MmSKU6k+DTNbPvI4akUkPlJFJDxA9F4FMegaaU1x/cIuqEcf7t2wO/rlZHhwcGJVjYbB/8XVTpgX/nyrHLZ4nPX3Zz3Ost+XUFhFAJvX2BSbGOmODTOqMi2kVY0ZnbJBJnXFxbRUy6UiQPZPsmYx3oab2vjWxv+uXA1sCcdwSrECa21c3jxpJPcEq4+t6pobyaCTygMk9I+/bnubqOETHRfam+k0cDjI5uqs0MaayOisTY53D2EUmOc212pgyZqrlW7Z0jTLJaa5lo7krHzLpyBCZRCY7RSYfCVYbw9tWg5VHcwtr747Rz3E8MLht1YjjIYFEHhz8v6srfacjMjn2QweZdPwgriA7MlkB1DYrEpnUG1BkUmdskEmdcXFtFTLpSBCZRCbbVSbz9z1OHl55nB6uQs6eUGzPIzKJTDp+7NaSHZmsBfO4rgSZ1Bs+ZFJnbJBJnXFxbRUy6UowyM+eSQ8QPRfBnkl7oPF9j+a21d9tTex7DE5bPSRYeTQH55gVyL2CR3WUeUUyWSYveaojwG2u1bF1LZmJsSvBavK7yGQ1LaLUiABjRmdf0CiThhSnubr1F2TSjV+YG5n0ANFzEchkMaC/DE9b3RTuezT7H+OvHukKVx4PmWoEcsJcNFYAACAASURBVPS+x2Klp6dCJl3oVZcXmayOrWvJTIxdCVaTH5mshquPUhkzPij6LwOZ9M9UQ4nIpIcoIJMeIHouAplMB/pIsNoYPa7j/mD1sXfHjlEJ/zI8NCc4dXV49dFzWMLikMkqqLqXiUy6M6yqBCbGVZF1KxeZdONXZW7GTJV0y5eNTJZnpzknMukYHfZMsmcy3oWaOkgla39XuO8xODDnJ+GJq5vkyW3bRvX4/Yaf9zj02I5phfc9ugwb9kyOpddUv4m3BJkcHRf2TLqM8s7I6yKTnOZabR9BJqvlW7Z0jTLJaa5lo7krHzLpyBCZRCY1yeQRS04IxdGsOprbVn+XfN5jd3ew73G6875Hl2GDTCKTLv2nrrzIZF2kx289yKTe2CGTOmODTOqMi2urkElHgsgkMtm0TK7cvk1ue/QRWffrf5MvvPbgUT16inneY/isx6HbV/8iWIls+oVMIpNN98Ei9SOTRSh1dhpkUm/8kUmdsUEmdcbFtVXIpCvBID97Jj1A9FxEJ+yZ/P7mjXLb5j4x/4y//jLc72ge1zF06qq2F3smtUVkqD3c5qozLqZVTIx1xsZFJnVeUfu0ijGjM5YaZdKQ4jRXt/6CTLrxC3Mjkx4gei6iXWXyP4LbVm/d1BtI5EYxK5LR6+hpM2TJ1BlyaCCRs7uLPe/RM/LCxSGThVHVmhCZrBW3VWVMjK1w1ZYYmawNtXVFjBlrZLVkQCZrwVx7JcikB+TIpAeInotoJ5lcE5y4agTy1k198pvB/hFSBwS3rL5txkxZMm2mLAqeATleXsikzkghkzrjYlrFxFhnbJBJnXFhzOiNCzKpNzYuLUMmXegFedkzyZ7JeBfyeSrnD4LVxxVbNsodgURGr3nBATpLglXIt02bJa8KbmONXpr2d+UNKfZMjiXks9/k8c96H5kcTUbTmEImy/bqavO5yCSnuVYbG8ZMtXzLlq5RJjnNtWw0d+VDJh0ZIpPIpE+ZfHD4NtYVgUg+H7uN9Y1Tp4crkMdOn5naYzVNfPOGFDKJTOb1EQ3vaxpTTIw19IixbUAmdcbFtIoxozM2yKTOuLi2Cpl0JIhMIpOuMrkuuo01OEzn1wO7bmN9eXQb69SZsnhi69tYNU1884YUMolM5vURDe9rGlNMjDX0CGRSZxTSW8WY0RktZFJnXFxbhUy6Egzys2fSA0TPRYyHPZN3bdkktwYCeXvsNtY55jbW4CCdt02fJeZU1nZ8sWdSZ1S5zVVnXFhl0RsXl5VJvVfVHi1DJnXGUaNMGlKc5urWX5BJN35hbmTSA0TPRWiVyYe2BqexbuwL9kL2ybPbdp3G+gZzG2twC6u5lbXdX8ikzggjkzrjgkzqjQsyqTc2yKTO2CCTOuPi2ipk0pUgMumBoP8iNMnkhvA21r5gFbJXfhm7jXX/yZPDg3TeFkjkHuPoNFbXaCGTrgSryY9MVsPVR6lMjH1Q9F8GMumfqa8SGTO+SPotB5n0y1NLacikYyTYM8meyXgXip/KeXf/5mAVsldWBLeyRq+ZE7qGBDJYgTxoylTH3rcru6b9XXkXxZ7JsYQ4zTWv19T/vqYxxcS4/vgXqdFFJjnNtQjh8mkYM+XZVZlTo0xymqt7xJFJR4bIJDIZ70L/uW6N3Hvbd+SGNxwtz8ROY/2bKdPCFUgjkV1dXY69bmx2TRPfvItDJpHJvD6i4X1NY4qJsYYeMbYNyKTOuJhWMWZ0xgaZ1BkX11Yhk44EkUlk0nShNTu2y5d618pNzz0jJz1wn3z+iDfKS4PbWM0eSLMS+YKc01gdu6FomvjmXQsyiUzm9REN72saU0yMNfQIZFJnFNJbxZjRGS1kUmdcXFuFTLoSDPJzAI8HiJ6LqGvP5MDOHXJN7zr50oZ1MiA7w6s4PjiJdemMWfKaHn+3sXrG02hx7JlsFH9m5eyZ1BkXVln0xsVlZVLvVbVHy5BJnXHUKJOGFKe5uvUXZNKNX5gbmfQA0XMRdcjk9X3rA4lcK6uDVUnzetO0GXLGzLnyijZ9pIevECGTvkj6LQeZ9MvTZ2lMjH3S9FcWMumPpe+SGDO+ifopD5n0w1FbKcikh4ggkx4gei6iSpn8VnCojlmNfGzbYNjqQ4P9kGfOmiuHBP/klU8Amcxn1EQKZLIJ6sXqZGJcjFPdqZDJuokXr48xU5xVnSmRyTpp11dXx8vkyWdfKT//9cMjxF+8z55y27JLR0XgrSedL3987Onwb8n32TPZOXsmv7d5Y7gS+bvgWZHm9YrJPXLm7Hly9NQZI/2lqVM5Ne3vyvv4Ys/kWEJN9Zt4S5DJ0XHRNKaYGOd9qjTzvotMcpprtTFjzFTLt2zpGmWS01zLRnNXvo6XyUOXnCX3rbh6hIj570MOOkAuP+/U8G9GNtes7R0RTCOW8+fNkhuvOid8H5lsf5m8J3jExzWBRP50YEsY85dM6pEzZs0J90YmX01JgaaJb97HEjKJTOb1EQ3vaxpTTIw19IixbUAmdcbFtIoxozM2yKTOuLi2quNlMgnwY5d9RX7/yOMj8mjk8sOnvUOWHHVImHTFnffLZ6/9zoiAIpPtK5P/1r9FrulbJ/+yZVMY+927JwYSOVdOnjknc9whk/kfScgkMpnfS5pPgUw2HwPtLUAm9UYImdQZG2RSZ1xcW4VMJgialceX7bd3uDL54MOPytLTL5HlX75ADth/3zBl2t829W+TzQNDh7Dw0kFgWk932JAycXl4cEC+uH6t/H/B3kjzmtE1QT44d56cFdzS2l3BMyJ1EKuvFbvN7pFVG4ZuFealh0A4ZoL+vTn4POOli8CCYMysCcbM0HnRvLQQYMxoicTYdjBmdMbGjBnzrG0zb9b0MvMSXuUJIJMxdmZV8va7HpCH7l0W/rWoTG7fsVN2BP/npYdA94SusDEmNkVfTwxulU+tWiVfWbt2JMtHdlsgH9ltN5nTPSSnvNwJTJo4QbZu2+FeECV4JVBmzHhtAIVlEmDM6OwcE4LvGfNNY/M9o/NK2q9VjBmdMdU6Zkx/4VWeADI5zO7qG26Ra79+e+4qZJpgcppr+Q5YVU6b01zXbw+eFdm3Vv4xOKE1er1nxuzghNZ5sufEiVU1sWPL5TRXnaHnAB6dcTGt4pY9nbFxuc1V5xW1T6sYMzpjqfE2V0OK50y69RdkMuCXXJGMI2XPZHYHW/616+SYJeN3z+S2nTuDR3ysDf6/XjbtHFope3twqM4HgmdFvnTy5FIjiz2T+djYMzmWUVP9Jt4SZHJ0XNgzmT+WOz2Fi0xymmu1vQeZrJZv2dI1yiSnuZaN5q58HS+TZo+keSUfBxIh4jTX9pTJG/rWh8+KfH770H37R06dHq5EHtgzxWlUNSUFmia+eQCRSWQyr49oeF/TmGJirKFHjG0DMqkzLqZVjBmdsUEmdcbFtVUdLZPRLatpEC8995SRE1x5zmR6NxuPK5M3beoNnhW5Tv60bTC8qNf2TA0l8vCp01zHUpgfmczHiEwik/m9pPkUyGTzMdDeAmRSb4SQSZ2xQSZ1xsW1VR0tk67wovzsmfRF0l85yT2T/zt4vId5VuRvBvvDSv7b5OBZkcHtrG+ePtNfpZRUiAB7Jgthqj0Rt7nWjrxwhUyMC6OqNaGLTNba0A6sjDGjM+gaZdKQYs+kW39BJt34hbmRSQ8QPRcRyeT3120I90Te3785rOFFEyfLmbPnytJgbySvZgggk81wz6sVmcwj1Nz7TIybY9+qZmRSZ1xMqxgzOmODTOqMi2urkElXgsikB4L+i3hswja5fPUquWPjxrDw3SZ0yxnBcyLfN3OO/8oo0YoAMmmFq7bEyGRtqK0rYmJsjayWDMhkLZhLVcKYKYWt8kzIZOWIG6kAmXTEfvHFF8vZHzlP+rbkP4DVZo/hLcuXyWFHvEnmL1iY28I7bl0uBx50sCzec6/ctGkJyu7zs7meIg3zdbqdOVjnsvWr5aLbb5Ur3/p2OWPWnHBf5KTgQblVv8qydG2Xpv1dedfCnsmxhJrqN/GWIJOj46JpTDExzvtUaeZ9F5n09X3XzJXrr5UxozNGGmWS01zd+woy6cgQmdTzaJDfbh2QS9aukp8ObAmjamTy7ad/WOZ1dztGuXj2pqRA08Q3jxYyiUzm9REN72saU0yMNfSIsW1AJnXGxbSKMaMzNsikzri4tgqZdCSITOqQyS8Eh+t8asOaMJp7T5wkly9cJI9ce7W878yPOkbYLjsymc8LmUQm83tJ8ymQyeZjoL0FyKTeCCGTOmODTOqMi2urkElXgkF+DuDxALFkEb8OTme9eN0q+eXA0Cmtfxvsibxg7gKZP3VS+N9Fbj8uWTXZShJgz2RJcBVn4zbXigE7FM/E2AFehVldZLLCZlF0QIAxo7MbaJRJQ4rTXN36CzLpxm9IWDZvRVo8cLQt4jPBauTnhlcjXzxpslwwZ4G8fur0sJjko0FsyyZ9dQSQyerYupSMTLrQqzYvE+Nq+ZYtHZksS676fIyZ6hmXqQGZLENNfx5k0kOMkEkPEC2K+HmwJ/KSYDXyN4MDYa73zZobiuSEWBnIpAXQmpMikzUDL1gdMlkQVAPJmBg3AL1AlchkAUgNJWHMNAQ+p1pkUmdcXFuFTDoSZM9kvXsmr1i/Rq7uXRtG7aWTg9XI2QvksOHVyHgozcT4qk9fxp5Jx/5dRXb2TI6l2tRe2+SYkeDEY/PjGC8R9kzSC/IIuMgkp7nm0XV7H5l041dVbo0yyWmu7tFGJh0ZIpP1yORP+jfLJcHjPn43vBp5+sy58vFgb2TWC5l07NgVZkcmkckKu5e3opFJbyjbtiBkUm9okUmdsUEmdcbFtVXIpCNBZLJ6mfzEutVybd+6MFIHTO4Jb2k9eMq0lpFDJh07doXZkUlkssLu5a1oZNIbyrYtCJnUG1pkUmdskEmdcXFtFTLpSjDIz55JDxBTirh3y2b5xIZV8p+Dg+G7H5w1T86ZM79QZeyZLISpkUTsmWwEe26l7JnMRdRYAibGjaFvWbGLTOq8ovZpFWNGZyw1yqQhxWmubv0FmXTjF+ZGJj1AjBWxPfj3TwS3tF7fO7Qa+cqeKeFq5EE9UwtXhEwWRlV7QmSyduSFKkQmC2FqJBET40aw51aKTOYiaiwBY6Yx9Lk/wEwI9ub3Ktubj0y69Rdk0o0fMumBX7yIu7dsCk5qXS1/2ja0Gnn27Pny4dnzrGtBJq2R1ZYBmawNtVVFyKQVrloTMzGuFXfhypDJwqhqT8iYqR15oQpZmSyEadwlQiYdQ8aeST97Jrfv3Clfvf4L8qnXHyn9kybJQVOmhquRr5w8pVSE2DNZClstmdgzORYzp7nW0vWsKmHPpBWujkzsIpOc5lptl0Emq+VbtnSNMslprmWjuSsfMunIEJl0l8k/bR2Uv1v7vLxxxXfl80e8Uf5uwe7ywRKrkfFQIpOOHbvC7MgkMllh9/JWNDLpDWXbFoRM6g0tMqkzNsikzri4tgqZdCSITLrJ5L/2b5K/W/O8rNu+Xc7/wfflte86WV45fZZjVESQSWeElRWATCKTlXUujwUjkx5htmlRyKTewCKTOmODTOqMi2urkElXgkF+DuApB/GrfevlwnWrwsxvnjZDvjB/kUzpmlCusEQu9kx6wVhJIeyZrASrc6HsmXRGWFkBTIwrQ+tUsItMOlVM5lwCjJlcRI0k0CiTBgQH8Lh1B2TSjV+YG5m0h/jxdSvln/o2hBnPCh75cW7BR34UrQmZLEqq/nTIZP3Mi9SITBah1EwaJsbNcM+rFZnMI9Tc+4yZ5ti3qhmZ1BkX11ZVLpMvP/wk6za+eJ895bZll1rnayoDMlmc/Jod24PbWp+Te4JnSJrXZ+ctlKUzZhcvoGBKZLIgqAaSIZMNQC9QJTJZAFJDSZgYNwQ+p1pkUmdcTKsYMzpjg0zqjItrq2qRyYfuXVa4nVffcIvcfd+vxo1Msmey+J7JXw30ywcDkXxs21Z5wcSJwW2tu8trYs+O9Hm6HXsmCw+52hOyZ3Isck5zrb0b5lbInslcRB2fwEUmfX7fdXwgUgAgkzp7hUaZ5DRX976CTDoyRCaLyeR3N/WFK5LmdciUafLFQCQXdXePou/zyxWZdOzYFWZHJpHJCruXt6KRSW8o27YgZFJvaJFJnbFBJnXGxbVVyKQjQWQyXyY/07tWPrd+TUj6XTNmyZXzFqVSRybLd0ZNE9+8q0Amkcm8PqLhfU1jiomxhh4xtg3IpM64mFYxZnTGBpnUGRfXVlUuk64NHA/52TOZHqVtO3fKh4LnR94arEqa1z/MWSCnzZpbS0jZM1kL5lKVsGeyFLbKM7FnsnLEpStgYlwaXaUZXWSy0oZRODKptA9olEmDitNc3TqMCpmMDumx2Vvpdtl+cyOTY3n+cetg+PzI3wz2y8wJ3fL54KCdo4LHf9T1QibrIm1fDzJpz6yOHMhkHZTL1YFMluNWdS5ksmrC5ctnzJRnV2VOZLJKus2V3ZhMmoN2rv367SNXvvzLF8gB++/bHAmHmpHJ0fDu3rIp3B+5fscOOWByTyCSu8tLJ092IGyfFZm0Z1ZXDmSyLtJ29SCTdrzqTM3EuE7axetCJouzqjslY6Zu4sXqQyaLcRpvqWqXyZPPvlJ+/uuHRzhdeu4psuSoQ8Ybt5H2smdy9J7J63vXy0XrV4V83jJ9ZnBi6yLpka5C8WXPZCFMqYk07e/Kuwr2TI4lxGmueb2m/vc1jSkmxvXHv0iNLjLp8/uuSFs7LQ1jRmfENcokp7m695XaZDL+vMnT3n2snPXe48T8DZlMD+Ity5fJYUe8SeYvWJgb5TtuXS4HHnSwLN5zr9y0aQnKTmSXf+06OWbJLpk8f+1KWbZxQ1jFB2fPk3Nmz7dqj88vV05ztUJfa2JkEpmstcOVrAyZLAmug7Ihk3qDjUzqjA0yqTMurq2qRSaz9kQik9nhG08yOTBjhvzd6mfl3v4t4QVdFaxGvmP6LOu+iUxaIxvJoGnim3cVyCQymddHNLyvaUwxMdbQI8a2AZnUGRfTKsaMztggkzrj4tqq2mRy3pyZct+Kq0e1tx1k0lxQJ++Z/OVAf3jQzmPbBuWFEyfK5wORfE3PNNd+6ZyfPZPOCCsrgD2TlaF1Kpg9k074Ks3MxLhSvKULd5HJ0pWSsRABxkwhTLUn0iiTBgKnubp1hVpk0jQxfptrdGsrMukWvKZzf3dTbyiS5nXolGnh/shF3RObblZYPzKpIgypjUAmdcYGmdQZF9MqJsY6Y4NM6owLY0ZvXJBJvbFxaVltMhk1st0O4DHX1Ykrk9f0rpPL1q8Ow/ruGbPliuDRH5peyKSmaIxuCzKpMzbIpM64MDHWGxdkUm9s+AFGZ2yQSZ1xcW1V7TIZNTj+aJC0W2BdL6yu/J14muunN6yVz29YIx+6+4cy6+hj5f2Lyx38k4wReybL91pN+7vyroI9k2MJlT0EK4+1zfvI5GhamsYUE2ObnlxfWheZ9Pl9V98Vj5+aGDM6Y6VRJjnN1b2vNCaT8aZnHdDjfnnVl9BpMnnRulVyfd/6EOwlP7pbTjjuf8rMWbO9gPb55cpprl5CUkkhyCQyWUnH8lwoMukZaBsWh0zqDSoyqTM2yKTOuLi2qnKZNKL40L3LCrfTrFjefd+v5LZllxbO02TCTpLJc4L9kd8I9kma1z8u2F22fPdbox4N4hoHZLI8QU0T37yrQCaRybw+ouF9TWOKibGGHjG2DcikzriYVjFmdMYGmdQZF9dWIZOuBIP8nbBn8qzVz8ktm/ukO7jeG3bbQ94wdboHctUVwZ7J6ti6lsyeSVeC1eTnNtdquPoolYmxD4r+y3CRSf+tocQ4AcaMzv6gUSYNKU5zdesvyKQbvzB3u8vke1c9I3du2SQzuyYEIrlYXhec3Kr9hUzqjRAyqTM2yKTOuJhWMTHWGRtkUmdcGDN644JM6o2NS8tqkUnbBr54nz3HzW2u7SyTm3fukPeuek5+3L9JFnZ3y40L9pBX9kyxDWcj6ZHJRrAXqhSZLISp9kTIZO3IC1eITBZGVWtCZLJW3FaVMWascNWWGJmsDXWtFVUuk7VeTQOVteueydU7tgci+az8cmCL7DNxktwQiORLJ08eRXj5165jz2SizzV1Kqem/V15w5A9k2MJNdVv4i1BJkfHRdOYYmKc96nSzPsuMunzjIBmrl53rYwZnfHRKJOc5ureV5BJR4btKJNPbNsaiuTvtw7IyyZNDkVyr0mTxpBCJvVIgaaJb96QQib19BtkMru3ahpTTIzzPlWaeR+ZbIZ7kVoZM0Uo1Z8GmayfeR01IpOOlNtNJv9z62Aoko9tG5S/DG5pNSK5ILjFNe2FTOqRAk0T37whhUzq6TfIJDKZN155P5sAMqm3dyCTOmODTOqMi2urkElXgkH+djmA598H++Xklc/IyuAW178ODtm5YcFimTZhggdC9RfBnsn6mRetkT2TRUnVm47bXOvlbVMbE2MbWvWldZHJ+lrZmTUxZnTGXaNMGlKc5urWX5BJN35h7naQyfv7N4crkhuDQ3eOCh77YR7/MZ5fyKTe6CGTOmODTOqMi2kVE2OdsUEmdcaFMaM3Lsik3ti4tAyZdKE3nHe8y+RdwWM/zOM/dgTX8/bps+SL8xd5oNJsEchks/xb1Y5M6owNMqkzLkyM9cYFmdQbG36A0RkbZFJnXFxbhUw6EhzveyZ/OdAvpzz2BznxJ/9HVi85Qa6ct7AwEfZMjkXV1Kmc7Jks3G1VJmyq38RhIJOju4amMcXEWOWwFReZ5DTXamPKmKmWb9nSNcokp7mWjeaufMikI8PxLJOPBofsHP/809Lf1ytn/PQn8oG//YAVDWQSmbTqMMOJOYBHT79BJrN7MDJZZnR3Vh5kUm+8kUmdsUEmdcbFtVXIpCPB8SqTG3bskONXPiUPDQ7IW3bslMN/fI8sfc/7rWggk3qkQNPEN68TIZN6+g0yiUzmjVfezyaATOrtHcikztggkzrj4toqZHKY4NU33CI3fe8euW/F1aOYfuyyr8jtdz0whvND9y4b+dt43DO5dOXTcl9w6M5f9kyVmxfuIZO7xueprVkDgD2Trh8N1eVnz2R1bF1K5jZXF3rV5mViXC3fsqW7yGTZOslXjABjphinulNplEnDgNNc3XpCx8vkijvvl/Ov+GpIcd6cmaky+ftHHpfbll2aSXq8yeQZq5+TFZv75EUTJ8l3F71Adu+e6NaLFOZGJhUGZbhJyKTO2CCTOuNiWsXEWGdskEmdcWHM6I0LMqk3Ni4t63iZjOC1WplsJ5n8h3Wr5Ma+9TK7e0KwIvkCefmkHpf+ozYvMqk2NOEvgM+s2aK3gR3aMmRSb+CRSZ2xQSZ1xgWZ1BsXZFJvbFxahkwO0yt6m2ty9XI87Zn8/Ia18ukNa8IrXr5wTzl0yrTw38ueJMmeybFDryxLl0Fs8rJn0pVgs/mb6jfxq0YmR/cBTWMKmWx2fGbV7iKTnOZabUwZM9XyLVu6RpnkNNey0dyVD5nMkckk4reedH74p+i2VyOTHz3349I/uD03Gsu++o9y3AknyqxZs3PTfvsbN8oRRx4juy3Mf+bjLTd/Uw56zaHyghfulVnujRvWyd+vej58//rd95C3z5g1kra3d4PcctM35aRT7E5ztbme3AsOElx3zeeCNpwuPT1TiiRvmWbK5G751BWflA+e/THnsmwKKMvSpo60tE89+YT84mf3yXHHn+haVOX5586cLOv6BuX3D/1WnnnqSTnijcdUXqf2CprqN3EuZsxIl0j/QP5nmXaePtqnaUzNCcbMhmDM7PRxYZThjYDLmPH5feftgtqoIMaMzmCaMdMVfM9sUfQ988WrLpcLL7xQJ7Bx0ipkcjhQWSuTyThGeyyjA3iMTJ738X+Qbdvzv+av+8cvydIT3yWzZ8/J7R7Lbrxe3nTMsbJwUb5MLv/m1+XgQ/9a9tpr79Ryb+3tlROffDJ87zOLd5cPzJs/Kt2GDetl+Te/Ie//wJm57YonsLmeIgV/4XOfkdNOP1N6prjL5KTuLrn0k5+Qj37s40Wq9pamLEvXBjzxxOPywH0/DvrXu12Lqjz/1ODLZEvw48uDv/0PMRP2o495S+V1aq+gqX4T52LGjLHJrdt3aMdVS/s0jalozNRy4VRSmMDEYMyY/5UZMz6/7wo3uIMSMmZ0BttlzFR1RZ+6/JPIpCNcZNJRJk12zQfw/DQ4sfX44ORWo7ofmj1fPjJ7nmOXGR/Z2TOpN07smdQZG25z1RkX0ypu2dMZG5fbXHVeUfu0ijGjM5Yab3M1pDjN1a2/IJM5MnnokrNGnfBq/vsl+75AbrzqnBHyWmXy/24dlOOff1LWBM+UfPeM2XLFvIVuvWUc5UYm9QYLmdQZG2RSZ1yQSb1xQSb1xgaZ1BkbZFJnXFxb1fEyGX80SATz2CMPlsvPOzX8T7NH8o+PPT3C+dWv2n+USJo3NMrkqu3b5YRgRfKRrQNyzLQZ8pUFi137yrjKj0zqDRcyqTM2yKTOuCCTeuOCTOqNDTKpMzbIpM64uLaq42XSFaDG01zNjqcTnn9afjqwWV7bM1VuDp4laXZDZb3KniTJaa5jiZZl6doPNZ08mXctkUw+8vCD8uwzT8lhrz86L0vbv99Uv4mDRSZHdzNNY4qJsc6PABeZ5DTXamPKmKmWb9nSNcokp7mWjeaufMikI0ONMnnq6mfl+5s3yp9Pniw3Bc+SXDAhOKURmXSMdLHsTUmBpolvHilkUs+PEMhkdm/VNKaYGOd9qjTzPjLZDPcitTJmilCqPw0yWT/zOmpEJh0pa5PJc9eulK9v3BAKpBFJI5R5r7ICxMqkHinQNPHN62/IpJ5+g0wik3njlfezCSCTensHMqkzNsikzri4tgqZdCUY5NeyZ/JTG9bIFzasDW9pNbe2mltc61eySAAAHsFJREFUO/XFnkm9kWfPpM7YcJurzriYVjEx1hkbF5nUeUXt0yrGjM5YapRJQ4rTXN36CzLpxi/MrUEmb+hbLxesWxW2xxy2Yw7d6eQXMqk3+sikztggkzrjgkzqjQsyqTc2yKTO2CCTOuPi2ipk0pWgApm8dVOfnLnmufBKzOM/zGNAOv2FTOrtAcikztggkzrjgkzqjQsyqTc2yKTO2CCTOuPi2ipk0pFg03smfzqwRe649dty7377y/F/tp98aPZ86ytiz6Q1sswMZVm6toA9k64Em83fVL+JXzUyOboPaBpTTIybHZ9ZtbvIJKe5VhtTxky1fMuWrlEmOc21bDR35UMmHRk2KZPmWZLHPv+k/M2PfyTTXvFXcv5LDyh1NWUnshzAMxZ3WZalAhfLpGnim3ctHMCjp98gk9m9VdOYYmKc96nSzPvIZDPci9TKmClCqf40yGT9zOuoEZl0pNykTL575dPyo/7N8qGfPSDvet3/kMV77lXqasoKEDKpRwo0TXzzOiEyqaffIJPIZN545f1sAsik3t6BTOqMDTKpMy6urUImXQkG+Zs4gOeSdavlur51skf3RLlj9xfKouCfvHYRYM+k3t7AnkmdseE2V51xMa1iYqwzNi4yqfOK2qdVjBmdsdQok4YUp7m69Rdk0o1fmLtumfx28BzJvw+eJ2leNwWPAHldBz8CJCt8yKSHjl1REchkRWAdi0UmHQFWmJ2JcYVwHYpGJh3gVZyVMVMx4JLFI5MlwSnPhkx6CFCdMvlv/VtkycqnwlZfGpzcehInt6ZGEJn00LErKgKZrAisY7HIpCPACrMzMa4QrkPRyKQDvIqzMmYqBlyyeGSyJDjl2ZBJxwDVuWdy/fYd8pbgwJ1Htw3KSTPnyKVzdwtbf8ety+XAgw5mz2QslmZifNWnL5P3nflRxwjbZS+7/9SulrGp2TPpSrDZ/E31m/hVI5Oj+4CmMcXEuNnxmVW7i0xymmu1MWXMVMu3bOkaZZLTXMtGc1c+ZNKRYZ0yefKqZ+SHWzbJ66ZMk5sW7jnScmRybBCRSceOXWF2DuAZCxeZrLDDlSwamSwJroOyIZN6g41M6owNMqkzLq6tQiYdCdYlk5evXyNf6l0rC4cP3NkzduAOMolMapr45g0pZBKZzOsjGt7XNKaYGGvoEWPbgEzqjItpFWNGZ2yQSZ1xcW0VMulKMMhf9Z7Jmzf2yofWPh+29JvBiuThwcokr9YE2DOpt4ewZ1JnbLjNVWdcmBjrjYuLTOq9qvZoGTKpM44aZdKQ4jRXt/6CTLrxC3NXKZO/GegP90nuCOq5KNgj+b5grySvfALIZD6jplIgk02RL/ADTFdX+HnGSxcBJsa64hG1BpnUGRd+gNEbF2RSb2xcWoZMutAbzluVTG7cuUOODUTy/w4OyruCU1uvDE5v5VWMADJZjFMTqZDJJqjn18nKZD6jplIgk02Rb10vMqkzLsik3rggk3pj49IyZNKFXpC3yj2TPz7wr+Tmnsny6uA5krcEz5PMerFnciwZDuBx7NgVZmfP5Fi4HMBTYYcrWTR7JkuC66BsLjLJaa7VdhR+gKmWb9nSNcokp7mWjeaufMikI8OqZPLab90g1x/w32Vw3jy5Y9ELZe+Jk5BJi1ghkxawak6KTCKTNXe5UtUhk6WwdVQmZFJvuJFJnbFBJnXGxbVVyKQjwSpk8o5NffLvt3xLVrziQLnyJfvLEVOmt2wlK5OsTGqa+OYNKWQSmczrIxre1zSmmBhr6BFj24BM6oyLaRVjRmdskEmdcXFtFTLpSjDI73PP5Mod2+UNzzwuq4N/fnzuAjl95lwPLey8ItgzqTfm7JnUGRv2TOqMCxNjvXFxkUm9V9UeLUMmdcZRo0waUpzm6tZfkEk3fmFunzJ56upn5fubN8qRU6fLP+22h4fWdWYRyKTeuCOTOmODTOqMCzKpNy7IpN7YIJM6Y4NM6oyLa6uQSVeCHmXy+t71ctH6VTKne4L8y+57yx7dEz20rjOLQCb1xh2Z1BkbZFJnXJBJvXFBJvXGBpnUGRtkUmdcXFuFTDoS9LVn8reDA3L0c0+ErfnS/EWy83u3yGFHvEnmL8h/HAh7JscGkQN4HDt2hdnZMzkWLqe5VtjhShbNnsmS4Doom4tMcpprtR0FmayWb9nSNcokp7mWjeaufMikI0NfMvmW4HmSvx7ol/cEz5O8PHie5C3LlyGTDrFBJh3gVZwVmUQmK+5iXopHJr1gbOtCkEm94UUmdcYGmdQZF9dWIZOOBH3I5CfWrZZr+9bJSydPDm9vnRC0CZl0Cwwy6cavytzIJDJZZf/yVTYy6Ytk+5aDTOqNLTKpMzbIpM64uLYKmXQlGOR3OYDnri2b5G9XPRO24ruLXiCv7ZnqoUUUwZ5JvX2APZM6Y8OeSZ1xMa1iYqwzNi4yqfOK2qdVjBmdsdQok4YUp7m69Rdk0o1fmLusTK7fHjwGJNgn+cz2bXLOnPnywVnzPLSGIgwBZFJvP0AmdcYGmdQZF2RSb1yQSb2xQSZ1xgaZ1BkX11Yhk64EHWTyzDXPy62beuXwKdPkmwv39NASiogIIJN6+wIyqTM2yKTOuCCTeuOCTOqNDTKpMzbIpM64uLYKmXQkWHbP5Nc2bpCPrV0p07qCx4As3kv2mThpVEvYM+kWGPZMuvGrMjd7JsfS5TTXKntcubLZM1mOWyflcpFJTnOttqcgk9XyLVu6RpnkNNey0dyVD5l0ZFhGJp+eMiW8vXVHUPfngseAnDB91phWIJNugUEm3fhVmRuZRCar7F++ykYmfZFs33KQSb2xRSZ1xgaZ1BkX11Yhk44Ey8jk327pk58ObJGlwWNAPhs8BiTthUy6BQaZdONXZW5kEpmssn/5KhuZ9EWyfctBJvXGFpnUGRtkUmdcXFuFTLoSDPLbHMBz5fo18sXetbLvxOAxIHvsJVOky0MLKCJJgD2TevsEeyZ1xoY9kzrjYlrFxFhnbFxkUucVtU+rGDM6Y6lRJg0pTnN16y/IpBu/MHdRmby3f7OcuPLpMM+3dttDDps63UPtFJFGAJnU2y+QSZ2xQSZ1xgWZ1BsXZFJvbJBJnbFBJnXGxbVVyKQrwYIyuXnnDnnDs0/IY9u2yodmz5ePzOYxIB7QZxaBTFZJ161sZNKNX1W5kcmqyLqXy8TYnWEVJSCTVVD1UyZjxg9H36Ugk76J6igPmXSMQ9E9k+eufV7mr7hZfnv4G+Tr+/55bq3smcxF1DIBeybd+FWZmz2TY+lymmuVPa5c2eyZLMetk3K5yCSnuVbbU5DJavmWLV2jTHKaa9lo7sqHTDoyLCKT92zZLO9a9bR86O4fyhFL3iGvnLdbbq3IZC4iZDJGQNPENy9yyCQymddHNLyvaUwxMdbQI8a2AZnUGRfTKsaMztggkzrj4toqZNKRYBGZfMOzj8vvtw7KhT/6F3nncSfKzFmzc2tFJnMRIZPIpFsnUZSblUlFwRhuCjKpLybaWoRMaovIrvYgkzpjg0zqjItrq5BJV4JB/lYH8Hxmw1r53IY1csDkHrlz97081EYRRQiwZ7IIpWbSsGeyGe55tbJnMo9Qc+8zMW6OfauaXWRS5xW1T6sYMzpjqVEmDSlOc3XrL8ikG78wd5ZMPjg4IEc990SY5tvB6a1/zemtHmgXKwKZLMapiVTIZBPU8+tEJvMZNZWCiXFT5FvXi0zqjItpFWNGZ2yQSZ1xcW0VMulKsIVMvjN4DMiPg8eBnDRjtlw6b6GHmiiiKAFksiip+tMhk/UzL1IjMlmEUjNpmBg3wz2vVmQyj1Bz7zNmmmPfqmZkUmdcXFuFTDoSzNozuaxvg5y/bqUs7p4oP95jb5nWNUGWf+06OWbJUvZMZjD3ebodp7k6duwKs3MAz1i47JmssMOVLJo9kyXBdVA2F5n0+X3XQcgLXyoyWRhVrQk1yiSnubp3AWTSkWGaTD67fZscFjxTctOO7XL1/EVy3PRZYS3IZGvYPr9ckUnHjl1hdmQSmaywe3krGpn0hrJtC0Im9YYWmdQZG2RSZ1xcW4VMOhJMk8mz1jwvt2zqlTdPmyHXLVg8UgMyiUw6drfM7JomvnnXiEwik3l9RMP7msYUE2MNPWJsG5BJnXExrWLM6IwNMqkzLq6tQiZdCQb54wfw3LF5o7x/9bMyqatLfrx4b9lr4iQPNVCELQH2TNoSqy89eybrY21TE3smbWjVm5aJcb28i9bmIpNF6yBdOQKMmXLcqs6lUSbNNXOaq1vkkUk3fmHuSCa37twpfx08U/KJbVvlorm7yftmzvFQOkWUIYBMlqFWTx5ksh7OtrUgk7bE6kvPxLg+1jY1IZM2tOpNy5ipl3fR2pDJoqTGVzpk0kO8Ipm8aN0qub5vvby2Z6p8d9ELPJRMEWUJIJNlyVWfD5msnnGZGpDJMtTqycPEuB7OtrUgk7bE6kvPmKmPtU1NyKQNrfGTFpl0jFW0Z/Kudb3y/wSPAjGvO3Z/obxy8pQxJbNnsjVsDuAp3xk17e/Kuwr2TI4lxGmueb2m/vc1jSkmxvXHv0iNLjLp8/uuSFs7LQ1jRmfENcokp7m69xVkcpjh1TfcIjd97x65b8XVY6i+9aTz5Y+PDYnii/fZU25bdulImkgmD3vsv+TfB/rlrNnz5NzZ81Mjg0wik+5DNr0ETRPfvGtEJpHJvD6i4X1NY4qJsYYeMbYNyKTOuJhWMWZ0xgaZ1BkX11Z1vEyuuPN+Of+Kr4Yc582ZOUYmTz77SlmztndEII1Yzp83S2686pwwj5HJne89VS5etUr2m9Qj9yzeKzMmyCQy6Tpgs/JrmvjmXSMyiUzm9REN72saU0yMNfQIZFJnFNJbxZjRGS1kUmdcXFvV8TIZAcxamTx0yVny4dPeIUuOOiRMauTzs9d+Z0Q6f9/fLy9/+JHwvWW77SFvmDrdNSbk90CAPZMeIFZUBHsmKwLrWCx7Jh0BVpidiXGFcB2KdlmZdKiWrAUIMGYKQGogiUaZNBg4zdWtMyCTw/zSZPLBhx+VpadfIsu/fIEcsP++Ycrk34599DH53oZeeeeM2fKZeQvdokFubwSQSW8ovReETHpH6qVAZNILxkoKYWJcCVbnQpFJZ4SVFcCYqQytU8HIpBM+tZmRSUeZ3O3B38vOoIxf7vMimd89UW2gO61hkydNCC95cOuOTrt09dc7c9qk8HE6vHQRGBozXcGY2a6rYbRGZgRjZiNjRl1PYMyoC8lIgxgzOmNjxkxX8L8BZd8zZl7CqzwBZNJRJs2eyXPP+3ghafnqV66RE97xLpk1e3ZuxL7xzzfIkUe/WRYuXJSb9ubl35TXvO4QeeEL985Nm5agd8MGuek735BTTj3DKr/N9RQp+JovXiWnvP8D0tMz9iTcIvnjacwH1hWXfVLO/sh5tlmd0pdl6VRpkPnJJx+Xn/3kfjl+6YmuRVWeP5LJh373W3nqySfkjUE/7/RXU/0mOWaQyV1ENI0pJsY6PyFcZNLn951OOs22ijHTLP+s2jXK5FWfvkwuvPBCncDGSauQyRYyad7K2zMZnebat2Vbbsg5gKc1Ip9HpZtb9swHxPvO/GhuXHwmaOoRD5oOC8njyQE8Ywk11W/iLeE219Fx0TSmuGUv71OlmfddbnP1+X3XzNXrrpUxozM+Gm9z5dEg7n0FmcyRySKnuZrVL2TSvTP6/HJFJt3jUVUJyCQyWVXf8lkuMumTZnuWhUzqjSsyqTM2yKTOuLi2quNlMv5okAjmsUceLJefd+oI21bPmTSJzP6vIjLpGizyFyfAATzFWdWdkgN46iZerD5WJotxaiIVE+MmqOfX6SKT+aWTwoUAY8aFXnV5NcqkuVpOc3WLecfLpBu+odzIpA+KfstAJv3y9FkaMumTpr+ykEl/LH2XxMTYN1E/5SGTfjhWUQpjpgqq7mUik+4MNZaATHqICjLpAaLnIpBJz0A9FodMeoTpsShk0iNMz0UxMfYM1FNxyKQnkBUUw5ipAKqHIpFJDxAVFoFMOgaFA3iWysxZ+afTFsHMnskilNLTaNrflXcV7JkcS4gDePJ6Tf3vaxpTTIzrj3+RGl1k0uf3XZG2dloaxozOiGuUSQ7gce8ryKQjQ2QSmYx3oaakQNPEN29IIZPIZF4f0fC+pjHFxFhDjxjbBmRSZ1xMqxgzOmODTOqMi2urkElHgsgkMolM2g0iZBKZtOsxzaRGJpvhPp5qdbk1nJXJaiONTFbLt2zpyGRZcrrzIZO640PrIAABCEAAAhCAAAQgAAEIqCSATKoMC42CAAQgAAEIQAACEIAABCCgmwAyqTs+tA4CEIAABCAAAQhAAAIQgIBKAsikyrDQKAhAAAIQgAAEIAABCEAAAroJIJMO8XnrSefLHx97OizhxfvsKbctu9ShNLLaErDhf/LZV8rPf/3wSBXEy5a2XXqb2MRLvvqGW+Tar98ul557iiw56hC7SkmdS6BMXF5++Ekj5Z727mPlrPcel1sPCewJ2Mbm0CVnydr1fSMVPXTvMvtKyeFEwHxe3fS9e+S+FVc7lUPm8gSKxoA5QHnGZXIWjQvf/2Xo6suDTJaMiflgWrO2d0QgzURg/rxZcuNV55QskWw2BGz5m4lX/Avf/PchBx0gl593qk21pC1AwDY2UZHRl4+ZICOTBUBbJrGNy4MPPypLT79EEEhL0CWS28Ym+X2TzF+iCWSxILDizvvl/Cu+GuaYN2cmMmnBzldS2xgwB/BFvnU5tnHh+7+euFRdCzJZkrD5YPrwae8YWT0xA+iz136HL5WSPG2zufL/2GVfkd8/8jirybbgC6QvE5v4r5hmJQyZLADaMoltXIygLFowlx9cLDmXSW4bG5P+hLf8j5FV4jKrAGXaSZ7RBODefI8oGwPmANXGziYufP9XG4s6SkcmS1COfrFf/uUL5ID99w1LSPtbiaLJUoCAD/7ml/2X7bc3E+UCvG2SlIlN8ksHmbQhXixtmbiYOJhVl/itlPHPvGI1kyqPQJnYmInw7Xc9IMceeXD4GcbnWR7lat63mTBX0wJKLRsDxky1fadoXPj+rzYOdZWOTJYgXebLv0Q1ZMkg4Mo/moixx8h/F7ONTdoXDjLZfFyiOMZXiBk3/uOS9UNk3o+T0ftx2efzrJr4tCq16IS5/pZ1To1lYsBnWfX9o0hc+P6vPg511YBMliBtO2EuUQVZWhBw4R8d8MIKSzVdzDY2yUMR4q1ir56/GNnGJUtmEH1/MYlKso2NyZeMA5Nj/3EpUmKRCXORckhTnoBtDJgDlGdtk7NIXPj+tyGqOy0yWTI+tntcSlZDtgwCZfgz4aqnO5WJTbxlCEs1cbKNS1ociE3zsSkjn9W0mlKLTJihVC0BmxgwB6g2FvHSbeLC9399camqJmSyJFnb0/dKVkO2DAJ5/M1+CPOKHteS/G/AVkfANjbJliAs1cTGNi4m/R8efWrkUDEzEbv/Fw9yyFgF4bGNjRkjr37V/iOnhxObCoJSoMiyE+YCRZOkIIGsGDAHKAiwomRF48L3f0UBqLlYZNIBuO1zwRyqImsKgVb8418k0S/5aRA5NbSarlU0Nmm1I5PVxMSUahuX+G1IPAKhuriUiU38+Z/EptrYJEuPP/4gei86DKnelnRubXkxYA7QTN+wiQvf/83EqIpakckqqFImBCAAAQhAAAIQgAAEIACBNieATLZ5gLk8CEAAAhCAAAQgAAEIQAACVRBAJqugSpkQgAAEIAABCEAAAhCAAATanAAy2eYB5vIgAAEIQAACEIAABCAAAQhUQQCZrIIqZUIAAhCAAAQgAAEIQAACEGhzAshkmweYy4MABCAAAQhAAAIQgAAEIFAFAWSyCqqUCQEIQAACEIAABCAAAQhAoM0JIJNtHmAuDwIQgAAEIAABCEAAAhCAQBUEkMkqqFImBCAAAQhAAAIQgAAEIACBNieATLZ5gLk8CEAAAhCAAAQgAAEIQAACVRBAJqugSpkQgAAEIAABCEAAAhCAAATanAAy2eYB5vIgAAEIQAACEIAABCAAAQhUQQCZrIIqZUIAAhCAAAQgAAEIQAACEGhzAshkmweYy4MABCAAAQhAAAIQgAAEIFAFAWSyCqqUCQEIQAACEIAABCAAAQhAoM0JIJNtHmAuDwIQgAAEIAABCEAAAhCAQBUEkMkqqFImBCAAAQhAAAIQgAAEIACBNieATLZ5gLk8CEAAAhCAAAQgAAEIQAACVRBAJqugSpkQgAAEIAABCEAAAhCAAATanAAy2eYB5vIgAAEIaCBw9Q23yLVfv31MU05797Fy1nuPk0OXnBW+d9+Kq8ekMe/NmzNLblt2afheXlkvP/yklpc8b87MsJ6Tz75Sfv7rh1PTXnruKbLkqEPkrSedL3987GmJ/jtKvOLO++X8K74qL95nz5F2JQsq0o5DDjpAbr/rgZGsxx55sFx+3qlW9Ra5Dg19gDZAAAIQgED7EUAm2y+mXBEEIAABVQQi2Vn+5QvkgP33HWmbkcK77/vViIwZ+Xr1q/aXG686ZyTNxy77itz/iwdHJLNoWUnpS8qged+UtWZtb6YMmjSRTCbbFf29lUzGgxDJZ1o70t6zqbfIdajqEDQGAhCAAATahgAy2Tah5EIgAAEI6CRgJDFacWvVwqRUPfjwo7L09EtGrQoWLcunTM6fNytcwYxkOGqXEcw8GS3SjiyZLFovMqmz39MqCEAAAp1AAJnshChzjRCAAAQaJJC8TbVVU4wY/eHRp8KVSLM6Z4QqvlJpU5app9WKYBEJM2142X57y/Or18miBXPDW1DNaql5mb9VKZNF6y1yHQ2Gn6ohAAEIQKCNCSCTbRxcLg0CEICABgKR0MXbkna7Z/R+fK/hQ/cuG3UJtmXlyWSRPZNG6l79qpeFeyRNe0z7zCrl566/uXKZLFIveyY19HLaAAEIQKAzCSCTnRl3rhoCEIBAIwSS4pN2+2skgNHhPFkNtSnLZc+kkcnoUBzTlmi11GZFsMyeyaL12rSjkaBTKQQgAAEItC0BZLJtQ8uFQQACENBNwNwuak4yTa4+pu2VzLuSrLLyVibzblONbnM1MhmdIhuJqY3EuchkXr027cjjyPsQgAAEIAABGwLIpA0t0kIAAhCAgBUBI4bfuvXucGUv+YokKXnKa5ZMlinLp0ya9ps9m9HjS2wkzkUm8+q1aYdV8EgMAQhAAAIQyCGATNJFIAABCECgMgKRGJoKkiuQaY8CMelayaQ53dWmLN8yGQdlI3GuMtmqXpt2VBZoCoYABCAAgY4kgEx2ZNi5aAhAAAL1EogfqhPVnLUnMu82V5uy8mSy6AE8aSurNhKX1Y7o9tyISbSHNH57bTJSyXo5gKfevkxtEIAABCCwiwAySW+AAAQgAAEIQAACEIAABCAAAWsCyKQ1MjJAAAIQgAAEIAABCEAAAhCAADJJH4AABCAAAQhAAAIQgAAEIAABawLIpDUyMkAAAhCAAAQgAAEIQAACEIAAMkkfgAAEIAABCEAAAhCAAAQgAAFrAsikNTIyQAACEIAABCAAAQhAAAIQgAAySR+AAAQgAAEIQAACEIAABCAAAWsCyKQ1MjJAAAIQgAAEIAABCEAAAhCAADJJH4AABCAAAQhAAAIQgAAEIAABawLIpDUyMkAAAhCAAAQgAAEIQAACEIAAMkkfgAAEIAABCEAAAhCAAAQgAAFrAsikNTIyQAACEIAABCAAAQhAAAIQgAAySR+AAAQgAAEIQAACEIAABCAAAWsCyKQ1MjJAAAIQgAAEIAABCEAAAhCAADJJH4AABCAAAQhAAAIQgAAEIAABawLIpDUyMkAAAhCAAAQgAAEIQAACEIAAMkkfgAAEIAABCEAAAhCAAAQgAAFrAsikNTIyQAACEIAABCAAAQhAAAIQgAAySR+AAAQgAAEIQAACEIAABCAAAWsCyKQ1MjJAAAIQgAAEIAABCEAAAhCAADJJH4AABCAAAQhAAAIQgAAEIAABawLIpDUyMkAAAhCAAAQgAAEIQAACEIAAMkkfgAAEIAABCEAAAhCAAAQgAAFrAsikNTIyQAACEIAABCAAAQhAAAIQgAAySR+AAAQgAAEIQAACEIAABCAAAWsCyKQ1MjJAAAIQgAAEIAABCEAAAhCAADJJH4AABCAAAQhAAAIQgAAEIAABawLIpDUyMkAAAhCAAAQgAAEIQAACEIAAMkkfgAAEIAABCEAAAhCAAAQgAAFrAsikNTIyQAACEIAABCAAAQhAAAIQgAAySR+AAAQgAAEIQAACEIAABCAAAWsCyKQ1MjJAAAIQgAAEIAABCEAAAhCAADJJH4AABCAAAQhAAAIQgAAEIAABawLIpDUyMkAAAhCAAAQgAAEIQAACEIAAMkkfgAAEIAABCEAAAhCAAAQgAAFrAsikNTIyQAACEIAABCAAAQhAAAIQgAAySR+AAAQgAAEIQAACEIAABCAAAWsCyKQ1MjJAAAIQgAAEIAABCEAAAhCAwP8Pyf/GLjqjK5AAAAAASUVORK5CYII=", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig_variable = dynamics_variable_new.plot_history(chemicals='A', colors='darkturquoise', title=\"VARIABLE time steps\",\n", " show_intervals=True, show=True)" ] }, { "cell_type": "code", "execution_count": 25, "id": "5638d0b4-77e8-425e-ad5e-f80849abf4d3", "metadata": {}, "outputs": [], "source": [ "# Now, a coarser version of the fixed-step simulation of Part 2\n", "dynamics_fixed_new = UniformCompartment(chem_data=dynamics_fixed.chem_data) # Re-using same chemicals and reactions of part 2\n", "\n", "dynamics_fixed_new.set_conc([10., 50.])" ] }, { "cell_type": "code", "execution_count": 26, "id": "e8170d78-43f1-4b2a-ba68-43605a03c374", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "14 total step(s) taken in 0.029 sec\n" ] } ], "source": [ "# Matching the NEW total number of steps\n", "dynamics_fixed_new.single_compartment_react(n_steps=14, target_end_time=1.2,\n", " variable_steps=False,\n", " snapshots={\"initial_caption\": \"1st reaction step\",\n", " \"final_caption\": \"last reaction step\"})" ] }, { "cell_type": "code", "execution_count": 27, "id": "a2052848-23c2-4524-8052-862d2b7a9795", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "SYSTEM TIME=%{x}
A=%{y}", "legendgroup": "", "line": { "color": "blue", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "", "orientation": "v", "showlegend": false, "type": "scatter", "x": [ 0, 0.08571428571428572, 0.17142857142857143, 0.2571428571428571, 0.34285714285714286, 0.4285714285714286, 0.5142857142857143, 0.6000000000000001, 0.6857142857142858, 0.7714285714285716, 0.8571428571428573, 0.9428571428571431, 1.0285714285714287, 1.1142857142857143, 1.2 ], "xaxis": "x", "y": [ 10, 16, 19.42857142857143, 21.387755102040817, 22.50728862973761, 23.147022074135776, 23.5125840423633, 23.721476595636172, 23.840843768934956, 23.909053582248546, 23.94803061842774, 23.970303210530137, 23.98303040601722, 23.990303089152697, 23.994458908087253 ], "yaxis": "y" } ], "layout": { "autosize": true, "legend": { "tracegroupgap": 0 }, "shapes": [ { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0, "x1": 0, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.08571428571428572, "x1": 0.08571428571428572, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.17142857142857143, "x1": 0.17142857142857143, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.2571428571428571, "x1": 0.2571428571428571, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.34285714285714286, "x1": 0.34285714285714286, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.4285714285714286, "x1": 0.4285714285714286, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.5142857142857143, "x1": 0.5142857142857143, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.6000000000000001, "x1": 0.6000000000000001, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.6857142857142858, "x1": 0.6857142857142858, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.7714285714285716, "x1": 0.7714285714285716, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.8571428571428573, "x1": 0.8571428571428573, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 0.9428571428571431, "x1": 0.9428571428571431, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 1.0285714285714287, "x1": 1.0285714285714287, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 1.1142857142857143, "x1": 1.1142857142857143, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" }, { "line": { "color": "gray", "dash": "dot", "width": 1 }, "type": "line", "x0": 1.2, "x1": 1.2, "xref": "x", "y0": 0, "y1": 1, "yref": "y domain" } ], "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "FIXED time steps (time steps shown in dashed lines)" }, "xaxis": { "anchor": "y", "autorange": true, "domain": [ 0, 1 ], "range": [ -0.0007957559681697613, 1.2007957559681697 ], "title": { "text": "SYSTEM TIME" }, "type": "linear" }, "yaxis": { "anchor": "x", "autorange": true, "domain": [ 0, 1 ], "range": [ 9.22253006066182, 24.771928847425436 ], "title": { "text": "[A]" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5MAAAFoCAYAAADKJa96AAAgAElEQVR4Xu29CZglRZW/fWptZGmQXVFpEZDVQRTwUxhwYVcWEW0EkVHWEcQPZHdYRTbBBRlQBFpBbcCBBgGRRVAQAQdBEEFEZBV1bJZuFbrWf0beyqpbt/Pem5knMjIy873PU0913Yo4EfGeuKfPr2LJnvHgJbwgAAEIQAACEIAABCAAAQhAAAIpCPQgJlPQoigEIAABCEAAAhCAAAQgAAEIhAQQk0wECEAAAhCAAAQgAAEIQAACEEhNADGZGhkVIAABCEAAAhCAAAQgAAEIQAAxyRyAAAQgAAEIQAACEIAABCAAgdQEEJOpkVEBAhCAAAQgAAEIQAACEIAABBCTzAEIQAACEIAABCAAAQhAAAIQSE0AMZkaGRUgAAEIQAACEIAABCAAAQhAADHJHIAABCAAAQhAAAIQgAAEIACB1AQQk6mRUQECEIAABCAAAQhAAAIQgAAEEJPMAQhAAAIQgAAEIAABCEAAAhBITQAxmRoZFSAAAQhAAAIQgAAEIAABCEAAMckcgAAEIAABCEAAAhCAAAQgAIHUBBCTqZFRAQIQgAAEIAABCEAAAhCAAAQQk8wBCEAAAhCAAAQgAAEIQAACEEhNADGZGhkVIAABCEAAAhCAAAQgAAEIQAAxyRyAAAQgAAEIQAACEIAABCAAgdQEEJOpkVEBAhCAAAQgAAEIQAACEIAABBCTzAEIQAACEIAABCAAAQhAAAIQSE0AMZkaGRUgAAEIQAACEIAABCAAAQhAADHJHIAABCAAAQhAAAIQgAAEIACB1AQQk6mRUQECEIAABCAAAQhAAAIQgAAEEJPMAQhAAAIQgAAEIAABCEAAAhBITQAxmRoZFSAAAQhAAAIQgAAEIAABCEAAMckcgAAEIAABCEAAAhCAAAQgAIHUBBCTqZFRAQIQgAAEIAABCEAAAhCAAAQQk8wBCEAAAhCAAAQgAAEIQAACEEhNADGZGhkVIAABCEAAAhCAAAQgAAEIQAAxyRyAAAQgAAEIQAACEIAABCAAgdQEEJOpkVEBAhCAAAQgAAEIQAACEIAABBCTzAEIQAACEIAABCAAAQhAAAIQSE0AMZkaGRUgAAEIQAACEIAABCAAAQhAADHJHIAABCAAAQhAAAIQgAAEIACB1AQQk6mRUQECEIAABCAAAQhAAAIQgAAEEJPMAQhAAAIQgAAEIAABCEAAAhBITQAxmRoZFSAAAQhAAAIQgAAEIAABCEAAMckcgAAEIAABCEAAAhCAAAQgAIHUBBCTqZFRoa4EPn/y+fLjn94j279vM/ny8QfVFUOpxn3W+XNlzuU3yhXfOlHWX3tWqfpedGe/e+VP5IzzfiBfOekzss2Wm1jvzp4Hf1H+8rcX5NYrzrFuu9Xg+z96mKy68vLyvW98oWNbN/3sV/L/n3CeHPWZPWTv3bfNvV9pGojm8kYbrNl1HGnsUhYCEIAABCCgIVBqMRkl9+0AmCTIJCsmIWp+RWIgqr/Px7aTIw6avZiZ6D/vZvGw/lb7dOQdJV5RUhJXOK0Y6ZTUmYTsgd8+XrpkuWxJfuSD1rnSaRwmgTXz7+Hb52g+o87rRp+LsvU7DlTZ5lk3Z7ucU4jJhpj0KcZG/6+0+z+r2/zh9xCAAAQgAAHbBCohJpOsOkQJQWuCHCXOrX99f/ixJ+Wj+5+42CqUEZNJ/jLc6T/9SJAm/es3YtL2tE9vr93KBmIyPUuXNRCT2WkjJv0Tk8ab0f9ZSf7fy+59akIAAhCAAASSEai9mDSYjLgzW6Cat1sZ8WBerVuwbIjJ5oQgyRayvJO6ZFPFbqkyJfmd+JdpHEk9yMpkUlLVLpd33GGba/b5Y/4fSrvDJXtr1IQABCAAAQi0J4CYDNhEq4jRf86dBIItMRmJ2G6rnFFC1+rCaJtTXOIfJRqrrPTa8LxY9GqtE73fboU02lLXWj/JBypi2Fw2Es5xvzPlmvsRrQzH1Y/eax576/bj1hXoOHtJk7F2SW+3cbTWi/pg/PDX/3sxPH/Z6oNoBT16v90fG1rHm3SVu/kPGc1so1WOdlvHm/sRt4W7dZUkGvvXv/jZcIU/erX+0ca8HzfHk46n0zwztps/y5/9wtfDbcfRK25lp9vYmn3YvDU+bo60xpG0fYn7nHWaU6Z83Oc9yefVlGn9vBtfGV7Nvm83P+JYts5l00bz5zLNHGk3T+K2YsfNJzOWrGcm42JstFPhk8G5SnPGMnq1i+et8zTuc5AmRlXpDz5J5yflIAABCEDATwKIyQm/RP/Zm0TfJGTtzqTYFJNJtyt1WiFoJybNsJrH0Jxgxb3fnDBGSU1zYtRu22/ctI4bV+s2406CPe58YvRes8hoTmybk8rWVeW4Lcdx9tp9RI3Pu52rbZdMN18w0pwsNo+jOdGMe7/ZdusfPkyf05yjitvu3cqrU6Ia9TWun81zKGqnNWlu/fxE9uIES7dtfGnmmeHUbK+T+GvuS1z/Wrc8N/u1lUGz/5v93K0v7eZiOzHZ7vOeZOeDqRsX19r5xvyRqllIx/khbmdHaxud5kjrH3rijiPEtRvX53bji2McdwFPOzFpfBsXI1tjRdyZy9bPYdoYlfeqsZ/pCr2CAAQgAAEfCVRCTMaBbV3ZaHdmsrlu9Jf5TquFaS/g6XRRQrvEp3U8WcRkazLWbkUl7v12K3FRP7ol+Z3OF0ZJaLfV37hVQ5PU3f/bP0xuPW4neloTwnZtmbHf95vfd7y1MeLTbqWs0zg6rSI1J+PtbpCMe7/b2c1ul+a02x5nxhH1qR3XdnPIzFczVvOKbsvsNocikdOp3Dv+7a0db2DVzLO4z1Q7Nq19bOVjbH0n+DKv7d676SRH07+3b7DW5M2/7eZKGmGQdE5FAirJ6ns7fyftV+tnpNM8aZ5n7Xzf2p9ON6w2M+7UruY2104rk623w7aOqRPD5j9SpY1R3eKSj8kGfYIABCAAgWoSqISY7CZuomTX3HraKdmOxGTcFqTI/TZXJl2KyU7JZWsS3S6pjpK6bqsdkXDvlMi2S546JY5RnciHnVbQmsfQvCrbTWy1fsy7jdmGmEwq9Dsly2mEvllR6fRHjiziolXotxMKrWOI2uq23Tsu/GrmWWuSn2TeRXGmdU6Yfmy0/pphF2+87d7wjx3ROONWOVvjVVLRFsWxuNXuOH8mPVfXTmi161e7m6qb+5DkkrGkYrLbZyz6I0YnjkWJyU4xqlkIp41RiMlqJmSMCgIQgEAZCSAmJ7wW/advVqDMo0TKvs01Tsi1Sy6b3487t9M6sZOcZ4s7L9VtC6dpp90Z0eY+tJ7vixOIrWONs5tEwPgkJjs9bibi003om3KtZ+PMe3HbTFu5tjsj2uybqE5SMWnqxp3DS/roA+08i8ad5JKlZkbRqtIO739XeCbUzEnzMv9ufiRRM0NfVybbxYU4JtHciTvf3OqzuF0cSbb3tgqwduc0o3kX/fGvk+gsSkzGzc/mz0tzDEoToxCTZUy36DMEIACBahJATAZ+bV2ViDufE7nf5spkUls2trma/icRk1G5pMl80o9FlFhGyWS3lckkoijLdsyov1HdbuPslrR1WzVJsoqUdmUyiZhP6pfmPx50W/FNuvpp2m4nJpM8FD4SLEnmQOs4k84zzcpkND7zfdstNwm3uEa3Ppu+m62u5oKl5/82f9rD5csuJtv5rtOKeeSfqG7zro+0K5PddhX4KCZbV+yTfi6b/8gSF6O6xaU07VAWAhCAAAQgoCGAmJwQWa2rVD49GqTT6li7C3iyrkx2EgJJJ5rp05ePP2ha8dbkvZMwSbo9L+l2zLj+dBLXcQKlnejsNI6k59uSiknTr6QrLHG+Mu3ccOvd0y5PMeXa3Tra7kbcbgK80xxqbSvON0kEZ5Rsd5tnaQRc0jOTzcxM3DBbXJvPAputrubVfH4yjnPko6K3uSY939qun63z1/jP/BFl7+Cm0+ZX6+c1qZhMOh+6na3M4zZXzZnJVjatc7lTjEozZ5LGbcpBAAIQgAAEshCovZhsdzFP3K2Z0X/uabZHtjvLZGylWXlpl+jmISbjbnONJpcRM+ZxD+uvPavtfDN9bT132so5yfm/Vnamjnm8Q7QKFHebY9yts3ErzWluc22X9BoA3S6lsbkyadprNy+judlp9aadX9vdfhu3Ahp3m2vUL7NC13wBT+sZ5bgbK6NVyOZ+x/k1brIlmWdpxGTSm2qb/WD+3bx1s93Nrj6LyTi/NG+pjuJU3GerebzR5zVp7EwqJg27drtFzOf4wUeemPzjVVw8j95LE7fjbo1uvTE6TpzGjSlqv/WsrJlv5mX+EJE2RnU6i5klEaAOBCAAAQhAICuByovJuHMo0apd9J98t5s6m1f50t7mGueYJDcsttZrPS+X5DmTrX/pTrrNtVk4Nj+Xz7yfJCGLO3eZ5PmC3Z4zadpvFphRQhU9Dy/qd5yAjzu7lFTMd1sFaJ1j0TjyWJmMxhg3D5PMq7hzl3E+bT0f2e05k6Zfzf6Lxt46f+I+a3Fj6bal0bSXZJ6lEZOtIjFi3e6Cr3bb1Nv9gSptX+JiR9I5ZeomXeGPG7eZE2YLrzk/HvfYoKhv5rMXPUu03aOIorKt8zONmDQ22p2nbv0ct37Wze/NOIpYmYzG3u68cesZUvMHmOZXp+fMJvm8Z00MqAcBCEAAAhBISqDUYjLpIClXTQIu/zqv2V5aTfqdR9VpNbeOPBgzBGwRSLpyb6s97EAAAhCAAAQ6EUBMMj9KS8ClmIzbClhacA46jph0AJkmakeAOFQ7lzNgCEAAAt4TQEx67yI62I6ASzFp+hC1x/ay7nMSMdmdESUgkIZAtFU2yVGDNHYpCwEIQAACENAQQExq6FEXAhCAAAQgAAEIQAACEIBATQkgJmvqeIYNAQhAAAIQgAAEIAABCEBAQwAxqaFHXQhAAAIQgAAEIAABCEAAAjUlgJisqeMZNgQgAAEIQAACEIAABCAAAQ0BxKSGHnUhAAEIQAACEIAABCAAAQjUlABisqaOZ9gQgAAEIAABCEAAAhCAAAQ0BBCTGnrUhQAEIAABCEAAAhCAAAQgUFMCiMmaOp5hQwACEIAABCAAAQhAAAIQ0BBATGroURcCEIAABCAAAQhAAAIQgEBNCSAma+p4hg0BCEAAAhCAAAQgAAEIQEBDADGpoUddCEAAAhCAAAQgAAEIQAACNSWAmKyp4xk2BCAAAQhAAAIQgAAEIAABDQHEpIYedSEAAQhAAAIQgAAEIAABCNSUAGKypo5n2BCAAAQgAAEIQAACEIAABDQEEJMaetSFAAQgAAEIQAACEIAABCBQUwKIyZo6nmFDAAIQgAAEIAABCEAAAhDQEEBMauhRFwIQgAAEIAABCEAAAhCAQE0JICZr6niGDQEIQAACEIAABCAAAQhAQEMAMamhR10IQAACEIAABCAAAQhAAAI1JYCYrKnjGTYEIAABCEAAAhCAAAQgAAENAcSkhh51IQABCEAAAhCAAAQgAAEI1JQAYrKmjmfYEIAABCAAAQhAAAIQgAAENAQQkxp61IUABCAAAQhAAAIQgAAEIFBTAojJmjqeYUMAAhCAAAQgAAEIQAACENAQQExq6FEXAhCAAAQgAAEIQAACEIBATQkgJmvqeIYNAQhAAAIQgAAEIAABCEBAQwAxqaFHXQhAAAIQgAAEIAABCEAAAjUlgJisqeMZNgQgAAEIQAACEIAABCAAAQ0BxKSGHnUhAAEIQAACEIAABCAAAQjUlABisqaOZ9gQgAAEIAABCEAAAhCAAAQ0BBCTGnrUhQAEIAABCEAAAhCAAAQgUFMCiMmaOp5hQwACEIAABCAAAQhAAAIQ0BBATGroURcCEIAABCAAAQhAAAIQgEBNCSAma+p4hg0BCEAAAhCAAAQgAAEIQEBDADGpoUddCEAAAhCAAAQgAAEIQAACNSWAmKyp4xk2BCAAAQhAAAIQgAAEIAABDQHEpIYedSEAAQhAAAIQgAAEIAABCNSUAGKypo5n2BCAAAQgAAEIQAACEIAABDQEEJMaetSFAAQgAAEIQAACEIAABCBQUwKIyZo6nmFDAAIQgAAEIAABCEAAAhDQEEBMauhRFwIQgAAEIAABCEAAAhCAQE0JICZr6niGDQEIQAACEIAABCAAAQhAQEMAMamhR10IQAACEIAABCAAAQhAAAI1JYCYrKnjGTYEIAABCEAAAhCAAAQgAAENAcSkhh51IQABCEAAAhCAAAQgAAEI1JQAYrKmjmfYEIAABCAAAQhAAAIQgAAENAQQkxp61IUABCAAAQhAAAIQgAAEIFBTAohJC45f+K9hWfjKiAVLmCgDgdcM9skSM/rkxYVDZegufbRE4LXLDMqri0bllaFRSxYxUwYCr1/hNfLn+a+Uoav00RIBYrwlkCUzQ4wvmcMsdtfEeV7ZCSAms7ObrImYtACxRCZINErkLItdJdGwCLNEphCTJXKWpa4S4y2BLJkZYnzJHGaxu4hJHUzEpI5fWBsxaQFiiUyQaJTIWRa7SqJhEWaJTCEmS+QsS10lxlsCWTIzxPiSOcxidxGTOpiISR0/Oemkk+SwI46t1DbXhQteluvnzZXZex+gpONX9eefe1ruu/cu+eCus1Ud8y3ReOyRh+T5Pz8rW75/e9W4fKt8950/laWWnikbbvROL7pmK9G4+YarZa11NpBZa6zlxbhsdeKquXNkyw/sICusuLItk17YufAbZ8p+Bx/pRV9sdYIY35kkMd7WTOtshxjvhrOtVqoc40844QRbmGppBzGpdDtiUgnQYXXEpEPYFpoi0bAA0aGJKicaiEmHE0nRFDFeAa+AqsT4AqArmqxyjEdMKiZGUBUxqePHyqSSn8vqJBouaevbItHQM3RpocqJBmLS5UzK3hYxPju7ImoS44ugnr3NKsd4xGT2eWFqIiZ1/MLanJm0ALFEJnzbAlUidKXuqq1trqWGUMPOc2ayfk4nxtfP52bExPh6+t2MmjOTOt8jJnX8EJMW+JXNBIlG2Txmp78kGnY4ls0KYrJsHtP3lxivZ1hGC8T4MnrNTp8RkzqOiEkdP8SkBX5lM0GiUTaP2ekviYYdjmWzgpgsm8ey9Xd8XGQ0eITs2JjIYF+f9AdfL7w8HL43Grw3Zr5HX8HP48FX9PPYaE9YJqzfUm7q557Q9lSdRluL1RsLyjXZCP9t2jdtBn00X+bfMvHv6Odx6Zn8fViuqfxkmaiOqd6tTPB708ZYWGfKdtSPxdo35SbstvZvsfab+m5+F71MO+YVvdf6vdvvwg7E1Z9oYHpbi5ft7wv8aHw4UXCyfBu7nfozra3W9lvsNexkH3tzW5MMWtrsNvbmscSNq5VtEs5J2mw4TD/2pmk0OX/azYfWvh9+5LB8+YyBbIGDWiEBxKRyInABjxKgw+qcp3EI20JTnKexANGhiSqfpynjmcmRYZEh87WoZ+K7yHDw86Lg538sfFke/s33Zb23HdQilKYLnklxNCGCpgRUTLkWodQQYdOFkRFF00VYo8w0ERYjyhoibKJcJOxaywU/r7jCU7LB+j+XG3+yd0OQtfZpchwNW81CMRRAnr422ugBmTXrKZk3b2dPe5itW9tt9xN56aVl5e6735XNgKe1Zs++XB544N/k0UfX8bSH2bp14IHfDOfgX/6yajYDntY68cSThDOTOucgJnX8uIBHyc9ldcSkS9r6thCTeoYuLdRRTBrBtmgoEGlDgWALvk99NX4ejnlv6v2mOouM8At+Dr8bAdgQfs1CsGG7J7TZaLPxc9Tm1PuN9zqJo+WWe0n22ec78tWvHupyiuTe1qxZT8pWW/1M5sz5ZOq2eoLFkWAxUnp7G9/7+4O/tveOh//uC97rNd+jr+DnnolyYZ2+oNzEz63lpn4en7TdqDPRVmu9oM1mG+bfSy/5oMwYfEoW/vNDoQ3T12AhMvxuvsL3gmWY6Ofw+0S5aWWiOqZ6y+8n7TTZNW30hj9P2W7bviln7E70p7l/cbbNe/P/dosMDCwry62wSegv007je8N9rd87/m6iTmyZidkQ2WtnZ5klB2R4ZFQWDTf+sjBZvk1/2tl79LdXycqrbiArrLR2w05r+y32koy9W9+nNRTTZhqWcW2ZQdx+0yWy8WY7yrLLrTzFptlPLeNM1uepNcV2fk9ip8n9Xf3W6n/z+CfEZOqQOa0CYlLHDzGp5OeyOmLSJW19W4hJPUOXFnwTk4sCQfbPf/TIv/4VfP9nj7wSfpfg557G9+A98928P/ne5O8avzd1d93lFLnkkuMnRV602mfEns+rWUYMDQ6KDAyOB0Ik+PeM4N/BTq4ZM8Zl2WVfki23vFRuu/2QFqE0XfBEoicUU9MEVUy5aeJqQni1CiMjNJpEWfjvCcE2+X6MKGsIvIawm+zHYiJMZMGCp+XpP90p73zXHo12Wvs08fOkSGwSisZu9PLtKAPPEnYTyWwdZeBZwm78ZasVxKSeJGJSz5DbXC0wLJMJ3xKNMrErc19tJRplZpBH3yOxZ77/a0L8TXvPiLpA9E0TgoHoC8s3icIpQdgQgmYLY96v/kCcDZqvQKA1vk8JNiPczM9G0DW+gjIT/x5o+Tn6vXnfCL/G76fqhO+HtgMbwfepMtNtNt5vvNcsjvLmUDX7xPiqeTTZeIjxyThVsRQX8Oi8ipjU8Qtr82gQCxBLZIJEo0TOsthVEo0pmGZ75wsv9MgL84OvF4J/h98nVvzM6t4/zGrf1OqeWRmMxN/UKmHjvWmXR1j0lxFfSy41LkstFXxfsvHv8PuSE+8F7y8Vvdfmd68Jyr95tRny0iuvTorFSDwasYhgs+gwj0wR4z1yhsOuEOMdwvasKcSkziGISR0/xKQFfmUzQaJRNo/Z6W+VE40XjTBsEoUvzG8Wi0Y0ThePC15uPqGi49ss8F7TJP4mhV4g/pZcuiEIm98zItGIvaWWbojEqd81hKPZ5mnjxW2uNiiWywYxvlz+stXbKsd4W4yqagcxqfMsYlLHjzOTSn4uq3Nm0iVtfVucmczGcOHChvB7cWK1MBSCzf+eXFGcEolpVweNUFt++XFZfoVxee3ywb+D7/+2wYXBLo0PBVssVw4E3vTVwKkVwIboC0XgxGpg8+UK2Uacby1znqaMt7l2orJwwcty/by5MnvvA/KF59g6Md4xcGVzxHglQMfVfTsXb2v4nJnUk0RMKhnyaBAlQIfVSTQcwrbQFImGyKuvdheCrVtNza2eaV/LvTYQhhOisCESp8Ti4j9LcJtf81O9Gq1VOdFATKadUcWUJ8YXwz1rq8T4rOSKqVflGM9trro5hZjU8WNlUsnPZXUSDZe09W1VMdEwj2y4ft7VwbbNDWVk9K0Sbi9t2UI6tYrYOIOY9rV0sCpoVgqjlUMjEl87+XO8SLRx9q/KiQZiMu0sLKY8Mb4Y7llbrWKMNyy4zTXrjCimHiuTeu6IST1DLuCxwLBMJjhPUyZv2etr0vM05jzhk0/2yNPBl/n+VPjVG35/9pl0Zw3NJTJTwrD9amG41XRi26mpw8seAc5M2mNZFkvE+LJ4ym4/k8Z4u61izQcCnJnUeQExqeMX1uY2VwsQS2SCRKNEzrLY1eZE429/DYTinyaE4lOBUAz+HQnIv/+9vWA0K4CrzxqXVVZpnDds3kLaWD2cvqpoVhl5FUsAMVks/yJaJ8YXQb34NhGTxfugqB4gJnXkEZM6fohJC/zKZoJEo2wey9bfxopiY1XRCMfnn+uTP/5R5E9PdN5+am4WXf3NYzIrEI1GODa+gp/fPC5vWn1cfL9wJhut6tZCTFbXt+1GRoyvn8/NiBGT9fS7GTViUud7xKSOH2cmlfxcVuc8jUva+rbyPk9jLrd58k+N7adxW1I7PfR+hWAV8U2BSAwFYyASZwViMfp5lVUXv5ymmQbnafRzw6UFbnN1SVvXFjFex8917bxjfNrx2BKTxPi05Istz5lJPX/EpJIht7kqATqsTqLhELaFpmwkGi+92HRu0WxLbdqS+vyfO59fXO0N01cW11+3T1Z746is+vrR2NtMkw6ZRCMpKT/KISb98EOSXhDjk1Dyp4yNGG9zNIjJzjSrfMkat7nqPkmISR0/ViaV/FxWJ9FwSVvfVtJEw4jCqQtvGucXn3qqsUXV3Jba7tU/EGxHDbadNm9BNVtRo58HB6fXJNGob6LBba76z7MLC8R4F5TttZE0xttrsbMlYnx9YzxiUvcpQ0zq+IW1uYDHAsQSmeA8jVtnjY1JKAyjLamhUIwuvwnOM77ySvv+LLOMufBmbOrsYrQlNRCR5vximpetRCNNm5QtngBnJov3geseEONdE/ejPWK8H34oohecmdRRR0zq+CEmLfArmwkSjXw99qt7euXe4Mt8f+z3jTONnV4rrRSdW2ycYwxXFifOMprf2XqRaNgiWS47iMly+ctGb4nxNiiWzwYxvnw+s9VjxKSOJGJSxw8xaYFf2UyQaNjzmLkEpyEe++TeuxsCctGixe2bVUTzZS66MRfehNtTJ7akmtVHFy8SDReU/WsDMemfT/LuETE+b8J+2ifG++kXF71CTOooIyZ1/DgzqeTnsjrnaVzSjm/LXIgTrTqa7/97b/DgxZbXOuuNySabjskG698kb3jjTNl8y3eIOd9Y9MtWosEFPEV7Ml37XMCTjleRpYnxRdJP3zZnJtMzK7IGF/AUSd/vthGTSv9wm6sSoMPqJBoOYU809ZfnA/FoVhwD0Wi+//ahxcXjRhuPyabvaghI833FFRtbU0k03PtL02KVEw0u4NHMDHd1ifHuWNtoiRhvg6I7G1WO8VzAo5tHiEkdP1YmlfxcVifRyJ/2k8HFOEY0mm2rZsvq43+Yft6xv19C0bjJpHgclaWXju8XiUb+/rLZQpUTDcSkzZmSny1ifH5s87BMjM+Dan42qxzjEZO6eYOY1PELa3ObqwWIJTLBeZopZ01yc5kAACAASURBVD3y8NSqo9m2+tyz08WjEYqbbDYqm27WEJDme19fiZzd1FVb21zLOfr69pozk/XzPTG+fj43IybG19PvZtScmdT5HjGp44eYtMCvbCbqnGjcf9/UTatmBXL+/Oni0WxRbd6yarawVuVFolEVT6YbB2IyHa8qlK5zjK+C/7KOgRiflVz56yEmdT5ETOr4ISYt8CubibokGiPDwU2rE2cdG5fm9Mk//zndW294YyAeg9XGSECay3Oq+iLRqKpnO48LMVk/v9clxtfPs51HTIyv74xATOp8j5jU8ePMpJKfy+qcp+lMe+FC85iOxlnH6NKc0dHpddZae3xy26oRkKsHz3PM68V5mrzI5mO3yudpODOZz5yxbZUYb5tovvaI8fnytW29yjGeM5O62YKY1PFDTCr5uaxOojGd9v/939RNq78Ktqw+cP/iN61u+LbpN62usmp+4rF1LpBouPx06NuqcqKBmNTPDxcWiPEuKNtrgxhvj6ULS1WO8YhJ3QxCTOr4ISaV/FxWr3ui8czTjWc8mlVH83zHRx9ZXDxuYrasTmxbNd9nLutOPCImXX4a7LdV5UQDMWl/vuRhse4xPg+medpETOZJ177tKsd4xKRuviAmdfzC2tzmagFiiUyU5TzNY7/vCc489jW2rAZfTz01/bKcJZYwN60a8RjctmpuWg2+BgdL5AjHXeU8jWPgnjTHmUlPHOGwG2WJ8Q6R1KIpYnwt3Bw7SM5M6nyPmNTxQ0xa4Fc2E74mGg/+ZuqsoxGQf/vrdPG43GunLssxq47v2KS6l+XkMadINPKg6r9NxKT/PrLdQ19jvO1xYm86AWJ8fWcEYlLne8Skjh9i0gK/spnwKdG48+e98oPL+uWnt/bKgpeni8dVX9d4TEe0bXX9DRCPmrlGoqGhV966iMny+i5rz32K8VnHQL30BIjx6ZlVpQZiUudJxKSOH2cmlfxcVq/KeZrhIZEffK8/EJF9YlYjN9roAZk16yn5zYM7TTyio7Ft9S1rFnfe0YZfOU9jg6I7G1U+T8OZSXfzSNNSVWJ8K4PHHnlInv/zs7Ll+7fX4PGuLjHeO5d07FCVYzxnJnVzETGp44eYVPJzWb3sicbvHw1WIb/XJ3ODlUjzGA/zMquPe+9zv7zxDU/Khz9GopHnfLL1V+ubb7ha1lpnA5m1xlp5dte57SonGohJ59MpU4Nlj/HtBo2YzDQdUlcixndGVuUYj5hM/XGZVgExqeOHmFTyc1m9rInGjTf0hauQt9zUN4nr3ZuPyew9R2S33UeFRMPNLCLRqG+igZh08xnTtlLWGN9t3MT4boTs/J4YX98Yj5jUfYYQkzp+YW1uc7UAsUQmXJyneenFnnAV0pyH/OPjjbOQfYGW3CMQkHvsNSobbcz5R9dTxlai4brftKcjwJlJHb8y1nYR48vIpep9JsZX3cPtx8eZSZ3vEZM6fohJC/zKZiLPROP++8yFOoGIDM5Ejk3oxTXXGg8EZCAi9xyVZZcr9znIsvm6ub8kGmX2Xva+IyazsytrzTxjfFmZ1KHfxPg6eDl+jIhJne8Rkzp+iEkL/MpmIo9E44dXBGchAwH5y1/0TuLYetvRcBVy2+1Hy4aokv0l0aikW7sOCjHZFVHlCuQR4ysHqYIDIsZX0KkJh4SYTAiqTTHEpI4fZyaV/FxW9+08zbPPmK2sjVtZ//qXxlbWZWaaVchARAbbWdd+a7JVSM7TuJlFthINLuBx4y9brVz4jTOFM5O2aOZrx7cYb2u0xHhbJDvbIcZ35sMFPG7mYRlbQUwqvXbSSSfJYUccKwtfGVFa8qf6wgUvy/Xz5srsvQ/wp1MWeuJLonHHzxrPhrzm6qkLdTZ6+1goImd/fET6B9INlkQjHa+spUk06ptoICazfmrc1vMlxtseNTHeNtF4e8T4+sZ4LuDRfcYQkzp+rEwq+bmsXmSi0fpsyGjcu+5mtrKOyHu2yH6hDomGm1lEolHfRAMx6eYzpm2lyBiv7Xun+sT4POlO2SbG1zfGIyZ1nzHEpI5fWJvbXC1ALJGJNOdp4p4N+brXT21lff1qybaylghPZbtqK9GoLKCKDowzkxV1bIdhpYnx9aNT3RET46vr224j48xkN0Kdf4+Y1PFDTFrgVzYTSRKNds+GNKuQH/4IF+qUzeemvyQaZfSavs+IST3DsllIEuPLNib6250AMb47o6qWQEzqPFt7Mfmpw86Qe379yCTFNWetJtfMOXUa1Z33OU4ef/K58L2437MyqZuEZavdLtF48YWpZ0M+8UeeDVk2v3brL4lGN0LV/D1ispp+7TQqxGT9fM4fDOvp82jUiEmd/2svJrfY5RC5Y965kxTNz5tvuqGcduz+4XtGbM5/YcGkwDTCcoXlZ8rF5xwV/p4LeHQT0GXtvM7T/Pp/gwt1vhc8GzK4VGd8YtfqWms3ng05++P5PxuS8zRuZpEtMcltrm78ZasVbnO1RTJ/O3nF+Px73rkFYrwbDxDjO3PmNlc387CMrdReTLY67ZgvfUt+99hTk+LRiMvDD/yY7LLd5mHReTfeKWdfcPmkAEVMlmfa2040LrxoVOYGAvKXd009G3Kb7RrPhjTfXb1INNyQJtGob6LBBTxuPmPaVmzH+BcXDmm7ZKU+Md4Kxq5GiPH1jfFcwNP149GxAGKyBY9ZeVxv7dXDlcmHHnlCZh90ssw9/3jZcN01wpKt7yEmdRPQZW0biYZ5NuQP5w7IZd/tk+efb/R+5rLBKuSejVtZzYqk6xeJhhviJBr1TTQQk24+Y9pWbMR40wfftrkS47UzI1l9Ynx9YzxiMtlnpF0pxGQTGbMqee1Nd8nDt8+JFY5xYtK8969FI/LKIncrUTqXUzsLgZ/d3hsKyKv/Z2oV8u0bj8tee4/Knp8Ylf7+LFapUyYCSy85IENDYzI0wme9TH7T9nWFmTNk/oJFWjPULxGBwf4+GRzslX/8a7hEvaarWgLEeC3B8tY3cZ5XdgKIyQl25150lVxw6bUdVyHbicmR0XEZHXO/IpXd7dRMQmBRkD/OuaQn/Lr//qkae+wxLp/+tMjm/47Pk3CsSpmBvh4ZCw7FjmZ/JGhVUNRqHDMGemXRME6vk9P7gr8Z9vb0yHDwfzuv+hAgxtfH160jNXGeV3YCiMmAXeuKZDPObmcmTVluc80+AX2s+egjvTJ34kKdf/yj0UPzPMjZZivrniPyljf3yhIz+sSX8zQ+Mqxin2xtgaoimyqPidtcq+zd+LH5ts21fh4oZsTE+GK4+9Aqt7nqvFB7MWnOSJpX6+NAIqzc5qqbYD7V7nae5sfXmxtZ++TWm/smu/2eLcbCs5C77ja1tdG3RIPzNG5mma1Eg9tc3fjLVivc5mqLZP52usX4pD0gxiclpSt3950/laWWnikbbvROnSFLtYnxnUFym6uliVZBM7UWk9FlOnF+PfXofSdvcO30nEku4CnPpyIu0Yh7NqQ5/zg7WIE0t7Ju9PbFt7eRaLjxOYmGG862WqlyosEFPLZmSb52EJP58rVtnRhvm2i+9qoc47mARzd3ai0mdegatRGTNii6sdGcaHR6NqS5mdXc0NruhZh04y8SDTecbbVS5UQDMWlrluRrBzGZL1/b1onxtonma6/KMR4xqZs7iEkdv7A2ZyYtQHRk4oeX9wXnIXXPhvRNTDpCV/tmbG2Bqj3IkgHgzGTJHGahu8R4CxBLaIIYX0KnWeoyZyZ1IBGTOn6ISQv8XJj4zQO9csznB8R8N69llwsu1Pl4tmdDkmi48Jh/bZBo+OcTFz1CTLqg7FcbxHi//OGqN8R4V6T9awcxqfMJYlLHDzFpgV/eJr5zcb8ce+RA2MxrlhQ58YvDgZAcyfxsSBKNvD3mp30SDT/9knevEJN5E/bPPjHeP5+46BEx3gVlP9tATOr8gpjU8ePMpJJfntVffVXk6M8PypVzG7ez7nfAH+Wd7/y5fHDX2apmfUs0uM1V5c7ElW0lGtzmmhi5FwW5zdULNyTqBGcmE2HyphBnJr1xRaKOcGYyEaZaFkJMKt3OBTxKgDlV/+VdZlvroPzhsR4ZGBQ5/awh2XKrP8l9996FmMyJuW2zJBq2ieZrr8qJBhfw5Dt3bFlHTNoi6cYOMd4NZ1utVDnGcwGPbpYgJnX8WJlU8suj+gXn9cspJzS2tW76rjE57axhWWfdMSHRyIN2fjZJNPJjm4flKicaiMk8Zox9m8R4+0zztEiMz5OufdtVjvGISd18QUzq+IW1uc3VAkQLJswzI48+YkCuu6axrXX//xyRE04etmB5ugnftrlaHyAGYwnY2uYK3nIR4Mxkufxlo7fEeBsUy2eDGF8+n9nqMWcmdSQRkzp+iEkL/GyY+OktfXJMICSffaYnvKn19GA1cqddR22YXswGiUYuWL03SqLhvYty6SBiMhesXhslxnvtntw6R4zPDa33hhGTOhchJnX8EJMW+GlNnHNmv5x9ZmNb61bvGw23tb5p9XGt2bb1STRyQ+u1YRINr92TW+cQk7mh9dYwMd5b1+TaMWJ8rni9No6Y1LkHManjx5lJJT9N9eeeDba1Bs+ONKuS5vW5z4/IEUe339bKeRoNbfd1OU/jnrmmxSqfp+HMpGZmuKtLjHfH2kZLxHgbFN3ZqHKM58ykbh4hJnX8EJNKflmrX39tX3g+8oX5PbLq68bljLOH5QPbdN7WSqKRlXYx9Ug0iuGetdUqJxqIyayzwm09Yrxb3trWiPFagm7rVznGIyZ1cwkxqeOHmFTyy1L9iycOyPnf6A+rbr/jqJweCMkVV+y+rZVEIwvt4uqQaBTHPkvLVU40EJNZZoT7OsR498w1LRLjNfTc161yjEdM6uYTYlLHL6zNba4WICYwYZ4ZecwRg/LLX/SGpY/5r2E5+NCRBDXtFuE8jV2eZbHGeZqyeMpuPzkzaZdnGawR48vgJft9JMbbZ1oWi5yZ1HkKManjh5i0wC+JiSvnBttaPz8or74qssZbgttavzwk79liLElV62VINKwjLYVBEo1SuMl6JxGT1pF6b5AY772LcukgMT4XrKUwipjUuQkxqeOHmLTAr5uJ444akDkXNba17rZ7cFtrICSXWqpbrfx+T6KRH1ufLZNo+Oyd/PqGmMyPra+WifG+eibffhHj8+Xrs3XEpM47iEkdP85MKvl1qv7gb3rlmOC21gfub2xrPeW0YfnUftm3tXKeJkdn5WCa8zQ5QM3RZJXP03BmMseJY9E0Md4iTAemiPEOIFtsosoxnjOTuomCmNTxQ0wq+bWr/t1L+oPzkY1nR26w4ViwrXVY3v4O3bZWEo2cnJWTWRKNnMDmZLbKiQZiMqdJY9ksMd4y0JzNEeNzBmzZfJVjPGJSN1kQkzp+iEklv9bqixZJeDbyih80nh251ydHQiHZ06NviERDz9ClBRINl7T1bVU50UBM6ueHCwvEeBeU7bVBjLfH0oWlKsd4xKRuBiEmdfzC2tzmagFiYOLuX5ptrYPy2O97ZGBQ5PSzhmT2np2fHWmn5XRWOE+TjldVSnOepiqeTDcOzkym41WF0sT4Kngx/RiI8emZVaUGZyZ1nkRM6vghJi3wMyYuOK9fTjmhsa1103eNyWlnDcs66+q2tVrq2mJmSDTyIuu3XRINv/2TV+8Qk3mR9dcuMd5f3+TZM2J8nnT9to2Y1PkndzG5/lb7pO7hmrNWk2vmnJq6XlEVWJnMTv7FF3rk6OBs5HXXNLa17nfQiJx4ynB2gw5qkmg4gOxhEyQaHjrFQZcQkw4ge9YEMd4zhzjqDjHeEWgPm0FM6pziREw+fPucxL0896Kr5JY77iuNmDzppJPksCOOlYWvZL9lNDEcRwUXLnhZrp83V2bvfUCuLd52q3l25IA8+0yPzFx2XM4IzkbutGt+21o5T5OrO60b5zyNdaS5GqzyeRrOTOY6dawZJ8ZbQ+nEEDHeCWZrjVQ5xnNmUjdNEJM6flzAk5HfV87qly+f0djWuuV7zW2tQ/Km1cczWktWjUQjGSdfSpFo+OKJZP2ocqKBmEw2B4ouRYwv2gPp2ifGp+NVdOkqx3jEpG52ISZ1/BCTKfn9+blgW2uwGnnrzY1trYcePiJHHuNmWyuJRkpnFVycRKNgB6RsvsqJBmIy5WQoqDgxviDwGZslxmcEV1C1Ksd4xKRuUuUuJnXdK0dtzkwm89P1P+oLbmsdkPnze2TV142Hj/zYetv8trUm61X6UpynSc+sCjU4T1MFL6YfA2cm0zMrew1ifNk9mK3/xPhs3KpQizOTOi96ISajS3rSnK3UDdtubcRkd56nnjQg/31uf1hw+x1H5bRASK60Ur7bWrv3KlsJEo1s3Mpei0Sj7B7M1n/EZDZuZa5FjC+z97L3nRifnV3ZayImdR4sTEyai3YuuPTayd7PPf942XDdNXSjKag2YrI9+Mf/YLa1Dsovf9EbFjrmv4bl4EPLfVkRiUZBH7SCmyXRKNgBBTWPmCwIfIHNEuMLhF9g08T4AuEX3DRiUucA52LyU4edIff8+pHJXp969L6yy3ab60ZRYG1uc20P/4eXm9taB+WVV0TWeIvZ1jok79miuGdHcp6mwA9KhqY5T5MBWoFVqnyehjOTBU6sFE0T41PA8qAoMd4DJ6ToQpVjPGcmU0yEmKLOxGTz8yYP/MROcsinPyzmPcSkzoF51LbxaJDjjhqQORc1trXutrvZ1jokSy2VR2+T2yTRSM7Kh5IkGj54IXkfqpxoICaTz4MiSxLji6Sfvm1ifHpmRdaocoxHTOpmlhMx2e5MJGJS57y8amvE5EMP9srRhw/IA/c3trWectqwfGo/P7a1kmjkNWPysUuikQ/XvKxWOdFATOY1a+zaJcbb5Zm3NWJ83oTt2q9yjEdM6uaKMzG5/HLLyB3zzp3W2yqISTMgzkw23HrpnP7wsR/mtf4GY3LG2cPy9ncUt61V99FoX5vzNHmR9dsu52n89k9evePMZF5k/bVLjPfXN3n2jBifJ12/bXNmUucfJ2IyFBfBltboFW1tRUzqnOdL7aEhCc9GXv79xrMj99p7RE4PhGRPjy89tNsPEg27PMtijUSjLJ6y20/EpF2eZbBGjC+Dl+z3kRhvn2lZLCImdZ5yJiajblbtAh4zrjqvTN5zd2/47MjfP9or/cGi5OlnDckee5Xv2ZFpPkYkGmloVacsiUZ1fJlmJIjJNLSqUZYYXw0/ph0FMT4tseqUR0zqfOlcTEbdbX40SNwWWN2w3NWu822u3/zvfjn5+Ma21k02GwuE5LCss56/21o5T+Puc2GjJc7T2KDozkaVz9NwZtLdPNK0RIzX0HNflxjvnrmmxSrHeM5MamaGSGFisrnb7S7o0Q3NTe06ismXXgyeHXnEgPxoXmNb634HjciJpwy7Aa5ohURDAa+AqiQaBUBXNFnlRAMxqZgYDqsS4x3CttAUMd4CRIcmqhzjEZO6iZS7mDRC8eHb5yTupVmxvOWO++SaOacmrlNkwbqJydtu7ZNjAiH5zNM9MnNZ8+zIYdl513JsayXRKPKTkr5tEo30zIqsUeVEAzFZ5MxK3jYxPjkrH0oS433wQvI+VDnGIyaTz4O4kohJHb+wdl3OTH7lrH758hmNba1bvncsfHbk6quPWyBYLhOcpymXv2z1lvM0tkiWyw5nJsvlLxu9JcbboFg+G8T48vnMVo85M6kjiZjU8auFmPzzc8G21uCSnVtvbmxrPfTwETnyGP+3tVpwbawJEo28yPptl0TDb//k1TvEZF5k/bVLjPfXN3n2jBifJ12/bSMmdf5xIibTdnHNWauVZpurGVuVVyZvuK5Pjj58QObP75FVVh0Pnx259bbl2Naadt4lLU+ikZRUtcqRaFTLn0lHg5hMSqo65Yjx1fFlmpEQ49PQqlZZxKTOn7mLSV33/K9d5TOTTzx5sJz39f7QCdvtMBo+O3Kllcq7rZXzNP5/npp7yHmacvmryudpODNZjrlIjC+Hn6JeEuPL5a8qx3jOTOrmImJSx0+qKCYffmiB3PqTuXLG6YeGdI7+wrAc8rkRJaniq5NoFO+DND0g0UhDq/iyVU40EJPFz68kPSDGJ6HkTxlivD++SNKTKsd4xGSSGdC+DGJSx69yYnI8WHjcfedXZLNNL5Vrrv1scFvrkGz+7/4+OzKN+0g00tAqviyJRvE+SNODKicaiMk0M6G4ssT44thnaZkYn4VacXWqHOMRk7p5hZjU8QtrV+nM5GGfHZTLv98nb/u3MZl71SJZdlkLgCpmgvM0FXNowuFwniYhqIoV48xkxRyaYDjE+ASQKliEGF9BpyYcEmcmE4JqUwwxqeNXKTF54QX9cuIXBmRgUOT6mxbJ+htUY0XSgounmSDRsE20HPZINMrhJ9u9REzaJuq/PWK8/z7Ko4fE+DyolsMmYlLnJ8Skjl9lxOSdP++Vj314Rjier503JB/5WL1vbO00LUg0LHxoSmiCRKOETrPQZcSkBYglM0GML5nDLHWXGG8JZAnNICZ1TkNM6vhV4szk3//eIx/cZoY883SPHPiZEfnc4X+X6+fNldl7H6Ck41d1ztP45Y9uveE8TTdCfv2+yudpODPp11xr1xtifDn8FPWSGF8uf1U5xnNmUjcXEZM6fpUQk/vsOSg3/6RPtnrfqHzviiFZuOBlxGSHeeHbX60fe+Qhef7Pz8qW799eOZv9qk6i4Zc/uvWmyokGYrKb9/34PWLSDz8k7QUxPikpP8pVOcYjJnVzDDGp41d6MXnGqQPy9a/0yyqrjofnJF/3+nHEZJc5gZhUfmgSVifRSAjKk2JVTjQQk55Msi7dQEyWw0+sTJbLT1FvqxzjEZO6OYmYnOB37kVXyRU/uk3umHfuNKLHfOlbcu1Ndy1G+eHb50y+V9bbXK+9uk8O2i+4bSd4XTp3SN73Ac5JJvk4+SYmk/SZMnoCnKfRMyyjBc5MltFruj4T43X8ylqbGF9Wz+n7zZlJHcPai8l5N94px53+7ZDi8sstEysmf/fYU3LNnFPbki6jmHzs9z2y49ZLyL/+JXLcCcPyn4eM6GZSjWqTaNTI2U1DJdGop98Rk/XzOzG+fj43IybG19PvZtSISZ3vay8mI3ydViarKCZ32n6G3PerXtlt91H5+vlDullUs9okGjVz+MRwSTTq6XfEZP38Toyvn88Rk/X0eTRqxKTO/4jJCX5Jt7m2rl6edNJJctgRx8rCV8qzsnfUYQNy2Xf7Zd31x8JzkjMaTwSZfHEBT+cPlW+JBhfw6IJg0tq2xOTNN1wta62zgcxaY62kTZeiXJXP03BmshRTUDgzWQ4/Rb3kXHy5/FXlGM+ZSd1cREx2EZOteHfe57jwrWjbqxGTRx3zBXl1qBznDS/8Zp8c+fk+6ekRueW2Ydn4HeOLzaAFwW2u/3P59+Q/9vtP3ezyrPazzzwt9/zyDtnto3uqejbQ3yvm61+v+vEHhN89/KA898wzsvV2O6rG5Vvln99+iyyzzLLy9nds4kXXllyiX4ZHxsIvzeu6a/4n+EPOhvKWNdfWmPGu7vcvvVi23nZHWWnlVbzrm6ZDXzv7NDn08GM0JryrS4zv7BJivJspS4x3w9lWK1WO8YhJ3SxBTKYUk9EZy+gCHiMmjz3uv2R4dHFRpnON/dp33NEj223dGxo+/5tjsvcn4/v88ssvyeXfv0z2P+hg+50o0OIzTz8lv7jz5zL7459Q9aK/t0f6+npk0bBOVKg60VT5tw/9JnhG6NOy/Y4fsmXSCzu33XqzLDNzprxzk8286M+MgV4ZDT7nI2O6z/q8q66U9Td4m6y19lu9GJetTnznkgtl+x12kpVXqZaYPOv0L8oRR3/BFiYv7BDjO7uBGO9mmhLj3XC21UqVYzxiUjdLEJNKMWmql+ECnpdf6pEdtp4hT/6pR/Y7cERO/OKwbubUuLZv21xr7AqnQ7e1zdVpp2lMTYAzk2qEpTNAjC+dy6x0mBhvBWMpjXBmUuc2xGQXMbnFLodMu+HV/LzWGm+Qi885apJ8GcTkvp8clB9f3yeb//uYXH7VIt2sqXltEo16TgASjXr6HTFZP78T4+vnczNiYnw9/W5GjZjU+b72YrL50SARyp22ebecduz+4Y/mjOTjTz43SXmzjdedJiTNL3wXk2efOSDnnNkvK644LtcFF+688U26bXq6KVf+2iQa5fdhlhGQaGShVv46iMny+zDtCIjxaYlVozwxvhp+zDIKxGQWalN1ai8mdfhEfL/N9fof9cn+/zEYDvOSy4Zkm+26XxTEba6dZ4VviQa3uWo/xcnq20o0uM01GW9fSl34jTOF21x98UbnfnCbazn8FPWS21zL5S9ucy2Xv1z2FjGppO2zmHzij41zkgsX9MhRxw7LZw9LdvsoYhIxqfxYWKlOomEFozMjVU40EJPOppGqIcSkCp/zysR458hVDVY5xnMBj2pqCGJSx8/rlckPf3CG3HN3r+y066icf+FQ4pEiJhGTiSdLjgVJNHKEm4PpKicaiMkcJkwOJhGTOUDN0SQxPke4OZiucoxHTOomDGJSxy+s7eOZyWOPHJDvXNwva7/VnJN8VZZaysJAMRES8G2bK25xQ8DWNlc3vaUVWwQ4M2mLZHnsEOPL4yubPSXG26RZLlucmdT5CzGp4+elmLx0Tr8c/fmBsG/X/niRvGMTP56HaAG1FyZINLxwg/NOkGg4R+5Fg4hJL9zgtBPEeKe4vWmMGO+NK5x3BDGpQ46Y1PHzTkz+7729svMOM8J+nXHOsOy1d7JzkhYw1MYEiUZtXD1toCQa9fQ7YrJ+fifG18/nZsTE+Hr63YwaManzPWJSx8+rM5P/+IfIjlsvIY//oUf+Y98R+eLpw5lGx5nJzth8SzS4zTXTNE9dyVaiwW2uqdEXWoHbXAvFn6pxzkymwlV4Yc5MFu6CVB3gZkhmIQAAHPFJREFUzGQqXLUqjJhUutun21wP3HdQfjSvT/6/d4/JD69dlHlkiEnEZObJY7EiiYZFmA5MVTnR4AIeBxPIQhOISQsQHZogxjuEbaGpKsd4LuDRTRDEpI6fNyuTXzu7X848bUCWXW5cbrh5kcx683jmkSEmEZOZJ4/FiiQaFmE6MFXlRAMx6WACWWgCMWkBokMTxHiHsC00VeUYj5jUTRDEpI5fWLvo21x/8uM++dQnBsO+XDhnSHb44KiFUWGiHQHftrniKTcEbG1zddNbWrFFgDOTtkiWxw4xvjy+stlTYrxNmuWyxZlJnb8Qkzp+hYvJp5/qkR23mSEvzO+Rw48clsOO5MIdCy7taIJEI2/Cfton0fDTL3n3CjGZN2H/7BPj/fOJix4R411Q9rMNxKTOL4hJHb/CxeTuu8yQu+7slR0/NCrfumTIwmgw0Y0AiUY3QtX8PYlGNf3abVSIyW6Eqvd7Ynz1fJpkRMT4JJSqWQYxqfMrYlLHr9Azk8cfOyAXfatf1njLuFx/0yKZuWz2c5LNGDgz2XlS+JZocJur8kOcsLqtRIPbXBMC96QYt7l64ogE3eDMZAJIHhXhzKRHzkjQFc5MJoBU0yKISaXji7rN9QeX9cnnP9c4J3nVdYtks3eNKUcyVR0xiZi0NpkUhkg0FPAKqFrlRIMLeAqYUBmaRExmgFZgFWJ8gfAzNF3lGM8FPBkmRFMVxKSOXyErkw/8OtjWGpyTNK9TzxiWfT5t95wkYhIxqfxYWKlOomEFozMjVU40EJPOppGqIcSkCp/zysR458hVDVY5xiMmVVNDEJM6fmFtl7e5vvqqyI5bz5BHH+mVvT45ImecPWxhBJhIQ8C3ba5p+k7Z7ARsbXPN3gNqFkGAM5NFUC+2TWJ8sfyLap0YXxT54tvlzKTOB4hJHT/nYvLgAwbl6v/pk3duOibX3LDIQu8xkZYAiUZaYtUoT6JRDT+mHQViMi2x8pcnxpffh1lGQIzPQq0adRCTOj8iJnX8nIrJb3ytX047ZUCWXlrkuptelbXWtnPhjgUEtTJBolErd08OlkSjnn5HTNbP78T4+vncjJgYX0+/m1EjJnW+R0zq+Dk7M3nrzX2y9x6NC3cu+PaQfGiXUWXP21fnzGRntL4lGtzmmttHYZphW4kGt7m68ZetVrjN1RbJ/O1wZjJ/xjZb4MykTZr52+LMZP6My9oCYlLpORe3uf75uZ7wnOTf/tYjhx4+Ikcek+85ScQkYlL5sbBSnUTDCkZnRqqcaHABj7NppGoIManC57wyMd45clWDVY7xXMCjmhpcwKPDJ05WJvf4yAz5+e29su32o3LxpUPaLnetj5hETHadJA4KkGg4gGyxiSonGohJixMlR1OIyRzh5mCaGJ8D1BxNVjnGIyZ1E4eVSR2/sHaet7mefPyAfPO/++VNq4/L9TctkuVX4JykBZepTPi2zVU1GConJmBrm2viBinoBQHOTHrhBqedIMY7xe1NY8R4b1zhvCOcmdQhR0zq+OUqJq+c2yefO7hxTvLKeYvk3ZuPWegtJrQESDS0BMtZn0SjnH7T9hoxqSVYvvrE+PL5zEaPifE2KJbTBmJS5zfEpI5fbmLyoQd7w3OSo8E9OyedOiz7HjBioaeYsEGARMMGxfLZINEon89s9BgxaYNiuWwQ48vlL1u9JcbbIlk+O4hJnc8Qkzp+uZyZHAl0oxGSv32oV/bYa1S+/NX8z0k2Y+DMZOdJ4VuiwW2uyg9xwuq2Eg1uc00I3JNi3ObqiSMSdIMzkwkgeVSEM5MeOSNBVzgzmQBSTYsgJpWOz+M210M/Myg/vLxPNtp4LDwn6fqFmERMup5zce2RaPjgheR9qHKiwQU8yedBkSURk0XST982MT49syJrVDnGcwGPbmYhJnX8rK9MXnBev5xywoAssYSEQnKd9dyfk0RMIiaVHwsr1Uk0rGB0ZqTKiQZi0tk0UjWEmFThc16ZGO8cuarBKsd4xKRqavBoEB2+Rm1bt7n+7LZe+fjuM0Kb3/jmkOy6W3Bgkpd3BHzb5uodoIp2yNY214riqeywODNZWde2HRgxvn4+NyMmxtfT72bUnJnU+Z6VSR0/a2Lyb3/tkR2Cc5LP/7lHDj50RI75r2ELPcNEHgRINPKg6r9NEg3/fZRHDxGTeVD12yYx3m//5NU7YnxeZP23i5jU+QgxqeNnTUx+Yvag/PSWPnnfB0bl0rluL9yxgKBWJkg0auXuycGSaNTT74jJ+vmdGF8/n7MyWU+fR6NGTOr8j5jU8bNyZvJLJw/IeV/vl9evNi7X37xIVl55XNkrXXXOTHbm51uiwW2uuvmetLYtMcltrkmJ+1GO21z98EOSXnBmMgklf8pwZtIfXyTpCWcmk1CqZxnEpNLv2ttcr/phnxxy4GDYi+9fuUi2fK/7C3daESAmEZPKj4WV6iQaVjA6M1LlRIMLeJxNI1VDiEkVPueVifHOkasarHKM5wIe1dTgAh4dPlGtTD76u97wnOSi4Okfx588LAf8Z/CASQ9eiEnEpAfTUEg0fPBC8j5UOdFATCafB0WWREwWST9928T49MyKrFHlGI+Y1M0sViZ1/MLaWW9z3TEQkg/c3yu7zx6Vr36Dc5IWXOHEhG/bXJ0Mmka46a+mc4Azk/VzPDG+fj43I7Z1lKGe9Mo9as5M6vyHmNTxyywmDz90UOZ+r082fNuYXBc8T7K/30JHMOGEAImGE8zeNUKi4Z1LnHQIMekEs1eNEOO9coezzhDjnaH2riHEpM4liEkdv0xi8tvf7JcTjhsIBaS5cGeDDYs/J2kBQ21MkGjUxtXTBkqiUU+/Iybr53difP18zspkPX0ejRoxqfM/YlLHL/WZyV/c0Ssf3XVG2OrXzhuSj3xsVNkD+9U5M9mZqW+JBre52v8MxFm0JSa5zdWNv2y1wm2utkjmb4czk/kzttkCZyZt0szfFmcm82dc1hYQk0rPpbnNdf78HjHnJJ95uie8bMdcuuPjCzGJmPRhXpJo+OCF5H2ocqLBBTzJ50GRJRGTRdJP3zYxPj2zImtUOcZzAY9uZiEmdfxSrUz+x16DctONfeHjP8xjQHx9ISYRkz7MTRINH7yQvA9VTjQQk8nnQZElEZNF0k/fNjE+PbMia1Q5xiMmdTMLManjF9ZOcpvrGV8akK+f0y8rrzIu1wcX7rx+tXELLWOiCAK+bXMtgkEd27S1zbWO7Mo8Zs5Mltl72fpOjM/Grey1iPFl92D2/nNmMjs7UxMxqeOXSEz+aF6fHLjvYFj20rlD8r4P+HdO0gKG2pgg0aiNq6cNlESjnn5HTNbP78T4+vncjJgYX0+/m1EjJnW+R0zq+HUVk394zJyTXEL++U+RY48fls98dsRCi5gokgCJRpH0i2ubRKM49kW2jJgskn4xbRPji+FedKvE+KI9UFz7iEkde8Skjl/XM5M7bT9D7vtVr3z4I6Ny7gVDytbcVOfMZGfOviUa3Obq5nNhK9HgNlc3/rLVCre52iKZvx3OTObP2GYLnJm0STN/W5yZzJ9xWVtATCo91+k216MOH5DLvtMv66w3JjcEz5Oc0XgiiPcvxCRi0odJSqLhgxeS96HKiQYX8CSfB0WWREwWST9928T49MyKrFHlGM8FPLqZhZjU8Wu7Mjnnon457qiB0Pr1gZDc6O1jypbcVUdMIibdzbb2LZFo+OCF5H2ocqKBmEw+D4osiZgskn76tonx6ZkVWaPKMR4xqZtZiEkdv7B2622ud/+yV3b7UGMZ8stfHZI99uLCHQuYvTHh2zZXb8BUvCO2trlWHFPlhseZycq5tOuAiPFdEVWyADG+km5NNCjOTCbC1LYQYlLHbzExueDlHtlh6xnypyd6ZN8DRuSkU4cttIAJnwiQaPjkDXd9IdFwx9qnlhCTPnnDTV+I8W44+9YKMd43j7jrD2JSxxoxqeO3mJjcb59BueG6PnnPFmNyxdWLLFjHhG8ESDR884ib/pBouOHsWyuISd88kn9/iPH5M/axBWK8j15x0yfEpI4zYlLHb9qZybPPHJBzzuyX5VcYl+tvWiRvWn1cab2Y6pyZ7Mzdt0SD21zdfE5sJRrc5urGX7Za4TZXWyTzt8OZyfwZ22yBM5M2aeZvizOT+TMuawuIyQnPnXvRVXLFj26TO+adu5gvd97nOHn8yefC99ectZpcM+fUyTLRba6XXzkuZlXSvC65bEi22a685yQRk4hJHwIaiYYPXkjehyonGlzAk3weFFkSMVkk/fRtE+PTMyuyRpVjPBfw6GZW7cXkvBvvlONO/3ZIcfnllllMTH7qsDNk/gsLJgWkEZYrLD9TLj7nqLCOEZM773qcbPnvfWLOSx517LB89rARnVcKro2YREwWPAXD5kk0fPBC8j5UOdFATCafB0WWREwWST9928T49MyKrFHlGI+Y1M2s2ovJCF+7lcktdjlEDj/wY7LLdpuHRY34PPuCy6eJzvdsPi53/aJHPrTLqFzw7SGdR6jtPQHftrl6D6wiHbS1zbUiOGozDM5M1sbVkwMlxtfP52bExPh6+t2MmjOTOt8jJif4xYnJhx55QmYfdLLMPf942XDdNcKSre8dfLDIeeeJrLV2cE7y5ldlqaV0DqG2/wRINPz3UR49JNHIg6r/NhGT/vvIdg+J8baJlsMeMb4cfsqjl4hJHVXEpFJMvuENIs8FxylvvnVENntXOS/c0U2h+tXu7+uV/v4eeXVRec/F1s9r+hEvMaNPRkbGZWR0TG8MC6UhsMySA+GzhHnVhwAxvj6+bh4pMb6efjejNnGeV3YCiEmlmDRnJj++1xdk1ddVJ8Fc8PLLcsXll8m++38m+8zysOYzzzwld//iTtl99p6q3vmWaDz82wfl2Weelm23/6BqXL5Vvv22W2TmMjNl43du6kXXbCUa1877oay3/ttkzbXW9mJctjpx2Xcukm2CObjyyqvYMumFnXPO+pIcdsSxXvTFVieI8Z1JEuNtzbTOdojxbjjbaqXKMZ4zk7pZgpjsICbNr7qdmYxuc134Srkv3WmeRlzA0/lD5dsWKB4NoguCSWvb2gLFo0GSEvejHI8G8cMPSXrBBTxJKPlThgt4/PFFkp5wAU8SSvUsg5jsIiaT3OZq/mqNmPT/A0Si4b+PmntIolEuf1U50eA213LMRWJ8OfwU9ZIYXy5/VTnGszKpm4u1F5PNjwaJUO60zbvltGP3nyTb6TmTppA5T1MlMambUtWv7dvKZPWJ+zFCWyuTfoyGXiQlwAU8SUlVpxwxvjq+TDMSYnwaWtUqywU8On/WXkzq8DVqIyZtUCyPDRKN8vjKZk9JNGzSLI8txGR5fGWrp8R4WyTLZYcYXy5/2ewtYlJHEzGp44eYtMCvbCZINMrmMTv9JdGww7FsVhCTZfOYvr/EeD3DMlogxpfRa3b6jJjUcURM6vgJF/AoATqsznkah7AtNMV5GgsQHZqo8nkazkw6nEiKpojxCngFVCXGFwBd0WSVYzxnJhUTI6iKmNTxQ0wq+bmsTqLhkra+LRINPUOXFqqcaCAmXc6k7G0R47OzK6ImMb4I6tnbrHKMR0xmnxemJmJSxw8xqeTnsjqJhkva+rZINPQMXVqocqKBmHQ5k7K3RYzPzq6ImsT4Iqhnb7PKMR4xmX1eICZ17KgNAQhAAAIQgAAEIAABCECgtgRYmayt6xk4BCAAAQhAAAIQgAAEIACB7AQQk9nZURMCEIAABCAAAQhAAAIQgEBtCSAma+t6Bg4BCEAAAhCAAAQgAAEIQCA7AcRkdnay8z7HyeNPPhdaWHPWanLNnFMV1qjqE4E0vv3UYWfIPb9+ZLL7zAWfPJmuL2n83mz53IuukgsuvVZOPXpf2WW7zdM1SunCCWTx+/pb7TPZ7wM/sZMc8ukPFz4OOpCcQFqfb7HLIfLCSwsnG3j49jnJG6NkKQiYOH7Fj26TO+adW4r+0sl0BJL6l5wuHVdTGjGZnllYw0y2+S8smBSQ5j+mFZafKRefc1RGi1TzhUBa35oko/k/H/Pz5ptuKKcdu78vQ6IfCQik9XtkMvoPyiSaiMkEoD0rktbvDz3yhMw+6GRBQHrmyBTdSevz1v/fW+unaJqiHhKYd+Odctzp3w57tvxyyyAmPfSRpktp/UtOl542YjI9s7CGmWyHH/ixyVUIM1nPvuByglBGnj5V0/r2mC99S3732FOsVPvk1AR9yeL35r90mpUqxGQC0J4VSet3IyRWWfG1/LHIMz+m6U5an5vyH/3QeydXn5OucKTpE2WLJ4Bfi/dBnj3I6l9yuu5eQUx2Z7RYiegv03PPP142XHeN8Pdx72UwTZWCCdjwrfkr9nprr06yWbAv0zSfxe+t/zEhJtMQ96NsFr8bP5vVi+Ytj83/F/gxMnrRjkAWn5tk8tqb7pKdtnl3GNeJ8dWcX1nFRjVpVG9UWf3L5737XEBMdmeEmMzAqKxVsiQazWONkg7O05RrBqT1e9x/SojJcvm83R8BO/1hMPpd8wo0n/ly+T3tZ715njT/EYEYXy6/J+ltVrGRxDZliieQxb/E92R+Q0wm4zStVJb/jDI0Q5UCCGh8G13CwipFAY5TNpnW760H9Jub5yyd0hkOq6f1ezuhyR8SHDpN2VRan5vmWv1Lgql0gqfVs4gNT4dCt2IIpPUvOV3yaYSYTM5qWsm0Zy4yNkO1Aghk8S3JRQGOstxkFr83dwFBYdkhjsyl9Xucn/G9I2dZaiaNz7OIT0vdxIxjAmnFhuPu0ZySQBr/ktOlg42YTMdrsnTa2+AyNkO1Agh0863ZP29e0aNgWn8uoMs0aYFAWr+3NomgsOCEAkyk9bsp/4cnnp28bM0kHXfe+xCXrxXgu6xNpvW5+WxvtvG6k7e14/Os5P2ul0Zs+D0SehdHoJ1/yen08wUxqWCY9jlViqao6phAJ982B57or9Zx3eNmT8dOs9BcUr/HNYWYtOCAgkyk9XvzNmceJVCQ05TNpvV583NF8bkSvmfVmx8dEXUtumzJs67SnQwEuvmXnC4D1JYqiEk9QyxAAAIQgAAEIAABCEAAAhCoHQHEZO1czoAhAAEIQAACEIAABCAAAQjoCSAm9QyxAAEIQAACEIAABCAAAQhAoHYEEJO1czkDhgAEIAABCEAAAhCAAAQgoCeAmNQzxAIEIAABCEAAAhCAAAQgAIHaEUBM1s7lDBgCEIAABCAAAQhAAAIQgICeAGJSzxALEIAABCAAAQhAAAIQgAAEakcAMVk7lzNgCEAAAhCAAAQgAAEIQAACegKIST1DLEAAAhCAAAQgAAEIQAACEKgdAcRk7VzOgCEAAQhAAAIQgAAEIAABCOgJICb1DLEAAQhAAAIQgAAEIAABCECgdgQQk7VzOQOGAAQgAAEIQAACEIAABCCgJ4CY1DPEAgQgAAEIQAACEIAABCAAgdoRQEzWzuUMGAIQgAAEIAABCEAAAhCAgJ4AYlLPEAsQgAAEIAABCEAAAhCAAARqRwAxWTuXM2AIQAACEIAABCAAAQhAAAJ6AohJPUMsQAACEIAABCAAAQhAAAIQqB0BxGTtXM6AIQABCEAAAhCAAAQgAAEI6AkgJvUMsQABCEAAAhCAAAQgAAEIQKB2BBCTtXM5A4YABCDgnsC5F10lF1x67WINH/iJneSQT39YttjlkPB3d8w7d7Ey5nfLLzdTrplzavi7brbW32qfjgNcfrllwnY+ddgZcs+vH4kte+rR+8ou220uO+9znDz+5HMS/RwVnnfjnXLc6d+WNWetNtmvVkNJ+rH5phvKtTfdNVl1p23eLacdu3+qdpOMw73HaRECEIAABOpAADFZBy8zRghAAAIFEojEztzzj5cN111jsidGFN5yx32TYsyIr802XlcuPueoyTLHfOlbcue9D02KzKS2WkVfqxg0vze25r+woK0YNGUiMdnar+j9TmKyGXkkPuP6Efe7NO0mGUeB7qdpCEAAAhCoMAHEZIWdy9AgAAEI+EDAiMRoxa1Tf1pF1UOPPCGzDzp52qpgUls2xeQKy88MVzAjMRz1ywjMbmI0ST/aicmk7SImfZjl9AECEIBAPQkgJuvpd0YNAQhAwBmB1m2qnRo2wugPTzwbrkSa1TkjqJpXKtPYMu10WhFMIsJMH9Zbe3X5699flFVWfG24BdWslpqXeS9PMZm03STjcOZsGoIABCAAgVoRQEzWyt0MFgIQgIB7ApGga245brtn9Pvms4YP3z5nWofT2uomJpOcmTSibrON1wvPSJr+mP6ZVcqvXHhl7mIySbucmXQ/p2kRAhCAAAQaBBCTzAQIQAACEHBGoFX4xG1/jQRgdDlPu86lsaU5M2nEZHQpjulLtFqaZkUwy5nJpO2m6YczR9MQBCAAAQjUggBishZuZpAQgAAE/CNgtouam0xbVx/jzkp26307W91WJrttU422uRoxGd0iGwnTNCJOIya7tZumH9048nsIQAACEIBAGgKIyTS0KAsBCEAAAqkIGGH4/atvCVf2Wl+RSGq95bWdmMxiy6aYNP03Zzajx5ekEXEaMdmt3TT9SOU8CkMAAhCAAAS6EEBMMkUgAAEIQCA3ApEwNA20rkDGPQrElOskJs3trmls2RaTzaDSiDitmOzUbpp+5OZoDEMAAhCAQC0JICZr6XYGDQEIQMAtgeZLdaKW252J7LbNNY2tbmIy6QU8cSuraURcu35E23MjJtEZ0ubtta2eam2XC3jczmVagwAEIACBKQKISWYDBCAAAQhAAAIQgAAEIAABCKQmgJhMjYwKEIAABCAAAQhAAAIQgAAEIICYZA5AAAIQgAAEIAABCEAAAhCAQGoCiMnUyKgAAQhAAAIQgAAEIAABCEAAAohJ5gAEIAABCEAAAhCAAAQgAAEIpCaAmEyNjAoQgAAEIAABCEAAAhCAAAQggJhkDkAAAhCAAAQgAAEIQAACEIBAagKIydTIqAABCEAAAhCAAAQgAAEIQAACiEnmAAQgAAEIQAACEIAABCAAAQikJoCYTI2MChCAAAQgAAEIQAACEIAABCCAmGQOQAACEIAABCAAAQhAAAIQgEBqAojJ1MioAAEIQAACEIAABCAAAQhAAAKISeYABCAAAQhAAAIQgAAEIAABCKQmgJhMjYwKEIAABCAAAQhAAAIQgAAEIICYZA5AAAIQgAAEIAABCEAAAhCAQGoCiMnUyKgAAQhAAAIQgAAEIAABCEAAAohJ5gAEIAABCEAAAhCAAAQgAAEIpCaAmEyNjAoQgAAEIAABCEAAAhCAAAQggJhkDkAAAhCAAAQgAAEIQAACEIBAagKIydTIqAABCEAAAhCAAAQgAAEIQAACiEnmAAQgAAEIQAACEIAABCAAAQikJoCYTI2MChCAAAQgAAEIQAACEIAABCCAmGQOQAACEIAABCAAAQhAAAIQgEBqAojJ1MioAAEIQAACEIAABCAAAQhAAAKISeYABCAAAQhAAAIQgAAEIAABCKQmgJhMjYwKEIAABCAAAQhAAAIQgAAEIICYZA5AAAIQgAAEIAABCEAAAhCAQGoCiMnUyKgAAQhAAAIQgAAEIAABCEAAAohJ5gAEIAABCEAAAhCAAAQgAAEIpCaAmEyNjAoQgAAEIAABCEAAAhCAAAQggJhkDkAAAhCAAAQgAAEIQAACEIBAagKIydTIqAABCEAAAhCAAAQgAAEIQAACiEnmAAQgAAEIQAACEIAABCAAAQikJoCYTI2MChCAAAQgAAEIQAACEIAABCCAmGQOQAACEIAABCAAAQhAAAIQgEBqAojJ1MioAAEIQAACEIAABCAAAQhAAAKISeYABCAAAQhAAAIQgAAEIAABCKQmgJhMjYwKEIAABCAAAQhAAAIQgAAEIPD/ALdcNC6Cqj0jAAAAAElFTkSuQmCC", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig_fixed = dynamics_fixed_new.plot_history(chemicals='A', colors='blue', title=\"FIXED time steps\",\n", " show_intervals=True, show=True)" ] }, { "cell_type": "markdown", "id": "6a13881a-0e2a-4a7c-89e3-a00724064b4d", "metadata": {}, "source": [ "#### Notice the jaggedness at the left (jaggedness NOT present with the same number of total grid points, with the variable-step simulation)" ] }, { "cell_type": "code", "execution_count": 28, "id": "78261e52-b7c2-4a31-915d-861b33778859", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertemplate": "FIXED time steps
SYSTEM TIME=%{x}
A=%{y}", "legendgroup": "", "line": { "color": "blue", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "FIXED time steps", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 0, 0.08571428571428572, 0.17142857142857143, 0.2571428571428571, 0.34285714285714286, 0.4285714285714286, 0.5142857142857143, 0.6000000000000001, 0.6857142857142858, 0.7714285714285716, 0.8571428571428573, 0.9428571428571431, 1.0285714285714287, 1.1142857142857143, 1.2 ], "xaxis": "x", "y": [ 10, 16, 19.42857142857143, 21.387755102040817, 22.50728862973761, 23.147022074135776, 23.5125840423633, 23.721476595636172, 23.840843768934956, 23.909053582248546, 23.94803061842774, 23.970303210530137, 23.98303040601722, 23.990303089152697, 23.994458908087253 ], "yaxis": "y" }, { "hovertemplate": "VARIABLE time steps
SYSTEM TIME=%{x}
A=%{y}", "legendgroup": "", "line": { "color": "darkturquoise", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "VARIABLE time steps", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 0, 0.021599999999999998, 0.043199999999999995, 0.0648, 0.0972, 0.12312, 0.16199999999999998, 0.20087999999999998, 0.2592, 0.31751999999999997, 0.40499999999999997, 0.5362199999999999, 0.73305, 1.028295, 1.4711625 ], "xaxis": "x", "y": [ 10, 11.512, 12.860704, 14.063747968, 15.673420797183999, 16.75254546186895, 18.161450624081628, 19.29646462276016, 20.668015538763296, 21.63962220765992, 22.67205145402947, 23.543318495040737, 23.992761598146394, 24.00344710792273, 23.995814047582883 ], "yaxis": "y" }, { "hovertemplate": "EXACT solution
A (EXACT) :
SYSTEM TIME=%{x}
concentration=%{y}", "legendgroup": "wide_variable_0", "line": { "color": "red", "dash": "solid" }, "marker": { "symbol": "circle" }, "mode": "lines", "name": "EXACT solution", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21, 0.24, 0.27, 0.3, 0.32999999999999996, 0.36, 0.39, 0.42, 0.44999999999999996, 0.48, 0.51, 0.54, 0.57, 0.6, 0.63, 0.6599999999999999, 0.69, 0.72, 0.75, 0.78, 0.8099999999999999, 0.84, 0.87, 0.8999999999999999, 0.9299999999999999, 0.96, 0.99, 1.02, 1.05, 1.08, 1.1099999999999999, 1.14, 1.17, 1.2 ], "xaxis": "x", "y": [ 10, 11.95008833004919, 13.62854491045595, 15.073205877295173, 16.316637094683628, 17.386868261625793, 18.30802476363161, 19.100871512443824, 19.78328103322917, 20.37063635095752, 20.876177757921983, 21.311301279309443, 21.685815564897787, 22.008162997788812, 22.285610004458253, 22.524410856133898, 22.729948653948224, 22.906856675983857, 23.059122821643502, 23.190179507752262, 23.302981042849904, 23.400070223861437, 23.48363565638264, 23.555561090707048, 23.617467885737906, 23.670751558015873, 23.71661323975874, 23.75608675504709, 23.790061924513314, 23.819304623873283, 23.84447404846461, 23.86613757297239, 23.88478354131372, 23.90083227499327, 23.91464554808278, 23.926534742411462, 23.93676786680342, 23.945575598591333, 23.953156483595404, 23.959681411786764, 23.96529746952667 ], "yaxis": "y" } ], "layout": { "autosize": true, "legend": { "title": { "text": "Simulation run" } }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Fixed vs. Variable time steps vs. Exact soln, for [A] in reaction `A<->B`" }, "xaxis": { "range": [ 0, 0.4 ], "title": { "text": "SYSTEM TIME" }, "type": "linear" }, "yaxis": { "autorange": true, "range": [ 9.222030716226515, 24.781416391696215 ], "title": { "text": "concentration [A]" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5MAAAFoCAYAAADKJa96AAAgAElEQVR4Xuy9CZxcVZn3/1RX9ZKVJE0WSCAhIQkhBNk3w44IKIs4KMyMioC8oEb/6ryiw/x95/UvKvP+df7zMkLGVxxmmBkBFZMgixA2E0CQHbKHkEASkpB0kk7v3dX9f55761Tfun2r6p7n3r7dXf07n099qpd77vI9p6rut55znpPq4UIoIAACIAACIAACIAACIAACIAACIGBBIAWZtKCFTUEABEAABEAABEAABEAABEAABBwCkEl0BBAAARAAARAAARAAARAAARAAAWsCkElrZKgAAiAAAiAAAiAAAiAAAiAAAiAAmUQfAAEQAAEQAAEQAAEQAAEQAAEQsCYAmbRGhgogAAIgAAIgAAIgAAIgAAIgAAKQSfQBEAABEAABEAABEAABEAABEAABawKQSWtkqAACIAACIAACIAACIAACIAACIACZRB8AARAAARAAARAAARAAARAAARCwJgCZtEaGCiAAAiAAAiAAAiAAAiAAAiAAApBJ9AEQAAEQAAEQAAEQAAEQAAEQAAFrApBJa2SoAAIgAAIgAAIgAAIgAAIgAAIgAJlEHwABEAABEAABEAABEAABEAABELAmAJm0RoYKIAACIAACIAACIAACIAACIAACkEn0ARAAARAAARAAARAAARAAARAAAWsCkElrZKgAAiAAAiAAAiAAAiAAAiAAAiAAmUQfAAEQAAEQAAEQAAEQAAEQAAEQsCYAmbRGhgogAAIgAAIgAAIgAAIgAAIgAAKQSfQBEAABEAABEAABEAABEAABEAABawKQSWtkqAACIAACIAACIAACIAACIAACIACZRB8AARAAARAAARAAARAAARAAARCwJgCZtEaGCiAAAiAAAiAAAiAAAiAAAiAAApBJ9AEQAAEQAAEQAAEQAAEQAAEQAAFrApBJa2SoAAIgAAIgAAIgAAIgAAIgAAIgAJlEHwABEAABEAABEAABEAABEAABELAmAJm0RoYKIAACIAACIAACIAACIAACIAACkEn0ARAAARAAARAAARAAARAAARAAAWsCkElrZKgAAiAAAiAAAiAAAiAAAiAAAiAAmUQfAAEQAAEQAAEQAAEQAAEQAAEQsCYAmbRGhgogAAIgAAIgAAIgAAIgAAIgAAKQSfQBEAABEAABEAABEAABEAABEAABawKQSWtkqAACIAACIAACIAACIAACIAACIACZRB8AARAAARAAARAAARAAARAAARCwJgCZtEaGCiAAAiAAAiAAAiAAAiAAAiAAApBJ9AEQAAEQAAEQAAEQAAEQAAEQAAFrApBJa2SoAAIgAAIgAAIgAAIgAAIgAAIgAJlEHwABEAABEAABEACBEAT+/dd/oNt/9iuaMmkCPfnAT0PUGB6b/NVXf0Cvv72Rrv3sRfTfb756eFw0rhIEQMAhAJnsx45gPnT+8X9+hS48++R+PNLw2fX/uus+uuf+x+iBn/89zZ8zo+SFn/+Zbzof+P/5z383fADhSkEgYQKr1m+mz9z494neRJpjmktN4gb2b75/Fz361It5uscdc6T6vUXem3bsasjvK4nzT7hbVPThHn/2z/SN//EzuuUr19Dnr/p4RV+rzcWZ18iqZ+6xqYZtQQAEhjiBIS2T/g93f1uIxE09ZKJzoxPlg1/bxkNBJs23iaXe/A3nMAIXhpURQs0H8UDKZKmb5ijXFIZZf22Dm6JwZM3rpNjWAy0D88+5li4+71T6f793c7gLinGrgZBJud6kmcv74GtvbygbjTLv+4I4zBeJYa/FcB6Iz7IYu0vZXZXqT+azKAzXsgeKuIF5zw8jTtLGUgbqNWp7qaXurcp9bssXJccfM3tA3otsrxPbgwAIxEOgImSylOQM5AfwUJBJc46lPiDkgzDOG5go4gWZjOeFb/YCmQzHM8yXLuH21D9bDSeZNO9ZcX25FbZFwsqk94uHMPIAmSxsgaEik2H7jffLBakTRj79+zZMNENrpX/Z1iv2BXKUz+6wvLAdCIDA0CNQ8TI5kE0yFGRS+JSSxTCymSTjwSqTSTKI81iQyXA0IZPFOSUdmbSJCIVr3XBbhZFJL4vXV2105pCVk4ewMhnuLIf+Vkn3p/4mJu8dMqT5CzwcVuZalovs+c/HRDWjfKFr9hFWKkuNRhrIL676u62wfxAAAR2BYSGT3jc/c/Mc9A2heQP1f5scdn6Lfzt545YPkXJDckq9cZsbJ+8+gobclbthKdU9Sh3ffxNdbLif//jeuRNeLnIdwkQ+VL3XVGxYjT/64JXJr/3d/y6Yd+Q/h2JzJjVzn/xztAxP8wEf9MWBuYmQmweZX1Osjvl7sSiG5nzNPr393fzNDA8M+p9s4z8PcyNi6vtvhrzX/m+cnEJuoE0J6vv+/YW5SZK2lBKU8CJI9DTHKPUaCSuT5rj+6w5K2uE/Rzl+MRZBbWW2DdpPmJtG81ryXneY9vK3f9DNf6nXaZSIYtD7hPdag16n/mvyfoGyc/deZw52UL/394cwMum97lfeWBdKHmxk0n8jb/vaC+rjpd6rzVx///u+/z2i2Ptjsfc0f7TO8P/i1Rc701L8xfT1Yl8mBu3P/3nQX32y1PuG/7VhM8onDon0n1tYqSx2T2CuJ0zEXXdLilogAAJDkcCwk0lppKChr+bDyDsPJ2i7Ym+mQR8SQSIY1ElKfRPrn38QdFNt8wEVdHxzc+WfgxR0rXJT8XFOJuRNOhB0o+296fPfPAaJl2w/eeL4gixwQR9o3htg736DziFIJo3Yem80SomKl1epdiomkyJWXkHw3nQF/d3fBlHONyiq7O+TpSKT5n/eG4egvlJsjpi//YL6U7G+5++nxaL8Zp9GcKIcIw6ZlH3426zYUHt53fpfGzbvI7Kt6ce20YKg15b/NRTUNkF/KyWTwsP/OpUvk6JkwSwnFF7ZDXoNeMXcZt5lGJn0v+eEeW+OQyaFc9CXc2G+ZCz1Xi37DRom6b8u0we8xyv2WRnU92Rb+XJQ+kWYuenePhW0P9vPjqh9sth7h7+vhsk/0B8SWUwqi315Vew8w5z/ULwRxjmDAAhEI1ARMhmEwHtDEXSj5ZXHS84/zfk21P9tm4ks+W98/HN2vN/ses/FZphrkAyZmx5zk1DuQzZKOu4goQp7/v7zFAbFmMj/wu7XLwpSt9iNZBAb/41dubrlhh9pZDLoJqVYxDTu8y3WBtJeUiTqUEomi52nf5hhqfb0vvZKbSf7LNd/S4mWuYmNeoxib6c2CXj88hj2ywpv/zbXE3bIn61Mlmpb0w7F3v/8r6NykUlv1uWwr/1SH2vFXsflRiIYptqh3eVkMmi/YW6+45DJUtHXctlGS71Xl3oPkdEWYUbdeJMWhWFf7nPOm8273Bex3mze5b6EKHctmlstf58s9eWZeY8JM1JDcy5BdYy4+u99io0Ukn2EGfUQ1/lhPyAAAkODQEXIZLlhU8VutLxRrqA3yGL1/PJU7CbG5sYp6EM26GbOvPmXEx/b7ldsOG2QDAUNKZLjec9JI5PFhl16owel5kz628H/e7GbYzn3MDd0cclksfPw/z3q+RpWpT78i93chblW87or1c+91+Bt33Kv2aD+G9T2/tdo1GOUk8kwkR7Zh78vF7vecsO7w76H2MqkuXEtNVyt3PufPxoc5nUa9npsZTJMfzWyEEZogo5fTiaD3vPCRN7DvPeY8yk1zNW7/JTNNZZ6ry722Rb0RZ+cY7lpEGHmvNvIZKn+5L+upGWyWBsU+3JJI5NB7x82Q1DLyWTQ+5Y5T817uO19CbYHARAYGgSGtUx6P/z8b4ze4YjFmtLcTBW76bK9cfJ+cBf7sDbi4z+nqG/s/iFJxT7QzYeP91vcUt/IB918B3ExQwO9QmoT8RAe5WTSP6fVz7Dch7DNDavpW0EyHlYmo56vnEPQvLigYav+LyeKib2XmekDYWUySLLkb2G/6fbz948QMOcWdO5hjxGXTHrZB33x4z1H72vEf8Mb5ubbvCeU67/+awu68S8liH6+Rh5tXqe274lB7RHEpJQ8+Ye62oiW9/jlZNK8Nwadc6n+N5hlstQ1yXWaPhA0J1j+7xe6UuJquNnIZKnXhz8qnLRMloruybUWi4QO5mGuct7Fhi8Xe+/E30EABCqfwLCWyTCRyTBzauKSSe+H3SNP/slJDFEuEmJujKLeLBv5MdkHgz54i90IRpVJm+hYqZsHfzsERSblOv/zn/9O9cpOWiblZj/K+QZdpBEIIw3l2IeJgJcShGKRDXNupj3DipBXxMPysT1GKW7lXo/FhNb/ZU+xm2p//w4rX7aRyaBrNDex5lwRmSykVEomyw2vlvfyUvIQ5nMm6EsDm/fkYm965SKTYdYMLPYFWdjooPfcbGRyMEcmi71+wspYf0il2We5+4Vyw7ODphyoPlRRCQRAoCIIDFuZ9H5bLW+sMv/DP1eh1DBDb+uXm1tpMxfDfADJPBP/h7jc+Eukyz8HJsy3vWF6q5eJZOX0zjeR+sVELqpMlkuuEmb4XNA5hJ2DGIaN2aZYFCHoGsJGIM2+/duHjUqVukn0L2Lvv1ErFQEvJ4LmuGHbT65H5id759DJPsIeR7b1DhuUG3S/7MZxjKgy6b9ZNDdwXhGNMh/RK+JmfqM/UVe5Pi3vGf6+4W/HKOfYn1GgwThnMmjOu2mDcvIwmCOTYT9b4piv6p03XYxJmPm6hnvY9/+wX9iUe015/++Phvvrluov/m3jkMqwEmmOXUomy/VnG07YFgRAoDIIDEuZDHozNB9S5bK5ej+o/vcPvubcGAfNi/EOY7ORSe/QGH80w+wzaOkGrwib7TQT+b3DmooNffQy8l6nds5kUHt4hxkHyaSfadA3pUE3OEHZUaVNhfux82b2EfWgm4BS80j9S7hEGeZqREv2EbT0SrnzDZrbEjQ3ttiNYLH+JuclvP1Jb/z9xT83yBzbu12YOWX+NjBtGPTtethjBL3eS72l29z8+a876PUY1A7ekRJB2Sq9fctsa9og7E2/90sRPz//NQa1f1B7xTHM1Rw7TISunKh69xF0Ux/3MNcwN9el+s9glknzWg96rck1ydqJMlczSD68n2X+L1JkBIy/j3sT9YT9IsO8dz/61IuB2Wy9xyjXb2w+p8vd/pV7vygnm/79mz5WLqIYdF7Sv2zrlZLJoC/HyvHA/0EABCqbwLCTyVLDQoslpQiau+YXNf88Lfm/LKHhX0+xXHcqJ4JByW/8clluH6XOodgNgKkTdJ1yQyGRXa1Myr79c1Tlw09kXbLsBsmkWcPTnFfQMMly35b3+cB+5p5yzeP83yvcYdaZ9GcDto1YFpt7E2bIZVDfLTc/uNw6k8LAu413vpSIrylBX2YEXUuYobTehikngmGOUW4f/o5QLLGI2c70Uf9QUfN/czzvTZ1XHmU72YcUb7ZKUz/ode9vR29bl7t5DJoTXqyOf96c7TqTYbK52tzwlorYB11XlEyn3n5QbJhr0BcD/v5TSh4Gu0zKtQT1f39/8b/upJ+8uWYTiegVW/PRy8m/TdD7bDkhLLW/cnXjkskwXy6YzxHNF76hPqQiblRqvudgPeeIl4zqIAACEQgMaZmMcN2oCgIgEBOB/hgmFtOpYTdDgIA2Upj0pZVLwKM9HxuZ1B4D9UAABEAABECgvwhAJvuLLPYLAsOEAGRymDR0P11mf0la3KfbX+cJmYy7pbA/EAABEACBJAlAJpOkjWOBQAUSgExWYKMmeEkyPPeic08hk0wowUNbHco/9C/KcD//8PMwc0WtThYbgwAIgAAIgEBCBCCTCYHGYUAABEAABEAABEAABEAABECgkghAJiupNXEtIAACIAACIAACIAACIAACIJAQAchkQqBxGBAAARAAARAAARAAARAAARCoJAKQyUpqTVwLCIAACIAACIAACIAACIAACCREADKZEGgcBgRAAARAAARAAARAAARAAAQqiQBkspJaE9cCAiAAAiAAAiAAAiAAAiAAAgkRgEwmBBqHAQEQAAEQAAEQAAEQAAEQAIFKIgCZrKTWxLWAAAiAAAiAAAiAAAiAAAiAQEIEIJMJgcZhQAAEQAAEQAAEQAAEQAAEQKCSCEAmK6k1cS0gAAIgAAIgAAIgAAIgAAIgkBAByGRCoHEYEAABEAABEAABEAABEAABEKgkApDJSmpNXAsIgAAIgAAIgAAIgAAIgAAIJEQAMpkQaBwGBEAABEAABEAABEAABEAABCqJAGSykloT1wICIAACIAACIAACIAACIAACCRGATCYEGocBARAAARAAARAAARAAARAAgUoiAJmspNbEtYAACIAACIAACIAACIAACIBAQgQgkwmBxmFAAARAAARAAARAAARAAARAoJIIQCYrqTVxLSAAAiAAAiAAAiAAAiAAAiCQEAHIZEKgcRgQAAEQAAEQAAEQAAEQAAEQqCQCkMlKak1cCwiAAAiAAAiAAAiAAAiAAAgkRAAymRBoHAYEQAAEQAAEQAAEQAAEQAAEKokAZLKSWhPXAgIgAAIgAAIgAAIgAAIgAAIJEYBMJgQahwEBEAABEAABEAABEAABEACBSiIAmayk1sS1gAAIgAAIgAAIgAAIgAAIgEBCBCCTCYHGYUAABEAABEAABEAABEAABECgkghAJiupNXEtIAACIAACIAACIAACIAACIJAQAchkQqBxGBAAARAAARAAARAAARAAARCoJAKQyUpqTVwLCIAACIAACIAACIAACIAACCREADKZEGgcBgRAAARAAARAAARAAARAAAQqiQBkspJaE9cCAiAAAiAAAiAAAiAAAiAAAgkRgEwmBBqHAQEQAAEQAAEQAAEQAAEQAIFKIgCZrKTWxLWAAAiAAAiAAAiAAAiAAAiAQEIEIJMJgcZhQAAEQAAEQAAEQAAEQAAEQKCSCEAmK6k1cS0gAAIgAAIgAAIgAAIgAAIgkBAByGRCoHEYEAABEAABEAABEAABEAABEKgkApDJSmpNXAsIgAAIgAAIgAAIgAAIgAAIJEQAMpkQaBwGBEAABEAABEAABEAABEAABCqJAGSykloT1wICIAACIAACIAACIAACIAACCRGATCYEGocBARAAARAAARAAARAAARAAgUoiAJmspNbEtYAACIAACIAACIAACIAACIBAQgQgkwmBxmFAAARAAARAAARAAARAAARAoJIIQCYrqTVxLSAAAiAAAiAAAiAAAiAAAiCQEAHIZEKgcRgQAAEQAAEQAAEQAAEQAAEQqCQCkMlKak1cCwiAAAiAAAiAAAiAAAiAAAgkRAAymRBoHAYEQAAEQAAEQAAEQAAEQAAEKokAZLKSWhPXAgIgAAIgAAIgAAIgAAIgAAIJEYBMJgQahwEBEAABEAABEAABEAABEACBSiIAmYyhNbfvaY1hL8NnF+mqFB18UC3t3Ns2fC46piutH1tLTa2d1N7ZHdMeh8duRtamqaY6TfuaOobHBcd4lYfWjyC8x9kDHTe6hjo6s9TSnrWvPIxr1FZX0egR1bSnsX0YU9Bd+uTxdbR7fztlu3t0OxjGteR9DgUEQEBHADKp41ZQCzdadhAhk3a8vFtDJnXsIJM6blILMqljB5nUcYNM6rhJLciknh1kUs8ONUEAMhlDH4BM2kGETNrxgkzqeZmakEk9Q8ikjh1kUscNMqnjBpnUczNfmkXbA2qDwPAlAJmMoe0hk3YQIZN2vCCTel6QyejsIJM6hpBJHTfIpI4bZFLPDTIZjR1qgwBkMoY+AJm0gwiZtOMFmdTzgkxGZweZ1DGETOq4QSZ13CCTem6QyWjsUBsEIJMx9AHIpB1EyKQdL8iknhdkMjo7yKSOIWRSxw0yqeMGmdRzg0xGY4faIACZjKEPQCbtIEIm7XhBJvW8IJPR2UEmdQwhkzpukEkdN8iknhtkMho71AYByGQMfQAyaQcRMmnHCzKp5wWZjM4OMqljCJnUcYNM6rhBJvXcKkkm31qzia6++ft0313fowXzZkaDgtogEJIAZDIkqFKbQSbtIEIm7XhBJvW8IJPR2UEmdQwhkzpukEkdN8iknltcMnnH3Q/S4nuX9TmRmz53GS26/kpa8thKuvXHv6DbvnMDXXHRwmgnXKS2rUxe983baU9DIy2957b8HpM4z365eOx0wAhAJmNAD5m0gwiZtOMFmdTzgkxGZweZ1DGETOq4QSZ13CCTem5xyKRI2YuvrukTERTBXL7ilQJZi3ampWvHIZP9eX7Yd2USgEzG0K6QSTuIkEk7XpBJPS/IZHR2kEkdQ8ikjhtkUscNMqnnFodMzj/nWrrswjPoR397Y9ET8YvemVcsooWnLKCVL71FDfsOOPUkinnY1ElOBNMU75DVy6+9lY6eM73gON7oov8YRnK9J7XqmXucX7/7w5/TssefLzjfU0+YR9/40lV9hsr6t/Vfq5xX/YSxzr5EqqVMGDeGViy5o2TDBNWT6/272+8ueZ2yU+0xo/UU1A4iAJmMoV9AJu0gQibteHm3rh9bS02tndTe2a3fyTCsObI2TTXVadrX1DEMrz7aJUMmdfwgkzpukEkdN6k1eXwd7d7fTtnuHv1OhmlNeZ+LUkQMJ4wbWzICGSSTIpFGFs0wWa+EiTBJMcNQNTIpcmjmT/r3FzTM1X+eRiSNhMr5+OVZ9rtx8zZHhmVIrxRhMnvmNPrlT28pijaonhHFUtJsttEcM0o7o24wAchkDD0DMmkHETJpxwsyqedlakIm9Qwhkzp2kEkdN8ikjhtkUs9NakaVSTPP0HsW/rmRxSKTJpoZNERVRE4ilybCZyuTfioirA889HR+f2FkUsTRK4myTyO+RjBNlNArjnLuq9dvKSnYQfVsZFKiobbHjNZTUDuIAGQyhn4BmbSDCJm04wWZ1POCTEZnB5nUMYRM6rhBJnXcIJN6bnHIpPfo/qGlZkhoWJn0Sqhf/jQyKRFCM4zWnKeRwHIyKdsHZYf1XwtkMlr/G+q1IZMxtCBk0g4iZNKOF2RSzwsyGZ0dZFLHEDKp4waZ1HGDTOq5xS2T3jPxDhEdCJmUqKLMgzTRO39EETIZrd+gtksAMhlDT4BM2kGETNrxgkzqeUEmo7ODTOoYQiZ13CCTOm6QST23qDIpkvhfv1semHzHyJvMi5TijfKZBDz+Ya7lIpP+oZ3FEvC8s2W7k8jHO9fRViZlruVADXMtdZ3CUhsNjdZTUDuIAGQyhn4BmbSDCJm04wWZ1POCTEZnB5nUMYRM6rhBJnXcIJN6bnHIpEiiFK+4ye/eyGAckUn/HEozV/PIGVOduYneYxh59cqpnI/3PP1yKf/TJuDRzF8sNmey3HVCJqP197hrQyZjIAqZtIMImbTjBZnU84JMRmcHmdQxhEzquEEmddwgk3puUWXSHNmImvdMvIlr4pBJ2bd3DqRIpEjcnobGPjIpUUX/kh5yPovvXVYgvSajquw76tIgtslwislkueuETEbr73HXhkzGQBQyaQcRMmnHCzKp5wWZjM4OMqljCJnUcYNM6rhBJvXc4pLJaGeA2iAwdAlAJmNoO8ikHUTIpB0vyKSeF2QyOjvIpI4hZFLHDTKp4waZ1HODTEZjh9ogAJmMoQ9AJu0gQibteEEm9bwgk9HZQSZ1DCGTOm6QSR03yGRfbs3NRE0HUnTgQO/zAf69iX/3Psv/770nowePmiAwzAlAJmPoAJBJO4iQSTtekEk9L8hkdHaQSR1DyKSOG2RSx62SZNIrf2VlsKlXDv31stnwLHt6wm+LLUEABAoJQCZj6BGQSTuIkEk7XpBJPS/IZHR2kEkdQ8ikjhtkUsdtoGWyu7t49K8xFw1sYvE70OhGBUsJo55AYc2RI4lGj+mhMWOIHz38s/s8Zqzvd/77t79ZHddhsR8QGHYEIJMxNDlk0g4iZNKOF2RSzwsyGZ0dZFLHEDKp4waZ1HHTymRXV6EEBklesaGh3qihDCmNq4j8GQn0P3ul0JHD0R5J9NVLp8OfkbzPoYAACOgIQCZ13ApqQSbtIEIm7XhBJvW8IJPR2UEmdQwhkzpukMlw3Do6+s77y/TU0LYdXdToRP9KzxM08wZbW8Mdr9xWVVXBUUATDTTiVyiKfSOEIo+pVLmjhft/N49d3c0h0z083nV3dxc/+Fl+zuZ+7pK/Z2kPP95bMC/cTrEVCIBAHwKQyRg6BWTSDiJk0o4XZFLPCzIZnR1kUscQMqnjNhxlUsRw544UfbgrRTt3ep53En34oQwJ7Zs0pr1dx9dfK8N5Z/pEATna5x8aWiCFuaGj3nqjR8dzPuX20tzT7Uohh1RdORRZ9Iii87dORxr3yNjbkKXn+GNDbonNQAAE/AQgkzH0CcikHUTIpB0vyKSeF2QyOjvIpI4hZFLHrZJkcv++FO3aRbSLBXEXi+KH/Fwgi/w/+X3fXvtQXHVNbv4fS5yRuvoJVVQ7IkujLGRQ5hUOZJG8N474BUYPWRxFFB0xdKOKLSyTNuXgqjQdzONd66syNJGfD87Iz/zMv8vf5f/1/Hz6ZJ5IiQICIKAiAJlUYSusBJm0gwiZtOMFmdTzgkxGZweZ1DGETOq4DXaZlKyfRg6dZ44eFvzukca2tnAMMpz7ZdKkHpo0mR/meTLRZP5969YUnXV2Np88xkQI6+r67nvy+Dravb+dst0Dm5pUhM8dTuoOIzVDS40QOn/zRBfDUXK3GsnjaV05dEXw4DRLoQih83MVC6NIYsYRRPl7WE3HnEmbVujfbe+4+0FafO8yWvXMPf17IOw9NgKQyRhQQibtIEIm7XhBJvW8IJPR2UEmdQwhkzpuAyWTLS08pFSGmeaGm0oksVcSc8KYizCGvTIZKjqR5VCkcCI/nGfzu/PM/+e/1dfHI3/9KZOu/EmE0DukVKTRHVLqzD3MCaQMRbUprggaIUznhFAihq4outJY5QjjaH70R6lUmbz82ltp4+ZtBciOnDGVvnj1xXTrj3+R/xTJII4AACAASURBVPtt37mB3t+2K1Di5p9zLV124Rn0o7+9kYL2Jzu56XOX0aLrr6Qzr1hEDft4wq6n3HfX92jBvJlFm03qfObSc536UgaLTPrPqz/6XaXsEzIZQ0tCJu0gQibteEEm9bwgk9HZQSZ1DCGTOm5xy2TDHneIqRNB9Ahi4ZBTTljTGDaGxQI4MRdFlEgiC6FEE4OkcdQoHQNtLRuZbM1FD2Ve4YfOUFJXEp3oYS4xjTd6aKO7dRwPnMiTMU100EQPD+aoovzNiR7yMFPn//zg3D0DXipZJo+eM90RQX95a80muvrm75NX9r77w5/T6vVbaOk9tzmbX/fN253nX/70FudZZLLY/uT/xcTQyGZQQw9WaRus5zXgL5aAE+h3mZRvNGyLfGtiOrJt3YHYHjJpRx0yacfLu3X92Fpqau2k9k67b371R6yMmiNr01RTnaZ9TZzpAsWKAGTSCld+Y8ikjlsYmezqzImhN3q4wyeLuWQ2nSFf8rW1LIWOHHqGmjpDTgv/LtJos+SEjoKuVtWYDK3f10K7Ot15hpLJ1BVCjh6aoaW5+YdNFslp5GwmOMNGWQBzw0xdIeToIUujGz3sHX46pp+ih2GopFqaqYpT2aZ4QcsUP1cVeZb/m+3kueb5FWF2P+S2KSV/QTLpFcLDpk5yopfe4aa2Min7KxVpFFl98dU1ea7eqKk5rnjEqSfMy28nUdKdu/fmf5eo6hUXLczvQ4R42ePP538vFRk152Y2njBuDK1Ycocj0f7zMl5Sav8ioAtPWVBwfO/5FTvekOtYvhNORCZtxj0L6OUrXoFMDvWeVeL8IZP6xoVM6thBJnXcpBZkUscOMmnPTZaz2N+Qpsa9Gdr4blc+WU1vRJGFkYeh7uFoY9hy0LjccFIRw/x8RL80Eo0bbxN7C3v0aNu1OdHDnBB6ooe9Q0pzCWqceYldZPMVY20uemgS0LjRQxbCXEIaM/fQnY9YRem41uuwQFK1fz9V7fmQH3uoqoEfe3bnnnM/e3/fy3+TDiQLZ2qKTIaNWNavJ1q3LuJOFNXnziWaMye4okYmlzy20pFIESvv8FM5gkYmpZ4IoV/6zBn7I4Dm+H6ZlOiokTEz7Fakb09DY94ZRPRWvvSWI4RSZPsHHno6/7uXkv845vp+cMv1zrDcoMhkuf1LHSnm+EY85VrKHU/R9IOmCmQyhqZAZNIOImTSjpd3a8ikjh1kUsdNakEmdewgk73cZHmL3vmIbgbT/DIYuXmIMj8x7ML3sqZhwdzDKTLM1E1YI3/3SmNQohpdi8ZTqyGXtdRNRpNLVJOTwfz6h7llLQ7w321KPWcqnZDqzVAqIphPSJOLHLoZTDM0RiAmWFLtbVS128hgCSls4P+xPKZZFDVi2DNiJPXwZNXuMWMLn8ceVPB7D/+/m7czzwd/8mORafzDPxDd4o4GTbR8+9tEt7ujUfuUoDmOJlJXLDIpO/FLmtlxmDmTfgGVuqWGjIaRSSOi/nP2y6Ls61s3fbYgUllMZI3chZVccx2l9h90neb4Ul8kvdjxEu00MR8MMhkDUMikHUTIpB0v79aQSR07yKSOm9SCTOrYVbpMyjqHbjbT3LIXZo1EnptYuPxFitiNQhVZpmIyi+Ehh6RofH3Wl7DG/Z+RxVA7TGCjdurJzzEUQfzQM6R0j4kq5tdE7KKQKJwzr+HoocifCKGTpIZlsXepC1cKZW6iiR5OnTAisWyuTpTQGxmUyOFujiLyc9qJJLpS6G63h1LNTdat0T2WhW/CwdR9MD8m1FN3vXnmn+X3gyfm/s4/j693ZLGnmlPjKkoccyaXLiW6+27FwSNWufxyouuvD96JNjL5k8X3OzscLJHJsDJZbGpdMYHzD1mV4bRmfmgxMQwibfZfSiZlKG6p40XsBgNavd9lckCvLqGDQybtQEMm7XhBJvW8TE3IpJ4hZFLHbqjKpH9tRCOM+UiiYm3ECZyt1J2LmJt/6B1uml8Sg9dNHNtDYeZM6lokfK29+TUPu3PrH/Yub9EbPZThp110wHLu4TjOSuqscZgbTtobPfQsd+FIY4bGWkYPbRLweGmkOjupaucOqvpwVy4qWGJoaU4Sw9N0t+ypqWUZzAlhKSkUeZTtWBZ7angxzYRKHDKZ0KlaHUYjkya6Jwfq7zmTcow4I5OlhtOWA2eint7MtH6ZLrf/cjLpPQf/8cqd32D+/6CQSfNNgs3cysEEFTJp1xqQSTtekEk9L8hkdHaQSR3DwSST4jsig/m5hwFrIxppjGNtRO8QVBlyWm3hBP0pk508L24rL2WxlaOHWzlauJXnGcqzSGF+XUT+m82su2qeS9grhLJ8haxz6GYpdSOGJnrozkfM9OPcQ79Mpjo6HElMiyjK844P8r+nd2ynqh25/3FE0ba4wtcrfr2/5/6WE8asEUMeVjqYC2TSXbrDn701ajZXM5S0VDZXEd76CWPzEcGgOZNhI5Nyvhs2bS2YIyl/+8aXruqzPIkMkd2+c3dBpluvLPrPy/AptX+/THrPp9zxBvPro9y5DZhM+jMalVuHptyFDOT/IZN29CGTdrwgk3pekMno7CCTOoZJyKR/bUQzvDS/FIZnGGrYq5C1EQsymvbz2oj+84oik7LchSuKWdrmSKPIIj/nfv6ARTFMOciZX5jLUppb/9Cde9i7FqI73DRDsm3SJdXR3iuCOUkUYRy190PqfH8bpVgU0yyKMsQ0VOFryE6eQt3y8EhiVoSwSBSR+lGKQ51zzBsNN5k0wmYwiqy9+OpqJwupP7DT3+tMes+lWDbXsDIp1+MfSmoytPq7jIkMev/ulV7/eRXL5urdv3+dTe//yh0v5i6d6O4Sl0l/ut1KmIgKmbTrs5BJO16QST0vyGR0dpBJHcMoMllsbUTJZOrNbBp1bUQjjRNZGE3ymqTXRrSRSUlIs41F0cihVxRFHneVmZwpOWCnZappGkvgNA6XTuP5htNYCielq1kMq3LrH6ZJoo0DUZwkNSZa6JFEN7rIUUWOLDpRRp6DGKqw/IokZqcc4oiiI4z8c3Yy/z7F/bvzN1n/ZJiXSpXJYd6siV/+cF2bMjGZ9E6KNeZfbuxx4r1AeUDIpB04yKQdL8iknhdkMjo7yKSOYTmZ3LghRevXVdH6te7ze+/1JrOxWRvRm5SmN6LYd83EAQigWYPbxwlrdqW66MOqHlpzoNWRxm356GIXSSbUUkWGkIooHpbJiaJIIwvjVCOQ/DwQmuhKIougEUUjhbkhqM6QU5HEhoZwzPiagiRx1MzDqHHswdTJsuhIoqS4RQlFADIZChM2KkMAMtmPXaTYnEjIZD9CH8S7hkzqGwfZXHXskIBHx01qQSZ17IxMrlrT7cjiOpbGDbnn9eurqJQwetdGNBHDvtI4ONdGLEVL1keUaKIjiN5hqLnfG8sksxmRqnIji5ygZipHE53IohFF/v0Q/j3Jkmprdech+qKJZp6iiSZW7d0b6rQkE6kTQewTSZSoIkcTD8lJImcxDSraBDyhTq7CN4JMVngD4/L6lUAikUmRxqAxy5DJfm3bQbtzyKS+aSCTOnaQSR03yGR4blu2eGSRpfGdDVW0Zk2K2DcCy+HTe2j2nG6ae1QPzZnbTTNn5Za94CGng21txLAUduYS2hQkuRF55AQ3Mo+xucy6iWN4yOlh1RmaUVtDk3pYHEUYnehiNUcXMzwcNRlZTLW29CarkbmHRYacVu3bFwqNZCX1S2KvMPYOOZX5iVEKZFJPDzKpZ4eaIJCITApm7zBXM08SMjk8OyBkUt/ukEkdO8ikjhtksi+3re/nhqeuc59NxLG5OZjx1GmuLM6Z6z6LPM7m59Gj9W0yUDV7I4qe6CIPPZVo4/u8vEQHr7lYqsiyGNOqCiOKMgT1MI7IiTiO57G4URLwlOOSaml25xzmhpzmI4ieLKdVMuR0//5yu3L+7yx3kZt7aOYkFkiiiTJyUpskCmRSTxkyqWeHmiCQmEwa1EjAg04HmdT3Acikjh1kUsdtOMvkB9tFFvmxluc1rk+xNPIz/14s6c2UQ0QWe1gWu1kWe+jE49M068guqq6zWaZe305Ra2Zl2QyOIG4zy2Y4WVCzLIkd+WGp5a5EMpz65yg6opgTyDEhJm5qZDLV3NQriU4Use9SGFWSwCasJNbWFSao8Q89lTmJMhR1woSo2GOtD5nU44RM6tmhJggkLpMGuXdpkGJpe4dK8yABj11LQSbteHm3hkzq2EEmddyGg0zK+ooiiUYWnaQ4/Pu+vcGpWmTdRJFFkUYn2ijPc3po/ITCqFy5BDz6FtHVlKhhfn1Fs8Yii6KzfEa3G2ksVybnEtqY4aeHcUbUqeZvPAx1JM9pjFq8MplqOuBIYn59xGKS2NgY6rA9dSPc4aZm7mFBhtPcvESRxPHjQ+1vsG0EmdS3CGRSzw41QWDAZNKLvliCnqHSPJBJu5aCTNrxgkzqeZmakEk9w0pJwLN7t8xp9EhjLtK4Z0+wNNbXu5FGRxY9EceDDy49lNOQTlomW5w1FmVuIkcXee7i+105UcwlupH5jOWKI4Y83FSiib0ZUN2MqDJvsSbmXKjpbVsp/f4WfrxHmff4eet7VC0/b99G9MEHlDoQUhJHjOxd9oKHnRYbcjpUJbFcu5n/QybDkuq7HWRSzw41QaDfZVJE0b8AainsErFcvuIVMouDDoUmgkzatRJk0o4XZFLPCzIZnd1Qk8m9DRxp5GGpzvDUnDyKRMr6jEFl3PicNObmNZqIoyyzEaXELZMHONOpiOL7jhzKw82IapbOkEyppUqa/+lEFGXYqZMBVYakuglujDimY15fMb31fZ8s8u8ijSKMLJFUJhraM3JUGUkUceRI4rhxUZqqYupCJvVNCZnUs0NNEIBMxtAHIJN2ECGTdrwgk3pekMno7AarTDbuzw1P5WGp3ojjjg+CpXHM2N45jTIs1UQcDzk0mjQWI6yRSRHDdZ3t9I4MP3Uyo8q8RVcaZQ3GUqXWWTbDLJXBosjiKBlQvcIYvTcU7sERQ44mOlFFFkTzMFFGKrMupMw7zB52OD+mu8+HT6fUjOlUN3smNYyqp+6DDor7lCt6f5BJffNCJvXsUBMEIJMx9AHIpB1EyKQdL8iknhdkMjq7gZbJpibqXZ8xN59R5jVu2xosjaNGkZMt1Sy5YbKoTjusf6RRI5MNLFnreBjqug5+dLU7z2tZIveXWGdxFCevcaKIuaUyCtZY5AijzGeMtXBCHpHFDMuiiSbmZTE3NJXKrAuZPeTQAlnsYlnMThNpFIE8nHo40Y2/aBLwxHrdQ3hnkEl940Em9exQEwQSkUlbzEfOmIphrrbQhtD2kEl9YyEBj44d5kzquEmtpGSylddjdJLfrPUsubG+it7j9RuDiqzF6Cy5kVun0Sy5MZ3XbxwMRSKTjR1d9GpTC8siCyMvnSFRR5HID4oM75zIQ0/nZGppbk1uKGoVRxY5yY2IYz1nSo21sAjKfMWMRBSdCGPhEFQRR2KhLFWyh04NkMXDnAijI4u8dIZtgUzaEuvdHjKpZweZ1LNDTRDod5kcDogRmbRrZcikHS/v1pBJHTvIpI5bf8gkB+EK1meUdRpFIje/GyyN7FKcLbV3fUYTcTxi5uCQRkNWoovrWRQlwijyuJGHp27g56AymsVwDs9dPIovbk6mho5i6ZrLj0lxCiNHP2VeohNN9MiiI48mslimW2SnTsvLYld+OGpOFjnC2FPDjRNzgUzqgUIm9ewgk3p2qAkCkMkY+gBk0g4iZNKOF2RSz8vUhEzqGWojkxJ828CSuE7WavREHN/ZGCyNHJRzh6dKBlVPxPHI2YNLGt/PzWsUaVzP0ca1TtSxnYJypcpCGXNZuI6qrmNpZHl0pLGGpvN8xliKCOOmjZR5dxNl3tlI6Xff4d/5wc/pLZvLHiI7jcUwN1/RHYLaG1Xs4r8TR0STLpBJPXHIpJ4dZFLPDjVBYNjL5HXfvJ1efHVNvicEDbG9/NpbaeNmTlXOJej/kEm7FxJk0o4XZFLPCzIZnV05mZSRkHlZ5GGpEmkUiZRMqsVKwZIbLI5m3cboZxvfHiQ7au/w1DaOOPL8Rn5IVtWgMoMjjHM52igRRok4njR2NB3J8xhb20tnWQ1zxiKM6U0sjI44ijDmfuefSxWT3MaJKgbJohj8ICuQSX2DQCb17CCTenaoCQLDXibPvGIRrVhyR74nyO8LT1lAP/rbG52/iWzuaWjMz+EUsayfMJZ++dNb8nUgk3YvJMikHS/IpJ4XZDI6O69MbtzgrtPoZE81yXD492J5WGYd2cOJcHpl0WRRHUwO08zrM65nSXQjjJIQR6KNbbSrSCZSGYpqhqXOlWhjda0zZHWUb4iqbTbX9JZ3ObroRhVdWeyNMpZKdNM1YyZlZ86krplHUtcRs/jnWfwzP/hn4qQ9Q61AJvUtBpnUs4NM6tmhJggMe5n0d4Hv/vDntHr9lrw8ilx+66bP0hUXLXQ2XfLYSvrJ4vsLBBQyafdCgkza8YJM6nlBJnXs3t3kSqNEF99/t5reeLPbkUf2rMAy4whXGv0RR5nvOFhKN4dQnWGpkj1VkuGwMK7leY5beNmNoDKGRcyRRh6S6kQb+TGHL+jgkPMag2TSyY6aG4rqDEnloanOEFWWx1JrLkpUUeRQJDErz7NEHFki+eceFtlKKpBJfWtCJvXsIJN6dqgJApBJXx+QyOPRc6Y7kcm31myiq2/+Pt131/dowbyZzpZBf/twf3CSBXSvYAJVvDD2+NHVtOcAZ+JAsSJw0KhqHjbXRR1dg2semdVFDMDGddVVVJ1J04HWIjY0AOc0GA65ZXOK1koCHH64z1XOc3tb8NkdzplSj5rnrtfoPnc7z5JZdTCVzc5cRndoqgij+2ijoAGq1fx+NJcl8ajaGprHcxvl53m1tXQYRx01pWrbVieqOOq9d6lnwwbnIb+nWRhT7cU/K7ol2Q1LokQWnUf+5yN5CQ37rKiacx8MdWoyKRpRm6H9zXit2rZH/Zga2tvUSfLFCYodgYkHDZ/XmB0ZbA0C5QlAJj2MJCq57PHnadUz9xQVxyCZ7OwqvZh0+WYYXlvwvRul0xzlADfrhs8wt2x3D2fsx82CDbyqqhRJv8tmhyc3DojRqtUpWsPTw1evIn5O0erVRM3NwRR5ih3NP7qH5s0jWrAg5Ujj0UcTjR5tQ73/t/2ApXF1ewetamvjR2v+56Yi425nc3Rx/ohaOobt92j++eg6edibcGr7dqKNGyjFw1JTLIvEEcbUBn7wM7W0FL3wnqlTiVgSe2ZxRHH2bPfn2fL7kUQjR/Y/sCFwhBS/UGX0SlcWn6u2zZXJ8OcDc8PHgy054i8bh96QcPurRA0Q6B8CkMkc1zvufpAW37usbBQySCYxzNWuc2KYqx0v79ZYGkTHbrhkc/1ge/CcxgMHgrlNOUSGp+ayp+ayqMrvY8b2Sne5BDy6FrGrdYDnNcrSG24GVXnmuY08x1GS5ASVQzjxzVGcNVXWbHSeJfLI8lhHxZMC+fdTtWc3ZTasz2dLlciikymVH6nmpqIX0D1psjMctYplUZ5bD5f5jDKHcSb1jB5jd+HDcGsMc9U3Ooa56tlhmKue3VCqae71TdBoKJ37YD7XxGVS5iA27Au+sxmoxvVHJL0NhjmT8XdfyKSeKWRSx67SZHLXTpFGz5IbuSyq+/cFy9KkSSyMOWkUWTRLcIwbXz5Sm6RMdnFIxU2CI7LoDk1dz3Ma3+MIZFAZx5l85jpZVHMPmePIv0+wyPBT1dBAmfVrqHrdWsqsXU0ZeV63htI7dxQXxvqDXUHkpDdZlkR3DqMMTz2SuseOderZJuDR9ezKqwWZ1LcpZFLPrhJlMihhpBCSxJJSvIkk5V5Xijchpfzuv2efMG5MfhvJIXLrj3+Rh37bd27I5xcxdcPsU7bx3v97p5v5W9S7uoL3fzd97jJadP2VfTqAnP9nLj03/7/BIpP+89L33MFRM1GZLNaxBxKFnJOUpffcFngayOYaf+tAJvVMIZM6dkNVJnfvduczytIbZskNWbexYU+wNNbXF0qjWa9R/q4t/SWT7zpZU901GiWDqrsMR/A86hqOKEqEURLhuPLIzyyQUy3WQazat8+RxMz6tSyO/LyWHyKNH/CQ1YDSM2Ysdc6Z6ya8yWVIFVkUaeweP74sTshkWUSBG0AmddykFmRSz64SZdLInj9QExQk+df7HuVAT2NBwkkjhF4Z898TB43Wk3pybO0+y8mkyWsSprUHq7QN1vMKwzRom0Rlcv4515L/mwvticdRz7wIgvblPU+sMxkH7d59QCb1PCGTOnaDXSb3NshSG+76jN6I44cfBkujRBTn8rBUJ8Johqnys0Qg4y5RZXJHtstJgOMMT5VMqo40dlIrD10NKrNzS23IWo1GGo+0SAtb1djoSqMRx1y0Mc2JcQKlcdRo6px7FHXNnUddR/GDnzvnHOWsyxilQCZ19CCTOm6QST03qVmJMinX5b/vDhJMEcTj58+m11bx/G8u/oilP7L3wENP56OTxWQyyj7jksmgdeS/ePXFTjTVCLbwOfWEefn15i+78AzauXtv/ne/s5iRjKa3eRN0+nugiYKav5uobqn17Uvt3yxdKLldTPGeX7HjRXtlhKs9rGUyHKLyW2HOZHlG3i0gk3a8vFtDJnXsBotMNu7PDU/lYaneiOPOHcHSKHMXg+Y0ylzHpEpYmdzPSW+cIaocaXQijhJt5J8biqzXOJXnNbrDUwvnNUoUMkxJNR1wh6Y64ijRRneIavr99wKr94wYyaJ4FIujCCPL41FHOxKZnX5EmMNZbwOZtEbmVIBM6rhJLUQm9ezikMn1nK15XVvy2f3nciKxOUUyPvuHtIqsiCx5hVGESqTonS3b+yx954+g+UWvmExG2WdcMim9wX/+fpk2Mik8jIyJUMqKDv4orLBb+dJbeZGW7b1i7e19QdIu1/WDW653VocIikyW279/KLJ3il654+lfGeFqJiqTAvKCM08MHNcc7nQH51aQSbt2gUza8YJM6nmZmgMpk6verqKnn6yiZ55M0wvPB2cMHDWKeE6ju06jrNc4e477PHVactJYjLJfJjskGU5+WKq7BIfMcdzW1RW4iwmcgXiuLLnBS20cVVPHyXD4mQXyIF7HMUxJtTTnZNGVRpnXWM1DVdNbNgdLY22dK4sSYfRGHHl4apIFMqmjDZnUcYNM6rlJzThk8h927qJbthefax3tDIvX/vbkSXT7oVMCN/BLRrEhrmaqlz+S6Z8zaUTLHCxIJs0Q17D7lH1591tOJjdu3tbnWsPOmQySSRPd81+LXxb97OQkio24NMcpNhozSCbL7T+ojjm+nItEXAdq9GeiMilwf7L4/j4TfPvrBZbUfiGTdqQhk3a8IJN6XgMhk+JUzzyVdgTyaRZIWcvRWz5yHMtiThpFHmVeo6zfOBjLPl5m4L26bnpqdyOtdjKpdtIGfg4qI1IijdU8r1HWauRnmdfI8xsPCTmvMcVLe5jkNwXJcDZvCjxeD8+h7OLhqM7wVIk4cqTRkchZvOTGICiQSV0jQCZ13KQWIpN6dnHI5NL9jXT3ngb9SShrXn7QWLq+fkLR2kY4Zk0/lL783X8suAc3w1FN8hp/JNMrMP5InRwwSCZt9mlOWs7RCGE5mYwyZzKKTMo5BpViAucfsirDaU1EuJgYltp/KZm84qKFVOp4yq4VulqiMlmsIczZDlQ219C0imwImbQjCJm04+XdGsNcdez6OzL5/nupAoHkKYL5IkNSzz2/mx9Z5zGYlxN8g4envs6Rxtfa25znDUUS4jjDU51kOL3yOJPFMUxJMRwzp7FAGnnpjcDCMupEGOf4pHH23DCHG7BtIJM69JBJHTfIpJ6b1IxDJqOdQf/VNoI4+eDxgUNcg45s7sf9AmPm7ckwUClBMlnsXr/YPmU/XoEczDKpjfwZTkaYy4lhUJvY1PEfr/96l7vnRGWyvy9moPYPmbQjD5m04+XdGjKpY9cfMvnSnzjyyBHIZzgC+eYbhUM2jz9R5JEf52XphJMG5+Lr7/FQ1ddZGl/rbKM3eK6PCGQHFUZIa3gB+VPYfo9O19AxzlqN7nDVDP89TMms4SGpa952h6maZTc2rg+uyvuUBDjOnEaJOObmNErkcSgWyKSu1SCTOm6QST23SpdJE407csZUkgQ0EsWSUmy0oHfopl9gjKQUGxoaZZ/9EZn0ryIRJTIpUr5h09Y+kd1vfOkqZx6kt8gQ2e07dztzL03xcg1a3aLc/v1t4d2+3PGivTrK14ZMlmdUdgvIZFlEBRtAJu14QSb1vEzNOGTyQGPKHboqQ1iXV5E306pEGyXqeM55bgTykEMH17DVA91ZJ9L4ukQeRSD5eSdnWfWX2SyMx7EwOg+ee3gcRx9DJeDh5DvVb79J1W++TtVvvZH7+Q1KtbYENl7BfEZnbqMbdaSQ8yij94j+3wNkUscYMqnjBpnUc6t0mZTrC1pHMsw6lEHRMJOo5tOfOJt++/CzefAimLIcSP2EsQUJfmQD7/DZoPXmvXMei60lKZFN23UmvWthGpn2Z3MNO2dSrsM/lNS77qa3BwatFuG9Rv95mfmlpfZfas3PcseL9uooXztxmfQvciqnqA0bl7+8ZLaATNpxhkza8YJM6nlFlcl1azlxzlPu3McVzxZGH2cdKcNXewUy+lnGt4dVPDzVDFV9rb2V1gYMVz24Kk0fYVk8XqSxdgQdx3Mcx6fTfU7CL5MpltHqN40w9sojBSTgkUypnQuOdWVRlt3goaoyZJVCzqOMj0jye4JM6phDJnXcIJN6bsNBJqPRQe3BQGAwr02ZqEyabzO867IkPa63PzoEZNKOKmTSjhdkUs9LI5OSPMcI5MYNhcM5F57lRh4lAnnUvMExfHU7RxgdcZQHJ8eR5xbfGo5p3GyfRQAAIABJREFUHkLqiCNHHI1AhpnjmDrQSIdsWUv7n/uzG3F8i+Vx1duBDSJDUzsXfIQ6j+XHMSyQC46j7gnFk0JEb9XBvQfIpK59IJM6bpBJPTfIZDR2qJ0MAchkjnMxEKXWakmmiaIdBTJpxw8yaccLMqnnFUYmd3zQO3xVlu9obu493sSJPXSOSZ7DAjn2oIEdvtrKkmik0UQeg5bkOIKT4UjE0SuQ5eY5Vu3Z48qiI408ZJWfMxvWBcLvnL+ApfG4AnnsGT0mekNV0B4gk7rGhEzquEEm9dwgk9HYoTYIJBqZLLceC7K5Do8OCZnUtzMS8OjY+edMvvaKu/ajzH989eXC4asLjuXo4wVu8pxTThvY6KMMT32dh6nKHEeRyLcDluUYx+s4HsfrODpDVTn6KPMdJwYMV/WSS3+wvXCOI4tj0LqNPbzER+r446nlqGN65ZGjj7IsB0ppApBJXQ+BTOq4QSb13CCT0dihNggkKpOITKLDCQHIpL4fQCaV7LIydDVDDz/S7cx//GB77/BVzjnjiKNZvuOwwwcm+rgrm2Vp7B2uKnMdD3BiG3+RaKOTHIfnOMrzHH4uVUQSneQ4EnHMJcgRmfSXnpGj3CGqMlTV8wiVgEfZLJVcDTKpa13IpI4bZFLPDTIZjR1qg0CiMok5k+hwkMlofQAyGZ7fpndk+Ko7//Gp5YWJZaZPl+GrvQKZdD6Yzp4eZ57jGxxpNMNVt/BSHf5yOC/DkU+SwxFHGbpaQ8WX5cjwshuuNPYmyKnas7vPfrvHjXPmNPbOcfyIkyAnqEAmw/c575aQSR03yKSOG2RSzw0yGY0daoNAojIpuJHNFZ0OkUl9H4BMlmb33Ao38+rTLJBrVxcOX124sIcWntPlRCCPWZDs8NUNLI1v8FDVfOSRf/aXMSa7qmdZjinpTNELrl69qneOo8gjS6QkzPGX7kmTc0lxchFHjj52HTErdCeETIZGVbAhZFLHDTKp4waZ1HODTEZjh9ogkLhMViJyJOCxa1XIpB0v79aQyUJ2u3en6BmZ+5gTyP37eqN248bz0h2cNEcikJdcTHToIWna19Shhx+y5h5nTcdcxJGHqkqG1b08hNVf5vPwVCdJDs93lOd5JeYhVr/+ai4pTi5BDsujLNHhL9lph/UZpip/i1Igkzp6kEkdN8ikjhtkUs8NMhmNHWqDAGQyhj4AmbSDCJm04wWZLOT11ptu8hzJvPrinwqjj/PmS+Icd/mOMxb2Rh/9CXj0LVBYU44giXEk4uhEHvnnTV19hfVQHkdr5jg66zpy9HFkqvDczZ6rdu2kmpdfch9/fpGqX3mJUh199ynRxfwcx2PcJTkkChl3gUzqiEImddwgkzpukEk9N8hkNHaoDQKJyKRkcb3pc5fR4nuXlSSObK7Do0NCJvXtPBwjk5zQ1Mm66ggkP7+3pTf6yMsnOuJokuccMTM4eU5cMrmbo47PtbXQqzmBFJH0xxxHsCQ6WVVZGs26jtN47mOxUr3qLUccq1kc5VnmPfqLzGfszAmjM8+Rf+4eP17fkSxqQiYtYHk2hUzquEEmddwgk3pukMlo7FAbBBKRyUrHjMikXQtDJu14ebceLjK5hYVRIo9m+Q5vbppDp8rw1ayz/uN5F2Sprq48T61MdnGinJVtrfQ8D1d9rr3FiUL6y1GcDta7LMcCFsliReY0mohjDUccq1keq/bvL9hcsqp2nHQKdZx8KnXK80mnJiaOQecNmSzfv4K2gEzquEEmddwgk3pukMlo7FAbBBKVyWLrTEqW1wceeppWLLljSLYIZNKu2SCTdryGi0zKkFURyKeWV9HbbxUOAT3xZHfdR4lAHneCffIcG5mU+Y4SfXxOBJKfRShNyXAodGHdCDq1htd0dCKPI2hMVYnsqps2ukNVc8NWJUmOv2SnH+GIY14gP3K8voP0Q03IpA4qZFLHDTKp4waZ1HODTEZjh9ogMChk0mR4xTDX4dEhIZP6dq6kyKQky5Gsq07yHBbIPXt6pWz0aHKX7sgJ5OQp0dZ+LCWTmznsKdFHiTw+19pCkkDHW2R+48K6kfRRlsiP8nPhIiOeLbu6OOroDlU1w1bTO3cUNjbLqBHHTo44ikBmD52q7xAJ1IRM6iBDJnXcIJM6bpBJPTfIZDR2qA0Cg0Imv/vDn9PKl95CZHKY9EfIpL6hh7pMynIdRiBlGQ9vmT0nt/YjC+TZ59pHH0tR9crk3my3I44rJfrIEulPmHNEpsYRR1cgR9KEquBEOent21xpdOTRlUjqLjzv7OQp7lDVXOSx88RTqKe6+PxJfc/ov5qQSR1byKSOG2RSxw0yqecGmYzGDrVBoN9lMmhdySDst33nBrriooVDskUwzNWu2SCTdry8Ww81mZQRohJ5fCYXgdz0TuGQ0LPOcYevShRyztxo0cdiVLv5JF7u7nCGrT7ZeMDJvOot41kWRRpN9HEmy2RQqX7jtd4Mq5IoZ/OmPpt1HnOsZ67jKdQ1a7a+sQdJTcikriEgkzpukEkdN8iknhtkMho71AaBfpdJL+JicyaHejNAJu1aEDJpx2uoyeT2bTJ8lQUyt/5ja2vvFUyaJNFHTpzD8igCOWaMnkWpmm+yMErU8XmJQPIJdFCvqEqcUeTRiT7WjnTWePSXqr17yUmQk8uwKvMeUy3NBZt1jx1LnRJx5GijJMnpOJmjjmPG9s8FDeBeIZM6+JBJHTfIpI4bZFLPDTIZjR1qg0CiMlmpuCGTdi0LmbTjNRRk8pU/y/BVN/vq668WDgv9yHHdeYE86ZR4h68aNu/xvEcnaU5u7uOurG/eI6d8PYcnYp6UqnUS6FTLmiKeklm/1kmU4853fJEya1b3aaSuI+c4cxzNsNXO+Qv0DTmEakImdY0FmdRxg0zquEEm9dwgk9HYoTYIQCZj6AOQSTuIkEk7XoNRJps5SOdkXs0t37FzR6+c1fLKGN61H6dOi3/4aiPPTXTmPErSHBbIDbIYpacczus6Oglzat2kOTNG1lJNdZr2NXVQipf3yGdYzQlk1Z7dBfV7ampI5jeaDKvy3D1psr7hhnBNyKSu8SCTOm6QSR03yKSeG2QyGjvUBoFEZfKtNZvo6pu/X5Q6srkOjw4JmdS380DOmdy4gYevOvKYpmefLow+zjiC136U7Ks8hFWei+Ss0V8413ye5XFlbrmOl33rPY7lAzpzHnnY6kc5Cjm7unetx6o9e2jMiyuo9sUXqPuFF6jm1Zf7nEd26rRc1DG3RAfLI/mil5FOfghXhkzqGg8yqeMGmdRxg0zquUEmo7FDbRBIVCbPvGIRLTxlAZ16wtH0k8X357O3Xn7trXTBmSfSouuvHJItgsikXbNBJu14ebdOWiZXPJtbuoMFcv26wqGhp3/UFUcRyKPnxz98dVUnr/fIS3W46z22UmtP4THOkKQ5ucjjSZ55jyleJ7JmxR+pduWzzqP6tVf6AO887oTetR1leQ5e6xElmABkUtczIJM6bpBJHTfIpJ4bZDIau8FQO+oSg7Le/eJ7l9FQDWoNdBskKpMmAc+s6YfSl7/7j3mZlE7glcuBhmJ7fMikHTHIpB2vJGVy166UmzhH5j8uT9OBA71HHz+hhxPnyPxHWf+xm+T3OMtWnvf4fE4cZQjrjmxXwe7nc7TxoyN6s67WUa/c1nDUUcSxZqUrkSRpZE1Jp6nrrLOp5+xzqPHYEx2J7OH9oIQjAJkMx8m/FWRSxw0yqeMGmdRzq2SZlGDNxs3b+sC56XOXOX8LEii5V7/swjPoR397Y76eBIOkrFhyRyBo+X/DPs8NA28lYib7KlbiXMXBViblfD9z6bn5IBZkMtrrZ0BkUpYAkQ5mvgGw7QTRLjn+2pBJO6aQSTte3q37IzL5xutVeYH884uFw1cl4njeBa5Ann5GvNHHJo40OglznMQ5LbTWN+9xajrTm3WVo5BT+HdTqlevYnF0I4/yXNXYWAC148STqWPh2dS+8CznecTouvycST394VkTMqlrd8ikjhtkUscNMqnnVukyefSc6QVi6CUl67yvXr+Flt5zm/Pn6755u/P8y5/ekt9M7tH/9b5HWRYb6Vs3fbZgGT8zfc0vn7JfKUZIzXb33fU9WjBvZrTGCqht6xF+mYz9hIbZDhOVSfmGxHRq78/S6Va+9FbRbzwGe5tAJu1aCDJpxytumWxvd9d+lMyrz3AEcuv7vRE+DuLRObzuowikDGGdPiPe6OOfcpFHGb76YodnzRC+yNEpWe/RTZgjcx+P4iQ4pqTf25IbtvpHRx7T2wu/ae2aO88Vx4+exc9nU/eECQWQR9amIZPKbgeZ1IGDTOq4QSZ13CCTem7DWSbl2o1YHTZ1Et3641/0Geopgnn8/Nn02qoNfURT7uXrJ4wtkM+glggrkyZCaPYxYdyYAjfwRlq9//PLZFDk8YGHnnb2Jdfz4qtr8qd55Iyp9MWrL+5z7cWO5WUmkV1T+kuUo/XsZGonKpP+S/KGv4dyI0Am7TorZNKOVxwyuWVzip7iYatGIL0rZ0w7jNd+ZIGUuY/nXZAlj8PpTzRXc21Hh5N19XkWR4k+NnEWVm85zZnz6ArkqfyzKVUNDfmoYy0PXZWlO7wle+jUfORR5DF7+PSS5wqZ1DclZFLHDjKp4waZ1HGDTOq5xSaT69cTrVsX7UQ0tefOJZozJ7CmN3BTbNdGxETOvEM/zfZyry736O9s2d5nSlrY9ePDyGRQdFHO/we3XO9EM0UC9zQ0FkRRN2za6giijUx6ZdDkavHXL3UsU1+G9ZoRlv7tNc04lOsMqEwOZXDec4dM2rUkZNKOl1YmX3ie5z7mBHL1qsLhqyefypFHEUiOQB77kfiGr37Q1eUu15HLurqNf/cWiTb2Zl0dQaM4Gikl1dmZG7bKkccVz/TJuNo9dmxOHs92njuPnm8FETJphatgY8ikjh1kUscNMqnjBpnUc4tNJv/hH4hu6R0eGu2MLGp/+9tEt7vDU/2l1JxJb9LLYjJkhriaYbBeeQwjiOZ8wmxrhK7YXEq/uHr3KaLrjaqWikyGkclSxxKxLbd/i9ariE0Tlcmw32AMNbKQSbsWg0za8Qork3sbeOmOp2T+o6z/WEXyuyljxsrSHa5AnsPPkybFM3y1jXo48tjKj2Yn8+pq37xHmefoymOdE32cyus/miJrPbrzHnNJc7zhUl7qQyKOHTx01Xk+5TQ9NK4JmdTjg0zq2EEmddwgkzpukEk9t9hkculSorvvjnYimtqXX050/fVFZbLUnEmpZJJgys/+yKQZ4mrE0z+nMux9fRiZlOPLtLdljz+fv5ZTT5jnDKEtVt8cXyrEJZPljiV5XyCThd0NMql54frqQCbtIEIm7XiVkkmJOMrQVZkD+cJzhdHHuUdx4hzOuipzH888O8boI2dZfZLFcXlrEz83k3fPI3LzHhfKeo+cMfXo6t55j5k1q/PLdThJc/bvLwDRccJJ+TmPHWdy9tUYx9tCJvV9DjKpYweZ1HGDTOq4QSb13GKTyWin0C+1wwxzFTGSxDp+IZPfi2VjNcM7454z6YVgpE4yz4rMIjLZL10klp0mKpNDfT3JYsQhk3Z9ETJpx8u79bhRtbTsoSw9/jhHIVkgN79buPbj2eeatR+zdOTseKKPcnyJOBp5fLm9reACTpY5jyyPC/n5dM+8x/T77xUs15HetrWgXtfsuflsq07SnPp6PZgyNSGTerSQSR07yKSOG2RSxw0yqec2nGXSH2n0/l5s2T6v1Jmhqf5srpJIZ/vO3VbZXP11jMyaYa82cyb9kutf2sT/f82cSf/SIibBT7SeODRrJyqT8i2Dd33JoYms71lDJu1aEjJpx0uyrUrWVZM8p83jcpOnuMNXz+PooyzfMWqU3b5LbS0Jc5bzQ6KP73iGr1anUnTBiFF0Pg9bPX/EaJokKWC5VO3bl1+uQ5bsyKztzZYm/88ecmhh0pzpM+I7Wchkv7GETOrQQiZ13CCTOm6QST23SpfJYutMiuzJkFITZTQEzTqTsmRIUKbWoOVD/BFMfxbWMMNczTbeljRRSfO3sNlc/fsS2fWuGmHkUfYbJZurGf4rIgyZjPYaDF271OKlshN/hw694wHeEDJp1wCQyfK8ZL3Hp1kgn+EhrLIOpLeccGIPnS3Ld7A8nnBSfMNXW3ndR3f4ajM9yXMgGzxzGCfx3McLeNiqyOMFLJEZFkri5DoijTLnUYat1rz8UsF59owZ60Qe3bmPnDRn/jHlL7yftkBkUg8WMqljB5nUcYNM6rhBJvXcKlkmo1FBbRAIRyDRyGS4Uxp6W0Em7doMMtmX14EDlEuc4wrkrl29w1dH8IoZMu9REud8+oo0HTShk9o745HI7c78x2ZXIPnhHRgrmVfPrxvNAtm7bIcIY0HSHG+2VhbMdl7nUeY7OgJ56ul2HaMft4ZM6uFCJnXsIJM6bpBJHTfIpJ4bZDIaO9QGgURlsljWp6EeHoZM2r2QIJMur/XrePiqk3k1TSueLYw+zpwlw1dZIDmBjqz9aEr92Fpqao0mk6s62+nJFhZIjj6+4pv/eDrPfTx/JD84+jinupZSnKm17vHHqHb5H/j5Uara/WFBY3ced4Ijjo48niVJc2rtOkNCW0Mm9aAhkzp2kEkdN8ikjhtkUs8NMhmNHWqDwKCQyaCFSodS00Am7VprOMvks0+7w1dl/ceNGwqT53z0zFzyHBbIo44OjjxqZXKlM/+Ro48tLbSpqyPfYDWcfdUZvirzH0eOpolVaZJEOXVPsEDyQ56pu/dcuo6c05s0hyOQ3fUH2zX+AG0NmdSDh0zq2EEmddwgkzpukEk9N8hkNHaoDQKDQiZlXRnvxNih1iyQSbsWG04yuXOHZF3tFcjm5l5W9fUcfbygVyAPGlc++2pYmWyR+Y9O9JET6LQ10d5srxBO9sx/PL9uFM9/JKp+6w0n8igRSFn/0Vs6Tl9IbR/7OD8upq55R9s19iDZGjKpbwjIpI4dZFLHDTKp4waZ1HODTEZjh9og0O8y6c2YVAq3Sf07FJsEMmnXapUuk1s2p+jBX3P0kSOQr/y5cPjqMQtk2Cqv/8hDWE89zX7eYymZ3MbzFyVxzvIWXv+RJdJbZP7jBbn5j6fklu+ofXo51bE81vIw1sy77+Q376mto3ZHHi9yHt2TJts18CDcGjKpbxTIpI4dZFLHDTKp4waZ1HODTEZjh9og0O8y6UVcbM7kUG8GyKRdC1aqTO74IEV33pGhu3+eyQPJVHPyHMm8KgLJz4dPLx99LEXTL5Nve+Y/vuqf/8hDV90hrKNodnUNVTU28tDVR3noKgskP1ft358/VPbQqdR+AQvkhRdTGz9Tpvca7Fp3cG4NmdS3C2RSxw4yqeMGmdRxg0zquUEmo7FDbRBIVCYrFTdk0q5lK00mG/ak6K5/zjiPnpwrXnV1lj5xadYRSRHKuIrI5MMN++kxTv+6nJfxeNcz/7HWzH/kNSDPY5GcyMNZM5s3OZHHuuU8B/Kp5QWn0XnMsRyBdKOPHaecFtcpDsr9QCb1zQKZ1LGDTOq4QSZ13CCTem6QyWjsUBsEIJMx9AHIpB3ESpFJmf945x3VdBdHI9vbXQaXfypLNy/qogXH2g9hLUaxOTf/UYauPuVb/3GKM//Rlcfz+VnWf5TlO0z21eo3Xy/YbfvZ5+UikBdR16zZdg03hLeGTOobDzKpYweZ1HGDTOq4QSb13CCT0dihNggkLpNnXrGIGvbxonoBZdUz9wzJFoFM2jXbUJfJrk6WyFwksnG/m5H1oktYIr/aRSedEo9ESgKdpc0H6BGe//iUb/7j/Jo6Oo+Hr57Hy3icUseLUHI41Jt9Nb31/XyD9Iwek5v7+HGOQl5M3ePH2zVWhWwNmdQ3JGRSxw4yqeMGmdRxg0zquUEmo7FDbRBIVCYvv/ZWqp8wln7501sqijxk0q45h7JM/vzOjDMv8sMPXYmUtSC/zJHIMxbGI5FPtjbTMhbIJS0HqMuMmeXjnCGRR358euI4mtadps4du/LZV2UdyBQPeTUlO/2IfPbV9vM/Ztc4Fbo1ZFLfsJBJHTvIpI4bZFLHDTKp5waZjMYOtUEgUZlEAh50OCEwFGXynrvdOZFb33clUuRRIpHnXZCN3KhvdrRzFLKRlrU20XbOyGrKmZw45/KRo+hjvP7jwbz+Y2bdGpqw4knq+f3vqXrlHwuO23HCSfkEOp3HnRD5nCptB5BJfYtCJnXsIJM6bpBJHTfIpJ4bZDIaO9QGAchkDH0AkUk7iENJJn/1H2lnXuSmd1yJPPHkbicSKcNao5Qd2S5aytHHZc1N9HpHW35XsoTH5SPH0OWjxtD0dDXVvLDSyb5ax9lXM2tWFxxSsq6aBDrZw6dHOZ2KrwuZ1DcxZFLHDjKp4waZ1HGDTOq5QSajsUNtEEhUJmWY6wVnnkiLrr9y0JG/4+4H6YGHnqYVS+4oOLfv/vDntOzx5/ucr3d+J2TSrjmHgkz+lteJlEjkmlXuOpGSUEcS60iCHW2Rmk4EkoexPsHDWU2ZkE67AsmPUziBjpN99Qn3UbVrZ3677gkTqOeST1DL+RdS03kfp55Ro7WnMuzqQSb1TQ6Z1LGDTOq4QSZ13CCTem6QyWjsUBsEEpXJJY+tpJ8svr+PsA1kM8g53frjXzinMGHcmECZXL1+Cy2957aipwmZtGvBwSyTDy+TSGSGXn/Nlcg5c3s4EtlJstSHtqzkBDoikEv50dTdu59P8PBVEcjL9u3PZ1+tW/4HIs9Q167Zc535jxKBbD/zHPKvM6k9p+FWDzKpb3HIpI4dZFLHDTKp4waZ1HODTEZjh9ogkKhMypzJUmUgs7mWikxCJuN9oQxGmXziDxyJZIl88U+uRE6fIRLZRX/9hd45jDYU1nV25IexeteClOyrIpCf3fQuTXzycSf6WPPSnwp23XHaGeQOYb2YOucfU/A/yKRNK/RuC5nUcTM3WfjCzJ4fZNKemdSATOq4QSb13CCT0dihNggkKpODGXfYYa5B0UvcaNm17GCSyT8+U+XMiVzxrCuRUw5xJfL6G+0lcm+Wl/NocYexvtjemocyI8PzIHkO5OfWb6C5v19KdY89TJl3NuT/31NdnZ/7KBHI7JRDigKFTNr1NbM1ZFLHDTKp5waZ1LGDTOq4QSb13CCT0dihNghAJnN9oJhM+ruIzPuU4h32uvdAB3qSBYGqqhSNGZmh/U28YOMAleefS9Ed/5SmPzzmSmR9PdGir2edB09btCoPNR2g3zaxRPKzKaNSVXTlmLH0+Z276KOPPUI1S35L6bfezP+/e8oU6vz4JdR54UX8fDERJ94JU0aPrKa2ji4eCdsTZnNskyNQU11FmXQVtbTZf0kw3CGOH1NDeI+z7wUj6zLUxV8wdXTGs2yQ/RkMzRqZTIrqajLU1DJwnw9DkxzRQaOr6UBLF3V34/PBtg3lfQ4FBEBARyBxmRQZ27h5m3O2t33nBrriooUkw19PPWHegK4/GVYmzRxL75Dc1g79fDpdsw3tWuJqtdVpautMntvLf07RT3+SoiW/c41xNOew+ca3uukb3+yhurrwXF9oaaFf81zHXzfupz3Z3uu4eAxHIDs76UrOwFr9m19T1YoV+Z32TJ5C2b+4irJXfpq6Fy4MfzDPlrWZKr5B7aGsZw1K1Y6GWaUMf4EhX2J0dOHG3rbpR9SkCe9xttT4+yF+rcpNfRdu7K3gpfnbvEw6Re14rVpxk43r+HO1nT9XoZLW6Eje51BAAAR0BBKVSRHJ+gljHWk884pF9K2bPuvIZFiR011iuFphzyFIJjHMNRxjs9VADHNdzVlZZU7kg79xPzAy1URf5nUiZa3IsQeF++jd0tXJ2VgPOHMh1/KcSFM+UlNHV9bU0ueXL6cpy37nDGM1pae2jlqv+DS1XX4ltV3IEciIBcNcdQAxzFXHTWohAY+OHYa56rhhmKuOm9SaPL6Odu9vpyy+wLCGKO9zKCAAAjoCicqkRCDvu+t7tGDezAKZDBI03eXoaxWTSZFe73Ih8vvsmdMKoqiQSTvuScrkOxtTvMRHNcl6kabc+OUuZ17kxInlJbKlh+dBOgLZRCs4K6sph6QzTiKdG154geY9vIxGLH2QUm298yTbLvoEtYpAXv5p6gk5hDUMRchkGEp9t4FM6rhBJvXcIJM6dpBJHTfIpJ6beZ+LtgfUBoHhSyBRmRQRu/NH3+gjk2Gjgv3RTN6lQcz+L7vwDPrR397o/Oodliu/Bw3HhUzatUwSMvn+eyKRGfq3X2byJ3ft9W4kctph5SXyybbmvER25YaUZnj4lQjkl1atooU8D7KOBTK9c0d+/x2nL3QEUiKR3QdPtIMScmvIZEhQvs0gkzpukEk9N8ikjh1kUscNMqnnBpmMxg61QSBRmfzuD39OK196y4n0mWGus6YfSlff/H3yCtxQaxbIpF2L9adM7trlSuTP7+yVyGv+OuusFTlzVmmJfLOjPT+M9YNsb6KWM+tG0vXvb6VLn3icxvIw1sz6tfkLlqU72i5zBbJr1mw7EIqtIZMKaFwFMqnjBpnUc4NM6thBJnXcIJN6bpDJaOxQGwQSlUnBHRQJvOlzl9Gi668csq0BmbRruv6Qyf37XImUR1fOAz99VdaJRM6bXzzpyg6WRpkDKUNZ32CZNOUoHpr6+f1NdM3yJ+jQh5ZQzcsv5f+XnXYYRyDdeZAdJ5xkd/ERt4ZM6gBCJnXcIJN6bpBJHTvIpI4bZFLPDTIZjR1qg0DiMlmJyCGTdq0ap0y2tZGTWEfmRTY3u+fxicskEtlFxx0fLJGSe9UI5PLWXCX+24R0mj5DVXTjk0/S0TwPsvbJJ/IX1sPLfLRewRFIjkK2n3uB3QXHuDVkUgcTMqnjBpnUc4NM6thBJnXcIJN6bpDJaOxQGwQSlcnrvnk7vfjqGvIuqyFNMBgWK619AAAgAElEQVSWBonSFSCTdvTikEmZxninI5EZ2tvgLvPxsY9zJJIl8tTTgiVyJSfQcSWyiZo5sY4pnxg5mr7+7B+deZAjlj1I5Fnqo/WyT+WHsdpdZf9sDZnUcYVM6rhBJvXcIJM6dpBJHTfIpJ4bZDIaO9QGgURlUuZJfubSc/sMaR3IBDxxdAHIpB3FqDL5i39xJXLHB65EnnVOtzMn8syz+0rkOl7CQzKxyjDWzV29y3mcUjeCvv76G3TRH/5A4x56kKoaGvIX0X72eflMrN0HHWR3cf28NWRSBxgyqeMGmdRzg0zq2EEmddwgk3pukMlo7FAbBBKVSYlA3vadG5y1Jb1lMCwNEqUrQCbt6Gll8t57WCI5GrlliyuRp53e7UQiL7hQBq72lr3dvJyHRCD58ZJnuY4ZvLjkVzZvpqueeIKmPrSUMps35St1HneCm4mV50JmD59ud0EJbg2Z1MGGTOq4QSb13CCTOnaQSR03yKSeG2QyGjvUBoFEZRKRSXQ4IWArkw/8Ku3MiVy/zpXI406QSGQXfeLSQol8rr2F7m86QL9tbsyDHpWqoi9x1PGLPA9y3sMPUfUbr+X/13XELCeJjmRi7Tzm2CHROJBJXTNBJnXcIJN6bpBJHTvIpI4bZFLPDTIZjR1qg0CiMinDWRffu4zuu+t7zlqTUt5as8lZGmQoZ3RFZNLuhRRWJpc8yBLJkci336pyDnA0Z2WVSOSVf9ErkS0891EE8v7m/fSWJxvrpzo66WtPP02nPfIw1a14Jn+C3fX1+Uys7R89y+7EB8HWkEldI0Amddwgk3pukEkdO8ikjhtkUs8NMhmNHWqDQKIyKbiDlgYJGvo6lJoGMmnXWuVk8tGHJRKZoVf+7ErkrCN7eImPTpL1Ik15ncXx/qb9/GikdnLXj5xaVUU/5EQ6n3z8MZrAUch8yWQcgZRhrG2XXGp3soNsa8ikrkEgkzpukEk9N8ikjh1kUscNMqnnBpmMxg61QSBxmaxE5JBJu1YtJpNPLU87GVpfeM6VyMMOF4nsoi9cl1s4kv/2ax7CKgL5Qntr/qB/8/LLdB0PYz2KBTLFUUpT2i74eH4Ya8+IkXYnOUi3hkzqGgYyqeMGmdRzg0zq2EEmddwgk3pukMlo7FAbBCCTMfQByKQdRL9MPreiyolEPv1k2tnRpEmuRN74ZVciN3JGVhFIGcq6h5PrSDnv7bfpO888Q2fych5127flT6DjlNOctSDbeB5kdsohdic2BLaGTOoaCTKp4waZ1HODTOrYQSZ13CCTem6QyWjsUBsEEpdJScLTsK83euRtAv/6k0OleSCTdi1lZPL3j3U4EvmHR12JPGicK5Hy4JGp9Agv6SFDWZfz+pBSRre00Pcefpg+v2wJTV71dv6gXXPn5TKxXknycyUXyKSudSGTOm6QST03yKSOHWRSxw0yqecGmYzGDrVBIFGZvPzaW6l+wlj65U9vqSjykEm75lz1Zpp+sbiGHnjArVdXR05iHZkXeaC2ix5oaaT7eLjqlty6kKesWkU/ePQROu+3v6Z0e7tTR6KOEn2UKKREI4dLgUzqWhoyqeMGmdRzg0zq2EEmddwgk3pukMlo7FAbBBKVyWLrTA71ZoBMhmvBdWurnDmRv7nfjUSmeKUPWeJDIpFvj2x2hrL+jteGNOWWRx+lm3g9yBl/eiH/t/bzLqCWaz5PrZ/6i3AHrbCtIJO6BoVM6rhBJvXcIJM6dpBJHTfIpJ4bZDIaO9QGAchkDH0AMlka4uZ3U84SH//x7zx2NVe+9jWiq77UQk+PdjOyrup0I46z33uPfsjLeXzywd9S3e4Pnb/1jBlLLX/1eUciO+cfE0OLDd1dQCZ1bQeZ1HGDTOq5QSZ17CCTOm6QST03yGQ0dqgNAonKpAxzveDME2nR9VdWFHnIZHBzfrA95UQif/l/eiXyc9d20blfb6Y/TWiif21ooM4ed1mPL65cQd9c9hAds/wP+Z11nHgyS+QXqPWaz1FPdXVF9RntxUAmdeQgkzpukEk9N8ikjh1kUscNMqnnBpmMxg61QSBRmZQ1Jn+y+H5aseSOiiIPmSxszj173EikJNcx5TPXZGnG13fTs6Mb6cUOd1mPSSyTMhfyM797kA7a9E5+2xaWR4lEdpz20YrqJ3FcDGRSRxEyqeMGmdRzg0zq2EEmddwgk3pukMlo7FAbBBKVSZkzWaogm+vQ7pBNTcSRyGpazBKZy5ND59/YTOO/uJeeGrmfGrJZ5wIvee1V+vvHHqWTf53LwMN/65o9l1r+kiXyL79A3fX1QxtEP549ZFIHFzKp4waZ1HODTOrYQSZ13CCTem6QyWjsUBsEEpXJSsU93COTvAykE4W8kx8HGjmrDpfj/3sDpT+9j16uYcPkUtvRQX//yCN07dIlNOWN1/Jdoe0Tl7FAfp7aPn5JpXaPWK8LMqnDCZnUcYNM6rlBJnXsIJM6bpBJPTfIZDR2qA0CkMkY+sBwlsnFP8s4kcgPP2SJnNxBM7/RQE3n7aVdmU6H7Inr19FtLJHnP/gbykjokkv35CmUuu46+vDKa6jriFkxtMDw2QVkUtfWkEkdN8iknhtkUscOMqnjBpnUc4NMRmOH2iCQuEzKvMlbf/yLAvK3fecGuuKihUO2NYajTP7rL9w5kdu2skTOa6HJi/bQztP25tvwb5Yvp5uXLaWZK/+Y/1v7wrPduZCf/Us6+KBa2rm3bci2+UCdOGRSRx4yqeMGmdRzg0zq2EEmddwgk3pukMlo7FAbBBKVyTvufpAW37uM7rvre7Rg3kyH/ltrNtHVN3+fbvrcZUM2y+twksn/vNeNRG56hyXytAM0/r/tob0faXTacsb27fRjXhvyUo5Cjvxgu/O3nroR7lxIzsra+ZHjnb+lq1KQSeV7D2RSBw4yqeMGmdRzg0zq2EEmddwgk3pukMlo7FAbBBKVyTOvWESfufTcPtIokvnAQ08P2Syvw0Emf/NA2olErl1dRXThPhr1xQZqnusOW/3k88/R3//+93TiY4/kX1Gdxx7nzIWUSGTPiJEFrzTIpP6NBzKpYweZ1HGDTOq5QSZ17CCTOm6QST03yGQ0dqgNAonKpGRzDRrSaoa+Ipvr4OuQv1/qSuTrr7FEXrWHaj+3m9qntdP4xkb66kPL6Cs8lHXyhvX5E2/9i6udSGT7WecWvRjIpL6dIZM6dpBJHTfIpJ4bZFLHDjKp4waZ1HODTEZjh9ogkKhMIjI5dDrc44+5EvnS6h6iz+yh9DW7KTu+i85443X6+kMP0VVLHqRUd7dzQV0zZlKrs6zH5yk75ZCyFwmZLIuo6AaQSR07yKSOG2RSzw0yqWMHmdRxg0zquUEmo7FDbRBIVCYxZ3Lwd7hnn65iiaymFe90ORKZ+uxuSqWz9EWOQC7iSORHeI1IU9ouvNhd1uOTl1tdGGTSClfBxpBJHTvIpI4bZFLPDTKpYweZ1HGDTOq5QSajsUNtEEhUJgU3srkOzk73wvMskXdk6Mnt7Y5E0qV76ehNm+i6pb+jG5ctozH79zkn3j1hAgvkF5yhrF1zjlJdDGRShc2pBJnUsYNM6rhBJvXcIJM6dpBJHTfIpJ4bZDIaO9QGgcRlshKRD+UEPK+9IpHIDD28p8WVyLMa6S+WP+FEIi9ZuSLfXB2nneEm1OFH1AKZ1BOETOrYQSZ13CCTem6QSR07yKSOG2RSzw0yGY0daoNAojJ53TdvpxdfXUP+RDuSmOfUE+bRL396y5BskaEok6vediORv2s+4Ejk1EPf5SjkErpu2RKasW2b2w6ZDLVc4y7r0XHSKbG1DWRSjxIyqWMHmdRxg0zquUEmdewgkzpukEk9N8hkNHaoDQKJyiQS8Ax8h9u4IUV3/aya7uvcyxLZQBfsesaRyGseezR/cp1Hz6fWa2RZjy9Q99ixsZ80ZFKPFDKpYweZ1HGDTOq5QSZ17CCTOm6QST03yGQ0dqgNAonKJJYGGbgO996WFP1/v0jR/Vme+8iRyK8+cS9dv+R3dNy6dfmTar3i0xyJ/Dy1n/+xfj1RyKQeL2RSxw4yqeMGmdRzg0zq2EEmddwgk3pukMlo7FAbBBKVSUQmk+9wu3am6Ef39tADXXup9lMf0Ncf+A/62q/+i6bu2uWcTHbaYe5cSB7Omj3s8EROEDKpxwyZ1LGDTOq4QSb13CCTOnaQSR03yKSeG2QyGjvUBoFEZRJLgyTX4fbtTdH/uL+Tfkv76KAz36Ov/9d/0tfu+y+asH+/cxIdp5xGncedSPt/+L+SO6nckSCTeuSQSR07yKSOG2RSzw0yqWMHmdRxg0zquUEmo7FDbRBIVCYFN5YG6d9O19pK9O3fttLS6kaafOQ7ThRSRLKug5f84NJ+1rnUfOOXqe2iT/TviZTYO2RSjx4yqWMHmdRxg0zquUEmdewgkzpukEk9N8hkNHaoDQKJy2QlIh8M2VyzWaKvLG2mR0fuo+lj1zkCuei+X+Vxt114MTX/t69Q+9nnDXgTQCb1TQCZ1LGDTOq4QSb13CCTOnaQSR03yKSeG2QyGjvUBgHIZAx9YKBl8obHGunxg/bR0a1vO5HIG373YP6qJKlO85e+TB2nnh7DlcazC8ikniNkUscOMqnjBpnUc4NM6thBJnXcIJN6bpDJaOxQGwQgkzH0gYGSya88foB+P76BTvjwVWc+5F898nD+alqu/mtnOGvnscfFcIXx7gIyqecJmdSxg0zquEEm9dwgkzp2kEkdN8iknhtkMho71AYByGQMfSBpmfzW8gP04Ki9dPqO55zhrJ96+qn8VTRfe4MznLVr9twYrqx/dgGZ1HOFTOrYQSZ13CCTem6QSR07yKSOG2RSzw0yGY0daoMAZDKGPpCUTN76TDPdl9lL577/hDOc9aLnn3PPPpOhJo5CynDWpJb3iIINMqmnB5nUsYNM6rhBJvXcIJM6dpBJHTfIpJ4bZDIaO9QGAchkDH2gv2XyByta6N95nciPb3nIkcizX3nZOeue0WNcieRH98ETY7iSZHYBmdRzhkzq2EEmddwgk3pukEkdO8ikjhtkUs8NMhmNHWqDAGQyhj7QXzL50xfa6P+0NNClGx6gr//qP+nkVaucsxVxFIFs4uGsPaNGx3AFye4CMqnnDZnUsYNM6rhBJvXcIJM6dpBJHTfIpJ4bZDIaO9QGAchkDH0gbplc/FIb/WzfXvr06n9zEuscs3Gjc5bZw6c7Q1klGknpdAxnPjC7gEzquUMmdewgkzpukEk9N8ikjh1kUscNMqnnBpmMxg61QQAyGUMfiEsm//3VDvrHDxvo6tf/xRnOOmvr+87ZdXIynRaOQkpynUookEl9K0ImdewgkzpukEk9N8ikjh1kUscNMqnnBpmMxg61QQAyGUMfiCqTv3m7nf7pnR101RuLneysh+ze7ZxV6zHHUftNXyZZ5qOSCmRS35qQSR07yKSOG2RSzw0yqWMHmdRxg0zquUEmo7FDbRCATMbQB7Qy+ei6Trrjzc105Wt3OpHIcQcOOGdz4ITTqOsrX6XWy6+M4ewG3y4gk/o2gUzq2EEmddwgk3pukEkdO8ikjhtkUs8NMhmNHWqDAGQyhj5gK5Mr3u2kf165hi57fbEjkbUdHc5Z7Dn9PEot+gq1XXhxDGc1eHcBmdS3DWRSxw4yqeMGmdRzg0zq2EEmddwgk3pukMlo7FAbBCCTMfSBsDL56tYs3fn4a3TJK3fRV+//Vf7IH5x9CdV8/SvUfta5MZzN4N8FZFLfRpBJHTvIpI4bZFLPDTKpYweZ1HGDTOq5QSajsUNtEIBMxtAHysnk+g+76c7fPE8XvXwnXbd0Sf6Imy+4kkZ/axF1nHxqDGcxdHYBmdS3FWRSxw4yqeMGmdRzg0zq2EEmddwgk3pukMlo7FAbBCCTMfSBYjL5QWMP3XnPU3TBn+6kax5/NH+ktZf8NdV/+6vUecyxMRx96O0CMqlvM8ikjh1kUscNMqnnBpnUsYNM6rhBJvXcIJPR2KE2CEAmc33gjrsfpAceeppWLLmjT6+4/NpbaePmbc7fj5wxlZbec1vBNn6ZbOrooZ/d8Qidu3IxXbHiyfy2r19+Ax36t4uoa9bsYd3zIJP65odM6thBJnXcIJN6bpBJHTvIpI4bZFLPDTIZjR1qg8Cwl8klj62kW3/8C6cnTBg3po9MXvfN22lPQ2NeIEUs6yeMpV/+9JZ87/HK5J0//i2d/cxd9LGXn3f+35nO0Mufuplm/t+LKDt1GnocE4BM6rsBZFLHDjKp4waZ1HODTOrYQSZ13CCTem6QyWjsUBsEhr1Mmi5QLDJ55hWL6Fs3fZauuGihs6nI508W318gnSKT//b//Bed+eRdtPDtV5ztGkeOoT9fdhPN/59fo+76evQ0DwHIpL47QCZ17CCTOm6QST03yKSOHWRSxw0yqecGmYzGDrVBADKZ6wNBMvnWmk109c3fp/vu+h4tmDfT2dL/t3/5vxbTSY/8jE7c8Lbz/53jJtKfL72JTvzh16lnxEj0sAACkEl9t4BM6thBJnXcIJN6bpBJHTvIpI4bZFLPDTIZjR1qgwBkMqJMUirl7GHz5Gn08ie/TB//p2+R+Ru6VzCB/7+9+wm1o7rjAH5solVLgsaCUAvaYIVEsnGhIBFciauYuqkbIaiIQrOxC/8EXAjxz0K7yEKxKgGhaAs2phsRoUKCYKFuxAZaCRbqoqC2Ver/mPZcO6838+59M79z70vOvfN5m5B358yc+ZzfnbnfN2fmnvVfs/PP3ZD+/dnXiIIC5313Y/ry6xPpxImTwZbDXvzsjd8ZTa/+/MsTw4Yo2PtN55+dPvn0q4KWw25y7jkb0olvTqavvv5m2BDBvd+w4ax0zsYN6bMvnB+CdOl7521Mn35+Ip086fwQtcvHOT8ECJQJCJMzhskXb7wjffGjK9NPHv9Z2QgMsJUwWT7owmSZnTBZ5pZbCZNldsJkmZswWeaWWwmT5XbCZLmdlgSEyTXCZH6p7z2TSqm/gGmu/a3aS5rmWmZnmmuZW271g4vOS13fpVu+9uVtaZpr2dia5lrmlltdfOG56YN/fTG6Iu4nJpCPc34IECgTECY7wmT0aa5lwzCsVsJk+XgLk2V2wmSZmzBZ7iZMltkJk2VuwmS5W3Ocm20NWhMYrsDgw+T4V4M0ZbDrhmvTIw/cuVIV0e+ZHG459dtzYbKf06SlhMkyO2GyzE2YLHcTJsvshMkyN2Gy3E2YnM1OawKDD5PzKAFTwGKKwmTMa3xpYbLMTpgscxMmy92EyTI7YbLMTZgsdxMmZ7PTmoAwOYcaECZjiMJkzEuYLPdqWgqT5YbumSyzEybL3ITJMjdhstxNmJzNTmsCwuQcakCYjCEKkzEvYbLcS5ic3U6YLDMUJsvchMkyN2Gy3E2YnM1OawLC5BxqQJiMIQqTMS9hstxLmJzdTpgsMxQmy9yEyTI3YbLcTZiczU5rAsLkHGpAmIwhCpMxL2Gy3EuYnN1OmCwzFCbL3ITJMjdhstxNmJzNTmsCwqQaIECAAAECBAgQIECAAIGwgDAZJtOAAAECBAgQIECAAAECBIRJNUCAAAECBAgQIECAAAECYQFhMkymAQECBAgQIECAAAECBAgIk4U1cNOefend994ftb78skvSywf3F65pOZpFPdZa/v6Hn06HX31jFcw7rx9cDqyOvYha5tUdePal9Ovf/T4dOXRgEEZ5J+fppOb6H89uu+ex9OZbx1bqbEjHv0jNdTkNueYijm2nIdVb9DjXZaXm4p/Z8rn1qecPp/333ZF237hzMOdXO0ogIiBMRrT+t2z+kPDhRx+vBMh8Yrxoy+b03BP3Fqxt8ZtEPbqWzye8P/35r4MM6F027Wo59MrRtO/RZ0a/3nLBpsGEyXk7qbn+x7Prdu89pc7y/3devSM98sCdi38wW2MPojXX5TTUmos65vPr+B9rh3S+nbeVmvv2j/59a6j5I+1H//xEmFzqo7udm1VAmCwQzB8Sfn7XT1f+SpU/0D/+1IuD+SDfJot6dC0/1BNedu2ymVauQ7syOW8nNVd+PBuKXWnNNe/ZttNQ3GY9X7TbD8lNzRV8QJvQpMRx/Jx65fV7hMn5DIW1LKmAMBkc2LePHU+33P1QeuHJB9OObVtHrSf9LrjahV086tFn+fZUnKFccetjI0xOfr/1fQ9OC91qrvx4lv/Kv/2KS5f6yuQs783mPdt2GmLNzcMxB4Mfb/3h0s8EWg8rNdfvM1v7PCFMLuxHVB0/TQLCZBB6Hgf44CarXjzqEV2+mZKS/132+1JLbJriGNKVydPhlD/4q7n/B8xpB6Hmw+my3888S81luz5OQ6i5WRxziMzTDYdyz+TpsFJzq49xk86lwmTVH0N1rgIBYTI4CLMc4IObWojFox7R5TNCc1+gD6zf/lV10o8wuXrGwCxOau7U2RfTLPODKcZnaSzEQaugkyXHrfE/9PRxGkLNzeLYeLbvIywYzoVocjqs1NzqMNl+cNZ4sdx166609/abF6J+dJLA6RQQJgu0S+bfF2xmYZpEPaLLD+GE1wx21Gb8A+uQnua63k5qbu17wPtcaVuYA1jPjpbUXMRpKDVX4jg+RENxyvu83lZDsZzV0ZXJngdJiw1WQJgsGProE9YKNrFQTbo82lNpupaf9BTEIdwjkwe9y2batKQhXZlcDyc1N/1pru2aG8LUuEkH4Oh7s8tpqDUXdWw7dbku1Mmzo7PztlJzk5/m2lVTwuQyvavsy3oICJOFqpHvySrcxEI1W8tj0oG6a/nmOzwzwjVXbVv6hy2MD3aXTV62uX90/KtBmnXsuuHapX4YSrOf83QaX5eaO/V7c8ffv83Uu0kHpyF8D1vfmuvjNOSa6+uY66ztNJR7JkuOc11Wam7y90wKkwv1cVNnKxQQJiscFF0iQIAAAQIECBAgQIBA7QLCZO0jpH8ECBAgQIAAAQIECBCoUECYrHBQdIkAAQIECBAgQIAAAQK1CwiTtY+Q/hEgQIAAAQIECBAgQKBCAWGywkHRJQIECBAgQIAAAQIECNQuIEzWPkL6R4AAAQIECBAgQIAAgQoFhMkKB0WXCBAgQIAAAQIECBAgULuAMFn7COkfAQIECBAgQIAAAQIEKhQQJiscFF0iQIAAAQIECBAgQIBA7QLCZO0jpH8ECBAgQIAAAQIECBCoUECYrHBQdIkAAQIECBAgQIAAAQK1CwiTtY+Q/hEgQIAAAQIECBAgQKBCAWGywkHRJQIECBAgQIAAAQIECNQuIEzWPkL6R4AAAQIECBAgQIAAgQoFhMkKB0WXCBAgQIAAAQIECBAgULuAMFn7COkfAQIECBAgQIAAAQIEKhQQJiscFF0iQIAAAQIECBAgQIBA7QLCZO0jpH8ECBAgQIAAAQIECBCoUECYrHBQdIkAAQIECBAgQIAAAQK1CwiTtY+Q/hEgsBQCB559KT31/OFV+3LXrbvS3ttvTtft3jt67cihA6uWya9tuWBzevng/tFrXeu68vo9a5ptuWDTaDu33fNYevOtYxOX3X/fHWn3jTvTTXv2pXffez81/28WPvTK0bTv0WfS5ZddstKv9or69GPn1TvS4VffWGm664Zr0yMP3Bnabp/9WIoishMECBAgQKAyAWGysgHRHQIElk+gCTsvPPlg2rFt68oO5lD42pE/roSxHL6uuWpbeu6Je1eWuf/hp9PRP7y9EjL7rqsd+tphML+e1/XhRx9PDYN5mSZMtvvV/H6tMDk+kk34nNSPSa9FtttnP5avquwRAQIECBA48wLC5JkfAz0gQGDJBXJIbK64rbWr7VD19rHj6Za7HzrlqmDfdc0zTF60ZfPoCmYThpt+5YDZFUb79GNamOy7XWFyyd9Ado8AAQIEqhUQJqsdGh0jQGBZBNrTVNfarxyM/nL8b6MrkfnqXA5U41cqI+vK21nrimCfEJb7sP2KS9PfP/hHuvj7F46moOarpfkn/249w2Tf7fbZj2WpJftBgAABAgRqEhAmaxoNfSFAYCkFmkA3vnOTpns2r4/fa/jO6wdPMYmuqytM9rlnMoe6a67aPrpHMvcn9y9fpfzFL3+z7mGyz3bdM7mUbxs7RYAAAQILICBMLsAg6SIBAssj0A4+k6a/NgGweTjPtL2PrGuWeyZzmGweipP70lwtjVwRLLlnsu92I/1YnkqyJwQIECBA4MwLCJNnfgz0gACBgQrk6aL5Sabtq4+T7pXsIpq2rq4rk13TVJtprjlMNk+RbYJpJMTNEia7thvpR5ej1wkQIECAAIH+AsJkfytLEiBAICyQg+Gvfvva6Mpe+6cJSe2nvE4LkyXrmmeYzP3P92w2X18SCXGzhMmu7Ub6ER5ADQgQIECAAIGpAsKk4iBAgMA6CjTBMG+ifQVy0leB5OXWCpP56a6Rdc07TI5TRULcrGFyre1G+rGOQ23VBAgQIEBgcALC5OCG3A4TIHAmBMYfqtNsf9o9kV3TXCPr6gqTfR/AM+nKaiTETetHMz23MWnuIR2fXtser/Z2PYDnTFS0bRIgQIAAgZSESVVAgAABAgQIECBAgAABAmEBYTJMpgEBAgQIECBAgAABAgQICJNqgAABAgQIECBAgAABAgTCAsJkmEwDAgQIECBAgAABAgQIEBAm1QABAgQIECBAgAABAgQIhAWEyTCZBgQIECBAgAABAgQIECAgTKoBAgQIECBAgAABAgQIEAgLCJNhMg0IECBAgAABAgQIECBAQJhUAwQIECBAgAABAgQIECAQFhAmw2QaECBAgAABAgQIECBAgIAwqQYIECBAgAABAgQIECBAICwgTIbJNCBAgAABAgQIECBAgAABYVINECBAgAABAgQIECBAgEBYQJgMk2lAgAABAgQIECBAgAABAsKkGiBAgAABAgQIECBAgACBsIAwGSbTgAABAgQIECBAgFkYMmgAAAGiSURBVAABAgSESTVAgAABAgQIECBAgAABAmEBYTJMpgEBAgQIECBAgAABAgQICJNqgAABAgQIECBAgAABAgTCAsJkmEwDAgQIECBAgAABAgQIEBAm1QABAgQIECBAgAABAgQIhAWEyTCZBgQIECBAgAABAgQIECAgTKoBAgQIECBAgAABAgQIEAgLCJNhMg0IECBAgAABAgQIECBAQJhUAwQIECBAgAABAgQIECAQFhAmw2QaECBAgAABAgQIECBAgIAwqQYIECBAgAABAgQIECBAICwgTIbJNCBAgAABAgQIECBAgAABYVINECBAgAABAgQIECBAgEBYQJgMk2lAgAABAgQIECBAgAABAsKkGiBAgAABAgQIECBAgACBsIAwGSbTgAABAgQIECBAgAABAgSESTVAgAABAgQIECBAgAABAmEBYTJMpgEBAgQIECBAgAABAgQICJNqgAABAgQIECBAgAABAgTCAsJkmEwDAgQIECBAgAABAgQIEBAm1QABAgQIECBAgAABAgQIhAWEyTCZBgQIECBAgAABAgQIECDwH1Kro0u/ccZ6AAAAAElFTkSuQmCC", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "PlotlyHelper.combine_plots(fig_list=[fig_fixed, fig_variable, fig_exact],\n", " curve_labels = [\"FIXED time steps\", \"VARIABLE time steps\", \"EXACT solution\"],\n", " xrange=[0, 0.4], y_label=\"concentration [A]\",\n", " title=\"Fixed vs. Variable time steps vs. Exact soln, for [A] in reaction `A<->B`\",\n", " legend_title=\"Simulation run\")" ] }, { "cell_type": "markdown", "id": "a4399ddd-d4c7-4342-ab47-55f04d77b755", "metadata": {}, "source": [ "### With fewer grid points, the advantage of adaptive variable timesteps is more pronounced \n", "If you zoom out the plot, and scroll to later times, you can see that the advantage later disappears when there's \"less happening\" (change-wise), closer to equilibrium" ] }, { "cell_type": "code", "execution_count": null, "id": "d53d0255-2d5d-4d9b-8830-1f94b841f68c", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" } }, "nbformat": 4, "nbformat_minor": 5 }